
Jakarta MVC Specification
Jakarta EE MVC Team, https://projects.eclipse.org/projects/ee4j.mvc

2.1, September 05, 2022: Final Release

Table of Contents
License. 1

Copyright . 1

Eclipse Foundation Specification License . 1

Disclaimers . 2

1. Introduction. 3

1.1. Goals. 3

1.2. Non-Goals . 3

1.3. Additional Information . 4

1.4. Terminology . 4

1.5. Conventions . 4

1.6. Acknowledgements for version 2.0 . 5

1.7. Acknowledgements for version 1.1 . 5

1.8. Acknowledgements for version 1.0 . 5

1.8.1. Specification Leads . 5

1.8.2. Expert Group Members . 5

1.8.3. Contributors . 6

2. Models, Views and Controllers . 7

2.1. Controllers . 7

2.1.1. Controller Instances . 8

2.1.2. Response . 9

2.1.3. Redirect and @RedirectScoped . 9

2.2. Models . 10

2.3. Views . 12

2.3.1. Building URIs in a View . 13

3. Data Binding . 15

3.1. Introduction. 15

3.2. @MvcBinding annotation. 16

3.3. Error handling with BindingResult . 16

3.4. Converting to Java types . 17

3.4.1. Numeric types . 18

3.4.2. Boolean type. 18

3.4.3. Other types . 18

4. Security . 19

4.1. Introduction. 19

4.2. Cross-site Request Forgery . 19

4.3. Cross-site Scripting . 21

5. Events . 22

5.1. Observers . 22

6. Applications. 31

6.1. MVC Applications . 31

6.2. MVC Context. 31

6.3. Providers in MVC . 31

6.4. Annotation Inheritance. 32

6.5. Configuration in MVC . 32

7. View Engines . 33

7.1. Introduction. 33

7.2. Selection Algorithm . 34

7.3. FacesServlet . 35

8. Internationalization . 36

8.1. Introduction. 36

8.2. Resolving Algorithm . 36

8.3. Default Locale Resolver. 38

9. Form method override . 39

9.1. Introduction. 39

9.2. Resolving Algorithm . 40

Appendix A: Summary of Annotations . 42

Appendix B: Revision History . 43

Bibliography . 44

License

Specification: Jakarta MVC Specification

Version: 2.1

Status: Final Release

Release: September 05, 2022

Copyright
Copyright (c) 2018, 2022 Eclipse Foundation.

Eclipse Foundation Specification License
By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with
the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation, Inc. <<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document]."

1

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY
DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

2

Chapter 1. Introduction
Model-View-Controller, or MVC for short, is a common pattern in Web frameworks where it is used
predominantly to build HTML applications. The model refers to the application’s data, the view to
the application’s data presentation and the controller to the part of the system responsible for
managing input, updating models and producing output.

Web UI frameworks can be categorized as action-based or component-based. In an action-based
framework, HTTP requests are routed to controllers where they are turned into actions by
application code; in a component-based framework, HTTP requests are grouped and typically
handled by framework components with little or no interaction from application code. In other
words, in a component-based framework, the majority of the controller logic is provided by the
framework instead of the application.

The API defined by this specification falls into the action-based category and is, therefore, not
intended to be a replacement for component-based frameworks such as Jakarta Server Faces [1],
but simply a different approach to building Web applications on the Jakarta EE platform.

1.1. Goals
The following are goals of the API:

Goal 1 Leverage existing Jakarta EE technologies like Jakarta Contexs and Dependency
Injecttion [2] and Jakarta Bean Validation [3].

Goal 2 Define a solid core to build MVC applications without necessarily supporting all the
features in its first version.

Goal 3 Build on top of Jakarta RESTful Web Services for the purpose of re-using its matching
and binding layers.

Goal 4 Provide built-in support for Jakarta Server Pages and Facelets view languages.

1.2. Non-Goals
The following are non-goals of the API:

Non-Goal 1 Define a new view (template) language and processor.

Non-Goal 2 Support standalone implementations of MVC running outside of Jakarta EE.

Non-Goal 3 Support REST services not based on Jakarta RESTful Web Services.

Non-Goal 4 Provide built-in support for view languages that are not part of Jakarta EE.

3

It is worth noting that, even though a standalone implementation of MVC that runs outside of
Jakarta EE is a non-goal, this specification shall not intentionally prevent implementations to run in
other environments, provided that those environments include support for all the Jakarta EE
technologies required by MVC.

1.3. Additional Information
The issue tracking system for this specification can be found at:

https://github.com/eclipse-ee4j/mvc-api/issues

The corresponding Javadocs can be found online at:

https://jakarta.ee/specifications/mvc/1.1/apidocs/

A compatible implementation can be obtained from:

https://projects.eclipse.org/projects/ee4j.krazo

The project team seeks feedback from the community on any aspect of this specification, please
send comments to:

https://accounts.eclipse.org/mailing-list/mvc-dev

1.4. Terminology
Most of the terminology used in this specification is borrowed from other specifications such as
Jakarta RESTful Web Services and Jakarta Contexts and Dependency Injection. We use the terms
per-request and request-scoped as well as per-application and application-scoped interchangeably.

1.5. Conventions
The keywords ‘MUST’, ‘MUST NOT’, ‘REQUIRED’, ‘SHALL’, ‘SHALL NOT’, ‘SHOULD’, ‘SHOULD NOT’,
‘RECOMMENDED’, ‘MAY’, and ‘OPTIONAL’ in this document are to be interpreted as described in
RFC 2119 [4].

Java code and sample data fragments are formatted as shown below:

package com.example.hello;

public class Hello {
 public static void main(String args[]){
 System.out.println("Hello World");
 }
}

URIs of the general form http://example.org/… and http://example.com/… represent application or
context-dependent URIs.

4

https://github.com/eclipse-ee4j/mvc-api/issues
https://jakarta.ee/specifications/mvc/1.1/apidocs/
https://projects.eclipse.org/projects/ee4j.krazo
https://accounts.eclipse.org/mailing-list/mvc-dev
http://example.org/
http://example.com/

All parts of this specification are normative, with the exception of examples, notes and sections
explicitly marked as ‘Non-Normative’. Non-normative notes are formatted as shown below.

Note

This is a note.

1.6. Acknowledgements for version 2.0
The Jakarta MVC 2.0 specification was created by the Jakarta MVC Specification Project with
guidance provided by the Jakarta EE Working Group (https://jakarta.ee/).

1.7. Acknowledgements for version 1.1
The Jakarta MVC 1.1 specification was created by the Jakarta MVC Specification Project with
guidance provided by the Jakarta EE Working Group (https://jakarta.ee/).

1.8. Acknowledgements for version 1.0
Version 1.0 was developed as part of JSR 371 under the Java Community Process.

1.8.1. Specification Leads

The following table lists the specification leads of the JSR:

Ivar Grimstad (Individual Member) (Jan 2017 - present)

Christian Kaltepoth (ingenit GmbH & Co. KG) (May 2017 - present)

Santiago Pericas-Geertsen (Oracle) (Aug 2014 - Jan 2017)

Manfred Riem (Oracle) (Aug 2014 - Jan 2017)

1.8.2. Expert Group Members

The following were the expert group members:

Ivar Grimstad (Individual Member) Neil Griffin (Liferay, Inc)

Joshua Wilson (RedHat) Rodrigo Turini (Caelum)

Stefan Tilkov (innoQ Deutschland GmbH) Frank Caputo (Individual Member)

Christian Kaltepoth (ingenit GmbH & Co. KG) Woong-ki Lee (TmaxSoft, Inc.)

Paul Nicolucci (IBM) Kito D. Mann (Individual Member)

Rahman Usta (Individual Member) Florian Hirsch (adorsys GmbH & Co KG)

Santiago Pericas-Geertsen (Oracle) Manfred Riem (Oracle)

The following were former members of the expert group:

5

https://jakarta.ee/
https://jakarta.ee/
https://jcp.org/en/jsr/detail?id=371

Guilherme de Azevedo Silveira (Individual
Member)

1.8.3. Contributors

The following were the contributors of the specification:

Daniel Dias dos Santos Phillip Krüger

Andreas Badelt

During the course of this JSR we received many excellent suggestions. Special thanks to Marek
Potociar, Dhiru Pandey and Ed Burns, all from Oracle. In addition, to everyone in the user’s alias
that followed the expert discussions and provided feedback, including Peter Pilgrim, Ivar Grimstad,
Jozef Hartinger, Florian Hirsch, Frans Tamura, Rahman Usta, Romain Manni-Bucau, Alberto Souza,
among many others.

6

Chapter 2. Models, Views and Controllers
This chapter introduces the three components that comprise the architectural pattern: models,
views and controllers.

2.1. Controllers
A Jakarta MVC controller is a Jakarta RESTful Web Services [5] resource method decorated by
@Controller. If this annotation is applied to a class, then all resource methods in it are regarded as
controllers. Using the @Controller annotation on a subset of methods defines a hybrid class in
which certain methods are controllers and others are traditional Jakarta RESTful Web
Services resource methods.

A simple hello-world controller can be defined as follows:

@Path("hello")
public class HelloController {

 @GET
 @Controller
 public String hello(){
 return "hello.jsp";
 }
}

In this example, hello is a controller method that returns a path to a Jakarta Server Page. The
semantics of controller methods differ slightly from Jakarta RESTful Web Services resource
methods; in particular, a return type of String is interpreted as a view path rather than text
content. Moreover, the default media type for a response is assumed to be text/html, but otherwise
can be declared using @Produces just like in Jakarta RESTful Web Services.

A controller’s method return type determines how its result is processed:

void

A controller method that returns void is REQUIRED to be decorated by @View.

String

A string returned is interpreted as a view path.

Response

A Jakarta RESTful Web Services Response whose entity’s type is one of the above.

The following class defines equivalent controller methods:

7

@Controller
@Path("hello")
public class HelloController {

 @GET @Path("void")
 @View("hello.jsp")
 public void helloVoid() {
 }

 @GET @Path("string")
 public String helloString() {
 return "hello.jsp";
 }

 @GET @Path("response")
 public Response helloResponse() {
 return Response.status(Response.Status.OK)
 .entity("hello.jsp")
 .build();
 }
}

Controller methods that return a non-void type may also be decorated with @View as a way to
specify a default view for the controller. The default view MUST be used only when such a non-void
controller method returns a null value.

Note that, even though controller methods return types are restricted as explained above, Jakarta
MVC does not impose any restrictions on parameter types available to controller methods: i.e., all
parameter types injectable in Jakarta RESTful Web Services resources are also available in
controllers. Likewise, injection of fields and properties is unrestricted and fully compatible with
Jakarta RESTful Web Services. Note the restrictions explained in Section Controller Instances.

Controller methods handle a HTTP request directly. Sub-resource locators as described in the
Jakarta RESTful Web Services Specification [5] are not supported by Jakarta MVC.

2.1.1. Controller Instances

Unlike in Jakarta RESTful Web Services where resource classes can be native (created and managed
by Jakarta RESTful Web Services), Jakarta Contexts and Dependency Injection (CDI) beans, managed
beans or EJBs, Jakarta MVC classes are REQUIRED to be CDI-managed beans only. It follows that a
hybrid class that contains a mix of Jakarta RESTful Web Services resource methods and Jakarta
MVC controllers must also be CDI managed.

Like in Jakarta RESTful Web Services, the default resource class instance lifecycle is per-request.
Implementations MAY support other lifecycles via CDI; the same caveats that apply to Jakarta
RESTful Web Services classes in other lifecycles applied to Jakarta MVC classes. In particular, CDI
may need to create proxies when, for example, a per-request instance is as a member of a per-
application instance. See [5] for more information on lifecycles and their caveats.

8

2.1.2. Response

Returning a Response object gives applications full access to all the parts in a response, including the
headers. For example, an instance of Response can modify the HTTP status code upon encountering
an error condition; Jakarta RESTful Web Services provides a fluent API to build responses as shown
next.

@GET
@Controller
public Response getById(@PathParam("id") String id) {
 if (id.length() == 0) {
 return Response.status(Response.Status.BAD_REQUEST)
 .entity("error.jsp")
 .build();
 }
 //...
}

Direct access to Response enables applications to override content types, set character encodings, set
cache control policies, trigger an HTTP redirect, etc. For more information, the reader is referred to
the Javadoc for the Response class.

2.1.3. Redirect and @RedirectScoped

As stated in the previous section, controllers can redirect clients by returning a Response instance
using the Jakarta RESTful Web Services API. For example,

@GET
@Controller
public Response redirect() {
 return Response.seeOther(URI.create("see/here")).build();
}

Given the popularity of the POST-redirect-GET pattern, Jakarta MVC implementations are
REQUIRED to support view paths prefixed by redirect: as a more concise way to trigger a client
redirect. Using this prefix, the controller shown above can be re-written as follows:

@GET
@Controller
public String redirect() {
 return "redirect:see/here";
}

In either case, relative paths are resolved relative to the Jakarta RESTful Web Services application
path - for more information please refer to the Javadoc for the seeOther method. It is worth noting
that redirects require client cooperation (all browsers support it, but certain CLI clients may not)

9

and result in a completely new request-response cycle in order to access the intended controller. If
a controller returns a redirect: view path, Jakarta MVC implementations SHOULD use the 303 (See
other) status code for the redirect, but MAY prefer 302 (Found) if HTTP 1.0 compatibility is required.

Jakarta MVC applications can leverage CDI by defining beans in scopes such as request and session.
A bean in request scope is available only during the processing of a single request, while a bean in
session scope is available throughout an entire web session which can potentially span tens or even
hundreds of requests.

Sometimes it is necessary to share data between the request that returns a redirect instruction and
the new request that is triggered as a result. That is, a scope that spans at most two requests and
thus fits between a request and a session scope. For this purpose, the Jakarta MVC API defines a
new CDI scope identified by the annotation @RedirectScoped. CDI beans in this scope are
automatically created and destroyed by correlating a redirect and the request that follows. The
exact mechanism by which requests are correlated is implementation dependent, but popular
techniques include URL rewrites and cookies.

Let us assume that MyBean is annotated by @RedirectScoped and given the name mybean, and consider
the following controller:

@Controller
@Path("submit")
public class MyController {

 @Inject
 private MyBean myBean;

 @POST
 public String post() {
 myBean.setValue("Redirect about to happen");
 return "redirect:/submit";
 }

 @GET
 public String get() {
 return "mybean.jsp"; // mybean.value accessed in Jakarta Server Page
 }
}

The bean myBean is injected in the controller and available not only during the first POST, but also
during the subsequent GET request, enabling communication between the two interactions; the
creation and destruction of the bean is under control of CDI, and thus completely transparent to the
application just like any other built-in scope.

2.2. Models
Jakarta MVC controllers are responsible for combining data models and views (templates) to
produce web application pages. This specification supports two kinds of models: the first is based

10

on CDI @Named beans, and the second on the Models interface which defines a map between names
and objects. Jakarta MVC provides view engines for Jakarta Server Pages and Facelets out of the
box, which support both types. For all other view engines supporting the Models interface is
mandatory, support for CDI @Named beans is OPTIONAL but highly RECOMMENDED.

Let us now revisit our hello-world example, this time also showing how to update a model. Since we
intend to show the two ways in which models can be used, we define the model as a CDI
@Named bean in request scope even though this is only necessary for the CDI case:

@Named("greeting")
@RequestScoped
public class Greeting {

 private String message;

 public String getMessage() {
 return message;
 }

 public void setMessage(String message) {
 this.message = message;
 }
 //...
}

Given that the view engine for Jakarta Server Pages supports @Named beans, all the controller needs
to do is fill out the model and return the view. Access to the model is straightforward using CDI
injection:

@Path("hello")
public class HelloController {

 @Inject
 private Greeting greeting;

 @GET
 @Controller
 public String hello() {
 greeting.setMessage("Hello there!");
 return "hello.jsp";
 }
}

This will allow the view to access the greeting using the EL expression ${hello.greeting}.

Instead of using CDI beans annotated with @Named, controllers can also use the Models map to pass
data to the view:

11

@Path("hello")
public class HelloController {

 @Inject
 private Models models;

 @GET
 @Controller
 public String hello() {
 models.put("greeting", new Greeting("Hello there!"));
 return "hello.jsp";
 }
}

In this example, the model is given the same name as that in the @Named annotation above, but using
the injectable Models map instead.

For more information about view engines see the View Engines section.

2.3. Views
A view, sometimes also referred to as a template, defines the structure of the output page and can
refer to one or more models. It is the responsibility of a view engine to process (render) a view by
extracting the information in the models and producing the output page.

Here is the Jakarta Server Pages page for the hello-world example:

<!DOCTYPE html>
<html>
 <head>
 <title>Hello</title>
 </head>
 <body>
 <h1>${greeting.message}</h1>
 </body>
</html>

In Jakarta Server Pages, model properties are accessible via EL [6]. In the example above, the
property message is read from the greeting model whose name was either specified in a @Named
annotation or used as a key in the Models map, depending on which controller from the Models
section triggered this view’s processing.

Here is the corresponding example using Facelets instead of Jakarta Server Pages:

12

<!DOCTYPE html>
<html lang="en" xmlns:h="http://xmlns.jcp.org/jsf/html">
 <h:head>
 <title>Hello</title>
 </h:head>
 <h:body>
 <h:outputText value="#{greeting.message}" />
 </h:body>
</html>

2.3.1. Building URIs in a View

A typical application requires to build URIs for the view, which often refer to controller methods
within the same application. Typical examples for such URIs include HTML links and form actions.
As building URIs manually is difficult and duplicating path patterns between the controller class
and the view is error prone, Jakarta MVC provides a simple way to generate URIs using the
MvcContext class.

See the following controller as an example:

@Controller
@Path("books")
public class BookController {

 @GET
 public String list() {
 // ...
 }

 @GET
 @Path("{id}")
 public String detail(@PathParam("id") long id) {
 // ...
 }

}

Assuming the application is deployed with the context path /myapp and is using the application path
/mvc, URIs for these controller methods can be created with an EL expression like this:

<!-- /myapp/mvc/books -->
${mvc.uri('BookController#list')}

<!-- /myapp/mvc/books/1234 -->
${mvc.uri('BookController#detail', { 'isbn': 1234 })}

The controller method is referenced using the simple name of the controller class and the

13

corresponding method name separated by #. If the URI contains path, query or matrix parameters,
concrete values can be supplied using a map. Please note that the keys of this map must match the
parameter name used in the @PathParam, @QueryParam or @MatrixParam annotation. Jakarta MVC
implementations MUST apply the corresponding URI encoding rules depending on whether the
value is used in a query, path or matrix parameter.

The syntax used above to reference the controller method works well in most cases. However,
because of the simple nature of this reference style, it will require controller class names to be
unique. Also, the references may break if the controller class or method name changes as part of a
refactoring.

Therefore, applications can use the @UriRef annotation to define a stable and unique name for a
controller method.

@Controller
@Path("books")
public class BookController {

 @GET
 @UriRef("book-list")
 public String list() {
 // ...
 }

 // ...

}

Given such a controller class, the view can generate a matching URI by referencing the controller
method using this reference.

<!-- /myapp/mvc/books -->
${mvc.uri('book-list')}

Please note that this feature will work with Jakarta Server Pages, Facelets and all view engines
which support invoking methods on CDI model objects.

14

Chapter 3. Data Binding
This chapter discusses data binding in the Jakarta MVC API. Data binding is based on the
underlying mechanism provided by Jakarta RESTful Web Services, but with additional support for
i18n requirements and for handling data binding errors within the controller.

3.1. Introduction
Jakarta RESTful Web Services provides support for binding request parameters (like form/query
parameters) to resource fields or resource method parameters. With Jakarta RESTful Web Services,
developers can also specify validation constraints using Bean Validation annotations. In this case
submitted values are automatically validated against the given constraints and rejected if
validation fails.

Let’s have a look at the following resource for an example:

@Path("form")
public class FormResource {

 @FormParam("age")
 @Min(18)
 private int age;

 @POST
 public Response handlePost() {
 // ...
 }
}

This resource uses a @FormParam annotation to bind the value of the age form parameter to a
resource field. It also uses the Bean Validation annotation @Min to specify a constraint on the value.

When Jakarta RESTful Web Services binds the submitted data to the field, two types of errors are
possible:

Binding Error This type occurs if Jakarta RESTful Web Services is unable to convert the
submitted value into the desired target Java type. For the resource shown
above, such an error will be thrown if the user submits some arbitrary
string like foobar which cannot be converted into an integer.

Validation Error If the submitted value can be converted into the target type, Jakarta
RESTful Web Services will validate the data according to the Bean
Validation constraints. In our example submitting the value 16 would be
considered invalid and therefore result in a constraint violation.

Unfortunately the Jakarta RESTful Web Services data binding mechanism doesn’t work well for
web applications:

15

• Both binding and validation errors will cause Jakarta RESTful Web Services to throw an
exception which can only be handled by an ExceptionMapper. Especially Jakarta RESTful Web
Services won’t execute the resource method if errors were detected. This is problematic,
because typically web applications will want to display the submitted form again and include a
message explaining why the submission failed. Implementing such a requirement using an
ExceptionMapper is not feasible.

• The Jakarta RESTful Web Services data binding is not locale-aware. This is a problem especially
for numeric data types containing fraction digits (like double, float, BigDecimal, etc). By default,
Jakarta RESTful Web Services will always assume the US number format.

3.2. @MvcBinding annotation
Jakarta MVC addresses the shortcomings of the standard Jakarta RESTful Web Services data binding
by providing a special data binding mode optimized for web applications. You can enable the
Jakarta MVC specific data binding by adding a @MvcBinding annotation to the corresponding
controller field or method parameter.

The following example shows a controller which uses a Jakarta MVC binding on a controller field.

@Controller
@Path("form")
public class FormController {

 @MvcBinding
 @FormParam("age")
 @Min(18)
 private int age;

 @POST
 public String processForm() {
 // ...
 }
}

Please note that usually @MvcBinding will be used with @FormParam and @QueryParam bindings, as they
are very common in web application. However, depending on the specific use case, it may also be
useful to use it with other parameter binding types. Therefore, Jakarta MVC implementations MUST
support @MvcBinding with all Jakarta RESTful Web Services binding annotations.

The following sections will describe the differences from traditional Jakarta RESTful Web Services
data binding in detail.

3.3. Error handling with BindingResult
As mentioned in the first section, Jakarta RESTful Web Services data binding aborts request
processing for any binding or validation error. This means, that a resource method will only be
invoked if all bindings were successful.

16

Jakarta MVC bindings handle such errors in a different way. A Jakarta MVC implementation is
required to invoke the matched controller method even if binding or validation errors occurred.
Controllers can inject a request-scoped instance of BindingResult to access details about potential
data binding errors. This allows controllers to handle such errors themselves, which typically
means that human-readable error messages are presented to the user when the next view is
rendered.

The following example shows a controller which uses BindingResult to handle data binding errors:

@Controller
@Path("form")
public class FormController {

 @MvcBinding
 @FormParam("age")
 @Min(18)
 private int age;

 @Inject
 private BindingResult bindingResult;

 @Inject
 private Models models;

 @POST
 public String processForm() {

 if(bindingResult.isFailed()) {
 models.put("errors", bindingResult.getAllMessages());
 return "form.jsp";
 }

 // process the form request

 }
}

Please note that it is very important for a controller to actually check the BindingResult for errors if
it uses Jakarta MVC bindings. If a binding failed and the controller processes the value without
checking for errors, the bound value may be empty or contain an invalid value.

Jakarta MVC implementations SHOULD log a warning if a request created data binding errors but
the controller didn’t invoke any method on BindingResult.

3.4. Converting to Java types
The standard Jakarta RESTful Web Services data binding doesn’t work very well for web
application, because it isn’t locale-aware and some standard HTML form elements submit data
which cannot easily be bound to matching Java types (e.g. checkboxes are submitting on if checked

17

and Jakarta RESTful Web Services is expecting true for boolean values).

Jakarta MVC implementations are required to apply the following data conversion rules if a binding
is annotated with @MvcBinding.

3.4.1. Numeric types

Implementations MUST support int, long, float, double, BigDecimal, BigInteger and corresponding
wrapper types for Jakarta MVC bindings. Support for other numeric types is optional. When
converting values to these numeric Java types, Jakarta MVC implementations MUST use the current
request locale for parsing non-empty strings. Typically, an implementation will use a NumberFormat
instance initialized with the corresponding locale for converting the data. Empty strings are either
converted to null or to the default value of the corresponding primitive data type. Please refer to
the Internationalization section for details about the Jakarta MVC request locale.

3.4.2. Boolean type

When a Jakarta MVC implementation converts a non-empty string to a boolean primitive type or the
java.lang.Boolean wrapper type, it MUST convert both true and on to the boolean true and all others
strings to false. Empty strings are converted to false in case of the primitive boolean type and to
null for the wrapper type.

3.4.3. Other types

The conversion rules for all other Java types are implementation-specific.

18

Chapter 4. Security

4.1. Introduction
Guarding against malicious attacks is a great concern for web application developers. In particular,
Jakarta MVC applications that accept input from a browser are often targetted by attackers. Two of
the most common forms of attacks are cross-site request forgery (CSRF) and cross-site scripting
(XSS). This chapter explores techniques to prevent these type of attacks with the aid of the Jakarta
MVC API.

4.2. Cross-site Request Forgery
Cross-site Request Forgery (CSRF) is a type of attack in which a user, who has a trust relationship
with a certain site, is mislead into executing some commands that exploit the existence of such a
trust relationship. The canonical example for this attack is that of a user unintentionally carrying
out a bank transfer while visiting another site.

The attack is based on the inclusion of a link or script in a page that accesses a site to which the
user is known or assumed to have been authenticated (trusted). Trust relationships are often stored
in the form of cookies that may be active while the user is visiting other sites. For example, such a
malicious site could include the following HTML snippet:

This will result in the browser executing a bank transfer in an attempt to load an image.

In practice, most sites require the use of form posts to submit requests such as bank transfers. The
common way to prevent CSRF attacks is by embedding additional, difficult-to-guess data fields in
requests that contain sensible commands. This additional data, known as a token, is obtained from
the trusted site but unlike cookies it is never stored in the browser.

Jakarta MVC implementations provide CSRF protection using the Csrf object and the @CsrfProtected
annotation. The Csrf object is available to applications via the injectable MvcContext type or in
Jakarta Expression Language as mvc.csrf. For more information about MvcContext, please refer to
the MVC Context section.

Applications may use the Csrf object to inject a hidden field in a form that can be validated upon
submission. Consider the following JSP:

19

<html>
 <head>
 <title>CSRF Protected Form</title>
 </head>
 <body>
 <form action="csrf" method="post" accept-charset="utf-8">
 <input type="submit" value="Click here"/>
 <input type="hidden" name="${mvc.csrf.name}"
 value="${mvc.csrf.token}"/>
 </form>
 </body>
</html>

The hidden field will be submitted with the form, giving the Jakarta MVC implementation the
opportunity to verify the token and ensure the validity of the post request.

Another way to convey this information to and from the client is via an HTTP header. Jakarta MVC
implementations are REQUIRED to support CSRF tokens both as form fields (with the help of the
application developer as shown above) and as HTTP headers.

The application-level property jakarta.mvc.security.CsrfProtection enables CSRF protection when
set to one of the possible values defined in jakarta.mvc.security.Csrf.CsrfOptions. The default
value of this property is CsrfOptions.EXPLICIT. Any other value than CsrfOptions.OFF will
automatically inject a CSRF token as an HTTP header. The actual name of the header can be
configured via the Csrf.CSRF_HEADER_NAME configuration property. The default name of the header is
Csrf.DEFAULT_CSRF_HEADER_NAME.

Automatic validation is enabled by setting this property to CsrfOptions.IMPLICIT, in which case all
post requests must include either an HTTP header or a hidden field with the correct token. Finally,
if the property is set to CsrfOptions.EXPLICIT then application developers must annotate controllers
using @CsrfProtected to manually enable validation as shown in the following example.

@Path("csrf")
@Controller
public class CsrfController {

 @GET
 public String getForm() {
 return "csrf.jsp"; // Injects CSRF token
 }

 @POST
 @CsrfProtected // Required for CsrfOptions.EXPLICIT
 public void postForm(@FormParam("greeting") String greeting) {
 // Process greeting
 }
}

20

Jakarta MVC implementations are required to support CSRF validation of tokens for controllers
annotated with @POST and consuming the media type x-www-form-urlencoded; other media types and
scenarios may also be supported but are OPTIONAL.

If CSRF protection is enabled for a controller method and the CSRF validation fails (because the
token is either missing or invalid), the Jakarta MVC implementation MUST throw a
jakarta.mvc.security.CsrfValidationException. The implementation MUST provide a default
exception mapper for this exception which handles it by responding with a 403 (Forbidden) status
code. Applications MAY provide a custom exception mapper for CsrfValidationException to change
this default behavior.

4.3. Cross-site Scripting
Cross-site scripting (XSS) is a type of attack in which snippets of scripting code are injected and later
executed when returned back from a server. The typical scenario is that of a website with a search
field that does not validate its input, and returns an error message that includes the value that was
submitted. If the value includes a snippet of the form <script>...</script> then it will be executed
by the browser when the page containing the error is rendered.

There are lots of different variations of this the XSS attack, but most can be prevented by ensuring
that the data submitted by clients is properly sanitized before it is manipulated, stored in a
database, returned to the client, etc. Data escaping/encoding is the recommended way to deal with
untrusted data and prevent XSS attacks.

Jakarta MVC applications can gain access to encoders through the MvcContext object; the methods
defined by jakarta.mvc.security.Encoders can be used by applications to contextually encode data
in an attempt to prevent XSS attacks. The reader is referred to the Javadoc for this type for further
information.

21

Chapter 5. Events
This chapter introduces a mechanism by which Jakarta MVC applications can be informed of
important events that occur while processing a request. This mechanism is based on Jakarta
Contexts and Dependency Injection events that can be fired by implementations and observed by
applications.

5.1. Observers
The package jakarta.mvc.event defines a number of event types that MUST be fired by
implementations during the processing of a request. Implementations MAY extend this set and also
provide additional information on any of the events defined by this specification. The reader is
referred to the implementation’s documentation for more information on event support.

Observing events can be useful for applications to learn about the lifecycle of a request, perform
logging, monitor performance, etc. The events BeforeControllerEvent and AfterControllerEvent are
fired around the invocation of a controller. Please note that AfterControllerEvent is always fired,
even if the controller fails with an exception.

22

/**
 * <p>Event fired before a controller is called but after it has been matched.</p>
 *
 * <p>For example:
 * <pre><code> public class EventObserver {
 * public void beforeControllerEvent(@Observes BeforeControllerEvent e) {
 * ...
 * }
 * }</code></pre>
 *
 * @author Santiago Pericas-Geertsen
 * @author Ivar Grimstad
 * @see jakarta.enterprise.event.Observes
 * @since 1.0
 */
public interface BeforeControllerEvent extends MvcEvent {

 /**
 * Access to the current request URI information.
 *
 * @return URI info.
 * @see jakarta.ws.rs.core.UriInfo
 */
 UriInfo getUriInfo();

 /**
 * Access to the current request controller information.
 *
 * @return resources info.
 * @see jakarta.ws.rs.container.ResourceInfo
 */
 ResourceInfo getResourceInfo();
}

23

/**
 * <p>Event fired after a controller method returns. This event is always fired,
 * even if the controller methods fails with an exception. Must be fired after
 * {@link jakarta.mvc.event.BeforeControllerEvent}.</p>
 *
 * <p>For example:
 * <pre><code> public class EventObserver {
 * public void afterControllerEvent(@Observes AfterControllerEvent e) {
 * ...
 * }
 * }</code></pre>
 *
 * @author Santiago Pericas-Geertsen
 * @author Christian Kaltepoth
 * @author Ivar Grimstad
 * @see jakarta.enterprise.event.Observes
 * @since 1.0
 */
public interface AfterControllerEvent extends MvcEvent {

 /**
 * Access to the current request URI information.
 *
 * @return URI info.
 * @see jakarta.ws.rs.core.UriInfo
 */
 UriInfo getUriInfo();

 /**
 * Access to the current request controller information.
 *
 * @return resources info.
 * @see jakarta.ws.rs.container.ResourceInfo
 */
 ResourceInfo getResourceInfo();
}

Applications can monitor these events using an observer as shown next.

24

@ApplicationScoped
public class EventObserver {

 public void onBeforeController(@Observes BeforeControllerEvent e) {
 System.out.println("URI: " + e.getUriInfo().getRequestUri());
 }

 public void onAfterController(@Observes AfterControllerEvent e) {
 System.out.println("Controller: " +
 e.getResourceInfo().getResourceMethod());
 }
}

Observer methods in Jakarta Contexts and Dependency Injection are defined using the @Observes
annotation on a parameter position. The class EventObserver is a Jakarta Contexts and Dependency
Injection bean in application scope whose methods onBeforeController and onAfterController are
called before and after a controller is called.

Each event includes additional information that is specific to the event; for example, the events
shown in the example above allow applications to get information about the request URI and the
resource (controller) selected.

The View Engines section describes the algorithm used by implementations to select a specific view
engine for processing; after a view engine is selected, the method processView is called. The events
BeforeProcessViewEvent and AfterProcessViewEvent are fired around this call. Please note that
AfterProcessViewEvent is always fired, even if the view engine fails with an exception.

25

/**
 * <p>Event fired after a view engine has been selected but before its
 * {@link jakarta.mvc.engine.ViewEngine#processView(jakarta.mvc.engine.ViewEngineContext)}
 * method is called. Must be fired after {@link jakarta.mvc.event.ControllerRedirectEvent},
 * or if that event is not fired, after {@link jakarta.mvc.event.AfterControllerEvent}.</p>
 *
 * <p>For example:
 * <pre><code> public class EventObserver {
 * public void beforeProcessView(@Observes BeforeProcessViewEvent e) {
 * ...
 * }
 * }</code></pre>
 *
 * @author Santiago Pericas-Geertsen
 * @author Ivar Grimstad
 * @see jakarta.enterprise.event.Observes
 * @since 1.0
 */
public interface BeforeProcessViewEvent extends MvcEvent {

 /**
 * Returns the view being processed.
 *
 * @return the view.
 */
 String getView();

 /**
 * Returns the {@link jakarta.mvc.engine.ViewEngine} selected by the implementation.
 *
 * @return the view engine selected.
 */
 Class<? extends ViewEngine> getEngine();
}

26

/**
 * <p>Event fired after the view engine method
 * {@link jakarta.mvc.engine.ViewEngine#processView(jakarta.mvc.engine.ViewEngineContext)}
 * returns. This event is always fired, even if the view engine fails with an exception.
 * Must be fired after {@link jakarta.mvc.event.BeforeProcessViewEvent}.</p>
 *
 * <p>For example:
 * <pre><code> public class EventObserver {
 * public void afterProcessView(@Observes AfterProcessViewEvent e) {
 * ...
 * }
 * }</code></pre>
 *
 * @author Santiago Pericas-Geertsen
 * @author Christian Kaltepoth
 * @author Ivar Grimstad
 * @see jakarta.enterprise.event.Observes
 * @since 1.0
 */
public interface AfterProcessViewEvent extends MvcEvent {

 /**
 * Returns the view being processed.
 *
 * @return the view.
 */
 String getView();

 /**
 * Returns the {@link jakarta.mvc.engine.ViewEngine} selected by the implementation.
 *
 * @return the view engine selected.
 */
 Class<? extends ViewEngine> getEngine();
}

These events can be observed in a similar manner:

@ApplicationScoped
public class EventObserver {

 public void onBeforeProcessView(@Observes BeforeProcessViewEvent e) {
 // ...
 }

 public void onAfterProcessView(@Observes AfterProcessViewEvent e) {
 // ...
 }
}

27

To complete the example, let us assume that the information about the selected view engine needs
to be conveyed to the client. To ensure that this information is available to a view returned to the
client, the EventObserver class can inject and update the same request-scope bean accessed by such
a view:

@ApplicationScoped
public class EventObserver {

 @Inject
 private EventBean eventBean;

 public void onBeforeProcessView(@Observes BeforeProcessViewEvent e) {
 eventBean.setView(e.getView());
 eventBean.setEngine(e.getEngine());
 }
 // ...
}

For more information about the interaction between views and models, the reader is referred to
the Models section.

The last event supported by Jakarta MVC is ControllerRedirectEvent, which is fired just before the
Jakarta MVC implementation returns a redirect status code. Please note that this event MUST be
fired after AfterControllerEvent.

28

/**
 * <p>Event fired when a controller triggers a redirect. Only the
 * status codes 301 (moved permanently), 302 (found), 303 (see other) and
 * 307 (temporary redirect) are REQUIRED to be reported. Note that the
 * JAX-RS methods
 * {@link jakarta.ws.rs.core.Response#seeOther(java.net.URI)}} and
 * {@link jakarta.ws.rs.core.Response#temporaryRedirect(java.net.URI)}}
 * use the status codes to 303 and 307, respectively. Must be
 * fired after {@link jakarta.mvc.event.AfterControllerEvent}.</p>
 *
 * <p>For example:
 * <pre><code> public class EventObserver {
 * public void onControllerRedirect(@Observes ControllerRedirectEvent e) {
 * ...
 * }
 * }</code></pre>
 *
 * @author Santiago Pericas-Geertsen
 * @author Ivar Grimstad
 * @see jakarta.enterprise.event.Observes
 * @since 1.0
 */
public interface ControllerRedirectEvent extends MvcEvent {

 /**
 * Access to the current request URI information.
 *
 * @return URI info.
 * @see jakarta.ws.rs.core.UriInfo
 */
 UriInfo getUriInfo();

 /**
 * Access to the current request controller information.
 *
 * @return resources info.
 * @see jakarta.ws.rs.container.ResourceInfo
 */
 ResourceInfo getResourceInfo();

 /**
 * The target of the redirection.
 *
 * @return URI of redirection.
 */
 URI getLocation();
}

Jakarta Contexts and Dependency Injection events fired by implementations are synchronous, so it
is recommended that applications carry out only simple tasks in their observer methods, avoiding

29

long-running computations as well as blocking calls. For a complete list of events, the reader is
referred to the Javadoc for the jakarta.mvc.event package.

Event reporting requires the Jakarta MVC implementations to create event objects before firing. In
high-throughput systems without any observers the number of unnecessary objects created may
not be insignificant. For this reason, it is RECOMMENDED for implementations to consider smart
firing strategies when no observers are present.

30

Chapter 6. Applications
This chapter introduces the notion of a Jakarta MVC application and explains how it relates to a
Jakarta RESTful Web Services application.

6.1. MVC Applications
A Jakarta MVC application consists of one or more Jakarta RESTful Web Services resources that are
annotated with @Controller and, just like Jakarta RESTful Web Services applications, zero or more
providers. If no resources are annotated with @Controller, then the resulting application is a Jakarta
RESTful Web Services application instead. In general, everything that applies to a Jakarta RESTful
Web Services application also applies to a Jakarta MVC application. Some Jakarta MVC applications
may be hybrid and include a mix of Jakarta MVC controllers and Jakarta RESTful Web Services
resource methods.

The controllers and providers that make up an application are configured via an application-
supplied subclass of Application from Jakarta RESTful Web Services. An implementation MAY
provide alternate mechanisms for locating controllers, but as in Jakarta RESTful Web Services, the
use of an Application subclass is the only way to guarantee portability.

The path in the application’s URL space in which Jakarta MVC controllers live must be specified
either using the @ApplicationPath annotation on the application subclass or in the web.xml as part
of the url-pattern element. Jakarta MVC applications SHOULD use a non-empty path or pattern: i.e.,
"/" or "/*" should be avoided whenever possible. The reason for this is that Jakarta MVC
implementations often forward requests to the Servlet container, and the use of the
aforementioned values may result in the unwanted processing of the forwarded request by the
Jakarta RESTful Web Services servlet once again.

6.2. MVC Context
MVC applications can inject an instance of MvcContext to access configuration, security and path-
related information. Instances of MvcContext are provided by implementations and are always in
request scope. For convenience, the MvcContext instance is also available using the name mvc in EL.

As an example, a view can refer to a controller by using the base path available in the MvcContext
object as follows:

Click here

For more information on security see the Chapter on Security; for more information about the
MvcContext in general, refer to the Javadoc for the type.

6.3. Providers in MVC
Implementations are free to use their own providers in order to modify the standard Jakarta
RESTful Web Services pipeline for the purpose of implementing the MVC semantics. Whenever

31

mixing implementation and application providers, care should be taken to ensure the correct
execution order using priorities.

6.4. Annotation Inheritance
Jakarta MVC applications MUST follow the annotation inheritance rules defined by Jakarta RESTful
Web Services. Namely, Jakarta MVC annotations may be used on methods of a super-class or an
implemented interface. Such annotations are inherited by a corresponding sub-class or
implementation class method provided that the method does not have any Jakarta MVC or Jakarta
RESTful Web Services annotations of its own: i.e., if a subclass or implementation method has any
Jakarta MVC or Jakarta RESTful Web Services annotations then all of the annotations on the
superclass or interface method are ignored.

Annotations on a super-class take precedence over those on an implemented interface. The
precedence over conflicting annotations defined in multiple implemented interfaces is
implementation dependent. Note that, in accordance to the Jakarta RESTful Web Services rules,
inheritance of class or interface annotations is not supported.

6.5. Configuration in MVC
Implementations MUST support configuration via the native Jakarta RESTful Web Services
configuration mechanism but MAY support other configuration sources.

There are concrete configurations, that all Jakarta MVC the implementations are REQUIRED the
support such as:

• ViewEngine.VIEW_FOLDER

• Csrf.CSRF_PROTECTION

• Csrf.CSRF_HEADER_NAME

Here’s a simple example of how you can configure a custom location for the view folder other than
the /WEB-INF/views, simply by overwriting the getProperties method of the subclass Application:

@ApplicationPath("resources")
public class MyApplication extends Application {

 @Override
 public Map<String, Object> getProperties() {
 final Map<String, Object> map = new HashMap<>();
 map.put(ViewEngine.VIEW_FOLDER, "/jsp/");
 return map;
 }
}

32

Chapter 7. View Engines
This chapter introduces the notion of a view engine as the mechanism by which views are
processed in Jakarta MVC. The set of available view engines is extensible via Jakarta Contexts and
Dependency Injection, enabling applications as well as other frameworks to provide support for
additional view languages.

7.1. Introduction
A view engine is responsible for processing views. In this context, processing entails (i) locating and
loading a view (ii) preparing any required models and (iii) rendering the view and writing the
result back to the client.

Implementations MUST provide built-in support for Jakarta Server Pages and Facelets view engines.
Additional engines may be supported via an extension mechanism based on Jakarta Contexts and
Dependency Injection. Namely, any Jakarta Contexts and Dependency Injection bean that
implements the jakarta.mvc.engine.ViewEngine interface MUST be considered as a possible target
for processing by calling its supports method, discarding the engine if this method returns false.

This is the interface that must be implemented by all Jakarta MVC view engines:

/**
 * <p>View engines are responsible for processing views and are discovered
 * using Jakarta Contexts and Dependency Injection. Implementations must look up all instances of this interface,
 * and process a view as follows:
 *
 * Gather the set of candidate view engines by calling {@link #supports(String)}
 * and discarding engines that return <code>false</code>.
 * Sort the resulting set of candidates using priorities. View engines
 * can be decorated with {@link jakarta.annotation.Priority} to indicate
 * their priority; otherwise the priority is assumed to be {@link ViewEngine#PRIORITY_APPLICATION}.
 * If more than one candidate is available, choose one in an
 * implementation-defined manner.
 * Fire a {@link jakarta.mvc.event.BeforeProcessViewEvent} event.
 * Call method {@link #processView(ViewEngineContext)} to process view.
 * Fire a {@link jakarta.mvc.event.AfterProcessViewEvent} event.
 *
 * <p>The default view engines for Jakarta Server Pages and Facelets use file extensions to determine
 * support. Namely, the default Jakarta Server Pages view engine supports views with extensions <code>jsp</code>
 * and <code>jspx</code>, and the one for Facelets supports views with extension
 * <code>xhtml</code>.</p>
 *
 * @author Santiago Pericas-Geertsen
 * @author Ivar Grimstad
 * @see jakarta.annotation.Priority
 * @see jakarta.mvc.event.BeforeProcessViewEvent
 * @since 1.0
 */
@SuppressWarnings("unused")
public interface ViewEngine {

 /**
 * Name of property that can be set to override the root location for views in an archive.
 *
 * @see jakarta.ws.rs.core.Application#getProperties()

33

 */
 String VIEW_FOLDER = "jakarta.mvc.engine.ViewEngine.viewFolder";

 /**
 * Default value for property {@link #VIEW_FOLDER}.
 */
 String DEFAULT_VIEW_FOLDER = "/WEB-INF/views/";

 /**
 * Priority for all built-in view engines.
 */
 int PRIORITY_BUILTIN = 1000;

 /**
 * Recommended priority for all view engines provided by frameworks built
 * on top of MVC implementations.
 */
 int PRIORITY_FRAMEWORK = 2000;

 /**
 * Recommended priority for all application-provided view engines (default).
 */
 int PRIORITY_APPLICATION = 3000;

 /**
 * Returns <code>true</code> if this engine can process the view or <code>false</code>
 * otherwise.
 *
 * @param view the view.
 * @return outcome of supports test.
 */
 boolean supports(String view);

 /**
 * <p>Process a view given a {@link jakarta.mvc.engine.ViewEngineContext}. Processing
 * a view involves <i>merging</i> the model and template data and writing
 * the result to an output stream.</p>
 *
 * <p>Following the Jakarta EE threading model, the underlying view engine implementation
 * must support this method being called by different threads. Any resources allocated
 * during view processing must be released before the method returns.</p>
 *
 * @param context the context needed for processing.
 * @throws ViewEngineException if an error occurs during processing.
 */
 void processView(ViewEngineContext context) throws ViewEngineException;
}

7.2. Selection Algorithm
Implementations should perform the following steps while trying to find a suitable view engine for
a view.

1. Lookup all instances of jakarta.mvc.engine.ViewEngine available via Jakarta Contexts and
Dependency Injection.

2. Call supports on every view engine found in the previous step, discarding those that return
false.

3. If the resulting set is empty, return null.

34

4. Otherwise, sort the resulting set in descending order of priority using the integer value from the
@Priority annotation decorating the view engine class or the default value
ViewEngine.PRIORITY_APPLICATION if the annotation is not present.

5. Return the first element in the resulting sorted set, that is, the view engine with the highest
priority that supports the given view.

If a view engine that can process a view is not found, implementations SHOULD throw a
corresponding exception and stop to process the request.

The processView method has all the information necessary for processing in the ViewEngineContext,
including the view, a reference to Models, as well as the underlying OutputStream that can be used to
send the result to the client.

Prior to the view render phase, all entries available in Models MUST be bound in such a way that
they become available to the view being processed. The exact mechanism for this depends on the
actual view engine implementation. In the case of the built-in view engines for JSPs and Facelets,
entries in Models must be bound by calling HttpServletRequest.setAttribute(String, Object).
Calling this method ensures access to the named models from EL expressions.

A view returned by a controller method represents a path within an application archive. If the path
is relative, does not start with /, implementations MUST resolve view paths relative to the view
folder, which defaults to /WEB-INF/views/. If the path is absolute, no further processing is required.
It is recommended to use relative paths and a location under WEB-INF to prevent direct access to
views as static resources.

7.3. FacesServlet
Because Facelets support is not enabled by default, Jakarta MVC applications that use Facelets are
required to package a web.xml deployment descriptor with the following entry mapping the
extension *.xhtml as shown next:

<servlet>
 <servlet-name>Faces Servlet</servlet-name>
 <servlet-class>jakarta.faces.webapp.FacesServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>Faces Servlet</servlet-name>
 <url-pattern>*.xhtml</url-pattern>
</servlet-mapping>

Alternatively to a web.xml deployment descriptor an empty faces-config.xml file can be placed in
the WEB-INF folder to enable Facelets support.

It is worth noting that if you opt to use Facelets as a view technology for your Jakarta MVC
application, regular Jakarta Server Faces post-backs will not be processed by the Jakarta MVC
runtime. The usage of <h:form /> and depending form components like <h:inputText /> is not
recommended as they would be the entry point to a real Jakarta Server Faces application.

35

Chapter 8. Internationalization
This chapter introduces the notion of a request locale and describes how Jakarta MVC handles
internationalization and localization.

8.1. Introduction
Internationalization and localization are very important concepts for any web application
framework. Therefore Jakarta MVC has been designed to make supporting multiple languages and
regional differences in applications very easy.

Jakarta MVC defines the term request locale as the locale which is used for any locale-dependent
operation within the lifecycle of a request. The request locale MUST be resolved exactly once for
each request using the resolving algorithm described in the Resolving Algorithm section.

These locale-dependent operations include, but are not limited to:

1. Data type conversion as part of the data binding mechanism.

2. Formatting of data when rendering it to the view.

3. Generating binding and validation error messages in the specific language.

The request locale is available from MvcContext and can be used by controllers, view engines and
other components to perform operations which depend on the current locale. The example below
shows a controller that uses the request locale to create a NumberFormat instance.

@Controller
@Path("/foobar")
public class MyController {

 @Inject
 private MvcContext mvc;

 @GET
 public String get() {
 Locale locale = mvc.getLocale();
 NumberFormat format = NumberFormat.getInstance(locale);
 }
}

The following sections will explain the locale resolving algorithm and the default resolver provided
by the Jakarta MVC implementation.

8.2. Resolving Algorithm
The locale resolver is responsible to detect the request locale for each request processed by the
Jakarta MVC runtime. A locale resolver MUST implement the jakarta.mvc.locale.LocaleResolver
interface which is defined like this:

36

/**
 * <p>Locale resolvers are used to determine the locale of the current request and are discovered
 * using Jakarta Contexts and Dependency Injection.</p>
 *
 * <p>The Jakarta MVC implementation is required to resolve the locale for each request following this
 * algorithm:</p>
 *
 *
 * Gather the set of all implementations of this interface available for injection via
 * CDI.
 * Sort the set of implementations using priorities in descending order. Locale resolvers
 * can be decorated with {@link jakarta.annotation.Priority} to indicate their priority. If no
 * priority is explicitly defined, the priority is assumed to be <code>1000</code>.
 * Call the method {@link #resolveLocale(LocaleResolverContext)}. If the resolver returns
 * a valid locale, use this locale as the request locale. If the resolver returns
 * <code>null</code>, proceed with the next resolver in the ordered set.
 *
 *
 * <p>Controllers, view engines and other components can access the resolved locale by calling
 * {@link MvcContext#getLocale()}.</p>
 *
 * <p>The MVC implementation is required to provide a default locale resolver with a priority
 * of <code>0</code> which uses the <code>Accept-Language</code> request header to obtain the
 * locale. If resolving the locale this way isn't possible, the default resolver must return
 * {@link Locale#getDefault()}.</p>
 *
 * @author Christian Kaltepoth
 * @author Ivar Grimstad
 * @see jakarta.mvc.locale.LocaleResolverContext
 * @see MvcContext#getLocale()
 * @see java.util.Locale
 * @since 1.0
 */
public interface LocaleResolver {

 /**
 * <p>Resolve the locale of the current request given a {@link LocaleResolverContext}.</p>
 *
 * <p>If the implementation is able to resolve the locale for the request, the corresponding
 * locale must be returned. If the implementation cannot resolve the locale, it must return
 * <code>null</code>. In this case the resolving process will continue with the next
 * resolver.</p>
 *
 * @param context the context needed for processing.
 * @return The resolved locale or <code>null</code>.
 */
 Locale resolveLocale(LocaleResolverContext context);

}

There may be more than one locale resolver for a Jakarta MVC application. Locale resolvers are
discovered using Jakarta Contexts and Dependency Injection. Every Jakarta Contexts and
Dependency Injection bean implementing the LocaleResolver interface and visible to the
application participates in the locale resolving algorithm.

37

Implementations MUST use the following algorithm to resolve the request locale for each request:

1. Obtain a list of all Jakarta Contexts and Dependency Injection beans implementing the
LocaleResolver interface visible to the application’s BeanManager.

2. Sort the list of locale resolvers in descending order of priority using the integer value from the
@Priority annotation decorating the resolver class.
If no @Priority annotation is present, assume a default priority of 1000.

3. Call resolveLocale() on the first resolver in the list. If the resolver returns null, continue with
the next resolver in the list.
If a resolver returns a non-null result, stop the algorithm and use the returned locale as the
request locale.

Applications can either rely on the default locale resolver which is described in the Default Locale
Resolver section or provide a custom resolver which implements some other strategy for resolving
the request locale. A custom strategy could for example track the locale using the session, a query
parameter or the server’s hostname.

8.3. Default Locale Resolver
Every Jakarta MVC implementation MUST provide a default locale resolver with a priority of 0
which resolves the request locale according to the following algorithm:

1. First check whether the client provided an Accept-Language request header. If this is the case,
the locale with the highest quality factor is returned as the result.

2. If the previous step was not successful, return the system default locale of the server.

Please note that applications can customize the locale resolving process by providing a custom
locale resolver with a priority higher than 0. See the Resolving Algorithm section for details.

38

Chapter 9. Form method override
This chapter introduces the notion of form method overwrite and describes how Jakarta MVC
supports HTTP methods besides GET and POST when using HTML forms.

9.1. Introduction
The HTML <form> is per default only capable of handling the HTTP GET and POST verbs. Anyway,
more complex applications maybe want to use Jakarta MVC to support HTML as one type of
resource representation and need the power of other HTTP verbs like PATCH or DELETE too. Therefore
Jakarta MVC supports overwriting the HTTP method by providing an easy to use and configurable
mechanism.

Jakarta MVC defines the term form method overwrite as the mechanism being responsible for
changing the HTTP request’s method to something different than GET or POST.

The form method overwrite MUST happen exactly once per request as described in Resolving
Algorithm before the controller is resolved.

To have control over the form method handling, Jakarta MVC provides two properties with
constants for easier usage in the class jakarta.mvc.form.FormMethodOverwriter:

39

public final class FormMethodOverwriter {

 /**
 * Property that can be used to enable the Form method overwrite mechanism for an application.
 * Values of this property must be of type {@link FormMethodOverwriter.Options}.
 */
 public static final String FORM_METHOD_OVERWRITE = "jakarta.mvc.form.FormMethodOverwrite";

 /**
 * Property that can be used to configure the name of the hidden form input to get the targeted HTTP method.
 */
 public static final String HIDDEN_FIELD_NAME = "jakarta.mvc.form.HiddenFieldName";

 /**
 * The default name of the hidden form field used to overwrite the HTTP method.
 */
 public static final String DEFAULT_HIDDEN_FIELD_NAME = "_method";

 /**
 * Options for property {@link FormMethodOverwriter#FORM_METHOD_OVERWRITE}.
 */
 public enum Options {
 /**
 * Form method overwrite is not enabled.
 */
 DISABLED,

 /**
 * Form method overwrite is enabled. Each request will be checked for potential overwrites.
 */
 ENABLED
 }
}

• jakarta.mvc.form.FormMethodOverwrite which can be either ENABLED or DISABLED. The legal options
for this property are defined in jakarta.mvc.form.FormMethodOverwriter.Options. Its default value
is ENABLED.

• jakarta.mvc.form.HiddenFieldName which defines the name of the hidden input field containing
the HTTP method which shall be used instead of the original one. The default value _method is
defined in jakarta.mvc.form.FormMethodOverwriter#HIDDEN_FIELD_NAME_DEFAULT.

The following sections will explain the form method overwrite resolving algorithm provided by the
Jakarta MVC implementation.

9.2. Resolving Algorithm
The form method overwriter is responsible to detect if the HTTP method shall be overwritten and
perform the overwrite if necessary. The specification won’t provide an interface for this task, as
there are a lot of possibilities provided by the specifications MVC is based on, like HttpServletFilter
from Jakarta Servlet or Jakarta RESTful’s ContainerRequestFilter.

Implementations MUST use the following algorithm to overwrite the HTTP method for each
request:

40

1. Check if the following preconditions are true:

a. The configuration property jakarta.mvc.form.FormMethodOverwrite is set to
FormMethodOverwriter.Options#ENABLED

b. The request is a POST request.

c. A form field with the name like it’s configured in jakarta.mvc.form.HiddenFieldName is
available

2. If all conditions are resolved to true:

a. Overwrite the HTTP method to the value provided by the hidden form field.

3. If any of these preconditions evaluates to false:

a. End the procedure without changing the request’s HTTP method

Applications can either rely on the form method overwriter algorithm which is described in this
section or provide a custom form method overwriter which implements some other strategy.

41

Appendix A: Summary of Annotations
Annotation Target Description

Controller Type or method Defines a resource method as a Jakarta MVC
controller. If specified at the type level, it defines
all methods in a class as controllers.

View Type or method Declares a view for a controller method that
returns void. If specified at the type level, it
applies to all controller methods that return void
in a class.

CsrfValid Method States that a CSRF token must be validated
before invoking the controller. Failure to
validate the CSRF token results in a
ForbiddenException thrown.

RedirectScoped Type, method or field Specifies that a certain bean is in redirect scope.

UriRef Method Defines a symbolic name for a controller
method.

MvcBinding Field, method or
parameter

Declares that constraint violations will be
handled by a controller through BindingResult
instead of triggering a
ConstraintViolationException.

42

Appendix B: Revision History
2.0

~

Changed namespace from javax.mvc to jakarta.mvc.

1.1

~

No API changes since 1.0.

43

Bibliography
[1]

Jakarta Server Faces 2.3, August 2019
https://jakarta.ee/specifications/faces/2.3/

[2]

Jakarta Context Dependency Injection 2.0, August 2019
https://jakarta.ee/specifications/cdi/2.0/

[3]

Jakarta Bean Validation 2.0, August 2019
https://jakarta.ee/specifications/bean-validation/2.0/

[4]

S. Bradner. RFC 2119: Keywords for use in RFCs to Indicate Requirement Levels. RFC, IETF,
March 1997
http://www.ietf.org/rfc/rfc2119.txt

[5]

Jakarta RESTful Web Services 2.1, August 2019
https://jakarta.ee/specifications/restful-ws/2.1/

[6]

Jakarta Expression Language 3.0, August 2019
https://jakarta.ee/specifications/expression-language/3.0/

44

https://jakarta.ee/specifications/faces/2.3/
https://jakarta.ee/specifications/cdi/2.0/
https://jakarta.ee/specifications/bean-validation/2.0/
http://www.ietf.org/rfc/rfc2119.txt
https://jakarta.ee/specifications/restful-ws/2.1/
https://jakarta.ee/specifications/expression-language/3.0/

	Jakarta MVC Specification
	Table of Contents
	License
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	Chapter 1. Introduction
	1.1. Goals
	1.2. Non-Goals
	1.3. Additional Information
	1.4. Terminology
	1.5. Conventions
	1.6. Acknowledgements for version 2.0
	1.7. Acknowledgements for version 1.1
	1.8. Acknowledgements for version 1.0
	1.8.1. Specification Leads
	1.8.2. Expert Group Members
	1.8.3. Contributors

	Chapter 2. Models, Views and Controllers
	2.1. Controllers
	2.1.1. Controller Instances
	2.1.2. Response
	2.1.3. Redirect and @RedirectScoped

	2.2. Models
	2.3. Views
	2.3.1. Building URIs in a View

	Chapter 3. Data Binding
	3.1. Introduction
	3.2. @MvcBinding annotation
	3.3. Error handling with BindingResult
	3.4. Converting to Java types
	3.4.1. Numeric types
	3.4.2. Boolean type
	3.4.3. Other types

	Chapter 4. Security
	4.1. Introduction
	4.2. Cross-site Request Forgery
	4.3. Cross-site Scripting

	Chapter 5. Events
	5.1. Observers

	Chapter 6. Applications
	6.1. MVC Applications
	6.2. MVC Context
	6.3. Providers in MVC
	6.4. Annotation Inheritance
	6.5. Configuration in MVC

	Chapter 7. View Engines
	7.1. Introduction
	7.2. Selection Algorithm
	7.3. FacesServlet

	Chapter 8. Internationalization
	8.1. Introduction
	8.2. Resolving Algorithm
	8.3. Default Locale Resolver

	Chapter 9. Form method override
	9.1. Introduction
	9.2. Resolving Algorithm

	Appendix A: Summary of Annotations
	Appendix B: Revision History
	Bibliography

