
Jakarta Server Faces
Jakarta Server Faces Team, https://projects.eclipse.org/projects/ee4j.faces

3.0, September 23, 2020: Final

Table of Contents
Copyright. 2

Eclipse Foundation Specification License. 2

Disclaimers . 2

Preface. 4

Changes between 3.0 and 2.3. 4

Backward Compatibility with Previous Versions. 4

Related Technologies . 4

Other Jakarta Platform Specifications . 4

Related Documents and Specifications. 5

Terminology. 5

Providing Feedback . 5

Acknowledgements . 5

1. Overview. 8

1.1. Solving Practical Problems of the Web . 8

1.2. Specification Audience . 9

1.2.1. Page Authors. 9

1.2.2. Component Writers . 9

1.2.3. Application Developers . 10

1.2.4. Tool Providers . 11

1.2.5. Jakarta Faces Implementors . 12

1.3. Introduction to Jakarta Faces APIs . 12

1.3.1. package jakarta.faces . 12

1.3.2. package jakarta.faces.application . 12

1.3.3. package jakarta.faces.component . 13

1.3.4. package jakarta.faces.component.html. 13

1.3.5. package jakarta.faces.context . 13

1.3.6. package jakarta.faces.convert . 13

1.3.7. package jakarta.faces.el . 13

1.3.8. package jakarta.faces.flow and jakarta.faces.flow.builder . 13

1.3.9. package jakarta.faces.lifecycle . 13

1.3.10. package jakarta.faces.event . 14

1.3.11. package jakarta.faces.render . 14

1.3.12. package jakarta.faces.validator . 14

1.3.13. package jakarta.faces.webapp . 14

2. Request Processing Lifecycle . 15

2.1. Request Processing Lifecycle Scenarios . 16

2.1.1. Non-Faces Request Generates Faces Response. 16

2.1.2. Faces Request Generates Faces Response . 16

2.1.3. Faces Request Generates Non-Faces Response. 17

2.2. Standard Request Processing Lifecycle Phases . 18

2.2.1. Restore View. 18

2.2.2. Apply Request Values . 20

2.2.2.1. Apply Request Values Partial Processing . 21

2.2.3. Process Validations . 21

2.2.3.1. Partial Validations Partial Processing. 22

2.2.4. Update Model Values . 22

2.2.4.1. Update Model Values Partial Processing . 23

2.2.5. Invoke Application . 23

2.2.6. Render Response . 23

2.2.6.1. Render Response Partial Processing. 25

2.3. Common Event Processing . 26

2.4. Common Application Activities . 27

2.4.1. Acquire Faces Object References. 27

2.4.1.1. Acquire and Configure Lifecycle Reference . 27

2.4.1.2. Acquire and Configure FacesContext Reference . 27

2.4.2. Create And Configure A New View . 28

2.4.2.1. Create A New View . 28

2.4.2.2. Configure the Desired RenderKit. 28

2.4.2.3. Configure The View’s Components . 29

2.4.2.4. Store the new View in the FacesContext . 29

2.5. Concepts that impact several lifecycle phases . 29

2.5.1. Value Handling . 29

2.5.1.1. Apply Request Values Phase . 30

2.5.1.2. Process Validators Phase . 30

2.5.1.3. Executing Validation. 30

2.5.1.4. Update Model Values Phase . 30

2.5.2. Localization and Internationalization (L10N/I18N) . 30

2.5.2.1. Determining the active Locale . 31

2.5.2.2. Determining the Character Encoding . 31

2.5.2.3. Localized Text. 32

2.5.2.4. Localized Application Messages. 33

2.5.3. State Management . 36

2.5.3.1. State Management Considerations for the Custom Component Author 36

2.5.3.2. State Management Considerations for the Jakarta Faces Implementor. 37

2.5.4. Resource Handling . 38

2.5.5. View Parameters . 39

2.5.6. Bookmarkability . 40

2.5.7. Jakarta Bean Validation . 40

2.5.8. Ajax. 41

2.5.9. Component Behaviors . 41

2.5.10. System Events . 42

2.6. Resource Handling . 43

2.6.1. Packaging Resources . 43

2.6.1.1. Packaging Resources into the Web Application Root . 43

2.6.1.2. Packaging Resources into the Classpath . 43

2.6.1.3. Resource Identifiers . 43

2.6.1.4. Libraries of Localized and Versioned Resources . 47

2.6.2. Rendering Resources . 51

2.6.2.1. Relocatable Resources . 51

2.6.2.2. Resource Rendering Using Annotations. 52

2.7. Resource Library Contracts . 52

3. User Interface Component Model. 54

3.1. UIComponent and UIComponentBase . 54

3.1.1. Component Identifiers . 55

3.1.2. Component Type . 55

3.1.3. Component Family . 55

3.1.4. ValueExpression properties . 56

3.1.5. Component Bindings . 56

3.1.6. Client Identifiers . 57

3.1.7. Component Tree Manipulation . 58

3.1.8. Component Tree Navigation. 58

3.1.9. Facet Management . 60

3.1.10. Managing Component Behavior . 61

3.1.11. Generic Attributes. 61

3.1.11.1. Special Attributes . 63

3.1.12. Render-Independent Properties . 64

3.1.13. Component Specialization Methods . 65

3.1.14. Lifecycle Management Methods . 66

3.1.15. Utility Methods . 67

3.2. Component Behavioral Interfaces . 68

3.2.1. ActionSource . 68

3.2.1.1. Properties . 68

3.2.1.2. Methods . 69

3.2.1.3. Events . 69

3.2.2. ActionSource2 . 70

3.2.2.1. Properties . 70

3.2.2.2. Methods . 70

3.2.2.3. Events . 70

3.2.3. NamingContainer . 70

3.2.4. StateHolder . 71

3.2.4.1. Properties . 71

3.2.4.2. Methods . 71

3.2.4.3. Events . 72

3.2.5. PartialStateHolder. 72

3.2.5.1. Properties . 72

3.2.5.2. Methods . 72

3.2.5.3. Events . 73

3.2.6. ValueHolder . 73

3.2.6.1. Properties . 73

3.2.6.2. Methods . 73

3.2.6.3. Events . 74

3.2.7. EditableValueHolder . 74

3.2.7.1. Properties . 74

3.2.7.2. Methods . 75

3.2.7.3. Events . 75

3.2.8. SystemEventListenerHolder. 76

3.2.8.1. Properties . 76

3.2.8.2. Methods . 76

3.2.8.3. Events . 76

3.2.9. ClientBehaviorHolder . 76

3.3. Conversion Model . 77

3.3.1. Overview . 77

3.3.2. Converter . 78

3.3.3. Standard Converter Implementations . 79

3.4. Event and Listener Model. 81

3.4.1. Overview . 81

3.4.2. Application Events . 82

3.4.2.1. Event Classes. 82

3.4.2.2. Listener Classes . 83

3.4.2.3. Phase Identifiers . 84

3.4.2.4. Listener Registration . 84

3.4.2.5. Event Queueing . 85

3.4.2.6. Event Broadcasting . 85

3.4.3. System Events . 86

3.4.3.1. Event Classes. 86

3.4.3.2. Listener Classes . 87

3.4.3.3. Programmatic Listener Registration. 87

3.4.3.4. Declarative Listener Registration . 88

3.4.3.5. Listener Registration By Annotation. 88

3.4.3.6. Listener Registration By Application Configuration Resources . 88

3.4.3.7. Event Broadcasting . 88

3.5. Validation Model . 89

3.5.1. Overview . 89

3.5.2. Validator Classes . 89

3.5.3. Validation Registration . 89

3.5.4. Validation Processing . 90

3.5.5. Standard Validator Implementations. 91

3.5.6. Bean Validation Integration . 92

3.5.6.1. Bean Validator Activation . 93

3.5.6.2. Obtaining a ValidatorFactory . 93

3.5.6.3. Class-Level Validation. 93

3.5.6.4. Localization of Bean Validation Messages. 94

3.6. Composite User Interface Components . 95

3.6.1. Non-normative Background . 95

3.6.1.1. What does it mean to be a Jakarta Faces User Interface component? 96

3.6.1.2. How does one make a custom Jakarta Faces User Interface component?. 96

3.6.1.3. How does one make a composite component?. 97

3.6.1.4. A simple composite component example . 98

3.6.1.5. Walk through of the run-time for the simple composite component example 99

3.6.1.6. Composite Component Terms . 100

3.6.2. Normative Requirements . 102

3.6.2.1. Composite Component Metadata. 102

3.7. Component Behavior Model . 105

3.7.1. Overview. 105

3.7.2. Behavior Interface . 105

3.7.3. BehaviorBase . 105

3.7.4. The Client Behavior Contract . 106

3.7.5. ClientBehaviorHolder . 106

3.7.6. ClientBehaviorRenderer . 107

3.7.7. ClientBehaviorContext. 107

3.7.8. ClientBehaviorHint. 107

3.7.9. ClientBehaviorBase . 107

3.7.10. Behavior Event / Listener Model. 108

3.7.10.1. Event Classes . 108

3.7.10.2. Listener Classes . 109

3.7.10.3. Listener Registration . 109

3.7.11. Ajax Behavior . 109

3.7.11.1. AjaxBehavior . 109

3.7.11.2. Ajax Behavior Event / Listener Model . 110

3.7.12. Adding Behavior To Components . 110

3.7.13. Behavior Registration . 111

3.7.13.1. XML Registration. 111

3.7.13.2. Registration By Annotation. 111

4. Standard User Interface Components . 113

4.1. Standard User Interface Components . 113

4.1.1. UIColumn . 114

4.1.1.1. Component Type . 114

4.1.1.2. Properties . 114

4.1.1.3. Methods . 115

4.1.1.4. Events. 115

4.1.2. UICommand . 115

4.1.2.1. Component Type . 115

4.1.2.2. Properties . 115

4.1.2.3. Methods . 116

4.1.2.4. Events. 116

4.1.3. UIData . 116

4.1.3.1. Component Type . 116

4.1.3.2. Properties . 116

4.1.3.3. Methods . 118

4.1.3.4. Events. 118

4.1.4. UIForm. 118

4.1.4.1. Component Type . 119

4.1.4.2. Properties . 119

4.1.4.3. Methods. 119

4.1.4.4. Events. 120

4.1.5. UIGraphic . 120

4.1.5.1. Component Type . 120

4.1.5.2. Properties . 120

4.1.5.3. Methods . 121

4.1.5.4. Events. 121

4.1.6. UIInput. 121

4.1.6.1. Component Type . 121

4.1.6.2. Properties . 121

4.1.6.3. Methods . 122

4.1.6.4. Events. 123

4.1.7. UIMessage . 123

4.1.7.1. Component Type . 123

4.1.7.2. Properties . 123

4.1.7.3. Methods. 124

4.1.7.4. Events. 124

4.1.8. UIMessages . 124

4.1.8.1. Component Type . 124

4.1.8.2. Properties . 124

4.1.8.3. Methods. 125

4.1.8.4. Events. 125

4.1.9. UIOutcomeTarget . 125

4.1.9.1. Component Type . 125

4.1.9.2. Properties . 125

4.1.9.3. Methods . 126

4.1.9.4. Events. 126

4.1.10. UIOutput . 126

4.1.10.1. Component Type . 126

4.1.10.2. Properties . 126

4.1.10.3. Methods . 127

4.1.10.4. Events. 127

4.1.11. UIPanel . 127

4.1.11.1. Component Type . 127

4.1.11.2. Properties . 127

4.1.11.3. Methods . 127

4.1.11.4. Events. 127

4.1.12. UIParameter. 127

4.1.12.1. Component Type . 127

4.1.12.2. Properties . 128

4.1.12.3. Methods . 128

4.1.12.4. Events. 128

4.1.13. UISelectBoolean. 128

4.1.13.1. Component Type . 128

4.1.13.2. Properties . 128

4.1.13.3. Methods . 129

4.1.13.4. Events. 129

4.1.14. UISelectItem . 129

4.1.14.1. Component Type . 129

4.1.14.2. Properties . 129

4.1.14.3. Methods . 130

4.1.14.4. Events. 130

4.1.15. UISelectItems . 130

4.1.15.1. Component Type . 130

4.1.15.2. Properties . 130

4.1.15.3. Methods . 131

4.1.15.4. Events. 131

4.1.16. UISelectMany . 131

4.1.16.1. Component Type . 131

4.1.16.2. Properties . 131

4.1.16.3. Methods . 131

4.1.16.4. Events. 131

4.1.17. UISelectOne . 132

4.1.17.1. Component Type . 132

4.1.17.2. Properties . 132

4.1.17.3. Methods . 132

4.1.17.4. Events. 132

4.1.18. UIViewParameter . 132

4.1.19. UIViewRoot. 132

4.1.19.1. Component Type . 132

4.1.19.2. Properties . 132

4.1.19.3. Methods . 133

4.1.19.4. Events. 134

4.1.19.5. Partial Processing . 135

4.2. Standard UIComponent Model Beans . 135

4.2.1. DataModel. 135

4.2.1.1. Properties . 135

4.2.1.2. Methods . 136

4.2.1.3. Events. 136

4.2.1.4. Concrete Implementations . 136

4.2.2. SelectItem . 136

4.2.2.1. Properties . 137

4.2.2.2. Methods . 137

4.2.2.3. Events. 137

4.2.3. SelectItemGroup . 137

4.2.3.1. Properties . 137

4.2.3.2. Methods . 138

4.2.3.3. Events. 138

5. Expression Language and Managed Bean Facility . 139

5.1. Value Expressions. 139

5.1.1. Overview. 139

5.1.2. Value Expression Syntax and Semantics . 140

5.2. MethodExpressions . 140

5.2.1. MethodExpression Syntax and Semantics . 142

5.3. The Managed Bean Facility . 142

5.3.1. Managed Bean Configuration Example . 147

5.4. Managed Bean Annotations . 149

5.4.1. Jakarta Faces Managed Classes and Jakarta EE Annotations . 149

5.4.2. Managed Bean Lifecycle Annotations . 151

5.5. How Faces Leverages the Expression Language. 152

5.5.1. ELContext . 152

5.5.1.1. Lifetime, Ownership and Cardinality. 152

5.5.1.2. Properties . 152

5.5.1.3. Methods . 153

5.5.1.4. Events. 153

5.5.2. ELResolver . 153

5.5.2.1. Lifetime, Ownership, and Cardinality . 154

5.5.2.2. Properties . 154

5.5.2.3. Methods . 154

5.5.2.4. Events. 154

5.5.3. ExpressionFactory . 154

5.5.3.1. Lifetime, Ownership, and Cardinality . 155

5.5.3.2. Properties . 155

5.5.3.3. Methods . 155

5.5.3.4. Events. 155

5.6. ELResolver Instances Provided by Faces . 155

5.6.1. Faces ELResolver for Jakarta Server Pages Pages . 156

5.6.1.1. Faces Implicit Object ELResolver For Jakarta Server Pages . 157

5.6.1.2. ManagedBean ELResolver. 158

5.6.1.3. Resource ELResolver . 160

5.6.1.4. ResourceBundle ELResolver for Jakarta Server Pages Pages . 160

5.6.1.5. ELResolvers in the application configuration resources . 162

5.6.1.6. VariableResolver Chain Wrapper . 162

5.6.1.7. PropertyResolver Chain Wrapper . 163

5.6.1.8. ELResolvers from Application.addELResolver() . 164

5.6.2. ELResolver for Facelets and Programmatic Access . 164

5.6.2.1. Implicit Object ELResolver for Facelets and Programmatic Access 165

5.6.2.2. Composite Component Attributes ELResolver . 170

5.6.2.3. The CompositeELResolver. 171

5.6.2.4. ManagedBean ELResolver. 171

5.6.2.5. Resource ELResolver . 171

5.6.2.6. el.ResourceBundleELResolver . 172

5.6.2.7. ResourceBundle ELResolver for Programmatic Access . 173

5.6.2.8. Stream, StaticField, Map, List, Array, and Bean ELResolvers . 173

5.6.2.9. ScopedAttribute ELResolver . 173

5.6.3. CDI for Expression Language Resolution . 175

5.7. Current Expression Evaluation APIs . 175

5.7.1. ELResolver . 175

5.7.2. ValueExpression . 175

5.7.3. MethodExpression . 176

5.7.4. Expression Evaluation Exceptions . 176

5.8. Deprecated Expression Evaluation APIs . 176

5.8.1. VariableResolver and the Default VariableResolver . 176

5.8.2. PropertyResolver and the Default PropertyResolver. 176

5.8.3. ValueBinding . 177

5.8.4. MethodBinding . 178

5.8.5. Expression Evaluation Exceptions . 178

5.9. CDI Integration . 178

5.9.1. Jakarta Faces Objects Valid for @Inject Injection . 179

5.9.2. Expression Language Resolution . 179

6. Per-Request State Information . 181

6.1. FacesContext . 181

6.1.1. Application . 181

6.1.2. Attributes . 181

6.1.3. ELContext . 181

6.1.4. ExternalContext. 182

6.1.4.1. Flash . 183

6.1.5. ViewRoot . 184

6.1.6. Message Queue . 184

6.1.7. RenderKit . 184

6.1.8. ResponseStream and ResponseWriter. 185

6.1.9. Flow Control Methods . 185

6.1.10. Partial Processing Methods . 186

6.1.11. Partial View Context. 186

6.1.12. Access To The Current FacesContext Instance. 186

6.1.13. CurrentPhaseId . 187

6.1.14. ExceptionHandler. 187

6.2. ExceptionHandler. 187

6.2.1. Default ExceptionHandler implementation . 188

6.2.2. Backwards Compatible ExceptionHandler . 189

6.2.3. Default Error Page . 190

6.3. FacesMessage. 190

6.4. ResponseStream . 191

6.5. ResponseWriter. 191

6.6. FacesContextFactory . 193

6.7. ExceptionHandlerFactory. 194

6.8. ExternalContextFactory . 194

7. Application Integration. 196

7.1. Application . 196

7.1.1. ActionListener Property . 196

7.1.2. DefaultRenderKitId Property . 197

7.1.3. FlowHandler Property . 197

7.1.4. NavigationHandler Property . 198

7.1.5. StateManager Property . 198

7.1.6. ELResolver Property. 198

7.1.7. ELContextListener Property. 198

7.1.8. ViewHandler Property. 199

7.1.9. ProjectStage Property. 199

7.1.10. Acquiring ExpressionFactory Instance . 199

7.1.11. Programmatically Evaluating Expressions. 199

7.1.12. Object Factories . 200

7.1.12.1. Default Validator Ids. 201

7.1.13. Internationalization Support . 202

7.1.14. System Event Methods. 202

7.1.14.1. Subscribing to system events . 202

7.1.14.2. Unsubscribing from system events. 203

7.2. ApplicationFactory . 203

7.3. Application Actions . 204

7.4. NavigationHandler. 204

7.4.1. Overview. 204

7.4.2. Default NavigationHandler Algorithm . 206

7.4.2.1. Requirements for Explicit Navigation in Faces Flow Call Nodes other than ViewNodes 211

7.4.2.2. Requirements for Entering a Flow . 211

7.4.2.3. Requirements for Exiting a Flow. 212

7.4.2.4. Requirements for Calling A Flow from the Current Flow . 212

7.4.3. Example NavigationHandler Configuration. 212

7.5. FlowHandler . 217

7.5.1. Non-normative example . 218

7.5.2. Non-normative Feature Overview . 220

7.6. ViewHandler . 220

7.6.1. Overview. 220

7.6.2. Default ViewHandler Implementation . 223

7.6.2.1. ViewHandler Methods that Derive Information From the Incoming Request. 223

7.6.2.2. ViewHandler Methods that are Called to Fill a Specific Role in the Lifecycle 225

7.6.2.3. ViewHandler Methods Relating to Navigation. 226

7.6.2.4. ViewHandler Methods that relate to View Protection . 228

7.7. ViewDeclarationLanguage . 229

7.7.1. ViewDeclarationLanguageFactory . 229

7.7.2. Default ViewDeclarationLanguage Implementation . 229

7.7.2.1. ViewDeclarationLanguage.createView() . 229

7.7.2.2. ViewDeclarationLanguage.calculateResourceLibraryContracts(). 230

7.7.2.3. ViewDeclarationLanguage.buildView() . 231

7.7.2.4. ViewDeclarationLanguage.getComponentMetadata() . 231

7.7.2.5. ViewDeclarationLanguage.getViewMetadata() and getViewParameters() 232

7.7.2.6. ViewDeclarationLanguage.getScriptComponentResource() . 233

7.7.2.7. ViewDeclarationLanguage.renderView() . 233

7.7.2.8. ViewDeclarationLanguage.restoreView() . 234

7.8. StateManager. 235

7.8.1. Overview. 235

7.8.1.1. Stateless Views . 236

7.8.2. State Saving Alternatives and Implications . 236

7.8.3. State Saving Methods. 237

7.8.4. State Restoring Methods . 237

7.8.5. Convenience Methods . 238

7.9. ResourceHandler . 238

7.10. Deprecated APIs . 238

7.10.1. PropertyResolver Property. 238

7.10.2. VariableResolver Property . 239

7.10.3. Acquiring ValueBinding Instances . 239

7.10.4. Acquiring MethodBinding Instances . 239

7.10.5. Object Factories . 240

7.10.6. StateManager. 240

7.10.7. ResponseStateManager . 241

8. Rendering Model . 243

8.1. RenderKit . 243

8.2. Renderer . 245

8.3. ClientBehaviorRenderer . 246

8.3.1. ClientBehaviorRenderer Registration . 246

8.4. ResponseStateManager . 247

8.5. RenderKitFactory . 248

8.6. Standard HTML RenderKit Implementation . 249

8.7. The Concrete HTML Component Classes. 249

9. Integration with Jakarta Server Pages . 251

9.1. UIComponent Custom Actions. 251

9.2. Using UIComponent Custom Actions in Jakarta Server Pages Pages . 253

9.2.1. Declaring the Tag Libraries . 253

9.2.2. Including Components in a Page. 253

9.2.3. Creating Components and Overriding Attributes . 254

9.2.4. Deleting Components on Redisplay . 255

9.2.5. Representing Component Hierarchies. 255

9.2.6. Registering Converters, Event Listeners, and Validators . 256

9.2.7. Using Facets . 256

9.2.8. Interoperability with Jakarta Server Pages Template Text and Other Tag Libraries 257

9.2.9. Composing Pages from Multiple Sources . 258

9.3. UIComponent Custom Action Implementation Requirements . 258

9.3.1. Considerations for Custom Actions written for pre-Jakarta Faces JSF 1.1 and 1.0 261

9.3.1.1. Past and Present Tag constraints. 261

9.3.1.2. Faces 1.0 and 1.1 Taglib migration story . 262

9.4. Jakarta Faces Core Tag Library . 262

9.4.1. <f:actionListener> . 264

9.4.1.1. Syntax. 264

9.4.1.2. Body Content . 264

9.4.1.3. Attributes. 264

9.4.1.4. Constraints . 264

9.4.1.5. Description . 264

9.4.2. <f:attribute> . 265

9.4.2.1. Syntax. 265

9.4.2.2. Body Content . 265

9.4.2.3. Attributes. 265

9.4.2.4. Constraints . 265

9.4.2.5. Description . 265

9.4.3. <f:convertDateTime> . 266

9.4.3.1. Syntax. 266

9.4.3.2. Body Content . 266

9.4.3.3. Attributes. 266

9.4.3.4. Constraints . 267

9.4.3.5. Description . 268

9.4.4. <f:convertNumber> . 269

9.4.4.1. Syntax. 269

9.4.4.2. Body Content . 269

9.4.4.3. Attributes. 269

9.4.4.4. Constraints . 270

9.4.4.5. Description . 270

9.4.5. <f:converter> . 271

9.4.5.1. Syntax. 271

9.4.5.2. Body Content . 271

9.4.5.3. Attributes. 271

9.4.5.4. Constraints . 271

9.4.5.5. Description . 272

9.4.6. <f:facet> . 272

9.4.6.1. Syntax. 272

9.4.6.2. Body Content . 272

9.4.6.3. Attributes. 272

9.4.6.4. Constraints . 272

9.4.6.5. Description . 273

9.4.7. <f:loadBundle>. 273

9.4.7.1. Syntax. 273

9.4.7.2. Body Content . 273

9.4.7.3. Attributes. 273

9.4.7.4. Constraints . 273

9.4.7.5. Description . 273

9.4.8. <f:param> . 274

9.4.8.1. Syntax. 274

9.4.8.2. Body Content . 274

9.4.8.3. Attributes. 274

9.4.8.4. Constraints . 274

9.4.8.5. Description . 274

9.4.9. <f:phaseListener> . 275

9.4.9.1. Syntax. 275

9.4.9.2. Body Content . 275

9.4.9.3. Attributes. 275

9.4.9.4. Constraints . 275

9.4.9.5. Description . 275

9.4.10. <f:selectItem>. 276

9.4.10.1. Syntax. 276

9.4.10.2. Body Content . 276

9.4.10.3. Attributes . 276

9.4.10.4. Constraints . 277

9.4.10.5. Description . 277

9.4.11. <f:selectItems>. 277

9.4.11.1. Syntax. 277

9.4.11.2. Body Content . 278

9.4.11.3. Attributes . 278

9.4.11.4. Constraints . 278

9.4.11.5. Description . 278

9.4.12. <f:setPropertyActionListener>. 279

9.4.12.1. Syntax. 279

9.4.12.2. Body Content . 279

9.4.12.3. Attributes . 279

9.4.12.4. Constraints . 279

9.4.12.5. Description . 280

9.4.13. <f:subview> . 280

9.4.13.1. Syntax. 280

9.4.13.2. Body Content . 280

9.4.13.3. Attributes . 280

9.4.13.4. Constraints . 281

9.4.13.5. Description . 281

9.4.14. <f:validateDoubleRange> . 283

9.4.14.1. Syntax. 283

9.4.14.2. Body Content . 283

9.4.14.3. Attributes . 283

9.4.14.4. Constraints . 283

9.4.14.5. Description . 284

9.4.15. <f:validateLength> . 284

9.4.15.1. Syntax. 284

9.4.15.2. Body Content . 285

9.4.15.3. Attributes . 285

9.4.15.4. Constraints . 285

9.4.15.5. Description . 285

9.4.16. <f:validateRegex> . 286

9.4.16.1. Syntax. 286

9.4.16.2. Body Content . 286

9.4.16.3. Attributes . 286

9.4.16.4. Constraints . 286

9.4.16.5. Description . 286

9.4.17. <f:validateLongRange> . 287

9.4.17.1. Syntax. 287

9.4.17.2. Body Content . 287

9.4.17.3. Attributes . 287

9.4.17.4. Constraints . 288

9.4.17.5. Description . 288

9.4.18. <f:validator>. 289

9.4.18.1. Syntax. 289

9.4.18.2. Body Content . 289

9.4.18.3. Attributes . 289

9.4.18.4. Constraints . 289

9.4.18.5. Description . 289

9.4.19. <f:valueChangeListener> . 290

9.4.19.1. Syntax. 290

9.4.19.2. Body Content . 290

9.4.19.3. Attributes . 290

9.4.19.4. Constraints . 290

9.4.19.5. Description . 291

9.4.20. <f:verbatim>. 291

9.4.20.1. Syntax. 291

9.4.20.2. Body Content . 291

9.4.20.3. Attributes . 291

9.4.20.4. Constraints . 292

9.4.20.5. Description . 292

9.4.21. <f:view>. 292

9.4.21.1. Syntax. 292

9.4.21.2. Body Content . 292

9.4.21.3. Attributes . 292

9.4.21.4. Constraints . 293

9.4.21.5. Description . 293

9.5. Standard HTML RenderKit Tag Library . 294

10. Facelets and its use in Web Applications . 297

10.1. Non-normative Background . 297

10.1.1. Differences between Jakarta Server Pages and Facelets. 297

10.1.2. Differences between Pre JSF 2.0 Facelets and Facelets in Jakarta Faces 298

10.1.3. Resource Library Contracts Background . 299

10.1.3.1. Non-normative Example . 299

10.1.3.2. Non-normative Feature Overview . 302

10.1.4. HTML5 Friendly Markup . 303

10.1.4.1. Non-normative Feature Overview . 303

10.2. Java Programming Language Specification for Facelets in Jakarta Faces 305

10.2.1. Specification of the ViewDeclarationLanguage Implementation for Facelets for Jakarta

Faces . 306

10.3. XHTML Specification for Facelets for Jakarta Faces . 308

10.3.1. General Requirements. 308

10.3.1.1. DOCTYPE and XML Declaration. 308

10.3.2. Facelet Tag Library mechanism . 308

10.3.3. Requirements specific to composite components. 310

10.3.3.1. Declaring a composite component library for use in a Facelet page 310

10.3.3.2. Creating an instance of a top level component . 311

10.3.3.3. Populating a top level component instance with children. 311

10.4. Standard Facelet Tag Libraries . 313

10.4.1. Jakarta Faces Core Tag Library . 313

10.4.1.1. <f:ajax> . 313

10.4.1.2. <f:event> . 317

10.4.1.3. <f:metadata>. 318

10.4.1.4. <f:validateBean> . 318

10.4.1.5. <f:validateRequired> . 320

10.4.1.6. <f:validateWholeBean> . 321

10.4.1.7. <f:websocket>. 322

10.4.2. Standard HTML RenderKit Tag Library . 331

10.4.3. Facelet Templating Tag Library. 332

10.4.4. Composite Component Tag Library . 332

10.4.5. JSTL Core and Function Tag Libraries . 332

10.5. Assertions relating to the construction of the view . 332

11. Using Jakarta Faces in Web Applications . 333

11.1. Web Application Deployment Descriptor . 333

11.1.1. Servlet Definition . 333

11.1.2. Servlet Mapping . 334

11.1.3. Application Configuration Parameters . 334

11.2. Included Classes and Resources . 339

11.2.1. Application-Specific Classes and Resources . 339

11.2.2. Servlet and Jakarta Server Pages API Classes (jakarta.servlet.*). 339

11.2.3. Jakarta Server Pages Standard Tag Library (JSTL) API Classes (jakarta.servlet.jsp.jstl.*) . . 339

11.2.4. Jakarta Server Pages Standard Tag Library (JSTL) Implementation Classes 340

11.2.5. Jakarta Server Faces API Classes (jakarta.faces.*) . 340

11.2.6. Jakarta Server Faces Implementation Classes . 340

11.2.6.1. FactoryFinder. 340

11.2.6.2. FacesServlet . 341

11.2.6.3. UIComponentELTag . 342

11.2.6.4. FacetTag. 343

11.2.6.5. ValidatorTag . 343

11.3. Deprecated APIs in the webapp package . 343

11.3.1. AttributeTag . 343

11.3.2. ConverterTag . 343

11.3.3. UIComponentBodyTag . 343

11.3.4. UIComponentTag . 343

11.3.5. ValidatorTag . 343

11.4. Application Configuration Resources . 344

11.4.1. Overview. 344

11.4.2. Application Startup Behavior . 344

11.4.2.1. Resource Library Contracts . 345

11.4.3. Faces Flows. 346

11.4.3.1. Defining Flows . 347

11.4.3.2. Packaging Faces Flows in JAR Files. 347

11.4.3.3. Packaging Flows in Directories . 347

11.4.4. Application Shutdown Behavior . 348

11.4.5. Application Configuration Resource Format . 348

11.4.6. Configuration Impact on Jakarta Faces Runtime . 350

11.4.7. Delegating Implementation Support . 353

11.4.8. Ordering of Artifacts . 356

11.4.9. Example Application Configuration Resource. 361

11.5. Annotations that correspond to and may take the place of entries in the Application

Configuration Resources . 363

11.5.1. Requirements for scanning of classes for annotations . 363

12. Lifecycle Management . 364

12.1. Lifecycle . 364

12.2. PhaseEvent. 365

12.3. PhaseListener . 365

12.4. LifecycleFactory . 368

13. Ajax Integration . 369

13.1. JavaScript Resource . 369

13.1.1. JavaScript Resource Loading . 369

13.1.1.1. The Annotation Approach. 369

13.1.1.2. The Resource API Approach . 369

13.1.1.3. The Page Declaration Language Approach . 370

13.2. JavaScript Namespacing . 371

13.3. Ajax Interaction . 371

13.3.1. Sending an Ajax Request. 371

13.3.2. Ajax Request Queueing . 372

13.3.3. Request Callback Function . 372

13.3.4. Receiving The Ajax Response. 372

13.3.5. Monitoring Events On The Client . 373

13.3.5.1. Monitoring Events For An Ajax Request . 373

13.3.5.2. Monitoring Events For All Ajax Requests . 373

13.3.5.3. Sending Events. 373

13.3.6. Handling Errors On the Client . 373

13.3.6.1. Handling Errors For An Ajax Request . 374

13.3.6.2. Handling Errors For All Ajax Requests . 374

13.3.6.3. Signaling Errors. 374

13.3.7. Handling Errors On The Server. 374

13.4. Partial View Traversal. 375

13.4.1. Partial Traversal Strategy . 376

13.4.2. Partial View Processing. 376

13.4.3. Partial View Rendering . 376

13.4.4. Sending The Response to The Client. 377

13.4.4.1. Writing The Partial Response. 377

14. JavaScript API . 378

14.1. Collecting and Encoding View State. 378

14.1.1. Use Case. 378

14.2. Initiating an Ajax Request . 378

14.2.1. Usage . 379

14.2.2. Keywords . 379

14.2.3. Default Values . 380

14.2.4. Request Sending Specifics. 380

14.2.5. Use Case. 381

14.3. Processing The Ajax Response. 381

14.4. Registering Callback Functions . 381

14.4.1. Request/Response Event Handling . 382

14.4.1.1. Use Case . 382

14.4.2. Error Handling . 383

14.4.2.1. Use Case . 383

14.5. Determining An Application’s Project Stage . 384

14.5.1. Use Case. 384

14.6. Script Chaining . 384

Appendix A: Jakarta Faces Metadata . 385

A.1. Required Handling of *-extension elements in the application configuration resources files . . 385

A.1.1. faces-config-extension handling . 385

A.1.1.1. The facelets-processing element . 385

A.2. XML Schema Definition For Facelet Taglib . 387

A.2.1. Deprecated DTD for Facelet Taglibraries Used by Versions of Facelets Prior to pre-Jakarta

Faces JSF 2.0 . 388

A.3. XML Schema Definition for Composite Components . 388

Appendix B: Change Log . 394

B.1. Changes between 2.2 and 2.3. 394

B.1.1. Big Ticket Features . 394

B.1.2. Other Features, by Functional Area . 395

B.1.2.1. Components/Renderers . 395

B.1.2.2. Lifecycle . 396

B.1.2.3. Platform Integration. 397

B.1.2.4. Facelets/VDL . 397

B.1.2.5. Spec Clarifications . 397

B.1.2.6. Resources . 398

B.1.2.7. Expression Language . 398

B.1.2.8. Configuration and Bootstrapping . 398

B.1.2.9. Miscellaneous . 398

B.1.3. Backward Compatibility with Previous Versions . 399

B.1.4. Breakages in Backward Compatibility . 399

B.2. Changes between 2.1 and 2.2. 399

B.2.1. Big Ticket Features . 399

B.2.2. Other Features, by Functional Area . 399

B.2.2.1. Components/Renderers . 399

B.2.2.2. Lifecycle . 401

B.2.2.3. Platform Integration. 402

B.2.2.4. Facelets/VDL . 402

B.2.2.5. Spec Clarifications . 404

B.2.2.6. Resources . 405

B.2.2.7. Expression Language . 406

B.2.2.8. Configuration and Bootstrapping . 406

B.2.2.9. Miscellaneous . 406

B.2.3. Backward Compatibility with Previous Versions . 409

B.2.4. Breakages in Backward Compatibility . 409

B.3. Changes between 2.0 Rev a and 2.1 . 410

B.3.1. Facelet Tag Library mechanism . 410

B.3.2. New feature: <facelets-processing> . 410

B.3.3. Update schema for 2.1 . 410

B.3.4. Change Restore View Phase . 410

B.3.5. Default ViewHandler Implementation . 410

B.4. Changes between 2.0 Final and 2.0 Rev a . 410

B.4.1. Global changes . 410

B.4.1.1. ExceptionQueuedEvent . 410

B.4.1.2. Usage of the term "page" in the JSF 2.0 spec. 410

B.4.2. Front Matter. 411

B.4.3. Chapter 2. 411

B.4.3.1. Restore View. 411

B.4.3.2. Localized Application Messages . 412

B.4.3.3. JSR 303 Bean Validation. 412

B.4.3.4. JSR 303 Bean Validation needs to reference "Bean Validation Integration" section 412

B.4.3.5. Resource Identifiers . 412

B.4.4. Chapter 3. 412

B.4.4.1. Clarify meaning of "javax.faces.bean" in Bean Validator Activation 412

B.4.4.2. Need to be consistent between Declarative Listener Registration of the JSF 2.0 Spec

and the VDLDoc for f:event . 412

B.4.4.3. Typo in Declarative Listener Registration of the JSF 2.0 Spec regarding

"beforeRender" . 413

B.4.4.4. Validation Registration, What does it mean to be a JSF User Interface component? . . . 413

B.4.4.5. Composite Component Metadata . 413

B.4.5. Chapter 4. 413

B.4.5.1. Events . 413

B.4.6. Chapter 7. 413

B.4.6.1. Overview. 413

B.4.6.2. Default NavigationHandler Algorithm . 413

B.4.6.3. Default ViewHandler Implementation . 413

B.4.7. Chapter 9. 414

B.4.7.1. <f:actionListener> of Spec PDF — Missing "for" attribute of f:actionListener in Spec

PDF . 414

B.4.7.2. <f:actionListener> and <f:valueChangeListener> . 414

B.4.8. Chapter 10 . 414

B.4.8.1. General Requirements . 414

B.4.8.2. Facelet Tag Library mechanism . 414

B.4.8.3. VDLDocs and PDL documentation . 414

B.4.8.4. Possible error in section <f:ajax> of the JSF 2.0 Spec regarding f:ajax and

h:panelGrid. 415

B.4.8.5. Redundant mentioning of Facelets in <f:validateBean> of the JSF 2.0 Spec 416

B.4.8.6. Availability of f:validateBean and f:validateRequired in Jakarta Server Pages 416

B.4.9. Chapter 13 . 416

B.4.9.1. Redundancy in Partial View Processing of the JSF 2.0 Spec . 416

B.4.9.2. "Execute portions" of the JSF request processing lifecycle in the JSF 2.0 Spec 416

B.4.10. Chapter 14 . 417

B.4.10.1. Initiating an Ajax Request Typo in table 14.2.2 of the JSF 2.0 Spec. 417

B.4.10.2. Request/Response Event Handling Table 14.4.1 . 417

B.4.11. Appendix A Metadata . 417

B.4.11.1. Deprecated DTD for Facelet Taglibraries Used by Versions of Facelets Prior to JSF 2.0 417

B.4.12. VDLDoc changes . 417

B.4.12.1. Typo in f:selectItems VDLDocs . 417

B.4.12.2. Need clarification on execute attribute of f:ajax. 418

IntegrationWithJSP.adoc..pdf#a4654
JSFMetadata.adoc.html.pdf#a7139

B.4.12.3. Spelling error in VDLDocs for f:ajax . 418

B.4.12.4. Need clarification on required attribute in VDLDocs for tags that got a new "for"

attribute in JSF 2.0. 418

B.4.12.5. Uppercase typo in VDLDocs for f:event. 418

B.4.12.6. Need to change "JSP" to "Facelets" in "Body Content" of VDLDocs 418

B.4.12.7. Need clarification in VDLDocs for f:metadata . 418

B.4.12.8. Missing description in VDLDocs for name attribute of f:viewParam 419

B.4.12.9. VLDDocs on "for" attribute of f:viewParam claim it can be used in a CC 419

B.4.12.10. Miscellaneous VDLDoc items. 419

B.4.12.11. Should TLDDocs now be VDLDocs? . 420

B.4.12.12. Typo in VDLDocs for f:event. 420

B.4.13. Accepted Changes from JCP Change Log for JSF 2.0 Rev a . 420

B.5. Changes in versions below 2.0 Final . 428

Specification: Jakarta Server Faces

Version: 3.0

Status: Final

Release: September 23, 2020

Preface

Final Jakarta Server Faces 1

Copyright
Copyright © 2018, 2020 Eclipse Foundation. https://www.eclipse.org/legal/efsl.php

Eclipse Foundation Specification License
By using and/or copying this document, or the Eclipse Foundation document from which this statement
is linked, you (the licensee) agree that you have read, understood, and will comply with the following
terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or portions
thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse Foundation,
Inc. [url to this license]"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be
provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to
this license, except anyone may prepare and distribute derivative works and portions of this document
in software that implements the specification, in supporting materials accompanying such software,
and in documentation of such software, PROVIDED that all such works include the notice below.
HOWEVER, the publication of derivative works of this document for use as a technical specification is
expressly prohibited.

The notice is:

"Copyright (c) 2018 Eclipse Foundation. This software or document includes material copied from or
derived from [title and URI of the Eclipse Foundation specification document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

Eclipse Foundation Specification License

2 Jakarta Server Faces Final

https://www.eclipse.org/legal/efsl.php

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

Eclipse Foundation Specification License

Final Jakarta Server Faces 3

Preface
This is the Jakarta Server Faces 3.0 specification.

Changes between 3.0 and 2.3

Backward Compatibility with Previous Versions

Jakarta Faces 3.0 has a breaking change due to the namespace change from javax.faces to
jakarta.faces.

Related Technologies

Other Jakarta Platform Specifications

Jakarta Faces is based on the following Jakarta specifications:

Jakarta Servlet Specification, version 5.0 (Servlet) https://github.com/eclipse-ee4j/servlet-api

Jakarta WebSocket, version 2.0 https://github.com/eclipse-ee4j/websocket-api

Jakarta Contexts and Dependency Injection for Java 3.0 https://github.com/eclipse-ee4j/cdi

Jakarta Expression Language 4.0 https://github.com/eclipse-ee4j/el-ri

Jakarta JSON Processing, version 2.0 https://github.com/eclipse-ee4j/jsonp

Jakarta Server Pages Specification, version 3.0 https://github.com/eclipse-ee4j/jsp-api/

Jakarta Standard Tag Library, version 2.0 https://github.com/eclipse-ee4j/jstl-api

JavaBeans™ Specification, version 1.0.1 http://www.oracle.com/technetwork/java/javase/
documentation/spec-136004.html

Therefore, a Jakarta Faces container must support all of the above specifications. This requirement
allows faces applications to be portable across a variety of Jakarta Faces implementations.

In addition, Jakarta Faces is designed to work synergistically with other web-related Java APIs,
including:

Portlet Specification, 1.0 JSR-168 http://jcp.org/en/jsr/detail?id=168

Portlet Specification, 2.0 JSR-286 http://jcp.org/en/jsr/detail?id=286

Portlet Specification, 3.0 JSR-286 http://jcp.org/en/jsr/detail?id=362

Changes between 3.0 and 2.3

4 Jakarta Server Faces Final

https://github.com/eclipse-ee4j/servlet-api
https://github.com/eclipse-ee4j/websocket-api
https://github.com/eclipse-ee4j/cdi
https://github.com/eclipse-ee4j/el-ri
https://github.com/eclipse-ee4j/jsonp
https://github.com/eclipse-ee4j/jsp-api/
https://github.com/eclipse-ee4j/jstl-api
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://jcp.org/en/jsr/detail?id=168
http://jcp.org/en/jsr/detail?id=286
http://jcp.org/en/jsr/detail?id=362

JSF Portlet Bridge Specification, JSR-301 http://jcp.org/en/jsr/detail?id=301

Related Documents and Specifications

The following documents and specifications of the World Wide Web Consortium will be of interest to
Jakarta Faces implementors, as well as developers of applications and components based on Jakarta
Server Faces.

Hypertext Markup Language (HTML), version 4.01 http://www.w3.org/TR/html4/

Extensible HyperText Markup Language (XHTML), version 1.0 http://www.w3.org/TR/xhtml1

Extensible Markup Language (XML), version 1.0 (Second Edition) http://www.w3.org/TR/REC-xml

The class and method Javadoc documentation for the classes and interfaces in jakarta.faces (and its
subpackages) are incorporated by reference as requirements of this Specification.

The Jakarta Server Pages and Facelet tag library for the HTML_BASIC standard RenderKit is specified
in the VDLDocs and incorporated by reference in this Specification.

Terminology
The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in

Key words for use in RFCs to Indicate Requirement Levels (RFC 2119) http://www.rfc-editor.org/rfc/
rfc2119.txt

Providing Feedback
We welcome any and all feedback about this specification. Please email your comments to <faces-
dev@eclipse.org>.

Please note that, due to the volume of feedback that we receive, you will not normally receive a reply
from an engineer. However, each and every comment is read, evaluated, and archived by the
specification team.

Acknowledgements
The authors would like to thank the original JCP JSR-372 Expert Group and Contributors.

Ed Burns

Manfred Riem

Frank Caputo

Terminology

Final Jakarta Server Faces 5

http://jcp.org/en/jsr/detail?id=301
http://www.w3.org/TR/html4/
http://www.w3.org/TR/xhtml1
http://www.w3.org/TR/REC-xml
http://www.rfc-editor.org/rfc/rfc2119.txt
http://www.rfc-editor.org/rfc/rfc2119.txt
mailto:faces-dev@eclipse.org
mailto:faces-dev@eclipse.org

Cagatay Civici

Ken Fyten

Neil Griffin

Josh Juneau

Brian Leatham

Kito Mann

Michael Müller

Paul Nicolucci

Bauke Scholtz

Arjan Tijms

Leonardo Uribe

The editors would like to recognize the following individuals who have contributed to the success of
Jakarta Server Faces over the years.

Dan Allen Thomas Andraschko

Thomas Asel Jennifer Ball

Lincoln Baxter III Hans Bergsten

Shawn Bayern Joseph Berkovitz

Dennis Byrne Pete Carapetyan

Ryan DeLaplante Keith Donald

Jim Driscoll Hanspeter Duennenberger

Ken Finnigan Amy Fowler

Mike Freedman David Geary

Manfred Geiler Ted Goddard

Juan Gonzalez Jeremy Grelle

Rick Hightower Jacob Hookom

Justyna Horwat Alexander Jesse

Max Katz Roger Keays

Gavin King Roger Kitain

Eric Lazarus Jason Lee

Acknowledgements

6 Jakarta Server Faces Final

Felipe Leme Cody Lerum

Alberto Lemos Ryan Lubke

Barbara Louis Martin Marinschek

Kumar Mettu Craig McClanahan

Pete Muir Bernd Müller

Michael Müller Hans Muller

Brendan Murray Michael Nash

Imre Osswald Joe Ottinger

Ken Paulsen Dhiru Pandey

Raj Premkumar Werner Punz

Matt Raible Hazem Saleh

Andy Schwartz Yara Senger

Stan Silvert Vernon Singleton

Bernhard Slominski Alexander Smirnov

Thomas Spiegel Kyle Stiemann

James Strachan Jayashri Visvanathan

Ana von Klopp Matthias Wessendorf

Adam Winer Mike Youngstrom

John Zukowski

Acknowledgements

Final Jakarta Server Faces 7

Chapter 1. Overview
Jakarta Server Faces (hereafter Jakarta Faces) is a user interface (UI) framework for Java web
applications. It is designed to significantly ease the burden of writing and maintaining applications
that run on a Java application server and render their UIs back to a target client. Jakarta Faces
provides ease-of-use in the following ways:

• Makes it easy to construct a UI from a set of reusable UI components

• Simplifies migration of application data to and from the UI

• Helps manage UI state across server requests

• Provides a simple model for wiring client-generated events to server-side application code

• Allows custom UI components to be easily built and re-used

Most importantly, Jakarta Faces establishes standards which are designed to be leveraged by tools to
provide a developer experience which is accessible to a wide variety of developer types, ranging from
corporate developers to systems programmers. A “corporate developer” is characterized as an
individual who is proficient in writing procedural code and business logic, but is not necessarily skilled
in object-oriented programming. A “systems programmer” understands object-oriented fundamentals,
including abstraction and designing for re-use. A corporate developer typically relies on tools for
development, while a system programmer may define his or her tool as a text editor for writing code.

Therefore, Jakarta Faces is designed to be tooled, but also exposes the framework and programming
model as APIs so that it can be used outside of tools, as is sometimes required by systems
programmers.

1.1. Solving Practical Problems of the Web
Jakarta Faces’s core architecture is designed to be independent of specific protocols and markup.
However it is also aimed directly at solving many of the common problems encountered when writing
applications for HTML clients that communicate via HTTP to a Java application server that supports
servlets and Jakarta Server Pages based applications. These applications are typically form-based, and
are comprised of one or more HTML pages with which the user interacts to complete a task or set of
tasks. Jakarta Faces tackles the following challenges associated with these applications:

• Managing UI component state across requests

• Supporting encapsulation of the differences in markup across different browsers and clients

• Supporting form processing (multi-page, more than one per page, and so on)

• Providing a strongly typed event model that allows the application to write server-side handlers
(independent of HTTP) for client generated events

• Validating request data and providing appropriate error reporting

• Enabling type conversion when migrating markup values (Strings) to and from application data

1.1. Solving Practical Problems of the Web

8 Jakarta Server Faces Final

objects (which are often not Strings)

• Handling error and exceptions, and reporting errors in human-readable form back to the
application user

• Handling page-to-page navigation in response to UI events and model interactions.

1.2. Specification Audience
The Jakarta Server Faces Specification , and the technology that it defines, is addressed to several
audiences that will use this information in different ways. The following sections describe these
audiences, the roles that they play with respect to Jakarta Faces, and how they will use the information
contained in this document. As is the case with many technologies, the same person may play more
than one of these roles in a particular development scenario; however, it is still useful to understand
the individual viewpoints separately.

1.2.1. Page Authors

A page author is primarily responsible for creating the user interface of a web application. He or she
must be familiar with the markup and scripting languages (such as HTML and JavaScript) that are
understood by the target client devices, as well as the rendering technology (such as Jakarta Server
Pages) used to create dynamic content. Page authors are often focused on graphical design and human
factors engineering, and are generally not familiar with programming languages such as Java or Visual
Basic (although many page authors will have a basic understanding of client side scripting languages
such as JavaScript).

Page authors will generally assemble the content of the pages being created from libraries of prebuilt
user interface components that are provided by component writers, tool providers, and Jakarta Faces
implementors. The components themselves will be represented as configurable objects that utilize the
dynamic markup capabilities of the underlying rendering technology. When Jakarta Server Pages are
in use, for example, components will be represented as Jakarta Server Pages custom actions, which
will support configuring the attributes of those components as custom action attributes in the Jakarta
Server Pages page. In addition, the pages produced by a page author will be used by the Jakarta Faces
framework to create component tree hierarchies, called “views”, that represent the components on
those pages.

Page authors will generally utilize development tools, such as HTML editors, that allow them to deal
directly with the visual representation of the page being created. However, it is still feasible for a page
author that is familiar with the underlying rendering technology to construct pages “by hand” using a
text editor.

1.2.2. Component Writers

Component writers are responsible for creating libraries of reusable user interface objects. Such
components support the following functionality:

1.2. Specification Audience

Final Jakarta Server Faces 9

• Convert the internal representation of the component’s properties and attributes into the
appropriate markup language for pages being rendered (encoding).

• Convert the properties of an incoming request—parameters, headers, and cookies—into the
corresponding properties and attributes of the component (decoding)

• Utilize request-time events to initiate visual changes in one or more components, followed by
redisplay of the current page.

• Support validation checks on the syntax and semantics of the representation of this component on
an incoming request, as well as conversion into the internal form that is appropriate for this
component.

• Saving and restoring component state across requests

As will be discussed in Rendering Model,” the encoding and decoding functionality may optionally be
delegated to one or more Render Kits , which are responsible for customizing these operations to the
precise requirements of the client that is initiating a particular request (for example, adapting to the
differences between JavaScript handling in different browsers, or variations in the WML markup
supported by different wireless clients).

The component writer role is sometimes separate from other Jakarta Faces roles, but is often
combined. For example, reusable components, component libraries, and render kits might be created
by:

• A page author creating a custom “widget” for use on a particular page

• An application developer providing components that correspond to specific data objects in the
application’s business domain

• A specialized team within a larger development group responsible for creating standardized
components for reuse across applications

• Third party library and framework providers creating component libraries that are portable across
Jakarta Faces implementations

• Tool providers whose tools can leverage the specific capabilities of those libraries in development
of Jakarta Faces-based applications

• Jakarta Faces implementors who provide implementation-specific component libraries as part of
their Jakarta Faces product suite

Within Jakarta Faces, user interface components are represented as Java classes that follow the design
patterns outlined in the JavaBeans Specification. Therefore, new and existing tools that facilitate
JavaBean development can be leveraged to create new Jakarta Faces components. In addition, the
fundamental component APIs are simple enough for developers with basic Java programming skills to
program by hand.

1.2.3. Application Developers

Application Developers are responsible for providing the server-side functionality of a web application

1.2. Specification Audience

10 Jakarta Server Faces Final

that is not directly related to the user interface. This encompasses the following general areas of
responsibility:

• Define mechanisms for persistent storage of the information required by Jakarta Faces-based web
applications (such as creating schemas in a relational database management system)

• Create a Java object representation of the persistent information, such as Jakarta Persistence
entities, and call the corresponding beans as necessary to perform persistence of the application’s
data.

• Encapsulate the application’s functionality, or business logic, in Java objects that are reusable in
web and non-web applications, such as CDI beans.

• Expose the data representation and functional logic objects for use via Jakarta Faces, as would be
done for any servlet- or Jakarta Server Pages-based application.

Only the latter responsibility is directly related to Jakarta Faces APIs. In particular, the following steps
are required to fulfill this responsibility:

• Expose the underlying data required by the user interface layer as objects that are accessible from
the web tier (such as via request or session attributes in the Servlet API), via value reference
expressions , as described in Standard User Interface Components.”

• Provide application-level event handlers for the events that are enqueued by Jakarta Faces
components during the request processing lifecycle, as described in Invoke Application.

Application modules interact with Jakarta Faces through standard APIs, and can therefore be created
using new and existing tools that facilitate general Java development. In addition, application modules
can be written (either by hand, or by being generated) in conformance to an application framework
created by a tool provider.

1.2.4. Tool Providers

Tool providers , as their name implies, are responsible for creating tools that assist in the development
of Jakarta Faces-based applications, rather than creating such applications directly. Jakarta Faces APIs
support the creation of a rich variety of development tools, which can create applications that are
portable across multiple Jakarta Faces implementations. Examples of possible tools include:

• GUI-oriented page development tools that assist page authors in creating the user interface for a
web application

• IDEs that facilitate the creation of components (either for a particular page, or for a reusable
component library)

• Page generators that work from a high level description of the desired user interface to create the
corresponding page and component objects

• IDEs that support the development of general web applications, adapted to provide specialized
support (such as configuration management) for Jakarta Faces

• Web application frameworks (such as MVC-based and workflow management systems) that

1.2. Specification Audience

Final Jakarta Server Faces 11

facilitate the use of Jakarta Faces components for user interface design, in conjunction with higher
level navigation management and other services

• Application generators that convert high level descriptions of an entire application into the set of
pages, UI components, and application modules needed to provide the required application
functionality

Tool providers will generally leverage the Jakarta Faces APIs for introspection of the features of
component libraries and render kit frameworks, as well as the application portability implied by the
use of standard APIs in the code generated for an application.

1.2.5. Jakarta Faces Implementors

Finally, Jakarta Faces implementors will provide runtime environments that implement all of the
requirements described in this specification. Typically, a Jakarta Faces implementor will be the
provider of a Jakarta EE application server, although it is also possible to provide a Jakarta Faces
implementation that is portable across Jakarta EE servers.

Advanced features of the Jakarta Faces APIs allow Jakarta Faces implementors, as well as application
developers, to customize and extend the basic functionality of Jakarta Faces in a portable way. These
features provide a rich environment for server vendors to compete on features and quality of service
aspects of their implementations, while maximizing the portability of Jakarta Faces-based applications
across different Jakarta Faces implementations.

1.3. Introduction to Jakarta Faces APIs
This section briefly describes major functional subdivisions of the APIs defined by Jakarta Faces. Each
subdivision is described in its own chapter, later in this specification.

1.3.1. package jakarta.faces

This package contains top level classes for the Jakarta Faces API. The most important class in the
package is FactoryFinder , which is the mechanism by which users can override many of the key pieces
of the implementation with their own.

Please see FactoryFinder.

1.3.2. package jakarta.faces.application

This package contains APIs that are used to link an application’s business logic objects to Jakarta Faces,
as well as convenient pluggable mechanisms to manage the execution of an application that is based
on Jakarta Faces. The main class in this package is Application .

Please see Application.

1.3. Introduction to Jakarta Faces APIs

12 Jakarta Server Faces Final

1.3.3. package jakarta.faces.component

This package contains fundamental APIs for user interface components.

Please see User Interface Component Model.

1.3.4. package jakarta.faces.component.html

This package contains concrete base classes for each valid combination of component + renderer.

1.3.5. package jakarta.faces.context

This package contains classes and interfaces defining per-request state information. The main class in
this package is FacesContext , which is the access point for all per-request information, as well as the
gateway to several other helper classes.

Please see FacesContext.

1.3.6. package jakarta.faces.convert

This package contains classes and interfaces defining converters. The main class in this package is
Converter .

Please see Conversion Model.

1.3.7. package jakarta.faces.el

As of version 1.2 of this specification, all classes and interfaces in this package have been deprecated in
favor of the Unified Expression Language (EL) from Jakarta Server Pages 2.1.

Please see Expression Language and Managed Bean Facility.

1.3.8. package jakarta.faces.flow and jakarta.faces.flow.builder

The runtime API for Faces Flows.

Please see FlowHandler.

1.3.9. package jakarta.faces.lifecycle

This package contains classes and interfaces defining lifecycle management for the Jakarta Server
Faces implementation. The main class in this package is Lifecycle . Lifecycle is the gateway to executing
the request processing lifecycle.

Please see Request Processing Lifecycle.

1.3. Introduction to Jakarta Faces APIs

Final Jakarta Server Faces 13

1.3.10. package jakarta.faces.event

This package contains interfaces describing events and event listeners, and concrete event
implementation classes. All component-level events extend from FacesEvent and all component-level
listeners extend from FacesListener .

Please see Event and Listener Model.

1.3.11. package jakarta.faces.render

This package contains classes and interfaces defining the rendering model. The main class in this
package is RenderKit . RenderKit maintains references to a collection of Renderer instances which
provide rendering capability for a specific client device type.

Please see Rendering Model.

1.3.12. package jakarta.faces.validator

Interface defining the validator model, and concrete validator implementation classes.

Please see Validation Model

1.3.13. package jakarta.faces.webapp

Classes required for integration of Jakarta Faces into web applications, including a standard servlet,
base classes for Jakarta Server Pages custom component tags, and concrete tag implementations for
core tags.

Please see Using Jakarta Faces in Web Applications.

1.3. Introduction to Jakarta Faces APIs

14 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6060

Chapter 2. Request Processing Lifecycle
Web user interfaces generally follow a pattern where the user-agent sends one or more requests to the
server with the end goal of displaying a user-interface. In the case of Web browsers, an initial HTTP
GET or POST request is made to the server, which responds with a document which the browser
interprets and automatically makes subsequent requests on the user’s behalf. The responses to each of
these subsequent requests are usually images, JavaScript files, CSS Style Sheets, and other artifacts that
fit “into” the original document. If the Jakarta Faces lifecycle is involved in rendering the initial
response, the entire process of initial request, the response to that request, and any subsequent
requests made automatically by the user-agent, and their responses, is called a Faces View
Request/Response for discussion. The following graphic illustrates a Faces View Request/Response.

Each Faces View Request/Response goes through a well-defined request processing lifecycle made up of
phases . There are three different scenarios that must be considered, each with its own combination of
phases and activities:

• Non-Faces Request generates Faces Response

• Faces Request generates Faces Response

• Faces Request generates Non-Faces Response

Where the terms being used are defined as follows:

• Faces Response —A response that was created by the execution of the Render Response phase of the
request processing lifecycle.

• Non-Faces Response —A response that was not created by the execution of the render response
phase of the request processing lifecycle. Examples would be a servlet-generated or JSP-rendered
response that does not incorporate Jakarta Faces components, a response that sets an HTTP status
code other than the usual 200 (such as a redirect), or a response whose HTTP body consists entirely
of the bytes of an in page resource, such as a JavaScript file, a CSS file, an image, or an applet. This
last scenario is considered a special case of a Non-Faces Response and will be referred to as a Faces

Chapter 2. Request Processing Lifecycle

Final Jakarta Server Faces 15

Resource Response for the remainder of this specification.

• Faces Request —A request that was sent from a previously generated Faces response . Examples
would be a hyperlink or form submit from a rendered user interface component, where the
request URI was crafted (by the component or renderer that created it) to identify the view to use
for processing the request. Another example is a request for a resource that the user-agent was
instructed to fetch an artifact such as an image, a JavaScript file, a CSS stylesheet, or an applet. This
last scenario is considered a special case of a Faces Request and will be referred to as a Faces
Resource Request for the remainder of this specification.

• Non-Faces Request —A request that was sent to an application component (e.g. a servlet or Jakarta
Server Pages page), rather than directed to a Faces view.

In addition, of course, your web application may receive non-Faces requests that generate non-Faces
responses. Because such requests do not involve Jakarta Server Faces at all, their processing is outside
the scope of this specification, and will not be considered further.

READER NOTE: The dynamic behavior descriptions in this Chapter make forward references to the
sections that describe the individual classes and interfaces. You will probably find it useful to follow
the reference and skim the definition of each new class or interface as you encounter them, then come
back and finish the behavior description. Later, you can study the characteristics of each Jakarta Faces
API in the subsequent chapters.

2.1. Request Processing Lifecycle Scenarios
Each of the scenarios described above has a lifecycle that is composed of a particular set of phases,
executed in a particular order. The scenarios are described individually in the following subsections.

2.1.1. Non-Faces Request Generates Faces Response

An application that is processing a non-Faces request may use Jakarta Faces to render a Faces response
to that request. In order to accomplish this, the application must perform the common activities that
are described in the following sections:

• Acquire Faces object references, as described in See Acquire Faces Object References, below.

• Create a new view, as described in See Create And Configure A New View, below.

• Store the view into the FacesContext by calling the setViewRoot() method on the FacesContext.

2.1.2. Faces Request Generates Faces Response

The most common lifecycle will be the case where a previous Faces response includes user interface
controls that will submit a subsequent request to this web application, utilizing a request URI that is
mapped to the Jakarta Faces implementation’s controller, as described in See Servlet Mapping. Because
such a request will be initially handled by the Jakarta Faces implementation, the application need not
take any special steps—its event listeners, validators, and application actions will be invoked at
appropriate times as the standard request processing lifecycle, described in the following diagrams, is

2.1. Request Processing Lifecycle Scenarios

16 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6076

invoked.

The “Handle Resource Request” box, and its subsequent boxes, are explained in See Resource
Handling. The following diagram explains the “Execute and Render Lifecycle” box.

The behavior of the individual phases of the request processing lifecycle are described in individual
subsections of Standard Request Processing Lifecycle Phases. Note that, at the conclusion of several
phases of the request processing lifecycle, common event processing logic (as described in See
Common Event Processing) is performed to broadcast any FacesEvents generated by components in the
component tree to interested event listeners.

2.1.3. Faces Request Generates Non-Faces Response

Normally, a Jakarta Faces-based application will utilize the Render Response phase of the request
processing lifecycle to actually create the response that is sent back to the client. In some
circumstances, however, this behavior might not be desirable. For example:

• A Faces Request needs to be redirected to a different web application resource (via a call to
HttpServletResponse.sendRedirect).

• A Faces Request causes the generation of a response using some other technology (such as a servlet,
or a Jakarta Server Pages page not containing Jakarta Faces components).

• A Faces Request causes the generation of a response simply by serving up the bytes of a resource,
such as an image, a JavaScript file, a CSS file, or an applet

In any of these scenarios, the application will have used the standard mechanisms of the servlet or

2.1. Request Processing Lifecycle Scenarios

Final Jakarta Server Faces 17

portlet API to create the response headers and content. It is then necessary to tell the Jakarta Faces
implementation that the response has already been created, so that the Render Response phase of the
request processing lifecycle should be skipped. This is accomplished by calling the responseComplete()
method on the FacesContext instance for the current request, prior to returning from event handlers or
application actions.

2.2. Standard Request Processing Lifecycle Phases
The standard phases of the request processing lifecycle are described in the following subsections.

[P1-start-currentPhaseId]The default request lifecycle processing implementation must ensure that the
currentPhaseId property of the FacesContext instance for this request is set with the proper PhaseId
constant for the current phase as early as possible at the beginning of each phase.[P1-end]

2.2.1. Restore View

[P1-start-restoreView]The Jakarta Faces implementation must perform the following tasks during the
Restore View phase of the request processing lifecycle:

• Call initView() on the ViewHandler . This will set the character encoding properly for this request.

• Examine the FacesContext instance for the current request. If it already contains a UIViewRoot :

◦ Set the locale on this UIViewRoot to the value returned by the getRequestLocale() method on the
ExternalContext for this request.

◦ Take no further action during this phase, and return. The presence of a UIViewRoot already
installed in the FacesContext before the Restore View Phase implementation indicates that the
phase should assume the view has already been restored by other means.

• Derive the viewId according to the following algorithm, or one semantically equivalent to it.

◦ Look in the request map for a value under the key jakarta.servlet.include.path_info . If found, let
it be the viewId .

◦ Call getRequestPathInfo() on the current ExternalContext . If this value is non-null, let this be the
viewId .

◦ Look in the request map for a value under the key jakarta.servlet.include.servlet_path . If found,
let it be the viewId .

◦ If none of these steps yields a non- null viewId, throw a FacesException with an appropriate
localized message.

• Determine if this request is a postback or initial request by executing the following algorithm. Find
the render-kit-id for the current request by calling calculateRenderKitId() on the Application ’s
ViewHandler . Get that RenderKit ’s ResponseStateManager and call its isPostback() method, passing
the current FacesContext . If the current request is an attempt by the servlet container to display a
servlet error page, do not interpret the request as a postback, even if it is indeed a postback.

• If the request is a postback, call setProcessingEvents(false) on the current FacesContext . Then call

2.2. Standard Request Processing Lifecycle Phases

18 Jakarta Server Faces Final

ViewHandler.restoreView() , passing the FacesContext instance for the current request and the view
identifier, and returning a UIViewRoot for the restored view. If the return from
ViewHandler.restoreView() is null, throw a ViewExpiredException with an appropriate error
message. jakarta.faces.application.ViewExpiredException is a FacesException that must be thrown to
signal to the application that the expected view was not returned for the view identifier. An
application may choose to perform some action based on this exception.

• Store the restored UIViewRoot in the FacesContext .

• Call setProcessingEvents(true) on the current FacesContext . __

• If the request is not a postback, try to obtain the ViewDeclarationLanguage from the ViewHandler ,
for the current viewId by calling ViewHandler.deriveLogicalViewId() and passing the result to
ViewHandler.getViewDeclarationLanguage() . If no such instance can be obtained, call
facesContext.renderResponse() . Otherwise, call getViewMetadata() on the ViewDeclarationLanguage
instance. If the result is non- null , call createMetadataView() on the ViewMetadata instance. Call
ViewMetadata.hasMetadata() , passing the newly created viewRoot . If this method returns false,
call facesContext.renderResponse() . If it turns out that the previous call to createViewMetadata() did
not create a UIViewRoot instance, call createView() on the ViewHandler .

View Protection

• Call ViewHandler.getProtectedViewsUnmodifiable() to determine if the view for this viewId is
protected. If not, assume the requested view is not protected and take no additional view
protection steps. Obtain the value of the value of the request parameter whose name is given by the
value of ResponseStateManager.NON_POSTBACK_VIEW_TOKEN_PARAM. If there is no value, throw
ProtectedViewException. If the value is present, compare it to the return from
ResponseStateManager.getCryptographicallyStrongTokenFromSession(). If the values do not match,
throw ProtectedViewException. If the values do match, look for a Referer [sic] request header. If
the header is present, use the protected view API to determine if any of the declared protected
views match the value of the Referer header. If so, conclude that the previously visited page is also
a protected view and it is therefore safe to continue. Otherwise, try to determine if the value of the
Referer header corresponds to any of the views in the current web application. If not, throw a
ProtectedViewException. If the Origin header is present, additionally perform the same steps as
with the Referer header.

• Call renderResponse() on the FacesContext .

Obtain a reference to the FlowHandler from the Application . Call its clientWindowTransition() method.
This ensures that navigation that happened as a result of the renderer for the
jakarta.faces.OutcomeTarget component-family is correctly handled with respect to flows. For example,
this enables <h:button> to work correctly with flows.

Using Application.publishEvent() , publish a PostAddToViewEvent with the created UIViewRoot as the
event source.

In all cases, the implementation must ensure that the restored tree is traversed and the
PostRestoreStateEvent is published for every node in the tree.[P1-end]

2.2. Standard Request Processing Lifecycle Phases

Final Jakarta Server Faces 19

At the end of this phase, the viewRoot property of the FacesContext instance for the current request
will reflect the saved configuration of the view generated by the previous Faces Response, or a new
view returned by ViewHandler.createView() for the view identifier.

2.2.2. Apply Request Values

The purpose of the Apply Request Values phase of the request processing lifecycle is to give each
component the opportunity to update its current state from the information included in the current
request (parameters, headers, cookies, and so on). When the information from the current request has
been examined to update the component’s current state, the component is said to have a “local value”.

[P1-start-applyRequestDecode]During the Apply Request Values phase, the Jakarta Faces
implementation must call the processDecodes() method of the UIViewRoot of the component tree.[P1-
end] This will normally cause the processDecodes() method of each component in the tree to be called
recursively, as described in the Javadocs for the UIComponent.processDecodes() method. [P1-start-
partialDecode] The processDecodes() method must determine if the current request is a “partial
request” by calling FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest() . If
FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest() returns true , perform the
sequence of steps as outlined in See Apply Request Values Partial Processing.[P1-end] Details of the
decoding process follow.

During the decoding of request values, some components perform special processing, including:

• Components that implement ActionSource (such as UICommand), which recognize that they were
activated, will queue an ActionEvent . The event will be delivered at the end of Apply Request Values
phase if the immediate property of the component is true , or at the end of Invoke Application phase
if it is false .

• Components that implement EditableValueHolder (such as UIInput), and whose immediate property
is set to true , will cause the conversion and validation processing (including the potential to fire
ValueChangeEvent events) that normally happens during Process Validations phase to occur during
Apply Request Values phase instead.

As described in See Common Event Processing, the processDecodes() method on the UIViewRoot
component at the root of the component tree will have caused any queued events to be broadcast to
interested listeners.

At the end of this phase, all EditableValueHolder components in the component tree will have been
updated with new submitted values included in this request (or enough data to reproduce incorrect
input will have been stored, if there were conversion errors). [P1-start-applyRequestConversion]In
addition, conversion and validation will have been performed on EditableValueHolder components
whose immediate property is set to true , as described in the UIInput Javadocs. Conversions and
validations that failed will have caused messages to be enqueued via calls to the addMessage() method
of the FacesContext instance for the current request, and the valid property on the corresponding
component(s) will be set to false . [P1-end]

If any of the decode() methods that were invoked, or an event listener that processed a queued event,

2.2. Standard Request Processing Lifecycle Phases

20 Jakarta Server Faces Final

called responseComplete() on the FacesContext instance for the current request, clear the remaining
events from the event queue and terminate lifecycle processing of the current request. [P1-start-
applyRequestComplete]If any of the decode() methods that were invoked, or an event listener that
processed a queued event, called renderResponse() on the FacesContext instance for the current
request, clear the remaining events from the event queue and transfer control to the Render Response
phase of the request processing lifecycle. Otherwise, control must proceed to the Process Validations
phase.[P1-end]

2.2.2.1. Apply Request Values Partial Processing

[P1-start-apply-partial-processing]Call FacesContext.getPartialViewContext(). Call
PartialViewContext.processPartial() passing the FacesContext, PhaseID.APPLY_REQUEST_VALUES as
arguments. [P1-end]

2.2.3. Process Validations

As part of the creation of the view for this request, zero or more Validator instances may have been
registered for each component. In addition, component classes themselves may implement validation
logic in their validate() methods.

[P1-start-validation]During the Process Validations phase of the request processing lifecycle, the
Jakarta Faces implementation must call the processValidators() method of the UIViewRoot of the
tree.[P1-end] This will normally cause the processValidators() method of each component in the tree to
be called recursively, as described in the API reference for the UIComponent.processValidators()
method. [P1-start-partialValidate] The processValidators() method must determine if the current
request is a “partial request” by calling
FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest() . If
FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest() returns true , perform the
sequence of steps as outlined in See Partial Validations Partial Processing.[P1-end] Note that
EditableValueHolder components whose immediate property is set to true will have had their
conversion and validation processing performed during Apply Request Values phase.

During the processing of validations, events may have been queued by the components and/or
Validator s whose validate() method was invoked. As described in See Common Event Processing, the
processValidators() method on the UIViewRoot component at the root of the component tree will have
caused any queued events to be broadcast to interested listeners.

At the end of this phase, all conversions and configured validations will have been completed.
Conversions and Validations that failed will have caused messages to be enqueued via calls to the
addMessage() method of the FacesContext instance for the current request, and the valid property on
the corresponding components will have been set to false .

If any of the validate() methods that were invoked, or an event listener that processed a queued event,
called responseComplete() on the FacesContext instance for the current request, clear the remaining
events from the event queue and terminate lifecycle processing of the current request. [P1-start-
validationValidate]If any of the validate() methods that were invoked, or an event listener that

2.2. Standard Request Processing Lifecycle Phases

Final Jakarta Server Faces 21

processed a queued event, called renderResponse() on the FacesContext instance for the current
request, clear the remaining events from the event queue and transfer control to the Render Response
phase of the request processing lifecycle. Otherwise, control must proceed to the Update Model Values
phase.[P1-end]

2.2.3.1. Partial Validations Partial Processing

[P1-start-val-partial-processing]Call FacesContext.getPartialViewContext(). Call
PartialViewContext.processPartial() passing the FacesContext, PhaseID.PROCESS_VALIDATIONS as
arguments. [P1-end]

2.2.4. Update Model Values

If this phase of the request processing lifecycle is reached, it is assumed that the incoming request is
syntactically and semantically valid (according to the validations that were performed), that the local
value of every component in the component tree has been updated, and that it is now appropriate to
update the application’s model data in preparation for performing any application events that have
been enqueued.

[P1-start-updateModel]During the Update Model Values phase, the Jakarta Faces implementation must
call the processUpdates() method of the UIViewRoot component of the tree.[P1-end] This will normally
cause the processUpdates() method of each component in the tree to be called recursively, as described
in the API reference for the UIComponent.processUpdates() method. [P1-start-partialUpdate] The
processUpdates() method must determine if the current request is a “partial request” by calling
FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest() . If
FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest() returns true , perform the
sequence of steps as outlined in See Update Model Values Partial Processing. [P1-end]The actual model
update for a particular component is done in the updateModel() method for that component.

During the processing of model updates, events may have been queued by the components whose
updateModel() method was invoked. As described in See Common Event Processing, the
processUpdates() method on the UIViewRoot component at the root of the component tree will have
caused any queued events to be broadcast to interested listeners.

At the end of this phase, all appropriate model data objects will have had their values updated to
match the local value of the corresponding component, and the component local values will have been
cleared.

If any of the updateModel() methods that were invoked, or an event listener that processed a queued
event, called responseComplete() on the FacesContext instance for the current request, clear the
remaining events from the event queue and terminate lifecycle processing of the current request. [P1-
start-updateModelComplete]If any of the updateModel() methods that was invoked, or an event listener
that processed a queued event, called renderResponse() on the FacesContext instance for the current
request, clear the remaining events from the event queue and transfer control to the Render Response
phase of the request processing lifecycle. Otherwise, control must proceed to the Invoke Application
phase.[P1-end]

2.2. Standard Request Processing Lifecycle Phases

22 Jakarta Server Faces Final

2.2.4.1. Update Model Values Partial Processing

[P1-start-upd-partial-processing]Call FacesContext.getPartialViewContext(). Call
PartialViewContext.processPartial() passing the FacesContext, PhaseID.UPDATE_MODEL_VALUES as
arguments. [P1-end]

2.2.5. Invoke Application

If this phase of the request processing lifecycle is reached, it is assumed that all model updates have
been completed, and any remaining event broadcast to the application needs to be performed. [P1-
start-invokeApplication]The implementation must ensure that the processApplication() method of the
UIViewRoot instance is called.[P1-end] The default behavior of this method will be to broadcast any
queued events that specify a phase identifier of PhaseId.INVOKE_APPLICATION . If responseComplete()
was called on the FacesContext instance for the current request, clear the remaining events from the
event queue and terminate lifecycle processing of the current request. If renderResponse() was called
on the FacesContext instance for the current request, clear the remaining events from the event queue.

Advanced applications (or application frameworks) may replace the default ActionListener instance by
calling the setActionListener() method on the Application instance for this application. [P1-start-
invokeApplicationListener]However, the Jakarta Faces implementation must provide a default
ActionListener instance that behaves as described in See ActionListener Property.[P1-end]

2.2.6. Render Response

This phase accomplishes two things:

1. Causes the response to be rendered to the client

2. Causes the state of the response to be saved for processing on subsequent requests.

Jakarta Faces supports a range of approaches that Jakarta Faces implementations may utilize in
creating the response text that corresponds to the contents of the response view, including:

• Deriving all of the response content directly from the results of the encoding methods (on either
the components or the corresponding renderers) that are called.

• Interleaving the results of component encoding with content that is dynamically generated by
application programming logic.

• Interleaving the results of component encoding with content that is copied from a static “template”
resource.

• Interleaving the results of component encoding by embedding calls to the encoding methods into a
dynamic resource (such as representing the components as custom tags in a Jakarta Server Pages
page).

Because of the number of possible options, the mechanism for implementing the Render Response
phase cannot be specified precisely. [P1-start-renderResponse]However, all Jakarta Faces
implementations of this phase must conform to the following requirements:

2.2. Standard Request Processing Lifecycle Phases

Final Jakarta Server Faces 23

• If it is possible to obtain a ViewDeclarationLanguage instance for the current viewId , from the
ViewHandler , its buildView() method must be called. __

• Publish the jakarta.faces.event.PreRenderViewEvent .

• Jakarta Faces implementations must provide a default ViewHandler implementation that is capable
of handling views written in Jakarta Server Pages as well as views written in the Faces View
Declaration Language (VDL). In the case of Jakarta Server Pages, the ViewHandler must perform a
RequestDispatcher.forward() call to a web application resource whose context-relative path is equal
to the view identifier of the component tree.

• If all of the response content is being derived from the encoding methods of the component or
associated Renderer s, the component tree should be walked in the same depth-first manner as was
used in earlier phases to process the component tree, but subject to the additional constraints listed
here. Generally this is handled by a call to ViewHandler.renderView() . __

• If the response content is being interleaved from additional sources and the encoding methods, the
components may be selected for rendering in any desired order 1.

• During the rendering process, additional components may be added to the component tree based
on information available to the ViewHandler implementation 2. However, before adding a new
component, the ViewHandler implementation must first check for the existence of the
corresponding component in the component tree. If the component already exists (perhaps
because a previous phase has pre-created one or more components), the existing component’s
properties and attributes must be utilized.

• Under no circumstances should a component be selected for rendering when its parent component,
or any of its ancestors in the component tree, has its rendersChildren property set to true. In such
cases, the parent or ancestor component must render the content of this child component when the
parent or ancestor was selected.

• If the isRendered() method of a component returns false , the renderer for that component must not
generate any markup, and none of its facets or children (if any) should be rendered.

• It must be possible for the application to programmatically modify the component tree at any time
during the request processing lifecycle (except during the rendering of the view) and have the
system behave as expected. For example, the following must be permitted. Modification of the view
during rendering may lead to undefined results. It must be possible to allow components added by
the templating system (such as Jakarta Server Pages) to be removed from the tree before rendering.
It must be possible to programmatically add components to the tree and have them render in the
proper place in the hierarchy. It must be possible to re-order components in the tree before
rendering. These manipulations do require that any components added to the tree have ids that are
unique within the scope of the closest parent NamingContainer component. The value of the
rendersChildren property is handled as expected, and may be either true or false .

• If running on a container that supports Servlet 4.0 or later, after any dynamic component
manipulations have been completed, any resources that have been added to the UIViewRoot, such
as scripts, images, or stylesheets, and any inline images, must be pushed to the client using the
Servlet Server Push API. All of the pushes must be started before any of the HTML of the response
is rendered to the client.

2.2. Standard Request Processing Lifecycle Phases

24 Jakarta Server Faces Final

• For partial requests, where partial view rendering is required, there must be no content written
outside of the view (outside f:view). Response writing must be disabled. Response writing must be
enabled again at the start of encodeBegin.

When each particular component in the component tree is selected for rendering, calls to its
encodeXxx() methods must be performed in the manner described in See Component Specialization
Methods. For components that implement ValueHolder (such as UIInput and UIOutput), data
conversion must occur as described in the UIOutput Javadocs.

Upon completion of rendering, but before state saving the Jakarta Faces runtime must publish a
jakarta.faces.event.PostRenderViewEvent . After doing so the Jakarta Faces runtime must save the
completed state using the methods of the class StateManager. This state information must be made
accessible on a subsequent request, so that the Restore View can access it.[P1-end] For more on
StateManager , see See State Saving Methods.

2.2.6.1. Render Response Partial Processing

[P1-start-render-partial-processing] According to UIViewRoot.encodeChildren() ,
FacesContext.processPartial(PhaseId.RENDER_RESPONSE) , will be called if and only if the current
request is an Ajax request. Take these actions in this case.

On the ExternalContext for the request, call setResponseContentType("text/xml") and
addResponseHeader("Cache-control", "no-cache") . Call startDocument() on the PartialResponseWriter .

Call writePreamble(“<?xml version=’1.0’ encoding=’currentEncoding’?>\n”) on the PartialResponseWriter
, where encoding is the return from the getCharacterEncoding() on the PartialResponseWriter , or UTF-8
if that method returns null .

If isResetValues() returns true , call getRenderIds() and pass the result to UIViewRoot.resetValues() .

If isRenderAll() returns true and the view root is not an instance of NamingContainer , call
startUpdate(PartialResponseWriter.RENDER_ALL_MARKER) on the PartialResponseWriter . For each
child of the UIViewRoot , call encodeAll() . Call endUpdate() on the PartialResponseWriter . Render the
state using the algorithm described below in See Partial State Rendering, call endDocument() on the
PartialResponseWriter and return. If isRenderAll() returns true and this UIViewRoot is a
NamingContainer , treat this as a case where isRenderAll() returned false , but use the UIViewRoot itself
as the one and only component from which the tree visit must start.

If isRenderAll() returns false , if there are ids to render, visit the subset of components in the tree to be
rendered in similar fashion as for other phases, but for each UIComponent in the traversal, call
startUpdate(id) on the PartialResponseWriter , where id is the client id of the component. Call
encodeAll() on the component, and then endUpdate() on the PartialResponseWriter . If there are no ids
to render, this step is un-necessary. After the subset of components (if any) have been rendered,
Render the state using the algorithm described below in See Partial State Rendering, call
endDocument() on the PartialResponseWriter and return.

Partial State Rendering

2.2. Standard Request Processing Lifecycle Phases

Final Jakarta Server Faces 25

This section describes the requirements for rendering the <update> elements pertaining to view state
and window id in the case of partial response rendering.

If the view root is marked transient, take no action and return.

Obtain a unique id for the view state, as described in the JavaDocs for the constant field
ResponseStateManager.VIEW_STATE_PARAM . Pass this id to a call to startUpdate() on the
PartialResponseWriter . Obtain the view state to render by calling getViewState() on the application’s
StateManager . Write the state by calling write() on the PartialResponseWriter , passing the state as the
argument. Call endUpdate() on the PartialResponseWriter .

If getClientWindow() on the ExternalContext , returns non- null , obtain an id for the <update> element
for the window id as described in the JavaDocs for the constant
ResponseStateManager.WINDOW_ID_PARAM . Pass this id to a call to startUpdate() on the
PartialResponseWriter . Call write() on that same writer, passing the result of calling getId() on the
ClientWindow . Call endUpdate() on the PartialResponseWriter .

[P1-end]

2.3. Common Event Processing
For a complete description of the event processing model for Jakarta Server Faces components, see See
Event and Listener Model.

During several phases of the request processing lifecycle, as described in See Standard Request
Processing Lifecycle Phases, the possibility exists for events to be queued (via a call to the queueEvent()
method on the source UIComponent instance, or a call to the queue() method on the FacesEvent
instance), which must now be broadcast to interested event listeners. The broadcast is performed as a
side effect of calling the appropriate lifecycle management method (processDecodes() ,
processValidators() , processUpdates() , or processApplication()) on the UIViewRoot instance at the root
of the current component tree.

[P1-start-eventBroadcast]For each queued event, the broadcast() method of the source UIComponent
must be called to broadcast the event to all event listeners who have registered an interest, on this
source component for events of the specified type, after which the event is removed from the event
queue.[P1-end] See the API reference for the UIComponent.broadcast() method for the detailed
functional requirements.

It is also possible for event listeners to cause additional events to be enqueued for processing during
the current phase of the request processing lifecycle. [P1-start-eventOrder]Such events must be
broadcast in the order they were enqueued, after all originally queued events have been broadcast,
before the lifecycle management method returns.[P1-end]

2.3. Common Event Processing

26 Jakarta Server Faces Final

2.4. Common Application Activities
The following subsections describe common activities that may be undertaken by an application that is
using Jakarta Faces to process an incoming request and/or create an outgoing response. Their use is
described in See Request Processing Lifecycle Scenarios, for each request processing lifecycle scenario
in which the activity is relevant.

2.4.1. Acquire Faces Object References

This phase is only required when the request being processed was not submitted from a previous
response, and therefore did not initiate the Faces Request Generates Faces Response lifecycle. In order
to generate a Faces Response, the application must first acquire references to several objects provided
by the Jakarta Faces implementation, as described below.

2.4.1.1. Acquire and Configure Lifecycle Reference

[P1-start-lifeReference]As described in See Lifecycle, the Jakarta Faces implementation must provide
an instance of jakarta.faces.lifecycle.Lifecycle that may be utilized to manage the remainder of the
request processing lifecycle.[P1-end] An application may acquire a reference to this instance in a
portable manner, as follows:

LifecycleFactory lFactory = (LifecycleFactory)
 FactoryFinder.getFactory(FactoryFinder.LIFECYCLE_FACTORY);
Lifescycle lifecycle =
 lFactory.getLifecycle(LifecycleFactory.DEFAULT_LIFECYCLE);

It is also legal to specify a different lifecycle identifier as a parameter to the getLifecycle() method, as
long as this identifier is recognized and supported by the Jakarta Faces implementation you are using.
However, using a non-default lifecycle identifier will generally not be portable to any other Jakarta
Faces implementation.

2.4.1.2. Acquire and Configure FacesContext Reference

[P1-start-contextReference]As described in See FacesContext, the Jakarta Faces implementation must
provide an instance of jakarta.faces.context.FacesContext to contain all of the per-request state
information for a Faces Request or a Faces Response. An application that is processing a Non-Faces
Request, but wants to create a Faces Response, must acquire a reference to a FacesContext instance as
follows

FacesContextFactory fcFactory = (FacesContextFactory)
 FactoryFinder.getFactory(FactoryFinder.FACES_CONTEXT_FACTORY);
FacesContext facesContext =
 fcFactory.getFacesContext(context, request, response, lifecycle);

2.4. Common Application Activities

Final Jakarta Server Faces 27

where the context , request , and response objects represent the corresponding instances for the
application environment.[P1-end] For example, in a servlet-based application, these would be the
ServletContext , HttpServletRequest , and HttpServletResponse instances for the current request.

2.4.2. Create And Configure A New View

When a Faces response is being intially created, or when the application decides it wants to create and
configure a new view that will ultimately be rendered, it may follow the steps described below in order
to set up the view that will be used. You must start with a reference to a FacesContext instance for the
current request.

2.4.2.1. Create A New View

Views are represented by a data structure rooted in an instance of
jakarta.faces.component.UIViewRoot, and identified by a view identifier whose meaning depends on
the ViewHandler implementation to be used during the Render Response phase of the request
processing lifecycle 3. The ViewHandler provides a factory method that may be utilized to construct
new component trees, as follows:

String viewId = ... identifier of the desired Tree ...;
ViewHandler viewHandler = application.getViewHandler();
UIViewRoot view = viewHandler.createView(facesContext, viewId);

[P1-start-createViewRoot]The UIViewRoot instance returned by the createView() method must
minimally contain a single UIViewRoot provided by the Jakarta Faces implementation, which must
encapsulate any implementation-specific component management that is required.[P1-end] Optionally,
a Jakarta Faces implementation’s ViewHandler may support the automatic population of the returned
UIViewRoot with additional components, perhaps based on some external metadata description.

[P1-start-createView]The caller of ViewHandler.createView() must cause the FacesContext to be
populated with the new UIViewRoot. Applications must make sure that it is safe to discard any state
saved in the view rooted at the UIViewRoot currently stored in the FacesContext .[P1-end] If Facelets is
the page definition language, FacesContext.setViewRoot() must be called before returning from
ViewHandler.createView(). Refer to See Default ViewHandler Implementation for more ViewHandler
details.

2.4.2.2. Configure the Desired RenderKit

[P1-start-defaultRenderkit]The UIViewRoot instance provided by the ViewHandler , as described in the
previous subsection, must automatically be configured to utilize the default
jakarta.faces.render.RenderKit implementation provided by the Jakarta Faces implementation, as
described in See RenderKit. This RenderKit must support the standard components and Renderer s
described later in this specification, to maximize the portability of your application.[P1-end]

However, a different RenderKit instance provided by your Jakarta Faces implementation (or as an add-

2.4. Common Application Activities

28 Jakarta Server Faces Final

on library) may be utilized instead, if desired. A reference to this RenderKit instance can be obtained
from the standard RenderKitFactory , and then assigned to the UIViewRoot instance created previously,
as follows:

String renderKitId = ... identifier of desired RenderKit ...;
RenderKitFactory rkFactory = (RenderKitFactory)
 FactoryFinder.getFactory(FactoryFinder.RENDER_KIT_FACTORY);
RenderKit renderKit = rkFactory.getRenderKit(renderKitId, facesContext);
view.setRenderKitId(renderKitId);

As described in Chapter 8, changing the RenderKit being used changes the set of Renderer s that will
actually perform decoding and encoding activities. Because the components themselves store only a
rendererType property (a logical identifier of a particular Renderer), it is thus very easy to switch
between RenderKit s, as long as they support renderers with the same renderer types.

[P1-start-calcRenderkitId]The default ViewHandler must call calculateRenderKitId() on itself and set the
result into the UIViewRoot ’s renderKitId property.[P1-end] This allows applications that use alternative
RenderKit s to dynamically switch on a per-view basis.

2.4.2.3. Configure The View’s Components

At any time, the application can add new components to the view, remove them, or modify the
attributes and properties of existing components. For example, a new FooComponent (an
implementation of UIComponent) can be added as a child to the root UIViewRoot in the component
tree as follows:

FooComponent component = ... create a FooComponent instance ...;
facesContext.getViewRoot().getChildren().add(component);

2.4.2.4. Store the new View in the FacesContext

[P1-start-setViewRoot]Once the view has been created and configured, the FacesContext instance for
this request must be made aware of it by calling setViewRoot() .[P1-end]

2.5. Concepts that impact several lifecycle phases
This section is intended to give the reader a “big picture” perspective on several complex concepts that
impact several request processing lifecycle phases.

2.5.1. Value Handling

At a fundamental level, Jakarta Server Faces is a way to get values from the user, into your model tier
for processing. The process by which values flow from the user to the model has been documented
elsewhere in this spec, but a brief holistic survey comes in handy. The following description assumes

2.5. Concepts that impact several lifecycle phases

Final Jakarta Server Faces 29

the Jakarta Server Pages/HTTP case, and that all components have Renderers.

2.5.1.1. Apply Request Values Phase

The user presses a button that causes a form submit to occur. This causes the state of the form to be
sent as name=value pairs in the POST data of the HTTP request. The Jakarta Faces request processing
lifecycle is entered, and eventually we come to the Apply Request Values Phase . In this phase, the
decode() method for each Renderer for each UIComponent in the view is called. The Renderer takes the
value from the request and passes it to the setSubmittedValue() method of the component, which is, of
course, an instance of EditableValueHolder . If the component has the " immediate " property set to true
, we execute validation immediately after decoding. See below for what happens when we execute
validation.

2.5.1.2. Process Validators Phase

processValidators() is called on the root of the view. For each EditableValueHolder in the view, If the “
immediate ” property is not set, we execute validation for each UIInput in the view. Otherwise,
validation has already occurred and this phase is a no-op.

2.5.1.3. Executing Validation

Please see the javadocs for UIInput.validate() for more details, but basically, this method gets the
submitted value from the component (set during Apply Request Values), gets the Renderer for the
component and calls its getConvertedValue() , passing the submitted value. If a conversion error occurs,
it is dealt with as described in the javadocs for that method. Otherwise, all validators attached to the
component are asked to validate the converted value. If any validation errors occur, they are dealt
with as described in the javadocs for Validator.validate() . The converted value is pushed into the
component’s setValue() method, and a ValueChangeEvent is fired if the value has changed.

2.5.1.4. Update Model Values Phase

For each UIInput component in the view, its updateModel() method is called. This method only takes
action if a local value was set when validation executed and if the page author configured this
component to push its value to the model tier. This phase simply causes the converted local value of
the UIInput component to be pushed to the model in the way specified by the page author. Any errors
that occur as a result of the attempt to push the value to the model tier are dealt with as described in
the javadocs for UIInput.updateModel() .

2.5.2. Localization and Internationalization (L10N/I18N)

Jakarta Server Faces is fully internationalized. The I18N capability in Jakarta Server Faces builds on the
I18N concepts offered in the Servlet, Jakarta Server Pages and JSTL specifications. I18N happens at
several points in the request processing lifecycle, but it is easiest to explain what goes on by breaking
the task down by function.

2.5. Concepts that impact several lifecycle phases

30 Jakarta Server Faces Final

2.5.2.1. Determining the active Locale

Jakarta Faces has the concept of an active Locale which is used to look up all localized resources.
Converters must use this Locale when performing their conversion. This Locale is stored as the value
of the locale JavaBeans property on the UIViewRoot of the current FacesContext . The application
developer can tell Jakarta Faces what locales the application supports in the applications’ WEB-
INF/faces-config.xml file. For example:

<faces-config>
 <application>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>de</supported-locale>
 <supported-locale>fr</supported-locale>
 <supported-locale>es</supported-locale>
 </locale-config>
 </application>

This application’s default locale is en , but it also supports de, fr, and es locales. These elements cause
the Application instance to be populated with Locale data. Please see the javadocs for details.

The UIViewRoot ’s Locale is determined and set by the ViewHandler during the execution of the
ViewHandler ’s createView() method. [P1-start-locale]This method must cause the active Locale to be
determined by looking at the user’s preferences combined with the application’s stated supported
locales.[P1-end] Please see the javadocs for details.

The application can call UIViewRoot.setLocale() directly, but it is also possible for the page author to
override the UIViewRoot ’s locale by using the locale attribute on the <f:view > tag. [P1-start-
localeValue]The value of this attribute must be specified as language[\{-|}country[\{-|}variant]] without
the colons, for example " ja_JP_SJIS ". The separators between the segments must be ' - ' or ' _ '.[P1-end]

In all cases where Jakarta Server Pages is utilized, the active Locale is set under “request scope” into
the JSTL class jakarta.servlet.jsp.jstl.core.Config , under the key Config.FMT_LOCALE .

To facilitate BCP 47 support, the Locale parsing mentioned above is done only if the JDK
Locale.languageForTag method does not return a Locale with a language in it. The additional format of
the Locale string is as specified by that method.

2.5.2.2. Determining the Character Encoding

The request and response character encoding are set and interpreted as follows.

On an initial request to a Faces webapp, the request character encoding is left unmodified, relying on
the underlying request object (e.g., the servlet or portlet request) to parse request parameter correctly.

[P1-start-setLocale]At the beginning of the render-response phase, the ViewHandler must ensure that

2.5. Concepts that impact several lifecycle phases

Final Jakarta Server Faces 31

the response Locale is set to be that of the UIViewRoot, for example by calling
ServletResponse.setLocale() when running in the servlet environment.[P1-end] Setting the response
Locale may affect the response character encoding, see the Servlet and Portlet specifications for
details.

[P1-start-encoding]At the end of the render-response phase, the ViewHandler must store the response
character encoding used by the underlying response object (e.g., the servlet or portlet response) in the
session (if and only if a session already exists) under a well known, implementation-dependent key.

On a subsequent postback, before any of the ExternalContext methods for accessing request
parameters are invoked, the ViewHandler must examine the Content-Type header to read the charset
attribute and use its value to set it as the request encoding for the underlying request object. If the
Content-Type header doesn’t contain a charset attribute, the encoding previously stored in the session
(if and only if a session already exists), must be used to set the encoding for the underlying request
object. If no character encoding is found, the request encoding must be left unmodified.[P1-end]

The above algorithm allows an application to use the mechanisms of the underlying technologies to
adjust both the request and response encoding in an application-specific manner, for instance using
the page directive with a fixed character encoding defined in the contentType attribute in a Jakarta
Server Pages page, see the Servlet, Portlet and Jakarta Server Pages specifications for details. Note,
though, that the character encoding rules prior to Servlet 2.4 and Jakarta Server Pages 2.0 are
imprecise and special care must be taken for portability between containers.

2.5.2.3. Localized Text

There is no direct support for this in the API, but the Jakarta Server Pages layer provides a convenience
tag that converts a ResourceBundle into a java.util.Map and stores it in the scoped namespace so all
may get to it. This section describes how resources displayed to the end user may be localized. This
includes images, labels, button text, tooltips, alt text, etc.

Since most Jakarta Faces components allow pulling their display value from the model tier, it is easy to
do the localization at the model tier level. As a convenience, Jakarta Faces provides the <f:loadBundle>
tag, which takes a ResourceBundle and loads it into a Map , which is then stored in the scoped
namespace in request scope, thus making its messages available using the same mechanism for
accessing data in the model tier. For example:

<f:loadBundle basename=”com.foo.industryMessages.chemical”
 var=”messages” />
<h:outputText value=”#\{messages.benzene}” />

This must cause the ResourceBundle named com.foo.industryMessages.chemical to be loaded as a Map
into the request scope under the key messages . Localized content can then be pulled out of it using the
normal value expression syntax.

2.5. Concepts that impact several lifecycle phases

32 Jakarta Server Faces Final

2.5.2.4. Localized Application Messages

This section describes how Jakarta Faces handles localized error and informational messages that
occur as a result of conversion, validation, or other application actions during the request processing
lifecycle. The Jakarta Faces class jakarta.faces.application.FacesMessage is provided to encapsulate
summary, detail, and severity information for a message. [P1-start-bundle]A Jakarta Faces
implementation must provide a jakarta.faces.Messages ResourceBundle containing all of the necessary
keys for the standard messages. The required keys (and a non-normative indication of the intended
message text) are as follows:

• jakarta.faces.component.UIInput.CONVERSION — {0}: Conversion error occurred

• jakarta.faces.component.UIInput.REQUIRED — {0}: Validation Error: Value is required

• jakarta.faces.component.UIInput.UPDATE — {0}: An error occurred when processing your
submitted information

• jakarta.faces.component.UISelectOne.INVALID — {0}: Validation Error: Value is not valid

• jakarta.faces.component.UISelectMany.INVALID — {0}: Validation Error: Value is not valid

• jakarta.faces.converter.BigDecimalConverter.DECIMAL={2}: ''{0}'' must be a signed decimal
number.

• jakarta.faces.converter.BigDecimalConverter.DECIMAL_detail={2}: ''{0}'' must be a signed decimal
number consisting of zero or more digits, that may be followed by a decimal point and fraction.
Example: {1}

• jakarta.faces.converter.BigIntegerConverter.BIGINTEGER={2}: ''{0}'' must be a number consisting of
one or more digits.

• jakarta.faces.converter.BigIntegerConverter.BIGINTEGER_detail={2}: ''{0}'' must be a number
consisting of one or more digits. Example: {1}

• jakarta.faces.converter.BooleanConverter.BOOLEAN={1}: ''{0}'' must be 'true' or 'false'.

• jakarta.faces.converter.BooleanConverter.BOOLEAN_detail={1}: ''{0}'' must be 'true' or 'false'. Any
value other than 'true' will evaluate to 'false'.

• jakarta.faces.converter.ByteConverter.BYTE={2}: ''{0}'' must be a number between -128 and 127.

• jakarta.faces.converter.ByteConverter.BYTE_detail={2}: ''{0}'' must be a number between -128 and
127. Example: {1}

• jakarta.faces.converter.CharacterConverter.CHARACTER={1}: ''{0}'' must be a valid character.

• jakarta.faces.converter.CharacterConverter.CHARACTER_detail={1}: ''{0}'' must be a valid ASCII
character.

• jakarta.faces.converter.DateTimeConverter.DATE={2}: ''{0}'' could not be understood as a date.

• jakarta.faces.converter.DateTimeConverter.DATE_detail={2}: ''{0}'' could not be understood as a
date. Example: {1}

• jakarta.faces.converter.DateTimeConverter.TIME={2}: ''{0}'' could not be understood as a time.

2.5. Concepts that impact several lifecycle phases

Final Jakarta Server Faces 33

• jakarta.faces.converter.DateTimeConverter.TIME_detail={2}: ''{0}'' could not be understood as a
time. Example: {1}

• jakarta.faces.converter.DateTimeConverter.DATETIME={2}: ''{0}'' could not be understood as a date
and time.

• jakarta.faces.converter.DateTimeConverter.DATETIME_detail={2}: ''{0}'' could not be understood as
a date and time. Example: {1}

• jakarta.faces.converter.DateTimeConverter.PATTERN_TYPE={1}: A 'pattern' or 'type' attribute must
be specified to convert the value ''{0}''.

• jakarta.faces.converter.DoubleConverter.DOUBLE={2}: ''{0}'' must be a number consisting of one or
more digits.

• jakarta.faces.converter.DoubleConverter.DOUBLE_detail={2}: ''{0}'' must be a number between
4.9E-324 and 1.7976931348623157E308 Example: {1}

• jakarta.faces.converter.EnumConverter.ENUM={2}: ''{0}'' must be convertible to an enum.

• jakarta.faces.converter.EnumConverter.ENUM_detail={2}: ''{0}'' must be convertible to an enum
from the enum that contains the constant ''{1}''.

• jakarta.faces.converter.EnumConverter.ENUM_NO_CLASS={1}: ''{0}'' must be convertible to an
enum from the enum, but no enum class provided.

• jakarta.faces.converter.EnumConverter.ENUM_NO_CLASS_detail={1}: ''{0}'' must be convertible to
an enum from the enum, but no enum class provided.

• jakarta.faces.converter.FloatConverter.FLOAT={2}: ''{0}'' must be a number consisting of one or
more digits.

• jakarta.faces.converter.FloatConverter.FLOAT_detail={2}: ''{0}'' must be a number between 1.4E-45
and 3.4028235E38 Example: {1}

• jakarta.faces.converter.IntegerConverter.INTEGER={2}: ''{0}'' must be a number consisting of one
or more digits.

• jakarta.faces.converter.IntegerConverter.INTEGER_detail={2}: ''{0}'' must be a number between
-2147483648 and 2147483647 Example: {1}

• jakarta.faces.converter.LongConverter.LONG={2}: ''{0}'' must be a number consisting of one or
more digits.

• jakarta.faces.converter.LongConverter.LONG_detail={2}: ''{0}'' must be a number between
-9223372036854775808 to 9223372036854775807 Example: {1}

• jakarta.faces.converter.NumberConverter.CURRENCY={2}: ''{0}'' could not be understood as a
currency value.

• jakarta.faces.converter.NumberConverter.CURRENCY_detail={2}: ''{0}'' could not be understood as a
currency value. Example: {1}

• jakarta.faces.converter.NumberConverter.PERCENT={2}: ''{0}'' could not be understood as a
percentage.

2.5. Concepts that impact several lifecycle phases

34 Jakarta Server Faces Final

• jakarta.faces.converter.NumberConverter.PERCENT_detail={2}: ''{0}'' could not be understood as a
percentage. Example: {1}

• jakarta.faces.converter.NumberConverter.NUMBER={2}: ''{0}'' is not a number.

• jakarta.faces.converter.NumberConverter.NUMBER_detail={2}: ''{0}'' is not a number. Example: {1}

• jakarta.faces.converter.NumberConverter.PATTERN={2}: ''{0}'' is not a number pattern.

• jakarta.faces.converter.NumberConverter.PATTERN_detail={2}: ''{0}'' is not a number pattern.
Example: {1}

• jakarta.faces.converter.ShortConverter.SHORT={2}: ''{0}'' must be a number consisting of one or
more digits.

• jakarta.faces.converter.ShortConverter.SHORT_detail={2}: ''{0}'' must be a number between -32768
and 32767 Example: {1}

• jakarta.faces.converter.STRING={1}: Could not convert ''{0}'' to a string.

• jakarta.faces.validator.BeanValidator.MESSAGE — {0}

• jakarta.faces.validator.DoubleRangeValidator.MAXIMUM — {1}: Validation Error: Value is greater
than allowable maximum of ‘’{0}’’

• jakarta.faces.validator.DoubleRangeValidator.MINIMUM — {1}: Validation Error: Value is less than
allowable minimum of ‘’{0}’’

• jakarta.faces.validator.DoubleRangeValidator.NOT_IN_RANGE — {2}: Validation Error: Specified
attribute is not between the expected values of {0} and {1}.

• jakarta.faces.validator.DoubleRangeValidator.TYPE — {0}: Validation Error: Value is not of the
correct type

• jakarta.faces.validator.LengthValidator.MAXIMUM — {1}: Validation Error: Length is greater than
allowable maximum of ‘’{0}’’

• jakarta.faces.validator.LengthValidator.MINIMUM — {1}: Validation Error: Length is less than
allowable minimum of ‘’{0}’’

• jakarta.faces.validator.LongRangeValidator.MAXIMUM — {1}: Validation Error: Value is greater
than allowable maximum of ‘’{0}’’

• jakarta.faces.validator.LongRangeValidator.MINIMUM — {1}: Validation Error Value is less than
allowable minimum of ‘’{0}’’

• jakarta.faces.validator.LongRangeValidator.NOT_IN_RANGE={2}: Validation Error: Specified
attribute is not between the expected values of {0} and {1}.

• jakarta.faces.validator.LongRangeValidator.TYPE — {0}: Validation Error: Value is not of the correct
type

The following message keys are deprecated:

• jakarta.faces.validator.NOT_IN_RANGE — Specified attribute is not between the expected values of
{0} and {1}[P1-end]

2.5. Concepts that impact several lifecycle phases

Final Jakarta Server Faces 35

A Jakarta Faces application may provide its own messages, or overrides to the standard messages by
supplying a <message-bundle> element to in the application configuration resources. Since the
ResourceBundle provided in the Java platform has no notion of summary or detail, Jakarta Faces
adopts the policy that ResourceBundle key for the message looks up the message summary. The detail is
stored under the same key as the summary, with _detail appended. [P1-start-bundleKey]These
ResourceBundle keys must be used to look up the necessary values to create a localized FacesMessage
instance. Note that the value of the summary and detail keys in the ResourceBundle may contain
parameter substitution tokens, which must be substituted with the appropriate values using
java.text.MessageFormat .[P1-end] Replace the last parameter substitution token shown in the
messages above with the input component’s label attribute. For example, {1} for
“DoubleRangeValidator.MAXIMUM”, {2} for “ShortConverter.SHORT”. The label attribute is a generic
attribute. Please see See Generic Attributes and See Standard HTML RenderKit Implementation for more
information on these attributes. If the input component’s label attribute is not specified, use the
component’s client identifier.

These messages can be displayed in the page using the UIMessage and UIMessages components and
their corresponding tags, <h:message> and <h:messages>.

[P1-start-facesMessage]The following algorithm must be used to create a FacesMessage instance given
a message key.

• Call getMessageBundle() on the Application instance for this web application, to determine if the
application has defined a resource bundle name. If so, load that ResourceBundle and look for the
message there.

• If not there, look in the jakarta.faces.Messages resource bundle.

• In either case, if a message is found, use the above conventions to create a FacesMessage
instance.[P1-end]

2.5.3. State Management

Jakarta Server Faces introduces a powerful and flexible system for saving and restoring the state of the
view between requests to the server. It is useful to describe state management from several
viewpoints. For the page author, state management happens transparently. For the app assembler,
state management can be configured to save the state in the client or on the server by setting the
ServletContext InitParameter named jakarta.faces.STATE_SAVING_METHOD to either client or server .
The value of this parameter directs the state management decisions made by the implementation.

2.5.3.1. State Management Considerations for the Custom Component Author

Since the component developer cannot know what the state saving method will be at runtime, they
must be aware of state management. As shown in See The jakarta.faces.component package, all Jakarta
Faces components implement the StateHolder interface. As a consequence the standard components
provide implementations of PartialStateHolder to suit their needs. [P1-start-componentStateHolder]A
custom component that extends UIComponent directly, and does not extend any of the standard
components, must implement PartialStateHolder (or its older super-interface, StateHolder), manually.

2.5. Concepts that impact several lifecycle phases

36 Jakarta Server Faces Final

The helper class StateHelper exists to simplify this process for the custom component author. [P1-
end]Please see See PartialStateHolder or See StateHolder for details.

A custom component that does extend from one of the standard components and maintains its own
state, in addition to the state maintained by the superclass must take special care to implement
StateHolder or PartialStateHolder correctly. [P1-start-saveState]Notably, calls to saveState() must not
alter the state in any way.[P1-end] The subclass is responsible for saving and restoring the state of the
superclass. Consider this example. My custom component represents a “slider” ui widget. As such, it
needs to keep track of the maximum value, minimum value, and current values as part of its state.

public class Slider extends UISelectOne {
 protected Integer min = null;
 protected Integer max = null;
 protected Integer cur = null;

 // ... details omitted
 public Object saveState(FacesContext context) {
 Object values[] = new Object[4];
 values[0] = super.saveState(context);
 values[1] = min;
 values[2] = max;
 values[3] = cur;
 }

 public void restoreState(FacesContext context, Object state) {
 Object values[] = (Object {}) state; // guaranteed to succeed
 super.restoreState(context, values[0]);
 min = (Integer) values[1];
 max = (Integer) values[2];
 cur = (Integer) values[3];
 }

Note that we call super.saveState() and super.restoreState() as appropriate. This is absolutely vital!
Failing to do this will prevent the component from working.

2.5.3.2. State Management Considerations for the Jakarta Faces Implementor

The intent of the state management facility is to make life easier for the page author, app assembler,
and component author. However, the complexity has to live somewhere, and the Jakarta Faces
implementor is the lucky role. Here is an overview of the key players. Please see the javadocs for each
individual class for more information.

Key Players in State Management

• StateHelper the helper class that defines a Map -like contract that makes it easier for components to
implement PartialStateHolder .

2.5. Concepts that impact several lifecycle phases

Final Jakarta Server Faces 37

• ViewHandler the entry point to the state management system. Uses a helper class, StateManager , to
do the actual work. In the Jakarta Server Pages case, delegates to the tag handler for the <f:view>
tag for some functionality.

• StateManager abstraction for the hard work of state saving. Uses a helper class,
ResponseStateManager , for the rendering technology specific decisions.

• ResponseStateManager abstraction for rendering technology specific state management decisions.

• UIComponent directs process of saving and restoring individual component state.

2.5.4. Resource Handling

This section only applies to pages written using Facelets. See Resource Handling is the starting point
for the normative specification for Resource Handling. This section gives a non-normative overview of
the feature. The following steps walk through the points in the lifecycle where this feature is
encountered. Consider a Faces web application that contains resources that have been packaged into
the application as specified in See Packaging Resources. Assume each page in the application includes
references to resources, specifically scripts and stylesheets. The first diagram in this chapter is helpful
in understanding this example.

Consider an initial request to the application.

• The ViewHandler calls ViewDeclarationLanguage.buildView() . This ultimately causes the
processEvent() method for the jakarta.faces.resource.Script and jakarta.faces.resource.Stylesheet
renderers (which implement ComponentSystemEventListener) to be called after each component
that declares them as their renderer is added to the view. This method is specified to take actions
that cause the resource to be rendered at the correct part in the page based on user-specified or
application invariant rules. Here’s how it works.

• Every UIComponent instance in a view is created with a call to some variant of
Application.createComponent() . The specification for this method now includes some annotation
processing requirements. If the component or its renderer has an @ListenerFor or @ListenersFor
annotation, and the Script and Stylesheet renderers must, the component or its renderer are added
as a component scoped listener for the appropriate event. In the case of Script and Stylesheet
renderers, they must listen for the PostAddToViewEvent .

• When the processEvent() method is called on a Script or Stylesheet renderer, the renderer takes the
specified action to move the component to the proper point in the tree based on what kind of
resource it is, and on what hints the page author has declared on the component in the view.

• The ViewHandler calls ViewDeclarationLanguage.renderView() . The view is traversed as normal
and because the components with Script and Stylesheet renderers have already been reparented to
the proper place in the view, the normal renderering causes the resource to be encoded as
described in RequestProcessingLifecycle.adoc#a842,See Rendering Resources>>.

The browser then parses the completely rendered page and proceeds to issue subsequent requests for
the resources included in the page.

2.5. Concepts that impact several lifecycle phases

38 Jakarta Server Faces Final

Now consider a request from the browser for one of those resources included in the page.

• The request comes back to the Faces server. The FacesServlet is specified to call
ResourceHandler.isResourceRequest() as shown in the diagram in See Faces Request Generates
Faces Response. In this case, the method returns true . The FacesServlet is specified to call
ResourceHandler.handleResourceRequest() to serve up the bytes of the resource.

2.5.5. View Parameters

This section only applies to pages written using Facelets. The normative specification for this feature is
spread out across several places, including the View Declaration Language Documentation for the
<f:metadata> element, the javadocs for the UIViewParameter , ViewHandler , and
ViewDeclarationLanguage classes, and the spec language requirements for the default
NavigationHandler and the Request Processing Lifecycle. This leads to a very diffuse field of
specification requirements. To aid in understanding the feature, this section provides a non-normative
overview of the feature. The following steps walk through the points in the lifecycle where this feature
is encountered. Consider a web application that uses this feature exclusively on every page. Therefore
every page has the following features in common.

• Every page has an <f:metadata> tag, with at least one <f:viewParameter> element within it.

• Every page has at least one <h:link> or < h:button> with the appropriate parameters nested within
it.

• No other kind of navigation components are used in the application.

Consider an initial request to the application.

• As specified in section See Restore View, the restore view phase of the request processing lifecycle
detects that this is an initial request and tries to obtain the ViewDeclarationLanguage instance from
the ViewHandler for this viewId . Because every page in the app is written in Facelets, there is a
ViewDeclarationLanguage instance. Restore view phase calls
ViewDeclarationLanguage.getViewMetadata() . Because every view in this particular app does have
<f:metadata> on every page, this method returns a ViewMetadata instance. Restore view phase calls
MetaData.createMetadataView() . This method creates a UIViewRoot containing only children
declared in the <f:metadata> element. Restore view phase calls ViewMetadata.getViewParameters() .
Because every <f:metadata> in the app has at least one <f:viewParameter> element within it, this
method returns a non empty Collection<UIViewParameter>. Restore view phase uses this fact to
decide that the lifecycle must not skip straight to render response, as is the normal action taken on
initial requests.

• The remaining phases of the request processing lifecycle execute: apply request values, process
validations, update model values, invoke application, and finally render response. Because the
view only contains UIViewParameter children, only these children are traversed during the
lifecycle, but because this is an initial request, with no query parameters, none of these compnents
take any action during the lifecycle.

• Because the pages exclusively use <h:link> and <h:button> for their navigation, the renderers for

2.5. Concepts that impact several lifecycle phases

Final Jakarta Server Faces 39

these components are called during the rendering of the page. As specified in the renderkit docs for
the renderers for those components, markup is rendered that causes the browser to issue a GET
request with query parameters.

Consider when the user clicks on a link in the application. The browser issues a GET request with
query parameters

• Restore view phase takes the same action as in the previously explained request. Because this is a
GET request, no state is restored from the previous request.

• Because this is a request with query parameters, the UIViewParameter children do take action
when they are traversed during the normal lifecycle, reading values during the apply request
values phase, doing conversion and processing validators attached to the <f:viewParam> elements,
if any, and updating models during the update model values phase. Because there are only <h:link>
and <h:button> navigation elements in the page, no action action will happen during the invoke
application phase. The response is re-rendered as normal. In such an application, the only
navigation to a new page happens by virtue of the browser issuing a GET request to a different
viewId.

2.5.6. Bookmarkability

Jakarta Faces has a bookmarking capability with the use of two Standard HTML RenderKit additions.

Provided is a component (UIOutcomeTarget) that provides properties that are used to produce a
hyperlink at render time. The component can appear in the form of a button or a link. This feature
introduces a concept known as “preemptive navigation”, which means the target URL is determined at
Render Response time - before the user has activated the component. This feature allows the user to
leverage the navigation model while also providing the ability to generate bookmarkable non-faces
requests.

2.5.7. Jakarta Bean Validation

Jakarta Faces supports Jakarta Bean Validation. [p1-beanValidationRequired]A Jakarta Faces
implementation must support Jakarta Bean Validation if the environment in which the Jakarta Faces
runtime is included requires Jakarta Bean Validation. Currently the only such environment is when
Jakarta Faces is included in a Jakarta EE runtime.[p1-end]

A detailed description of the usage of Jakarta Bean Validation with Jakarta Faces is beyond the scope of
this section, but this section will provide a brief overview of the feature, touching on the points of
interest to a spec implementor. Consider a simple web application that has one page, written in
Facelets, that has several text fields inside of a form. This application is running in a Jakarta Faces
runtime in an environment that does require Jakarta Bean Validation, and therefore this feature is
available. Assume that every text field is bound to a managed bean property that has at least one
Jakarta Bean Validation constraint annotation attached to it.

During the render response phase that always precedes a postback, due to the specification
requirements in See Validation Registration, every UIInput in this application has an instance of

2.5. Concepts that impact several lifecycle phases

40 Jakarta Server Faces Final

Validator with id jakarta.faces.Bean attached to it.

During the process validations phase, due to the specification for the validate() method of this Validator
, Bean Validation is invoked automatically, for the user specified validation constraints, whenever such
components are normally validated. The jakarta.faces.Bean standard validator also ensures that every
ConstraintViolation that resulted in attempting to validate the model data is wrapped in a
FacesMessage and added to the FacesContext as normal with every other kind of validator.

See also See Bean Validation Integration.

2.5.8. Ajax

Jakarta Faces supports Ajax. The specification contains a JavaScript library for performing basic Ajax
operations. The library helps define a standard way of sending an Ajax request, and processing an Ajax
response, since these are problem areas for component compatibility. The specification provides two
ways of adding Ajax to Jakarta Faces web applications. Page authors may use the JavaScript library
directly in their pages by attaching the Ajax request call to a Jakarta Faces component via a JavaScript
event (such as onclick). They may also take a more declarative approach and use a core Facelets tag
(<f:ajax/>) that they can nest within Jakarta Faces components to “Ajaxify” them. It is also possible to
“Ajaxify” regions of a page by “wrapping” the tag around component groups.

The server side aspects of Jakarta Faces Ajax frameworks work with the standard Jakarta Faces
lifecycle. In addition to providing a standard page authoring experience, the specification also
standardizes the server side processing of Ajax requests. Selected components in a Jakarta Faces view
can be processed (known as partial processing) and selected components can be rendered to the client
(known as partial rendering).

2.5.9. Component Behaviors

The Jakarta Faces specification contains a type of attached object known as component behaviors.
Component behaviors play a similar role to converters and validators in that they are attached to a
component instance in order to enhance the component with additional functionality not defined by
the component itself. While converters and validators are currently limited to the server-side request
processing lifecycle, component behaviors have impact that extends to the client, within the scope of a
particular instance component in a view. In particular, the ClientBehavior interface defines a contract
for behaviors that can enhance a component’s rendered content with behavior-defined "scripts". These
scripts are executed on the client in response to end user interaction, but can also trigger postbacks
back into the Jakarta Faces request processing lifecycle.

The usage pattern for client behaviors is as follows:

• The page author attaches a client behavior to a component, typically by specifying a behavior tag as
a child of a component tag.

• When attaching a client behavior to a component, the page author identifies the name of a client
"event" to attach to. The set of valid events are defined by the component.

2.5. Concepts that impact several lifecycle phases

Final Jakarta Server Faces 41

• At render time, the component (or renderer) retrieves the client behavior and asks it for its script.

• The component (or renderer) renders this script at the appropriate location in its generated
content (eg. typically in a DOM event handler).

• When the end user interacts with the component’s content in the browser, the behavior-defined
script is executed in response to the page author-specified event.

• The script provides some client-side interaction, for example, hiding or showing content or
validating input on the client, and possibly posts back to the server.

The first client behavior provided by the Jakarta Faces specification is the AjaxBehavior . This behavior
is exposed to a page author as a Facelets <f:ajax> tag, which can be embedded within any of the
standard HTML components as follows:

<h:commandButton>
 <f:ajax event="mouseover"/>
</h:commandButton>

When activated in response to end user activity, the <f:ajax> client behavior generates an Ajax request
back into the Jakarta Faces request processing lifecycle.

The component behavior framework is extensible and allows developers to define custom behaviors
and also allows component authors to enhance custom components to work with behaviors.

2.5.10. System Events

System Events are normatively specified in See System Events. This section provides an overview of
this feature as it relates to the lifecycle.

System events expand on the idea of lifecycle PhaseEvent s. With PhaseEvent s, it is possible to have
application scoped PhaseListeners that are given the opportunity to act on the system before and after
each phase in the lifecycle. System events provide a much more fine grained insight into the system,
allowing application or component scoped listeners to be notified of a variety of kinds of events. The
set of events supported in the core specification is given in See Event Classes. To accomodate
extensibility, users may define their own kinds of events.

The system event feature is a simple publish/subscribe event model. There is no event queue, events
are published immediately, and always with a call to Application.publishEvent() . There are several
ways to declare interest in a particular kind of event.

• Call Application.subscribeToEvent() to add an application scoped listener.

• Call UIComponent.subscribeToEvent() to add a component scoped listener.

• Use the <f:event> tag to declare a component scoped listener.

• Use the @ListenerFor or @ListenersFor annotation. The scope of the listener is determined by the
code that processes the annotation.

2.5. Concepts that impact several lifecycle phases

42 Jakarta Server Faces Final

• Use the <system-event-listener> element in an application configuration resource to add an
application scoped listener.

This feature is conceptually related to the lifecycle because there are calls to Application.publishEvent()
sprinkled throughout the code that gets executed when the lifecycle runs.

2.6. Resource Handling
As shown in the diagram in See Faces Request Generates Faces Response, [P1-start isResourceRequest
rules] the Jakarta Faces run-time must determine if the current Faces Request is a Faces Resource
Request or a View Request . This must be accomplished by calling
Application.getResourceHandler().isResourceRequest() . [P1-end] Most of the normative specification for
resource handling is contained in the Javadocs for ResourceHandler and its related classes. This section
contains the specification for resource handling that fits best in prose, rather than in Javadocs.

2.6.1. Packaging Resources

ResourceHandler defines a path based packaging convention for resources. The default
implementation of ResourceHandler must support packaging resources in the web application root or
in the classpath, according to the following specification.Other implementations of ResourceHandler
are free to package resources however they like.

2.6.1.1. Packaging Resources into the Web Application Root

[P1-start web app packaging] The default implementation must support packaging resources in the
web application root under the path

resources/<resourceIdentifier>

relative to the web app root. Resources packaged into the web app root must be accessed using the
getResource*() methods on ExternalContext. [P1-end]

2.6.1.2. Packaging Resources into the Classpath

[P1-start classpath packaging]For the default implementation, resources packaged in the classpath
must reside under the JAR entry name:

META-INF/resources/<resourceIdentifier>

Resources packaged into the classpath must be accessed using the getResource*() methods of the
ClassLoader obtained by calling the getContextClassLoader() method of the curreth Thread .[P1-end]

2.6.1.3. Resource Identifiers

<resourceIdentifier> consists of several segments, specified as follows.

[P1-start requirements for something to be considered a valid resourceIdentifier]

2.6. Resource Handling

Final Jakarta Server Faces 43

[localePrefix/][libraryName/][libraryVersion/]resourceName[/resourceVersion]

The run-time must enforce the following rules to consider a <resourceIdentifier> valid. A
<resourceIdentifier> that does not follow these rules must not be considered valid and must be ignored
silently.

• The set of characters that are valid for use in the localePrefix , libraryName , libraryVerison ,
resourceName and resourceVersion segments of the resource identifier is specififed as XML
NameChar excluding the path separator and ‘:’ characters. The specification for XML NameChar
may be seen at http://www.w3.org/TR/REC-xml/#NT-NameChar .

• A further restriction applies to libraryName . A libraryName must not be an underscore separated
sequence of non-negative integers or a locale string. More rigorously, a libraryName must not
match either of the following regular expressions:

[0-9]+(_[0-9]+)*
[A-Za-z]{2}(_[A-Za-z]{2}(_[A-Za-z]+)*)?

• Segments in square brackets [] are optional.

• The segments must appear in the order shown above.

• If libraryVersion is present, it must be preceded by libraryName.

• If libraryVersion is present, any leaf files under libraryName must be ignored.

• If resourceVersion is present, it must be preceded by resourceName.

• There must be a ’ / ’ between adjacent segments in a <resourceIdentifier>

• If libraryVersion or resourceVersion are present, both must be a ’ _ ’ separated list of integers, neither
starting nor ending with ’ _ ’

If resourceVersion is present, it must be a version number in the same format as libraryVersion . An
optional “file extension” may be used with the resourceVersion. If “file extension” is used, a “.”
character, followed by a “file extension” must be appended to the version number. See the following
table for an example.

[P1-end]

The following examples illustrate the nine valid combinations of the above resource identifier
segments.

localePrefx

[optional]

libraryName

[optional]

library

Version
[optional]

resourceNa
me

[required]

resource

Version
[optional]

Description actual
resourceIden
tifier

2.6. Resource Handling

44 Jakarta Server Faces Final

http://www.w3.org/TR/REC-xml/#NT-NameChar

__ __ __ duke.gif __ A non-
localized,
non-
versioned
image
resource
called "
duke.gif ",
not in a
library

duke.gif

__ corporate __ duke.gif __ A non-
localized,
non-
versioned
image
resource
called "
duke.gif " in
a library
called "
corporate "

corporate/du
ke.gif

__ corporate 2_3 duke.gif __ A non-
localized,
non-
versioned
image
resource
called "
duke.gif ", in
version 2_3
of the "
corporate "
library

corporate/2_
3/duke.gif

2.6. Resource Handling

Final Jakarta Server Faces 45

__ basic 2_3 script.js 1_3_4.js A non-
localized,
version 1.3.4
script
resource
called "
script.js ", in
versioned
2_3

library
called " basic
".

basic/2_3/scri
pt.js/1_3_4.js

de __ __ header.css __ A non-
versioned
style
resource
called "
header.css"
localized for
locale " de "

de/header.css

de_AT __ __ footer.css 1_4_2.css Version
1_4_2 of style
resource "
footer.css ",
localized for
locale "
de_AT "

de_AT/footer.
css/1_4_2.css

zh extraFancy __ menu-bar.css 2_4.css Version 2_4
of style
resource
called, "
menu-bar.css
" in non-
versioned
library, "
extraFancy ",
localized for
locale " zh "

zh/extraFanc
y/menu-
bar.css/2_4.c
ss

2.6. Resource Handling

46 Jakarta Server Faces Final

ja mild 0_1 ajaxTransact
ion.js

__ Non-
versioned
script
resource
called, "
ajaxTransact
ion.js ", in
version 0_1
of library
called " mild
", localized
for locale " ja
"

ja/mild/0_1/aj
axTransactio
n.js

de_ch grassy 1_0 bg.png 1_0.png Version 1_0
of image
resource
called "
bg.png ", in
version 1_0
of library
called "
grassy "
localized for
locale " de_ch
"

de_ch/grassy/
1_0/bg.png/1_
0.png

2.6.1.4. Libraries of Localized and Versioned Resources

An important feature of the resource handler is the ability for resources to be localized, versioned, and
collected into libraries. The localization and versioning scheme is completely hidden behind the API of
ResourceHandler and Resource and is not exposed in any way to the Jakarta Faces run-time.

[P1-start resource versioning] The default implementation of ResourceHandler.createResource() , for all
variants of that method, must implement the following to discover which actual resource will be
encapsulated within the returned Resource instance. An implementation may perform caching of the
resource metadata to improve performance if the ProjectStage is ProjectStage.Production .

Using the resourceName and libraryName arguments to createResource() , and the resource packaging
scheme specified in See Packaging Resources into the Web Application Root, See Packaging Resources
into the Classpath, and See Resource Identifiers, discover the file or entry that contains the bytes of the
resource. If there are multiple versions of the same library, and libraryVersion is not specified, the
library with the highest version is chosen. If there are multiple versions of the same resource, and
resourceVersion is not specified, the resource with the highest version is chosen. The algorithm is
specified in pseudocode.

2.6. Resource Handling

Final Jakarta Server Faces 47

function createResource(resourceName, libraryName) {
 var resource = null;
 var resourceId = null;
 for (var contract : getLibraryContracts()) {
 resourceId = deriveResourceIdConsideringResourceLoaders(contract,
 resourceName, libraryName)
 if (null != resourceId) {
 resource = create the resource using the resourceId;
 return resource;
 }
 }

 // try without a contract
 resourceId = deriveResourceIdConsideringResourceLoaders(null,
 resourceName, libraryName)
 if (null != resourceId) {
 resource = create the resource using the resourceId;
 }
 return resource;
}

function deriveResourceIdConsideringResourceLoaders(contract,
 resourceName, libraryName) {
 var prefix = web app root resource prefix;
 var resourceLoader = web app resource loader;
 // these are shorthand for the prefix and resource loading
 // facility specified in Section 2.6.1.1. They are
 // not actual API per se.
 var resourceId = deriveResourceIdConsideringLocalePrefix(contract,
 prefix, resourceLoader, resourceName, libraryName);

 if (null == resourceId) {
 prefix = classpath resource prefix;
 resourceLoader = classpath resource loader;
 // these are shorthand for the prefix and resource
 // loading facility specified in Section 2.6.1.2. They are
 // not actual API per se.
 resourceId = deriveResourceIdConsideringLocalePrefix(contract,
 prefix, resourceLoader, resourceName, libraryName);
 }
 return resourceId;
}

function deriveResourceIdConsideringLocalePrefix(contract, prefix,
 resourceLoader, resourceName, libraryName) {
 var localePrefix = getLocalePrefix();
 var result = deriveResourceId(contract, prefix, resourceLoader,
 resourceName, libraryName, localePrefix);

2.6. Resource Handling

48 Jakarta Server Faces Final

 // If the application has been configured to have a localePrefix,
 // and the resource is not found, try to find it again,
 // without the localePrefix.
 if (null == result && null != localePrefix) {
 result = deriveResourceId(contract, prefix, resourceLoader,
 resourceName, libraryName, null);
 }
 return result;
}

function deriveResourceId(contract, prefix, resourceLoader,
 resourceName, libraryName, localePrefix) {
 var resourceVersion = null;
 var libraryVersion = null;
 var resourceId;
 if (null != localePrefix) {
 prefix = localePrefix + '/' + prefix;
 }
 if (null != contract) {
 prefix = contract + '/' + prefix;
 }

 if (null != libraryName) {
 // actual argument is
 // resourcesInContractInJar/resources/resourcesInContractInJar
 var libraryPaths = resourceLoader.getResourcePaths(
 prefix + '/' + libraryName);

 if (null != libraryPaths && !libraryPaths.isEmpty()) {
 libraryVersion = // execute the comment
 // Look in the libraryPaths for versioned libraries.
 // If one or more versioned libraries are found, take
 // the one with the highest version number as the value
 // of libraryVersion. If no versioned libraries
 // are found, let libraryVersion remain null.
 }
 if (null != libraryVersion) {
 libraryName = libraryName + '/' + libraryVersion;
 }
 var resourcePaths = resourceLoader.getResourcePaths(
 prefix + '/' + libraryName + '/' + resourceName);
 if (null != resourcePaths && !resourcePaths.isEmpty()) {
 resourceVersion = // execute the comment +
 // Look in the resourcePaths for versioned resources.
 // If one or more versioned resources are found, take
 // the one with the â€œhighestâ€? version number as the value
 // of resourceVersion. If no versioned libraries
 // are found, let resourceVersion remain null.

2.6. Resource Handling

Final Jakarta Server Faces 49

 }
 if (null != resourceVersion) {
 resourceId = prefix + '/' + libraryName + '/' +
 resourceName + '/' + resourceVersion;
 }
 else {
 resourceId = prefix + '/' + libraryName + '/' + resourceName;
 }
 } // end of if (null != libraryName)
 else {
 // libraryName == null
 var resourcePaths = resourceLoader.getResourcePaths(
 prefix + '/' + resourceName);
 if (null != resourcePaths && !resourcePaths.isEmpty()) {
 resourceVersion = // execute the comment
 // Look in the resourcePaths for versioned resources.
 // If one or more versioned resources are found, take
 // the one with the â€œhighestâ€? version number as the value
 // of resourceVersion. If no versioned libraries
 // are found, let resourceVersion remain null.
 }
 if (null != resourceVersion) {
 resourceId = prefix + '/' + resourceName + '/' +
 resourceVersion;
 } else {
 resourceId = prefix + '/' + resourceName;
 }
 } // end of else, when libraryName == null
 return resourceId;
}

function getLocalePrefix() {
 var localePrefix;
 var appBundleName = facesContext.application.messageBundle;
 if (null != appBundleName) {
 var locale =
 // If there is a viewRoot on the current facesContext,
 // use its locale.
 // Otherwise, use the locale of the application's ViewHandler
 ResourceBundle appBundle = ResourceBundle.getBundle(
 appBundleName, locale);
 localePrefix = appBundle.getString(ResourceHandler. LOCALE_PREFIX);
 }
 // Any MissingResourceException instances that are encountered
 // in the above code must be swallowed by this method, and null
 // returned;
 return localePrefix;
}

2.6. Resource Handling

50 Jakarta Server Faces Final

[P1-end]

2.6.2. Rendering Resources

Resources such as images, stylesheets and scripts use the resource handling mechanism as outlined in
See Packaging Resources. So, for example:

<h:graphicImage name=”Planets.gif” library=”images”/>
<h:graphicImage value=”#{resource[‘images:Planets.gif’]}”/>

These entries render exactly the same markup. In addition to using the name and library attributes,
stylesheet and script resources can be “relocated” to other parts of the view. For example, we could
specify that a script resource be rendered within an HTML “head”, “body” or “form” element in the
page.

2.6.2.1. Relocatable Resources

Relocatable resources are resources that can be told where to render themselves, and this rendered
location may be different than the resource tag placement in the view. For example, a portion of the
view may be described in the view declaration language as follows:

<f:view contentType="text/html">
 <h:head>
 <meta http-equiv="Content-Type"
 content="text/html;charset=iso-8859-1" />
 <title>Example View</title>
 </h:head>
 <h:body>
 <h:form>
 <h:outputScript name=”ajax.js” library=”jakarta.faces”
 target=”head”/>
 </h:form>
 </h:body>
</f:view>

The <h:outputScript> tag refers to the renderer, ScriptRenderer, that listens for PostAddToViewEvent
event types:

@ListenerFor(facesEventClass=PostAddToViewEvent.class,
 sourceClass=UIOutput.class)
public class ScriptRenderer extends Renderer
 implements ComponentSystemEventListener {...

2.6. Resource Handling

Final Jakarta Server Faces 51

Refer to See Event and Listener Model. When the component for this resource is added to the view, the
ScriptRenderer processEvent method adds the component to a facet (named by the target attribute)
under the view root. using the UIViewRoot component resource methods as described in See Methods.

The <h:head> and <h:body> tags refer to the renderers HeadRenderer and BodyRenderer respectively.
They are described in the Standard HTML Renderkit documentation referred to in See Standard HTML
RenderKit Implementation. During the rendering phase, the encode methods for these renderers
render the HTML “head” and “body” elements respectively. Then they render all component resources
under the facet child (named by target) under the UIViewRoot using the UIViewRoot component
resource methods as described in See Methods.

Existing component libraries (with existing head and body components), that want to use this resource
loading feature must follow the rendering requirements described in See Standard HTML RenderKit
Implementation.

2.6.2.2. Resource Rendering Using Annotations

Components and renderers may be declared as requiring a resource using the @ResourceDependency
annotation. The implementation must scan for the presence of this annotation on the component that
was added to the List of child components. Check for the presence of the annotation on the renderer
for this component (if there is a renderer for the component). The annotation check must be done
immediately after the component is added to the List. Refer to See Component Tree Manipulation for
detailed information.

2.7. Resource Library Contracts
[P1-start_contract_packaging]A resource library contract is a resource library, as specified in the
preceding section, except that instead of residing in the resources directory of the web-app root, or in
the META-INF/resources JAR entry name in a JAR file, it resides in the contracts directory of the web-
app root, or in the META-INF/contracts JAR entry name in a JAR file. When packaged in a JAR file, there
is one additional packaging requirement: each resource library contract in the JAR must have a marker
file. The name of the file is given by the value of the symbolic constant
jakarta.faces.application.ResourceHandler.RESOURCE_CONTRACT_XML . This may be a zero length file,
though future versions of the specification may use the file to declare the usage contract. [P1-end] The
requirement to have a marker file enables implementations to optimize for faster deployment while
still enabling automatic discovery of the available contracts.

Following is a listing of the entries in a JAR file containing two resource library contracts.

2.7. Resource Library Contracts

52 Jakarta Server Faces Final

META-INF/contracts/
 siteLayout/
 jakarta.faces.contract.xml
 topNav_template.xhtml
 leftNav_foo.xhtml
 styles.css
 script.js
 background.png
 subSiteLayout/
 jakarta.faces.contract.xml
 sub_template.xhtml

All of the other packaging, encoding and decoding requirements are the same as for resource libraries.

See FaceletsAndWebApplications.adoc#a5526,See Resource Library Contracts Background>> for a non-
normative overview of the feature, including a brief usage example.

2.7. Resource Library Contracts

Final Jakarta Server Faces 53

Chapter 3. User Interface Component Model
A Jakarta Faces user interface component is the basic building block for creating a Jakarta Faces user
interface. A particular component represents a configurable and reusable element in the user
interface, which may range in complexity from simple (such as a button or text field) to compound
(such as a tree control or table). Components can optionally be associated with corresponding objects
in the data model of an application, via value expressions.

Jakarta Faces also supports user interface components with several additional helper APIs:

• Converters —Pluggable support class to convert the markup value of a component to and from the
corresponding type in the model tier.

• Events and Listeners —An event broadcast and listener registration model based on the design
patterns of the JavaBeans Specification, version 1.0.1.

• Validators —Pluggable support classes that can examine the local value of a component (as
received in an incoming request) and ensure that it conforms to the business rules enforced by
each Validator. Error messages for validation failures can be generated and sent back to the user
during rendering.

The user interface for a particular page of a Jakarta Faces-based web application is created by
assembling the user interface components for a particular request or response into a view. The view is
a tree of classes that implement UIComponent. The components in the tree have parent-child
relationships with other components, starting at the root element of the tree, which must be an
instance of UIViewRoot. Components in the tree can be anonymous or they can be given a component
identifier by the framework user. Components in the tree can be located based on component
identifiers, which must be unique within the scope of the nearest ancestor to the component that is a
naming container. For complex rendering scenarios, components can also be attached to other
components as facets.

This chapter describes the basic architecture and APIs for user interface components and the
supporting APIs.

3.1. UIComponent and UIComponentBase
The base abstract class for all user interface components is jakarta.faces.component.UIComponent. This
class defines the state information and behavioral contracts for all components through a Java
programming language API, which means that components are independent of a rendering technology
such as Jakarta Server Pages. A standard set of components (described in Standard User Interface
Components) that add specialized properties, attributes, and behavior, is also provided as a set of
concrete subclasses.

Component writers, tool providers, application developers, and Jakarta Faces implementors can also
create additional UIComponent implementations for use within a particular application. To assist such
developers, a convenience subclass, jakarta.faces.component.UIComponentBase, is provided as part of

3.1. UIComponent and UIComponentBase

54 Jakarta Server Faces Final

Jakarta Faces. This class provides useful default implementations of nearly every UIComponent
method, allowing the component writer to focus on the unique characteristics of a particular
UIComponent implementation.

The following subsections define the key functional capabilities of Jakarta Faces user interface
components.

3.1.1. Component Identifiers

public String getId();
public void setId(String componentId);

[N/T-start may-component-identifier] Every component may be named by a component identifier that
must conform to the following rules:

• They must start with a letter (as defined by the Character.isLetter() method).

• Subsequent characters must be letters (as defined by the Character.isLetter() method), digits as
defined by the Character.isDigit() method, dashes (‘-’), or underscores (‘_’).

[P1-end] To minimize the size of responses generated by Jakarta Server Faces, it is recommended that
component identifiers be as short as possible.

If a component has been given an identifier, it must be unique in the namespace of the closest ancestor
to that component that is a NamingContainer (if any).

3.1.2. Component Type

While not a property of UIComponent , the component-type is an important piece of data related to each
UIComponent subclass that allows the Application instance to create new instances of UIComponent
subclasses with that type. Please see Object Factories for more on component-type.

Component types starting with “jakarta.faces.” are reserved for use by the Jakarta Faces specification.

3.1.3. Component Family

public String getFamily();

Each standard user interface component class has a standard value for the component family, which is
used to look up renderers associated with this component. Subclasses of a generic UIComponent class
will generally inherit this property from its superclass, so that renderers who only expect the
superclass will still be able to process specialized subclasses.

Component families starting with “jakarta.faces.” are reserved for use by the Jakarta Faces
specification.

3.1. UIComponent and UIComponentBase

Final Jakarta Server Faces 55

3.1.4. ValueExpression properties

Properties and attributes of standard concrete component classes may be value expression enabled.
This means that, rather than specifying a literal value as the parameter to a property or attribute
setter, the caller instead associates a ValueExpression (see ValueBinding) whose getValue() method
must be called (by the property getter) to return the actual property value to be returned if no value
has been set via the corresponding property setter. If a property or attribute value has been set, that
value must be returned by the property getter (shadowing any associated value binding expression for
this property).

Value binding expressions are managed with the following method calls:

public ValueExpression getValueExpression(String name);
public void setValueExpression(String name, ValueExpression expression);

where name is the name of the attribute or property for which to establish the value expression. [P1-
start setValueExpression rules] The implementation of setValueExpression must detemine if the
expression is a literal by calling ValueExpression.isLiteralText() on the expression argument. If the
expression argument is literal text, then ValueExpression.getValue() must be called on the expression
argument. The result must be used as the value argument, along with the name argument to this
component’s getAttributes().put(name, value) method call. [P1-end] [P1-start which properties are
value expression enabled] For the standard component classes defined by this specification, all
attributes, and all properties other than id, parent, action, listener, actionListener, valueChangeListener,
and validator are value expression enabled. The action, listener, actionListener, valueChangeListener,
and validator attributes are method expression enabled.[P1-end]

In previous versions of this specification, this concept was called “value binding”. Methods and classes
referring to this concept are deprecated, but remain implemented to preserve backwards
compatibility.

public ValueBinding getValueBinding(String name);
public void setValueBinding(String name, ValueBinding binding);

Please consult the javadoc for these methods to learn how they are implemented in terms of the new
“value expression” concept.

3.1.5. Component Bindings

A component binding is a special value expression that can be used to facilitate “wiring up” a
component instance to a corresponding property of a JavaBean that is associated with the page, and
wants to manipulate component instances programatically. It is established by calling
setValueExpression() (see ValueExpression properties) with the special property name binding.

The specified ValueExpression must point to a read-write JavaBeans property of type UIComponent (or

3.1. UIComponent and UIComponentBase

56 Jakarta Server Faces Final

appropriate subclass). Such a component binding is used at two different times during the processing
of a Faces Request:

• [P3-start how a component binding is used from a Jakarta Server Pages page] When a component
instance is first created (typically by virtue of being referenced by a UIComponentELTag in a
Jakarta Server Pages page), the Jakarta Faces implementation will retrieve the ValueExpression for
the name binding, and call getValue() on it. If this call returns a non-null UIComponent value
(because the JavaBean programmatically instantiated and configured a component already), that
instance will be added to the component tree that is being created. If the call returns null, a new
component instance will be created, added to the component tree, and setValue() will be called on
the ValueExpression (which will cause the property on the JavaBean to be set to the newly created
component instance). [P3-end]

• [P1-start how a component binding is used when restoring the tree]When a component tree is
recreated during the Restore View phase of the request processing lifecycle, for each component
that has a ValueExpression associated with the name “binding”, setValue() will be called on it,
passing the recreated component instance. [P1-end]

Component bindings are often used in conjunction with JavaBeans that are dynamically instantiated
via the Managed Bean Creation facility (see VariableResolver and the Default VariableResolver). If
application developers place managed beans that are pointed at by component binding expressions in
any scope other than request scope, the system cannot behave correctly. This is because placing it in a
scope wider than request scope would require thread safety, since UIComponent instances depend on
running inside of a single thread. There are also potentially negative impacts on memory management
when placing a component binding in “session” or “view” scopes.

3.1.6. Client Identifiers

Client identifiers are used by Jakarta Faces implementations, as they decode and encode components,
for any occasion when the component must have a client side name. Some examples of such an
occasion are:

• to name request parameters for a subsequent request from the Jakarta Faces-generated page.

• to serve as anchors for client side scripting code.

• to serve as anchors for client side accessibility labels.

public String getClientId(FacesContext context);
protected String getContainerClientId(FacesContext context);

The client identifier is derived from the component identifier (or the result of calling
UIViewRoot.createUniqueId() if there is not one), and the client identifier of the closest parent
component that is a NamingContainer according to the algorithm specified in the javadoc for
UIComponent.getClientId(). The Renderer associated with this component, if any, will then be asked to
convert this client identifier to a form appropriate for sending to the client. The value returned from

3.1. UIComponent and UIComponentBase

Final Jakarta Server Faces 57

this method must be the same throughout the lifetime of the component instance unless setId() is
called, in which case it will be recalculated by the next call to getClientId().

3.1.7. Component Tree Manipulation

public UIComponent getParent();
public void setParent(UIComponent parent);

Components that have been added as children of another component can identify the parent by calling
the getParent method. For the root node component of a component tree, or any component that is not
part of a component tree, getParent will return null. In some special cases, such as transient
components, it is possible that a component in the tree will return null from getParent(). The
setParent() method should only be called by the List instance returned by calling the getChildren()
method, or the Map instance returned by calling the getFacets() method, when child components or
facets are being added, removed, or replaced.

public List<UIComponent> getChildren();

Return a mutable List that contains all of the child UIComponents for this component instance. [P1-start
requirements of UIComponent.getChildren()] The returned List implementation must support all of
the required and optional methods of the List interface, as well as update the parent property of
children that are added and removed, as described in the Javadocs for this method. [P1-end] Note that
the add() methods have a special requirement to cause the PostAddToViewEvent method to be fired, as
well as the processing of the ResourceDependency annotation. See the javadocs for getChildren() for
details.

public int getChildCount();

A convenience method to return the number of child components for this component. [P2-start
UIComponent.getChildCount requirements.] If there are no children, this method must return 0. The
method must not cause the creation of a child component list, so it is preferred over calling
getChildren().size() when there are no children. [P2-end]

3.1.8. Component Tree Navigation

public UIComponent findComponent(String expr);

Search for and return the UIComponent with an id that matches the specified search expression (if
any), according to the algorithm described in the Javadocs for this method.

3.1. UIComponent and UIComponentBase

58 Jakarta Server Faces Final

public Iterator<UIComponent> getFacetsAndChildren();

Return an immutable Iterator over all of the facets associated with this component (in an
undetermined order), followed by all the child components associated with this component (in the
order they would be returned by getChildren()).

public boolean invokeOnComponent(FacesContext context,
 String clientId, ContextCallback callback) throws FacesException;

Starting at this component in the view, search for the UIComponent whose getClientId() method returns
a String that exactly matches the argument clientId using the algorithm specified in the Javadocs for
this method. If such a UIComponent is found, call the invokeContextCallback() method on the argument
callback passing the current FacesContext and the found UIComponent. Upon normal return from the
callback, return true to the caller. If the callback throws an exception, it must be wrapped inside of a
FacesException and re-thrown. If no such UIComponent is found, return false to the caller.

Special consideration should be given to the implementation of invokeOnComponent() for
UIComponent classes that handle iteration, such as UIData. Iterating components manipulate their
own internal state to handle iteration, and doing so alters the clientIds of components nested within
the iterating component. Implementations of invokeOnComponent() must guarantee that any state
present in the component or children is restored before returning. Please see the Javadocs for
UIData.invokeOnComponent() for details.

The ContextCallback interface is specified as follows..

public interface ContextCallback {
 public void invokeContextCallback(
 FacesContext context, UIComponent target);
}

Please consult the Javadocs for more details on this interface.

public static UIComponent getCurrentComponent(FacesContext context);

Returns the UIComponent instance that is currently being processed.

public static UIComponent getCurrentCompositeComponent(
 FacesContext context);

Returns the closest ancestor component relative to getCurrentComponent that is a composite
component, or null if no such component is exists.

3.1. UIComponent and UIComponentBase

Final Jakarta Server Faces 59

public boolean visitTree(VisitContext context, VisitCallback callback);

Uses the visit API introduced in version 2 of the specification to perform a flexible and customizable
visit of the tree from this instance and its children. Please see the package description for the package
jakarta.faces.component.visit for the normative specification.

3.1.9. Facet Management

Jakarta Server Faces supports the traditional model of composing complex components out of simple
components via parent-child relationships that organize the entire set of components into a tree, as
described in Component Tree Manipulation. However, an additional useful facility is the ability to
define particular subordinate components that have a specific role with respect to the owning
component, which is typically independent of the parent-child relationship. An example might be a
“data grid” control, where the children represent the columns to be rendered in the grid. It is useful to
be able to identify a component that represents the column header and/or footer, separate from the
usual child collection that represents the column data.

To meet this requirement, Jakarta Server Faces components offer support for facets, which represent a
named collection of subordinate (but non-child) components that are related to the current component
by virtue of a unique facet name that represents the role that particular component plays. Although
facets are not part of the parent-child tree, they participate in request processing lifecycle methods, as
described in Lifecycle Management Methods.

public Map<String, UIComponent> getFacets();

Return a mutable Map representing the facets of this UIComponent, keyed by the facet name.

public UIComponent getFacet(String name);

A convenience method to return a facet value, if it exists, or null otherwise. If the requested facet does
not exist, no facets Map must not be created, so it is preferred over calling getFacets().get() when there
are no Facets.

For easy use of components that use facets, component authors may include type-safe getter and setter
methods that correspond to each named facet that is supported by that component class. For example,
a component that supports a header facet of type UIHeader should have methods with signatures and
functionality as follows:

3.1. UIComponent and UIComponentBase

60 Jakarta Server Faces Final

public UIHeader getHeader() {
 return ((UIHeader) getFacet(“header”);
}

public void setHeader(UIHeader header) {
 getFacets().put(“header”, header);
}

3.1.10. Managing Component Behavior

UIComponentBase provides default implementations for the methods from the
jakarta.faces.component.behavior.BehaviorHolder interface. UIComponentBase does not implement the
jakarta.faces.component.behavior.BehaviorHolder interface, but it provides the default
implementations to simplify subclass implemenations. Refer to Component Behavior Model for more
information.

public void addBehavior(String eventName, Behavior behavior)

This method attaches a Behavior to the component for the specified eventName. The eventName must
be one of the values in the Collection returned from getEventNames(). For example, it may be desired to
have some behavior defined when a “click” event occurs. The behavior could be some client side
behavior in the form of a script executing, or a server side listener executing.

public Collection<String> getEventNames()

Returns the logical event names that can be associated with behavior for the component.

public Map<String, List<Behavior>> getBehaviors()

Returns a Map defining the association of events and behaviors. They keys in the Map are event
names.

public String getDefaultEventName()

Returns the default event name (if any) for the component.

3.1.11. Generic Attributes

public Map<String, Object> getAttributes();

3.1. UIComponent and UIComponentBase

Final Jakarta Server Faces 61

The render-independent characteristics of components are generally represented as Jakarta Bean
component properties with getter and setter methods (see Render-Independent Properties). In
addition, components may also be associated with generic attributes that are defined outside the
component implementation class. Typical uses of generic attributes include:

• Specification of render-dependent characteristics, for use by specific Renderers.

• General purpose association of application-specific objects with components.

The attributes for a component may be of any Java programming language object type, and are keyed
by attribute name (a String). However, see State Saving Alternatives and Implications for implications
of your application’s choice of state saving method on the classes used to implement attribute values.

Attribute names that begin with jakarta.faces are reserved for use by the Jakarta Faces specification.
Names that begin with jakarta are reserved for definition through the Eclipse Foundation Process.
Implementations are not allowed to define names that begin with jakarta.

[P1-start attribute property transparency rules] The Map returned by getAttributes() must also support
attribute-property transparency, which operates as follows:

• When the get() method is called, if the specified attribute name matches the name of a readable
JavaBeans property on the component implementation class, the value returned will be acquired
by calling the appropriate property getter method, and wrapping Java primitive values (such as int)
in their corresponding wrapper classes (such as java.lang.Integer) if necessary. If the specified
attribute name does not match the name of a readable JavaBeans property on the component
implementation class, consult the internal data-structure to in which generic attributes are stored.
If no entry exists in the internal data-structure, see if there is a ValueExpression for this attribute
name by calling getValueExpression(), passing the attribute name as the key. If a ValueExpression
exists, call getValue() on it, returning the result. If an ELException is thrown wrap it in a
FacesException and re-throw it.

• When the put() method is called, if the specified attribute name matches the name of a writable
JavaBeans property on the component implementation class, the appropriate property setter
method will be called. If the specified attribute name does not match the name of a writable
JavaBeans property, simply put the value in the data-structure for generic attributes.

• When the remove() method is called, if the specified attribute name matches the name of a
JavaBeans property on the component, an IllegalArgumentException must be thrown.

• When the containsKey() method is called, if the specified attribute name matches the name of a
JavaBeans property, return false. Otherwise, return true if and only if the specified attribute name
exists in the internal data-structure for the generic attributes.

The Map returned by getAttributes() must also conform to the entire contract for the Map interface.
[P1-end]

3.1. UIComponent and UIComponentBase

62 Jakarta Server Faces Final

3.1.11.1. Special Attributes

UIComponent Constants

public static final String CURRENT_COMPONENT =
 "jakarta.faces.component.CURRENT_COMPONENT";

This is used as a key in the FacesContext attributes Map to indicate the component that is currently
being processed.

public static final String CURRENT_COMPOSITE_COMPONENT =
 "jakarta.faces.component.CURRENT_COMPOSITE_COMPONENT";

This is used as a key in the FacesContext attributes Map to indicate the composite component that is
currently being processed.

public static final String BEANINFO_KEY =
 "jakarta.faces.component.BEANINFO_KEY";

This is a key in the component attributes Map whose value is a java.beans.BeanInfo describing the
composite component.

public static final String FACETS_KEY =
 "jakarta.faces.component.FACETS_KEY";

This is a key in the composite component BeanDescriptor whose value is a Map<PropertyDescriptor>
that contains meta-information for the declared facets for the composite component.

public static final String COMPOSITE_COMPONENT_TYPE_KEY =
 "jakarta.faces.component.COMPOSITE_COMPONENT_TYPE";

This is a key in the composite component BeanDescriptor whose value is a ValueExpression that
evaluates to the component-type of the composite component root.

public static final String COMPOSITE_FACET_NAME =
 "jakarta.faces.component.COMPOSITE_FACET_NAME";

This is a key in the Map<PropertyDescriptor> that is returned by using the key FACETS_KEY. The value
of this constant is also used as the key in the Map returned from getFacets(). In this case, the value of
this key is the facet (the UIPanel) that is the parent of all the components in the composite
implementation section of the composite component VDL file.

3.1. UIComponent and UIComponentBase

Final Jakarta Server Faces 63

Refer to the jakarta.faces.component.UIComponent Javadocs for more detailed information.

3.1.12. Render-Independent Properties

The render-independent characteristics of a user interface component are represented as JavaBean
component properties, following JavaBeans naming conventions. Specifically, the method names of the
getter and/or setter methods are determined using standard JavaBeans component introspection rules,
as defined by java.beans.Introspector. The render-independent properties supported by all
UIComponents are described in the following table:

Name Access Type Description

id RW String The component identifier, as described in
Component Identifiers.

parent RW UIComponent The parent component for which this component
is a child or a facet.

rendered RW boolean A flag that, if set to true, indicates that this
component should be processed during all phases
of the request processing lifecycle. The default
value is “true”.

rendererType RW String Identifier of the Renderer instance (from the set of
Renderer instances supported by the RenderKit
associated with the component tree we are
processing. If this property is set, several
operations during the request processing lifecycle
(such as decode and the encodeXxx family of
methods) will be delegated to a Renderer instance
of this type. If this property is not set, the
component must implement these methods
directly.

rendersChildren RO boolean A flag that, if set to true, indicates that this
component manages the rendering of all of its
children components (so the Jakarta Faces
implementation should not attempt to render
them). The default implementation in
UIComponentBase delegates this setting to the
associated Renderer, if any, and returns false
otherwise.

transient RW boolean A flag that, if set to true, indicates that this
component must not be included in the state of
the component tree. The default implementation
in UIComponentBase returns false for this
property.

3.1. UIComponent and UIComponentBase

64 Jakarta Server Faces Final

The method names for the render-independent property getters and setters must conform to the
design patterns in the JavaBeans specification. See State Saving Alternatives and Implications for
implications of your application’s choice of state saving method on the classes used to implement
property values.

3.1.13. Component Specialization Methods

The methods described in this section are called by the Jakarta Faces implementation during the
various phases of the request processing lifecycle, and may be overridden in a concrete subclass to
implement specialized behavior for this component.

public boolean broadcast(FacesEvent event)
 throws AbortProcessingException;

The broadcast() method is called during the common event processing (see Common Event Processing)
at the end of several request processing lifecycle phases. For more information about the event and
listener model, see Event and Listener Model. Note that it is not necessary to override this method to
support additional event types.

public void decode(FacesContext context);

This method is called during the Apply Request Values phase of the request processing lifecycle, and
has the responsibility of extracting a new local value for this component from an incoming request.
The default implementation in UIComponentBase delegates to a corresponding Renderer, if the
rendererType property is set, and does nothing otherwise.

Generally, component writers will choose to delegate decoding and encoding to a corresponding
Renderer by setting the rendererType property (which means the default behavior described above is
adequate).

public void encodeAll(FacesContext context) throws IOException
public void encodeBegin(FacesContext context) throws IOException;
public void encodeChildren(FacesContext context) throws IOException;
public void encodeEnd(FacesContext context) throws IOException;

These methods are called during the Render Response phase of the request processing lifecycle.
encodeAll() will cause this component and all its children and facets that return true from isRendered()
to be rendered, regardless of the value of the getRendersChildren() return value. encodeBegin(),
encodeChildren(), and encodeEnd() have the responsibility of creating the response data for the
beginning of this component, this component’s children (only called if the rendersChildren property of
this component is true), and the ending of this component, respectively. Typically, this will involve
generating markup for the output technology being supported, such as creating an HTML <input>

3.1. UIComponent and UIComponentBase

Final Jakarta Server Faces 65

element for a UIInput component. For clients that support it, the encode methods might also generate
client-side scripting code (such as JavaScript), and/or stylesheets (such as CSS). The default
implementations in UIComponentBase encodeBegin() and encodeEnd() delegate to a corresponding
Renderer, if the rendererType property is true, and do nothing otherwise. [P1-start-comp-special]The
default implementation in UIComponentBase encodeChildren() must iterate over its children and call
encodeAll() for each child component. encodeBegin() must publish a PreRenderComponentEvent. [P1-
end]

Generally, component writers will choose to delegate encoding to a corresponding Renderer, by setting
the rendererType property (which means the default behavior described above is adequate).

public void queueEvent(FacesEvent event);

Enqueue the specified event for broadcast at the end of the current request processing lifecycle phase.
Default behavior is to delegate this to the queueEvent() of the parent component, normally resulting in
broadcast via the default behavior in the UIViewRoot lifecycle methods.

The component author can override any of the above methods to customize the behavior of their
component.

3.1.14. Lifecycle Management Methods

The following methods are called by the various phases of the request processing lifecycle, and
implement a recursive tree walk of the components in a component tree, calling the component
specialization methods described above for each component. These methods are not generally
overridden by component writers, but doing so may be useful for some advanced component
implementations. See the javadocs for detailed information on these methods

In order to support the “component” implicit object (See Implicit Object ELResolver for Facelets and
Programmatic Access), the following methods have been added to UIComponent

protected void pushComponentToEL(FacesContext context);
protected void popComponentFromEL(FacesContext context)

pushComponentToEL() and popComponentFromEL() must be called inside each of the lifecycle
management methods in this section as specified in the javadoc for that method.

public void processRestoreState(FacesContext context, Object state);

Perform the component tree processing required by the Restore View phase of the request processing
lifecycle for all facets of this component, all children of this component, and this component itself.

3.1. UIComponent and UIComponentBase

66 Jakarta Server Faces Final

public void processDecodes(FacesContext context);

Perform the component tree processing required by the Apply Request Values phase of the request
processing lifecycle for all facets of this component, all children of this component, and this component
itself

public void processValidators(FacesContext context);

Perform the component tree processing required by the Process Validations phase of the request
processing lifecycle for all facets of this component, all children of this component, and this component
itself.

public void processUpdates(FacesContext context);

Perform the component tree processing required by the Update Model Values phase of the request
processing lifecycle for all facets of this component, all children of this component, and this component
itself.

public void processSaveState(FacesContext context);

Perform the component tree processing required by the state saving portion of the Render Response
phase of the request processing lifecycle for all facets of this component, all children of this
component, and this component itself.

3.1.15. Utility Methods

protected FacesContext getFacesContext();

Return the FacesContext instance for the current request.

protected Renderer getRenderer(FacesContext context);

Return the Renderer that is associated this UIComponent, if any, based on the values of the family and
rendererType properties currently stored as instance data on the UIComponent.

protected void addFacesListener(FacesListener listener);
protected void removeFacesListener(FacesListener listener);

3.1. UIComponent and UIComponentBase

Final Jakarta Server Faces 67

These methods are used to register and deregister an event listener. They should be called only by a
public addXxxListener() method on the component implementation class, which provides typesafe
listener registration.

public Map<String, String> getResourceBundleMap();

Return a Map of the ResourceBundle for this component. Please consult the Javadocs for more
information.

3.2. Component Behavioral Interfaces
In addition to extending UIComponent, component classes may also implement one or more of the
behavioral interfaces described below. Components that implement these interfaces must provide the
corresponding method signatures and implement the described functionality.

3.2.1. ActionSource

The ActionSource interface defines a way for a component to indicate that wishes to be a source of
ActionEvent events, including the ability invoke application actions (see Application Actions) via the
default ActionListener facility (see ActionListener Property).

3.2.1.1. Properties

The following render-independent properties are added by the ActionSource interface:

Name Access Type Description

action RW MethodBinding DEPRECATED A MethodBinding (see
MethodBinding) that must (if non- null) point at an
action method (see Application Actions). The
specified method will be called during the Apply
Request Values or Invoke Application phase of the
request processing lifecycle, as described in
Invoke Application. This method is replaced by
the actionExpression property on ActionSource2.
See the javadocs for the backwards compatibility
implementation strategy.

3.2. Component Behavioral Interfaces

68 Jakarta Server Faces Final

Name Access Type Description

actionListener RW MethodBinding DEPRECATED A MethodBinding (see
MethodBinding) that (if non- null) must point at a
method accepting an ActionEvent, with a return
type of void. Any ActionEvent that is sent by this
ActionSource will be passed to this method along
with the processAction() method of any registered
ActionListeners, in either Apply Request Values or
Invoke Application phase, depending upon the
state of the immediate property. See the javadocs
for the backwards compatibility implementation
strategy.

immediate RW boolean A flag indicating that the default ActionListener
should execute immediately (that is, during the
Apply Request Values phase of the request
processing lifecycle, instead of waiting for Invoke
Application phase). The default value of this
property must be false.

3.2.1.2. Methods

ActionSource adds no new processing methods.

3.2.1.3. Events

A component implementing ActionSource is a source of ActionEvent events. There are three important
moments in the lifetime of an ActionEvent :

• when an the event is created

• when the event is queued for later processing

• when the listeners for the event are notified

ActionEvent creation occurs when the system detects that the component implementing ActionSource
has been activated. For example, a button has been pressed. This happens when the decode()
processing of the Apply Request Values phase of the request processing lifecycle detects that the
corresponding user interface control was activated.

ActionEvent queueing occurs immediately after the event is created.

Event listeners that have registered an interest in ActionEvent s fired by this component (see below)
are notified at the end of the Apply Request Values or Invoke Application phase, depending upon the
immediate property of the originating UICommand .

ActionSource includes the following methods to register and deregister ActionListener instances

3.2. Component Behavioral Interfaces

Final Jakarta Server Faces 69

interested in these events. See Event and Listener Model for more details on the event and listener
model provided by Jakarta Faces.

public void addActionListener(ActionListener listener);
public void removeActionListener(ActionListener listener);

In addition to manually registered listeners, the Jakarta Faces implementation provides a default
ActionListener that will process ActionEvent events during the Apply Request Values or Invoke
Application phases of the request processing lifecycle. See
RequestProcessingLifecycle.adoc#a454,Invoke Application>> for more information.

3.2.2. ActionSource2

The ActionSource2 interface extends ActionSource and provides a JavaBeans property analogous to the
action property on ActionSource . This allows the ActionSource concept to leverage the Jakarta
Expression Language API.

3.2.2.1. Properties

The following render-independent properties are added by the ActionSource interface:

Name Access Type Description

actionExpression RW jakarta.el.MethodE
xpression

A MethodExpression (see MethodBinding) that
must (if non- null) point at an action method (see
Application Actions). The specified method will be
called during the Apply Request Values or Invoke
Application phase of the request processing
lifecycle, as described in Invoke Application.

3.2.2.2. Methods

ActionSource2 adds no new processing methods.

3.2.2.3. Events

ActionSource2 adds no new events.

3.2.3. NamingContainer

NamingContainer is a marker interface. Components that implement NamingContainer have the
property that, for all of their children that have non- null component identifiers, all of those identifiers
are unique. This property is enforced by the renderView() method on ViewHandler . In Jakarta Server
Pages based applications, it is also enforced by the UIComponentELTag . Since this is just a marker
interface, there are no properties, methods, or events. Among the standard components, UIForm and

3.2. Component Behavioral Interfaces

70 Jakarta Server Faces Final

UIData implement NamingContainer . See UIForm and Section Methods “UIData” for details of how the
NamingContainer concept is used in these two cases.

NamingContainer defines a public static final character constant, SEPARATOR_CHAR , that is used to
separate components of client identifiers, as well as the components of search expressions used by the
findComponent() method see (Component Tree Navigation). The value of this constant must be a colon
character (“:”).

Use of this separator character in client identifiers rendered by Renderer s can cause problems with
CSS stylesheets that attach styles to a particular client identifier. For the Standard HTML RenderKit,
this issue can be worked around by using the style attribute to specify CSS style values directly, or the
styleClass attribute to select CSS styles by class rather than by identifier.

3.2.4. StateHolder

The StateHolder interface is implemented by UIComponent , Converter , FacesListener , and Validator
classes that need to save their state between requests. UIComponent implements this interface to
denote that components have state that must be saved and restored between requests.

3.2.4.1. Properties

The following render-independent properties are added by the StateHolder interface:

Name Access Type Description

transient RW boolean A flag indicating whether this instance has
decided to opt out of having its state information
saved and restored. The default value for all
standard component, converter, and validator
classes that implement StateHolder must be false .

3.2.4.2. Methods

Any class implementing StateHolder must implement both the saveState() and restoreState() methods,
since these two methods have a tightly coupled contract between themselves. In other words, if there is
an inheritance hierarchy, it is not permissible to have the saveState() and restoreState() methods reside
at different levels of the hierarchy.

public Object saveState(FacesContext context);
public void restoreState(FacesContext context,
 Object state) throws IOException;

Gets or restores the state of the instance as a Serializable Object .

If the class that implements this interface has references to Objects which also implement StateHolder
(such as a UIComponent with a converter, event listeners, and/or validators) these methods must call

3.2. Component Behavioral Interfaces

Final Jakarta Server Faces 71

the saveState() or restoreState() method on all those instances as well.

Any class implementing StateHolder must have a public no-args constructor.

If the state saving method is server, these methods may not be called.

If the class that implements this interface has references to Objects which do not implement
StateHolder , these methods must ensure that the references are preserved. For example, consider class
MySpecialComponent , which implements StateHolder , and keeps a reference to a helper class,
MySpecialComponentHelper , which does not implement StateHolder . MySpecialComponent.saveState()
must save enough information about MySpecialComponentHelper , so that when
MySpecialComponent.restoreState() is called, the reference to MySpecialComponentHelper can be
restored. The return from saveState() must be Serializable .

Since all of the standard user interface components listed in Standard User Interface Components”
extend from UIComponent , they all implement the StateHolder interface. In addition, the standard
Converter and Validator classes that require state to be saved and restored also implement StateHolder.

3.2.4.3. Events

StateHolder does not originate any standard events.

3.2.5. PartialStateHolder

PartialStateHolder extends StateHolder and adds a usage contract for components that wish to take
part in the partial state saving mechanism introduced in version 2.0. Implementations of this interface
should use the jakarta.faces.component.StateHelper instance returned from
UIComponent.getStateHelper() to store stateful component information that otherwise would have
been stored as instance variables on the class implementing PartialStateHolder .

3.2.5.1. Properties

PartialStateHolder adds no properties to the StateHolder contract

3.2.5.2. Methods

The following methods support the partial state saving feature:

void clearInitialState();
boolean initialStateMarked();
void markInitialState();

These methods allow the state saving feature to determine if the component is in its initial state or not,
and to set the flag indicating this condition of existence. The Javadocs for these methods specify the
conditions under which these methods are invoked.

3.2. Component Behavioral Interfaces

72 Jakarta Server Faces Final

3.2.5.3. Events

PartialStateHolder does not originate any standard events.

3.2.6. ValueHolder

ValueHolder is an interface that may be implemented by any concrete UIComponent that wishes to
support a local value, as well as access data in the model tier via a value expression , and support
conversion between String and the model tier data’s native data type.

3.2.6.1. Properties

The following render-independent properties are added by the ValueHolder interface:

Name Access Type Description

converter RW Converter The Converter (if any) that is registered for this
UIComponent.

value RW Object First consult the local value property of this
component. If non- null return it. If the local value
property is null , see if we have a ValueExpression
for the value property. If so, return the result of
evaluating the property, otherwise return null .

localValue RO Object allows any value set by calling setValue() to be
returned, without potentially evaluating a
ValueExpression the way that getValue() will do

Like nearly all component properties, the value property may have a value binding expression (see
ValueExpression properties) associated with it. If present (and if there is no value set directly on this
component), such an expression is utilized to retrieve a value dynamically from a model tier object
during Render Response Phase of the request processing lifecycle. In addition, for input components,
the value expression is used during Update Model Values phase (on the subsequent request) to push the
possibly updated component value back to the model tier object.

The Converter property is used to allow the component to know how to convert the model type from
the String format provided by the Servlet API to the proper type in the model tier.

The Converter property must be inspected for the presence of ResourceDependency and
ResourceDependencies annotations as described in the Javadocs for the setConverter method.

3.2.6.2. Methods

ValueHolder adds no methods.

3.2. Component Behavioral Interfaces

Final Jakarta Server Faces 73

3.2.6.3. Events

ValueHolder does not originate any standard events.

3.2.7. EditableValueHolder

The EditableValueHolder interface (extends ValueHolder, see ValueHolder) describes additional
features supported by editable components, including ValueChangeEvents and Validators.

3.2.7.1. Properties

The following render-independent properties are added by the EditableValueHolder interface:

Name Access Type Description

immediate RW boolean Flag indicating that conversion and validation of
this component’s value should occur during Apply
Request Values phase instead of Process
Validations phase.

localValueSet RW boolean Flag indicating whether the value property has
been set.

required RW boolean Is the user required to provide a non-empty value
for this component? Default value must be false.

submittedValue RW Object The submitted, unconverted, value of this
component. This property should only be set by
the decode() method of this component, or its
corresponding Renderer, or by the validate
method of this component. This property should
only be read by the validate() method of this
component.

valid RW boolean A flag indicating whether the local value of this
component is valid (that is, no conversion error or
validation error has occurred).

validator RW MethodBinding DEPRECATED A MethodBinding that (if not null)
must point at a method accepting a FacesContext
and a UIInput, with a return type of void. This
method will be called during Process Validations
phase, after any validators that are externally
registered. See the javadocs for the backwards
compatibility strategy.

3.2. Component Behavioral Interfaces

74 Jakarta Server Faces Final

Name Access Type Description

valueChangeListen
er

RW MethodBinding DEPRECATED A MethodBinding that (if not null)
must point at a method that accepts a
ValueChangeEvent, with a return type of void. The
specified method will be called during the Process
Validations phase of the request processing
lifecycle, after any externally registered
ValueChangeListeners. See the javadocs for the
backwards compatibility strategy.

3.2.7.2. Methods

The following methods support the validation functionality performed during the Process Validations
phase of the request processing lifecycle:

public void addValidator(Validator validator);
public void removeValidator(Validator validator);

The addValidator() and removeValidator() methods are used to register and deregister additional
external Validator instances that will be used to perform correctness checks on the local value of this
component.

If the validator property is not null, the method it points at must be called by the processValidations()
method, after the validate() method of all registered Validator s is called.

The addValidator’s Validator argument must be inspected for the presense of the ResourceDependency
and ResourceDependencies annotations as described in the Javadocs for the addValidator method.

3.2.7.3. Events

EditableValueHolder is a source of ValueChangeEvent, PreValidateEvent and PostValidate events. These
are emitted during calls to validate(), which happens during the Process Validations phase of the
request processing lifecycle. The PreValidateEvent is published immediately before the component gets
validated. PostValidate is published after validation has occurred, regardless if the validation was
successful or not. If the validation for the component did pass successfully, and the previous value of
this component differs from the current value, the ValueChangeEvent is published. The following
methods allow listeners to register and deregister for ValueChangeEvents. See Event and Listener
Model for more details on the event and listener model provided by Jakarta Faces.

public void addValueChangeListener(ValueChangeListener listener);
public void removeValueChangeListener(ValueChangeListener listener);

In addition to the above listener registration methods, If the valueChangeListener property is not null,

3.2. Component Behavioral Interfaces

Final Jakarta Server Faces 75

the method it points at must be called by the broadcast() method, after the processValueChange()
method of all registered ValueChangeListener s is called.

3.2.8. SystemEventListenerHolder

Classes that implement this interface agree to maintain a list of SystemEventListener instances for each
kind of SystemEvent they can generate. This interface enables arbitrary Objects to act as the source for
SystemEvent instances.

3.2.8.1. Properties

This interface contains no JavaBeans properties

3.2.8.2. Methods

The following method gives the Jakarta Faces runtime access to the list of listeners stored by this
instance.:

public List<FacesLifecycleListener> getListenersForEventClass(
 Class<? extends SystemEvent> facesEventClass);

During the processing for Application.publishEvent(), if the source argument to that method
implements SystemEventListenerHolder, the getListenersForEventClass() method is invoked on it, and
each listener in the list is given an opportunity to process the event, as specified in the javadocs for
Application.publishEvent().

3.2.8.3. Events

While the class that implements SystemEventListenerHolder is indeed a source of events, it is a call to
Application.publishEvent() that causes the event to actually be emitted. In the interest of maximum
flexibility, this interface does not define how listeners are added, removed, or stored. See Event and
Listener Model for more details on the event and listener model provided by Jakarta Faces.

3.2.9. ClientBehaviorHolder

[P1-start-addBehavior] Components must implement the ClientBehaviorHolder interface to add the
ability for attaching ClientBehavior instances (see Component Behavior Model). Components that
extend UIComponentBase only need to implement the getEventNames() method and specify
"implements ClientBehaviorHolder". UIComponentBase provides base implementations for all other
methods. [P1-end] The concrete HTML component classes that come with Jakarta Faces implement the
ClientBehaviorHolder interface.

public void addClientBehavior(String eventName, ClientBehavior behavior);

3.2. Component Behavioral Interfaces

76 Jakarta Server Faces Final

Attach a ClientBehavior to a component implementing this ClientBehaviorHolder interface for the
specified event. A default implementation of this method is provided in UIComponentBase to make it
easier for subclass implementations to add behaviors.

public Collection<String> getEventNames();

Return a Collection of logical event names that are supported by the component implementing this
ClientBehaviorHolder interface. [P1-start-getEventNames]The Collection must be non null and
unmodifiable.[P1-end]

public Map<String, List<ClientBehavior>> getClientBehaviors();

Return a Map containing the event-client behavior association. Each event in the Map may contain one
or more ClientBehavior instances that were added via the addClientBehavior() method.

[P1-start-getBehaviors]Each key value in this Map must be one of the event names in the Collection
returned from getEventNames().[P1-end]

public String getDefaultEventName();

Return the default event name for this component behavior if the component defines a default event.

3.3. Conversion Model
This section describes the facilities provided by Jakarta Server Faces to support type conversion
between server-side Java objects and their (typically String-based) representation in presentation
markup.

3.3.1. Overview

A typical web application must constantly deal with two fundamentally different viewpoints of the
underlying data being manipulated through the user interface:

• The model view—Data is typically represented as Java programming language objects (often
JavaBeans components), with data represented in some native Java programming language
datatype. For example, date and time values might be represented in the model view as instances
of java.util.Date.

• The presentation view—Data is typically represented in some form that can be perceived or
modified by the user of the application. For example, a date or type value might be represented as a
text string, as three text strings (one each for month/date/year or one each for
hour/minute/second), as a calendar control, associated with a spin control that lets you increment
or decrement individual elements of the date or time with a single mouse click, or in a variety of

3.3. Conversion Model

Final Jakarta Server Faces 77

other ways. Some presentation views may depend on the preferred language or locale of the user
(such as the commonly used mm/dd/yy and dd/mm/yy date formats, or the variety of punctuation
characters in monetary amount presentations for various currencies).

To transform data formats between these views, Jakarta Server Faces provides an ability to plug-in an
optional Converter for each ValueHolder, which has the responsibility of converting the internal data
representation between the two views. The application developer attaches a particular Converter to a
particular ValueHolder by calling setConverter, passing an instance of the particular converter. A
Converter implementation may be acquired from the Application instance (see Object Factories) for
your application.

3.3.2. Converter

Jakarta Faces provides the jakarta.faces.convert.Converter interface to define the behavioral
characteristics of a Converter. Instances of implementations of this interface are either identified by a
converter identifier, or by a class for which the Converter class asserts that it can perform successful
conversions, which can be registered with, and later retrieved from, an Application, as described in
Object Factories.

Often, a Converter will be an object that requires no extra configuration information to perform its
responsibilities. However, in some cases, it is useful to provide configuration parameters to the
Converter (such as a java.text.DateFormat pattern for a Converter that supports java.util.Date model
objects). Such configuration information will generally be provided via JavaBeans properties on the
Converter instance.

Converter implementations should be programmed so that the conversions they perform are
symmetric. In other words, if a model data object is converted to a String (via a call to the getAsString
method), it should be possible to call getAsObject and pass it the converted String as the value
parameter, and return a model data object that is semantically equal to the original one. In some cases,
this is not possible. For example, a converter that uses the formatting facilities provided by the
java.text.Format class might create two adjacent integer numbers with no separator in between, and in
this case the Converter could not tell which digits belong to which number.

For UIInput and UIOutput components that wish to explicitly select a Converter to be used, a new
Converter instance of the appropriate type must be created, optionally configured, and registered on
the component by calling setConverter() 4. Otherwise, the Jakarta Faces implementation will
automatically create new instances based on the data type being converted, if such Converter classes
have been registered. In either case, Converter implementations need not be threadsafe, because they
will be used only in the context of a single request processing thread.

The following two method signatures are defined by the Converter interface:

public Object getAsObject(FacesContext context,
 UIComponent component, String value) throws ConverterException;

3.3. Conversion Model

78 Jakarta Server Faces Final

This method is used to convert the presentation view of a component’s value (typically a String that
was received as a request parameter) into the corresponding model view. It is called during the Apply
Request Values phase of the request processing lifecycle.

public String getAsString(FacesContext context,
 UIComponent component, Object value) throws ConverterException;

This method is used to convert the model view of a component’s value (typically some native Java
programming language class) into the presentation view (typically a String that will be rendered in
some markup language. It is called during the Render Response phase of the request processing
lifecycle.

[P1-start-converter-resource]If the class implementing Converter has a ResourceDependency
annotation or a ResourceDependencies annotation, the action described in the Javadocs for the
Converter interface must be followed when ValueHolder.setConverter is called.[P1-end]

3.3.3. Standard Converter Implementations

Jakarta Faces provides a set of standard Converter implementations. A Jakarta Faces implementation
must register the DateTime and Number converters by name with the Application instance for this web
application, as described in the table below. This ensures that the converters are available for
subsequent calls to Application.createConverter(). Each concrete implementation class must define a
static final String constant CONVERTER_ID whose value is the standard converter id under which this
Converter is registered.

[P1-start standard converters] The following converter id values must be registered to create instances
of the specified Converter implementation classes:

• jakarta.faces.BigDecimal — An instance of jakarta.faces.convert.BigDecimalConverter (or a subclass
of this class).

• jakarta.faces.BigInteger — An instance of jakarta.faces.convert.BigIntegerConverter (or a subclass of
this class).

• jakarta.faces.Boolean — An instance of jakarta.faces.convert.BooleanConverter (or a subclass of this
class).

• jakarta.faces.Byte — An instance of jakarta.faces.convert.ByteConverter (or a subclass of this class).

• jakarta.faces.Character — An instance of jakarta.faces.convert.CharacterConverter (or a subclass of
this class).

• jakarta.faces.DateTime — An instance of jakarta.faces.convert.DateTimeConverter (or a subclass of
this class).

• jakarta.faces.Double — An instance of jakarta.faces.convert.DoubleConverter (or a subclass of this
class).

• jakarta.faces.Float — An instance of jakarta.faces.convert.FloatConverter (or a subclass of this class).

3.3. Conversion Model

Final Jakarta Server Faces 79

• jakarta.faces.Integer — An instance of jakarta.faces.convert.IntegerConverter (or a subclass of this
class).

• jakarta.faces.Long — An instance of jakarta.faces.convert.LongConverter (or a subclass of this class).

• jakarta.faces.Number — An instance of jakarta.faces.convert.NumberConverter (or a subclass of this
class).

• jakarta.faces.Short — An instance of jakarta.faces.convert.ShortConverter (or a subclass of this
class).

[P1-end] See the Javadocs for these classes for a detailed description of the conversion operations they
perform, and the configuration properties that they support.

[P1-start by-Class converters] A Jakarta Faces implementation must register converters for all of the
following classes using the by-type registration mechanism:

• java.math.BigDecimal, and java.math.BigDecimal.TYPE — An instance of
jakarta.faces.convert.BigDecimalConverter (or a subclass of this class).

• java.math.BigInteger, and java.math.BigInteger.TYPE — An instance of
jakarta.faces.convert.BigIntegerConverter (or a subclass of this class).

• java.lang.Boolean, and java.lang.Boolean.TYPE — An instance of
jakarta.faces.convert.BooleanConverter (or a subclass of this class).

• java.lang.Byte, and java.lang.Byte.TYPE — An instance of jakarta.faces.convert.ByteConverter (or a
subclass of this class).

• java.lang.Character, and java.lang.Character.TYPE — An instance of
jakarta.faces.convert.CharacterConverter (or a subclass of this class).

• java.lang.Double, and java.lang.Double.TYPE — An instance of jakarta.faces.convert.DoubleConverter
(or a subclass of this class).

• java.lang.Float, and java.lang.Float.TYPE — An instance of jakarta.faces.convert.FloatConverter (or a
subclass of this class).

• java.lang.Integer, and java.lang.Integer.TYPE — An instance of
jakarta.faces.convert.IntegerConverter (or a subclass of this class).

• java.lang.Long, and java.lang.Long.TYPE — An instance of jakarta.faces.convert.LongConverter (or a
subclass of this class).

• java.lang.Short, and java.lang.Short.TYPE — An instance of jakarta.faces.convert.ShortConverter (or
a subclass of this class).

• java.lang.Enum, and java.lang.Enum.TYPE — An instance of jakarta.faces.convert.EnumConverter (or
a subclass of this class).

[P1-end] See the Javadocs for these classes for a detailed description of the conversion operations they
perform, and the configuration properties that they support.

[P1-start allowing string converters] A compliant implementation must allow the registration of a

3.3. Conversion Model

80 Jakarta Server Faces Final

converter for class java.lang.String and java.lang.String.TYPE that will be used to convert values for
these types. [P1-end]

3.4. Event and Listener Model
This section describes how Jakarta Server Faces provides support for generating and handling user
interface events and system events.

3.4.1. Overview

Jakarta Faces implements a model for event notification and listener registration based on the design
patterns in the JavaBeans Specification, version 1.0.1. This is similar to the approach taken in other user
interface toolkits, such as the Swing Framework included in the JDK.

A UIComponent subclass may choose to emit events that signify significant state changes, and broadcast
them to listeners that have registered an interest in receiving events of the type indicated by the
event’s implementation class. At the end of several phases of the request processing lifecycle, the
Jakarta Faces implementation will broadcast all of the events that have been queued to interested
listeners. Jakarta Faces also defines system events. System events are events that are not specific to any
particular application, but rather stem from specific points in time of running a Jakarta Faces
application. The following UML class diagram illustrates the key players in the event model. Boxes
shaded in gray indicate classes or interfaces defined outside of the jakarta.faces.event package.

3.4. Event and Listener Model

Final Jakarta Server Faces 81

3.4.2. Application Events

Application events are events that are specific to a particular application. Application events are the
standard events that have been in Jakarta Faces from the beginning.

3.4.2.1. Event Classes

All events that are broadcast by Jakarta Faces user interface components must extend the
jakarta.faces.event.FacesEvent abstract base class. The parameter list for the constructor(s) of this event
class must include a UIComponent, which identifies the component from which the event will be
broadcast to interested listeners. The source component can be retrieved from the event object itself
by calling getComponent. Additional constructor parameters and/or properties on the event class can
be used to relay additional information about the event.

In conformance to the naming patterns defined in the JavaBeans Specification, event classes typically
have a class name that ends with Event. It is recommended that application event classes follow this
naming pattern as well.

The component that is the source of a FacesEvent can be retrieved via this method:

3.4. Event and Listener Model

82 Jakarta Server Faces Final

public UIComponent getComponent();

FacesEvent has a phaseId property (of type PhaseId, see Phase Identifiers) used to identify the request
processing lifecycle phase after which the event will be delivered to interested listeners.

public PhaseId getPhaseId();
public void setPhaseId(PhaseId phaseId);

If this property is set to PhaseId.ANY_PHASE (which is the default), the event will be delivered at the
end of the phase in which it was enqueued.

To facilitate general management of event listeners in Jakarta Faces components, a FacesEvent
implementation class must support the following methods:

public abstract boolean isAppropriateListener(FacesListener listener);
public abstract void processListener(FacesListener listener);

The isAppropriateListener() method returns true if the specified FacesListener is a relevant receiver of
this type of event. Typically, this will be implemented as a simple “instanceof” check to ensure that the
listener class implements the FacesListener subinterface that corresponds to this event class

The processListener() method must call the appropriate event processing method on the specified
listener. Typically, this will be implemented by casting the listener to the corresponding FacesListener
subinterface and calling the appropriate event processing method, passing this event instance as a
parameter.

public void queue();

The above convenience method calls the queueEvent() method of the source UIComponent for this
event, passing this event as a parameter.

Jakarta Faces includes two standard FacesEvent subclasses, which are emitted by the corresponding
standard UIComponent subclasses described in the following chapter.

• ActionEvent —Emitted by a UICommand component when the user activates the corresponding
user interface control (such as a clicking a button or a hyperlink).

• ValueChangeEvent —Emitted by a UIInput component (or appropriate subclass) when a new local
value has been created, and has passed all validations.

3.4.2.2. Listener Classes

For each event type that may be emitted, a corresponding listener interface must be created, which

3.4. Event and Listener Model

Final Jakarta Server Faces 83

extends the jakarta.faces.event.FacesListener interface. The method signature(s) defined by the listener
interface must take a single parameter, an instance of the event class for which this listener is being
created. A listener implementation class will implement one or more of these listener interfaces, along
with the event handling method(s) specified by those interfaces. The event handling methods will be
called during event broadcast, one per event.

In conformance to the naming patterns defined in the JavaBeans Specification, listener interfaces have
a class name based on the class name of the event being listened to, but with the word Listener
replacing the trailing Event of the event class name (thus, the listener for a FooEvent would be a
FooListener). It is recommended that application event listener interfaces follow this naming pattern as
well.

Corresponding to the two standard event classes described in the previous section, Jakarta Faces
defines two standard event listener interfaces that may be implemented by application classes:

• ActionListener —a listener that is interested in receiving ActionEvent events.

• ValueChangeListener —a listener that is interested in receiving ValueChangeEvent events.

3.4.2.3. Phase Identifiers

As described in Common Event Processing, event handling occurs at the end of several phases of the
request processing lifecycle. In addition, a particular event must indicate, through the value it returns
from the getPhaseId() method, the phase in which it wishes to be delivered. This indication is done by
returning an instance of jakarta.faces.event.PhaseId. The class defines a typesafe enumeration of all the
legal values that may be returned by getPhaseId(). In addition, a special value (PhaseId.ANY_PHASE)
may be returned to indicate that this event wants to be delivered at the end of the phase in which it
was queued.

3.4.2.4. Listener Registration

A concrete UIComponent subclass that emits events of a particular type must include public methods to
register and deregister a listener implementation. [P1-start listener methods must conform to
javabeans naming] In order to be recognized by development tools, these listener methods must follow
the naming patterns defined in the JavaBeans Specification. [P1-end] For example, for a component that
emits FooEvent events, to be received by listeners that implement the FooListener interface, the
method signatures (on the component class) must be:

public void addFooListener(FooListener listener);
public FooListener[] getFooListeners();
public void removeFooListener(FooListener listener);

The application (or other components) may register listener instances at any time, by calling the
appropriate add method. The set of listeners associated with a component is part of the state
information that Jakarta Faces saves and restores. Therefore, listener implementation classes must
have a public zero-argument constructor, and may implement StateHolder (see StateHolder) if they

3.4. Event and Listener Model

84 Jakarta Server Faces Final

have internal state information that needs to be saved and restored.

The UICommand and UIInput standard component classes include listener registration and
deregistration methods for event listeners associated with the event types that they emit. The UIInput
methods are also inherited by UIInput subclasses, including UISelectBoolean, UISelectMany, and
UISelectOne.

3.4.2.5. Event Queueing

During the processing being performed by any phase of the request processing lifecycle, events may be
created and queued by calling the queueEvent() method on the source UIComponent instance, or by
calling the queue() method on the FacesEvent instance itself. As described in Common Event Processing,
at the end of certain phases of the request processing lifecycle, any queued events will be broadcast to
interested listeners in the order that the events were originally queued.

Deferring event broadcast until the end of a request processing lifecycle phase ensures that the entire
component tree has been processed by that state, and that event listeners all see the same consistent
state of the entire tree, no matter when the event was actually queued.

3.4.2.6. Event Broadcasting

As described in Common Event Processing, at the end of each request processing lifecycle phase that
may cause events to be queued, the lifecycle management method of the UIViewRoot component at the
root of the component tree will iterate over the queued events and call the broadcast() method on the
source component instance to actually notify the registered listeners. See the Javadocs of the
broadcast() method for detailed functional requirements.

During event broadcasting, a listener processing an event may:

• Examine or modify the state of any component in the component tree.

• Add or remove components from the component tree.

• Add messages to be returned to the user, by calling addMessage on the FacesContext instance for
the current request.

• Queue one or more additional events, from the same source component or a different one, for
processing during the current lifecycle phase.

• Throw an AbortProcessingException, to tell the Jakarta Faces implementation that no further
broadcast of this event should take place.

• Call renderResponse() on the FacesContext instance for the current request. This tells the Jakarta
Faces implementation that, when the current phase of the request processing lifecycle has been
completed, control should be transferred to the Render Response phase.

• Call responseComplete() on the FacesContext instance for the current request. This tells the Jakarta
Faces implementation that, when the current phase of the request processing lifecycle has been
completed, processing for this request should be terminated (because the actual response content
has been generated by some other means).

3.4. Event and Listener Model

Final Jakarta Server Faces 85

3.4.3. System Events

System Events represent specific points in time for a Jakarta Faces application. PhaseEvents also
represent specific points in time in a Jakarta Faces application, but the granularity they offer is not as
precise as System Events. For more on PhaseEvents, please see PhaseEvent.

3.4.3.1. Event Classes

All system events extend from the base class SystemEvent. SystemEvent has a similar API to FacesEvent,
but the source of the event is of type Object (instead of UIComponent), SystemEvent has no PhaseId
property and SystemEvent has no queue() method because SystemEvent s are never queued.
SystemEvent shares isAppropriateListener() and processListener() with FacesEvent. For the specification
of these methods see Event Classes.

System events that originate from or are associated with specific component instances should extend
from ComponentSystemEvent, which extends SystemEvent and adds a getComponent() method, as
specififed in Event Classes.

The specification defines the following SystemEvent subclasses, all in package jakarta.faces.event.

• ExceptionQueuedEvent indicates a non-expected Exception has been thrown. Please see
ExceptionHandler for the normative specification.

• PostConstructApplicationEvent must be published immediately after application startup. Please see
Application Startup Behavior for the normative specification.

• PreDestroyApplicationEvent must be published as immediately before application shutdown. Please
see Application Shutdown Behavior for the normative specification

• PostKeepFlashEvent This event must be published by a call to Application.publishEvent() when a
value is kept in the flash.

• PostPutFlashEvent This event must be published by a call to Application.publishEvent() when a
value is stored in the flash.

• PreClearFlashEvent This event must be published by a call to Application.publishEvent() when a
before the flash is cleared.

• PreRemoveFlashEvent This event must be published by a call to Application.publishEvent() when a
value is removed from the flash.

The specification defines the following ComponentSystemEvent classes, all in package
jakarta.faces.event.

• InitialStateEvent must be published with a direct call to UIComponent.processEvent(), during the
apply() method of the class jakarta.faces.webapp.vdl.ComponentHandler. Please see the javadocs for
the normative specification.

• PostAddToViewEvent indicates that the source component has just been added to the view. Please
see Component Tree Manipulation for a reference to the normative specification.

3.4. Event and Listener Model

86 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6201
UsingJSFInWebApplications.pdf#a6248

• PostConstructViewMapEvent indicates that the Map that is the view scope has just been created.
Please see, the UIViewRoot Events for a reference to the normative specification.

• PostRenderViewEvent indicates that the UIViewRoot source component has just been rendered.
Please see Render Response for the normative specification.

• PostRestoreStateEvent indicates that an individual component instance has just had its state
restored. Please see the UIViewRoot Events for a reference to the normative specification.

• PostValidateEvent indicates that an individual component instance has just been validated. Please
see the EditableValueHolder Events for the normative specification.

• PreDestroyViewMapEvent indicates that the Map that is the view scope is about to be destroyed.
Please see, the UIViewRoot Properties for the normative specification.

• PreRenderComponentEvent indicates that the source component is about to be rendered. Please see
Component Tree Manipulation for a reference to the normative specification.

• PreRenderViewEvent indicates that the UIViewRoot source component is about to be rendered.
Please see Render Response for the normative specification.

• PreValidateEvent indicates that an individual component instance is about to be validated. Please
see the EditableValueHolder Events for the normative specification.

3.4.3.2. Listener Classes

Unlike application events, the creation of new event types for system events does not require the
creation of new listener interfaces. All SystemEvent types can be listened for by listeners that
implement jakarta.faces.event.SystemEventListener. Please see the javadocs for that class for the
complete specification.

As a developer convenience, the listener interface ComponentSystemEventListener has been defined for
those cases when a SystemEventListener is being attached to a specific UIComponent instance.
ComponentSystemEventListener lacks the isListenerForSource() method because it is implcictly defined
by virture of the listener being added to a specific component instance.

3.4.3.3. Programmatic Listener Registration

System events may be listened for at the Application level, using Application.subscribeToEvent() or at
the component level, by calling subscribeToEvent() on a specific component instance. The specification
for Application.subscribeToEvent() may be found in System Event Methods.

The following methods are defined on UIComponent to support per-component system events.

public void subscribeToEvent(Class<? extends SystemEvent> eventClass,
 ComponentSystemEventListener componentListener);
public void unsubscribeFromEvent(Class<? extends SystemEvent> eventClass,
 ComponentSystemEventListener componentListener);

3.4. Event and Listener Model

Final Jakarta Server Faces 87

See the javadoc for UIComponent for the normative specification of these methods.

In addition to the above methods, the @ListenerFor and @ListenersFor annotations allow components,
renderers, validators and converters to declare that they want to register for system events. Please see
the javadocs for those annotations for the complete specification.

3.4.3.4. Declarative Listener Registration

Page authors can subscribe to events using the <f:event/> tag. This tag will allow the application
developer to specify the method to be called when the specifed event fires for the component of which
the tag is a child. The tag usage is as follows:

<h:inputText value="#{myBean.text}">
 <f:event type="preRenderComponent"
 listener="#{myBean.beforeTextRender}" />
</h:inputText>

The type attribute specifies the type of event, and can be any of the specification-defined events or one
of any user-defined events, but must be a ComponentSystemEvent, using either the short-hand name
for the event or the fully-qualified class name (e.g., com.foo.app.event.CustomEvent). If the event can
not be found, a FacesException listing the offending event type will be thrown. Please see the VDLDocs
for the <f:event /> tag for the normative specification of the declarative event feature.

The method signature for the MethodExpression pointed to by the listener attribute must match the
signature of jakarta.faces.event.ComponentSystemEventListener.processEvent(), which is:

public void processEvent(jakarta.faces.event.ComponentSystemEvent event)
 throws AbortProcessingException

3.4.3.5. Listener Registration By Annotation

The ListenerFor and ListenersFor annotations can be applied to components and rendererers. Classes
tagged with the ListenerFor annotation are installed as listeners. The ListenersFor annotation is a
container annotation tp specify multiple ListenerFor annotations for a single class. Please refer to the
Javadocs for the ListenerFor and ListenersFor classes for more details.

3.4.3.6. Listener Registration By Application Configuration Resources

A <system-event-listener> element, within the <application> element of an application configuration
resource, declares an application scoped listener and causes a call to Application.subscribeToEvent().

3.4.3.7. Event Broadcasting

System events are broadcast immediately by calls to Application.publishEvent() Please see System Event
Methods for the normative specification of publishEvent().

3.4. Event and Listener Model

88 Jakarta Server Faces Final

3.5. Validation Model
This section describes the facilities provided by Jakarta Server Faces for validating user input.

3.5.1. Overview

Jakarta Faces supports a mechanism for registering zero or more validators on each
EditableValueHolder component in the component tree. A validator’s purpose is to perform checks on
the local value of the component, during the Process Validations phase of the request processing
lifecycle. In addition, a component may implement internal checking in a validate method that is part
of the component class.

3.5.2. Validator Classes

A validator must implement the jakarta.faces.validator.Validator interface, which contains a validate()
method signature.

public void validate(FacesContext context,
 UIComponent component, Object value);

General purpose validators may require configuration values in order to define the precise check to be
performed. For example, a validator that enforces a maximum length might wish to support a
configurable length limit. Such configuration values are typically implemented as JavaBeans
component properties, and/or constructor arguments, on the Validator implementation class. In
addition, a validator may elect to use generic attributes of the component being validated for
configuration information.

Jakarta Faces includes implementations of several standard validators, as described in Standard
Validator Implementations.

3.5.3. Validation Registration

The EditableValueHolder interface (implemented by UIInput) includes an addValidator method to
register an additional validator for this component, and a removeValidator method to remove an
existing registration. In pre-Jakarta Faces JSF 1.1 (under the JCP) there was the ability to set a
MethodBinding that points to a method that adheres to the validate signature in the Validator interface,
which will be called after the Validator instances added by calling addValidator() have been invoked.
In pre-Jakarta Faces JSF 1.2 (under the JCP), this has been replaced by providing a new wrapper class
that implements Validator, and accepts a MethodExpression instance that points to the same method
that the MethodBinding pointed to in pre-Jakarta Faces JSF 1.1. Please see the javadocs for
EditableValueHolder.setValidator().

The application (or other components) may register validator instances at any time, by calling the
addValidator method. The set of validators associated with a component is part of the state information

3.5. Validation Model

Final Jakarta Server Faces 89

that Jakarta Faces saves and restores. Validators that wish to have configuration properties saved and
restored must also implement StateHolder (see StateHolder).

In addition to validators which are registered explicitly on the component, either through the Java API
or in the view markup, zero or more “default validators” can be declared in the application
configuration resources, which will be registered on all UIInput instances in the component tree unless
explicitly disabled. [P1-start-validator-reg]The default validators are appended after any locally
defined validators once the EditableValueHolder is populated and added to the component tree. A
default validator must not be added to a UIInput if a validator having the same id is already present.

The typical way of registering a default validator id is by declaring it in a configuration resource, as
follows:

<faces-config>
 <application>
 <default-validators>
 <validator-id>jakarta.faces.Bean</validator-id>
 </default-validators>
 </application>
</faces-config>

A default validator may also be registered using the isDefault attribute on the @FacesValidator
annotation on a Validator class, as specified in Requirements for scanning of classes for annotations.

The during application startup, the runtime must cause any default validators declared either in the
application configuration resources, or via a @FacesValidator annotation with isDefault set to true to be
added with a call to Application.addDefaultValidatorId(). This method is declared in Default Validator
Ids.

Any configuration resource that declares a list of default validators overrides any list provided in a
previously processed configuration resource. If an empty <default-validators/> element is found in a
configuration resource, the list of default validators must be cleared.

In environments that include Bean Validation, the following additional actions must be taken at
startup time. If the jakarta.faces.validator.DISABLE_DEFAULT_BEAN_VALIDATOR <context-param>
exists and its value is true, the following step must be skipped:

• The runtime must guarantee that the validator id jakarta.faces.Bean is included in the result from a
call to Application.getDefaultValidatorInfo() (see Default Validator Ids), regardless of any
configuration found in the application configuration resources or via the @FacesValidator
annotation.[P1-end]

3.5.4. Validation Processing

During the Process Validations phase of the request processing lifecycle (as described in Process
Validations), the Jakarta Faces implementation will ensure that the validate() method of each registered

3.5. Validation Model

90 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6598

Validator , the method referenced by the validator property (if any), and the validate() method of the
component itself, is called for each EditableValueHolder component in the component tree, regardless
of the validity state of any of the components in the tree. The responsibilities of each validate() method
include:

• Perform the check for which this validator was registered.

• If violation(s) of the correctness rules are found, create a FacesMessage instance describing the
problem, and create a ValidatorException around it, and throw the ValidatorException. The
EditableValueHolder on which this validation is being performed will catch this exception, set valid
to false for that instance, and cause the message to be added to the FacesContext.

In addition, a validate() method may:

• Examine or modify the state of any component in the component tree.

• Add or remove components from the component tree.

• Queue one or more events, from the same component or a different one, for processing during the
current lifecycle phase.

The render-independent property required is a shorthand for the function of a “required” validator. If
the value of this property is true, there is an entry in the request payload corresponding to this
component, and the component has no value, the component is marked invalid and a message is added
to the FacesContext instance. See Localized Application Messages for details on the message.

3.5.5. Standard Validator Implementations

Jakarta Server Faces defines a standard suite of Validator implementations that perform a variety of
commonly required checks. In addition, component writers, application developers, and tool providers
will often define additional Validator implementations that may be used to support component-type-
specific or application-specific constraints. These implementations share the following common
characteristics:

• Standard Validators accept configuration information as either parameters to the constructor that
creates a new instance of that Validator, or as JavaBeans component properties on the Validator
implementation class.

• To support internationalization, FacesMessage instances should be created. The message identifiers
for such standard messages are also defined by manifest String constants in the implementation
classes. It is the user’s responsibility to ensure the content of a FacesMessage instance is properly
localized, and appropriate parameter substitution is performed, perhaps using
java.text.MessageFormat.

• See the javadocs for UIInput.validateValue() for further normative specification regarding
validation.

• Concrete Validator implementations must define a public static final String constant
VALIDATOR_ID, whose value is the standard identifier under which the Jakarta Faces

3.5. Validation Model

Final Jakarta Server Faces 91

implementation must register this instance (see below).

Please see Localized Application Messages for the list of message identifiers.

[P1-start standard validators] The following standard Validator implementations (in the
jakarta.faces.validator package) are provided:

• DoubleRangeValidator —Checks the local value of a component, which must be of any numeric
type, against specified maximum and/or minimum values. Standard identifier is
“jakarta.faces.DoubleRange”.

• LengthValidator —Checks the length (i.e. number of characters) of the local value of a component,
which must be of type String, against maximum and/or minimum values. Standard identifier is
“jakarta.faces.Length”.

• LongRangeValidator —Checks the local value of a component, which must be of any numeric type
convertible to long , against maximum and/or minimum values. Standard identifier is
“jakarta.faces.LongRange”.

• RegexValidator —Accepts a “pattern” attribute that is interpreted as a regular expression from the
java.util.regex package. The local value of the component is checked fora match against this regular
expression. Standard identifier is “jakarta.faces.RegularExpression”

• BeanValidator - The implementation must ensure that this validator is only available when running
in an environment in which JSR-303 Beans Validation is available. Please see the javadocs for
BeanValidator.validate() for the specification. Standard identifier is “jakarta.faces.Bean”

• RequiredValidator - Analogous to setting the required attribute to true on the EditableValueHolder.
Enforces that the local value is not empty. Reuses the logic and error messages defined on UIInput.
Standard identifier for this validator is "jakarta.faces.Required"

MethodExpressionValidator —Wraps a MethodExpression and interprets it as pointing to a method that
performs validation. Any exception thrown when the expression is invoked is wrapped in a
ValidatorException in similar fashion as the above validators. [P1-end]

3.5.6. Bean Validation Integration

If the implementation is running in a container environment that requires Jakarta Bean Validation, it
must expose the bean validation as described in this specification.

As stated in the specification goals of Jakarta Bean Validation, validation often gets spread out across
the application, from user interface components to persistent objects. Jakarta Bean Validation strives to
avoid this duplication by defining a set of metadata that can be used to express validation constraints
that are sharable by any layer of the application. Since its inception, Jakarta Faces has supported a
“field level validation” approach. Rather than requiring the developer to define validators for each
input component (i.e., EditableValueHolder), the BeanValidator can be automatically applied to all
fields on a page so that the work of enforcing the constraints can be delegated to the Bean Validation
provider.

3.5. Validation Model

92 Jakarta Server Faces Final

3.5.6.1. Bean Validator Activation

[P1-BeanValidationIntegration]If Bean Validation is present in the runtime environment, the system
must ensure that the standard validator with validator-id jakarta.faces.Bean is added with a call to
Application.addDefaultValidatorId().[P1-end] See Standard Validator Implementations for the
description of the standard BeanValidator, and <f:validateBean> for the Facelet tag that exposes this
validator to the page author. This ensures Bean Validation will be called for every field in the
application.

If Bean Validation is present, and the jakarta.faces.VALIDATE_EMPTY_FIELDS <context-param> is not
explicitly set to false, Jakarta Faces will validate null and empty fields so that the @NotNull and
@NotEmpty constraints from Bean Validation can be leveraged. The next section describes how the
reference to the Bean Validation ValidatorFactory is obtained by that validator.

3.5.6.2. Obtaining a ValidatorFactory

The Bean Validation ValidatorFactory is the main entry point into Bean Validation and is responsible
for creating Validator instances. [P1-start-validatoryfactory]A ValidatorFactory is retrieved using the
following algorithm:

• If the servlet context contains a ValidatorFactory instance under the attribute named
jakarta.faces.validator.beanValidator.ValidatorFactory, this instance is used by Jakarta Faces to
acquire Validator instances (specifically in the BeanValidator). This key should be defined in the
constant named VALIDATOR_FACTORY_KEY on BeanValidator.

• If the servlet context does not contain such an entry, Jakarta Faces looks for a Bean Validation
provider in the classpath. If present, the standard Bean Validation bootstrap strategy is used. If not
present, Bean Validation integration is disabled. If the BeanValidator is used an no ValidatorFactory
can be retrieved, a FacesException is raised. The standard Bean Validation bootstrap procedure is
shown here:

ValidatorFactory validatorFactory =
 Validation.buildDefaultValidatorFactory();

Once instantiated, the result can be stored in the servlet context attribute mentioned as a means of
caching the result. If Jakarta Faces is running in a Jakarta EE environment, Jakarta Bean Validation will
be available, as defined by the Jakarta EE specification, and thus activated in Jakarta Faces. The EE
container will be responsible for making the ValidatorFactory available as an attribute in the
ServletContext as mentioned above.[P1-end]

3.5.6.3. Class-Level Validation

Jakarta Faces conversion and validation as described in this chapter operates on the principle that all
conversion and validation is performed before values are pushed into the model. This principle allows
one to safely assume that if a value is pushed into the model, it is of the proper type and has been
validated. This validation is done on a “field level” basis, as mentioned in Bean Validation Integration.

3.5. Validation Model

Final Jakarta Server Faces 93

This approach poses challenges for higher level validation that needs to take the value of several fields
together into account to decide if they are valid or not. For example, consider the common case of a
user account creation page with two fields for the password. The page can only be considered valid if
both password fields are themselves individually valid based on the specified password constraints
and also are both the same value. Jakarta Faces provides for this case by providing a facility for
performing Class-Level Validation using Bean Validation. Please see the VDLDoc for the
<f:validateWholeBean /> tag for the normative specification of this feature as well as a usage example
showing the password validation scenario.

3.5.6.4. Localization of Bean Validation Messages

To ensure proper localization of the messages, Jakarta Faces should provide a custom BeanValidation
MessageInterpolator resolving the Locale according to Jakarta Faces defaults and delegating to the
default MessageInterpolator as defined in ValidationFactory.getMessageInterpolator(). A possible
implementation is shown here:

public class FacesMessageInterpolator implements MessageInterpolator {
 private final MessageInterpolator delegate;

 public FacesMessageInterpolator(MessageInterpolator delegate) {
 this.delegate = delegate;
 }

 public String interpolate(String message,
 ConstraintDescriptor constraintDescriptor,Object value) {
 Locale locale = FacesContext.getCurrentInstance()
 .getViewRoot().getLocale();
 return this.delegate.interpolate(
 message, constraintDescriptor, value, locale);
 }

 public String interpolate(String message, ConstraintDescriptor
 constraintDescriptor, Object value, Locale locale) {
 return this.delegate.interpolate(
 message, constraintDescriptor, value, locale);
 }
}

Once a ValidatorFactory is obtained, as described in Obtaining a ValidatorFactory, Jakarta Faces
receives a Validator instance by providing the custom message interpolator to the validator state.

3.5. Validation Model

94 Jakarta Server Faces Final

//could be cached
MessageInterpolator facesMessageInterpolator = new FacesMessageInterpolator(
 validatorFactory.getMessageInterpolator());

//...

Validator validator = validatorFactory
 .usingContext()
 .messageInterpolator(facesMessageInterpolator)
 .getValidator();

The local value is then passed to the Validator.validateValue() method to check for constraint
violations. Since Bean Validation defines a strategy for localized message reporting, the BeanValidator
does not need to concern itself with producing the validation message. Instead, the BeanValidator
should accept the interpolated message returned from Bean Validation API, which is accessed via the
method getInterpolatedMessage() on the ContraintFailure class, and use it as the replacement value for
the first numbered placeholder for the key jakarta.faces.validator.BeanValidator.MESSAGE (i.e., {0}). To
encourage use of the Bean Validation message facility, the default message format string for the
BeanValidator message key must be a single placeholder, as shown here:

jakarta.faces.validator.BeanValidator.MESSAGE={0}

Putting the Bean Validation message resolution in full control of producing the displayed message is
the recommended approach. However, to allow the developer to align the messages generated by the
BeanValidator with existing Jakarta Faces validators, the developer may choose to override this
message key in an application resource bundle and reference the component label, which replaces the
second numbered placeholder (i.e., {1}).

jakarta.faces.validator.BeanValidator.MESSAGE={1}:{0}

This approach is useful if you are already using localized labels for your input components and are
displaying the messages above the form, rather than adjacent to the input.

3.6. Composite User Interface Components

3.6.1. Non-normative Background

To aid implementors in providing a spec compliant runtime for composite components, this section
provides a non-normative background to motivate the discussion of the composite component feature.
The composite component feature enables developers to write real, reusable, Jakarta Faces UI
components without any Java code or configuration XML.

3.6. Composite User Interface Components

Final Jakarta Server Faces 95

3.6.1.1. What does it mean to be a Jakarta Faces User Interface component?

Jakarta Faces is a component based framework, and Jakarta Faces UI components are the main point of
Jakarta Faces. But what is a Jakarta Faces UI component, really? Conceptually, a Jakarta Faces UI
Component is a software artifact that represents a reusable, self contained piece of a user interface. A
very narrow definition for “Jakarta Faces UI Component” is imposed at runtime. This definition can be
summarized as

A Jakarta Faces UI Component is represented at runtime by an instance of a Java class that includes
jakarta.faces.component.UIComponent as an ancestor in its inheritance hierarchy.

It is easy to write a class that adheres to this definition, but in practice, component authors need to do
more than just this in order to get the most from Jakarta Faces and to conform to user’s expectations of
what a Jakarta Faces UI Component is. For example, users expect a Jakarta Faces UI Component can do
some or all of the following:

• be exposed to the page-author via a markup tag with sensible attributes

• emit events (such a ValueChangeEvent or ActionEvent)

• allow attaching listeners

• allow attaching a Converter and/or Validator(s)

• render itself to the user-agent, with full support for styles, localization and accessibility

• support delegated rendering to allow for client device independence

• read values sent from the user-agent and correctly adapt them to the faces lifecycle

• correctly handle saving and restoring its state across multiple requests from the user-agent

Another important dimension to consider regarding UI components is the context in which the
developer interacts with the component. There are generally two such contexts.

• In the context of a markup view, such as a Jakarta Server Pages or Facelet view. In this context the
developer interacts with the UI component using a markup element, setting attributes on that
element, and nesting child elements within that component markup element.

• In the context of code, such as a listener, a managed-bean, or other programming language context.
In this context, the developer is writing JavaCode that is either passed the UI component as an
argument, or obtains a reference to the UI component in some other way.

3.6.1.2. How does one make a custom Jakarta Faces User Interface component?

To satisfy a user’s expectations for a Jakarta Faces UI component, the component author must adhere
to one of the following best practices.

• extend the custom component class from an existing subclass of UIComponent that most closely
represents the meaning and behavior of the piece of the UI you are encapsulating in the
component.

3.6. Composite User Interface Components

96 Jakarta Server Faces Final

• extend the custom component class directly from UIComponentBase and implement the
appropriate “behavioral interface”(s) that most closely represents the meaning and behavior of the
piece of the UI you are encapsulating in the component. See Component Behavioral Interfaces for
more.

Note that the first best practice includes the second one “for free” since the stock UIComponent
subclasses already implement the appropriate behavioral interfaces.

When following either best practice, the Jakarta Faces UI component developer must follow several
steps to make the component available for use in markup pages or in code, including but not
necessarily limited to

• Make entries in a faces-config.xml file, linking the component class to its component-type , which
enables the Application.createComponent() method to create instances of the component.

• Make entries in a faces-config.xml file to declare a Renderer that provides client-device
independence.

• Provide a Jakarta Server Pages or Facelet tag handler that allows the page author to build UIs that
include the component, and to customize each instance of the component with listeners, properties
and model associations. This includes making the association between the Renderer and the
UIComponent.

• Provide a Renderer that provides client device independency for the component

• Make entries in a faces-config.xml file that links the Renderer and its Java class.

These steps are complex, yet the components one creates by following them can be very flexible and
powerful. By making some simplifying assumptions, it is possible to allow the creation of components
that are just as powerful but require far less complexity to develop. This is the whole point of
composite components: to enable developers to write real, reusable, Jakarta Faces UI components
without any Java code or configuration XML.

3.6.1.3. How does one make a composite component?

The composite component feature builds on two features in Jakarta Faces: resources (Resource
Handling) and Facelets (Facelets and its use in Web Applications”). Briefly, a composite component is
any Facelet markup file that resides inside of a resource library. For example, if a Facelet markup file
named loginPanel.xhtml resides inside of a resource library called ezcomp, then page authors can use
this component by declaring the xml namespace xmlns:ez="http://java.sun.com/jsf/composite/ezcomp"
and including the tag <ez:loginPanel /> in their pages. Naturally, it is possible for a composite
component author to declare an alternate XML namespace for their composite components, but doing
so is optional.

Any valid Facelet markup is valid for use inside of a composite component, including the templating
features specified in Facelet Templating Tag Library. In addition, the tag library specified in Composite
Component Tag Library must be used to declare the metadata for the composite component. Future
versions of the Jakarta Faces specification may relax this requirement, but for now at least the

3.6. Composite User Interface Components

Final Jakarta Server Faces 97

<composite:interface> and <composite:implementation> sections are required when creating a
composite component.

3.6.1.4. A simple composite component example

Create the page that uses the composite component, index.xhtml.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:ez="http://java.sun.com/jsf/composite/ezcomp">
 <h:head>
 <title>A simple example of EZComp</title>
 </h:head>
 <h:body>
 <h:form>
 <ez:loginPanel id="loginPanel">
 <f:actionListener for="loginEvent"
 binding="#{bean.loginEventListener}" />
 </ez:loginPanel>
 </h:form>
 </h:body>
</html>

The only thing special about this page is the ez namespace declaration and the inclusion of the
<ez:loginPanel /> tag on the page. The occurrence of the string “http://java.sun.com/jsf/composite/” in a
Facelet XML namespace declaration means that whatever follows that last “/” is taken to be the name
of a resource library. For any usage of this namespace in the page, such as <ez:loginPanel />, a Facelet
markup file with the corresponding name is loaded and taken to be the composite component, in this
case the file loginPanel.xhtml. The implementation requirements for this and other Facelet features
related to composite components are specified in Requirements specific to composite components.

Create the composite component markup page. In this case, loginPanel.xhtml resides in the
./resources/ezcomp directory relative to the index.xhtml file.

3.6. Composite User Interface Components

98 Jakarta Server Faces Final

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:composite="http://java.sun.com/jsf/composite">
 <head>
 <title>Not present in rendered output</title>
 </head>
 <body>
 <composite:interface>
 <composite:actionSource name="loginEvent" />
 </composite:interface>
 <composite:implementation>
 <p>Username: <h:inputText id="usernameInput" /></p>
 <p>Password: <h:inputSecret id="passwordInput" /></p>
 <p><h:commandButton id="loginEvent" value="login"/></p>
 </composite:implementation>
 </body>
</html>

The <composite:interface> section declares the public interface that users of this component need to
understand. In this case, the component declares that it contains an implementation of ActionSource2
(see ActionSource2), and therefore anything one can do with an ActionSource2 in a Facelet markup
page you one do with the composite component. (See Component Behavioral Interfaces for more on
ActionSource2 and other behavioral interfaces). The <composite:implementation> section defines the
implementation of this composite component.

3.6.1.5. Walk through of the run-time for the simple composite component example

This section gives a non-normative traversal of the composite component feature using the previous
example as a guide. Please refer to the javadocs for the normative specification for each method
mentioned below. Any text in italics is a term defined in Composite Component Terms.

1. The user-agent requests the index.html from A simple composite component example. This page
contains the ‘xmlns:ez="http://java.sun.com/jsf/composite/ezcomp"‘ declaration and an occurrence
of the <ez:loginPanel> tag. Because this page contains a usage of a composite component, it is called
a using page for discussion.

The runtime notices the use of an xml namespace beginning with
“http://java.sun.com/jsf/composite/”. Takes the substring of the namespace after the last “/”,
exclusive, and looks for a resource library with the name “ezcomp” by calling
ResourceHandler.libraryExists().

3.6. Composite User Interface Components

Final Jakarta Server Faces 99

2. The runtime encounters the <ez:loginPanel> component in the using page. This causes
Application.createComponent(FacesContext, Resource) to be called. This method instantiates the top
level component but does not populate it with children. Pay careful attention to the javadocs for this
method. Depending on the circumstances, the top level component instance can come from a
developer supplied Java Class, a Script, or an implementation specific java class. This method calls
ViewDeclarationLanguage.getComponentMetadata(FacesContext, Resource), which obtains the
composite component BeanInfo (and therefore also the composite component BeanDescriptor) that
exposes the composite component metadata. The composite component metadata also includes any
attached object targets exposed by the composite component author. One thing that
Application.createComponent(FacesContext, Resource) does to the component before returning it is
set the component’s renderer type to be jakarta.faces.Composite. This is important during
rendering.

Again, Application.createComponent(FacesContext, Resource) does not populate the top level
component with children. Subsequent processing done as the runtime traverses the rest of the page
takes care of that. One very important aspect of that subsequent processing is ensuring that all of
the UIComponent children in the defining page are placed in a facet underneath the top level
component. The name of that facet is given by the UIComponent.COMPOSITE_FACET_NAME
constant.

3. After the children of the composite component tag in the using page have been processed by the
VDL implementation, the VDL implementation must call VDLUtils.retargetAttachedObjects(). This
method examines the composite component metadata and retargets any attached objects from the
using page to their approriate inner component targets.

4. Because the renderer type of the composite component was set to jakarta.faces.Composite, the
composite component renderer is invoked to render the composite component.

3.6.1.6. Composite Component Terms

The following terms are commonly used to describe the composite component feature.

Attached Object

Any artifact that can be attached to a UIComponent (composite or otherwise). Usually, this means a
Converter, Validator, ActionListener, or ValueChangeListener.

Attached Object Target

Part of the composite component metadata that allows the composite component author to expose
the semantics of an inner component to the using page author without exposing the rendering or
implementation details of the inner component.

Composite Component

A tree of UIComponent instances, rooted at a top level component, that can be thought of and used as
a single component in a view. The component hierarchy of this subtree is described in the composite
component defining page.

3.6. Composite User Interface Components

100 Jakarta Server Faces Final

Composite Component Author

The individual or role creating the composite component. This usually involves authoring the
composite component defining page.

Composite Component BeanDescriptor

A constituent element of the composite component metadata. This version of the spec uses the
JavaBeans API to expose the component metadata for the composite component. Future versions of
the spec may use a different API to expose the component metadata.

Composite Component BeanInfo

The main element of the composite component metadata.

Composite Component Declaration

The section of markup within the composite component defining page that includes the
<composite:interface> section and its children.

Composite Component Definition

The section of markup within the composite component defining page that includes the
<composite:implementation> section and its children.

Composite Component Library

A resource library that contains a defining page for each composite component that the composite
component author wishes to expose to the using page author.

Composite Component Metadata

Any data about the composite component. The normative specification for what must be in the
composite component metadata is in the javadocs for
ViewDeclarationLanguage.getComponentMetadata().

Composite Component Renderer

A new renderer in the HTML_BASIC render kit that knows how to render a composite component.

Composite Component Tag

The tag in the using page that references a composite component declared and defined in a defining
page.

Defining page

The markup page, usually Facelets markup, that contains the composite component declaration and
composite component definition.

Inner Component

Any UIComponent inside of the defining page or a page that is referenced from the defining page.

Top level component

The UIComponent instance in the tree that is the parent of all UIComponent instances within the

3.6. Composite User Interface Components

Final Jakarta Server Faces 101

defining page and any pages used by that defining page.

Using Page

The VDL page in which a composite component tag is used.

Using Page Author

The individual or role that creates pages that use the composite component.

3.6.2. Normative Requirements

This section contains the normative requirements for the composite component runtime, or pointers to
other parts of the specification that articulate those requirements in the appropriate context.

Table 1. References to Composite Component Requirements in Context

Section Feature

Implicit Object ELResolver
for Facelets and
Programmatic Access

Ability for the composite component author to refer to the top level
component from a Jakarta Expression Language expression, such as
#{cc.children[3]}.

Composite Component
Attributes ELResolver

Ability for the composite component author to refer to attributes
declared on the composite component tag using EL expressions such as
#{cc.attrs.usernameLabel}

Object Factories Methods called by the VDL page to create a new instance of a top level
component for eventual inclusion in the view

Requirements specific to
composite components

Requirements of the Facelet implementation relating to Facelets.

Composite Component Tag
Library

Tag handlers for the composite tag library

3.6.2.1. Composite Component Metadata

In the current version of the specification, only composite UIComponents must have component
metadata. It is possible that future versions of the specification will broaden this requirement so that
all UIComponents must have metadata.

This section describes the implementation of the composite component metadata that is returned from
the method ViewDeclarationLanguage.getComponentMetadata(). This method is formally declared in
ViewDeclarationLanguage.getComponentMetadata(), but for reference its signature is repeated here.

public BeanInfo getComponentMetadata(
 FacesContext context, Resource componentResource)

The specification requires that this method is called from Application.createComponent(FacesContext

3.6. Composite User Interface Components

102 Jakarta Server Faces Final

context, Resource componentResource). See the javadocs for that method for actions that must be taken
based on the composite component metadata returned from getComponentMetadata().

The default implementation of this method must support authoring the component metadata using
tags placed inside of a <composite:interface /> element found on a defining page. This element is
specified in the Facelets taglibrary docs.

Composite component metadata currently consists of the following information:

• The composite component BeanInfo, returned from this method.

• The Resource from which the composite component was created.

• The composite component BeanDescriptor.

This BeanDescriptor must be returned when getBeanDescriptor() is called on the composite
component BeanInfo.

The composite component BeanDescriptor exposes the following information.

◦ The “name” attributes of the <composite:interface/ > element is exposed using the
corresponding method on the composite component BeanDescriptor. If ProjectStage is
Development, The “displayName”, “shortDescription”, “expert”, “hidden”, and “preferred”
attributes of the <composite:interface/ > element are exposed using the corresponding methods
on the composite component BeanDescriptor. Any additional attributes on <composite:interface/
> are exposed as attributes accessible from the getValue() and attributeNames() methods on
BeanDescriptor (inherited from FeatureDescriptor). The return type from getValue() must be a
jakarta.el.ValueExpression for such attributes.

◦ The list of exposed AttachedObjectTargets to which the page author can attach things such as
listeners, converters, or validators.

The VDL implementation must populate the composite component metadata with a
List<AttachedObjectTarget> that includes all of the inner components exposed by the composite
component author for use by the page author.

This List must be exposed in the value set of the composite component BeanDescriptor under
the key AttachedObjectTarget.ATTACHED_OBJECT_TARGETS_KEY.

For example, if the defining page has

<composite:interface>
 <composite:editableValueHolder name=”username” />
 <composite:actionSource name=”loginEvent” />
 <composite:actionSource name=”allEvents”
 targets=”loginEvent cancelEvent” />
<composite:interface>

3.6. Composite User Interface Components

Final Jakarta Server Faces 103

The list of attached object targets would consist of instances of implementations of the
following interfaces from the package jakarta.faces.webapp.vdl.

1. EditableValueHolderAttachedObjectTarget

2. ActionSource2AttachedObjectTarget

3. ActionSource2AttachedObjectTarget

4. BehaviorHolderAttachedObjectTarget

◦ A ValueExpression that evaluates to the component type of the composite component. By default
this is "jakarta.faces.NamingContainer" but the composite component page author can change
this, or provide a Java or script-based UIComponent implementation that is required to
implement NamingContainer.

This ValueExpression must be exposed in the value set of the composite component
BeanDescriptor under the key UIComponent.COMPOSITE_COMPONENT_TYPE_KEY.

◦ A Map<String, PropertyDescriptor> representing the facets declared by the composite
component author for use by the page author.

This Map must be exposed in the value set of the composite component BeanDescriptor under
the key UIComponent.FACETS_KEY.

◦ Any attributes declared by the composite component author using <composite:attribute/ >
elements must be exposed in the array of PropertyDescriptors returned from
getPropertyDescriptors() on the composite component BeanInfo.

For each such attribute, for any String or boolean valued JavaBeans properties on the interface
PropertyDescriptor (and its superinterfaces) that are also given as attributes on a
<composite:attribute/ > element, those properties must be exposed as properties on the
PropertyDescriptor for that markup element. Any additional attributes on <composite:attribute/
> are exposed as attributes accessible from the getValue() and attributeNames() methods on
PropertyDescriptor. The return type from getValue() must be a ValueExpression with the
exception of the getValue(“type”). The return type from getValue(“type”) must be Class. If the
value specified for the type attribute of <cc:attribute/> cannot be converted to an actual Class, a
TagAttributeException must be thrown, including the Tag and TagAttribute instances in the
constructor.

The composite component BeanDescriptor must return a Collection<String> when its getValue()
method is called with an argument equal to the value of the symbolic constant
UIComponent.ATTRS_WITH_DECLARED_DEFAULT_VALUES. The Collection<String> must contain
the names of any <composite:attribute> elements for which the default attribute was specified,
or null if none of the attributes have been given a default value.

3.6. Composite User Interface Components

104 Jakarta Server Faces Final

3.7. Component Behavior Model
This section describes the facilities for adding Behavior attached objects to Jakarta Server Faces
components.

3.7.1. Overview

Jakarta Faces supports a mechanism for enhancing components with additional behaviors that are not
explicitly defined by the component author.

At the root of the behavior model is he Behavior interface. This interface serves as a supertype for
additional behavior contracts. The ClientBehavior interface extends the Behavior interface by
providing a contract for defining reusable scripts that can be attached to any component that
implements the ClientBehaviorHolder interface. The ClientBehaviorHolder interface defines the set of
attach points, or "events", to which a ClientBehavior may be attached. For example, an "AlertBehavior"
implementation might display a JavaScript alert when attached to a component and activated by the
end user.

While client behaviors typically add client-side capabilities, they are not limited to client. Client
behaviors can also participate in the Jakarta Faces request processing lifecycle. Jakarta Faces’s
AjaxBehavior is a good example of such a cross-tier behavior. The AjaxBehavior both triggers an Ajax
request from the client and also delivers AjaxBehaviorEvents to listeners on the server.

The standard HTML components provided by Jakarta Faces are all client behavior-ready. That is, all of
the standard HTML components implement the ClientBehaviorHolder interface and allow client
behaviors to be attached to well defined events. .

3.7.2. Behavior Interface

The Behavior interface is the root of the component behavior model. It defines a single method to
enable generic behavior event delivery.

public void broadcast(BehaviorEvent event) throws AbortProcessingException

This method is called by UIComponent implementations to re-broadcast behavior events that were
queued by by calling UIComponent.queueEvent.

3.7.3. BehaviorBase

The BehaviorBase abstract class implements the broadcast method from the Behavior interface.
BehaviorBase also implements the PartialStateHolder interface (see PartialStateHolder). It also
provides behavior event listener registration methods.

3.7. Component Behavior Model

Final Jakarta Server Faces 105

public void broadcast(BehaviorEvent event) throws AbortProcessingException

This method delivers the BehaviorEvent to listeners that were registered via addBehaviorListener.

The following methods are provided for add and removing BehaviorListeners.

protected void addBehaviorListener(BehaviorListener listener)

protected void removeBehaviorListener(BehaviorListener listener);

3.7.4. The Client Behavior Contract

The ClientBehavior interface extends the Behavior interface and lays the foundation on which behavior
authors can define custom script producing behaviors. The logic for producing these scripts is defined
in the getScript() method.

public String getScript(BehaviorContext behaviorContext)

This method returns a String that is an executable script that can be attached to a client side event
handler. The BehaviorContext argument contains information that may be useful for getScript
implementations.

In addition to client side functionality, client behaviors can also post back to the server and participate
in the request processing lifecycle.

public void decode(FacesContext context,UIComponent component)

This method can perform request decoding and queue server side events.

public Set<ClientBehaviorHint> getHints()

This method provides information about the client behavior implementation that may be useful to
components and renderers that interact with the client behavior.

Refer to the javadocs for these methods for more details.

3.7.5. ClientBehaviorHolder

Components that support client behaviors must implement the ClientBehaviorHolder interface. Refer
to ClientBehaviorHolder for more details.

3.7. Component Behavior Model

106 Jakarta Server Faces Final

3.7.6. ClientBehaviorRenderer

Client behaviors may implement script generation and decoding in a client behavior class or delegate
to a ClientBehaviorRenderer. Refer to ClientBehaviorRenderer for more specifics.

3.7.7. ClientBehaviorContext

The specification provides a ClientBehaviorContext that contains information that may be used at
script rendering time. Specifically it includes:

• FacesContext

• UIComponent that the current behavior is attached to

• The name of the event that the behavior is associated with

• The identifier of the source - this may correspond to the identifier of the source of the behavior

• A collection of parameters that submitting behaviors should include when posting back to the
server

The ClientBehaviorContext is created with the use of this static method:

public static ClientBehaviorContext createClientBehaviorContext(
 FacesContext context,UIComponent component,
 String eventName, String sourceId,
 Collection<ClientBehaviorContext.Parameter> parameters)

This method must throw a NullPointerException if context, component or eventName is null.

3.7.8. ClientBehaviorHint

The ClientBehaviorHint enum is used to convey information about the client behavior implementation.
Currently, only one hint is provided.

SUBMITTING

This hint indicates that a client behavior implementation posts back to the server.

3.7.9. ClientBehaviorBase

ClientBehaviorBase is an extension of BehaviorBase that implements the ClientBehavior interface. It It
is a convenience class that contains default implementations for the methods in ClientBehavior plus
additional methods:

3.7. Component Behavior Model

Final Jakarta Server Faces 107

public String getScript(BehaviorContext behaviorContext)

The default implementation calls getRenderer to retrieve the ClientBehaviorRenderer. If a
ClientBehaviorRenderer is found, it is used to obtain the script. If no ClientBehaviorRenderer is found,
this method returns null.

public void decode(FacesContext context,UIComponent component)

The default implementation calls getRenderer to retrieve the ClientBehaviorRenderer. If a
ClientBehaviorRenderer is found, it is used to perform decoding. If no ClientBehaviorRenderer is found,
no decoding is performed.

public Set<ClientBehaviorHint> getHints()

The default implementation returns an empty set

public String getRendererType();

This method identifies the ClientBehaviorRenderer type. By default, no ClientBehaviorRenderer type is
provided. Subclasses should either override this method to return a valid type or override the getScript
and decode methods if a ClientBehaviorRenderer is not available.

protected ClientBehaviorRenderer getRenderer(FacesContext context);

This method returns the ClientBehaviorRenderer instance that is associated with this ClientBehavior. It
uses the renderer type returned from get RendererType() to look up the renderer on the RenderKit
using RenderKit.getClientBehaviorRenderer.

3.7.10. Behavior Event / Listener Model

The behavior event / listener model is an extension of the Jakarta Faces event / listener model as
described in Event and Listener Model. BehaviorHolder components are responsible for broadcasting
BehaviorEvents to behaviors.

3.7.10.1. Event Classes

Behaviors can broadcast events in the same way that UIComponents can broadcast events. At the root
of the behavior event hierarchy is BehaviorEvent that extends jakarta.faces.event.FacesEvent. All
events that are broadcast by Jakarta Faces behaviors must extend the jakarta.faces.event.BehaviorEvent
abstract base class. The parameter list for the constructor(s) of this event class must include a

3.7. Component Behavior Model

108 Jakarta Server Faces Final

UIComponent, which identifies the component from which the event will be broadcast to interested
listeners, and a Behavior which identifies the behavior associated with the component. The source
component can be retrieved from the event object itself by calling getComponent and the behavior can
be retrieved by calling getBehavior. Additional constructor parameters and/or properties on the event
class can be used to relay additional information about the event.

In conformance to the naming patterns defined in the JavaBeans Specification, event classes typically
have a class name that ends with Event. The following method is available to determine the Behavior
for the event (in addition to the other methods inherited from jakarta.faces.event.FacesEvent):

public Behavior getBehavior()

3.7.10.2. Listener Classes

For each event type that may be emitted, a corresponding listener interface must be created, which
extends the jakarta.faces.event.BehaviorListener interface. BehaviorListener extends from
jakarta.faces.event.FacesListener. The method signature(s) defined by the listener interface must take a
single parameter, an instance of the event class for which this listener is being created. A listener
implementation class will implement one or more of these listener interfaces, along with the event
handling method(s) specified by those interfaces. The event handling methods will be called during
event broadcast, one per event.

In conformance to the naming patterns defined in the JavaBeans Specification, listener interfaces have
a class name based on the class name of the event being listened to, but with the word Listener
replacing the trailing Event of the event class name (thus, the listener for a FooEvent would be a
FooListener). It is recommended that application event listener interfaces follow this naming pattern as
well.

3.7.10.3. Listener Registration

BehaviorListener registration follows the same conventions as outlined in Listener Registration.

3.7.11. Ajax Behavior

3.7.11.1. AjaxBehavior

The specification defines a single concrete ClientBehavior implementation:
jakarta.faces.component.behavior.AjaxBehavior. This class extends
jakarta.faces.component.behavior.ClientBehaviorBase. The presence of this behavior on a component
causes the rendering of JavaScript that will produce an Ajax request to the server using the JavaScript
API outlined in Section “JavaScript API”. This behavior may also broadcast
jakarta.faces.event.AjaxBehaviorEvents to registered jakarta.faces.event.AjaxBehaviorListener
implementations. Refer to the javadocs for more details about AjaxBehavior. [P1-start-
ajaxbehavior]This behavior must define the behavior id “jakarta.faces.behavior.Ajax”. The renderer
type must also be “jakarta.faces.behavior.Ajax”.[P1-end]

3.7. Component Behavior Model

Final Jakarta Server Faces 109

3.7.11.2. Ajax Behavior Event / Listener Model

Corresponding to the standard behavior event classes described in the previous section the
specification supports an event listener model for broadcasting and handling AjaxBehavior events.

jakarta.faces.event.AjaxBehaviorEvent

This event type extends from jakarta.faces.event.BehaviorEvent and it is broadcast from an
AjaxBehavior. This class follows the standard Jakarta Faces event / listener model, incorporating the
usual methods as outlined in Event and Listener Model. This class is responsible for invoking the
method implementation of jakarta.faces.event.AjaxBehaviorListener.processAjaxBehavior. Refer to the
javadocs for more complete details about this class.

jakarta.faces.event.AjaxBehaviorListener

This listener type extends from jakarta.faces.event.BehaviorListener and it is invoked in response to
AjaxBehaviorEvents.

public void processAjaxBehavior(AjaxBehaviorEvent event)

AjaxBehaviorListener implementations implement this method to provide server side functionality in
response to AjaxBehavior Events. See the javadocs for more details about this class.

3.7.12. Adding Behavior To Components

Using the ClientBehaviorHolder interface (See ClientBehaviorHolder) ClientBehavior instances can be
added to components. For ClientBehavior implementations that extend UIComponentBase, the minimal
requirement is to override getEventNames() to return a non-empty collection of the event names
exposed by the ClientBehaviorHolder. A optional default event name may be specified as well. For
example:

Here’s an example code snippet from one of the Html components:

3.7. Component Behavior Model

110 Jakarta Server Faces Final

public class HtmlCommandButton extends
 jakarta.faces.component.UICommand implements ClientBehaviorHolder {
...
 private static final Collection<String> EVENT_NAMES =
 Collections.unmodifiableCollection(
 Arrays.asList("blur","change","click","action",...));

 public Collection<String> getEventNames() {
 return EVENT_NAMES;
 }

 public String getDefaultEventName() {
 return "action";
 }
...

Users of the component will be able to attach ClientBehavior instances to any of the event names
specified by the getEventNames() implementation by calling
ClientBehaviorHolder.addBehavior(eventName, clientBehavior).

3.7.13. Behavior Registration

Jakarta Faces provides methods for registering Behavior implementations and these methods are
similar to the methods used to register converters and validators. Refer to Object Factories for the
specifics about these methods.

3.7.13.1. XML Registration

Jakarta Faces provides the usual faces-config.xml registration of custom component behavior
implementations.

<behavior>
 <behavior-id>custom.behavior.Greet</behavior-id>
 <behavior-class>greet.GreetBehavior</behavior-class>
</behavior>

3.7.13.2. Registration By Annotation

Jakarta Faces provides the @FacesBehavior annotation for registering custom behavior
implementations.

3.7. Component Behavior Model

Final Jakarta Server Faces 111

@FacesBehavior(value="custom.behavior.Greet")
public class GreetBehavior extends BehaviorBase implements Serializable {
...
}

3.7. Component Behavior Model

112 Jakarta Server Faces Final

Chapter 4. Standard User Interface
Components
In addition to the abstract base class UIComponent and the abstract base class UIComponentBase,
described in the previous chapter, Jakarta Faces provides a number of concrete user interface
component implementation classes that cover the most common requirements. In addition,
component writers will typically create new components by subclassing one of the standard
component classes (or the UIComponentBase class). It is anticipated that the number of standard
component classes will grow in future versions of the Jakarta Server Faces specification.

Each of these classes defines the render-independent characteristics of the corresponding component
as JavaBeans component properties. Some of these properties may be value expressions that indirectly
point to values related to the current request, or to the properties of model data objects that are
accessible through request-scope, session-scope, or application-scope attributes. In addition, the
rendererType property of each concrete implementation class is set to a defined value, indicating that
decoding and encoding for this component will (by default) be delegated to the corresponding
Renderer.

4.1. Standard User Interface Components
This section documents the features and functionality of the standard UIComponent classes and
implementations that are included in Jakarta Server Faces.

[P1-start-componentConstant]The implementation for each standard UIComponent class must specify
two public static final String constant values:

• COMPONENT_TYPE — The standard component type identifier under which the corresponding
component class is registered with the Application object for this application. This value may be
used as a parameter to the createComponent() method.

• COMPONENT_FAMILY — The standard component family identifier used to select an appropriate
Renderer for this component.[P1-end]

For all render-independent properties in the following sections (except for id, scope, and var) the value
may either be a literal, or it may come from a value expression. Please see Value Expressions for more
information.

The following UML class diagram shows the classes and interfaces in the package
jakarta.faces.component.

The jakarta.faces.component package

4.1. Standard User Interface Components

Final Jakarta Server Faces 113

4.1.1. UIColumn

UIColumn (extends UIComponentBase) is a component that represents a single column of data with a
parent UIData component. The child components of a UIColumn will be processed once for each row in
the data managed by the parent UIData.

4.1.1.1. Component Type

The standard component type for UIColumn components is “jakarta.faces.Column”.

4.1.1.2. Properties

UIColumn adds the following render-independent properties:

Name Access Type Description

footer RW UIComponent Convenience methods to get and set the “footer”
facet for this component.

4.1. Standard User Interface Components

114 Jakarta Server Faces Final

Name Access Type Description

header RW UIComponent Convenience methods to get and set the “header”
facet for this component.

[P1-start-uicolumn]UIColumn specializes the behavior of render-independent properties inherited from
the parent class as follows:

• The default value of the family property must be set to “jakarta.faces.Column”.

• The default value of the rendererType property must be set to null.[P1-end]

4.1.1.3. Methods

UIColumn adds no new processing methods.

4.1.1.4. Events

UIColumn adds no new event handling methods.

4.1.2. UICommand

UICommand (extends UIComponentBase; implements ActionSource) is a control which, when activated
by the user, triggers an application-specific “command” or “action.” Such a component is typically
rendered as a push button, a menu item, or a hyperlink.

4.1.2.1. Component Type

The standard component type for UICommand components is “jakarta.faces.Command”.

4.1.2.2. Properties

UICommand adds the following render-independent properties.

Name Access Type Description

value RW Object The value of this component, normally used as a
label.

See ActionSource for information about properties introduced by the implemented classes.

[P1-start-uicommand]UICommand components specialize the behavior of render-independent
properties inherited from the parent class as follows:

• The default value of the family property must be set to “jakarta.faces.Command”.

• The default value of the rendererType property must be set to “jakarta.faces.Button”.[P1-end]

4.1. Standard User Interface Components

Final Jakarta Server Faces 115

4.1.2.3. Methods

UICommand adds no new processing methods. See ActionSource for information about methods
introduced by the implemented classes.

4.1.2.4. Events

UICommand adds no new event processing methods. See ActionSource for information about event
handling introduced by the implemented classes.

4.1.3. UIData

UIData (extends UIComponentBase; implements NamingContainer) is a component that represents a
data binding to a collection of data objects represented by a DataModel instance (see DataModel). Only
children of type UIColumn should be processed by renderers associated with this component.

4.1.3.1. Component Type

The standard component type for UIData components is “jakarta.faces.Data”

4.1.3.2. Properties

UIData adds the following render-independent properties.

Name Access Type Description

dataModel protecte
d RW

DataModel The internal value representation of the UIData
instance. Subclasses might write to this property if
they want to restore the internal model during the
Restore View Phase or if they want to explicitly
refresh the model for the Render Response phase.

first RW int Zero-relative row number of the first row in the
underlying data model to be displayed, or zero to
start at the beginning of the data model.

footer RW UIComponent Convenience methods to get and set the “footer”
facet for this component.

header RW UIComponent Convenience methods to get and set the “header”
facet for this component.

rowCount RO int The number of rows in the underlying DataModel,
which can be -1 if the number of rows is
unknown.

rowAvailable RO boolean Return true if there is row data available for the
currently specified rowIndex ; else return false .

4.1. Standard User Interface Components

116 Jakarta Server Faces Final

Name Access Type Description

rowData RO Object The data object representing the data for the
currently selected rowIndex value.

rowIndex RW int Zero-relative index of the row currently being
accessed in the underlying DataModel, or -1 for no
current row. See below for further information.

rows RW int The number of rows (starting with the one
identified by the first property) to be displayed, or
zero to display the entire set of available rows.

value RW Object The DataModel instance representing the data to
which this component is bound, or a collection of
data for which a DataModel instance is
synthesized. See below for more information.

var RW String The request-scope attribute (if any) under which
the data object for the current row will be
exposed when iterating.

See NamingContainer for information about properties introduced by the implemented classes.

[P1-start-uidata]UIData specializes the behavior of render-independent properties inherited from the
parent component as follows:

• The default value of the family property must be set to “jakarta.faces.Data”.

• The default value of the rendererType property must be set to “jakarta.faces.Table”.[P1-end]

The current value identified by the value property is normally of type DataModel. [P1-start-
uidataModel]However, a DataModel wrapper instance must automatically be provided by the Jakarta
Faces implementation if the current value is of one of the following types:

• java.util.List

• Array of java.util.Object

• java.sql.ResultSet (which therefore also supports javax.sql.RowSet)

• jakarta.servlet.jsp.jstl.sql.Result

• java.util.Map (uses the wrapper for java.lang.Iterable by providing access to
java.util.Map#entrySet())

• Any other Java object is wrapped by a DataModel instance with a single row.[P1-end]

Convenience implementations of DataModel are provided in the jakarta.faces.model package for each
of the above (see Concrete Implementations), and must be used by the UIData component to create the
required DataModel wrapper.

4.1. Standard User Interface Components

Final Jakarta Server Faces 117

4.1.3.3. Methods

UIData adds no new processing methods. However, the getDataModel() method is now protected, so
implementations have access to the underlying data model. See NamingContainer for information
about methods introduced by the implemented classes.

UIData specializes the behavior of the getClientId() method inherited from its parent, in order to create
a client identifier that includes the current rowIndex value (if it is not -1). Because UIData is a
NamingContainer, this makes it possible for rendered client identifiers of child components to be row-
specific.

UIData specializes the behavior of the queueEvent() method inherited from its parent, to wrap the
specified event (bubbled up from a child component) in a private wrapper containing the current
rowIndex value, so that this rowIndex can be reset when the event is later broadcast.

UIData specializes the behavior of the broadcast() method to unwrap the private wrapper (if this event
was wrapped), and call setRowIndex() to re-establish the context in which the event was queued,
followed by delivery of the event.

[P1-start-uidataDecode]UIData specializes the behavior of the processDecodes(), processValidators(),
and processUpdates() methods inherited from its parent as follows:

• For each of these methods, the UIData implementation must iterate over each row in the
underlying data model, starting with the row identified by the first property, for the number of
rows indicated by the rows property, by calling the setRowIndex() method.

• When iteration is complete, set the rowIndex property of this component, and of the underlying
DataModel, to zero, and remove any request attribute exposed via the var property.[P1-end]

UIData specializes the behavior of invokeOnComponent() inherited from UIComponentBase to examine
the argument clientId and extract the rowIndex, if any, and position the data properly before
proceeding to locate the component and invoke the callback. Upon normal or exception return from
the callback the data must be repositioned to match how it was before invoking the callback. Please see
the javadocs for UIData.invokeOnComponent() for more details.

4.1.3.4. Events

UIData adds no new event handling methods. See NamingContainer for information about event
handling introduced by the implemented classes.

4.1.4. UIForm

UIForm (extends UIComponentBase; implements NamingContainer) is a component that represents an
input form to be presented to the user, and whose child components (among other things) represent
the input fields to be included when the form is submitted.

[P1-start-uiformEncodeEnd]The encodeEnd() method of the renderer for UIForm must call
ViewHandler.writeState() before writing out the markup for the closing tag of the form.[P1-end]This

4.1. Standard User Interface Components

118 Jakarta Server Faces Final

allows the state for multiple forms to be saved.

4.1.4.1. Component Type

The standard component type for UIForm components is “jakarta.faces.Form”.

4.1.4.2. Properties

UIForm adds the following render-independent properties.

Name Access Type Description

prependId RW boolean If true, this UIForm instance does allow its id to be
pre-pendend to its descendent’s id during the
generation of clientIds for the descendents. The
default value of this property is true.

[P1-start-uiform]UIForm specializes the behavior of render-independent properties inherited from the
parent component as follows:

• The default value of the family property must be set to “jakarta.faces.Form”.

• The default value of the rendererType property must be set to “jakarta.faces.Form”.[P1-end]

4.1.4.3. Methods.

public boolean isSubmitted();
public void setSubmitted(boolean submitted)

[P1-start-uiform-setSubmitted]The setSubmitted() method of each UIForm instance in the view must be
called during the Apply Request Values phase of the request processing lifecycle, during the processing
performed by the UIComponent.decode() method. If this UIForm instance represents the form actually
being submitted on this request, the parameter must be set to true; otherwise, it must be set to
false.[P1-end] The standard implementation of UIForm delegates the responsibility for calling this
method to the Renderer associated with this instance..

[P1-start-uiform-submitted]The value of a UIForm's submitted property must not be saved as part of its
state.[P1-end]

public void processDecodes(FacesContext context);

Override UIComponent.processDecodes() to ensure that the submitted property is set for this
component. If the submitted property decodes to false, do not process the children and return
immediately.

4.1. Standard User Interface Components

Final Jakarta Server Faces 119

public void processValidators(FacesContext context);
public void processUpdates(FacesContext context);

Override processValidators() and processUpdates() to ensure that the children of this UIForm instance
are only processed if isSubmitted() returns true.

public void saveState(FacesContext context);

[P1-start-uiformSaveState]The saveState() method of UIForm must call setSubmitted(false) before
calling super.saveState() as an extra precaution to ensure the submitted state is not persisted across
requests.[P1-end].

protected String getContainerClientId(FacesContext context);

[P1-start-uiformPrependId]Override the parent method to ensure that children of this UIForm instance
in the view have the form’s clientId prepended to their clientIds if and only if the form’s prependId
property is true.[P1-end]

4.1.4.4. Events

UIForm adds no new event handling methods.

4.1.5. UIGraphic

UIGraphic (extends UIComponentBase) is a component that displays a graphical image to the user. The
user cannot manipulate this component; it is for display purposes only.

4.1.5.1. Component Type

The standard component type for UIGraphic components is “jakarta.faces.Graphic”.

4.1.5.2. Properties

The following render-independent properties are added by the UIGraphic component:

Name Access Type Description

url RW String The URL of the image to be displayed. If this URL
begins with a / character, it is assumed to be
relative to the context path of the current web
application. This property is a typesafe alias for
the value property, so that the actual URL to be
used can be acquired via a value expression.

4.1. Standard User Interface Components

120 Jakarta Server Faces Final

Name Access Type Description

value RW Object The value of this component, normally used as a
URL.

[P1-start-uigraphic]UIGraphic specializes the behavior of render-independent properties inherited
from the parent component as follows:

• The default value of the family property must be set to “jakarta.faces.Graphic”.

• The default value of the rendererType property must be set to “jakarta.faces.Image”.[P1-end]

4.1.5.3. Methods

UIGraphic adds no new processing methods.

4.1.5.4. Events

UIGraphic does not originate any standard events.

4.1.6. UIInput

UIInput (extends UIOutput, implements EditableValueHolder) is a component that both displays the
current value of the component to the user (as UIOutput components do), and processes request
parameters on the subsequent request that need to be decoded.

4.1.6.1. Component Type

The standard component type for UIInput components is “jakarta.faces.Input”.

4.1.6.2. Properties

UIInput adds the following renderer independent properties.:

Name Access Type Description

requiredMessage RW String ValueExpression enabled property. If non-null,
this property is used as the summary and detail
strings of the FacesMessage that is queued on the
FacesContext instead of the default message for
the required validaiton failure. Note that the
message is fully internationalizable via either the
f:loadBundle tag or via ResourceBundle access
from the EL.

4.1. Standard User Interface Components

Final Jakarta Server Faces 121

Name Access Type Description

converterMessage RW String ValueExpression enabled property. If non-null,
this property is used as the summary and detail
strings of the FacesMessage that is queued on the
FacesContext instead of the default message for
conversion failure. Note that the message is fully
internationalizable via either the f:loadBundle tag
or via ResourceBundle access from the EL.

validatorMessage RW String ValueExpression enabled property. If non-null,
this property is used as the summary and detail
strings of the FacesMessage that is queued on the
FacesContext instead of the default message for
validation failure. Note that the message is fully
internationalizable via either the f:loadBundle tag
or via ResourceBundle access from the EL.

See EditableValueHolder for information about properties introduced by the implemented interfaces.

[P1-start-uiinput]UIInput specializes the behavior of render-independent properties inherited from the
parent component as follows:

• The default value of the family property must be set to “jakarta.faces.Input”.

• The default value of the rendererType property must be set to “jakarta.faces.Text”.

• The Converter specified by the converter property (if any) must also be used to perform
String→Object conversions during decoding.[P1-end]

• If the value property has an associated ValueExpression, the setValue() method of that
ValueExpression will be called during the Update Model Values phase of the request processing
lifecycle to push the local value of the component back to the corresponding model bean property.

4.1.6.3. Methods

The following method is used during the Update Model Values phase of the request processing lifecycle,
to push the converted (if necessary) and validated (if necessary) local value of this component back to
the corresponding model bean property.

public void updateModel(FacesContext context);

The following method is over-ridden from UIComponent:

public void broadcast(FacesEvent event);

4.1. Standard User Interface Components

122 Jakarta Server Faces Final

In addition to the default UIComponent.broadcast(jakarta.faces.event.FacesEvent) processing, pass the
ValueChangeEvent being broadcast to the method referenced by the valueChangeListener property (if
any).

public void validate(FacesContext context);

Perform the algorithm described in the javadoc to validate the local value of this UIInput.

public void resetValue();

Perform the algorithm described in the javadoc to reset this UIInput to the state where it has no local
value. This method does not touch the value expresson associated with the “value” property.

4.1.6.4. Events

All events are described in EditableValueHolder.

4.1.7. UIMessage

UIMessage (extends UIComponentBase) encapsulates the rendering of error message(s) related to a
specified input component.

4.1.7.1. Component Type

The standard component type for UIMessage components is “jakarta.faces.Message”.

4.1.7.2. Properties

The following render-independent properties are added by the UIMessage component:

Name Access Type Description

for RW String Identifier of the component for which to render
error messages. If this component is within the
same NamingContainer as the target component,
this must be the component identifier. Otherwise,
it must be an absolute component identifier
(starting with “:”). See the
UIComponent.findComponent() Javadocs for more
information.

showDetail RW boolean Flag indicating whether the “detail” property of
messages for the specified component should be
rendered. Default value is “true”.

4.1. Standard User Interface Components

Final Jakarta Server Faces 123

Name Access Type Description

showSummary RW boolean Flag indicating whether the “summary” property
of messages for the specified component should
be rendered. Default value is “false”.

[P1-start-uimessage]UIMessage specializes the behavior of render-independent properties inherited
from the parent component as follows:

• The default value of the family property must be set to “jakarta.faces.Message”.

• The default value of the rendererType property must be set to “jakarta.faces.Message”.[P1-end]

4.1.7.3. Methods.

UIMessage adds no new processing methods.

4.1.7.4. Events

UIMessage adds no new event handling methods.

4.1.8. UIMessages

UIMessage (extends UIComponentBase) encapsulates the rendering of error message(s) not related to a
specified input component, or all enqueued messages.

4.1.8.1. Component Type

The standard component type for UIMessages components is “jakarta.faces.Messages”.

4.1.8.2. Properties

The following render-independent properties are added by the UIMessages component:

Name Access Type Description

globalOnly RW boolean Flag indicating whether only messages not
associated with any specific component should be
rendered. If not set, all messages will be rendered.
Default value is “false”.

showDetail RW boolean Flag indicating whether the “detail” property of
messages for the specified component should be
rendered. Default value is “false”.

showSummary RW boolean Flag indicating whether the “summary” property
of messages for the specified component should
be rendered. Default value is “true”.

4.1. Standard User Interface Components

124 Jakarta Server Faces Final

[P1-stat-uimessages]UIMessages specializes the behavior of render-independent properties inherited
from the parent component as follows:

• The default value of the family property must be set to “jakarta.faces.Messages”.

• The default value of the rendererType property must be set to “jakarta.faces.Messages”.[P1-end]

4.1.8.3. Methods.

UIMessages adds no new processing methods.

4.1.8.4. Events

UIMessages adds no new event handling methods.

4.1.9. UIOutcomeTarget

UIOutcomeTarget (UIOutput) is a component that has a value and an outcome, either which may
optionally be retrieved from a model tier bean via a value expression (see Value Expressions), and is
displayed to the user as a hyperlink, appearing in the form of a link or a button. The user cannot
modify the value of the hyperlink, as it’s for display purposes only. The target URL of the hyperlink is
derived by passing the outcome to the ConfigurationNavigationHandler to retrieve the matching
NavigationCase and then using the ViewHandler to translate the NavigationCase into an action URL.
When the client activates the hyperlink, typically by clicking it, the target URL is retrieved using a non-
faces request and the response is rendered.

This component introduces a scenario known as "preemptive navigation". The navigation case is
resolved during the Render Response phase, before the client activates the link (and may never
activate the link). The predetermined navigation is pursued after the client activates the link. In
contrast, the UICommand components resolve and execute the navigation at once, after the Invoke
Application phase.

The UIOutcomeTarget component allows the developer to leverage the navigation model while at the
same time being able to generate bookmarkable, non-faces requests to be included in the response.

4.1.9.1. Component Type

The standard component type for UIOutcomeTarget is "jakarta.faces.OutcomeTarget".

4.1.9.2. Properties

The following render-independent properties are added by thec component:

4.1. Standard User Interface Components

Final Jakarta Server Faces 125

Name Access Type Description

Outcome RW String The logical outcome that is used to resolve a
NavigationCase which in turn is used to build the
target URL of this component. Default value is the
current view ID.

includePageParam
s

RW boolean Flag indicating whether the page parameters
should be appended to the query string of the
target URL. Default value is "false".

[P1-start-uioutcometarget] UIOutcomeTarget specializes the behavior of render-independent
properties inherited from the parent component as follows:

• The default value of the family property must be set to "jakarta.faces.UIOutcomeTarget"

• The default value of the rendererType property must be set to "jakarta.faces.Link" [P1-end]

4.1.9.3. Methods

The UIOutcomeTarget adds no event handling methods.

4.1.9.4. Events

The UIOutcomeTarget adds no event handling methods.

4.1.10. UIOutput

UIOutput (extends UIComponentBase; implements ValueHolder) is a component that has a value,
optionally retrieved from a model tier bean via a value expression (see Value Expressions), that is
displayed to the user. The user cannot directly modify the rendered value; it is for display purposes
only:

4.1.10.1. Component Type

The standard component type for UIOutput components is “jakarta.faces.Output”.

4.1.10.2. Properties

UIOutput adds no new render-independent properties. See ValueHolder for information about
properties introduced by the implemented classes.

[P1-start-uioutput]UIOutput specializes the behavior of render-independent properties inherited from
the parent component as follows:

• The default value of the family property must be set to “jakarta.faces.Output”.

• The default value of the rendererType property must be set to “jakarta.faces.Text”.[P1-end]

4.1. Standard User Interface Components

126 Jakarta Server Faces Final

4.1.10.3. Methods

UIOutput adds no new processing methods. See ValueHolder for information about methods
introduced by the implemented interfaces.

4.1.10.4. Events

UIOutput does not originate any standard events. See ValueHolder for information about events
introduced by the implemented interfaces.

4.1.11. UIPanel

UIPanel (extends UIComponentBase) is a component that manages the layout of its child components.

4.1.11.1. Component Type

The standard component type for UIPanel components is “jakarta.faces.Panel”.

4.1.11.2. Properties

UIPanel adds no new render-independent properties.

[P1-start-uipanel]UIPanel specializes the behavior of render-independent properties inherited from the
parent component as follows:

• The default value of the family property must be set to “jakarta.faces.Panel”.

• The default value of the rendererType property must be set to null.[P1-end]

4.1.11.3. Methods

UIPanel adds no new processing methods.

4.1.11.4. Events

UIPanel does not originate any standard events

4.1.12. UIParameter

UIParameter (extends UIComponentBase) is a component that represents an optionally named
configuration parameter that affects the rendering of its parent component. UIParameter components
do not generally have rendering behavior of their own.

4.1.12.1. Component Type

The standard component type for UIParameter components is “jakarta.faces.Parameter”.

4.1. Standard User Interface Components

Final Jakarta Server Faces 127

4.1.12.2. Properties

The following render-independent properties are added by the UIParameter component:

Name Access Type Description

name RW String The optional name for this parameter.

value RW Object The value for this parameter.

[P1-start-uiparameter]UIParameter specializes the behavior of render-independent properties
inherited from the parent component as follows:

• The default value of the family property must be set to “jakarta.faces.Parameter”.

• The default value of the rendererType property must be set to null.[P1-end]

4.1.12.3. Methods

UIParameter adds no new processing methods.

4.1.12.4. Events

UIParameter does not originate any standard events

4.1.13. UISelectBoolean

UISelectBoolean (extends UIInput) is a component that represents a single boolean (true or false) value.
It is most commonly rendered as a checkbox.

4.1.13.1. Component Type

The standard component type for UISelectBoolean components is “jakarta.faces.SelectBoolean”.

4.1.13.2. Properties

The following render-independent properties are added by the UISelectBoolean component:

Name Access Type Description

selected RW boolean The selected state of this component. This
property is a typesafe alias for the value property,
so that the actual state to be used can be acquired
via a value expression.

[P1-start-uiselectboolean]UISelectBoolean specializes the behavior of render-independent properties
inherited from the parent component as follows:

• The default value of the family property must be set to “jakarta.faces.SelectBoolean”.

4.1. Standard User Interface Components

128 Jakarta Server Faces Final

• The default value of the rendererType property must be set to “jakarta.faces.Checkbox”.[P1-end]

4.1.13.3. Methods

UISelectBoolean adds no new processing methods.

4.1.13.4. Events

UISelectBoolean inherits the ability to send ValueChangeEvent events from its parent UIInput
component.

4.1.14. UISelectItem

UISelectItem (extends UIComponentBase) is a component that may be nested inside a UISelectMany or
UISelectOne component, and represents exactly one SelectItem instance in the list of available options
for that parent component.

4.1.14.1. Component Type

The standard component type for UISelectItem components is “jakarta.faces.SelectItem”.

4.1.14.2. Properties

The following render-independent properties are added by the UISelectItem component:

Name Access Type Description

itemDescription RW String The optional description of this available selection
item. This may be useful for tools.

itemDisabled RW boolean Flag indicating that any synthesized SelectItem
object should have its disabled property set to
true.

itemLabel RW String The localized label that will be presented to the
user for this selection item.

itemValue RW Object The server-side value of this item, of the same
basic data type as the parent component’s value. If
the parent component type’s value is a value
expression that points at a primitive, this value
must be of the corresponding wrapper type.

value RW jakarta.faces.model
.SelectItem

The SelectItem instance associated with this
component.

[P1-start-uiselectitem]UISelectItem specializes the behavior of render-independent properties inherited

• The default value of the family property must be set to “jakarta.faces.SelectItem”.

4.1. Standard User Interface Components

Final Jakarta Server Faces 129

• The default value of the rendererType property must be set to null.

• If the value property is non-null, it must contain a SelectItem instance used to configure the
selection item specified by this component.

• If the value property is a value expression, it must point at a SelectItem instance used to configure
the selection item specified by this component.

• If the value property is null, and there is no corresponding value expression, the itemDescription,
itemDisabled, itemLabel and itemValue properties must be used to construct a new SelectItem
representing the selection item specified by this component.[P1-end]

4.1.14.3. Methods

UISelectItem adds no new processing methods.

4.1.14.4. Events

UISelectItem does not originate any standard events.

4.1.15. UISelectItems

UISelectItems (extends UIComponentBase) is a component that may be nested inside a UISelectMany or
UISelectOne component, and represents zero or more SelectItem instances for adding selection items to
the list of available options for that parent component.

4.1.15.1. Component Type

The standard component type for UISelectItems components is “jakarta.faces.SelectItems”.

4.1.15.2. Properties

The following render-independent properties are added by the UISelectItems component:

Name Access Type Description

value RW See below The SelectItem instances associated with this
component.

[P1-start-uiselectitems]UISelectItems specializes the behavior of render-independent properties
inherited

• The default value of the family property must be set to “jakarta.faces.SelectItems”.

• The default value of the rendererType property must be set to null.

• If the value property (or the value returned by a value expression associated with the value
property) is non-null, it must contain a SelectItem bean, an array of SelectItem beans, a Collection of
SelectItem beans, or a Map, where each map entry is used to construct a SelectItem bean with the
key as the label property of the bean, and the value as the value property of the bean (which must

4.1. Standard User Interface Components

130 Jakarta Server Faces Final

be of the same basic type as the value of the parent component’s value).[P1-end]

4.1.15.3. Methods

UISelectItems adds no new processing methods.

4.1.15.4. Events

UISelectItems does not originate any standard events.

4.1.16. UISelectMany

UISelectMany (extends UIInput) is a component that represents one or more selections from a list of
available options. It is most commonly rendered as a combobox or a series of checkboxes.

4.1.16.1. Component Type

The standard component type for UISelectMany components is “jakarta.faces.SelectMany”.

4.1.16.2. Properties

The following render-independent properties are added by the UISelectMany component:

Name Access Type Description

selectedValues RW Object[] or array of
primitives

The selected item values of this component. This
property is a typesafe alias for the value property,
so that the actual state to be used can be acquired
via a value expression.

[P1-start-uiselectmany]UISelectMany specializes the behavior of render-independent properties
inherited from the parent component as follows:

• The default value of the family property must be set to “jakarta.faces.SelectMany”.

• The default value of the rendererType property must be set to “jakarta.faces.Listbox”.[P1-end]

• See the class Javadocs for UISelectMany for additional requirements related to implicit conversions
for the value property.

4.1.16.3. Methods

[P1-start-uselectmany-validate]UISelectMany must provide a specialized validate() method which
ensures that any decoded values are valid options (from the nested UISelectItem and UISelectItems
children).[P1-end]

4.1.16.4. Events

UISelectMany inherits the ability to send ValueChangeEvent events from its parent UIInput component.

4.1. Standard User Interface Components

Final Jakarta Server Faces 131

4.1.17. UISelectOne

UISelectOne (extends UIInput) is a component that represents zero or one selection from a list of
available options. It is most commonly rendered as a combobox or a series of radio buttons.

4.1.17.1. Component Type

The standard component type for UISelectOne components is “jakarta.faces.SelectOne”.

4.1.17.2. Properties

UISelectOne adds no new render-independent properties.

[P1-start-uiselectone]UISelectOne specializes the behavior of render-independent properties inherited
from the parent component as follows:

• The default value of the family property must be set to “jakarta.faces.SelectOne”.

• The default value of the rendererType property must be set to “jakarta.faces.Menu”.[P1-end]

4.1.17.3. Methods

[P1-start-uiselectone-validate]UISelectOne must provide a specialized validate() method which ensures
that any decoded value is a valid option (from the nested UISelectItem and UISelectItems children).[P1-
end]

4.1.17.4. Events

UISelectOne inherits the ability to send ValueChangeEvent events from its parent UIInput component.

4.1.18. UIViewParameter

UIViewParameter (extends UIInput) is a component that allows the query parameters included in the
request by UIOutcomTarget renderers to participate in the lifecycle. Please see the javadocs for the
normative speficication of this component.Events.

4.1.19. UIViewRoot

UIViewRoot (extends UIComponentBase;) represents the root of the component tree.

4.1.19.1. Component Type

The standard component type for UIViewRoot components is “jakarta.faces.ViewRoot”

4.1.19.2. Properties

The following render-independent properties are added by the UIViewRoot component:

4.1. Standard User Interface Components

132 Jakarta Server Faces Final

Name Access Type Description

locale RW java.util.Locale The Locale to be used in localizing the response
for this view.

renderKitId RW String The id of the RenderKit used to render this page.

viewId RW String The view identifier for this view.

beforePhaseListene
r

RW MethodExpression MethodExpression that will be invoked before all
lifecycle phases except for Restore View.

afterPhaseListener RW MethodExpression MethodExpression that will be invoked after all
lifecycle phases except for Restore View.

viewMap RW java.util.Map The Map that acts as the interface to the data store
that is the "view scope".

For an existing view, the locale property may be modified only from the event handling portion of
Process Validations phase through Invoke Application phase, unless it is modified by an Apply Request
Values event handler for an ActionSource or EditableValueHolder component that has its immediate
property set to true (which therefore causes Process Validations, Update Model Values, and Invoke
Application phases to be skipped).

[P1-start-viewmap] The viewMap property is lazily created the first time it is accessed, and it is
destroyed when a different UIViewRoot instance is installed from a call to FacesContext.setViewRoot().
After the Map is created a PostConstructViewMapEvent must be published using UIViewRoot as the
event source. Immediately before the Map is destroyed, a PreDestroyViewMapEvent must be published
using UIViewRoot as the event source. [P1-end]

[P1-start-uiviewroot]UIViewRoot specializes the behavior of render-independent properties inherited
from the parent component as follows:

• The default value of the family property must be set to “jakarta.faces.ViewRoot”.

• The default value of the rendererType property must be set to null.[P1-end]

4.1.19.3. Methods

The following methods are used for adding UIComponent resources to a target area in the view, and
they are also used for retrieving UIComponent resources from a target area in the view.

public void addComponentResource(FacesContext context,
 UIComponent componentResource);

Add componentResource, that is assumed to represent a resource instance, to the current view. A
resource instance is rendered by a resource Renderer (such as ScriptRenderer, StylesheetRenderer) as
described in the Standard HTML RenderKit. This method will cause the resource to be rendered in the
“head” element of the view.

4.1. Standard User Interface Components

Final Jakarta Server Faces 133

public void addComponentResource(FacesContext context,
 UIComponent componentResource, String target);

Add componentResource, that is assumed to represent a resource instance, to the current view at the
specified target location. [P1-start-addComponentResource] The resource must be added using the
algorithm outlined in this method’s Javadocs.[P1-end]

public List<UIComponent> getComponentResources(String target);

Return a List of UIComponent instances residing under the facet identified by target. Each
UIComponent instance in the List represents a resource. [P1-start-getCompRes] The List must be
formulated in accordance with this method’s Javadocs. [P1-end]

UIViewRoot specializes the behavior of the UIComponent.queueEvent() method to maintain a list of
queued events that can be transmitted later. It also specializes the behavior of the processDecodes(),
processValidators(), processUpdates(), and processApplication() methods to broadcast queued events to
registered listeners. UIViewRoot clears any remaining events from the event queue in these methods if
responseComplete() or renderResponse() has been set on the FacesContext. Please see Apply Request
Values, Process Validations], Update Model Values and Invoke Application for more details.

4.1.19.4. Events

UIViewRoot is a source of PhaseEvent events, which are emitted when the instance moves through all
phases of the request processing lifecycle except Restore View. This phase cannot emit events from
UIViewRoot because the UIViewRoot instance isn’t created when this phase starts. See PhaseEvent and
PhaseListener for more details on the event and listener class.

public void addPhaseListener(PhaseListener listener);
public void removePhaseListener(VPhaseListener listener);
public List<PhaseListener> getPhaseListeners();

[P1-start-events] UIViewRoot must listen for the top level PostAddToViewEvent event sent by the
Restore View phase. Refer to Restore View for more details about the publishing of this event. Upon
receiving this event, UIViewRoot must cause any “after” Restore View phase listeners to be called.[P1-
end]

UIViewRoot is also the source for several kinds of system events. The system must publish a
PostAddToViewEvent, with the UIViewRoot as the source, during the Restore View phase, immediately
after the new UIViewRoot is set into the FacesContext for the request. The system must publish a
PreRenderView event, with UIViewRoot as the source, during the Render Response phase, immediately
before ViewHandler.renderView() is called.

4.1. Standard User Interface Components

134 Jakarta Server Faces Final

4.1.19.5. Partial Processing

UIViewRoot adds special behavior to processDecodes, processValidators, processUpdates,
getRendersChildren and encodeChildren to facilitate partial processing - namely the ability to have one
or more components processed through the execute and/or render phases of the request processing
lifecycle. Refer to Partial View Traversal, Partial View Processing, Partial View Rendering for an
overview of partial processing. [P1-start-viewroot-partial] UIViewRoot must perform partial processing
as outlined in the Javadocs for the “processXXX” and “encodeXXX” methods if the current request is a
partial request.[P1-end]

4.2. Standard UIComponent Model Beans
Several of the standard UIComponent subclasses described in the previous section reference JavaBean
components to represent the underlying model data that is rendered by those components. The
following subsections define the standard UIComponent model bean classes.

4.2.1. DataModel

DataModel is an abstract base class for creating wrappers around arbitrary data binding technologies.
It can be used to adapt a wide variety of data sources for use by Jakarta Server Faces components that
want to support access to an underlying data set that can be modelled as multiple rows. The data
underlying a DataModel instance is modelled as a collection of row objects that can be accessed
randomly via a zero-relative index

4.2.1.1. Properties

An instance of DataModel supports the following properties:

Name Access Type Description

rowAvailable RO boolean Flag indicating whether the current rowIndex
value points at an actual row in the underlying
data.

rowCount RO int The number of rows of data objects represented
by this DataModel instance, or -1 if the number of
rows is unknown.

rowData RO Object An object representing the data for the currently
selected row. DataModel implementations must
return an object that be successfully processed as
the “base” parameter for the PropertyResolver in
use by this application. If the current rowIndex
value is -1, null is returned.

4.2. Standard UIComponent Model Beans

Final Jakarta Server Faces 135

Name Access Type Description

rowIndex RW int Zero-relative index of the currently selected row,
or -1 if no row is currently selected. When first
created, a DataModel instance must return -1 for
this property.

wrappedData RW Object Opaque property representing the data object
wrapped by this DataModel. Each individual
implementation will restrict the types of Object(s)
that it supports.

4.2.1.2. Methods

DataModel must provide an iterator() to iterate over the row data for this model.

4.2.1.3. Events

No events are generated for this component.

4.2.1.4. Concrete Implementations

[P1-start-datamodel]The Jakarta Faces implementation must provide concrete implementations of
DataModel (in the jakarta.faces.model package) for the following data wrapping scenarios:

• ArrayDataModel — Wrap an array of Java objects.

• ListDataModel — Wrap a java.util.List of Java objects.

• ResultDataModel — Wrap an object of type jakarta.servlet.jsp.jstl.sql.Result (the query results from
JSTL’s SQL tag library)

• ResultSetDataModel — Wrap an object of type java.sql.ResultSet (which therefore means that
javax.sql.RowSet instances are also supported).

• ScalarDataModel — Wrap a single Java object in what appears to be a one-row data set.

Each concrete DataModel implementation must extend the DataModel abstract base class, and must
provide a constructor that accepts a single parameter of the object type being wrapped by that
implementation (in addition to a zero-args constructor).[P1-end] See the JavaDocs for specific
implementation requirements on DataModel defined methods, for each of the concrete
implementation classes.

4.2.2. SelectItem

SelectItem is a utility class representing a single choice, from among those made available to the user,
for a UISelectMany or UISelectOne component. It is not itself a UIComponent subclass.

4.2. Standard UIComponent Model Beans

136 Jakarta Server Faces Final

4.2.2.1. Properties

An instance of SelectItem supports the following properties:

Name Access Type Description

description RW String A description of this selection item, for use in
development tools.

disabled RW boolean Flag indicating that this option should be
rendered in a fashion that disables selection by
the user. Default value is false.

label RW String Label of this selection item that should be
rendered to the user.

value RW Object The server-side value of this item, of the same
basic data type as the parent component’s value. If
the parent component type’s value is a value
expression that points at a primitive, this value
must be of the corresponding wrapper type.

4.2.2.2. Methods

An instance of SelectItem supports no additional public processing methods.

4.2.2.3. Events

An instance of SelectItem supports no events.

4.2.3. SelectItemGroup

SelectItemGroup is a utility class extending SelectItem, that represents a group of subordinate
SelectItem instances that can be rendered as a “sub-menu” or “option group”. Renderers will typically
ignore the value property of this instance, but will use the label property to render a heading for the
sub-menu.

4.2.3.1. Properties

An instance of SelectItemGroup supports the following additional properties:

Name Access Type Description

selectItems RW SelectItem[] Array of SelectItem instances representing the
subordinate selection items that are members of
the group represented by this SelectItemGroup
instance.

Note that, since SelectItemGroup is a subclass of SelectItem, SelectItemGroup instances can be included

4.2. Standard UIComponent Model Beans

Final Jakarta Server Faces 137

in the selectItems property in order to create hierarchies of subordinate menus. However, some
rendering environments may limit the depth to which such nesting is supported; for example,
HTML/4.01 does not allow an <optgroup> to be nested inside another <optgroup> within a <select>
control.

4.2.3.2. Methods

An instance of SelectItemGroup supports no additional public processing methods.

4.2.3.3. Events

An instance of SelectItemGroup supports no events.

4.2. Standard UIComponent Model Beans

138 Jakarta Server Faces Final

Chapter 5. Expression Language and Managed
Bean Facility
In the descriptions of the standard user interface component model, it was noted that all attributes,
and nearly all properties can have a value expression associated with them (see ValueExpression
properties). In addition, many properties, such as action, actionListener, validator, and
valueChangeListener can be defined by a method expression pointing at a public method in some class
to be executed. This chapter describes the mechanisms and APIs that Jakarta Faces utilizes in order to
evaluate value expressions and method expressions.

Jakarta Faces relies on Jakarta Expression Language as described by version 4.0 of the Jakarta
Expression Language specification. Please consult that document for complete details about the
Expression Language.

Versions 1.0 and 1.1 of pre-Jakarta Faces JSF under the JCP included a built in expression language and
required an implementation of it. The API for this old JSF EL is still preserved as deprecated classes
and methods, and Jakarta Faces implementations must still support that API. Please consult the Guide
to Deprecated Methods Relating to the Expression Language and their Corresponding Replacements for
details. This chapter will focus exclusively on how Jakarta Faces leverages and integrates with Jakarta
Expression Language. It does not describe how Jakarta Expression Language operates.

5.1. Value Expressions

5.1.1. Overview

To support binding of attribute and property of values to dynamically calculated results, the name of
the attribute or property can be associated with a value expression using the setValueExpression()
method. Whenever the dynamically calculated result of evaluating the expression is required, the
getValue() method of the ValueExpression is called, which returns the evaluated result. Such
expressions can be used, for example, to dynamically calculate a component value to be displayed:

<h:outputText value=”#{customer.name}”/>

which, when this page is rendered, will retrieve the bean stored under the “customer” key, then
acquire the name property from that bean and render it.

Besides the component value itself, value expressions can be used to dynamically compute attributes
and properties. The following example checks a boolean property manager on the current user bean
(presumably representing the logged-in user) to determine whether the salary property of an
employee should be displayed or not:

5.1. Value Expressions

Final Jakarta Server Faces 139

<h:outputText rendered=”#{user.manager}” value=”#{employee.salary}”/>

which sets the rendered property of the component to false if the user is not a manager, and therefore
causes this component to render nothing.

The Jakarta Expression Language has a powerful set of coercion rules that automatically convert the
type of the value to the appropriate type. These rules occasionally rely on the JavaBeans PropertyEditor
facility to perform this conversion. Note that this conversion is entirely separate from normal Jakarta
Faces Conversion.

Value expressions can also be used to set a value from the user into the item obtained by evaluating
the expression. For example:

<h:inputText value=”#{employee.number}”/>

When the page is rendered, the expression is evaluated as an r-value and the result is displayed as the
default value in the text field. When the page is submitted, the expression is evaluated as an l-value,
and the value entered by the user (subject to conversion and validation as usual) is pushed into the
expression.

5.1.2. Value Expression Syntax and Semantics

Please see Section 1.2 of the Jakarta Expression Language Specification, Version 4.0 or higher for the
complete specification of ValueExpression syntax and semantics.

5.2. MethodExpressions
Method expressions are a very similar to value expressions, but rather than supporting the dynamic
retrieval and setting of properties, method expressions support the invocation (i.e. execution) of an
arbitrary public method of an arbitrary object, passing a specified set of parameters, and returning the
result from the called method (if any). They may be used in any phase of the request processing
lifecycle; the standard Jakarta Faces components and framework employ them (encapsulated in a
MethodExpression object) at the following times:

• During Apply Request Values or Invoke Application phase (depending upon the state of the
immediate property), components that implement the ActionSource2 behavioral interface (see
ActionSource2) utilize MethodExpressions as follows:

◦ If the actionExpression property is specified, it must be a MethodExpression expression that
identifies an Application Action method (see Application Actions) that takes no parameters and
returns a String.

◦ It’s possible to have a method expression act as an ActionListener by using the classs
MethodExpressionActionListener to wrap a method expression and calling the

5.2. MethodExpressions

140 Jakarta Server Faces Final

addActionListener() method on the ActionSource. The method expression wrapped inside the
MethodExpressionActionListener must identify a public method that accepts an ActionEvent (see
Event Classes) instance, and has a return type of void. The called method has exactly the same
responsibilities as the processAction() method of an ActionListener instance (see Listener
Classes) that was built in to a separate Java class.

• During the Apply Request Values or Process Validations phase (depending upon the state of the
immediate property), components that implement EditableValueHolder (such as UIInput and its
subclasses) components (see EditableValueHolder) utilize method expressions as follows:

◦ The user can use the MethodExpressionValidator class to wrap a method expression that
identifies a public method that accepts a FacesContext instance and a UIComponent instance,
and an Object containing the value to be validated, and has a return type of void. This
MethodExpressionValidator instance can then be added as a normal Validator using the
EditableValueHolder.addValidator() method. The called method has exactly the same
responsibilities as the validate() method of a Validator instance (see Validator Classes) that was
built in to a separate Java class.

◦ The user can use the MethodExpressionValueChangeListener class to wrap a method expression
that identifies a public method that accepts a ValueChangeEvent (see Event Classes) instance,
and has a return type of void. This MethodExpressionValueChangeListener instance can then be
added as a normal ValueChangeListener using EditableValueHolder.addValueChangeListener().
The called method has exactly the same responsibilities as the processValueChange() method of
a ValueChangeListener instance (see Listener Classes) that was built in to a separate Java class.

Here is the set of component properties that currently support MethodBinding, and the method
signatures to which they must point:

Table 2. component properties whose type is DEPRECATED MethodBinding

component property method signature

DEPRECATED action public String <methodName>();

DEPRECATED
actionListener

public void <methodName>(jakarta.faces.event.ActionEvent);

DEPRECATED validator public void <methodName>(jakarta.faces.context.FacesContext,
jakarta.faces.component.UIComponent, java.lang.Object)

DEPRECATED
valueChangeListener

public void <methodName>(jakarta.faces.event.ValueChangeEvent);

Note that for any of the parameters for the above methods may also be a subclass of what is listed
above. For the above properties that are marked as DEPRECATED, wrapper classes have been added
that wrap a MethodExpression and implement the appropriate listener interface, allowing the
wrapped expression to be added as a strongly typed listener, using the normal add*() pattern Here is
the list of such wrapper classes:

Table 3. MethodExpression wrappers to take the place of DEPRECATED MethodBinding properties

5.2. MethodExpressions

Final Jakarta Server Faces 141

component
listener
property

Wrapper class method signature

actionListener jakarta.faces.event.MethodExpressi
onActionListener

public void
<methodName>(jakarta.faces.event.ActionEvent);

validator jakarta.faces.validator.MethodExpr
essionValidator

public void
<methodName>(jakarta.faces.context.FacesContext,
jakarta.faces.component.UIComponent,
java.lang.Object);

valueChangeL
istener

jakarta.faces.event.MethodExpressi
onValueChangeListener

public void
<methodName>(jakarta.faces.event.ValueChangeEv
ent);

The MethodBinding typed action property of ActionSource is deprecated and has been replaced by the
MethodExpression typed actionExpression property of ActionSource2.

5.2.1. MethodExpression Syntax and Semantics

The exact syntax and semantics of MethodExpression are the domain of the Jakarta Expression
Language. Please see Section 1.2.1.2 of the Jakarta Expression Language Specification, Version 4.0 or
higher.

5.3. The Managed Bean Facility
The use of the managed bean facility as specified in this section is strongly discouraged. A better and
more cohesively integrated solution for solving the same problem is to use Contexts and Dependency
Injection (CDI). (See Other Jakarta Platform Specifications).

Perhaps the biggest value-add of bringing Expression Language concepts to Jakarta Faces happens
when the Expression Language is combined with the managed bean facility. This feature allows the
user to configure an entire complex tree of POJO beans, including how they should be scoped and
populated with initial values, and expose them to Expression Language expressions. Please see
Managed Bean Configuration Example.

The Managed Bean Creation facility is configured by the existence of <managed-bean> elements in one
or more application configuration resources (see Application Configuration Resources). Note that a
special provision has been made for application configuration resource files residing within META-
INF/managed-beans.xml entries on the application classpath. Please see Application Configuration
Resource Format for the normative spec requirement. Such elements describe the characteristics of a
bean to be created, and properties to be initialized, with the following nested elements:

• <managed-bean-name> — The key under which the created bean can be retrieved; also the key in
the scope under which the created bean will be stored, unless the value of <managed-bean-scope> is
set to none.

5.3. The Managed Bean Facility

142 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6195
UsingJSFInWebApplications.pdf#a6254
UsingJSFInWebApplications.pdf#a6254

• <managed-bean-class> — The fully qualified class name of the application class used to instantiate a
new instance. This class must conform to JavaBeans design patterns — in particular, it must have a
public zero-args constructor, and must have public property setters for any properties referenced
with nested <managed-property> elements — or it must be a class that implements java.util.Map or
java.util.List.

• <managed-bean-scope> — The scope (request, view, session, or application) under which the newly
instantiated bean will be stored after creation (under the key specified by the <managed-bean-
name> element), or none for a bean that should be instantiated and returned, but not stored in any
scope. The latter option is useful when dynamically constructing trees of related objects, as
illustrated in the following example.
The runtime must must allow the value of this element to be an EL ValueExpression. If so, and the
expression evaluates to null, an informative error message including the expression string and the
name of the bean must be logged. If the expression evaluates to a Map, that Map is used as the
scope into which the bean will be stored. If storing the bean into the Map causes an Exception, the
exception is allowed to flow up to the ExceptionHandler. If the ValueExpression does not evaluate to
a Map, a FacesException must be thrown with a message that includes the expression string, the
toString() of the value, and the type of the value.

• <list-entries> or <map-entries> — Used to configure managed beans that are themselves instances of
java.util.List or java.util.Map, respectively. See below for details on the contents of these elements.

• <managed-property> — Zero or more elements used to initialize the properties of the newly
instantiated bean (see below).

After the new managed bean instance is instantiated, but before it is placed into the specified scope (if
any), each nested <managed-property> element must be processed and a call to the corresponding
property setter must be made to initialize the value of the corresponding property. If the managed
bean has properties not referenced by <managed-property> elements, the values of such properties will
not be affected by the creation of this managed bean; they will retain whatever default values are
established by the constructor.

Each <managed-property> element contains the following elements used to configure the execution of
the corresponding property setter call:

• <property-name> — The property name of the property to be configured. The actual property setter
method to be called will be determined as described in the JavaBeans Specification.

• Exactly one of the following sub-elements that can be used to initialize the property value in a
number of different ways:

◦ <map-entries> — A set of key/value pairs used to initialize the contents of a property of type
java.util.Map (see below for more details).

◦ <null-value/> — An empty element indicating that this property must be explicitly initialized to
null. This element is not allowed if the underlying property is of a Java primitive type.

◦ <value> — A String value that will have any leading and trailing spaces stripped, and then be
converted (according to the rules described in the Jakarta Server Pages Specification for the

5.3. The Managed Bean Facility

Final Jakarta Server Faces 143

<jsp:setProperty> action) to the corresponding data type of the property, prior to setting it to
this value.

◦ <list-entries> — A set of values used to initialize the contents of a property of type array or
java.util.List See below for more information.

As described above, the <map-entries> element is used to initialize the key-value pairs of a property of
type java.util.Map. This element may contain the following nested elements:

• <key-class> — Optional element specifying the fully qualified class name for keys in the map to be
created. If not specified, java.lang.String is used.

• <value-class> — Optional element specifying the fully qualified class name for values in the map to
be created. If not specified, java.lang.String is used.

• <map-entry> — Zero or more elements that define the actual key-value pairs for a single entry in
the map. Nested inside is a <key> element to define the key, and then exactly one of <null-value>,
<value> to define the value. These elements have the same meaning as when nested in a <managed-
property> element, except that they refer to an individual map entry’s value instead of the entire
property value.

As described above, the <list-entries> element is used to initialize a set of values for a property of type
array or java.util.List. This element may contain the following nested elements:

• <value-class> — Optional element specifying the fully qualified class name for values in the map to
be created. If not specified, java.lang.String is used.

• Zero or more elements of type <null-value>, <value> to define the individual values to be initialized.
These elements have the same meaning as when nested in a <managed-property> element, except
that they refer to an individual list element instead of the entire property value.

The following general rules apply to the operation of the Managed Bean Creation facility:

• Properties are assigned in the order that their <managed-property> elements are listed in the
application configuration resource.

• If a managed bean has writeable properties that are not mentioned in <managed-property>
elements, the values of those properties are not assigned any values.

• The bean instantiation and population with properties must be done lazily, when an Expression
Language expression causes the bean to be referenced. For example, this is the case when a
ValueExpression or MethodExpression has its getValue() or setValue() method called.

• Due to the above mentioned laziness constraint, any error conditions that occur below are only
required to be manifested at runtime. However, it is conceivable that tools may want to detect
these errors earlier; this is perfectly acceptable. The presense of any of the errors described below,
until the end of this section, must not prevent the application from deploying and being made
available to service requests.

• [P1-start managed bean config error conditions] It is an error to specify a managed bean class that
does not exist, or that cannot be instantiated with a public, zero-args constructor.

5.3. The Managed Bean Facility

144 Jakarta Server Faces Final

• It is an error to specify a <property-name> for a property that does not exist, or does not have a
public setter method, on the specified managed bean class.

• It is an error to specify a <value> element that cannot be converted to the type required by a
managed property, or that, when evaluated, results in a value that cannot be converted to the type
required by a managed property. [P1-end]

• If the type of the property referenced by the <managed-property> element is a Java enum, the
contents of the <value> element must be a String that yields a valid return from
java.lang.Enum.valueOf(PROPERTY_CLASS, VALUE) where PROPERTY_CLASS is the java.lang.Class
for the property and VALUE is the contents of the <value> element in the application configuration
resource. If any exception is thrown from Enum.valueOf() it is an error.

• [P1-start managed bean scope errors] It is an error for a managed bean created through this facility
to have a property that points at an object stored in a scope with a (potentially) shorter life span.
Specifically, this means, for an object created with the specified <managed-bean-scope>, then
<value> evaluations can only point at created objects with the specified managed bean scope:

◦ none — none

◦ application — none, application

◦ session — none, application, session

◦ view — none, application, session, view

◦ request — none, application, session, view, request [P1-end]

• If a bean points to a property whose value is a mixed expression containing literal strings and
expressions, the net scope of the mixed expression is considered to be the scope of the narrowest
sub-expression, excluding expressions in the none scope.

• [P1-start implicit objects in request scope] Data accessed via an implicit object is also defined to be
in a scope. The following implicit objects are considered to be in request scope:

◦ cookie

◦ facesContext

◦ header

◦ headerValues

◦ param

◦ paramValues

◦ request

◦ requestScope

◦ view [P1-end]

• [P1-start implicit objects in session scope] The only implicit objects in session scope are session and
sessionScope [P1-end]

• [P1-start implicit objects in application scope] The following implicit objects are considered to be in

5.3. The Managed Bean Facility

Final Jakarta Server Faces 145

application scope:

◦ application

◦ applicationScope

◦ initParam [P1-end]

• [P1-start cyclic references error] It is an error to configure cyclic references between managed
beans.

• [P1-start managed bean names correctness] Managed bean names must conform to the syntax of a
Java language identifier. [P1-end]

The initialization of bean properties from <map-entries> and <list-entries> elements must adhere to the
following algorithm, though any confirming implementation may be used.

For <map-entries>:

1. Call the property getter, if it exists.

2. If the getter returns null or doesn’t exist, create a java.util.HashMap, otherwise use the returned
java.util.Map.

3. Add all entries defined by nested <map-entry> elements in the order they are listed, converting key
values defined by nested <key> elements to the type defined by <key-class> and entry values
defined by nested <value> elements to the type defined by <value-class>. If a value is given as a
value expression, evaluate the reference and store the result, converting to <value-class> if
necessary. If <key-class> and/or <value-class> are not defined, use java.lang.String. Add null for each
<null-value> element.

4. If a new java.util.Map was created in step 2), set the property by calling the setter method, or log an
error if there is no setter method.

For <list-entries>:

1. Call the property getter, if it exists.

2. If the getter returns null or doesn’t exist, create a java.util.ArrayList, otherwise use the returned
Object (an array or a java.util.List).

3. If a List was returned or created in step 2), add all elements defined by nested <value> elements in
the order they are listed, converting values defined by nested <value> elements to the type defined
by <value-class>. If a value is given as a value expression, evaluate the reference and store the
result, converting to <value-class> if necessary. If a <value-class> is not defined, use the value as-is
(i.e., as a java.lang.String). Add null for each <null-value> element.

4. If an array was returned in step 2), create a java.util.ArrayList and copy all elements from the
returned array to the new List, wrapping elements of a primitive type. Add all elements defined by
nested <value> elements as described in step 3).

5. If a new java.util.List was created in step 2) and the property is of type List, set the property by
calling the setter method, or log an error if there is no setter method.

5.3. The Managed Bean Facility

146 Jakarta Server Faces Final

6. If a new java.util.List was created in step 2) and the property is a java array, convert the List into an
array of the property type, and set it by calling the setter method, or log an error if there is no
setter method.

7. If a new java.util.List was created in step 4), convert the List to an array of the proper type for the
property and set the property by calling the setter method, or log an error if there is no setter
method.

5.3.1. Managed Bean Configuration Example

The following <managed-bean> elements might appear in one or more application configuration
resources (see Application Configuration Resources) to configure the behavior of the Managed Bean
Creation facility.

Assume that your application includes CustomerBean with properties mailingAddress and
shippingAddress of type Address (along with additional properties that are not shown), and
AddressBean implementation classes with String properties of type street, city, state, country, and
postalCode.

<managed-bean>
 <description>
 A customer bean will be created as needed, and stored in request
 scope. Its “mailingAddress” and “streetAddress” properties will
 be initialized by virtue of the fact that the “value” expressions
 will not encounter any object under key “addressBean” in any scope.
 </description>
 <managed-bean-name>customer</managed-bean-name>
 <managed-bean-class>
 com.mycompany.mybeans.CustomerBean
 </managed-bean-class>
 <managed-bean-scope>request</managed-bean-scope>
 <managed-property>
 <property-name>mailingAddress</property-name>
 <value>#{addressBean}</value>
 </managed-property>
 <managed-property>
 <property-name>shippingAddress</property-name>
 <value>#{addressBean}</value>
 </managed-property>
 <managed-property>
 <property-name>customerType</property-name>
 <value>New</value> <!-- Set to literal value -->
 </managed-property>
</managed-bean>

5.3. The Managed Bean Facility

Final Jakarta Server Faces 147

UsingJSFInWebApplications.pdf#a6195

<managed-bean>
 <description>
 A new AddressBean will not be added to any scope, because we
 only want to create instances when a CustomerBean creation asks
 for them. Therefore, we set the scope to “none”.
 </description>
 <managed-bean-name>addressBean</managed-bean-name>
 <managed-bean-class>
 com.mycompany.mybeans.AddressBean
 </managed-bean-class>
 <managed-bean-scope>none</managed-bean-scope>
</managed-bean>

If a value expression “#{customer.mailingAddress.city}” were to be evaluated by the Jakarta Faces
implementation, and there was no object stored under key “customer” in request, view, session, or
application scope, a new CustomerBean instance will be created and stored in request scope, with its
mailingAddress and shippingAddress properties being initialized to instances of AddressBean as defined
by the configuration elements shown above. Then, the evaluation of the remainder of the expression
can proceed as usual.

Although not used by the Jakarta Faces implementation at application runtime, it is also convenient to
be able to indicate to Jakarta Faces tools (at design time) that objects of particular types will be created
and made available (at runtime) by some other means. For example, an application configuration
resource could include the following information to declare that a JDBC data source instance will have
been created, and stored in application scope, as part of the application’s own startup processing.

<referenced-bean>
 <description>
 A JDBC data source will be initialized and made available in
 some scope (presumably application) for use by the Jakarta Faces based
 application when it is actually run. This information is not
 used by the Jakarta Faces implementation itself; only by tools.
 </description>
 <referenced-bean-name>dataSource</referenced-bean-name>
 <referenced-bean-class>
 javax.sql.DataSource
 </referenced-bean-class>
</referenced-bean>

This information can be utilized by the tool to construct user interfaces based on the properties of the
referenced beans.

5.3. The Managed Bean Facility

148 Jakarta Server Faces Final

5.4. Managed Bean Annotations
Jakarta Faces has several annotations, in the package jakarta.faces.bean, that act as analogs to the
managed bean configuration syntax in the application configuration resources described earlier in this
chapter. Jakarta Faces is a component specification of Jakarta EE, which also includes a much more
powerful and complete set of annotations, from several other component specifications, most notably
Jakarta Contexts and Dependency Injection (CDI). These annotations are also usable with Jakarta Faces.
The annotations in the package jakarta.faces.bean are deprecated. Therefore, developers are strongly
recommended to avoid using those annotations and instead use the ones from CDI.

5.4.1. Jakarta Faces Managed Classes and Jakarta EE Annotations

Jakarta Faces implementations that are running as a part of Jakarta EE must allow managed bean
implementations to use the annotations specified in section 14.5 of the Jakarta Servlet Specification to
allow the container to inject references to container managed resources into a managed bean instance
before it is made accessible to the Jakarta Faces application. Only beans declared to be in request,
session, or application scope are eligible for resource injection.

In addition to managed beans being injectable in this manner, the following Jakarta Faces artifacts are
also injectable.

Jakarta Faces Artifacts Eligible for Injection

Artifact Type

• jakarta.el.ELResolver

• jakarta.faces.application.ApplicationFactory

• jakarta.faces.application.NavigationHandler

• jakarta.faces.application.ResourceHandler

• jakarta.faces.application.StateManager

• jakarta.faces.component.visit.VisitContextFactory

• jakarta.faces.context.ExceptionHandlerFactory

• jakarta.faces.context.ExternalContextFactory

• jakarta.faces.context.FacesContextFactory

• jakarta.faces.context.PartialViewContextFactory

• jakarta.faces.event.ActionListener

• jakarta.faces.event.SystemEventListener

• jakarta.faces.lifecycle.ClientWindowFactory

• jakarta.faces.lifecycle.LifecycleFactory

• jakarta.faces.event.PhaseListener

5.4. Managed Bean Annotations

Final Jakarta Server Faces 149

• jakarta.faces.render.RenderKitFactory

• jakarta.faces.view.ViewDeclarationLanguageFactory

• jakarta.faces.view.facelets.FaceletCacheFactory

• jakarta.faces.view.facelets.
TagHandlerDelegateFactory

Please consult the Jakarta EE Specification for complete details of this feature. Here is a summary of
the Jakarta EE annotations one may use in a managed bean or other artifact from the preceding table.
[P1-start valid annotations in a managed bean]

• @jakarta.inject.Inject

• @jakarta.inject.Named

• @jakarta.inject.Qualifier

• @jakarta.inject.Scope

• @jakarta.inject.Singleton

• @jakarta.enterprise.context.ApplicationScoped

• @jakarta.enterprise.context.ConversationScoped

• @jakarta.enterprise.context.Dependent

• @jakarta.enterprise.context.RequestScoped

• @jakarta.enterprise.context.SessionScoped

• @jakarta.annotation.Resource

• @jakarta.annotation.Resources

• @jakarta.ejb.EJB

• @jakarta.ejb.EJBs

• @jakarta.xml.ws.WebServiceRef

• @jakarta.xml.ws.WebServiceRefs

• @jakarta.persistence.PersistenceContext

• @jakarta.persistence.PersistenceContexts

• @jakarta.persistence.PersistenceUnit

• @jakarta.persistence.PersistenceUnits

Following is an example of valid usages of this feature in a managed bean or other artifact in the
preceding table.

5.4. Managed Bean Annotations

150 Jakarta Server Faces Final

public class User extends Object {
 private @EJB ShoppingCart cart;
 private @Resource Inventory inventory;
 private DataSource customerData;

 @Resource(name=”customerData”)
 private void setCustomerData(DataSource data) {
 customerData = data;
 }

 public String getOrderSummary() {
 // Do something with the injected resources
 // And generate a textual summary of the order
 }
}

This example illustrates that the above annotations can be attached to instance variables or to
JavaBeans setters. The Jakarta Faces implementation running in a Jakarta EE container must guarantee
that the injections are performed before the bean is handed back to the user. Generally, this is done by
performing the injection immediately after the lazy instantiation of the managed bean.

5.4.2. Managed Bean Lifecycle Annotations

Jakarta Faces implementations running in a Jakarta EE compliant container must support attaching
the @PostConstruct and @PreDestroy annotations to aid in awareness of the managed-bean lifecycle.

Methods on managed beans declared to be in none, request, view, session, or application scope,
annotated with @PostConstruct, must be called by the Jakarta Faces implementation after resource
injection is performed (if any) but before the bean is placed into scope.

[P1-start rules governing invocation of @PostConstruct annotated methods]If the method throws an
unchecked exception, the Jakarta Faces implementation must not put the managed-bean into service, a
message must be logged, and further methods on that managed bean instance must not be called. [P1-
end]

Methods on managed beans declared to be in request, session, or application scope, annotated with
@PreDestroy, must be called by the Jakarta Faces implementation before the bean is removed from its
scope or before the scope itself is destroyed, whichever comes first. In the case of a managed bean
placed in view scope, methods annotated with @PreDestroy must only be called when the view scope is
destroyed. See the javadoc for FacesContext.setViewRoot(). This annotation must be supported in all
cases where the above @PostConstruct annotation is supported.

[P1-start rules governing invocation of @PreDestroy annotated methods] If the method throws an
unchecked exception, the Jakarta Faces implementation may log it, but the exception must not
otherwise alter the execution.

5.4. Managed Bean Annotations

Final Jakarta Server Faces 151

Refer to the Jakarta EE specification section 2.5 and the Jakarta Annotations specification section 2.5
for more details.[P1-end]

5.5. How Faces Leverages the Expression Language
This section is non-normative and covers the major players in the Jakarta Expression Language and
how they relate to Jakarta Faces. The number one goal in this version of the Jakarta Faces specification
is to export the concepts behind the Jakarta Faces EL into the Jakarta Expression Language, and then
rely on those facilities to get the work done. Readers interested in how to implement the Jakarta
Expression Language itself must consult the Jakarta Expression Language Spec document.

5.5.1. ELContext

The ELContext is a handy little “holder” object that gets passed all around the Jakarta Expression
Language API. It has two purposes.

• To allow technologies that use the Jakarta Expression Language , such as Jakarta Faces, the Jakarta
Faces View Declaration Language, and Jakarta Server Pages, to store any context information
specific to that technology so it can be leveraged during expression evaluation. For example the
expression “${view.viewId}” is specific to Jakarta Faces. It means, “find the UIViewRoot instance for
the current view, and return its viewId”. The Jakarta Expression Language doesn’t know about the
“view” implicit object or what a UIViewRoot is, but Jakarta Faces does. The Jakarta Expression
Language has plugin points that will get called to resolve “view”, but to do so, Jakarta Faces needs
access to the FacesContext from within the callstack of Expression Language evaluation. Therefore,
the ELContext comes to the rescue, having been populated with the FacesContext earlier in the
request processing lifecycle.

• To allow the pluggable resolver to tell the Jakarta Expression Language that it did, in fact, resolve a
property and that further resolvers must not be consulted. This is done by setting the
“propertyResolved” property to true.

The complete specification for ELResolver may be found in Chapter 2 of the Jakarta Expression
Language Specification, Version 4.0.

5.5.1.1. Lifetime, Ownership and Cardinality

An ELContext instance is created the first time getELContext() is called on the FacesContext for this
request. Please see ELContext for details. Its lifetime ends the same time the FacesContext’s lifetime
ends. The FacesContext maintains the owning reference to the ELContext. There is at most one
ELContext per FacesContext.

5.5.1.2. Properties

5.5. How Faces Leverages the Expression Language

152 Jakarta Server Faces Final

Name Access Type Description

ELResolver RO jakarta.el.ELResolv
er

Return the ELResolver instance described in Faces
ELResolver for Jakarta Server Pages Pages

propertyResolved RW boolean Set by an ELResolver implementation if it
successfully resolved a property. See ELResolver
for how this property is used.

5.5.1.3. Methods

Here is a subset of the methods that are relevant to Jakarta Faces.

public Object getContext(Class key);
void putContext(Class key, Object contextInstance);
...

As mentioned in ELContext, the putContext() method is called, passing the current FacesContext
instance the first time the system asks the FacesContext for its ELContext. The getContext() method will
be called by any ELResolver instances that need to access the FacesContext to perform their resolution.

5.5.1.4. Events

The creation of an ELContext instance precipitates the emission of an ELContextEvent from the
FacesContext that created it. Please see ELContext for details.

5.5.2. ELResolver

Faces 1.1 used the VariableResolver and PropertyResolver classes as the workhorses of expression
evaluation. The Unified API has the ELResolver instead. The ELResolver concept is the heart of the
Jakarta Expression Language. When an expression is evaluated, the ELResolver is responsible for
resolving each segment in the expression. For example, in rendering the component behind the tag
“<h:outputText value=”#{user.address.street}” />” the ELResolver is called three times. Once to resolve
“user”, again to resolve the “address” property of user, and finally, to resolve the “street” property of
“address”. The complete specification for ELResolver may be found in Chapter 2 of the Jakarta
Expression Language Specification, Version 4.0 or higher.

[N/T-start two ELResolver impls] As described in more detail in Faces ELResolver for Jakarta Server
Pages Pages, Faces must provide two implementations of ELResolver. [P1-end]Which of these two
implementations is actually used to resolve an expression depends on where the expresison is
evaluated. If the expression is evaluated in a markup page, the ELResolver for markup pages is used. If
the expression is evaluated in java VM hosted code from Faces, another ELResolver is used that is
tailored for use inside of Faces java VM hosted code. During the course of evaluation of an expression,
a variety of sources must be considered to help resolve each segment of the expression. These sources
are linked in a chain-like fashion. Each link in the chain has the opportunity to resolve the current
segment. If it does so, it must set the “propertyResolved” property on the ELContext, to true. If not, it

5.5. How Faces Leverages the Expression Language

Final Jakarta Server Faces 153

must not modify the value of the “propertyResolved” property. If the “propertyResolved” property is not
set to true the return value from the ELResolver method is ignored by the system.

5.5.2.1. Lifetime, Ownership, and Cardinality

ELResolver instances have application lifetime and scope. The Jakarta Server Pages container
maintains one top level ELResolver (into which a Faces specific ELResolver is added) accessible from
JspContext.getELContext().getELResolver(). This ELResolver instance is also used from the Jakarta Faces
VDL, even though Jakarta Faces VDL pages do not themselves use Jakarta Server Pages. Faces
maintains one ELResolver (separate from the one handed to the Jakarta Server Pages container)
accessible from FacesContext.getELContext().getELResolver() and Application.getELResolver().

5.5.2.2. Properties

ELResolver has no proper JavaBeans properties

5.5.2.3. Methods

Here is a subset of the methods that are relevant to Faces.

public Object getValue(ELContext context, Object base, Object property);
void setValue(ELContext context,
 Object base, Object property, Object value);
...

getValue() looks at the argument base and tries to return the value of the property named by the
argument property. For example, if base is a JavaBean, property would be the name of the JavaBeans
property, and the resolver would end up calling the getter for that property.

setValue() looks at the argument base and tries to set the argument value into the property named by
the argument property. For example, if base is a JavaBean, property would be the name of the
JavaBeans property, and the resolver would end up calling the setter for that property.

There are other methods, such as isReadOnly() that are beyond the scope of this document, but
described completely in the Jakarta Expression Language Specification.

5.5.2.4. Events

ELResolver precipitates no events.

5.5.3. ExpressionFactory

Pre-Jakarta Faces JSF 1.1 (under the JCP) used the Application class as a factory for ValueBinding and
MethodBinding instances. The Jakarta Expression Language has the ExpressionFactory class instead. It
is a factory for ValueExpression and MethodExpression instances.

5.5. How Faces Leverages the Expression Language

154 Jakarta Server Faces Final

5.5.3.1. Lifetime, Ownership, and Cardinality

ExpressionFactory instances are application scoped. The Application object maintains the
ExpressionFactory instance used by Faces (See Acquiring ExpressionFactory Instance). The
JspApplicationContext object maintains the ExpressionFactory used by the Jakarta Server Pages
container (and therefore by the Jakarta Faces VDL). It is permissible for both of these access methods to
yield the same java object instance.

5.5.3.2. Properties

ExpressionFactory has no properties.

5.5.3.3. Methods

public MethodExpression createMethodExpression(ELContext context,
 String expression, FunctionMapper fnMapper, Class[] paramTypes);
public ValueExpression createValueExpression(ELContext context,
 String expression, Class expectedType, FunctionMapper fnMapper);

These methods take the human readable expression string, such as ”#{user.address.street}” and return
an object oriented representation of the expression. Which method one calls depends on what kind of
expression you need. The Faces Application class has convenience methods specific to Faces needs for
these concepts, please see Programmatically Evaluating Expressions .

5.5.3.4. Events

ExpressionFactory precipitates no events.

5.6. ELResolver Instances Provided by Faces
This section provides details on what an implementation of the Jakarta Server Faces specification must
do to support the Jakarta Expression Language for usage in a Jakarta Faces application.

ELResolver mentions that a Faces implementation must provide two implementations of ELResolver.
One ELResolver, let’s call it the Faces ELResolver For Markup Pages, is plugged in to the top level
resolver chain returned from JspContext.getELContext().getELResolver(). This top level resolver chain is
used by the view declaration language container (Jakarta Server Pages or Jakarta Faces View
Declaration Language), and possibly by tag handlers, to resolve expressions. The other ELResolver, let’s
call it the ELResolver for Facelets and Programmatic Access, is used by Facelets markup pages, and is
returned from FacesContext.getELContext().getELResolver() and Application.getELResolver(), and is
used to resolve expressions that appear programmatically. See the javadocs for jakarta.el.ELResolver
for the specification and method semantics for each method in ELResolver. The remainder of this
section lists the implementation requirements for these two resolvers.

5.6. ELResolver Instances Provided by Faces

Final Jakarta Server Faces 155

5.6.1. Faces ELResolver for Jakarta Server Pages Pages

As mentioned in ELResolver, during the course of evaluation of an expression, a variety of sources
must be considered to help resolve each segment of the expression. These sources are linked in a
chain-like fashion. Each link in the chain has the opportunity to resolve the current segment. The
Jakarta Expression Language provides a container class to support this multi-source variable
resolution: jakarta.el.CompositeELResolver. The implementation for the Faces ELResolver for Jakarta
Server Pages Pages is described as a set of ELResolvers inside of a CompositeELResolver instance, but
any implementation strategy is permissible as long as the semantics are preserved.

This diagram shows the set of ELResolver instances that must be added to the Faces ELResolver for
Jakarta Server Pages pages. This instance must be handed to the Jakarta Server Pages container via a
call to JspFactory.getDefaultFactory().getJspApplicationContext().addELResolver() at application startup
time. Even though we are making a Jakarta Server Pages API call to install this ELResolver, we do not
require using Jakarta Server Pages to develop Jakarta Faces applications. It also shows the order in
which they must be added. [P2-start there are 18 methods in the below tables, each can corresponding
to a method on a particular ELResolver. With clever testing, it is possible to write assertions for these.
Testing the legacy VariableResolver and PropertyResolvers is not included in this 18 methods number.
These classes may be tested simply by noting that the methods do indeed get called on a user-provided
VariableResolver or PropertyResolver.] [P1-end]

Faces ELResolver for Jakarta Server Pages Pages

The semantics of each ELResolver are given below, either in tables that describe what must be done to
implement each particular method on ELResolver, or in prose when such a table is inappropriate.

5.6. ELResolver Instances Provided by Faces

156 Jakarta Server Faces Final

5.6.1.1. Faces Implicit Object ELResolver For Jakarta Server Pages

This resolver relies on the presence of another, Jakarta Server Pages specific, implicit object
ELResolver in the chain by only resolving the “facesContext” and “view” implicit objects.

Table 4. Faces ImplicitObjectELResolver for Jakarta Server Pages

ELResolver method implementation requirements

getValue If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

See ImplicitObjectELResolver for Programmatic Access If base is null and
property is a String equal to “facesContext”, call setPropertyResolved(true)
on the argument ELContext and return the FacesContext for this request.

If base is null and property is a String equal to “view”, call
setPropertyResolved(true) on the argument ELContext and return the
UIViewRoot for this request by calling facesContext.getUIViewRoot().

This ELResolver must also support the implicit object “resource” as
specified in Implicit Object ELResolver for Facelets and Programmatic
Access

getType If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

If base is null and property is a String equal to “facesContext” or “view”, call
setPropertyResolved(true) and return null;

Otherwise, just return null;This ELResolver must also support the implicit
object “resuorce” as specified in Implicit Object ELResolver for Facelets and
Programmatic Access

setValue If base is null and property is null, throw PropertyNotFoundException.

If base is null and property is a String equal to “facesContext” or “view”,
throw jakarta.el.PropertyNotWriteable, since “view” and “facesContext” are
read-only. This ELResolver must also support the implicit object “resuorce”
as specified in Implicit Object ELResolver for Facelets and Programmatic
Access

5.6. ELResolver Instances Provided by Faces

Final Jakarta Server Faces 157

ELResolver method implementation requirements

isReadOnly If base is non-null, return false.

If base is null and property is null, throw PropertyNotFoundException.

If base is null and property is a String equal to “facesContext” or “view”, call
setPropertyResolved(true) on the argument ELContext and return true.

Otherwise return false;This ELResolver must also support the implicit
object “resuorce” as specified in Implicit Object ELResolver for Facelets and
Programmatic Access

getFeatureDescriptors If base is non-null, return null.

If base is null, return an Iterator containing three
java.beans.FeatureDescriptor instances, one for the “view” property, one for
the “facesContext” property and one for the “resource” property. It is
required that all of the FeatureDescriptor instances in the Iterator set
Boolean.TRUE as the value of the
ELResolver.RESOLVABLE_AT_DESIGN_TIME attribute. The name and
displayName of the FeatureDescriptor must be “view”, “facesContext”, “ or
“resource” as appropriate. FacesContext.class, UIViewRoot.class, or
ResourceHandler.class must be stored as the value of the ELResolver.TYPE
attribute, as approriate. The shortDescription must be a suitable description
depending on the implementation. The expert and hidden properties must
be false. The preferred property must be true.

getCommonPropertyTyp
e

If base is non-null, return null.

If base is null and return String.class.

5.6.1.2. ManagedBean ELResolver

This is the means by which the managed bean creation facility described in The Managed Bean Facility
is called into play during Expression Language resolution.

Table 5. ManagedBeanELResolver

5.6. ELResolver Instances Provided by Faces

158 Jakarta Server Faces Final

ELResorver method implementation requirements

getValue If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

If property matches the name of an entry in the request, session, or
application scopes, in that order, return null.

If base is null, and property matches one of the managed-bean-name
declarations in the application configuration resources, instantiate the
bean, populate it with properties as described in The Managed Bean Facility,
store it in the scope specified by the managed-bean-scope declaration for
this this managed-bean, call setPropertyResolved(true) on the argument
ELContext, and return the freshly instantiated managed-bean.

Otherwise, return null.

getType If base is null and property is null, throw PropertyNotFoundException.

Otherwise return null;

setValue If base is null and property is null, throw PropertyNotFoundException.

Otherwise, if base is null, and property matches one of the managed-bean-
name declarations in the application configuration resources, and a
managed bean with that managed-bean-name does not yet exist in the
specified scope, instantiate the bean, populate it with properties as
described in The Managed Bean Facility, store it in the scope specified by the
managed-bean-scope declaration for this this managed-bean and return. If
the managed bean does exist, take no action and return. In either case (the
bean exists or does not exist), the actual setting will happen by virtue of the
BeanELResolver.

Otherwise take no action and return.

isReadOnly If base is non-null, return false.

If base is null and property is null, throw PropertyNotFoundException.

If base is null return false. We never set the propertyResloved property in
this method because the set responsibility is taken care of by the
ScopedAttributeELResolver.

5.6. ELResolver Instances Provided by Faces

Final Jakarta Server Faces 159

ELResorver method implementation requirements

getFeatureDescriptors If base is non-null, return null.

If base is null, return an Iterator containing java.beans.FeatureDescriptor
instances for each managed-bean in the application-configuration
resources. It is required that all of the FeatureDescriptor instances in the
Iterator set Boolean.TRUE as the value of the
ELResolver.RESOLVABLE_AT_DESIGN_TIME attribute. The name and
displayName of the FeatureDescriptor must be the managed-bean-name.
The actual java Class instance for the managed-bean-class must be stored as
the value of the ELResolver.TYPE attribute. The shortDescription of the
FeatureDescriptor must be the description of the managaged-bean element,
if present, null otherwise. The expert and hidden properties must be false.
The preferred property must be true.

getCommonPropertyTyp
e

If base is non-null, return null.

If base is null, return Object.class.

5.6.1.3. Resource ELResolver

Please see Resource ELResolver for the specification of this ELResolver.

5.6.1.4. ResourceBundle ELResolver for Jakarta Server Pages Pages

This is the means by which resource bundles defined in the application configuration resources are
called into play during Expression Language resolution.

Table 6. ResourceBundleELResolver

ELResorver method implementation requirements

getValue If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

If base is null and property is a String equal to the value of the <var>
element of one of the <resource-bundle>'s in the application configuration
resources, use the Locale of the current UIViewRoot and the base-name of
the resource-bundle to load the ResourceBundle. Call
setPropertyResolved(true). Return the ResourceBundle. Otherwise, return
null.

5.6. ELResolver Instances Provided by Faces

160 Jakarta Server Faces Final

ELResorver method implementation requirements

getType If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

If base is null and property is a String equal to the value of the <var>
element of one of the <resource-bundle>'s in the application configuration
resources, call setPropertyResolved(true) and return ResourceBundle.class.

setValue If base is null and property is null, throw PropertyNotFoundException.

If base is null and property is a String equal to the value of the <var>
element of one of the <resource-bundle>'s in the application configuration
resources throw jakarta.el.PropertyNotWriteable, since ResourceBundles
are read-only.

isReadOnly If base is non-null, return null.

If base is false and property is null, throw PropertyNotFoundException.

If base is null and property is a String equal to the value of the <var>
element of one of the <resource-bundle>'s in the application configuration
resources, call setPropertyResolved(true) on the argument ELContext and
return true.

Otherwise return false;

getFeatureDescriptors If base is non-null, return null.

If base is null, return an Iterator containing java.beans.FeatureDescriptor
instances, one for each <resource-bundle> in the <application> element. It is
required that all of these FeatureDescriptor instances set Boolean.TRUE as
the value of the ELResolver.RESOLVABLE_AT_DESIGN_TIME attribute. The
name of the FeatureDescriptor must be the var element of the <resource-
bundle>. The displayName of the FeatureDescriptor must be the display-
name of the <resource-bundle>. ResourceBundle.class must be stored as the
value of the ELResolver.TYPE attribute. The shortDescription must be a
suitable description depending on the implementation. The expert and
hidden properties must be false. The preferred property must be true.

getCommonPropertyTyp
e

If base is non-null, return null.

If base is null, return string.Class.

5.6. ELResolver Instances Provided by Faces

Final Jakarta Server Faces 161

5.6.1.5. ELResolvers in the application configuration resources

The <el-resolver> element in the application configuration resources will contain the fully qualified
classname to a class with a public no-arg constructor that implements jakarta.el.ELResolver. These are
added to the Faces ELResolver for Jakarta Server Pages Pages and the Faces ELResolver for Facelets and
Programmatic Access in the order in which they occur in the application configuration resources.

5.6.1.6. VariableResolver Chain Wrapper

This is the means by which VariableResolver instances that have been specified in <variable-resolver>
elements inside the application configuration resources are allowed to affect the EL resolution process.
If there are one or more <variable-resolver> elements in the application configuration resources, an
instance of ELResolver with the following semantics must be created and added to the Faces
ELResolver for Jakarta Server Pages Pages as indicated in the Faces ELResolver for Jakarta Server Pages
Pages.

By virtue of the decorator pattern described in Delegating Implementation Support , the default
VariableResolver will be at the end of the VariableResolver chain (See VariableResolver and the Default
VariableResolver), if each custom VariableResolver chose to honor the full decorator pattern. If the
custom VariableResolver chose not to honor the decorator pattern, the user is stating that they want to
take over complete control of the variable resolution system. Note that the head of the VariableResolver
chain is no longer accessible by calling Application.getVariableResolver() (Please see VariableResolver
Property for what it returns). The head of the VariableResolver chain is kept in an implementation
specific manner.

The semantics of the ELResolver that functions as the VariableResolver chain wrapper are described in
the following table.

Table 7. ELResolver that is the VariableResolver Chain Wrapper

ELResorver method implementation requirements

getValue If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

Otherwise, call setPropertyResolved(true) on the argument ELContext.

Get the ELContext from the FacesContext.

Get the head of the VariableResolver chain and call
resolveVariable(facesContext, property) and return the result.

Catch any exceptions that may be thrown by resolveVariable(), call
setPropertyResolved(false) on the argument ELContext, and rethrow the
exception wrapped in an jakarta.el.ELException.

5.6. ELResolver Instances Provided by Faces

162 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6336

ELResorver method implementation requirements

getType If base is null and property is null, throw PropertyNotFoundException.

return null;

setValue If base is null and property is null throw PropertyNotFoundException.

isReadOnly If base is null and property is null throw PropertyNotFoundException.

return false;

getFeatureDescriptors return null;

getCommonPropertyTyp
e

If base is null, we return String.class.

If base is non-null, return null;

5.6.1.7. PropertyResolver Chain Wrapper

This is the means by which propertyResolver instances that have been specified in <property-resolver>
elements inside the application configuration resources are allowed to affect the EL resolution process.
If there are one or more <property-resolver> elements in the application configuration resources, an
instance of ELResolver with the following semantics must be created and added to the Faces
ELResolver for Jakarta Server Pages Pages as indicated in the Faces ELResolver for Jakarta Server Pages
Pages.

By virtue of the decorator pattern described in Delegating Implementation Support, the default
propertyResolver will be at the end of the propertyResolver chain (See, PropertyResolver and the Default
PropertyResolver), if each custom propertyResolver chose to honor the full decorator pattern. If the
custom propertyResolver chose not to honor the decorator pattern, then the user is stating that they
want to take over complete control of the propertyResolution system. Note that the head of the
propertyResolver chain is no longer accessible by calling Application.getPropertyResolver() (Please see
PropertyResolver Property for what it returns). The head of the property resolver chain is kept in an
implementation specific manner.

The semantics of the ELResolver that functions as the property resolver chain wrapper are described
in the following table.

Table 8. ELResolver that is the PropertyResolver Chain Wrapper

5.6. ELResolver Instances Provided by Faces

Final Jakarta Server Faces 163

UsingJSFInWebApplications.pdf#a6336

ELResorver method implementation requirements

getValue,

getType,

isReadOnly,

setValue

If base or property are null, return null (or false if the method returns
boolean).

Call setPropertyResolved(true) on the argument ELContext.

Get the ELContext from the FacesContext.

Get the head of the propertyResolver chain.

If base is a List or java language array, coerce the property to an int and call
the corresponding method on the head of the property resolver chain that
takes an int for property, returning the result (except in the case of
setValue()).

Otherwise, call the corresponding method on the head of the property
resolver chain that takes an Object for property, returning the result (except
in the case of setValue()).

If an Exception is thrown by calling the above methods on the
PropertyResolver chain, catch it, call setPropertyResolved(false) on the
argument ELContext, and rethrow the Exception wrapped (snuggly) in a
jakarta.el.ELException.

getFeatureDescriptors return null;

getCommonPropertyTyp
e

If base is null, return null.

If base is non-null, return Object.class.

5.6.1.8. ELResolvers from Application.addELResolver()

Any such resolvers are considered at this point in the Faces ELResolver for Jakarta Server Pages Pages
in the order in which they were added.

5.6.2. ELResolver for Facelets and Programmatic Access

This section documents the requirements for the second ELResolver mentioned in ELResolver Instances
Provided by Faces, the one that is used for Facelets and for programmatic expression evaluation from
Faces java code.

The implementation for the ELResolver for Programmatic Access is described as a set of ELResolvers
inside of a CompositeELResolver instance, but any implementation strategy is permissible as long as
the semantics are preserved. .

This diagram shows the set of ELResolver instances that must be added to the ELResolver for
Programmatic Access. This instance must be returned from Application.getELResolver() and

5.6. ELResolver Instances Provided by Faces

164 Jakarta Server Faces Final

FacesContext.getELContext().getELResolver(). It also shows the order in which they must be added. [P1-
state there are 12 methods in the below tables that can be tested for assertion. The remainder of the
section is covered by the tests in 5.6.1][P1-end]

ELResolver for Facelets and Programmatic Access

The semantics of each ELResolver are given below, either in tables that describe what must be done to
implement each particular method on ELResolver, in prose when such a table is inappropriate, or as a
reference to another section where the semantics are exactly the same.

5.6.2.1. Implicit Object ELResolver for Facelets and Programmatic Access

This resolver differs from the one in the Faces Implicit Object ELResolver For Jakarta Server Pages in
that it must resolve all of the implicit objects, not just facesContext and view

Table 9. ImplicitObjectELResolver for Programmatic Access

5.6. ELResolver Instances Provided by Faces

Final Jakarta Server Faces 165

5.6. ELResolver Instances Provided by Faces

166 Jakarta Server Faces Final

ELResolver method implementation requirements

getValue If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

If base is null and property is a String equal to implicitObject, call
setPropertyResolved(true) on the argument ELContext and return result,
where implicitObject and result are as follows:

implicitObject result

application externalContext.getContext()

applicationScope externalContext.getApplicationMap()

cookie externalContext.getRequestCookieMap()

facesContext the FacesContext for this request

component the top of the stack of UIComponent instances, as
pushed via calls to
UIComponent.pushComponentToEL(). See Lifecycle
Management Methods

flowScope facesContext.getApplication().getFlowHandler().getC
urrentFlowScope()

cc the current composite component relative to the
declaring page in which the expression appears.

flash externalContext.getFlash()

header externalContext.getRequestHeaderMap()

headerValues externalContext.getRequestHeaderValuesMap()

initParam externalContext.getInitParameterMap()

param externalContext.getRequestParameterMap()

paramValues externalContext.getRequestParameterValuesMap()

request externalContext.getRequest()

requestScope externalContext.getRequestMap()

resource facesContext.getApplication().getResourceHandler()

session externalContext.getSession()

sessionScope externalContext.getSessionMap()

view facesContext.getViewRoot()

viewScope facesContext.getViewRoot().getViewMap()

resource facesContext.getApplication().getResourceHandler()

If base is null, and property doesn’t match one of the above implicitObjects,
return null.

5.6. ELResolver Instances Provided by Faces

Final Jakarta Server Faces 167

ELResolver method implementation requirements

getType If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

If base is null and property is a String equal to “application”, “component”,
“cc”, “cookie”, “facesContext”, “header”, “headerValues”, “initParam”,
“param”, “paramValues”, “request”, “resource”, “session”, or “view”, call
setPropertyResolved(true) on the argument ELContext and return null to
indicate that no types are accepted to setValue() for these attributes.

If base is null and property is a String equal to “requestScope”,
“sessionScope”, or “applicationScope”, call setPropertyResolved(true) on the
argument ELContext and return null.

Otherwise, null;

setValue If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

If base is null and property is a String equal to “applicationScope”,
“requestScope”, “sessionScope”, “application”, “component”, “cc”, “cookie”,
“facesContext”, “header”, “headerValues”, “initParam”, “param”,
“paramValues”, “request”, “resource”, “session”, or “view”, throw
jakarta.el.PropertyNotWriteableException, since these implicit objects are
read-only.

Otherwise return null.

isReadOnly If base is non-null, return (or false if the method returns boolean).

If base is null and property is null, throw PropertyNotFoundException.

If base is null and property is a String equal to “applicationScope”,
“component”, “cc”, “requestScope”, “sessionScope”, “application”, “cookie”,
“facesContext”, “header”, “headerValues”, “initParam”, “param”,
“paramValues”, “request”, “resource”, “session”, or “view”, call
setPropertyResolved(true) on the argument ELContext and return true.

Otherwise return null.

5.6. ELResolver Instances Provided by Faces

168 Jakarta Server Faces Final

ELResolver method implementation requirements

getFeatureDescriptors If base is non-null, return null.

If base is null, return an Iterator containing 17
java.beans.FeatureDescriptor instances, one for eath of the following
properties: application, component, cc, cookie, facesContext, header,
headerValues, initParam, param, paramValues, request, resource, session,
view, applicationScope, sessionScope, and requestScope. It is required that
all of these FeatureDescriptor instances set Boolean.TRUE as the value of the
ELResolver.RESOLVABLE_AT_DESIGN_TIME attribute. For the name and
short of FeatureDescriptor, return the implicit object name. The appropriate
Class must be stored as the value of the ELResolver.TYPE attribute as
follows:

implicitObject ELResolver.TYPE value

application Object.class

applicationScope Map.class

component UIComponent.class

cc UIComponent.class

cookie Map.class

facesContext FacesContext.class

header Map.class

headerValues Map.class

initParam Map.class

param Map.class

paramValues Map.class

request Object.class

resource Object.class

requestScope Map.class

session Object.class

sessionScope Map.class

view UIViewRoot.class

The shortDescription must be a suitable description depending on the
implementation. The expert and hidden properties must be false. The
preferred property must be true.

5.6. ELResolver Instances Provided by Faces

Final Jakarta Server Faces 169

ELResolver method implementation requirements

getCommonPropertyTyp
e

If base is non-null, return null.

If base is null and return String.class

5.6.2.2. Composite Component Attributes ELResolver

This ELResolver makes it so expressions that refer to the attributes of a composite component get
correctly evaluated. For example, the expression #{cc.attrs.usernameLabel} says, “find the current
composite component, call its getAttributes() method, within the returned Map look up the value under
the key “usernameLable”. If the value is a ValueExpression, call getValue() on it and the result is
returned as the evaluation of the expression. Otherwise, if the value is not a ValueExpression the value
itself is returned as the evaluation of the expression.”

Table 10. Composite Component Attributes ELResolver

ELResolver method implementation requirements

getValue If base is non-null, is an instance of UIComponent, is a composite
component, and property is non-null and is equal to the string “attrs”,
return a Map implementation with the following characteristics.

Wrap the attributes map of the composite component and delegate all calls
to the composite component attributes map with the following exceptions:

get(), put(), and containsKey() are required to be supported.

get(): if the result of calling get() on the component attributes map is null,
and a default value was declared in the composite component metadata, the
value will be a ValueExpression. Evaluate it and return it. Otherwise, simply
return the value from the component attributes map.

put(): Call getValueExpression() on the component. If this returns non-null,
call setValue() on it, passing the value argument as the last argument.
Otherwise, simply call through to put on the component attributes map.

containsKey(): If the attributes map contains the key, return true.
Otherwise, if a default value has been declared for the attribute, return
true. Otherwise, return false.

The Map implementation must also implement the interface

jakarta.faces.el.CompositeComponentExpressionHolder.

Otherwise, take no action.

5.6. ELResolver Instances Provided by Faces

170 Jakarta Server Faces Final

ELResolver method implementation requirements

getType If the base argument to getType() is not an instance of the composite
component attributes map or the property argument to getType() is not an
instance of java.lang.String, return null. Otherwise, check the top level
component’s ValueExpression collection for an expression under the name
given by the property argument to getType(). If the expression exists, call
getType() on the expression. If the property argument to getType() is not
empty, search the composite component’s metadata for a declared type on a
<composite:attribute> whose name matches the property argument to
getType(). If the expression and the metadata both yield results, the
metadata takes precedence ONLY if it provides a narrower result than does
the expression, i.e. expression type is assignable from metadata type. If the
metadata result does take precedence, call
ELContext.setPropertyResolved(true). Otherwise, return whichever result
was available, or null.

setValue Take no action.

isReadOnly Take no action and return true.

getFeatureDescriptors Take no action.

getCommonPropertyTyp
e

Return String.class

5.6.2.3. The CompositeELResolver

As indicated in ELResolver for Facelets and Programmatic Access, following the
ImplicitObjectELResolver, the semantics obtained by adding a CompositeELResolver must be inserted
here. This ELResolver contains the following ELResolvers, described in the referenced sections.

1. ELResolvers in the application configuration resources

2. VariableResolver Chain Wrapper

3. PropertyResolver Chain Wrapper

4. ELResolvers from Application.addELResolver()

5.6.2.4. ManagedBean ELResolver

This resolver has the same semantics as the one in ManagedBean ELResolver.

5.6.2.5. Resource ELResolver

This resolver is a means by which Resource instances are encoded into a faces request such that a
subsequent faces resource request from the browser can be satisfied using the ResourceHandler as
described in Resource Handling.

Table 11. ResourceELResolver

5.6. ELResolver Instances Provided by Faces

Final Jakarta Server Faces 171

ELResorver method implementation requirements

getValue If base and property are not null, and base is an instance of
ResourceHandler (as will be the case with an expression such as
#\{resource[‘ajax.js’]}, perform the following. (Note: This is possible due to
the ImplicitObjectELResolver returning the ResourceHandler, see Implicit
Object ELResolver for Facelets and Programmatic Access)

• If property does not contain a colon character ‘:’, treat property as the
resourceName and pass property to
ResourceHandler.createResource(resourceName).

• If property contains a single colon character ‘:’, treat the content before
the ‘:’ as the libraryName and the content after the ‘:’ as the
resourceName and pass both to
ResourceHandler.createResource(resourceName, libraryName). If the
value of libraryName is the literal string “this” (without the quotes),
discover the library name of the current resource (or the contract name
of the current resource, the two are mutually exclusive) and replace
“this” with that library name (or contract name) before calling
ResourceHandler.createResource(). In the case of resource library
contracts, libraryName will actually be the contract name.

• If property contains more than one colon character ‘:’, throw a localized
ELException, including property.

If one of the above steps results in the creation of a non-null Resource
instance, call ELContext.setPropertyResolved(true). Call the
getRequestPath() method on the Resource instance, pass the result through
ExternalContext.encodeResourceUrl() and return the result.

getType Return null. This resolver only performs lookups.

setValue Take no action.

isReadOnly Return false in all cases.

getFeatureDescriptors Return null.

getCommonPropertyTyp
e

If base is non-null, return null.

If base is null, return Object.class.

5.6.2.6. el.ResourceBundleELResolver

This entry in the chain must have the semantics the same as the class
jakarta.el.ResourceBundleELResolver. The default implementation just includes an instance of this
resolver in the chain.

5.6. ELResolver Instances Provided by Faces

172 Jakarta Server Faces Final

5.6.2.7. ResourceBundle ELResolver for Programmatic Access

This resolver has the same semantics as the one in ResourceBundle ELResolver for Jakarta Server
Pages pages.

5.6.2.8. Stream, StaticField, Map, List, Array, and Bean ELResolvers

These ELResolver instances are provided by the Jakarta Expression Language API and must be added
in the following order:

[P1-start_EL_3_0] If running on a container that supports Jakarta Expression Language 4.0 or higher:
The return from ExpressionFactory.getStreamELResolver, jakarta.el.StaticFieldELResolver. [P1-
end_EL_3_0]

jakarta.el.MapELResolver, jakarta.el.ListELResolver, jakarta.el.ArrayELResolver,
jakarta.el.BeanELResolver. These actual ELResolver instances must be added. It is not compliant to
simply add other resolvers that preserve these semantics.

5.6.2.9. ScopedAttribute ELResolver

This ELResolver is responsible for doing the scoped lookup that makes it possible for expressions to
pick up anything stored in the request, session, or application scopes by name.

Table 12. Scoped Attribute ELResolver

5.6. ELResolver Instances Provided by Faces

Final Jakarta Server Faces 173

ELResorver method implementation requirements

getValue If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

Use the argument property as the key in a call to
externalContext.getRequestMap().get(). If this returns non-null, call
setPropertyResolved(true) on the argument ELContext and return the value.

Use the argument property as the key in a call to
facesContext.getViewRoot().getViewMap().get() (accounting for the potential
for null returns safely). If this returns non-null, call
setPropertyResolved(true) on the argument ELContext and return the value.

Use the argument property as the key in a call to
externalContext.getSessionMap().get(). If this returns non-null, call
setPropertyResolved(true) on the argument ELContext and return the value.

Use the argument property as the key in a call to
externalContext.getApplicationMap().get(). If this returns non-null, call
setPropertyResolved(true) on the argument ELContext and return the value.

Otherwise call setPropertyResloved(true) and return null;

getType If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

Otherwise, setPropertyResolved(true) and return Object.class to indicate
that any type is permissable to pass to a call to setValue().

setValue If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

Consult the Maps for the request, session, and application, in order, looking
for an entry under the key property. If found, replace that entry with
argument value. If not found, call
externalContext.getRequestMap().put(property, value).

Call setPropertyResolved(true) and return;

isReadOnly If base is false, setPropertyResolved(true) return false;

Otherwise, return false;

5.6. ELResolver Instances Provided by Faces

174 Jakarta Server Faces Final

ELResorver method implementation requirements

getFeatureDescriptors If base is non-null, return null.

If base is null, return an Iterator of java.beans.FeatureDescriptor instances
for all attributes in all scopes. The FeatureDescriptor name and shortName
is the name of the scoped attribute. The actual runtime type of the attribute
must be stored as the value of the ELResolver.TYPE attribute. Boolean.TRUE
must be set as the value of the ELResolver.RESOLVABLE_AT_DESIGN_TIME
attribute. The shortDescription must be a suitable description depending on
the implementation. The expert and hidden properties must be false. The
preferred property must be true.

getCommonPropertyTyp
e

If base is non-null, return null.

If base is null return String.class.

5.6.3. CDI for Expression Language Resolution

If the any of the managed beans in the application have the @jakarta.faces.annotation.FacesConfig
annotation, the ImplicitObjectELResolver from Implicit Object ELResolver for Facelets and
Programmatic Access is not present in the chain. Instead, CDI is used to perform Expression Language
resolution in the same manner is in ImplicitObjectELResolver for Programmatic Access with the
following additional implicit objects:

• externalContext

• the current ExternalContext from the current FacesContext

5.7. Current Expression Evaluation APIs

5.7.1. ELResolver

This class is the Jakarta Expression Language’s answer to Faces’s VariableResolver and
PropertyResolver. It turns out that variable resolution can be seen as a special case of property
resolution with the base object being null. Please see ELResolver for more details.

5.7.2. ValueExpression

This class is the Jakarta Expression Language’s answer to Jakarta Faces’s ValueBinding. It is the main
object oriented abstraction for an Expression Language expression that results in a value either being
retrieved or set. Please see Chapter 2 of the Jakarta Expression Language Specification, Version 4.0 or
higher.

5.7. Current Expression Evaluation APIs

Final Jakarta Server Faces 175

5.7.3. MethodExpression

This class is the Jakarta Expression Language’s answer to Jakarta Faces’s MethodBinding. It is the main
object oriented abstraction for an Expression Language expression that results in a method being
invoked. Please see Chapter 2 of the Jakarta Expression Language Specification, Version 4.0 or higher.

5.7.4. Expression Evaluation Exceptions

Four exception classes are defined to report errors related to the evaluation of value exceptions:

• jakarta.el.ELException (which extends java.lang.Exception)—used to report a problem evaluating a
value exception dynamically.

• MethodNotFoundException (which extends jakarta.el.ELException)—used to report that a requested
public method does not exist in the context of evaluation of a method expression.

• jakarta.el.PropertyNotFoundException (which extends jakarta.el.ELException)—used to report that a
requested property does not exist in the context of evaluation of a value expression.

• jakarta.el.PropertyNotWriteableException (which extends jakarta.el.ELException)—used to indicate
that the requested property could not be written to when evaluating the expression.

5.8. Deprecated Expression Evaluation APIs
Applications written for version 1.0 and 1.1 of the Faces specification must continue to run in this
version of the specification. This means deprecated APIs. This section describes the migration story for
these APIs that implementations must follow to allow 1.0 and 1.1 based applications to run.

5.8.1. VariableResolver and the Default VariableResolver

User-provided VariableResolver instances will still continue to work by virtue of VariableResolver
Chain Wrapper. The decorator pattern described in Delegating Implementation Support must be
supported. Users wishing to affect Expression Language resolution are advised to author a custom
ELResolver instead. These will get picked up as specified in ELResolvers in the application configuration
resources.

The Jakarta Faces implementation must provide a default VariableResolver implementation that gets
the ELContext from the argument FacesContext and calls setPropertyResolved(false) on it

The VariableResolver chain is no longer accessible from Application.getVariableResolver(). The chain
must be kept in an implementation dependent manner, but accessible to the ELResolver described in
VariableResolver Chain Wrapper.

5.8.2. PropertyResolver and the Default PropertyResolver

User-provided propertyResolver instances will still continue to work by virtue of VariableResolver
Chain Wrapper. The decorator pattern described in Delegating Implementation Support must be

5.8. Deprecated Expression Evaluation APIs

176 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6336
UsingJSFInWebApplications.pdf#a6336

supported. Users wishing to affect Expression Language resolution are advised to author a custom
ELResolver instead. These will get picked up as specified in ELResolvers in the application configuration
resources.

The Jakarta Faces implementation must provide a default propertyResolver implementation that gets
the ELContext from the argument FacesContext and calls setPropertyResolved(false) on it.

The PropertyResolver chain is no longer accessible from Application.getpropertyResolver(). The chain
must be kept in an implementation dependent manner, but accessible to to the ELResolver described
in PropertyResolver Chain Wrapper.

5.8.3. ValueBinding

The ValueBinding class encapsulates the actual evaluation of a value binding. Instances of ValueBinding
for specific references are acquired from the Application instance by calling the createValueBinding
method (see Acquiring ValueBinding Instances).

public Object getValue(FacesContext context)
 throws EvaluationException, PropertyNotFoundException;

Evaluate the value binding used to create this ValueBinding instance, relative to the specified
FacesContext, and return the referenced value.

public void setValue(FacesContext context, Object value)
 throws EvaluationException, PropertyNotFoundException;

Evaluate the value binding used to create this ValueBinding instance, relative to the specified
FacesContext, and update the referenced value to the specified new value.

public boolean isReadOnly(FacesContext context)
 throws EvaluationException, PropertyNotFoundException;

Evaluate the value binding used to create this ValueBinding instance, relative to the specified
FacesContext, and return true if the corresponding property is known to be immutable. Otherwise,
return false.

public Class getType(FacesContext context)
 throws EvaluationException, PropertyNotFoundException;

Evaluate the value binding used to create this ValueBinding instance, relative to the specified
FacesContext, and return the Class that represents the data type of the referenced value, if it can be
determined. Otherwise, return null.

5.8. Deprecated Expression Evaluation APIs

Final Jakarta Server Faces 177

5.8.4. MethodBinding

The MethodBinding class encapsulates the actual evaluation of a method binding. Instances of
MethodBinding for specific references are acquired from the Application instance by calling the
createMethodBinding() method. Note that instances of MethodBinding are immutable, and contain no
references to a FacesContext (which is passed in as a parameter when the reference binding is
evaluated).

public Object invoke(FacesContext context, Object params[])
 throws EvaluationException, MethodNotFoundException;

Evaluate the method binding (see MethodExpression Syntax and Semantics) and call the identified
method, passing the specified parameters. Return any value returned by the invoked method, or return
null if the invoked method is of type void.

public Class getType(FacesContext context) throws MethodNotFoundException;

Evaluate the method binding (see MethodExpression Syntax and Semantics) and return the Class
representing the return type of the identified method. If this method is of type void, return null instead.

5.8.5. Expression Evaluation Exceptions

Four exception classes are defined to report errors related to the evaluation of value exceptions [Note
that these exceptions are deprecated]:

• EvaluationException (which extends FacesException)—used to report a problem evaluating a value
exception dynamically.

• MethodNotFoundException (which extends EvaluationException)—used to report that a requested
public method does not exist in the context of evaluation of a method expression.

• PropertyNotFoundException (which extends EvaluationException)—used to report that a requested
property does not exist in the context of evaluation of a value expression.

• ReferenceSyntaxException (which extends EvaluationException)—used to report a syntax error in a
value exception.

5.9. CDI Integration
Jakarta Faces must run in a container that supports CDI version 3.0 or higher. This requirement allows
CDI to provide all the functionality of the managed bean facility from The Managed Bean Facility and
Managed Bean Annotations but in a better integrated way with the rest of the Jakarta EE platform.
Delegating these features to CDI allows them to evolve independently of Jakarta Faces. The remainder
of this section specifies some details of CDI integration pertinent to Jakarta Faces.

5.9. CDI Integration

178 Jakarta Server Faces Final

5.9.1. Jakarta Faces Objects Valid for @Inject Injection

It must be possible to inject the following Jakarta Faces objects into other objects using @Inject.

Maps Returned by Various Jakarta Faces Accessors

The annotations in package jakarta.faces.annotation are used to cause @Inject injection of the
corresponding Map into a field. Generics may be used.

Jakarta Faces Objects

It must be possible to @Inject the following Jakarta Faces and Jakarta EE objects into CDI beans.

• jakarta.faces.application.ResourceHandler

• jakarta.faces.context.ExternalContext

• jakarta.faces.context.FacesContext

• jakarta.faces.context.Flash

• jakarta.servlet.http.HttpSession

Support for Injection into Jakarta Faces Managed Objects

It must be possible to use @Inject when specifying the following kinds of Jakarta Faces managed
objects.

• Validators declared with @jakarta.faces.validator.FacesValidator(managed=”true”)

• Converters declared with @jakarta.faces.convert.FacesConverter(managed=”true”)

• FacesBehaviors declared with @jakarta.faces.component.behavior.FacesBehavior(managed=”true”)

5.9.2. Expression Language Resolution

The following implicit objects must be resolved using CDI

• application

• cc

• component

• facesContext

• flash

• flowScope

• header

• headerValues

• initParam

• param

5.9. CDI Integration

Final Jakarta Server Faces 179

• paramValues

• session

• view

• viewScope

5.9. CDI Integration

180 Jakarta Server Faces Final

Chapter 6. Per-Request State Information
During request processing for a Jakarta Faces page, a context object is used to represent request-
specific information, as well as provide access to services for the application. This chapter describes
the classes which encapsulate this contextual information.

6.1. FacesContext
Jakarta Faces defines the jakarta.faces.context.FacesContext abstract base class for representing all of
the contextual information associated with processing an incoming request, and creating the
corresponding response. A FacesContext instance is created by the Jakarta Faces implementation, prior
to beginning the request processing lifecycle, by a call to the getFacesContext method of
FacesContextFactory, as described in FacesContextFactory. When the request processing lifecycle has
been completed, the Jakarta Faces implementation will call the release method, which gives Jakarta
Faces implementations the opportunity to release any acquired resources, as well as to pool and
recycle FacesContext instances rather than creating new ones for each request.

6.1.1. Application

public Application getApplication();

[P1-start-application]The Jakarta Faces implementation must ensure that the Application instance for
the current web application is available via this method, as a convenient alternative to lookup via an
ApplicationFactory.[P1-end]

6.1.2. Attributes

public Map<Object,Object> getAttributes();

[P1-start-attributes]Return a mutable Map representing the attributes associated wth this FacesContext
instance. This Map is useful to store attributes that you want to go out of scope when the Faces lifecycle
for the current request ends, which is not always the same as the request ending, especially in the case
of Servlet filters that are invoked after the Faces lifecycle for this request completes. Accessing this Map
does not cause any events to fire, as is the case with the other maps: for request, session, and
application scope.[P1-end]

6.1.3. ELContext

public ELContext getELContext();

Return the ELContext instance for this FacesContext instance. This ELContext instance has the same

6.1. FacesContext

Final Jakarta Server Faces 181

lifetime and scope as the FacesContext instance with which it is associated, and may be created lazily
the first time this method is called for a given FacesContext instance. [P1-start-elcontext]Upon creation
of the ELContext instance, the implementation must take the following action:

• Call the ELContext.putContext(java.lang.Class, java.lang.Object) method on the instance, passing in
FacesContext.class and the this reference for the FacesContext instance itself.

• If the Collection returned by jakarta.faces.Application.getELContextListeners() is non-empty, create
an instance of ELContextEvent and pass it to each ELContextListener instance in the Collection by
calling the ELContextListener.contextCreated(jakarta.el.ELContextEvent) method.[P1-end]

6.1.4. ExternalContext

It is sometimes necessary to interact with APIs provided by the containing environment in which the
Jakarta Server Faces application is running. In most cases this is the servlet API, but it is also possible
for a Jakarta Server Faces application to run inside of a portlet. Jakarta Server Faces provides the
ExternalContext abstract class for this purpose. [P1-start-externalContext]This class must be
implemented along with the FacesContext class, and must be accessible via the getExternalContext
method in FacesContext.[P1-end]

public ExternalContext getExternalContext();

[P1-start externalContext during Init] The default implementation must return a valid value when this
method is called during startup time. See the javadocs for this method for the complete specification.
[P1-end]

The ExternalContext instance provides immediate access to all of the components defined by the
containing environment (servlet or portlet) within which a Jakarta Faces-based web application is
deployed. The following table lists the container objects available from ExternalContext. Note that the
Access column refers to whether the returned object is mutable. None of the properties may be set
through ExternalContext. itself.

Name Access Type Description

applicationMap RW java.util.Map The application context attributes for this
application.

authType RO String The method used to authenticate the currently
logged on user (if any).

context RW Object The application context object for this application.

initParameterMap RO java.util.Map The context initialization parameters for this
application

remoteUser RO String The login name of the currently logged in user (if
any).

6.1. FacesContext

182 Jakarta Server Faces Final

Name Access Type Description

request RW Object The request object for this request.

requestContextPath RO String The context path for this application.

requestCookieMap RO java.util.Map The cookies included with this request.

requestHeaderMap RO java.util.Map The HTTP headers included with this request
(value is a String).

requestHeaderValu
esMap

RO java.util.Map .The HTTP headers included with this request
(value is a String array).

requestLocale RW java.util.Locale The preferred Locale for this request.

requestLocales RW java.util.Iterator The preferred Locales for this request, in
descending order of preference.

requestMap RW java.util.Map The request scope attributes for this request.

requestParameterM
ap

RO java.util.Map The request parameters included in this request
(value is a String).

requestParameterN
ames

RO Iterator The set of request parameter names included in
this request.

requestParameterV
aluesMap

RO java.util.Map The request parameters included in this request
(value is a String array).

requestPathInfo RO String The extra path information from the request URI
for this request.

requestServletPath RO String The servlet path information from the request URI
for this request.

response RW Object The response object for the current request.

sessionMap RW java.util.Map The session scope attributes for this request5.

userPrincipal RO java.security.Princi
pal

The Principal object containing the name of the
currently logged on user (if any).

See the JavaDocs for the normative specification.

6.1.4.1. Flash

The Flash provides a way to pass temporary objects between the user views generated by the faces
lifecycle. Anything one places in the flash will be exposed to the next view encountered by the same
user session and then cleared out..

Name Access Type Description

flash R Flash See the javadocs for the complete specification.

6.1. FacesContext

Final Jakarta Server Faces 183

6.1.5. ViewRoot

public UIViewRoot getViewRoot();
public void setViewRoot(UIViewRoot root);

During the Restore View phase of the request processing lifecycle, the state management subsystem of
the Jakarta Faces implementation will identify the component tree (if any) to be used during the
inbound processing phases of the lifecycle, and call setViewRoot() to establish it.

6.1.6. Message Queue

public void addMessage(String clientId, FacesMessage message);

During the Apply Request Values, Process Validations, Update Model Values, and Invoke Application
phases of the request processing lifecycle, messages can be queued to either the component tree as a
whole (if clientId is null), or related to a specific component based on its client identifier.

public Interator<String> getClientIdsWithMessages();
public Severity getMaximumSeverity();
public Iterator<FacesMessage> getMessages(String clientId);
public Iterator<FacesMessage> getMessages();

[P1-start-messageQueue]The getClientIdsWithMessages() method must return an Iterator over the
client identifiers for which at least one Message has been queued. This method must be implemented
so the clientIds are returned in the order of calls to addMessage().[P1-end] The getMaximumSeverity()
method returns the highest severity level on any Message that has been queued, regardless of whether
or not the message is associated with a specific client identifier or not. The getMessages(String) method
returns an Iterator over queued Messages, either those associated with the specified client identifier,
or those associated with no client identifier if the parameter is null. The getMessages() method returns
an Iterator over all queued Messages, whether or not they are associated with a particular client
identifier. Both of the getMessage() variants must be implemented such that the messages are returned
in the order in which they were added via calls to addMessage().

For more information about the Message class, see FacesMessage.

6.1.7. RenderKit

public RenderKit getRenderKit();

Return the RenderKit associated with the render kit identifier in the current UIViewRoot (if any).

6.1. FacesContext

184 Jakarta Server Faces Final

6.1.8. ResponseStream and ResponseWriter

public ResponseStream getResponseStream();
public void setResponseStream(ResponseStream responseStream);
public ResponseWriter getResponseWriter();
public void setResponseWriter(ResponseWriter responseWriter);
public void enableResponseWriting(boolean enable);

Jakarta Faces supports output that is generated as either a byte stream or a character stream.
UIComponents or Renderer s that wish to create output in a binary format should call
getResponseStream() to acquire a stream capable of binary output. Correspondingly, UIComponents or
Renderers that wish to create output in a character format should call getResponseWriter() to acquire a
writer capable of character output.

Due to restrictions of the underlying servlet APIs, either binary or character output can be utilized for
a particular response—they may not be mixed.

Please see ViewHandler to learn when setResponseWriter() and setResponseStream() are called.

The enableResponseWriting method is useful to enable or disable the writing of content to the current
ResponseWriter instance in this FacesContext. [P1-start-enableWriting]If the enable argument is false,
content should not be written to the response if an attempt is made to use the current ResponseWriter.

6.1.9. Flow Control Methods

public void renderResponse();
public void responseComplete();
public boolean getRenderResponse();
public boolean getResponseComplete();

Normally, the phases of the request processing lifecycle are executed sequentially, as described in
Request Processing Lifecycle. However, it is possible for components, event listeners, and validators to
affect this flow by calling one of these methods.

The renderResponse() method signals the Jakarta Faces implementation that, at the end of the current
phase (in other words, after all of the processing and event handling normally performed for this
phase is completed), control should be transferred immediately to the Render Response phase,
bypassing any intervening phases that have not yet been performed. For example, an event listener for
a tree control that was designed to process user interface state changes (such as expanding or
contracting a node) on the server would typically call this method to cause the current page to be
redisplayed, rather than being processed by the application.

The responseComplete() method, on the other hand, signals the Jakarta Faces implementation that the
HTTP response for this request has been completed by some means other than rendering the

6.1. FacesContext

Final Jakarta Server Faces 185

component tree, and that the request processing lifecycle for this request should be terminated when
the current phase is complete. For example, an event listener that decided an HTTP redirect was
required would perform the appropriate actions on the response object (i.e. calling
ExternalContext.redirect()) and then call this method.

In some circumstances, it is possible that both renderResponse() and responseComplete() might have
been called for the request. [P1-start-flowControl]In this case, the Jakarta Faces implementation must
respect the responseComplete() call (if it was made) before checking to see if renderResponse() was
called.[P1-end]

The getRenderResponse() and getResponseComplete() methods allow a Jakarta Faces-based application
to determine whether the renderResponse() or responseComplete() methods, respectively, have been
called already for the current request.

6.1.10. Partial Processing Methods

public PartialViewContext getPartialViewContext();

[P1-start-getpartialViewContext]The getPartialViewContext()method must return an instance of
PartialViewContext either by creating a new instance, or returning an existing instance from the
FacesContext.[P1-end-getpartialViewcontext]

6.1.11. Partial View Context

The PartialViewContext contains the constants, properties and methods to facilitate partial view
processing and partial view rendering. Refer to Partial View Processing and Partial View Rendering.
Refer to the JavaDocs for the jakarta.faces.context.PartialViewContext class for method requirements.

6.1.12. Access To The Current FacesContext Instance

public static FacesContext getCurrentInstance();
protected static void setCurrentInstance(FacesContext context);

Under most circumstances, Jakarta Faces components, and application objects that access them, are
passed a reference to the FacesContext instance for the current request. However, in some cases, no
such reference is available. The getCurrentInstance() method may be called by any Java class in the
current web application to retrieve an instance of the FacesContext for this request. [P1-start-
currentInstance]The Jakarta Faces implementation must ensure that this value is set correctly before
FacesContextFactory returns a FacesContext instance, and that the value is maintained in a thread-safe
manner.[P1-end]

[P1-start facesContextDuringInit] The default implementation must allow this method to be called
during application startup time, before any requests have been serviced. If called during application

6.1. FacesContext

186 Jakarta Server Faces Final

startup time, the instance returned must have the special properties as specified on the javadocs for
FacesContext.getCurrentInstance() The . [P1-end]

6.1.13. CurrentPhaseId

The default lifecycle implementation is responsible for setting the currentPhaseId property on the
FacesContext instance for this request, as specified in Standard Request Processing Lifecycle Phases.
The following table describes this property.

Name Access Type Description

currentPhaseId RW PhaseId The PhaseId constant for the current phase of the
request processing lifecycle

6.1.14. ExceptionHandler

The FacesContextFactory ensures that each newly created FacesContext instance is initialized with a
fresh instance of ExceptionHandler, created from ExceptionHandlerFactory. The following table
describes this property.

Name Access Type Description

exceptionHandler RW ExceptionHandler Set by FacesContextFactory.getFacesContext(), this
class is the default exception handler for any
unexpected Exceptions that happen during the
Faces lifecycle. See the Javadocs for
ExceptionHandler for details.

Please see PhaseListener for the circumstances under which ExceptionHandler is used.

6.2. ExceptionHandler
ExceptionHandler is the central point for handling unexpected Exceptions that are thrown during the
Faces lifecycle. The ExceptionHandler must not be notified of any Exceptions that occur during
application startup or shutdown.

Several places in the Faces specification require an Exception to be thrown as a result of normal
lifecycle processing. [P1-start_expected_exceptions]The following expected Exception cases must not be
handled by the ExceptionHandler.

• All cases where a ValidatorException is specified to be thrown or caught

• All cases where a ConverterException is specified to be thrown or caught

• The case when a MissingResourceException is thrown during the processing of the <f:loadBundle />
tag.

• If an exception is thrown when the runtime is processing the @PreDestroy annotation on a

6.2. ExceptionHandler

Final Jakarta Server Faces 187

managed bean.

• All classes when an AbortProcessingException is thrown.

All other Exception cases must not be swallowed, and must be allowed to flow up to the
Lifecycle.execute() method where the individual lifecycle phases are implemented. [P1-
end_expected_exceptions] At that point, all Exceptions are passed to the ExceptionHandler as described
in PhaseListener.

Any code that is not a part of the core Faces implementation may leverage the ExceptionHandler in one
of two ways.

6.2.1. Default ExceptionHandler implementation

The default ExceptionHandler must implement the following behavior for each of its methods

public ExceptionQueuedEvent getHandledExceptionEvent();

Return the first “handled” ExceptionQueuedEvent, that is, the one that was actually re-thrown.

public Iterable<ExceptionQueuedEvent> getHandledExceptionEvents();

The default implementation must return an Iterable over all ExceptionEvents that have been handled
by the handle() method.

public Throwable getRootCause(Throwable t);

Unwrap the argument t until the unwrapping encounters an Object whose getClass() is not equal to
FacesException.class or jakarta.el.ELException.class. If there is no root cause, null is returned.

public Iterable<ExceptionQueuedEvent> getUnhandledExceptionEvents();

Return an Iterable over all ExceptionEvents that have not yet been handled by the handle() method.

public void handle() throws FacesException;

Inspect all unhandled ExceptionQueuedEvent instances in the order in which they were queued by calls
to Application.publishEvent(ExceptionQueuedEvent.class, eventContext).

For each ExceptionQueuedEvent in the list, call its getContext() method and call getException() on the
returned result. Upon encountering the first such Exception the corresponding ExceptionQueuedEvent
must be set so that a subsequent call to getHandledExceptionEvent() or getHandledExceptionEvents()

6.2. ExceptionHandler

188 Jakarta Server Faces Final

returns that ExceptionQueuedEvent instance. The implementation must also ensure that subsequent
calls to getUnhandledExceptionEvents() do not include that ExceptionQueuedEvent instance. Let
toRethrow be either the result of calling getRootCause() on the Exception, or the Exception itself,
whichever is non-null. Re-wrap toThrow in a ServletException or (PortletException, if in a portlet
environment) and throw it, allowing it to be handled by any <error-page> declared in the web
application deployment descriptor or by the default error page as described elsewhere in this section.

There are two exceptions to the above processing rules. In both cases, the Exception must be logged
and not re-thrown.

• If an unchecked Exception occurs as a result of calling a method annotated with PreDestroy on a
managed bean.

• If the Exception originates inside the ELContextListener.removeElContextListener() method

The FacesException must be thrown if and only if a problem occurs while performing the algorithm to
handle the Exception, not as a means of conveying a handled Exception itself.

public boolean isListenerForSource(Object source);

The default implementation must return true if and only if the source argument is an instance of
ExceptionEventContext.

public void processEvent(SystemEvent ExceptionQueuedEvent)
 throws AbortProcessingException;

The default implementation must store the argument ExceptionQueuedEvent in a strongly ordered
queue for later processing by the handle() method.

6.2.2. Backwards Compatible ExceptionHandler

[P1-startPreJsf2ExceptionHandler]The runtime must provide an ExceptionHandlerFactory
implementation with the fully qualified java classname of
jakarta.faces.webapp.PreJsf2ExceptionHandlerFactory that creates ExceptionHandler instances that
behave exactly like the default ExceptionHandler except that the handle() method behaves as follows.

Pre-Jakarta Faces JSF 1.1 and 1.2 (under the JCP) stated in PhaseListener “Any exceptions thrown
during the beforePhase() listeners must be caught, logged, and swallowed…Any exceptions thrown
during the afterPhase() liseteners must be caught, logged, and swallowed.” The
PreJsf2ExceptionHandler restores this behavior for backwards compatibilty.

The implementation must allow users to install this ExceptionHandlerFactory into the application by
nesting <exception-handler-factory>jakarta.faces.webapp.PreJsf2ExceptionHandlerFactory</exception-
handler-factory> inside the <factory> element in the application configuration resource.[P1-
endPreJsf2ExceptionHandler]

6.2. ExceptionHandler

Final Jakarta Server Faces 189

6.2.3. Default Error Page

If no <error-page> elements are declared in the web application deployment descriptor, the runtime
must provide a default error page that contains the following information.

• The stack trace of the Exception

• The UIComponent tree at the time the ExceptionQueuedEvent was handled.

• All scoped variables in request, view, session and application scope.

• If the error happens during the execution of the view declaration language page (VDL)

◦ The physical file being traversed at the time the Exception was thrown, such as /user.xhtml

◦ The line number within that physical file at the time the Exception was thrown

◦ Any available error message(s) from the VDL page, such as: “The prefix "foz" for element
"foz:bear" is not bound.”

• The viewId at the time the ExceptionQueuedEvent was handled

If Application.getProjectStage() returns ProjectStage.Development, the runtime must guarantee that the
above debug information is available to be included in any Facelet based error page using the
<ui:include /> with a src attribute equal to the string “jakarta.faces.error.xhtml”.

6.3. FacesMessage
Each message queued within a FacesContext is an instance of the
jakarta.faces.application.FacesMessage class. The presence of one or more FacesMessage instances on
the FacesContext indicates a failure of some kind during the lifecycle. In particular, a validation or
conversion failure is required to cause a FacesMessage to be added to the FacesContext.

It offers the following constructors:

public FacesMessage();
public FacesMessage(String summary, String detail);
public FacesMessage(Severity severity, String summary, String detail);

The following method signatures are supported to retrieve and set the properties of the completed
message:

6.3. FacesMessage

190 Jakarta Server Faces Final

public String getDetail();
public void setDetail(String detail);

public Severity getSeverity();
public void setSeverity(Severity severity);

public String getSummary();
public void setSummary(String summary);

The message properties are defined as follows:

• detail —Localized detail text for this FacesMessage (if any). This will generally be additional text
that can help the user understand the context of the problem being reported by this FacesMessage,
and offer suggestions for correcting it.

• severity —A value defining how serious the problem being reported by this FacesMessage instance
should be considered. Four standard severity values (SEVERITY_INFO, SEVERITY_WARN,
SEVERITY_ERROR, and SEVERITY_FATAL) are defined as a typesafe enum in the FacesMessage class.

• summary —Localized summary text for this FacesMessage. This is normally a relatively short
message that concisely describes the nature of the problem being reported by this FacesMessage.

6.4. ResponseStream
ResponseStream is an abstract class representing a binary output stream for the current response. It
has exactly the same method signatures as the java.io.OutputStream class.

6.5. ResponseWriter
ResponseWriter is an abstract class representing a character output stream for the current response. A
ResponseWriter instance is obtained via a factory method on RenderKit. Please see RenderKit. It
supports both low-level and high level APIs for writing character based information

public void close() throws IOException;
public void flush() throws IOException;
public void write(char c[]) throws IOException;
public void write(char c[], int off, int len) throws IOException;
public void write(int c) throws IOException;
public void write(String s) throws IOException;
public void write(String s, int off, int len) throws IOException;

The ResponseWriter class extends java.io.Writer, and therefore inherits these method signatures for
low-level output. The close() method flushes the underlying output writer, and causes any further
attempts to output characters to throw an IOException. The flush method flushes any buffered

6.4. ResponseStream

Final Jakarta Server Faces 191

information to the underlying output writer, and commits the response. The write methods write raw
characters directly to the output writer.

public abstract String getContentType();
public abstract String getCharacterEncoding();

Return the content type or character encoding used to create this ResponseWriter.

public void startCDATA();
public void endCDATA();

Start and end an XML CDATA Section..

public void startDocument() throws IOException;
public void endDocument() throws IOException;

Write appropriate characters at the beginning (startDocument) or end (endDocument) of the current
response.

public void startElement(String name,
 UIComponent componentForElement) throws IOException;

Write the beginning of a markup element (the < character followed by the element name), which
causes the ResponseWriter implementation to note internally that the element is open. This can be
followed by zero or more calls to writeAttribute or writeURIAttribute to append an attribute name and
value to the currently open element. The element will be closed (i.e. the trailing > added) on any
subsequent call to startElement(), writeComment(), writeText(), endDocument(), close(), flush(), or
write(). The componentForElement parameter tells the ResponseWriter which UIComponent this
element corresponds to, if any. This parameter may be null to indicate that the element has no
corresponding component. The presence of this parameter allows tools to provide their own
implementation of ResponseWriter to allow the design time environment to know which component
corresponds to which piece of markup.

public void endElement(String name) throws IOException;

Write a closing for the specified element, closing any currently opened element first if necessary.

public void writeComment(Object comment) throws IOException;

Write a comment string wrapped in appropriate comment delimiters, after converting the comment

6.5. ResponseWriter

192 Jakarta Server Faces Final

object to a String first. Any currently opened element is closed first.

public void writeAttribute(String name, Object value,
 String componentPropertyName) throws IOException;

public void writeURIAttribute(String name, Object value,
 String componentPropertyName) throws IOException;

These methods add an attribute name/value pair to an element that was opened with a previous call to
startElement(), throwing an exception if there is no currently open element. The writeAttribute()
method causes character encoding to be performed in the same manner as that performed by the
writeText() methods. The writeURIAttribute() method assumes that the attribute value is a URI, and
performs URI encoding (such as % encoding for HTML). The componentPropertyName, if present,
denotes the property on the associated UIComponent for this element, to which this attribute
corresponds. The componentPropertyName parameter may be null to indicate that this attribute has no
corresponding property.

public void writeText(Object text, String property) throws IOException;
public void writeText(char text[], int off, int len) throws IOException;

Write text (converting from Object to String first, if necessary), performing appropriate character
encoding and escaping. Any currently open element created by a call to startElement is closed first.

public abstract ResponseWriter cloneWithWriter(Writer writer);

Creates a new instance of this ResponseWriter, using a different Writer.

6.6. FacesContextFactory
[P1-start-facesContextFactory]A single instance of jakarta.faces.context.FacesContextFactory must be
made available to each Jakarta Faces-based web application running in a servlet or portlet
container.[P1-end] This class is primarily of use by Jakarta Faces implementors—applications will not
generally call it directly. The factory instance can be acquired, by Jakarta Faces implementations or by
application code, by executing:

FacesContextFactory factory = (FacesContextFactory)
 FactoryFinder.getFactory(FactoryFinder.FACES_CONTEXT_FACTORY);

The FacesContextFactory implementation class provides the following method signature to create (or
recycle from a pool) a FacesContext instance:

6.6. FacesContextFactory

Final Jakarta Server Faces 193

public FacesContext getFacesContext(Object context,
 Object request, Object response, Lifecycle lifecycle);

Create (if necessary) and return a FacesContext instance that has been configured based on the
specified parameters. In a servlet environment, the first argument is a ServletContext, the second a
ServletRequest and the third a ServletResponse.

6.7. ExceptionHandlerFactory
[P1-start-exceptionHandlerFactory]A single instance of jakarta.faces.context.ExceptionHandlerFactory
must be made available to each Jakarta Faces-based web application running in a servlet or portlet
container.[P1-end] The factory instance can be acquired, by Jakarta Faces implementations or by
application code, by executing:

ExceptionHandlerFactory factory = (ExceptionHandlerFactory)
 FactoryFinder.getFactory(FactoryFinder.EXCEPTION_HANDLER_FACTORY);

The ExceptionHandlerFactory implementation class provides the following method signature to create
an ExceptionHandler instance:

public ExceptionHandler getExceptionHandler(FacesContext currentContext);

Create and return a ExceptionHandler instance that has been configured based on the specified
parameters.

6.8. ExternalContextFactory
[P1-start-externalContextFactory]A single instance of jakarta.faces.context.ExternalContextFactory must
be made available to each Jakarta Faces-based web application running in a servlet or portlet
container.[P1-end] This class is primarily of use by Jakarta Faces implementors—applications will not
generally call it directly. The factory instance can be acquired, by Jakarta Faces implementations or by
application code, by executing:

ExternalContextFactory factory = (ExternalContextFactory)
 FactoryFinder.getFactory(FactoryFinder.EXTERNAL_CONTEXT_FACTORY);

The ExternalContextFactory implementation class provides the following method signature to create
(or recycle from a pool) a FacesContext instance:

6.7. ExceptionHandlerFactory

194 Jakarta Server Faces Final

public ExternalContext getExternalContext(
Object context, Object request, Object response);

Create (if necessary) and return an ExternalContext instance that has been configured based on the
specified parameters. In a servlet environment, the first argument is a ServletContext, the second a
ServletRequest and the third a ServletResponse.

6.8. ExternalContextFactory

Final Jakarta Server Faces 195

Chapter 7. Application Integration
Previous chapters of this specification have described the component model, request state information,
and the next chapter describes the rendering model for Jakarta Server Faces user interface
components. This chapter describes APIs that are used to link an application’s business logic objects, as
well as convenient pluggable mechanisms to manage the execution of an application that is based on
Jakarta Server Faces. These classes are in the jakarta.faces.application package.

Access to application related information is centralized in an instance of the Application class, of which
there is a single instance per application based on Jakarta Server Faces. Applications will typically
provide one or more implementations of ActionListener (or a method that can be referenced by an
action expression) in order to respond to ActionEvent events during the Apply Request Values or Invoke
Application phases of the request processing lifecycle. Finally, a standard implementation of
NavigationHandler (replaceable by the application or framework) is provided to manage the selection
of the next view to be rendered.

7.1. Application
There must be a single instance of Application per web application that is utilizing Jakarta Server
Faces. It can be acquired by calling the getApplication() method on the FacesContext instance for the
current request, or the getApplication() method of the ApplicationFactory (see ApplicationFactory), and
provides default implementations of features that determine how application logic interacts with the
Jakarta Faces implementation. Advanced applications (or application frameworks) can install
replacements for these default implementations, which will be used from that point on. Access to
several integration objects is available via JavaBeans property getters and setters, as described in the
following subsections.

7.1.1. ActionListener Property

public ActionListener getActionListener();
public void setActionListener(ActionListener listener);

Return or replace an ActionListener instance that will be utilized to process ActionEvent events during
the Apply Request Values or Invoke Application phase of the request processing lifecycle. [P1-start
default ActionListener requirements] The Jakarta Faces implementation must provide a default
implementation ActionListener that performs the following functions:

• The processAction() method must first call FacesContext.renderResponse() in order to bypass any
intervening lifecycle phases, once the method returns.

• The processAction() method must next determine the logical outcome of this event, as follows:

◦ If the originating component has a non-null action property, retrieve the MethodBinding and
call invoke() to perform the application-specified processing in this action method. If the

7.1. Application

196 Jakarta Server Faces Final

method returns non- null, call toString() on the result and use the value returned as the logical
outcome. See Properties for a decription of the action property.

◦ Otherwise, the logical outcome is null.

• The processAction() method must finally retrieve the NavigationHandler instance for this
application, and pass the logical outcome value (determined above) as a parameter to the
handleNavigation() method of the NavigationHandler instance. If the originating component has an
attribute whose name is equal to the value of the symbolic constant
ActionListener.TO_FLOW_DOCUMENT_ID_ATTR_NAME, invoke handleNavigation(FacesContext,
String, String, String) passing the value of the attribute as the last parameter. Otherwise, invoke
handleNavigation(FacesContext, String, String). In either case, the first String argument is the
expression string of the fromAction and the second String argument is the logical outcome.[P1-end]

See the Javadocs for getActionListener() for important backwards compatability information.

7.1.2. DefaultRenderKitId Property

public String getDefaultRenderKitId();
public void setDefaultRenderKitId(String defaultRenderKitId);

An application may specify the render kit identifier of the RenderKit to be used by the ViewHandler to
render views for this application. If not specified, the default render kit identifier specified by
RenderKitFactory.HTML_BASIC_RENDER_KIT will be used by the default ViewHandler implementation.

[P1-start defaultRenderKit called after startup] Unless the application has provided a custom
ViewHandler that supports the use of multiple RenderKit instances in the same application, this
method may only be called at application startup, before any Faces requests have been processed. [P1-
end] This is a limitation of the current Specification, and may be lifted in a future release.

7.1.3. FlowHandler Property

public FlowHandler getFlowHandler();
public void setFlowHandler(FlowHandler handler);

Return or replace the FlowHandler that will be used by the NavigationHandler to make decisions about
navigating application flow. See FlowHandler for an overview of the flow feature.

[P1-start flowHandler called after startup] setFlowHandler() may only be called at application startup,
before any Faces requests have been processed. [P1-end] This is a limitation of the current
Specification, and may be lifted in a future release. getFlowHandler() may be called at any time after
application startup.

7.1. Application

Final Jakarta Server Faces 197

7.1.4. NavigationHandler Property

public NavigationHandler getNavigationHandler();
public void setNavigationHandler(NavigationHandler handler);

Return or replace the NavigationHandler instance (see NavigationHandler) that will be passed the
logical outcome of the application ActionListener as described in the previous subsection. A default
implementation must be provided, with functionality described in Default NavigationHandler
Algorithm:

7.1.5. StateManager Property

public StateManager getStateManager();
public void setStateManager(StateManager manager);

Return or replace the StateManager instance that will be utilized during the Restore View and Render
Response phases of the request processing lifecycle to manage state persistence for the components
belonging to the current view. A default implementation must be provided, which operates as
described in StateManager.

7.1.6. ELResolver Property

public ELResolver getELResolver();
public void addELResolver(ELResolver resolver);

[N/T-start elresolver test] Return the ELResolver instance to be used for all Expression Language
resolution. This is actually an instance of jakarta.el.CompositeELResolver that must contain the
ELResolver instances as specified in ELResolver for Facelets and Programmatic Access. [N/T-end]

[N/T-start addELResolver ordering] addELResolver must cause the argument resolver to be added at
the end of the list in the jakarta.el.CompositeELResolver returned from getELResolver(). See the
diagram in ELResolver for Facelets and Programmatic Access [N/T-end]

7.1.7. ELContextListener Property

public addELContextListener(ELContextListener listener);
public void removeELContextListener(ELContextListener listener);
public ELContextListener[] getELContextListeners();

addELContextListener() registers an ELContextListener for the current Faces application. This listener
will be notified on creation of ELContext instances, and it will be called once per request.

7.1. Application

198 Jakarta Server Faces Final

removeELContextListener() removes the argument listener from the list of ELContextListeners. If
listener is null, no exception is thrown and no action is performed. If listener is not in the list, no
exception is thrown and no action is performed.

getELContextListeners() returns an array representing the list of listeners added by calls to
addELContextListener().

7.1.8. ViewHandler Property

public ViewHandler getViewHandler();
public void setViewHandler(ViewHandler handler);

See ViewHandler for the description of the ViewHandler. The Jakarta Faces implementation must
provide a default ViewHandler implementation. This implementation may be replaced by calling
setViewHandler() before the first time the Render Response phase has executed. [P1-start
setViewHandler() called after startup] If a call is made to setViewHandler() after the first time the
Render Response phase has executed, the call must be ignored by the implementation. [P1-end]

7.1.9. ProjectStage Property

public ProjectStage getProjectStage();

[P1-start getProjectStage]This method must return the enum constant from the class
jakarta.faces.application.ProjectStage as specified in the corresponding application init parameter,
JNDI entry, or default Value. See Application Configuration Parameters.[P1-end]

7.1.10. Acquiring ExpressionFactory Instance

public ExpressionFactory getExpressionFactory();

Return the ExpressionFactory instance for this application. This instance is used by the
evaluateExpressionGet (See Programmatically Evaluating Expressions) convenience method.

[P1-start getExpressionFactory requirements] The default implementation simply returns the
ExpressionFactory from the Jakarta Server Pages container by calling
JspFactory.getDefaultFactory().getJspApplicationContext(servletContext).getExpressionFactory().[P1-
end]

7.1.11. Programmatically Evaluating Expressions

7.1. Application

Final Jakarta Server Faces 199

UsingJSFInWebApplications.pdf#a6088

public Object evaluateExpressionGet(FacesContext context,
 String expression, Class expectedType)

Get a value by evaluating an expression.

Call getExpressionFactory().createValueExpression() passing the argument expression and expectedType.
Call FacesContext.getELContext() and pass it to ValueExpression.getValue(), returning the result.

It is also possible and sometimes desireable to obtain the actual ValueExpression or MethodExpression
instance directly. This can be accomplished by using the createValueExpression() or
createMethodExpression() methods on the ExpressionFactory returned from getExpressionFactory().

7.1.12. Object Factories

The Application instance for a web application also acts as an object factory for the creation of new
Jakarta Faces objects such as components, converters, validators and behaviors..

public UIComponent createComponent(String componentType);
public UIComponent createComponent(
 String componentType, String rendererType);

public Converter createConverter(Class targetClass);
public Converter createConverter(String converterId);
public Validator createValidator(String validatorId);
public Behavior createBehavior(String behaviorId);

Each of these methods creates a new instance of an object of the requested type 6, based on the
requested identifier. The names of the implementation class used for each identifier is normally
provided by the Jakarta Faces implementation automatically (for standard classes described in this
Specification), or in one or more application configuration resources (see Application Configuration
Resources) included with a Jakarta Faces web application, or embedded in a JAR file containing the
corresponding implementation classes.

All variants createConverter() must take some action to inspect the converter for @ResourceDependency
and @ListenerFor annotations.

public UIComponent createComponent(ValueExpression componentExpression,
 FacesContext context, String componentType);

[P1-start createComponent(ValueExpression) requirements] This method has the following behavior:

• Call the getValue() method on the specified ValueExpression, in the context of the specified
FacesContext. If this results in a non-null UIComponent instance, return it as the value of this

7.1. Application

200 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6195
UsingJSFInWebApplications.pdf#a6195

method.

• If the getValue() call did not return a component instance, create a new component instance of the
specified component type, pass the new component to the s etValue() method of the specified
ValueExpression, and return it.[P1-end]

public UIComponent createComponent(
 FacesContext context, Resource componentResource);

All variants createComponent() must take some action to inspect the component for
@ResourceDependency and @ListenerFor annotations. Please see the JavaDocs and Composite
Component Metadata for the normative specification relating to this method.

public void addComponent(String componentType, String componentClass);
public void addConverter(Class targetClass, String converterClass);
public void addConverter(String converterId, String converterClass);
public void addValidator(String validatorId, String validatorClass);
public void addBehavior(String behaviorId, String behaviorClass);

Jakarta Faces-based applications can register additional mappings of identifiers to a corresponding
fully qualified class name, or replace mappings provided by the Jakarta Faces implementation in order
to customize the behavior of standard Jakarta Faces features. These methods are also used by the
Jakarta Faces implementation to register mappings based on <component>, <converter>, <behavior>
and <validator> elements discovered in an application configuration resource.

public Iterator<String> getComponentTypes();
public Iterator<String> getConverterIds();
public Iterator<Class> getConverterTypes();
public Iterator<String> getValidatorIds();
public Iterator<String> getBehaviorIds();

Jakarta Faces-based applications can ask the Application instance for a list of the registered identifiers
for components, converters, and validators that are known to the instance.

7.1.12.1. Default Validator Ids

From the list of mappings of validatorId to fully qualified class name, added to the application via calls
to addValidator(), the application maintains a subset of that list under the heading of default validator
ids. The following methods provide access to the default validator ids registered on an application:

public void addDefaultValidatorId(String validatorId);
public Map<String,String> getDefaultValidatorInfo();

7.1. Application

Final Jakarta Server Faces 201

The required callsites for these methods are specified in Validation Registration.

7.1.13. Internationalization Support

The following methods and properties allow an application to describe its supported locales, and to
provide replacement text for standard messages created by Jakarta Faces objects.

public Iterator<Locale> getSupportedLocales();
public void setSupportedLocales(Collection<Locale> newLocales);
public Locale getDefaultLocale();
public void setDefaultLocale(Locale newLocale);

Jakarta Faces applications may state the Locale s they support (and the default Locale within the set of
supported Locales) in the application configuration resources file. The setters for the following
methods must be called when the configuration resources are parsed. Each time the setter is called, the
previous value is overwritten.

public String getMessageBundle();
public void setMessageBundle(String messageBundle);

Specify the fully qualified name of the ResourceBundle from which the Jakarta Faces implementation
will acquire message strings that correspond to standard message keys See Localized Application
Messages for a list of the standard message keys recognized by Jakarta Faces.

7.1.14. System Event Methods

System events are described in System Events. This section describes the methods defined on
Application that support system events

7.1.14.1. Subscribing to system events

public abstract void subscribeToEvent(Class<? extends SystemEvent>
 systemEventClass, SystemEventListener listener)

public abstract void subscribeToEvent(Class<? extends SystemEvent>
 systemEventClass, Class sourceClass, SystemEventListener listener);

public abstract void publishEvent(Class<? extends SystemEvent>
 systemEventClass, SystemEventListenerHolder source);

public void publishEvent(Class<? extends SystemEvent>
 systemEventClass, Class<?> sourceBaseType, Object source)

7.1. Application

202 Jakarta Server Faces Final

The first variant of subscribeToEvent() subscribes argument listener to have its isListenerForSource()
method, and (depending on the result from isListenerForSource()) its processEvent() method called any
time any call is made to Application.publishEvent(Class<? extends SystemEvent> systemEventClass,
SystemEventListenerHolder source) where the first argument in the call to publishEvent() is equal to the
first argument to subscribeToEvent(). [P1-start eventClassAndInheritance] NOTE : The implementation
must not support subclasses for the systemEventClass and/or sourceClass arguments to
subscribeToEvent() or publishEvent().[P1-end] For example, consider two event types, SuperEvent and
SubEvent extends SuperEvent. If a listener subscribes to SuperEvent.class events, but later someone
publishes a SubEvent.class event (which extends SuperEvent), the listener for SuperEvent.class must not
be called.

The second variant of subscribeToEvent() is equivalent to the first, with the additional constraint the
the sourceClass argument to publishEvent() must be equal to the Class object obtained by calling
getClass() on the source argument to publishEvent().

See the javadocs for both variants of subscribeForEvent() for the complete specification of these
methods.

publishEvent() is called by the system at several points in time during the runtime of a Jakarta Faces
application. The specification for when publishEvent() is called is given in the javadoc for the event
classes that are listed in Event Classes. See the javadoc for publishEvent() for the complete specification.

7.1.14.2. Unsubscribing from system events

public abstract void unsubscribeFromEvent(Class<? extends SystemEvent>
 systemEventClass, SystemEventListener listener);

public abstract void unsubscribeFromEvent(Class<? extends SystemEvent>
 systemEventClass, Class sourceClass, SystemEventListener listener);

See the javadocs for both variants of unsubscribeFromEvent() for the complete specification.

7.2. ApplicationFactory
A single instance of jakarta.faces.application.ApplicationFactory must be made available to each
Jakarta Faces-based web application running in a servlet or portlet container. The factory instance can
be acquired by Jakarta Faces implementations or by application code, by executing:

ApplicationFactory factory = (ApplicationFactory)
 FactoryFinder.getFactory(FactoryFinder.APPLICATION_FACTORY);

The ApplicationFactory implementation class supports the following methods:

7.2. ApplicationFactory

Final Jakarta Server Faces 203

public Application getApplication();
public void setApplication(Application application);

Return or replace the Application instance for the current web application. The Jakarta Faces
implementation must provide a default Application instance whose behavior is described in
Application.

Note that applications will generally find it more convenient to access the Application instance for this
application by calling the getApplication() method on the FacesContext instance for the current request.

7.3. Application Actions
An application action is an application-provided method on some Java class that performs some
application-specified processing when an ActionEvent occurs, during either the Apply Request Values or
the Invoke Application phase of the request processing lifecycle (depending upon the immediate
property of the ActionSource instance initiating the event).

Application action is not a formal Jakarta Faces API; instead any method that meets the following
requirements may be used as an Action by virtue of evaluating a method binding expression:

• The method must be public.

• The method must take no parameters.

• The method must return Object.

The action method will be called by the default ActionListener implementation, as described in
ActionListener Property above. Its responsibility is to perform the desired application actions, and
then return a logical “outcome” (represented as a String) that can be used by a NavigationHandler in
order to determine which view should be rendered next. The action method to be invoked is defined
by a MethodBinding that is specified in the action property of a component that implements
ActionSource. Thus, a component tree with more than one such ActionSource component can specify
individual action methods to be invoked for each activated component, either in the same Java class or
in different Java classes.

7.4. NavigationHandler

7.4.1. Overview

Most Jakarta Faces applications can be thought of as a directed graph of views, each node of which
roughly corresponds to the user’s perception of “location” within the application. Applications that use
the Faces Flows feature have additional kinds of nodes in the directed graph. In any case, navigating
the nodes of this graph is the responsibility of the NavigationHandler. A single NavigationHandler
instance is responsible for consuming the logical outcome returned by an application action that was
invoked, along with additional state information that is available from the FacesContext instance for

7.3. Application Actions

204 Jakarta Server Faces Final

the current request, and (optionally) selecting a new view to be rendered. If the outcome returned by
the applicationaction is null or the empty string, and none of the navigation cases that map to the
current view identifier have a non-null condition expression, the same view must be re-displayed. This
is a change from the old behavior. As of pre-Jakarta Faces JSF 2.0 (under the JCP), the
NavigationHandler is consulted even on a null outcome, but under this circumstance it only checks
navigation cases that do not specify an outcome (no <from-outcome>) and have a condition expression
(specified with <if>). This is the only case where the same view (and component tree) is re-used.

public void handleNavigation(FacesContext context,
 String fromAction, String outcome);

The handleNavigation method may select a new view by calling createView() on the ViewHandler
instance for this application, optionally customizing the created view, and then selecting it by calling
the setViewRoot() method on the FacesContext instance that is passed. Alternatively, the
NavigationHandler can complete the actual response (for example, by issuing an HTTP redirect), and
call responseComplete() on the FacesContext instance.

After a return from the handleNavigation method, control will normally proceed to the Render
Response phase of the request processing lifecycle (see Render Response), which will cause the newly
selected view to be rendered. If the NavigationHandler called the responseComplete() method on the
FacesContext instance, however, the Render Response phase will be bypassed.

Jakarta Faces also contains the ConfigurableNavigationHandler interface, which extends the contract of
the NavigationHandler to include two additional methods that accommodate runtime inspection of the
NavigationCases that represent the rule-based navigation metamodel. The method getNavigationCase
consults the NavigationHandler to determine which NavigationCase the handleNavigation method
would resolve for a given "from action" expression and logical outcome combination. The method
getNavigationCases returns a java.util.Map of all the NavigationCase instances known to this
NavigationHandler. Each key in the map is a from view ID and the cooresponding value is a
java.util.Set of NavigationCases for that from view ID.

public NavigationCase getNavigationCase(FacesContext context,
 String fromAction, String outcome);

public Map<String, Set<NavigationCase>> getNavigationCases();

[P1-start-configurablenavhandler]A Jakarta Faces compliant-implemention must ensure that its
NavigationHandler implements the ConfigurableNavigationHandler interface. The handleNavigation
and getNavigation Case methods should use the same logic to resolve a NavigationCase, which is
outlined in the next section.[P1-end]

7.4. NavigationHandler

Final Jakarta Server Faces 205

7.4.2. Default NavigationHandler Algorithm

Jakarta Faces implementations must provide a default NavigationHandler implementation that maps
the action reference that was utilized (by the default ActionListener implementation) to invoke an
application action, the logical outcome value returned by that application action, as well as other state
information, into the view identifier for the new view or flow node to be selected. The remainder of
this section describes the functionality provided by this default implementation.

The behavior of the default NavigationHandler implementation is configured, at web application
startup time, from the contents of zero or more application configuration resources (see Application
Configuration Resources). The configuration information is represented as zero or more <navigation-
rule> elements, each keyed to a matching pattern for the view identifier of the current view expressed
in a <from-view-id> element. This matching pattern must be either an exact match for a view identifier
(such as “/index.jsp” if you are using the default ViewHandler), or the prefix of a component view id,
followed by an asterisk (“*”) character. A matching pattern of “*”, or the lack of a <from-view-id>
element inside a <navigation-rule> rule, indicates that this rule matches any possible component view
identifier.

Version 2.2 of the specification introduced the Faces Flows feature. [P1-start-
FlowNavigationConstraints] With respect to the navigation algorithm, any text that references a view
identifier, such as <from-view-id> or <to-view-id>, can also refer to a flow node, subject to these
constraints.

• When outside of a flow, view identifier has the additional possibility of being a flow id.

• When inside a flow, a view identifier has the additional possibility of being the id of any node within
the current flow.[P1-end]

If the specification needs to refer to a view identifier that is an actual VDL view (and not a VDL view or
a flow, or flow node), the term vdl view identifier will be used.

Nested within each <navigation-rule> element are zero or more <navigation-case> elements that
contain additional matching criteria based on the action reference expression value used to select an
application action to be invoked (if any), and the logical outcome returned by calling the invoke()
method of that application action 7. Navigation cases support a condition element, <if>, whose content
must be a single, contiguous value expression expected to resolve to a boolean value (if the content
does not match this requirement, the condition is ignored) 8. When the <if> element is present, the
value expression it contains must evaluate to true when the navigation case is being consulted in order
for the navigation case to match 9. Finally, the <navigation-case> element contains a <to-view-id>
element, whose content is either the view identifier or a value expression that resolves to the view
identifier. If the navigation case is a match, this view identifier is to be selected and stored in the
FacesContext for the current request following the invocation of the NavigationHandler. See below for
an example of the configuration information for the default NavigationHandler might be configured.

It is permissible for the application configuration resource(s) used to configure the default
NavigationHandler to include more than one <navigation-rule> element with the same <from-view-id>
matching pattern. For the purposes of the algorithm described below, all of the nested <navigation-

7.4. NavigationHandler

206 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6195
UsingJSFInWebApplications.pdf#a6195

case> elements for all of these rules shall be treated as if they had been nested inside a single
<navigation-rule> element.

[P1-start navigation handler requirements] The default NavigationHandler implementation must
behave as if it were performing the following algorithm (although optimized implementation
techniques may be utilized):

• If no navigation case is matched by a call to the handleNavigation() method, this is an indication
that the current view should be redisplayed. A null outcome does not unconditionally cause all
navigation rules to be skipped.

• Find a <navigation-rule> element for which the view identifier (of the view in the FacesContext
instance for the current request) matches the <from-view-id> matching pattern of the <navigation-
rule>. Rule instances are considered in the following order:

◦ An exact match of the view identifier against a <from-view-id> pattern that does not end with an
asterisk (“*”) character.

◦ For <from-view-id> patterns that end with an asterisk, an exact match on characters preceding
the asterisk against the prefix of the view id. If the patterns for multiple navigation rules match,
pick the longest matching prefix first.

◦ If there is a <navigation-rule> with a <from-view-id> pattern of only an asterisk 10, it matches
any view identifier.

• From the <navigation-case> elements nested within the matching <navigation-rule> element, locate
a matching navigation case by matching the <from-action> and <from-outcome> values against the
fromAction and outcome parameter values passed to the handleNavigation() method. To match an
outcome value of null, the <from-outcome> must be absent and the <if> element present. Regardless
of outcome value, if the <if> element is present, evaluate the content of this element as a value
expression and only select the navigation case if the expression resolves to true. Navigation cases
are checked in the following order:

◦ Cases specifying both a <from-action> value and a <from-outcome> value are matched against
the action expression and outcome parameters passed to the handleNavigation() method (both
parameters must be not null, and both must be equal to the corresponding condition values, in
order to match).

◦ Cases that specify only a <from-outcome> value are matched against the outcome parameter
passed to the handleNavigation() method (which must be not null, and equal to the
corresponding condition value, to match).

◦ Cases that specify only a <from-action> value are matched against the action expression
parameter passed to the handleNavigation() method (which must be non-null, and equal to the
corresponding condition value, to match; if the <if> element is absent, only match a non-null
outcome; otherwise, match any outcome).

◦ Any remaining case is assumed to match so long as the outcome parameter is non-null or the
<if> element is present.

◦ For cases that match up to this point and contain an <if> element, the condition value

7.4. NavigationHandler

Final Jakarta Server Faces 207

expression must be evaluated and the resolved value true for the case to match.

• If a matching <navigation-case> element was located, proceed as follows.

◦ If the <to-view-id> element is the id of a flow, discover that flow’s start node and resolve it to a
vdl view identifier by following the algorithm in Requirements for Explicit Navigation in Faces
Flow Call Nodes other than ViewNodes

◦ If the <to-view-id> element is a non-view flow node, resolve it to a vdl view identifier by
following the algorithm in Requirements for Explicit Navigation in Faces Flow Call Nodes other
than ViewNodes.

◦ If UIViewAction.isProcessingBroadcast() returns true, call getFlash().setKeepMessages(true) on
the current FacesContext. Compare the viewId of the current viewRoot with the <to-view-id> of
the matching <navigation-case>. If they differ, take any necessary actions to effectively restart
the Jakarta Faces lifecycle on the <to-view-id> of the matching <navigation-case>. Care must be
taken to preserve any view parameters or navigation case parameters, clear the view map of
the UIViewRoot, and call setRenderAll(true) on the PartialViewContext. Implementations may
choose to meet this requirement by treating this case as if a <redirect /> was specified on the
matching <navigation-case>. If the viewIds do not differ, continue on to the next bullet point.

◦ Clear the view map if the viewId of the new UIViewRoot differs from the viewId of the current
UIViewRoot.

◦ If the <redirect/> element was not specified in this <navigation-case> (or the application is
running in a Portlet environment, where redirects are not possible), use the <to-view-id>
element of the matching case to request a new UIViewRoot instance from the ViewHandler
instance for this application. Call transition() on the FlowHandler, passing the current
FacesContext, the current flow, the new flow and the facesFlowCallNode corresponding to this
faces flow call, if any. Pass the new UIViewRoot to the setViewRoot() method of the FacesContext
instance for the current request.

Then, exit the algorithm. If the content of <to-view-id> is a value expression, first evaluate it to
obtain the value of the view id.

◦ If the <redirect/> element was specified in this <navigation-case>, or this invocation of
handleNavigation() was due to a UIViewAction broadcast event where the new viewId is
different from the current viewId, resolve the <to-view-id> to a view identifier, using the
algorithm in Requirements for Explicit Navigation in Faces Flow Call Nodes other than
ViewNodes. Call getRedirectURL() on the ViewHandler, passing the current FacesContext, the <to-
view-id>, any name=value parameter pairs specified within <view-param> elements within the
<redirect> element, and the value of the include-view-params attribute of the <redirect />
element if present, false, if not. If this navigation is a flow transition (where current flow is not
the same as the new flow), include the relevant flow metadata as entries in the parameters .

▪ If current flow is not null and new flow is null, include the following entries:
FlowHandler.TO_FLOW_DOCUMENT_ID_REQUEST_PARAM_NAME:
FlowHandler.NULL_FLOW
FlowHandler.FLOW_ID_REQUEST_PARAM_NAME: “” (the empty string)

7.4. NavigationHandler

208 Jakarta Server Faces Final

▪ If current flow is null and new flow is not null, include the following entries:
FlowHandler.TO_FLOW_DOCUMENT_ID_REQUEST_PARAM_NAME: The to flow document id
FlowHandler.FLOW_ID_REQUEST_PARAM_NAME: the flow id for the flow that is the
destination of the transition.

▪ If the parameters map has entries for either of these keys, both of the entries must be
replaced with the new values. This allows the call to FlowHandler.clientWindowTransition()
to perform correctly when the GET request after the redirect happens.

The return from getRedirectURL() is the value to be sent to the client to which the redirect will
occur. Call getFlash().setRedirect(true) on the current FacesContext. Cause the current response
to perform an HTTP redirect to this path, and call responseComplete() on the FacesContext
instance for the current request. If the content of <to-view-id> is a value expression, first
evaluate it to obtain the value of the view id.

• If no matching <navigation-case> element was located, return to Step 1 and find the next matching
<navigation-rule> element (if any). If there are no more matching rule elements, execute the
following algorithm to search for an implicit match based on the current outcome. This implicit
matching algorithm also includes navigating within the current faces flow, and returning from the
current faces flow.

◦ Let outcome be viewIdToTest.

◦ Examine the viewIdToTest for the presence of a “?” character, indicating the presence of a URI
query string. If one is found, remove the query string from viewIdToTest, including the leading
“?” and let it be queryString, look for the string “faces-redirect=true” within the query string. If
found, let isRedirect be true, otherwise let isRedirect be false. Look for the string
“includeViewParams=true” or “faces-include-view-params=true”. If either are found, let
includeViewParams be true, otherwise let includeViewParams be false. When performing
preemptive navigation, redirect is implied, even if the navigation case doesn’t indicate it, and
the query string must be preserved. Refer to UIOutcomeTarget for more information on
preemptive navigation.

◦ If viewIdToTest does not have a “file extension”, take the file extension from the current viewId
and append it properly to viewIdToTest.

◦ If viewIdToTest does not begin with “/”, take the current viewId and look for the last “/”. If not
found, prepend a “/” and continue. Otherwise remove all characters in viewId after, but not
including, “/”, then append viewIdToTest and let the result be viewIdToTest.

◦ Obtain the current ViewHandler and call its deriveViewId() method, passing the current
FacesContext and viewIdToTest. If UnsupportedOperationException is thrown, which will be the
case if the ViewHandler is a Pre-Jakarta Faces JSF 1.1 or 1.2 (under the JCP) ViewHandler, the
implementation must ensure the algorithm described for ViewHandler.deriveViewId() specified
in Default ViewHandler Implementation is performed. Let the result be implicitViewId.

◦ If implicitViewId is non-null, discover if fromOutcome is equal to the flow-id of an existing flow
in the FlowHandler. If so find the start node of the flow. If the start node is a ViewNode, let
viewIdToTest be the vdlDocumentId value of the ViewNode. Call deriveViewId as in the preceding

7.4. NavigationHandler

Final Jakarta Server Faces 209

step and let the result be implicitViewId. If fromOutcome is not equal to the flow-id of an existing
flow in the FlowHandler, and we are currently in a flow, discover if this is call to a faces-flow-
return node. If so, obtain the fromOutcome of the faces-flow-return node, re-apply this algorithm
to derive the value of the implicitViewId and continue.

◦ If the implicitViewId is non-null, take the following action. If isRedirect is true, append the
queryString to implicitViewId. Let implicitNavigationCase be a conceptual <navigation-case>
element whose fromViewId is the current viewId, fromAction is passed through from the
arguments to handleNavigation(), fromOutcome is passed through from the arguments to
handleNavigation(), toViewId is implicitViewId, and redirect is the value of isRedirect, and
include-view-params is includeViewParams. Treat implicitNavigationCase as a matching
navigation case and return to the first step above that starts with “If a matching <navigation-
case> element was located…”.

• If UIViewAction.isProcessingBroadcast() returns true, call getFlash().setKeepMessages(true) on the
current FacesContext. Compare the viewId of the current viewRoot with the effective <to-view-id>
of the matching <navigation-case>. If they differ, take any necessary actions effectively restart the
Jakarta Faces lifecycle on the effective <to-view-id> of the matching <navigation-case>. Care must be
taken to preserve any view parameters or navigation case parameters, clear the view map of the
UIViewRoot, and call setRenderAll(true) on the PartialViewContext.

• If none of the above steps found a matching <navigation-case>, perform the steps in Requirements
for Explicit Navigation in Faces Flow Call Nodes other than ViewNodes to find a matching
<navigation-case>.

• If none of the above steps found a matching <navigation-case>, if ProjectStage is not Production
render a message in the page that explains that there was no match for this outcome.

A rule match always causes a new view to be created, losing the state of the old view. This includes
clearing out the view map.

Query string parameters may be contributed by three different sources: the outcome (implicit
navigation), a nested <f:param> on the component tag (e.g., <h:link>, <h:button>, <h:commandLink>,
<h:commandButton>), and view parameters. When a redirect URL is built, whether it be by the N
avigationHandler on a redirect case or a UIOutcomeTarget renderer, the query string parameter
sources should be consulted in the following order:

• the outcome (implicit navigation)

• view parameter

• nested <f:param>

If a query string parameter is found in two or more sources, the latter source must replace all
instances of the query string parameter from the previous source(s).

[P1-end]

7.4. NavigationHandler

210 Jakarta Server Faces Final

7.4.2.1. Requirements for Explicit Navigation in Faces Flow Call Nodes other than ViewNodes

[P1-start ExplicitNavigationNonViewFlowNode requirements] These steps must be performed in this
order to determine the vdl view identifier when navigating to a flow node that is not a view node.

Algorithm for resolving a nodeId to a vdl view identifier.

• If nodeId is a view node, let vdl view identifier be the value of nodeId and exit the algorithm.

• If the node is a SwitchNode, iterate over the NavigationCase instances returned from its getCases()
method. For each, one call getCondition(). If the result is true, let nodeId be the value of its
fromOutcome property.

• If the node is a MethodCallNode, let nodeId be the value invoking the value of its methodExpression
property. If the result is null, let nodeId be the value of the MethodCallNode’s outcome property.

• If the node is a FlowCallNode, save it aside as facesFlowCallNode. Let flowId be the value of its
calledFlowId property and flowDocumentId be the value of its calledFlowDocumentId property. If no
flowDocumentId exists for the node, let it be the string resulting from flowId + “/” + flowId
“.xhtml”. Ask the FlowHandler for a Flow for this flowId, flowDocumentId pair. Obtain a reference to
the start node and execute this algorithm again, on that start node.

• If the node is a ReturnNode obtain its navigation case and call FlowHandler.pushReturnMode(). This
enables the navigation to proceed with respect to the calling flow’s navigation rules, or the
application’s navigation rules if there is no calling flow. Start the navigation algorithm over using it
as the basis but pass the value of the symbolic constant
jakarta.faces.flow.FlowHandler.NULL_FLOW as the value of the toFlowDocumentId argument. If this
does not yield a navigation case, call FlowHandler.getLastDisplayedViewId(), which will return the
last displayed view id of the calling flow, or null if there is no such flow. In a finally block, when the
re-invocation of the navigation algorithms completes, call FlowHandler.popReturnMode().

7.4.2.2. Requirements for Entering a Flow

[P1-start FlowEntryRequirements] If any of the preceding navigation steps cause a flow to be entered,
the implementation must perform the following steps, in this order, before continuing with navigation.

• Make it so any @FlowScoped beans for this flow are able to be activated when an Expression
Language expression that references them is evaluated.

• Call the initializer for the flow, if any.

• Proceed to the start node of the flow, which may be any flow node type.

An attempt to navigate into a flow other than via the identified start node of that throw should cause a
FacesException.

[P1-end]

7.4. NavigationHandler

Final Jakarta Server Faces 211

7.4.2.3. Requirements for Exiting a Flow

[P1-start FlowExitRequirements] If any of the preceding navigation steps cause a flow to be exited, the
implementation must perform the following steps, in this order, before continuing with navigation.

• Call the finalizer for the flow, if any.

• De-activate any @FlowScoped beans for the current flow.

• If exiting via a return node ensure the return parameters are correctly passed back to the caller.

[P1-end]

7.4.2.4. Requirements for Calling A Flow from the Current Flow

[P1-start FlowExitRequirements] If any of the preceding navigation steps cause a flow to be called from
another flow, the transition() method on FlowHandler will ensure parameters are correctly passed.

[P1-end]

7.4.3. Example NavigationHandler Configuration

The following <navigation-rule> elements might appear in one or more application configuration
resources (see Application Configuration Resources) to configure the behavior of the default
NavigationHandler implementation:

7.4. NavigationHandler

212 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6195

<navigation-rule>
 <description>
 APPLICATION WIDE NAVIGATION HANDLING
 </description>
 <from-view-id> * </from-view-id>

 <navigation-case>
 <description>
 Assume there is a “Logout” button on every page that
 invokes the logout Action.
 </description>
 <display-name>Generic Logout Button</display-name>
 <from-action>#{userBean.logout}</from-action>
 <to-view-id>/logout.jsp</to-view-id>
 </navigation-case>

 <navigation-case>
 <description>
 Handle a generic error outcome that might be returned
 by any application Action.
 </description>
 <display-name>Generic Error Outcome</display-name>
 <from-outcome>loginRequired</from-outcome>
 <to-view-id>/must-login-first.jsp</to-view-id>
 </navigation-case>

 <navigation-case>
 <description>
 Illustrate paramaters
 </description>
 <from-outcome>redirectPasswordStrength</from-outcome>
 <redirect>
 <view-param>
 <name>userId</name>
 <value>someValue</value>
 </view-param>
 <include-view-params>true</include-view-params>
 </redirect>
 </navigation-case>
</navigation-rule>

7.4. NavigationHandler

Final Jakarta Server Faces 213

<navigation-rule>
 <description>
 LOGIN PAGE NAVIGATION HANDLING
 </description>
 <from-view-id> /login.jsp </from-view-id>

 <navigation-case>
 <description>
 Handle case where login succeeded.
 </description>
 <display-name>Successful Login</display-name>
 <from-action>#{userBean.login}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/home.jsp</to-view-id>
 </navigation-case>

 <navigation-case>
 <description>
 User registration for a new user succeeded.
 </description>
 <display-name>Successful New User Registration</display-name>
 <from-action>#{userBean.register}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/welcome.jsp</to-view-id>
 </navigation-case>

 <navigation-case>
 <description>
 User registration for a new user failed because of a
 duplicate username.
 </description>
 <display-name>Failed New User Registration</display-name>
 <from-action>#{userBean.register}</from-action>
 <from-outcome>duplicateUserName</from-outcome>
 <to-view-id>/try-another-name.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

7.4. NavigationHandler

214 Jakarta Server Faces Final

<navigation-rule>
 <description>
 Assume there is a search form on every page. These navigation
 cases get merged with the application-wide rules above because
 they use the same “from-view-id” pattern. The same thing would
 also happen if “from-view-id” was omitted here, because that is
 equivalent to a matching pattern of “*”.
 </description>
 <from-view-id> * </from-view-id>

 <navigation-case>
 <display-name>Search Form Success</display-name>
 <from-action>#{searchForm.go}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/search-results.jsp</to-view-id>
 </navigation-case>

 <navigation-case>
 <display-name>Search Form Failure</display-name>
 <from-action>#{searchForm.go}</from-action>
 <to-view-id>/search-problem.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

<navigation-rule>
 <description>
 Searching works slightly differently in part of the site.
 </description>
 <from-view-id> /movies/* </from-view-id>

 <navigation-case>
 <display-name>Search Form Success</display-name>
 <from-action>#{searchForm.go}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/movie-search-results.jsp</to-view-id>
 </navigation-case>

 <navigation-case>
 <display-name>Search Form Failure</display-name>
 <from-action>#\{searchForm.go}</from-action>
 <to-view-id>/search-problem.jsp</to-view-id>
 </navigation-case>
</navigation-rule>

7.4. NavigationHandler

Final Jakarta Server Faces 215

public void savePizza();

<navigation-rule>
 <description>
 Pizza topping selection navigation handling
 </description>
 <from-view-id>/selectToppings.xhtml</from-view-id>

 <navigation-case>
 <description>
 Case where pizza is saved but there is additional cost
 </description>
 <display-name>Pizza saved w/ extras</display-name>
 <from-action>#{pizzaBuilder.savePizza}</from-action>
 <if>#{pizzaBuilder.additionalCost}</if>
 <to-view-id>/approveExtras.xhtml</to-view-id>
 </navigation-case>

 <navigation-case>
 <description>
 Case where pizza is saved and additional pizzas are needed
 </description>
 <display-name>Pizza saved, additional pizzas needed</display-name>
 <from-action>#{pizzaBuilder.savePizza}</from-action>
 <if>#{not order.complete}</if>
 <to-view-id>/createPizza.xhtml</to-view-id>
 </navigation-case>

 <navigation-case>
 <description>
 Handle case where pizza is saved and order is complete
 </description>
 <display-name>Pizza complete</display-name>
 <from-action>#{pizzaBuilder.savePizza}</from-action>
 <if>#{order.complete}</if>
 <to-view-id>/cart.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

7.4. NavigationHandler

216 Jakarta Server Faces Final

public String placeOrder();

<navigation-rule>
 <description>
 Cart navigation handling
 </description>
 <from-view-id>/cart.xhtml</from-view-id>

 <navigation-case>
 <description>
 Handle case where account has one click delivery enabled
 </description>
 <display-name>Place order w/ one-click delivery</display-name>
 <from-action>#{pizzaBuilder.placeOrder}</from-action>
 <if>#{account.oneClickDelivery}</if>
 <to-view-id>/confirmation.xhtml</to-view-id>
 </navigation-case>

 <navigation-case>
 <description>
 Handle case where delivery information is required
 </description>
 <display-name>Place order w/o one-click delivery</display-name>
 <from-action>#{pizzaBuilder.placeOrder}</from-action>
 <if>#{not account.oneClickDelivery}</if>
 <to-view-id>/delivery.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

7.5. FlowHandler
Any Jakarta Faces application can be modeled as a directed graph where the nodes are views and the
edges are transitions between the views. Faces Flows introduces several other kinds of nodes to this
directed graph, providing support for encapsulating related views and edges together. Applications can
be created as composites of modules of functionality, with each module consisting of well defined
entry and exit conditions, and the ability to share state among the nodes within each module. This
feature is heavily influenced by the design of ADF Task Flows in Oracle’s Fusion Middleware and also
by Spring Web Flow and Apache MyFaces CODI. The normative specification for this feature proceeds
from the Javadoc for the class jakarta.faces.flow.FlowHandler, and also from related requirements in
NavigationHandler. This section provides a non-normative usage example and walkthrough of feature
so that all the other parts of the specification that intersect with this feature can be discovered.

7.5. FlowHandler

Final Jakarta Server Faces 217

7.5.1. Non-normative example

Here is a simple example to introduce the feature. It does not touch on all aspects of the feature. The
example has two flows, each of which calls the other, passing parameters. Any view outside of a flow
may navigate to either of the flows, named flow-a and flow-b.

This diagram uses the following conventions.

• view nodes are boxes

• faces flow return nodes are circles

• faces flow call nodes are boxes with the corners chopped off

• @FlowScoped beans are rectangles semi-circular short sides

• the start node is marked “start”

• inbound and outbound parameters are listed by name

• arrows show valid traversals among the nodes.

These flows are identical, except for the names of their constituents, and each has the following
properties.

• Three view nodes, one of which is the implicit start node

• One faces flow return node, each of which returns the outcome “return1”

• One flow call node, which calls the other flow, with two outbound parameters, named to match up
with the other flow

• Two inbound parameters, named to match up with the other flow

The different kinds of nodes mentioned in the preceding discussion are defined in the javadoc for class
jakarta.faces.flow.FlowHandler.

Consider this simple web app, called basic_faces_flow_call.war, containing the above mentioned flows.
The file layout for of the app is shown next. The example is shown using maven war packaging

7.5. FlowHandler

218 Jakarta Server Faces Final

basic_faces_flow_call/
 pom.xml
 src/main/webapp/
 index.xhtml
 return1.xhtml
 WEB-INF/beans.xml
 flow-a/
 flow-a.xhtml
 next_a.xhtml
 next_b.xhtml
 flow-b/
 flow-b-flow.xml
 next_a.xhtml
 next_b.xhtml
 src/main/java/com/sun/faces/basic_faces_flow_call/
 FlowA.java
 Flow_a_Bean.java
 Flow_b_Bean.java

To complete the example, the execution of the flows is examined. When the application containing
these flows is deployed, the runtime discovers the flow definitions and adds them to the internal flow
data structure. One flow is defined in flow-b-flow.xml. This is an XML file conforming to the Application
Configuration Resources syntax described in Application Configuration Resources. The other flow is
defined in FlowA.java, a class with a method with the @FlowDefinition annotation. When the flow
discovery is complete, an application scoped, thread safe data structure containing the flow definitions
is available from the jakarta.faces.flow.FlowHandler singleton. This data structure is navigable by the
runtime via the jakarta.faces.flow.Flow API.

When the user agent visits http://localhost:8080/basic_faces_flow_call/faces/index.xhtml, they see a page
with two buttons, the actions of which are flow-a, and flow-b, respectively. Clicking either button causes
entry to the corresponding flow. In this case, the user clicks the flow-a button. The @FlowScoped bean
Flow_a_Bean is instantiated by the container and navigation proceeds immediately to the start node, in
this case flow-a.xhtml. The user proceeds directly to click a button taking them to next_a.xhtml, and
then to next_b.xhtml. On that page there is a button whose action is callB. Clicking this button activates
the correspondingly named faces flow call node, which prepares the specified outbound parameters,
de-activates Flow_a_Bean and calls flow-b.

Upon entry to flow-b, the @FlowScoped bean Flow_b_Bean is instantiated by the container, the
outbound parameters from flow-a are matched up with corresponding inbound parameters on flow-b
and navigation proceeds immediately to the start node, in this case flow-b.xhtml. The user proceeds
directly to click a button taking them to next_a.xhtml, and then to next_b.xhtml. On that page there is a
button whose action is taskFlowReturn1. Clicking this button causes Flow_b_Bean to be deactivated and
navigation to the view named return1 to be performed.

7.5. FlowHandler

Final Jakarta Server Faces 219

UsingJSFInWebApplications.pdf#a6195
http://localhost:8080/basic_faces_flow_call/faces/index.xhtml

7.5.2. Non-normative Feature Overview

The normative requirements of the feature are stated in the context of the part of the specification
impacted. This section gives the reader a non-normative overview of the feature that touches on all the
parts of the specification that intersect with this feature.

Startup Time

At startup time, the runtime will discover flows available for this application. This behavior is
normatively specified in Faces Flows and in the XML schema for the application configuration resources.

Invoke Application Time

The default ActionListener may need to take special action when calling into a flow. This behavior is
normatively specified in ActionListener Property.

The default NavigationHandler implementation must use the FlowHandler during its operation. This
behavior is normatively specified in Default NavigationHandler Algorithm.

7.6. ViewHandler
ViewHandler is the pluggability mechanism for allowing implementations of or applications using the
Jakarta Server Faces specification to provide their own handling of the activities in the Render
Response and Restore View phases of the request processing lifecycle. This allows for implementations
to support different response generation technologies, as well as different state saving/restoring
approaches.

A Jakarta Faces implementation must provide a default implementation of the ViewHandler interface.
See ViewHandler Property for information on replacing this default implementation with another
implementation.

7.6.1. Overview

ViewHandler defines the public APIs described in the following paragraphs

public Locale calculateLocale(FacesContext context);
public String calculateRenderKitId(FacesContext context);

These methods are called from createView() to allow the new view to determine the Locale to be used
for all subsequent requests, and to find out which renderKitId should be used for rendering the view.

public void initView(FacesContext) throws FacesException;
public String calculateCharacterEncoding(FacesContext context);

The initView() method must be called as the first method in the implementation of the Restore View

7.6. ViewHandler

220 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6228

Phase of the request processing lifecycle, immediately after checking for the existence of the
FacesContext parameter. See the javadocs for this method for the specification.

public String deriveViewId(FacesContext context, String input);

The deriveViewId() method is an encapsulation of the viewId derivation algorithm in previous versions
of the specification. This method looks at the argument input, and the current request and derives the
viewId upon which the lifecycle will be run.

public UIViewRoot createView(FacesContext context, String viewId);

Create and return a new UIViewRoot instance, initialized with information from the specified
FacesContext and view identifier parameters.

If the view being requested is a Facelet view, the createView() method must ensure that the UIViewRoot
is fully populated with all the children defined in the VDL page before createView() returns.

public String getActionURL(FacesContext context, String viewId);

Returns a URL, suitable for encoding and rendering, that (if activated) will cause the Jakarta Faces
request processing lifecycle for the specified viewId to be executed

public String getBookmarkableURL(FacesContext context, String viewId,
 Map<String,List<String>> parameters, boolean includeViewParams);

Return a Jakarta Faces action URL derived from the viewId argument that is suitable to be used as the
target of a link in a Jakarta Faces response. The URL, if activated, would cause the browser to issue an
initial request to the specified viewId

public String getRedirectURL(FacesContext context, String viewId,
 Map<String, List<String>> parameters, boolean includeViewParams);

Return a Jakarta Faces action URL derived from the viewId argument that is suitable to be used by the
NavigationHandler to issue a redirect request to the URL using an initial request.

public String getResourceURL(FacesContext context, String path);

Returns a URL, suitable for encoding and rendering, that (if activated) will retrieve the specified web
application resource.

7.6. ViewHandler

Final Jakarta Server Faces 221

public void renderView(FacesContext context, UIViewRoot viewToRender)
 throws IOException, FacesException;

This method must be called during the Render Response phase of the request processing lifecycle. It
must provide a valid ResponseWriter or ResponseStream instance, storing it in the FacesContext
instance for the current request (see ResponseStream and ResponseWriter), and then perform
whatever actions are required to cause the view currently stored in the viewRoot of the FacesContext
instance for the current request to be rendered to the corresponding writer or stream. It must also
interact with the associated StateManager (see StateManager), by calling the getSerializedView() and
saveView() methods, to ensure that state information for current view is saved between requests.

public UIViewRoot restoreView(FacesContext context,
 String viewId) throws IOException;

This method must be called from the Restore View phase of the request processing lifecycle. It must
perform whatever actions are required to restore the view associated with the specified FacesContext
and viewId.

It is the caller’s responsibility to ensure that the returned UIViewRoot instance is stored in the
FacesContext as the new viewRoot property. In addition, if restoreView() returns null (because there is
no saved state for this view identifier), the caller must call createView(), and call renderResponse() on
the FacesContext instance for this request.

public void writeState(FacesContext context) throws IOException;

Take any appropriate action to either immediately write out the current view’s state information (by
calling StateManager.writeState()), or noting where state information may later be written. This
method must be called once per call to the encodeEnd() method of any renderer for a UIForm
component, in order to provide the ViewHandler an opportunity to cause saved state to be included
with each submitted form.

public ViewDeclarationLanguage getViewDeclarationLanguage();

See the javadocs for this method for the specification.

public Set<String> getProtectedViewsUnmodifiable();
public void addProtectedView(String urlPattern);
public boolean removeProtectedView(String urlPattern)

See the javadocs for these methods for the specification.

7.6. ViewHandler

222 Jakarta Server Faces Final

7.6.2. Default ViewHandler Implementation

The terms view identifier and viewId are used interchangeably below and mean the context relative
path to the web application resource that produces the view, such as a Jakarta Server Pages page or a
Facelets page. In the Jakarta Server Pages case, this is a context relative path to the jsp page
representing the view, such as /foo.jsp. In the Facelets case, this is a context relative path to the XHTML
page representing the view, such as /foo.xhtml.

Jakarta Faces implementations must provide a default ViewHandler implementation, along with a
default ViewDeclarationLanguageFactory implementation that vends ViewDeclarationLanguage
implementations designed to support the rendering of Jakarta Server Pages pages containing Jakarta
Faces components and Facelets pages containing Jakarta Faces components. The default ViewHandler is
specified in this section and the default ViewDeclarationLanguage implementations are specified in the
following section.

7.6.2.1. ViewHandler Methods that Derive Information From the Incoming Request

[P1-start ViewHandler.deriveViewId() requirements] The deriveViewId() method must fulfill the
following responsibilities:

• If the argument input is null, return null.

• If prefix mapping (such as “/faces/*”) is used for FacesServlet, normalize the viewId according to the
following algorithm, or its semantic equivalent, and return it.

◦ Remove any number of occurrences of the prefix mapping from the viewId. For example, if the
incoming value was /faces/faces/faces/view.xhtml the result would be simply view.xhtml.

• If suffix mapping (such as “*.faces”) is used for FacesServlet, the viewId is set using following
algorithm.

◦ Let requestViewId be the value of argument input.

◦ Consult the javadocs for ViewHandler.FACELETS_VIEW_MAPPINGS_PARAM_NAME and perform
the steps necessary to obtain a value for that param (or its alias as in the javadocs). Let this be
faceletsViewMappings.

◦ Obtain the value of the context initialization parameter named by the symbolic constant
ViewHandler.DEFAULT_SUFFIX_PARAM_NAME (if no such context initialization parameter is
present, use the value of the symbolic constant ViewHandler.DEFAULT_SUFFIX). Let this be
jspDefaultSuffixes. For each entry in the list from jspDefaultSuffixes, replace the suffix of
requestViewId with the current entry from jspDefaultSuffixes. For discussion, call this
candidateViewId. For each entry in faceletsViewMappings, If the current entry is a prefix
mapping entry, skip it and continue to the next entry. If candidateViewId is exactly equal to the
current entry, consider the algorithm complete with the result being candidateViewId. If the
current entry is a wild-card extension mapping, apply it non-destructively to candidateViewId
and look for a physical resource with that name. If present, consider the algorithm complete
with the result being the name of the physical resource. Otherwise look for a physical resource
with the name candidateViewId. If such a resource exists, consider the algorithm complete with

7.6. ViewHandler

Final Jakarta Server Faces 223

the result being candidateViewId. If there are no entries in faceletsViewMappings, look for a
physical resource with the name candidateViewId. If such a resource exists, candidateViewId is
the correct viewId.

◦ Otherwise, obtain the value of the context initialization parameter named by the symbolic
constant ViewHandler.FACELETS_SUFFIX_PARAM_NAME. (if no such context initialization
parameter is present, use the value of the symbolic constant
ViewHandler.DEFAULT_FACELETS_SUFFIX). Let this be faceletsDefaultSuffix. Replace the suffix
of requestViewId with faceletsDefaultSuffix. For discussion, call this candidateViewId. If a
physical resource exists with that name, candidateViewId is the correct viewId.

◦ Otherwise, if a physical resource exists with the name requestViewId let that value be viewId.

◦ Otherwise return null.

• If an exact mapping (such as /foo) is used for FacesServlet, the viewId is set using following
algorithm.

◦ Let requestViewId be the value of the argument input.

◦ Obtain the value of the context initialization parameter named by the symbolic constant
ViewHandler.FACELETS_SUFFIX_PARAM_NAME. (if no such context initialization parameter is
present, use the value of the symbolic constant ViewHandler.DEFAULT_FACELETS_SUFFIX). Let
this be faceletsDefaultSuffix.

◦ Obtain the value of the context initialization parameter named by the symbolic constant
ViewHandler.DEFAULT_SUFFIX_PARAM_NAME (if no such context initialization parameter is
present, use the value of the symbolic constant ViewHandler.DEFAULT_SUFFIX). Let this be
defaultSuffixes.

◦ Add faceletsDefaultSuffix to defaultSuffixes.

◦ For each entry in the list from defaultSuffixes, add that current entry to the end of
requestViewId. For discussion, call this candidateViewId. Look for a physical resource with the
name candidateViewId. If such a resource exists, consider the algorithm complete with the
result being candidateViewId.

◦ Otherwise, if a physical resource exists with the name requestViewId let that value be viewId.
Otherwise return null.

• [P1-end]

The getViewDeclarationLanguage() must fulfill the following responsibilites.

• See the javadocs for the normative specification for this method.

[P1-start ViewHandler.deriveLogicalViewId() requirements] The deriveLogicalViewId() method is
identical to deriveViewId() except that it does not check for the existence of the resource. [P1-end]

[P1-start ViewHandler.calculateCharacterEncoding() requirements] The calculateCharacterEncoding()
method must fulfill the following responsibilities:

7.6. ViewHandler

224 Jakarta Server Faces Final

• Examine the Content-Type request header. If it has a charset parameter extract it and return it.

• If not, test for the existence of a session by calling getSession(false) on the ExternalContext for this
FacesContext. If the session is non- null, look in the Map returned by the getSessionMap() method of
the ExternalContext for a value under the key given by the value of the symbolic constant
jakarta.faces.application.ViewHandler.CHARACTER_ENCODING_KEY. If a value is found, convert it
to a String and return it. [P1-end]

[P1-start calculateLocale() requirements] The calculateLocale() method must fulfill the following
responsibilities:

• Attempt to match one of the locales returned by the getLocales() method of the ExternalContext
instance for this request, against the supported locales for this application as defined in the
application configuration resources. Matching is performed by the algorithm described in Section
JSTL.8.3.2 of the JSTL Specification. If a match is found, return the corresponding Locale object.

• Otherwise, if the application has specified a default locale in the application configuration
resources, return the corresponding Locale object.

• Otherwise, return the value returned by calling Locale.getDefault().[P1-end]

[P1-start calculateRenderKitId() requirements] The calculateRenderKitId() method must fulfill the
following responsibilities:

• Return the value of the request parameter named by the symbolic constant
ResponseStateManager.RENDER_KIT_ID_PARAM if it is not null.

• Otherwise, return the value returned by Application.getDefaultRenderKitId() if it is not null.

• Otherwise, return the value specified by the symbolic constant
RenderKitFactory.HTML_BASIC_RENDER_KIT.

7.6.2.2. ViewHandler Methods that are Called to Fill a Specific Role in the Lifecycle

[P1-start createView() requirements] The createView() method must obtain a reference to the
ViewDeclarationLanguage for this viewId and call its ViewDeclarationLanguage.createView() method,
returning the result and not swallowing any exceptions thrown by that method.[P1-end]

[P1-start initView() requirements] The initView() method must fulfill the following responsibilities:

• See the javadocs for this method for the specification.[P1-end]

[P1-start renderView() requirements] The renderView() method must obtain a reference to the
ViewDeclarationLanguage for the viewId of the argument viewToRender and call its
ViewDeclarationLanguage.restoreView() method, returning the result and not swallowing any
exceptions thrown by that method.[P1-end]

[P1-start restoreView() requirements]The restoreView() method must obtain a reference to the
ViewDeclarationLanguage for the viewId of the argument viewToRender and call its
ViewDeclarationLanguage.restoreView() method, returning the result and not swallowing any

7.6. ViewHandler

Final Jakarta Server Faces 225

exceptions thrown by that method.[P1-end]

The writeState() method must fulfill the following responsibilities:

• Obtain the saved state stored in a thread-safe manner during the invocation of renderView() and
pass it to the writeState() method of the StateManager for this application.

7.6.2.3. ViewHandler Methods Relating to Navigation

[P1-start getActionURL() requirements] The getActionURL() method must fulfill the following
responsibilities:

• If the specified viewId does not start with a “/”, throw IllegalArgumentException.

• If exact mapping (such as /foo) is used for FacesServlet, the following algorithm must be followed to
derive the result.

◦ Retrieve the collection of existing mappings of the FacesServlet, e.g. using
ServletRegistration#getMappings(). Let this be facesServletMappings. If the argument viewId has
an extension, then obtain the value of the context initialization parameter named by the
symbolic constant ViewHandler.FACELETS_SUFFIX_PARAM_NAME. (if no such context
initialization parameter is present, use the value of the symbolic constant
ViewHandler.DEFAULT_FACELETS_SUFFIX). Let this be faceletsDefaultSuffix.

◦ Obtain the value of the context initialization parameter named by the symbolic constant
ViewHandler.DEFAULT_SUFFIX_PARAM_NAME (if no such context initialization parameter is
present, use the value of the symbolic constant ViewHandler.DEFAULT_SUFFIX). Let this be
defaultSuffixes.

◦ Add faceletsDefaultSuffix to defaultSuffixes.

◦ For each entry in the list from defaultSuffixes, if the extension of the argument viewId is equal to
this entry, remove the extension from viewId. For discussion, call this candidateViewId.

◦ Look if the candidateViewId is present in facesServletMappings. If so,the result is contextPath
candidateViewId.

◦ If the argument viewId has no extension, then look if the viewId is present in
facesServletMappings. If so, the result is contextPath + viewId.

◦ If no result has been obtained, pick any prefix mapping or extension mapping from
facesServletMappings. If no such mapping is found, throw an IllegalStateException.

◦ If such mapping is found remove the "*" character from that mapping, take that as the new
mapping and continue with evaluating this mapping as specified below for "if prefix mapping
[…] is used" and for "if suffix mapping […] is used

• If prefix mapping (such as “/faces/*”) is used for FacesServlet, prepend the context path of the
current application, and the specified prefix, to the specified viewId and return the completed
value. For example “/cardemo/faces/chooseLocale.jsp”.

• If suffix mapping (such as “*.faces”) is used for FacesServlet, the following algorithm must be

7.6. ViewHandler

226 Jakarta Server Faces Final

followed to derive the result.

◦ If the argument viewId has no extension, the result is contextPath + viewId + mapping, where
contextPath is the context path of the current application, viewId is the argument viewId and
mapping is the value of the mapping (such as “*.faces”).

◦ If the argument viewId has an extension, and this extension is not mapping, the result is
contextPath
viewId.substring(0, period) + mapping.

◦ If the argument viewId has an extension, and this extension is mapping, the result is contextPath
+ viewId. For example “/cardemo/chooseLocale.faces”

• If the current view is one of the views to which view protection must be applied, the returned URL
must contain the parameter with a name equal to the value of the constant defined by
ResponseStateManager.NON_POSTBACK_VIEW_TOKEN_PARAM. The value of this parameter must
be the return value from a call to
ResponseStateManager.getCryptographicallyStrongTokenFromSession(). This parameter is inspected
during the restore view phase (see Restore View).

[P1-end]

[P1-start getBookmarkableURL() requirements] The getBookmarkableURL() method must fulfill the
following responsibilities:

• If argument includeViewParams is true, obtain the view paramaters corresponding to the argument
viewId and append them to the Map given in argument parameters. Let the resultant Map be called
paramsToEncode.

◦ If the viewId of the current FacesContext is not equal to the argument viewId, get the
ViewDeclarationLanguage for the argument viewId, obtain its ViewMetadata, call
createMetadataView() on it, then call ViewMetadata.getViewParameters() passing the return
from createMetadataView(). Let the result of this method be toViewParams.

◦ If the viewId of the current FacesContext is equal to the argument viewId, call
ViewMetadata.getViewParameters() passing the current UIViewRoot. Let the result of this
method be toViewParams.

◦ If toViewParams is empty, take no further action to add view parameters to this URL. Iterate
over each UIViewParameter element in toViewParams and take the following actions on each
element.

◦ If the Map given by parameters has a key equal to the name property of the current element,
take no action on the current element and continue iterating.

◦ If the current UIViewParameter has a ValueExpression under the key “value” (without the
quotes), let value be the result of calling getStringValueFromModel() on the current
UIViewParameter.

◦ Otherwise, if the current viewId is the same as the argument viewId, let value be the result of
calling getStringValue() on the current UIViewParameter.

7.6. ViewHandler

Final Jakarta Server Faces 227

◦ Otherwise, if the current viewId is different from the argument viewId, locate the
UIViewParameter instance in the current view whose name is equivalent to the current element
and let value be the result of calling getStringValue() on the located UIViewParameter.

◦ If the above steps yielded a non-null value, find the List<String> value in the parameters map
under the key given by the name property of the current UIViewParameter element. If such a
List exists, add value to it. Otherwise create a List<String>, add value to it, and add it to the
parameters map under the appropriate key.

• If argument includeViewParams is false, take no action to add additional entries to paramaters. Let
paramsToEncode be parameters.

• Call getActionURL() on the argument viewId. Let the result be actionEncodedViewId.

• Call encodeBookmarkableURL() on the current ExternalContext, passing actionEncodedViewId as the
first argument and paramsToEncode as the second. Let the result be bookmarkEncodedURL.

• Pass bookmarkEncodedURL to ExternalContext.encodeActionURL() and return the result.[P1-end]

[P1-start getRedirectURL() requirements] The getRedirectURL() method must fulfill the following
responsibilities:

• Take exactly the same action as in getBookmarkableURL() up to and including the call to
getActionURL(). Thereafter take the following actions.

• Call encodeRedirectURL() on the current ExternalContext, passing actionEncodedViewId as the first
argument and paramsToEncode as the second. Let the result be redirectEncodedURL.

• Pass redirectEncodedURL to ExternalContext.encodeActionURL() and return the result.[P1-end]

[P1-start getResourceURL() requirements] The getResourceURL() method must fulfill the following
responsibilities:

• If the specified path starts with a “/”, prefix it with the context path for the current web application,
and return the result.

• Otherwise, return the specified path value unchanged.[P1-end]

7.6.2.4. ViewHandler Methods that relate to View Protection

• [P1-start addProtectedView() requirements] See the javadocs for addProtectedView() for the
normative specification. [P1-end]

• [P1-start removeProtectedView() requirements] See the javadocs for removeProtectedView() for the
normative specification. [P1-end]

• [P1-start getProtectedViewsUnmodifiable() requirements] See the javadocs for
getProtectedViewsUnmodifiable() for the normative specification.

See the View Protection section within Restore View for the normative specification of this feature.

7.6. ViewHandler

228 Jakarta Server Faces Final

7.7. ViewDeclarationLanguage
To support the introduction of Facelets into the core specification, whilst preserving backwards
compatibility with existing Jakarta Server Pages applications, the concept of the View Declaration
Language was formally introduced in version 2 of the specification. A View Declaration Language
(VDL) is a syntax used to declare user interfaces comprised of instances of Jakarta Faces UIComponents.
Under this definition, both Jakarta Server Pages and Facelets are examples of an implementation of a
VDL. Any of the responsibilities of the ViewHandler that specifically deal with the VDL sub-system are
now the domain of the VDL implementation. These responsibilities are defined on the
ViewDeclarationLanguage class.

7.7.1. ViewDeclarationLanguageFactory

ViewDeclarationLanguageFactory is a factory object that creates (if needed) and returns a new
ViewDeclarationLanguage instance based on the VDL found in a specific view.

The factory mechanism specified in FactoryFinder and the decoration mechanism specified in
Delegating Implementation Support are used to allow decoration or replacement of the
ViewDeclarationLanguageFactory.

public ViewDeclarationLanguage getViewDeclarationLanguage(String viewId)

Return the ViewDeclarationLanguage instance suitable for handling the VDL contained in the page
referenced by the argument viewId. [P1-start_required_ViewDeclarationLanguageImpls]The default
implementation must return a valid ViewDeclarationLanguage instance for views written in either
Jakarta Server Pages or Facelets. [P1-end_required_ViewDeclarationLanguageImpls]Whether the
instance returned is the same for a Jakarta Server Pages or a Facelet view is an implementation detail.

7.7.2. Default ViewDeclarationLanguage Implementation

For each of the methods on ViewDeclarationLanguage, the required behavior is broken into three
segments:

• Behavior required of all compliant implementations

• Behavior required of the implementation that handles Facelet views

• Behavior required of the implementation that handles Jakarta Server Pages views

Any implementation strategy is valid as long as these requirements are met.

7.7.2.1. ViewDeclarationLanguage.createView()

public UIViewRoot createView(FacesContext context, String viewId)

7.7. ViewDeclarationLanguage

Final Jakarta Server Faces 229

UsingJSFInWebApplications.pdf#a6147
UsingJSFInWebApplications.pdf#a6336

[P1-start createView() requirements] The createView() method must fulfill the following
responsibilities.

All implementations must:

• If there is an existing UIViewRoot available on the FacesContext, this method must copy its locale
and renderKitId to this new view root. If not, this method must call calculateLocale() and
calculateRenderKitId(), and store the results as the values of the locale and renderKitId, properties,
respectively, of the newly created UIViewRoot.

• If no viewId could be identified, or the viewId is exactly equal to the servlet mapping, send the
response error code SC_NOT_FOUND with a suitable message to the client.

• Create a new UIViewRoot object instance using
Application.createComponent(UIViewRoot.COMPONENT_TYPE).

• Pass the argument viewId to the setViewId() method on the new UIViewRoot instance.

• The new UIViewRoot instance must be passed to FacesContext.setViewRoot(). This enables the
broadest possible range of implementations for how tree creation is actually implemented.

The Jakarta Server Pages and implementation is not required to take any additional action.

The Facelet implementation must call calculateResourceLibraryContracts(), passing the argument
viewId, and unconditionally set the result as the resourceLibraryContracts property on the
FacesContext. The implementation must obtain the ViewDeclarationLanguage reference on which to
invoke calculateResourceLibraryContracts() from the ViewHandler. This ensures the methods can be
correctly decorated.

All implementations must:

• Return the newly created UIViewRoot.

[P1-end]

7.7.2.2. ViewDeclarationLanguage.calculateResourceLibraryContracts()

public List<String> calculateResourceLibraryContracts(
 FacesContext context, String viewId)

The Jakarta Server Pages implementation must return null.

The Facelet implementation must examine the resource library contracts data structure, which was
populated as specified in Resource Library Contracts, and find the <contract-mapping> element that
matches the argument viewId. When processing the nested <url-pattern> matches must be made using
the following rules in this order.

1. An exact match.

7.7. ViewDeclarationLanguage

230 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6215

2. The longest match

3. The value * matches all incoming viewIds

The value returned from this method is the list whose contents are taken from the contracts attribute
of the matching <contract-mapping> element.

7.7.2.3. ViewDeclarationLanguage.buildView()

public void buildView(FacesContext context, UIComponent root)

[P1-start buildView() requirements] The buildView() method must fulfill the following responsibilities.

All implementations must:

• The implementation must guarantee that the page is executed in such a way that the UIComponent
tree described in the VDL page is completely built and populated, rooted at the new UIViewRoot
instance created previously.

• The runtime must guarantee that the view must be fully populated before the afterPhase() method
of any PhaseListeners attached to the application or to the UIViewRoot (via
UIViewRoot.setAfterPhaseListener() or UIViewRoot.addPhaseListener()) are called.

The Facelets implementation must guarantee the markup comprising the view is executed with the
UIComponent instances in the view being encountered in the same depth-first order as in other
lifecycle methods defined on UIComponent, and added to the view (but not rendered at this time),
during the traversal. .

[P1-end]

7.7.2.4. ViewDeclarationLanguage.getComponentMetadata()

public BeanInfo getComponentMetadata(
 FacesContext context, Resource componentResource)

[P1-start getComponentMetaData() requirements] The getComponentMetadata() method must fulfill the
following responsibilities:

All implementations must:

• Return a reference to the component metadata for the composite component represented by the
argument componentResource, or null if the metadata cannot be found. The implementation may
share and pool what it ends up returning from this method to improve performance.

The Facelets implementation must

7.7. ViewDeclarationLanguage

Final Jakarta Server Faces 231

• Support argument componentResource being a Facelet markup file that is to be interpreted as a
composite component as specified in Composite Component Metadata.

The Jakarta Server Pages implementation is not required to support argument componentResource
being a Jakarta Server Pages markup file. In this case, null must be returned from this method.[P1-end]

7.7.2.5. ViewDeclarationLanguage.getViewMetadata() and getViewParameters()

public ViewMetadata getViewMetadata(FacesContext context, String viewId)

[P1-start getViewtMetaData() requirements] The getViewMetadata() method must fulfill the following
responsibilities:

All implementations must:

• Return a reference to the view metadata for the view represented by the argument viewId, or null if
the metadata cannot be found. The implementation may share and pool what it ends up returning
from this method to improve performance.

The Facelets implementation must support argument viewId being a Facelet markup file from which
the view metadata should be extracted.

The Jakarta Server Pages implementation is not required to support argument viewId being a Jakarta
Server Pages markup file. In this case, null must be returned from this method.[P1-end]

ViewMetadata Contract

public UIViewRoot createMetadataView()

The content of the metadata is provided by the page author as a special <f:facet/> of the UIViewRoot.
The name of this facet is given by the value of the symbolic constant
UIViewRoot.METADATA_FACET_NAME. The UIViewRoot return from this method must have that facet,
and its children as its only children. This facet may contain <f:viewParameter> or <f:viewAction>
children. Each such element is the metadata will cause a UIViewParameter or UIViewAction
(respectively) to be added to the view. Because UIViewParameter extends UIInput it is valid to attach
any of the kinds of attached objects to an <f:viewParameter> that are valid for any element that
represents any other kind of UIInput in the view. Because UIViewAction implements ActionSource2, it is
valid to attach any of the kinds of attached objects to an <f:viewAction> that are valid for any element
that represents any other kind of ActionSource2 in the view.

]

public Collection<UIViewParameter> getViewParameters(UIViewRoot root)

7.7. ViewDeclarationLanguage

232 Jakarta Server Faces Final

Convenience method that uses the view metadata specification above to obtain the
List<UIViewParameter> for the argument viewId.

7.7.2.6. ViewDeclarationLanguage.getScriptComponentResource()

public Resource getScriptComponentResource(
 FacesContext context, Resource componentResource)

[P1-start getScriptComponentResource() requirements] The getScriptComponentResource() method
must fulfill the following responsibilities:

The Facelets implementation must:

• Take implementation specific action to discover a Resource given the argument
componentResource. The returned Resource if non-null, must point to a script file that can be turned
into something that extends UIComponent and implements NamingContainer.

The Jakarta Server Pages implementation is not required to support this method. In this case, null must
be returned from this method.[P1-end]

7.7.2.7. ViewDeclarationLanguage.renderView()

public void renderView(FacesContext context, String viewId)

[P1-start renderView() requirements] The renderView() method must fulfill the following
responsibilities:

All implementations must:

• Return immediately if calling isRendered() on the argument UIViewRoot returns false.

The Jakarta Server Pages implementation must:

• If the current request is a ServletRequest , call the set() method of the
jakarta.servlet.jsp.jstl.core.Config class, passing the current ServletRequest, the symbolic constant
Config.FMT_LOCALE, and the locale property of the specfied UIViewRoot. This configures JSTL with
the application’s preferred locale for rendering this response.

• Update the JSTL locale attribute in request scope so that JSTL picks up the new locale from the
UIViewRoot. This attribute must be updated before the JSTL setBundle tag is called because that is
when the new LocalizationContext object is created based on the locale.

• Create a wrapper around the current response from the ExternalContext and set it as the new
response in the ExternalContext. Otherwise, omit this step. This wrapper must buffer all content
written to the response so that it is ready for output at a later point. This is necessary to allow any
content appearing after the <f:view> tag to appear in the proper position in the page.

7.7. ViewDeclarationLanguage

Final Jakarta Server Faces 233

• Execute the Jakarta Server Pages page to build the view by treating the viewId as a context-relative
path (starting with a slash character), by passing it to the dispatch() method of the ExternalContext
associated with this request. Otherwise, continue to the next step. This causes control to pass to the
Jakarta Server Pages container, and then to UIComponentClassicTagBase. Please consult the
javadocs for that class for the specification of how to handle building the view by executing the
Jakarta Server Pages page.

• Store the wrapped response in a thread-safe manner for use below. Otherwise, omit this step. The
default implementation uses the request scope for this purpose.

• Restore the original response into the ExternalContext.

• If the FacesContext has a non-null ResponseWriter create a new writer using its cloneWithWriter()
method, passing the response’s Writer as the argument. Otherwise, use the current RenderKit to
create a new ResponseWriter.

• Set the new ResponseWriter into the FacesContext, saving the old one aside.

All implementations must:

• Call saveView() on the StateManager for this application, saving the result in a thread-safe manner
for use in the writeState() method of ViewHandler.

• Call startDocument() on the ResponseWriter.

The Facelets implementation must:

• Call encodeAll() on the UIViewRoot.

The Jakarta Server Pages implementation must:

• Output any content in the wrapped response from above to the response, removing the wrapped
response from the thread-safe storage.

All implementations must:

• Call endDocument() on the ResponseWriter.

The Jakarta Server Pages implementation must:

• If the old ResponseWriter was not null, place the old ResponseWriter back into the FacesContext.

The Facelets implementation must

• Close the writer used to write the response.[P1-end]

7.7.2.8. ViewDeclarationLanguage.restoreView()

public UIViewRoot restoreView(FacesContext context, String viewId)

7.7. ViewDeclarationLanguage

234 Jakarta Server Faces Final

[P1-start restoreView() requirements]The restoreView() method must fulfill the following
responsibilities:

The Jakarta Server Pages implementation must:

• If no viewId could be identified, return null.

• Call the restoreView() method of the associated StateManager, passing the FacesContext instance for
the current request and the calculated viewId, and return the returned UIViewRoot, which may be
null.

The Facelets implementation must:

• Call ResponseStateManager.isStateless(). If the result is false, proceed as specified in the Jakarta
Server Pages implementation. Otherwise, take the following steps and return.

• Obtain a reference to the ViewDeclarationLanguage from the ViewDeclarationLanguageFactory.
This is necessary to allow for proper decoration. It is not acceptable to simply use the java language
this keyword.

• Call createView() on the ViewDeclarationLanguage instance, passing the context and viewId
arguments. Let viewRoot be the result.

• Call FacesContext.setViewRoot(viewRoot).

• Call buildView() on the ViewDeclarationLanguage, passing the context and viewRoot.

• Return the viewRoot.

[P1-end]

7.8. StateManager
StateManager directs the process of saving and restoring the view between requests. The StateManager
instance for an application is retrieved from the Application instance, and therefore cannot know any
details of the markup language created by the RenderKit being used to render a view. Therefore, the
StateManager utilizes a helper object (see ResponseStateManager), that is provided by the RenderKit
implementation, and is therefore aware of the markup language details. The Jakarta Faces
implementation must provide a default StateManager implementation that supports the behavior
described below.

7.8.1. Overview

Conceptually, the state of a view can be divided into two pieces:

• Tree Structure. This includes component parent-child relationships, including facets.

• Component State. This includes:

◦ Component attributes and properties, and

7.8. StateManager

Final Jakarta Server Faces 235

◦ Validators, Converters, FacesListeners, and other objects attached to a component. The manner
in which these attached objects are saved is up to the component implementation. For attached
objects that may have state, the StateHolder interface (see StateHolder) is provided to allow
these objects to preserve their own attributes and properties. If an attached object does not
implement StateHolder, but does implement Serializable, it is saved using standard
serialization. Attached objects that do not implement either StateHolder or Serializable must
have a public, zero-arg constructor, and will be restored only to their initial, default object state
11.

It is beneficial to think of this separation between tree structure and tree state to allow the possibility
that implementations can use a different mechanism for persisting the structure than is used to persist
the state. For example, in a system where the tree structure is stored statically, as an XML file, for
example, the system could keep a DOM representation of the trees representing the webapp UI in
memory, to be used by all requests to the application.

7.8.1.1. Stateless Views

Version 2.2 of the specification adds support for stateless views. In such a view, the UIComponent state
for the components is not saved. This feature must be used with full awareness of the statefulness
requirements of the components in the view. If a component requires state to operate correctly, it must
not be used in a stateless view. Furthermore, it is not required that @ViewScoped managed beans work
at all with stateless views. This feature only works with Facelet based views, not Jakarta Server Pages
based views.

To mark a view as stateless, the existing transient property from UIComponent is exposed to the view
author by means of the transient attribute on the <f:view> tag from the Faces Core tag library. The
following spec sections contain more normative requirements for stateless views.

• The vdldocs for the Facelet variant of the <f:view> tag.

• The javadocs for ResponseStateManager.writeState(FacesContext, Object)

• The javadocs for ResponseStateManager.isStateless(FacesContext)

• See ViewDeclarationLanguage.restoreView()

• The javadocs for jakarta.faces.view.ViewScoped

• The javadocs for jakarta.faces.bean.ViewScoped

7.8.2. State Saving Alternatives and Implications

Jakarta Faces implementations support two primary mechanisms for saving state, based on the value
of the jakarta.faces.STATE_SAVING_METHOD initialization parameter (see Application Configuration
Parameters). The possible values for this parameter give a general indication of the approach to be
used, while allowing JSF implementations to innovate on the technical details:

• client — Cause the saved state to be included in the rendered markup that is sent to the client (such
as in a hidden input field for HTML). The state information must be included in the subsequent

7.8. StateManager

236 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6088
UsingJSFInWebApplications.pdf#a6088

request, making it possible for Jakarta Faces to restore the view without having saved information
on the server side. It is advisable that this information be encrypted and tamper evident, since it is
being sent down to the client, where it may persist for some time.The default implementation
Serializes the view in client mode.

• server — Cause the saved state to be stored on the server in between requests. Implementations
that wish to enable their saved state to fail over to a different container instance must keep this in
mind when implementing their server side state saving strategy. Serializing the view in server
mode is optional but must be possible by setting the context-param
jakarta.faces.SERIALIZE_SERVER_STATE to true. In the server mode, this serialized view is stored in
the session and a unique key to retrieve the view is sent down to the client. By storing the serialized
view in the session, failover may happen using the usual mechanisms provided by the container.

Serializable in the preceding text means the values of all component attributes and properties (as well
as the saved state of attached objects) must implement java.io.Serializable such that if the aggregate
saved state were written to an ObjectOutputStream, a NotSerializableException would not be thrown.

7.8.3. State Saving Methods.

public Object saveView(FacesContext context);

[P1-start saveView() requirements] This method causes the tree structure and component state of the
view contained in the argument FacesContext to be collected, stored, and returned in a java.lang.Object
instance that must implement java.io.Serializable. If null is returned from this method, there is no state
to save.[P1-end]

The returned object must represent the entire state of the view, such that a request processing lifecycle
can be run against it on postback. Special care must be taken to guarantee that objects attached to
component instances, such as listeners, converters, and validators, are also saved. The StateHolder
interface is provided for this reason.

This method must also enforce the rule that component ids within a NamingContainer must be unique

public void writeState(FacesContext context, Object state)
 throws IOException;

Save the state represented in the specified Object instance, in an implementation dependent manner.

7.8.4. State Restoring Methods

public UIViewRoot restoreView(FacesContext context, String viewId);

Restore the tree structure and the component state of the view for this viewId to be restored, in an

7.8. StateManager

Final Jakarta Server Faces 237

implementation dependent manner. If there is no saved state information available for this viewId, this
method returns null.

The default implementation of this method calls through to restoreTreeStructure() and, if necessary
restoreComponentState().

7.8.5. Convenience Methods

public boolean isSavingStateInClient(FacesContext context);

[P1-start isSavingStateInClient() requirements] Return true if and only if the value of the ServletContext
init parameter named by the value of the constant
StateManager.STATE_SAVING_METHOD_PARAM_NAME is equal to the value of the constant
STATE_SAVING_METHOD_CLIENT. Return false otherwise.

public String getViewState(FacesContext context);

Return the current view state as a String. [P1-start-getViewState] This method must call
ResposeStateManger.getViewState.[P1-end] Refer to ResponseStateManager for more details.

7.9. ResourceHandler
The normative specification for this class is in the javadoc for
jakarta.faces.application.ResourceHandler. See also Resource Handling.

public ResourceHandler getResourceHandler();
public void setResourceHandler(ResourceHandler impl);

7.10. Deprecated APIs

7.10.1. PropertyResolver Property

/** @deprecated */
public PropertyResolver getPropertyResolver();

/** @deprecated */
public void setPropertyResolver(PropertyResolver resolver);

[N/T-start getPropertyResolver() requirements] getPropertyResolver() must return a PropertyResolver
instance that wraps the ELResolver instance that Faces provides to the unified EL. [N/T-end] The

7.9. ResourceHandler

238 Jakarta Server Faces Final

PropertyResolver instance will be utilized to evaluate each . or [] operator when processing value
expressions. This method has been deprecated for getELResolver() (see ELResolver Property).

setPropertyResolver() replaces the PropertyResolver instance that will be utilized to evaluate each . or
[] operator when processing a value binding expression. A default implementation must be provided,
which operates as described in PropertyResolver and the Default PropertyResolver. This method has
been deprecated. See the Javadocs for setPropertyResolver().

7.10.2. VariableResolver Property

/** @deprecated */
public VariableResolver getVariableResolver();

/** @deprecated */
public void setVariableResolver(VariableResolver resolver);

[N/T-start getVariableResolver() requirements] getVariableResolver() must return the VariableResolver
that wraps the ELResolver instance that Faces provides to the Jakarta Expression Language. The
VariableResolver instance will be utilized to convert the first name in a value expression into a
corresponding object. The implementation must pass null as the base argument for any methods
invoked on the underlying ELResolver. This method has been deprecated for getELResolver(). [N/T-
end]

setVariableResolver replaces the VariableResolver instance that will be utilized to resolve method and
value bindings. A default implementation must be provided, which operates as described in
VariableResolver and the Default VariableResolver. The method has been deprecated. See the Javadocs
for setVariableResolver().

7.10.3. Acquiring ValueBinding Instances

/** @deprecated */
public ValueBinding createValueBinding(String ref);

Create and return a ValueBinding that can be used to evaluate the specified value binding expression.
Call through to createValueExpression, passing the argument ref, Object.class for the expectedType, and
null for the fnMapper. To avoid nondeterministic behavior, it is recommended that applications (or
frameworks) wishing to plug in their own resolver implementations do so before createValueBinding()
is called for the first time. This method has been deprecated for createValueExpression() (See
Programmatically Evaluating Expressions

7.10.4. Acquiring MethodBinding Instances

7.10. Deprecated APIs

Final Jakarta Server Faces 239

/** @deprecated */
public MethodBinding createMethodBinding(String ref, Class params[]);

Create and return a MethodBinding that can be used to evaluate the specified method binding
expression, and invoke the specified method. The implementation must call through to
createMethodExpression, passing the given arguments, and wrap the result in a MethodBinding
implementation, returning it. The method that is invoked must have parameter signatures that are
compatible with the classes in the params parameter 12 (which may be null or a zero-length array if
the method to be called takes no parameters). The actual parameters to be passed when the method is
executed are specified on the invoke() call of the returned MethodBinding instance.

To avoid nondeterministic behavior, it is recommended that applications (or frameworks) wishing to
plug in their own resolver implementations do so before calling createMethodBinding() for the first
time. This method has been deprecated.

7.10.5. Object Factories

/** @deprecated */
public UIComponent createComponent(ValueBinding componentBinding,
 FacesContext context, String componentType);

Special version of the factory for UIComponent instances that is used when evaluating component
binding expression properties. The implementation of this method must wrap the argument
componentBinding in an implementation of ValueExpression and call through to
createComponent(jakarta.el.ValueExpression, jakarta.faces.FacesContext, java.lang.String). This
method has been deprecated for createComponent() using ValueExpression (see Object Factories)

7.10.6. StateManager

This method causes the tree structure and component state of the view contained in the argument
FacesContext to be collected, stored, and returned in a StateManager.SerializedView instance. If null is
returned from this method, there is no state to save.

This method must also enforce the rule that component ids within a NamingContainer must be unique

/** @deprecated */
public void writeState(FacesContext context,
 StateManager.SerializedView state) throws IOException;

Save the state represented in the specified SerializedView instance, in an implementation dependent
manner.

7.10. Deprecated APIs

240 Jakarta Server Faces Final

/** @deprecated */
protected Object getTreeStructureToSave(FacesContext context);

This method must create a Serializable object that represents the tree structure of the component tree
for this view. Tree structure is comprised of parent-child relationships, including facets. The id of each
component and facet must also be saved to allow the naming containers in the tree to be correctly
restored when this view is restored.

/** @deprecated */
protected Object getComponentStateToSave(FacesContext context);

This method must create a Serializable object representing the component state (attributes, properties,
and attached objects) of the component tree for this view. Attached objects that wish to save and
restore their own state must implement StateHolder.

7.10.7. ResponseStateManager

This method causes the tree structure and component state of the view contained in the argument
FacesContext to be collected, stored, and returned in a StateManager.SerializedView instance. If null is
returned from this method, there is no state to save.

This method must also enforce the rule that component ids within a NamingContainer must be unique

/** @deprecated */
public void writeState(FacesContext context,
 StateManager.SerializedView state) throws IOException;

Save the state represented in the specified SerializedView instance, in an implementation dependent
manner.

/** @deprecated */
protected Object getTreeStructureToRestore(
 FacesContext context, String viewId);

The implementation must inspect the current request and return the tree structure Object passed to it
on a previous invocation of writeState().

/** @deprecated */
protected Object getComponentStateToRestore(
 FacesContext context, String viewId);

7.10. Deprecated APIs

Final Jakarta Server Faces 241

The implementation must inspect the current request and return the component state Object passed to
it on a previous invocation of writeState().

7.10. Deprecated APIs

242 Jakarta Server Faces Final

Chapter 8. Rendering Model
Jakarta Faces supports two programming models for decoding component values from incoming
requests, and encoding component values into outgoing responses - the direct implementation and
delegated implementation models. When the direct implementation model is utilized, components must
decode and encode themselves. When the delegated implementation programming model is utilized,
these operations are delegated to a Renderer instance associated (via the rendererType property) with
the component. This allows applications to deal with components in a manner that is predominantly
independent of how the component will appear to the user, while allowing a simple operation
(selection of a particular RenderKit) to customize the decoding and encoding for a particular client
device or localized application user.

Component writers, application developers, tool providers, and Jakarta Faces implementations will
often provide one or more RenderKit implementations (along with a corresponding library of Renderer
instances). In many cases, these classes will be provided along with the UIComponent classes for the
components supported by the RenderKit. Page authors will generally deal with RenderKits indirectly,
because they are only responsible for selecting a render kit identifier to be associated with a particular
page, and a rendererType property for each UIComponent that is used to select the corresponding
Renderer.

8.1. RenderKit
A RenderKit instance is optionally associated with a view, and supports components using the delegated
implementation programming model for the decoding and encoding of component values. It also
supports Behavior instances for the rendering of client side behavior and decoding for queuing
BehaviorEvents. Refer to Component Behavior Model for more details about this feature. [P1-start-
renderkit]Each Jakarta Faces implementation must provide a default RenderKit instance (named by the
render kit identifier associated with the String constant RenderKitFactory.HTML_BASIC_RENDER_KIT
as described below) that is utilized if no other RenderKit is selected.[P1-end]

public Renderer getRenderer(String family, String rendererType);

Return the Renderer instance corresponding to the specified component family and rendererType (if
any), which will typically be the value of the rendererType property of a UIComponent about to be
decoded or encoded

public ClientBehaviorRenderer getClientBehaviorRenderer(String type);

Return the ClientBehaviorRenderer instance corresponding to the specified behavior type.

8.1. RenderKit

Final Jakarta Server Faces 243

public void addRenderer(String family,
 String rendererType, Renderer renderer);

public void addClientBehaviorRenderer(String type,
 ClientBehaviorRenderer renderer);

public Iterator<String> getClientBehaviorRendererTypes();

Applications that wish to go beyond the capabilities of the standard RenderKit that is provided by every
Jakarta Faces implementation may either choose to create their own RenderKit instances and register
them with the RenderKitFactory instance (see RenderKitFactory), or integrate additional (or
replacement) supported Renderer instances into an existing RenderKit instance. For example, it will be
common for an application that requires custom component classes and Renderers to register them
with the standard RenderKit provided by the Jakarta Faces implementation, at application startup time
See Example Application Configuration Resource for an example of a faces-config.xml configuration
resource that defines two additional Renderer instances to be registered in the default RenderKit.

public ResponseWriter createResponseWriter(Writer writer,
 String contentTypeList, String characterEncoding);

Use the provided Writer to create a new ResponseWriter instance for the specified character encoding.

The contentTypeList parameter is an "Accept header style" list of content types for this response, or null
if the RenderKit should choose the best fit. [P1-start-contentTypeList]The RenderKit must support a
value for the contentTypeList argument that comes straight from the Accept HTTP header, and
therefore requires parsing according to the specification of the Accept header.[P1-end] Please see
Section 14.1 of RFC 2616 (the HTTP 1.1 RFC) for the specification of the Accept header.

Implementors are advised to consult the getCharacterEncoding() method of class
jakarta.faces.servlet.ServletResponse to get the required value for the characterEncoding parameter for
this method. Since the Writer for this response will already have been obtained (due to it ultimately
being passed to this method), we know that the character encoding cannot change during the
rendering of the response. Please see ResponseWriter

public ResponseStream createResponseStream(OuputStream out);

Use the provided OutputStream to create a new ResponseStream instance.

public ResponseStateManager getResponseStateManager();

8.1. RenderKit

244 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6554

Return an instance of ResponseStateManager to handle rendering technology specific state
management decisions..

public Iterator<String> getComponentFamilies();
public Iterator<String> getRendererTypes(String componentFamily);

The first method returns an Iterator over the component-family entries supported by this RenderKit.
The second one can be used to get an Iterator over the renderer-type entries for each of the component-
family entries returned from the first method.

8.2. Renderer
A Renderer instance implements the decoding and encoding functionality of components, during the
Apply Request Values and Render Response phases of the request processing lifecycle, when the
component has a non-null value for the rendererType property.

public void decode(FacesContext context, UIComponent component);

For components utilizing the delegated implementation programming model, this method will be called
during the apply request values phase of the request processing lifecycle, for the purpose of converting
the incoming request information for this component back into a new local value. See the API
reference for the Renderer.decode() method for details on its responsibilities.

public void encodeBegin(FacesContext context,
 UIComponent component) throws IOException;

public void encodeChildren(FacesContext context,
 UIComponent component) throws IOException;

public void encodeEnd(FacesContext context,
 UIComponent component) throws IOException;

For components utilizing the delegated implementation programming model, these methods will be
called during the Render Response phase of the request processing lifecycle. These methods have the
same responsibilities as the corresponding encodeBegin(), encodeChildren(), and encodeEnd() methods
of UIComponent (described in Component Specialization Methods and the corresponding Javadocs)
when the component implements the direct implementation programming model.

public String convertClientId(FacesContext context, String clientId);

Converts a component-generated client identifier into one suitable for transmission to the client.

8.2. Renderer

Final Jakarta Server Faces 245

public boolean getRendersChildren();

Return a flag indicating whether this Renderer is responsible for rendering the children of the
component it is asked to render.

public Object getConvertedValue(FacesContext context,
 UIComponent component, Object submittedValue) throws ConverterException;

Attempt to convert previously stored state information into an object of the type required for this
component (optionally using the registered Converter for this component, if there is one). If conversion
is successful, the new value should be returned from this method; if not, a ConverterException should
be thrown.

A Renderer may listen for events using the ListenerFor annotation. Refer to the Javadocs for the
ListenerFor class for more details.

8.3. ClientBehaviorRenderer
A ClientBehaviorRenderer instance produces client side behavior for components in the form of script
content. It also participates in decoding and as such has the ability to enqueue server side
BehaviorEvents.

public String getScript(ClientBehaviorContext behaviorContext,
 ClientBehavior behavior);

Produce the script content that performs the client side behavior. This method is called during the
Render Response phase of the request processing lifecycle.

public void decode(FacesContext context,
 UIComponent component, ClientBehavior behavior);

This method will be called during the apply request values phase of the request processing lifecycle, for
the primary purpose of enqueuing BehaviorEvents. All client behavior renderer implementations must
extend from the ClientBehaviorRenderer interface.

8.3.1. ClientBehaviorRenderer Registration

ClientBehaviorRenderer implementations may be registered in the Jakarta Faces faces-config.xml or
with an annotation.

8.3. ClientBehaviorRenderer

246 Jakarta Server Faces Final

XML Registration

<render-kit>
 <render-kit-id>HTML_BASIC</render-kit-id>
 <client-behavior-renderer>
 <client-behavior-renderer-type>
 custom.behavior.Greet
 </client-behavior-renderer-type>
 <client-behavior-renderer-class>
 greet.GreetRenderer
 </client-behavior-renderer-class>
 </client-behavior-renderer>
 ...

Registration By Annotation

Jakarta Faces provides the jakarta.faces.render.FacesBehaviorRenderer annotation.

@FacesClientBehaviorRenderer(value=”Hello”)
public class MyRenderer extends ClientBehaviorRenderer {
 ...
}

8.4. ResponseStateManager
ResponseStateManager is the helper class to jakarta.faces.application.StateManager that knows the
specific rendering technology being used to generate the response. It is a singleton abstract class. This
class knows the mechanics of saving state, whether it be in hidden fields, session, or some combination
of the two.

public Object getState(FacesContext context);

Please see the javadoc for this method for the normative specification.

public void writeState(FacesContext context, Object state)
 throws IOException;

Please see the javadoc for this method for the normative specification.

public boolean isPostback(FacesContext context);

Return true if the current request is a postback. The default implementation returns true if this

8.4. ResponseStateManager

Final Jakarta Server Faces 247

ResponseStateManager instance wrote out state on a previous request to which this request is a
postback. Return false otherwise.

Please see ResponseStateManager for deprecated methods in ResponseStateManager.

public String getViewState(FacesContext context);

Return the view state as a String without any markup related to the rendering technology supported by
this ResponseStateManager.

8.5. RenderKitFactory
[P1-start-renderkitFactory]A single instance of jakarta.faces.render.RenderKitFactory must be made
available to each Jakarta Faces-based web application running in a servlet or portlet container.[P1-
end] The factory instance can be acquired by Jakarta Faces implementations, or by application code, by
executing

RenderKitFactory factory = (RenderKitFactory)
 FactoryFinder.getFactory(FactoryFinder.RENDER_KIT_FACTORY);

The RenderKitFactory implementation class supports the following methods:

public RenderKit getRenderKit(FacesContext context, String renderKitId);

Return a RenderKit instance for the specified render kit identifier, possibly customized based on the
dynamic characteristics of the specified, (yet possibly null) FacesContext. For example, an
implementation might choose a different RenderKit based on the “User-Agent” header included in the
request, or the Locale that has been established for the response view. Note that applications which
depend on this feature are not guaranteed to be portable across Jakarta Faces implementations.

[P1-start-renderkitDefault]Every Jakarta Faces implementation must provide a RenderKit instance for a
default render kit identifier that is designated by the String constant
RenderKitFactory.HTML_BASIC_RENDER_KIT.[P1-end] Additional render kit identifiers, and
corresponding instances, can also be made available.

public Iterator<String> getRenderKitIds();

This method returns an Iterator over the set of render kit identifiers supported by this factory. [P1-
start-renderkitIds]This set must include the value specified by
RenderKitFactory.HTML_BASIC_RENDER_KIT.[P1-end]

8.5. RenderKitFactory

248 Jakarta Server Faces Final

public void addRenderKit(String renderKitId, RenderKit renderKit);

Register a RenderKit instance for the specified render kit identifier, replacing any previous RenderKit
registered for that identifier.

8.6. Standard HTML RenderKit Implementation
To ensure application portability, all Jakarta Faces implementations are required to include support for
a RenderKit, and the associated Renderers, that meet the requirements defined in this section, to
generate textual markup that is compatible with HTML 4.01. Jakarta Faces implementors, and other
parties, may also provide additional RenderKit libraries, or additional Renderers that are added to the
standard RenderKit at application startup time, but applications must ensure that the standard
Renderers are made available for the web application to utilize them.

The required behavior of the standard HTML RenderKit is specified in a set of external HTML pages
that accompany this specification, entitled “The Standard HTML RenderKit”. The behavior described in
these pages is normative, and are required to be fulfilled by all implementations of Jakarta Faces.

8.7. The Concrete HTML Component Classes
For each valid combination of UIComponent subclass and standard renderer given in the previous
section, there is a concrete class in the package jakarta.faces.component.html package. Each class in
this package is a subclass of an corresponding class in the jakarta.faces.component package, and adds
strongly typed JavaBeans properties for all of the renderer-dependent properties. These classes also
implement the BehaviorHolder interface, enabling them to have Behavior attached to them. Refer to
Component Behavior Model for additional details.

Table 13. Concrete HTML Component Classes

jakarta.faces.component
class

renderer-type jakarta.faces.component.html
class

UICommand jakarta.faces.Button HtmlCommandButton

UICommand jakarta.faces.Link HtmlCommandLink

UIData jakarta.faces.Table HtmlDataTable

UIForm jakarta.faces.Form HtmlForm

UIGraphic jakarta.faces.Image HtmlGraphicImage

UIInput jakarta.faces.Hidden HtmlInputHidden

UIInput jakarta.faces.Secret HtmlInputSecret

UIInput jakarta.faces.Text HtmlInputText

UIInput jakarta.faces.Textarea HtmlInputTextarea

8.6. Standard HTML RenderKit Implementation

Final Jakarta Server Faces 249

jakarta.faces.component
class

renderer-type jakarta.faces.component.html
class

UIMessage jakarta.faces.Message HtmlMessage

UIMessages jakarta.faces.Messages HtmlMessages

UIOutput jakarta.faces.Format HtmlOutputFormat

UIOutput jakarta.faces.Label HtmlOutputLabel

UIOutput jakarta.faces.Link HtmlOutputLink

UIOutput jakarta.faces.Text HtmlOutputText

UIOutcomeTarget jakarta.faces.Link HtmlOutcomeTargetLink

UIOutcomeTarget jakarta.faces.Button HtmlOutcomeTargetButton

UIPanel jakarta.faces.Grid HtmlPanelGrid

UIPanel jakarta.faces.Group HtmlPanelGroup

UISelectBoolean jakarta.faces.Checkbox HtmlSelectBooleanCheckbox

UISelectMany jakarta.faces.Checkbox HtmlSelectManyCheckbox

UISelectMany jakarta.faces.Listbox HtmlSelectManyListbox

UISelectMany jakarta.faces.Menu HtmlSelectManyMenu

UISelectOne jakarta.faces.Listbox HtmlSelectOneListbox

UISelectOne jakarta.faces.Menu HtmlSelectOneMenu

UISelectOne jakarta.faces.Radio HtmlSelectOneRadio

[P1-start-htmlComponent]As with the standard components in the jakarta.faces.component package,
each HTML component implementation class must define a static public final String constant named
COMPONENT_TYPE, whose value is “jakarta.faces”. concatenated with the class name. HTML
components, however, must not define a COMPONENT_FAMILY constant, or override the getFamily()
method they inherit from their superclass.[P1-end]

===

8.7. The Concrete HTML Component Classes

250 Jakarta Server Faces Final

Chapter 9. Integration with Jakarta Server
Pages
Any Jakarta Faces implementations that claims compliance with this specification must include a
complete Jakarta Server Pages implementation, and expose this implementation to the runtime of any
Jakarta Faces application. Jakarta Faces applications, however, need not use Jakarta Server Pages as
their View Declaration Language (VDL). In fact, a Jakarta Faces application is free to use whatever
technology it likes for its VDL, as long as that VDL itself complies with the Jakarta Faces specification.

This version of the specification requires that implementations support two View Declaration
Language syntaxes

• Jakarta Server Pages

• Facelets XHTML

This chapter describes the Jakarta Server Pages support required by Jakarta Server Faces. This Jakarta
Server Pages support is enabled by providing custom actions so that a Jakarta Faces user interface can
be easy defined in a Jakarta Server Pages page by adding tags corresponding to Jakarta Faces UI
components. Custom actions provided by a Jakarta Faces implementation may be mixed with standard
Jakarta Server Pages actions and custom actions from other libraries, as well as template text for
layout, in the same Jakarta Server Pages page.

Facelets XHTML is specified in Facelets and its use in Web Applications. This chapters builds on the
previous one. Facelets relies on concepts specified in Jakarta Server Pages.

For Jakarta Server Pages version 2.0 and onward, the file extension “.jsf” is reserved, and may
optionally be used (typically by authoring tools) to represent VDL pages containing Jakarta Faces
content 13. When running in a pre-Jakarta Server Pages 2.0 environment, Jakarta Server Pages authors
must give their Jakarta Server Pages pages that contain Jakarta Faces content a filename ending in “
.jsp”.

9.1. UIComponent Custom Actions
A Jakarta Server Pages custom action (aka custom tag or tag) for a Jakarta Faces UIComponent is
constructed by combining properties and attributes of a Java UI component class with the rendering
attributes supported by a specific Renderer from a concrete RenderKit. For example, assume the
existence of a concrete RenderKit, HTMLRenderKit, which supports three Renderer types for the
UIInput component:

Table 14. Example Renderer Types

RendererType Render-Dependent Attributes

“Text” “size”

9.1. UIComponent Custom Actions

Final Jakarta Server Faces 251

RendererType Render-Dependent Attributes

“Secret” “size”, “secretChar”

“Textarea” “size”, “rows”

The tag library descriptor (TLD) file for the corresponding tag library, then, would define three custom
actions—one per Renderer. Below is an example of a portion of the custom action definition for the
inputText tag 14:

<tag>
 <name>inputText</name>
 <tag-class>acme.html.tags.InputTag</tag-class>
 <bodycontent>JSP</bodycontent>

 <attribute>
 <name>id</name>
 <required>false</required>
 <rtexprvalue>true</rtexprvalue>
 </attribute>

 <attribute>
 <name>value</name>
 <required>false</required>
 <deferred-value>
 <type>java.lang.Object</type>
 <deferred-value>
 </attribute>

 <attribute>
 <name>size</name>
 <required>false</required>
 <deferred-value>
 <type>java.lang.Integer</type>
 <deferred-value>
 </attribute>
 ...
</tag>

Note that the size attribute is derived from the Renderer of type “Text”, while the id and value attributes
are derived from the UIInput component class itself. Also note that the id attribute has rtexprvalue set
to true. This is to allow ${} expressions in the id attribute so that <c:forEach> can include faces
components that incorporate the index into their id. RenderKit implementors will generally provide a
Jakarta Server Pages tag library which includes component custom actions corresponding to each of
the component classes (or types) supported by each of the RenderKit’s Renderers. See RenderKit and
Renderer for details on the RenderKit and Renderer APIs. Jakarta Faces implementations must provide

9.1. UIComponent Custom Actions

252 Jakarta Server Faces Final

such a tag library for the standard HTML RenderKit (see Standard HTML RenderKit Tag Library).

9.2. Using UIComponent Custom Actions in Jakarta
Server Pages Pages
The following subsections define how a page author utilizes the custom actions provided by the
RenderKit implementor in the Jakarta Server Pages pages that create the user interface of a Jakarta
Faces-based web application.

9.2.1. Declaring the Tag Libraries

This specification hereby reserves the following Uniform Resource Identifier (URI) values to refer to
the standard tag libraries for the custom actions defined by Jakarta Server Faces:

• http://java.sun.com/jsf/core — URI for the Jakarta Server Faces Core Tag Library

• http://java.sun.com/jsf/html — URI for the Jakarta Server Faces Standard HTML RenderKit Tag
Library

The page author must use the standard Jakarta Server Pages taglib directive to declare the URI of each
tag library to be utilized, as well as the prefix used (within this page) to identify custom actions from
this library. For example,

<%@ taglib uri=”http://java.sun.com/jsf/core” prefix=”f” %>
<%@ taglib uri=”http://java.sun.com/jsf/html” prefix=”h” %>

declares the unique resource identifiers of the tag libraries being used, as well as the prefixes to be
used within the current page for referencing actions from these libraries 15.

9.2.2. Including Components in a Page

A Jakarta Faces UIComponent custom action can be placed at any desired position in a Jakarta Server
Pages page that contains the taglib directive for the corresponding tag library, subject to the following
restrictions:

• When using a single Jakarta Server Pages page to create the entire view, Jakarta Faces component
custom actions must be nested inside the <f:view> custom action from the Jakarta Faces Core Tag
Library.

The following example illustrates the general use of a UIComponent custom action in a Jakarta Server
Pages page. In this scenario:

<h:inputText id=”username” value=”#{logonBean.username}”/>

9.2. Using UIComponent Custom Actions in Jakarta Server Pages Pages

Final Jakarta Server Faces 253

http://java.sun.com/jsf/core
http://java.sun.com/jsf/html

represents a UIInput field, to be rendered with the “Text” renderer type, and points to the username
property of a backing bean for the actual value. The id attribute specifies the component id of a
UIComponent instance, from within the component tree, to which this custom action corresponds. If no
id is specified, one will be automatically generated by the custom action implementation.

Custom actions that correspond to Jakarta Faces UIComponent instances must subclass
jakarta.faces.webapp.UIComponentELTag (see UIComponentELTag)

During the Render Response phase of the request processing lifecycle, the appropriate encoding
methods of the component (or its associated Renderer) will be utilized to generate the representation of
this component in the response page. In addition, the first time a particular page is rendered, the
component tree may also be dynamically constructed.

All markup other than UIComponent custom actions is processed by the Jakarta Server Pages container,
in the usual way. Therefore, you can use such markup to perform layout control, or include non-
Jakarta Faces content, in conjunction with the actions that represent UI components.

9.2.3. Creating Components and Overriding Attributes

As UIComponent custom actions are encountered during the processing of a Jakarta Server Pages page,
the custom action implementation must check the component tree for the existence of a corresponding
UIComponent, and (if not found) create and configure a new component instance corresponding to this
custom action. The details of this process (as implemented in the findComponent() method of
UIComponentClassicTagBase, for easy reuse) are as follows:

• If the component associated with this component custom action has been identified already, return
it unchanged.

• Identify the component identifier for the component related to this UIComponent custom action, as
follows:

◦ If the page author has specified a value for the id attribute, use that value.

◦ Otherwise, call the createUniqueId() method of the UIViewRoot at the root of the component tree
for this view, and use that value.

• If this UIComponent custom action is creating a facet (that is, we are nested inside an <f:facet>
custom action), determine if there is a facet of the component associated with our parent
UIComponent custom action, with the specified facet name, and proceed as follows:

◦ If such a facet already exists, take no additional action.

◦ If no such facet already exists, create a new UIComponent (by calling the createComponent()
method on the Application instance for this web application, passing the value returned by
getComponentType(), set the component identifier to the specified value, call setProperties()
passing the new component instance, and add the new component as a facet of the component
associated with our parent UIComponent custom action, under the specified facet name.

• If this UIComponent custom action is not creating a facet (that is, we are not nested inside an
<f:facet> custom action), determine if there is a child component of the component associated with

9.2. Using UIComponent Custom Actions in Jakarta Server Pages Pages

254 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6175

our parent UIComponent custom action, with the specified component identifier, and proceed as
follows:

◦ If such a child already exists, take no additional action.

◦ If no such child already exists, create a new UIComponent (by calling the createComponent()
method on the Application instance for this web application, passing the value returned by
getComponentType(), set the component identifier to the specified value, call setProperties()
passing the new component instance, and add the new component as a child of the component
associated with our parent UIComponent custom action.

9.2.4. Deleting Components on Redisplay

In addition to the support for dynamically creating new components, as described above,
UIComponent custom actions will also delete child components (and facets) that are already present in
the component tree, but are not rendered on this display of the page. For example, consider a
UIComponent custom action that is nested inside a Jakarta Tag’s <c:if> custom action whose condition
is true when the page is initially rendered. As described in this section, a new UIComponent will have
been created and added as a child of the UIComponent corresponding to our parent UIComponent
custom action. If the page is re-rendered, but this time the <c:if> condition is false, the previous child
component will be removed.

9.2.5. Representing Component Hierarchies

Nested structures of UIComponent custom actions will generally mirror the hierarchical relationships
of the corresponding UIComponent instances in the view that is associated with each Jakarta Server
Pages page. For example, assume that a UIForm component (whose component id is logonForm)
contains a UIPanel component used to manage the layout. You might specify the contents of the form
like this:

<h:form id=”logonForm”>
 <h:panelGrid columns=”2”>
 <h:outputLabel for=”username”>
 <h:outputText value=”Username:”/>
 </h:outputLabel>
 <h:inputText id=”username” value=”#{logonBean.username}”/>
 <h:outputLabel for=”password”>
 <h:outputText value=”Password:”/>
 </h:outputLabel>
 <h:inputSecret id=”password” value=”#{logonBean.password}”/>
 <h:commandButton id=”submitButton” type=”SUBMIT”
 action=”#{logonBean.logon}”/>
 <h:commandButton id=”resetButton” type=”RESET”/>
 </h:panelGrid>
</h:form>

9.2. Using UIComponent Custom Actions in Jakarta Server Pages Pages

Final Jakarta Server Faces 255

9.2.6. Registering Converters, Event Listeners, and Validators

Each Jakarta Faces implementation is required to provide the core tag library (see Jakarta Faces Core
Tag Library), which includes custom actions that (when executed) create instances of a specified
Converter, ValueChangeListener, ActionListener or Validator implementation class, and register the
created instance with the UIComponent associated with the most immediately surrounding
UIComponent custom action.

Using these facilities, the page author can manage all aspects of creating and configuring values
associated with the view, without having to resort to Java code. For example:

<h:inputText id=”username” value=”#{logonBean.username}”>
 <f:validateLength minimum=”6”/>
</h:inputText>

associates a validation check (that the value entered by the user must contain at least six characters)
with the username UIInput component being described.

Following are usage examples for the valueChangeListener and actionListener custom actions.

<h:inputText id=”maxUsers”>
 <f:convertNumber integerOnly=”true”/>
 <f:valueChangeListener type="custom.MyValueChangeListener"/>
</h:inputText>
<h:commandButton label="Login">
 <f:actionListener type="custom.MyActionListener"/>
</h:commandButton>

This example causes a Converter and a ValueChangeListener of the user specified type to be
instantiated and added as to the enclosing UIInput component, and an ActionListener is instantiated
and added to the enclosing UICommand component. If the user specified type does not implement the
proper listener interface a JSPException must be thrown.

9.2.7. Using Facets

A Facet is a subordinate UIComponent that has a special relationship to its parent UIComponent, as
described in Facet Management. Facets can be defined in a Jakarta Server Pages page using the
<f:facet> custom action. Each facet action must have one and only one child UIComponent custom
action 16. For example:

9.2. Using UIComponent Custom Actions in Jakarta Server Pages Pages

256 Jakarta Server Faces Final

<h:dataTable ...>
 <f:facet name=”header”>
 <h:outputText value=”Customer List”/>
 </f:facet>
 <h:column>
 <f:facet name=”header”>
 <h:outputText value=”Account Id”/>
 </f:facet>
 <h:outputText id=”accountId” value= ”#{customer.accountId}”/>
 </h:column>
 ...
</h:dataTable>

9.2.8. Interoperability with Jakarta Server Pages Template Text and Other Tag
Libraries

It is permissible to use other tag libraries, such as the Jakarta Standard Tag Library (Jakarta Tags) in
the same Jakarta Server Pages page with UIComponent custom actions that correspond to Jakarta Faces
components, subject to certain restrictions. When Jakarta Faces component actions are nested inside
custom actions from other libraries, or combined with template text, the following behaviors must be
supported:

• Jakarta Faces component custom actions nested inside a custom action that conditionally renders
its body (such as Jakarta Tags’s <c:if> or <c:choose>) must contain a manually assigned id attribute.

• Interoperation with the Jakarta Tag’s Internationalization-Capable Formatting library (typically
used with the “fmt” prefix) is restricted as follows:

◦ The <fmt:parseDate> and <fmt:parseNumber> custom actions should not be used. The
corresponding Jakarta Faces facility is to use an <h:inputText> component custom action with
an appropriate DateTimeConverter or NumberConverter.

◦ The <fmt:requestEncoding> custom action should not be used. By the time it is executed, the
request parameters will have already been parsed, so any change in the setting here will have
no impact. Jakarta Faces handles character set issues automatically in most cases. To use a fixed
character set in exceptional circumstances, use the a “<%@ page contentType=”[content-
type];[charset]” %>” directive.

◦ The <fmt:setLocale/> custom action should not be used. Even though it might work in some
circumstances, it would result in Jakarta Faces and Jakarta Tags assuming different locales. If
the two locales use different character sets, the results will be undefined. Applications should
use Jakarta Faces facilities for setting the locale property on the UIViewRoot component to
change locales for a particular user.

9.2. Using UIComponent Custom Actions in Jakarta Server Pages Pages

Final Jakarta Server Faces 257

9.2.9. Composing Pages from Multiple Sources

Jakarta Server Pages pages can be composed from multiple sources using several mechanisms:

• The <%@include%> directive performs a compile-time inclusion of a specified source file into the
page being compiled 17. From the perspective of Jakarta Faces, such inclusions are
transparent—the page is compiled as if the inclusions had been performed before compilation was
initiated.

• Several mechanisms (including the <jsp:include> standard action, the Jakarta Tag’s <c:import>
custom action when referencing a resource in the same webapp, and a call to
RequestDispatcher.include() for a resource in the same webapp) perform a runtime dynamic
inclusion of the results of including the response content of the requested page resource in place of
the include action. Any Jakarta Faces components created by execution of Jakarta Faces component
custom actions in the included resource will be grafted onto the component tree, just as if the
source text of the included page had appeared in the calling page at the position of the include
action.

• For mechanisms that aggregate content by other means (such as use of an HttpURLConnection, a
RequestDispatcher.include() on a resource from a different web application, or accessing an
external resource with the Jakarta Tag’s <c:import> custom action on a resource from a different
web application, only the response content of the aggregation request is available. Therefore, any
use of Jakarta Faces components in the generation of such a response are not combined with the
component tree for the current page.

9.3. UIComponent Custom Action Implementation
Requirements
The custom action implementation classes for UIComponent custom actions must conform to all of the
requirements defined in the Jakarta Server Pages Specification. In addition, they must meet the
following Jakarta Faces-specific requirements:

• Extend the UIComponentELTag or UIComponentELBodyTag base class, so that Jakarta Faces
implementations can recognize UIComponent custom actions versus others.

• Provide a public getComponentType() method that returns a String-valued component type
registered with the Application instance for this web application. The value returned by this
method will be passed to Application.createComponent() when a new UIComponent instance
associated with this custom action is to be created.

• Provide a public getRendererType() method that returns a String-valued renderer type registered
with the RenderKit instance for the currently selected RenderKit, or null if there should be no
associated Renderer. The value returned by this method will be used to set the rendererType
property of any UIComponent created by this custom action.

• Provide setter methods taking a jakarta.el.ValueExpression or jakarta.el.MethodExpression
parameter for all set-able (from a custom action) properties of the corresponding UIComponent

9.3. UIComponent Custom Action Implementation Requirements

258 Jakarta Server Faces Final

class, and all additional set-able (from a custom action) attributes supported by the corresponding
Renderer.

• On the method that causes a UIComponent instance to be added to the tree, verify that the
component id of that UIComponent is unique within the scope of the closest ancestor component
that is a NamingContainer. If this constraint is not met, throw JspException.

• Provide a protected setProperties() method of type void that takes a UIComponent instance as
parameter. The implementation of this method must perform the following tasks:

◦ Call super.setProperties(), passing the same UIComponent instance received as a parameter.

◦ For each non-null custom action attribute that corresponds to a property based attribute to be
set on the underlying component, call either setValueExpression() or getAttributes().put(),
depending on whether or not a value expression was specified as the custom action attribute
value (performing any required type conversion). For example, assume that title is the name of
a render-dependent attribute for this component:

public void setTitle(jakarta.el.ValueExpression title) {
 this.title = title;
}

protected void setProperties(UIComponent component) throws JspException {
 super.setProperties(component);
 if (title != null) {
 try {
 component.setValueExpression(“title”, title);
 } catch (ELException e) {
 throw new JspException(e);
 }
 ...
}

◦ For each non-null custom action attribute that corresponds to a method based attribute to be
set on the underlying component, the value of the attribute must be a method reference
expression. We have a number of wrapper classes to turn a MethodExpression into the
appropriate listener. For example, assume that valueChangeListener is the name of an attribute
for this component:

9.3. UIComponent Custom Action Implementation Requirements

Final Jakarta Server Faces 259

public void setValueChangeListener(jakarta.el.MethodExpression me) {
 valueChangeListener = me;
}

protected void setProperties(UIComponent component) {
 super.setProperties(component);
 MethodExpressionValueChangeListener listener =
 new MethodExpressionValueChangeListener(valueChangeListener);
 input.addValueChangeListener(listener);
 ...
}

◦ Non-null custom action attributes that correspond to a writable property to be set on the
underlying component are handled in a similar fashion. For example, assume a custom action
for the UIData component is being created that needs to deal with the rows property (which is
of type int):

public void setRows(jakarta.el.ValueExpression rows) {
 this.rows = rows;
}

protected void setProperties(UIComponent component) {
 super.setProperties(component);
 if (rows != null) {
 try {
 component.setValueExpression(“rows”, rows);
 } catch (ELException e) {
 throw new JspException(e);
 }
 }
 ...
}

• Optionally, provide a public release() method of type void, taking no parameters, to be called when
the Jakarta Server Pages page handler releases this custom action instance. If implemented, the
method must perform the following tasks:

◦ Call super.release() to invoke the superclass’s release functionality.

◦ Clear the instance variables representing the values for set-able custom action attributes (for
example, by setting String values to null).

• Optionally provide overridden implementations for the following method to fine tune the behavior
of your UIComponent custom action implementation class: encodeComponent().

It is technically possible to override other public and protected methods of the UIComponentELTag or

9.3. UIComponent Custom Action Implementation Requirements

260 Jakarta Server Faces Final

UIComponentBodyELTag base class; however, it is likely that overriding these methods will interfere
with the functionality that other portions of the Jakarta Faces implementation are assuming to be
present, so overriding these methods is strongly discouraged.

The definition of each UIComponent custom action in the corresponding tag library descriptor (TLD)
must conform to the following requirements:

• The <body-content> element for the custom action itself must specify JSP.

• For each attribute that is intended to be passed on to the underlying faces component:

◦ The attribute may not be named id. This name is reserved for Faces use.

◦ If the attribute represents a method expression, it must have a <deferred-method> element
containing a <method-signature> element that describes the signature of the method pointed to
by the expression, as described in section JSP.C.1 in the Jakarta Server Pages 3.0 specification.

◦ Otherwise, the attribute must be a value based attribute, and must have a <deferred-value>
element containing a <type> element which describes the expected type to which the
expression will evaluate. Please see section JSP.C.1 in the Jakarta Server Pages 3.0 specification
for details.

9.3.1. Considerations for Custom Actions written for pre-Jakarta Faces JSF 1.1
and 1.0

Versions 1.0 and 1.1 of the pre-Jakarta Faces spec included their own EL that happend to have similar
semantics to the Jakarta Server Pages EL, but the implementation was bundled into the Faces
implementation. This version leverages the Jakarta Expression Language facility. This change has
necessitated deprecating some methods and classes, including the classes Custom Actions as their base
class for tags that expose Faces components to the Jakarta Server Pages page. This section explains how
custom actions built for Faces 1.0 and 1.1 can continue to run Faces 1.2.

9.3.1.1. Past and Present Tag constraints

Faces 1.0 and 1.1 were targeted at pre-Jakarta Server Pages JSP version 1.2 and Servlet version 2.3. This
decision brought about several constraints for faces tag attributes:

• all tag attributes had to declare rtexprvalue to be false.

• all tag attributes had to take the type java.lang.String.

• Faces had to choose a new expression delimiter, #{} , to prevent the Jakarta Server Pages container
from prematurely evaluating the expression. This became known as deferred evaluation.

• Because Faces had introduced its own version of the EL, the custom tag action layer had to do a lot
of extra work to “value binding enable” its attributes, calling Faces EL APIs to turn the String
attribute value into an instance of ValueBinding or MethodBinding.

• Faces provided the UIComponentTag and UIComponentBodyTag base classes that were designed to
adhere to the above rules.

9.3. UIComponent Custom Action Implementation Requirements

Final Jakarta Server Faces 261

Tags that use the Jakarta Expression Language have the following constraints:

• all tag attributes must not have an rtexprvalue attribute

• all tag attributes must accept jakarta.el.ValueExpression or jakarta.el.MethodExpression as their
type (depending on if the attribute refers to a method or a value).

• all tag attributes (except for id) must have a <deferred-value> or <deferred-method> element. See
Jakarta Faces Core Tag Library in the description for the Attributes column.

• The Jakarta Server Pages Container will hand the tag setter a jakarta.el.ValueExpression or
jakarta.el.MethodExpression directly, so there is no need to use the Faces API to create them.

• The UIComponentTag and UIComponentBodyTag classes are deprecated and Faces provides new
base class, UIComponentELTag to the new rules for taglibs in Faces.

It’s very important to note that we still are using #\{} as the delimiters for expressions that appear in a
Jakarta Server Pages page in the value of a tag attribute, but when the Java API is used, either $\{} or
#\{} may be used for delimiters.

9.3.1.2. Faces 1.0 and 1.1 Taglib migration story

It is imperative that applications written for Faces 1.0 and 1.1 continue to run on Faces 1.2. From the
JSP perspective, this means

1. that Jakarta Server Pages pages using the standard h: and f: tags must work without change

2. that Jakarta Server Pages pages using custom faces taglibs must work without change

The first item is enabled by re-writing the h: and f: taglibs which must be provided by the Faces
implementor.

The second item is enabled as follows. For discussion the term jsp-version is used to denote the jsp-
version element in a Jakarta Server Pages 1.2 (and earlier) TLD, as well as the version element in a
Jakarta Server Pages 2.0 (and later) TLD. The Jakarta Server Pages container must examine the jsp-
version element of the TLD for a taglib. If the jsp-version is less than 2.1, the taglib is deemed to be a
Faces 1.0 or 1.1 taglib and the container must ignore all expressions that use #\{} as delimiters, except
for those appearing in tag attribute with a property setter that takes a jakarta.el.ValueExpression or
jakarta.el.MethodExpression. If the jsp-version is 2.1 or greater, the taglib is deemed to be a Faces 1.2 or
later taglib and the Jakarta Server Pages container is aware of #\{} expressions.

9.4. Jakarta Faces Core Tag Library
[P1-start Jakarta Faces taglib requirements] All Jakarta Faces implementations must provide a tag
library containing core actions (described below) that are independent of a particular RenderKit. The
corresponding tag library descriptor must meet the following requirements:

• Must declare a tag library version (<tlib-version>) value of 1.2.

• Must declare a URI (<uri>) value of http://java.sun.com/jsf/core.

9.4. Jakarta Faces Core Tag Library

262 Jakarta Server Faces Final

http://java.sun.com/jsf/core

• Must be included in the META-INF directory of a JAR file containing the corresponding
implementation classes, suitable for inclusion with a web application, such that the tag library
descriptor will be located automatically by the algorithm described in Section 7.3 of the _ Jakarta
Server Pages Specification_ (version 2.1). [P1-end]

[P1-start no javascript in jakarta_faces_core taglib] The tags in the implementation of this tag library
must not cause JavaScript to be rendered to the client. Doing so would break the requirement that the
Jakarta Faces Core Tag library is independent of any specific RenderKit. [P1-end]

Each custom action included in the Jakarta Faces Core Tag Library is documented in a subsection
below, with the following outline for each action:

• Name—The name of this custom action, as used in a Jakarta Server Pages page.

• Short Description—A summary of the behavior implemented by this custom action.

• Syntax—One or more examples of using this custom action, with the required and optional sets of
attributes that may be used together. If the tag may have an id attribute, its value may be a literal
string, or an immediate, non-defferd expression, such as “userName” or “user${i}” without the
quotes.

• Body Content—The type of nested content for this custom action, using one of the standard values
empty, JSP, or tagdependent as described in the Jakarta Server Pages specification. This section also
describes restrictions on the types of content (template text, Jakarta Faces core custom actions,
Jakarta Faces UIComponent custom actions, and/or other custom actions) that can be nested in the
body of this custom action.

• Attributes—A table containing one row for each defined attribute for this custom action. The
following columns provide descriptive information about each attribute:

◦ Name—Name of this attribute, as it must be used in the page. If the name of the attribute is in
italics, it is required.

◦ Expr—The type of dynamic expression (if any) that can be used in this attribute value. Legal
values are VE (this may be a literal or a value expression), ME (this may be a method
expression), or NONE (this attribute accepts literal values only). If the Expr column is VE, the
corresponding <attribute> declaration in the TLD must contain a <deferred-value> element,
optionally containing a <type> element that contains the fully qualified java class name of the
expected type of the expression. If <type> is omitted, Object.class is assumed. If the Expr column
is ME, the corresponding <attribute> declaration in the TLD must contain a <deferred-method>
element, containing a <method-signature> element that describes the exact method signature
for the method. In this case, the Description column the description column contains the
method signature.

◦ Type—Fully qualified Java class or primitive type of this attribute.

◦ Description—The functional meaning of this attribute’s value.

• Constraints—Additional constraints enforced by this action, such as combinations of attributes that
may be used together.

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 263

• Description—Details about the functionality provided by this custom action.

9.4.1. <f:actionListener>

Register an ActionListener instance on the UIComponent associated with the closest parent
UIComponent custom action.

9.4.1.1. Syntax

<f:actionListener type=”fully-qualified-classname” binding=”value Expression”/>

9.4.1.2. Body Content

empty.

9.4.1.3. Attributes

Name Expr Type Description

type VE String Fully qualified Java class name of an ActionListener to be
created and registered

binding VE ValueExpression A ValueExpression expression that evaluates to an object that
implements jakarta.faces.event.ActionListener

9.4.1.4. Constraints

• Must be nested inside a UIComponent custom action.

• The corresponding UIComponent implementation class must implement ActionSource, and
therefore define a public addActionListener() method that accepts an ActionListener parameter.

• The specified listener class must implement jakarta.faces.event.ActionListener.

• type and/or binding must be specified.

[P1-start f:actionListener constraints] If this tag is not nested inside a UIComponent custom action, or
the UIComponent implementation class does not correctly implement ActionSource, or the specified
listener class does not implement jakarta.faces.event.ActionListener, throw a JspException. [P1-end]
Note that if the binding attribute is used, the scope of the ValueExpression must be chosen carefully so
as not to introduce undesireable results. In general, when using the binding attribute, do not point to
beans in request or narrower scope.

9.4.1.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this
instance returns true, check the binding attribute.

9.4. Jakarta Faces Core Tag Library

264 Jakarta Server Faces Final

If binding is set, create a ValueExpression by invoking Application.createValueExpression() with binding
as the expression argument, and Object.class as the expectedType argument. Use the ValueExpression
to obtain a reference to the ActionListener instance. If there is no exception thrown, and
ValueExpression.getValue() returned a non-null object that implements
jakarta.faces.event.ActionListener, register it by calling addActionListener(). If there was an exception
thrown, rethrow the exception as a JspException.

If the listener instance could not be created, check the type attribute. If the type attribute is set,
instantiate an instance of the specified class, and register it by calling addActionListener(). If the
binding attribute was also set, evaluate the expression into a ValueExpression and store the listener
instance by calling setValue() on the ValueExpression. If there was an exception thrown, rethrow the
exception as a JspException.

As an alternative to using the binding and/or type attributes, you may also register a method in a
backing bean class to receive ActionEvent notifications, by using the actionListener attribute on the
corresponding UIComponent custom action.

9.4.2. <f:attribute>

Add an attribute or ValueExpression on the UIComponent associated with the closest parent
UIComponent custom action.

9.4.2.1. Syntax

<f:attribute name=”attribute-name” value=”attribute-value”/>

9.4.2.2. Body Content

empty.

9.4.2.3. Attributes

Name Expr Type Description

name VE String Name of the component attribute to be set

value VE Object Value of the component attribute to be set

9.4.2.4. Constraints

• Must be nested inside a UIComponent custom action.

9.4.2.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). Call the getValue() method on the
argument name to obtain the name of the attribute. If the associated component already has a
component attribute with that name, take no action. Otherwise, call the isLiteralText() method on the

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 265

argument value. If it returns true, store the value in the component’s attribute Map under the name
derived above. If it returns false, store the ValueExpression in the component’s ValueExpression Map
under the name derived above.

There is no standard implementation class for this action. It must be provided by the implementation.

9.4.3. <f:convertDateTime>

Register a DateTimeConverter instance on the UIComponent associated with the closest parent
UIComponent custom action.

9.4.3.1. Syntax

<f:convertDateTime

[dateStyle=”{default|short|medium|long|full}”]

[locale=”{locale|string}”]

[pattern=”pattern”]

[timeStyle=”{default|short|medium|long|full}”]

[timeZone=”{timeZone|string}”]

[type=”{date|time|both|localDate|localDateTime|localTime|
offsetTime|offsetDateTime|zonedDateTime}”]

[binding=”Value Expression”]/>

9.4.3.2. Body Content

empty.

9.4.3.3. Attributes

Name Expr Type Description

date-Style VE String Predefined formatting style which determines how the date
component of a date string is to be formatted and parsed.
Applied only if type is "date", "both", "localDate",
"localDateTime", or "zonedDateTime". Valid values are
"default", "short", "medium", "long", and "full". Default value
is "default". If a java.time formatter is being used, yet the
dateStyle is set to "default", the value "medium" is assumed.

9.4. Jakarta Faces Core Tag Library

266 Jakarta Server Faces Final

Name Expr Type Description

locale VE Locale or String Locale whose predefined styles for dates and times are used
during formatting or parsing. If not specified, the Locale
returned by FacesContext.getViewRoot().getLocale() will be
used. Value must be either a VE expression that evaluates to
a java.util.Locale instance, or a String that is valid to pass as
the first argument to the constructor java.util.Locale(String
language, String country). The empty string is passed as the
second argument.

pattern VE String Custom formatting pattern which determines how the
date/time string should be formatted and parsed.

time-Style VE String Predefined formatting style which determines how the time
component of a date string is to be formatted and parsed.
Applied only if type is "time", "both", "localTime" or
"offsetTime". Valid values are "default", "short", "medium",
"long", and "full". Default value is "default". If a java.time
formatter is being used, yet the timeStyle is set to "default",
the value "medium" is assumed.

time-Zone VE timezone or
String

Time zone in which to interpret any time information in the
date string. Value must be either a VE expression that
evaluates to a java.util.TimeZone instance, or a String that is
a timezone ID as described in the javadocs for
java.util.TimeZone.getTimeZone().

type VE String Specifies what contents the string value will be formatted to
include, or parsed expecting. Valid values are "date", "time",
"both", "localDate", "localDateTime", "localTime",
"offsetTime", "offsetDateTime", and "zonedDateTime". The
values starting with "local", "offset" and "zoned" correspond
to Java SE 8 Date Time API classes in package java.time with
the name derived by upper casing the first letter. For
example, java.time.LocalDate for the value "localDate".
Default value is "date".

binding VE ValueExpression A ValueExpression expression that evaluates to an object that
implements jakarta.faces.convert.Converter

9.4.3.4. Constraints

• Must be nested inside a UIComponent custom action whose component class implements
ValueHolder, and whose value is a java.util.Date (or appropriate subclass).

• If pattern is specified, the pattern syntax must use the pattern syntax specified by
java.text.SimpleDateFormat or java.time.format.DateTimeFormatter depending on the value of type.

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 267

• If pattern is not specified, formatted strings will contain a date value, a time value, or both
depending on the specified type. When date or time values are included, they will be formatted
according to the specified dateStyle and timeStyle, respectively.

• if type is not specified:

◦ if dateStyle is set and timeStyle is not, type defaults to date

◦ if timeStyle is set and dateStyle is not, type defaults to time

◦ if both dateStyle and timeStyle are set, type defaults to both

[P1-start f:convertDateTime constraints] If this tag is not nested inside a UIComponent custom action,
or the UIComponent implementation class does not correctly implement ValueHolder, throw a
JspException [P1-end]

9.4.3.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this
instance returns true, create, call createConverter() and register the returned Converter instance on the
associated UIComponent.

[P1-start f:convertDateTime implementation requirements]The implementation class for this action
must meet the following requirements:

• Must extend jakarta.faces.webapp.ConverterELTag.

• The createConverter() method must:

◦ If binding is non-null, call getValue() on it to obtain a reference to the Converter instance. If
there is no exception thrown, and binding.getValue() returned a non-null object that implements
jakarta.faces.convert.Converter, it must then cast the returned instance to
jakarta.faces.convert.DateTimeConverter and configure its properties based on the specified
attributes for this custom action, and return the configured instance. If there was an exception
thrown, rethrow the exception as a JspException.

◦ use the converterId if the converter instance could not be created from the binding attribute.
Call the createConverter() method of the Application instance for this application, passing
converter id “jakarta.faces.DateTime”. If the binding attribute was also set, store the converter
instance by calling binding.setValue(). It must then cast the returned instance to
jakarta.faces.convert.DateTimeConverter and configure its properties based on the specified
attributes for this custom action, and return the configured instance. If there was an exception
thrown, rethrow the exception as a JspException.

• If the type attribute is not specified, it defaults as follows:

◦ If dateStyle is specified but timeStyle is not specified, default to date.

◦ If dateStyle is not specified but timeStyle is specified, default to time.

◦ If both dateStyle and timeStyle are specified, default to both. [P1-end]

9.4. Jakarta Faces Core Tag Library

268 Jakarta Server Faces Final

9.4.4. <f:convertNumber>

Register a NumberConverter instance on the UIComponent associated with the closest parent
UIComponent custom action.

9.4.4.1. Syntax

<f:convertNumber

[currencyCode=”currencyCode”]

[currencySymbol=”currencySymbol”]

[groupingUsed=”{true|false}”]

[integerOnly=”{true|false}”]

[locale=”locale”]

[maxFractionDigits=”maxFractionDigits”]

[maxIntegerDigits=”maxIntegerDigits”]

[minFractionDigits=”minFractionDigits”]

[minIntegerDigits=”minIntegerDigits”]

[pattern=”pattern”]

[type=”{number|currency|percent}”]

[binding=”Value Expression”]/>

9.4.4.2. Body Content

empty.

9.4.4.3. Attributes

Name Expr Type Description

currencyCode VE String ISO 4217 currency code, applied only when formatting
currencies.

currencySym
bol

VE String Currency symbol, applied only when formatting currencies.

groupingUsed VE boolean Specifies whether formatted output will contain grouping
separators.

integerOnly VE boolean Specifies whether only the integer part of the value will be
parsed.

locale VE java.util.Locale Locale whose predefined styles for numbers are used during
formatting or parsing. If not specified, the Locale returned
by FacesContext.getViewRoot().getLocale() will be used.

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 269

Name Expr Type Description

maxFractionD
igits

VE int Maximum number of digits that will be formatted in the
fractional portion of the output.

maxIntegerDi
gits

VE int Maximum number of digits that will be formatted in the
integer portion of the output

minFractionD
igits

VE int Minimum number of digits that will be formatted in the
fractional portion of the output.

minIntegerDi
gits

VE int Minimum number of digits that will be formatted in the
integer portion of the output.

pattern VE String Custom formatting pattern which determines how the
number string should be formatted and parsed.

type VE String Specifies whether the value will be parsed and formatted as
a number, currency, or percentage.

binding VE ValueExpression A ValueExpression expression that evaluates to an object that
implements jakarta.faces.convert.Converter

9.4.4.4. Constraints

• Must be nested inside a UIComponent custom action whose component class implements
ValueHolder, and whose value is a numeric wrapper class or primitive.

• If pattern is specified, the pattern syntax must use the pattern syntax specified by
java.text.DecimalFormat.

• If pattern is not specified, formatting and parsing will be based on the specified type.

[P1-start f:convertNumber constraints] If this tag is not nested inside a UIComponent custom action, or
the UIComponent implementation class does not correctly implement ValueHolder, throw a
JspException. [P1-end]

9.4.4.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this
instance returns true, create, call createConverter() and register the returned Converter instance on the
associated UIComponent.

[P1-start f:convertNumber implementation] The implementation class for this action must meet the
following requirements:

• Must extend jakarta.faces.webapp.ConverterELTag.

• The createConverter() method must:

• If binding is non-null, call binding.getValue() to obtain a reference to the Converter instance. If there

9.4. Jakarta Faces Core Tag Library

270 Jakarta Server Faces Final

is no exception thrown, and binding.getValue() returned a non-null object that implements
jakarta.faces.convert.Converter, it must then cast the returned instance to
jakarta.faces.convert.NumberConverter and configure its properties based on the specified
attributes for this custom action, and return the configured instance. If there was an exception
thrown, rethrow the exception as a JspException.

• use the converterId if the converter instance could not be created from the binding attribute. Call
the createConverter() method of the Application instance for this application, passing converter id
“jakarta.faces.Number”. If the binding attribute was also set, store the converter instance by calling
binding.setValue(). It must then cast the returned instance to jakarta.faces.convert.NumberConverter
and configure its properties based on the specified attributes for this custom action, and return the
configured instance. If there was an exception thrown, rethrow the exception as a JspException.
[P1-end]

9.4.5. <f:converter>

Register a named Converter instance on the UIComponent associated with the closest parent
UIComponent custom action.

9.4.5.1. Syntax

<f:converter converterId=”converterId” binding=”Value Expression”/>

9.4.5.2. Body Content

empty

9.4.5.3. Attributes

Name Expr Type Description

converterId VE String Converter identifier of the converter to be created.

binding VE ValueExpression A ValueExpression expression that evaluates to an object that
implements jakarta.faces.convert.Converter

9.4.5.4. Constraints

• Must be nested inside a UIComponent custom action whose component class implements
ValueHolder.

• converterId and/or binding must be specified.

[P1-start f:converter constraints] If this tag is not nested inside a UIComponent custom action, or the
UIComponent implementation class does not correctly implement ValueHolder, throw a JspException.
[P1-end]

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 271

9.4.5.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this
instance returns true, create, call createConverter() and register the returned Converter instance on the
associated UIComponent.

[P1-start f:converter implementation] The implementation class for this action must meet the following
requirements:

• Must extend jakarta.faces.webapp.ConverterJspTag.

• The createConverter() method must:

◦ If binding is non-null, call binding.getValue() to obtain a reference to the Converter instance. If
there is no exception thrown, and binding.getValue() returned a non-null object that implements
jakarta.faces.convert.Converter, register it by calling setConverter(). If there was an exception
thrown, rethrow the exception as a JspException. Use the converterId attribute if the converter
instance could not be created from the binding attribute. If the converterId attribute is set, call
the createConverter() method of the Application instance for this application, passing converter
id specified by their converterId attribute. If the binding attribute was also set, store the
converter instance by calling binding.setValue(). Register the converter instance by calling
setConverter(). If there was an exception thrown, rethrow the exception as a JspException. [P1-
end]

9.4.6. <f:facet>

Register a named facet (see Facet Management) on the UIComponent associated with the closest parent
UIComponent custom action.

9.4.6.1. Syntax

<f:facet name=”facet-name”/>

9.4.6.2. Body Content

JSP. However, only a single UIComponent custom action (and any related nested Jakarta Faces custom
actions) is allowed; no template text or other custom actions may be present.

9.4.6.3. Attributes

Name Expr Type Description

name NONE String Name of the facet to be created

9.4.6.4. Constraints

• [P1-start f:facet constraints] Must be nested inside a UIComponent custom action.

9.4. Jakarta Faces Core Tag Library

272 Jakarta Server Faces Final

• Exactly one UIComponent custom action must be nested inside this custom action (although the
nested component custom action could itself have nested children). [P1-end]

9.4.6.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the associated component does
not already have a facet with a name specified by this custom action’s name attribute, create a facet
with this name from the UIComponent custom action that is nested within this custom action.

[P1-start f:facet implementation] The implementation class must be, or extend,
jakarta.faces.webapp.FacetTag. [P1-end]

9.4.7. <f:loadBundle>

Load a resource bundle localized for the locale of the current view, and expose it (as a Map) in the
request attributes for the current request.

9.4.7.1. Syntax

<f:loadBundle basename=”resource-bundle-name” var=”attributeKey”/>

9.4.7.2. Body Content

empty

9.4.7.3. Attributes

Name Expr Type Description

basename VE String Base name of the resource bundle to be loaded.

var NONE String Name of a request scope attribute under which the resource
bundle will be exposed as a Map.

9.4.7.4. Constraints

• [P1-start f:loadBundle constraints] Must be nested inside an <f:view> custom action. [P1-end]

9.4.7.5. Description

Load the resource bundle specified by the basename attribute, localized for the Locale of the
UIViewRoot component of the current view, and expose its key-values pairs as a Map under the
attribute key specified by the var attribute. In this way, value binding expressions may be used to
conveniently retrieve localized values. If the named bundle is not found, throw JspException.

If the get() method for the Map instance exposed by this custom action is passed a key value that is not
present (that is, there is no underlying resource value for that key), the literal string “???foo???”

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 273

(where “foo” is replaced by the key the String representation of the key that was requested) must be
returned, rather than the standard Map contract return value of null.

9.4.8. <f:param>

Add a child UIParameter component to the UIComponent associated with the closest parent
UIComponent custom action.

9.4.8.1. Syntax

Syntax 1: Unnamed value

<f:param [id=”componentIdOrImmediateExpression”]

value=”parameter-value”

[binding=”componentReference”] />

Syntax 2: Named value

<f:param [id=”componentIdOrImmediateExpression”]

[binding=”componentReference”]

name=”parameter-name” value=”parameter-value”/>

9.4.8.2. Body Content

empty.

9.4.8.3. Attributes

Name Expr Type Description

binding VE ValueExpression ValueExpression expression to a backing bean property
bound to the component instance for the UIComponent
created by this custom action

id NONE String Component identifier of a UIParameter component

name VE String Name of the parameter to be set

value VE String Value of the parameter to be set

9.4.8.4. Constraints

• [P1-start f:param constraints] Must be nested inside a UIComponent custom action. [P1-end]

9.4.8.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this

9.4. Jakarta Faces Core Tag Library

274 Jakarta Server Faces Final

instance returns true, create a new UIParameter component, and attach it as a child of the associated
UIComponent. It is up to the parent UIComponent to determine how it will handle its UIParameter
children.

[P1-start f:param implementation] The implementation class for this action must meet the following
requirements:

• Must extend jakarta.faces.UIComponentELTag.

• The getComponentType() method must return “Parameter”.

• The getRendererType() method must return null. [P1-end]

9.4.9. <f:phaseListener>

Register a PhaseListener instance on the UIViewRoot associated with the closest parent UIViewRoot
custom action.

9.4.9.1. Syntax

<f:phaseListener type=”fully-qualified-classname” binding=”Value expression”/>

9.4.9.2. Body Content

empty.

9.4.9.3. Attributes

Name Expr Type Description

type VE String Fully qualified Java class name of an PhaseListener to be
created and registered

binding VE ValueExpression A ValueExpression expression that evaluates to an object that
implements jakarta.faces.event.PhaseListener

9.4.9.4. Constraints

• [P1-start f:phaseListener constraints] Must be nested inside a UIViewRoot custom action.

• The specified listener class must implement jakarta.faces.event.PhaseListener.

• type and/or binding must be specified. [P1-end]

9.4.9.5. Description

Locate the one and only UIViewRoot custom action instance by walking up the tag tree until you find a
UIComponentTagBase instance that has no parent. If the getCreated() method of this instance returns
true, check the binding attribute.

If binding is set, call binding.getValue() to obtain a reference to the PhaseListener instance. If there is no

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 275

exception thrown, and binding.getValue() returned a non-null object that implements
jakarta.faces.event.PhaseListener, register it by calling addPhaseListener(). If there was an exception
thrown, rethrow the exception as a JspException.

If the listener instance could not be created, check the type attribute. If the type attribute is set,
instantiate an instance of the specified class, and register it by calling addPhaseListener(). If the
binding attribute was also set, store the listener instance by calling binding.setValue(). If there was an
exception thrown, rethrow the exception as a JspException.

9.4.10. <f:selectItem>

Add a child UISelectItem component to the UIComponent associated with the closest parent
UIComponent custom action.

9.4.10.1. Syntax

Syntax 1: Directly Specified Value

<f:selectItem [id=”componentIdOrImmediateExpression”]

[binding=”componentReference”]

[itemDisabled=”{true|false}”]

itemValue=”itemValue”

itemLabel=”itemLabel”

[itemDescription=”itemDescription”] />

Syntax 2: Indirectly Specified Value

<f:selectItem [id=”componentIdOrImmediateExpression”]

[binding=”componentReference”]

value=”selectItemValue”/>

9.4.10.2. Body Content

empty

9.4.10.3. Attributes

Name Expr Type Description

binding VE ValueExpression ValueExpression expression to a backing bean property
bound to the component instance for the UIComponent
created by this custom action.

id NONE String Component identifier of a UISelectItem component.

9.4. Jakarta Faces Core Tag Library

276 Jakarta Server Faces Final

Name Expr Type Description

itemDescriptio
n

VE String Description of this option (for use in development tools).

itemDisabled VE boolean Flag indicating whether the option created by this
component is disabled.

itemLabel VE String Label to be displayed to the user for this option.

itemValue VE Object Value to be returned to the server if this option is selected by
the user.

value VE jakarta.faces.mo
del.SelectItem

Value binding pointing at a SelectItem instance containing
the information for this option.

escape VE boolean ValueExpression pointing to a boolean that tells whether or
not the label of this selectItem should be escaped per HTML
rules. Default is true.

9.4.10.4. Constraints

• [P1-start f:selectItem constraints] Must be nested inside a UIComponent custom action that creates a
UISelectMany or UISelectOne component instance.[P1-end]

9.4.10.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this
instance returns true, create a new UISelectItem component, and attach it as a child of the associated
UIComponent.

[P1-start f:selectItem implementation] The implementation class for this action must meet the
following requirements:

• Must extend jakarta.faces.UIComponentELTag.

• The getComponentType() method must return “SelectItem”.

• The getRendererType() method must return null.[P1-end]

9.4.11. <f:selectItems>

Add a child UISelectItems component to the UIComponent associated with the closest parent
UIComponent custom action.

9.4.11.1. Syntax

<f:selectItems [id=”componentIdOrImmediateExpression”]

[binding=”componentReference”]

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 277

value=”selectItemsValue” />

9.4.11.2. Body Content

empty

9.4.11.3. Attributes

Name Expr Type Description

binding VE ValueExpression ValueExpression expression to a backing bean property
bound to the component instance for the UIComponent
created by this custom action.

id NONE String Component identifier of a UISelectItem component.

value VE jakarta.faces.mo
del.SelectItem,
see description
for specific
details

Value binding expression pointing at one of the following
instances:

1. an individual jakarta.faces.model.SelectItem

2. a java language array of jakarta.faces.model.SelectItem

3. a java.util.Collection of jakarta.faces.model.SeleccItem

4. A java.util.Map where the keys are converted to Strings
and used as labels, and the corresponding values are
converted to Strings and used as values for newly
created jakarta.faces.model.SelectItem instances. The
instances are created in the order of the iterator over the
keys provided by the Map.

9.4.11.4. Constraints

• Must be nested inside a UIComponent custom action that creates a UISelectMany or UISelectOne
component instance.

9.4.11.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this
instance returns true, create a new UISelectItems component, and attach it as a child of the associated
UIComponent.

[P1-start f:selectItems implementation]The implementation class for this action must meet the
following requirements:

• Must extend jakarta.faces.UIComponentELTag.

• The getComponentType() method must return “jakarta.faces.SelectItems”.

9.4. Jakarta Faces Core Tag Library

278 Jakarta Server Faces Final

• The getRendererType() method must return null. [P1-end]

9.4.12. <f:setPropertyActionListener>

Tag implementation that creates a special ActionListener instance and registers it on the ActionSource
associated with our most immediate surrounding instance of a tag whose implementation class is a
subclass of UIComponentTag. This tag creates no output to the page currently being created. This tag is
useful for pushing a specific value into a managed bean on page submit.

9.4.12.1. Syntax

<f:setPropertyActionListener target=”Value Expression” value=”value Expression”/>

9.4.12.2. Body Content

empty.

9.4.12.3. Attributes

Name Expr Type Description

value VE ValueExpression The ValueExpression from which the value is taken.

target VE ValueExpression The ValueExpression into which the evaluated value from
the “value” attribute is stored when the listener executes.

9.4.12.4. Constraints

• Must be nested inside a UIComponent custom action.

• The corresponding UIComponent implementation class must implement ActionSource, and
therefore define a public addActionListener() method that accepts an ActionListener parameter.

• The tag implementation must only create and register the ActionListener instance the first time the
component for this tag is created

• When the listener executes:

◦ Call getValue() on the "value" ValueExpression.

◦ If value of the "value" expression is null, call setValue() on the "target" ValueExpression with the
null value.

◦ If the value of the "value" expression is not null, call getType() on the "value" and "target"
ValueExpressions to determine their property types.

◦ Coerce the value of the "value" expression to the "target" expression value type following the
Expression Language coercion rules. Call setValue() on the "target" ValueExpression with the
resulting value.

◦ If either conversion or the execution of setValue() fails throw an AbortProcessingException.

• This tag creates no output to the page currently being created. It is used solely for the side effect of

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 279

ActionListener creation and addition.

[P1-start f:setPropertyActionListener constraints]If this tag is not nested inside a UIComponent custom
action, or the UIComponent implementation class does not correctly implement ActionSource, or the
specified listener class does not implement jakarta.faces.event.ActionListener, throw a JspException.[P1-
end]

9.4.12.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this
instance returns true return SKIP_BODY.

Create an instance of ActionListener that implements StateHolder and stores the target and value
ValueExpression instances as instance variables included in the state saving contract. The
processAction() method of the listener must call getValue() on the value ValueExpression and convert
the value before passing the result to a call to setValue() on the target ValueExpression.

9.4.13. <f:subview>

Container action for all Jakarta Faces core and component custom actions used on a nested page
included via <jsp:include> or any custom action that dynamically includes another page from the same
web application, such as Jakarta Tags’s <c:import>.

9.4.13.1. Syntax

<f:subview id=”componentIdOrImmediateExpression”

[binding=”componentReference”]

[rendered=”{true|false}”]>

Nested template text and custom actions

</f:subview>

9.4.13.2. Body Content

JSP. May contain any combination of template text, other Jakarta Faces custom actions, and custom
actions from other custom tag libraries.

9.4.13.3. Attributes

Name Expr Type Description

binding VE ValueExpression ValueExpression expression to a backing bean property
bound to the component instance for the UIComponent
created by this custom action.

9.4. Jakarta Faces Core Tag Library

280 Jakarta Server Faces Final

Name Expr Type Description

id NONE String Component identifier of a UINamingContainer component

rendered VE Boolean Whether or not this subview should be rendered.

9.4.13.4. Constraints

• [P1-start f:subview constraints] Must be nested inside a <f:view> custom action (although this
custom action might be in a page that is including the page containing the <f:subview> custom
action.

• Must not contain an <f:view> custom action.

• Must have an id attribute whose value is unique within the scope of the parent naming container.
If this constraint is not met, the action taken regarding id uniqueness in section UIComponent
Custom Action Implementation Requirements must be taken

• May be placed in a parent page (with <jsp:include> or <c:import> nested inside), or within the
nested page. [P1-end]

9.4.13.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this
instance returns true, create a new UINamingContainer component, and attach it as a child of the
associated UIComponent. Such a component provides a scope within which child component identifiers
must still be unique, but allows child components to have the same simple identifier as child
components nested in some other naming container. This is useful in several scenarios:

“main.jsp”
<f:view>
 <c:import url=”foo.jsp”/>
 <c:import url=”bar.jsp”/>
</f:view>

“foo.jsp”
<f:subview id=”aaa”>
 ... components and other content ...
</f:subview>

“bar.jsp”
<f:subview id=”bbb”>
 ... components and other content ...
</f:subview>

In this scenario, <f:subview> custom actions in imported pages establish a naming scope for
components within those pages. Identifiers for <f:subview> custom actions nested in a single <f:view>

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 281

custom action must be unique, but it is difficult for the page author (and impossible for the Jakarta
Server Pages page compiler) to enforce this restriction.

“main.jsp”
<f:view>
 <f:subview id=”aaa”>
 <c:import url=”foo.jsp”/>
 </f:subview>
 <f:subview id=”bbb”>
 <c:import url=”bar.jsp”/>
 </f:subview>
</f:view>

“foo.jsp”
... components and other content ...

“bar.jsp”
... components and other content ...

In this scenario, the <f:subview> custom actions are in the including page, rather than the included
page. As in the previous scenario, the “id” values of the two subviews must be unique; but it is much
easier to verify using this style.

It is also possible to use this approach to include the same page more than once, but maintain unique
identifiers:

“main.jsp”
<f:view>
 <f:subview id=”aaa”>
 <c:import url=”foo.jsp”/>
 </f:subview>
 <f:subview id=”bbb”>
 <c:import url=”foo.jsp”/>
 </f:subview>
</f:view>

“foo.jsp”
... components and other content ...

In all of the above examples, note that foo.jsp and bar.jsp may not contain <f:view>.

The implementation class for this action must meet the following requirements:

• [P1-start f:subview implementation] Must extend jakarta.faces.UIComponentELTag.

• The getComponentType() method must return “NamingContainer”.

9.4. Jakarta Faces Core Tag Library

282 Jakarta Server Faces Final

• The getRendererType() method must return null. [P1-end]

9.4.14. <f:validateDoubleRange>

Register a DoubleRangeValidator instance on the UIComponent associated with the closest parent
UIComponent custom action.

9.4.14.1. Syntax

Syntax 1: Maximum only specified

<f:validateDoubleRange maximum=”543.21” binding=”VB Expression”/>

Syntax 2: Minimum only specified

<f:validateDoubleRange minimum=”123.45” binding=”VB Expression”/>

Syntax 3: Both maximum and minimum are specified

<f:validateDoubleRange maximum=”543.21” minimum=”123.45” binding=”VB Expression”/>

9.4.14.2. Body Content

empty.

9.4.14.3. Attributes

Name Expr Type Description

maximum VE double Maximum value allowed for this component

minimum VE double Minimum value allowed for this component

binding VE ValueExpression A ValueExpression expression that evaluates to an object that
implements jakarta.faces.convert.Validator

for VE ValueExpression A ValueExpression expression that evaluates to String
referring to the value of one of the exposed attached objects
within the composite component inside of which this tag is
nested.

9.4.14.4. Constraints

• Must be nested inside a EditableValueHolder custom action whose value is (or is convertible to) a
double.

• Must specify either the maximum attribute, the minimum attribute, or both.

• If both limits are specified, the maximum limit must be greater than the minimum limit.

[P1-start f:validateDoubleRange constraints] If this tag is not nested inside a UIComponent custom
action, or the UIComponent implementation class does not correctly implement EditableValueHolder
throw a JspException. [P1-end]

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 283

9.4.14.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this
instance returns true, create, call createValidator() and register the returned Validator instance on the
associated UIComponent.

[P1-start f:validateDoubleRange implementation] The implementation class for this action must meet
the following requirements:

• Must extend jakarta.faces.webapp.ValidatorELTag.

• The createValidator() method must:

◦ If binding is non-null, create a ValueBinding by invoking Application.createValueExpression()
with binding as the expression argument, and Validator.class as the expectedType
argument.use the ValueBinding to obtain a reference to the Validator instance. If there is no
exception thrown, and ValueExpression.getValue() returned a non-null object that implements
jakarta.faces.validator.Validator, it must then cast the returned instance to
jakarta.faces.validator.DoubleRangeValidator and configure its properties based on the specified
attributes for this custom action, and return the configured instance. If there was an exception
thrown, rethrow the exception as a JspException.

• use the validatorId if the validator instance could not be created from the binding attribute. Call the
createValidator() method of the Application instance for this application, passing validator id
“jakarta.faces.DoubleRange”. If the binding attribute was also set, evaluate the expression into a
ValueExpression and store the validator instance by calling setValue() on the ValueExpression. It
must then cast the returned instance to jakarta.faces.validator.DoubleRangeValidator and configure
its properties based on the specified attributes for this custom action, and return the configured
instance. If there was an exception thrown, rethrow the exception as a JspException. [P1-end]

9.4.15. <f:validateLength>

Register a LengthValidator instance on the UIComponent associated with the closest parent
UIComponent custom action.

9.4.15.1. Syntax

Syntax 1: Maximum length only specified

<f:validateLength maximum=”10” binding=”VB Expression”/>

Syntax 2: Minimum only specified

<f:validateLength minimum=”1” binding=”VB Expression”/>

Syntax 3: Both maximum and minimum are specified

<f:validateLength maximum=”10” minimum=”1” binding=”VB Expression”/>

9.4. Jakarta Faces Core Tag Library

284 Jakarta Server Faces Final

9.4.15.2. Body Content

empty.

9.4.15.3. Attributes

Name Expr Type Description

maximum VE double Maximum value allowed for this component

minimum VE double Minimum value allowed for this component

binding VE ValueExpression A ValueExpression expression that evaluates to an object that
implements jakarta.faces.convert.Validator

9.4.15.4. Constraints

• Must be nested inside a EditableValueHolder custom action whose value is (or is convertible to) a
double.

• Must specify either the maximum attribute, the minimum attribute, or both.

• If both limits are specified, the maximum limit must be greater than the minimum limit.

[P1-start f:validateDoubleRange constraints] If this tag is not nested inside a UIComponent custom
action, or the UIComponent implementation class does not correctly implement EditableValueHolder
throw a JspException. [P1-end]

9.4.15.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this
instance returns true, create, call createValidator() and register the returned Validator instance on the
associated UIComponent.

[P1-start f:validateDoubleRange implementation] The implementation class for this action must meet
the following requirements:

• Must extend jakarta.faces.webapp.ValidatorELTag.

• The createValidator() method must:

◦ If binding is non-null, create a ValueBinding by invoking Application.createValueExpression()
with binding as the expression argument, and Validator.class as the expectedType
argument.use the ValueBinding to obtain a reference to the Validator instance. If there is no
exception thrown, and ValueExpression.getValue() returned a non-null object that implements
jakarta.faces.validator.Validator, it must then cast the returned instance to
jakarta.faces.validator.DoubleRangeValidator and configure its properties based on the specified
attributes for this custom action, and return the configured instance. If there was an exception
thrown, rethrow the exception as a JspException.

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 285

◦ use the validatorId if the validator instance could not be created from the binding attribute. Call
the createValidator() method of the Application instance for this application, passing validator
id “jakarta.faces.DoubleRange”. If the binding attribute was also set, evaluate the expression
into a ValueExpression and store the validator instance by calling setValue() on the
ValueExpression. It must then cast the returned instance to
jakarta.faces.validator.DoubleRangeValidator and configure its properties based on the specified
attributes for this custom action, and return the configured instance. If there was an exception
thrown, rethrow the exception as a JspException. [P1-end]

9.4.16. <f:validateRegex>

Register a RegexValidator instance on the UIComponent associated with the closest parent
UIComponent custom action.

9.4.16.1. Syntax

<f:validateRegex pattern=”a*b”/>

9.4.16.2. Body Content

empty.

9.4.16.3. Attributes

Name Expr Type Description

pattern VE String The string to be interpreted as a java.util.regex.Pattern

binding VE ValueExpression A ValueExpression expression that evaluates to an object that
implements jakarta.faces.convert.Validator

9.4.16.4. Constraints

• Must be nested inside a EditableValueHolder custom action whose value is a String.

• Must specify either the pattern attribute.

[P1-start f:validateLength constraints] If this tag is not nested inside a UIComponent custom action, or
the UIComponent implementation class does not correctly implement EditableValueHolder, throw a
JspException. [P1-end]

9.4.16.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this
instance returns true, create, call createValidator() and register the returned Validator instance on the
associated UIComponent.

9.4. Jakarta Faces Core Tag Library

286 Jakarta Server Faces Final

[P1-start f:validateLength implementation] The implementation class for this action must meet the
following requirements:

• Must extend jakarta.faces.webapp.ValidatorELTag.

• The createValidator() method must:

◦ If binding is non-null, create a ValueExpression by invoking Application.createValueExpression()
with binding as the expression argument, and Validator.class as the expectedType
argument.use the ValueExpression to obtain a reference to the Validator instance. If there is no
exception thrown, and ValueExpression.getValue() returned a non-null object that implements
jakarta.faces.validator.Validator, it must then cast the returned instance to
jakarta.faces.validator.RegexValidator and configure its properties based on the specified
attributes for this custom action, and return the configured instance. If there was an exception
thrown, rethrow the exception as a JspException.

◦ use the validatorId if the validator instance could not be created from the binding attribute. Call
the createValidator() method of the Application instance for this application, passing validator
id “jakarta.faces.RegularExpression”. If the binding attribute was also set, evaluate the
expression into a ValueExpression and store the validator instance by calling setValue() on the
ValueExpression. It must then cast the returned instance to
jakarta.faces.validator.RegexValidator and configure its properties based on the specified
attributes for this custom action, and return the configured instance. If there was an exception
thrown, rethrow the exception as a JspException.[P1-end]

9.4.17. <f:validateLongRange>

Register a LongRangeValidator instance on the UIComponent associated with the closest parent
UIComponent custom action.

9.4.17.1. Syntax

Syntax 1: Maximum only specified

<f:validateLongRange maximum=”543” binding=”VB Expression”/>

Syntax 2: Minimum only specified

<f:validateLongRange minimum=”123” binding=”VB Expression”/>

Syntax 3: Both maximum and minimum are specified

<f:validateLongRange maximum=”543” minimum=”123” binding=”VB Expression”/>

9.4.17.2. Body Content

empty.

9.4.17.3. Attributes

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 287

Name Expr Type Description

maximum VE long Maximum value allowed for this component

minimum VE long Minimum value allowed for this component

binding VE ValueExpression A ValueExpression expression that evaluates to an object that
implements jakarta.faces.convert.Validator

9.4.17.4. Constraints

• Must be nested inside a EditableValueHolder custom action whose value is (or is convertible to) a
long.

• Must specify either the maximum attribute, the minimum attribute, or both.

• If both limits are specified, the maximum limit must be greater than the minimum limit.

[P1-start f:validateLongeRange constraints] If this tag is not nested inside a UIComponent custom
action, or the UIComponent implementation class does not correctly implement EditableValueHolder,
throw a JspException. [P1-end]

9.4.17.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this
instance returns true, create, call createValidator() and register the returned Validator instance on the
associated UIComponent.

The implementation class for this action must meet the following requirements:

• Must extend jakarta.faces.webapp.ValidatorELTag.

• The createValidator() method must:

◦ If binding is non-null, create a ValueExpression by invoking Application.createValueExpression()
with binding as the expression argument, and Validator.class as the expectedType argument.
Use the ValueExpression to obtain a reference to the Validator instance. If there is no exception
thrown, and ValueExpression.getValue() returned a non-null object that implements
jakarta.faces.validator.Validator, it must then cast the returned instance to
jakarta.faces.validator.LongRangeValidator and configure its properties based on the specified
attributes for this custom action, and return the configured instance. If there was an exception
thrown, rethrow the exception as a JspException.

◦ use the validatorId if the validator instance could not be created from the binding attribute. Call
the createValidator() method of the Application instance for this application, passing validator
id “jakarta.faces.LongRange”. If the binding attribute was also set, evaluate the expression into
a ValueExpression and store the validator instance by calling setValue() on the ValueExpression.
It must then cast the returned instance to jakarta.faces.validator.LongRangeValidator and
configure its properties based on the specified attributes for this custom action, and return the

9.4. Jakarta Faces Core Tag Library

288 Jakarta Server Faces Final

configured instance. If there was an exception thrown, rethrow the exception as a JspException.

9.4.18. <f:validator>

Register a named Validator instance on the UIComponent associated with the closest parent
UIComponent custom action.

9.4.18.1. Syntax

<f:validator validatorId=”validatorId” binding=”VB Expression”/>

9.4.18.2. Body Content

empty

9.4.18.3. Attributes

Name Expr Type Description

validatorId VE String Validator identifier of the validator to be created.

binding VE ValueExpression A ValueExpression expression that evaluates to an object that
implements jakarta.faces.convert.Validator

9.4.18.4. Constraints

• Must be nested inside a UIComponent custom action whose component class implements
EditableValueHolder.

• validatorId and/or binding must be specified.

[P1-start f:validator constraints 2] If this tag is not nested inside a UIComponent custom action, or the
UIComponent implementation class does not correctly implement EditableValueHolder throw a
JspException. [P1-end]

9.4.18.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this
instance returns true, create, call createValidator() and register the returned Validator instance on the
associated UIComponent.

The implementation class for this action must meet the following requirements:

• Must extend jakarta.faces.webapp.ValidatorJspTag.

• The createValidator() method must:

◦ If binding is non-null, call binding.getValue() to obtain a reference to the Validator instance. If
there is no exception thrown, and binding.getValue() returned a non-null object that implements

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 289

jakarta.faces.validator.Validator, register it by calling addValidator(). If there was an exception
thrown, rethrow the exception as a JspException.

◦ use the validatorId attribute if the validator instance could not be created from the binding
attribute. If the validatorId attribute is set, call the createValidator() method of the Application
instance for this application, passing validator id specified by their validatorId attribute. If the
binding attribute was also set, store the validator instance by calling binding.setValue(). Register
the validator instance by calling addValidator(). If there was an exception thrown, rethrow the
exception as a JspException.

9.4.19. <f:valueChangeListener>

Register a ValueChangeListener instance on the UIComponent associated with the closest parent
UIComponent custom action.

9.4.19.1. Syntax

<f:valueChangeListener type=”fully-qualified-classname” binding=”VB Expression”/>

9.4.19.2. Body Content

empty.

9.4.19.3. Attributes

Name Expr Type Description

type VE String Fully qualified Java class name of a ValueChangeListener to
be created and registered

binding VE ValueExpression A ValueExpression expression that evaluates to an object that
implements jakarta.faces.event.ValueChangeListener

9.4.19.4. Constraints

• Must be nested inside a UIComponent custom action.

• The corresponding UIComponent implementation class must implement EditableValueHolder, and
therefore define a public addValueChangeListener() method that accepts an ValueChangeListener
parameter.

• The specified listener class must implement jakarta.faces.event.ValueChangeListener.

• type and/or binding must be specified.

[P1-start f:valueChangeListener constraints] If this tag is not nested inside a UIComponent custom
action, or the UIComponent implementation class does not correctly implement EditableValueHolder, or
the specified listener class does not implement jakarta.faces.event.ValueChangeListener, throw a
JspException. [P1-end] Note that if the binding attribute is used, the scope of the ValueExpression must
be chosen carefully so as not to introduce undesireable results. In general, when using the binding

9.4. Jakarta Faces Core Tag Library

290 Jakarta Server Faces Final

attribute, do not point to beans in request or narrower scope.

9.4.19.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this
instance returns true, check the binding attribute.

If binding is non-null, call binding.getValue() to obtain a reference to the ValueChangeListener instance.
If there is no exception thrown, and ValueExpression.getValue() returned a non-null object that
implements jakarta.faces.event.ValueChangeListener, register it by calling addValueChangeListener(). If
there was an exception thrown, rethrow the exception as a JspException.

If the listener instance could not be created, check the type attribute. If the type attribute is set,
instantiate an instance of the specified class, and register it by calling addValueChangeListener(). If the
binding attribute was also set, store the listener instance by calling binding.setValue(). If there was an
exception thrown, rethrow the exception as a JspException.

As an alternative to using the binding and/or type attributes, you may also register a method in a
backing bean class to receive ValueChangeEvent notifications, by using the valueChangeListener
attribute on the corresponding UIComponent custom action.instantiate an instance of the specified
class, and register it by calling addValueChangeListener().

9.4.20. <f:verbatim>

Register a child UIOutput instance on the UIComponent associated with the closest parent UIComponent
custom action which renders nested body content.

9.4.20.1. Syntax

<f:verbatim [escape=”{true|false}” rendered=”{true|false}”]/>

9.4.20.2. Body Content

JSP. However, no UIComponent custom actions, or custom actions from the Jakarta Faces Core Tag
Library, may be nested inside this custom action.

9.4.20.3. Attributes

Name Expr Type Description

escape VE boolean If true, generated markup is escaped in a manner
appropriate for the markup language being rendered.
Default value is false.

rendered VE boolean Flag indicating whether or not this component should be
rendered (during Render Response Phase), or processed on
any subsequent form submit. Default value is true.

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 291

9.4.20.4. Constraints

• [P1-start f:verbatim constraints] Must be implemented as a UIComponentBodyTag.[P1-end]

9.4.20.5. Description

Locate the closest parent UIComponent custom action instance by calling
UIComponentClassicTagBase.getParentUIComponentClassicTagBase(). If the getCreated() method of this
instance returns true, creates a new UIOutput component, and add it as a child of the UIComponent
associated with the located instance. The rendererType property of this UIOutput component must be
set to “jakarta.faces.Text”, and the transient property must be set to true. Also, the value (or value
binding, if it is an expression) of the escape attribute must be passed on to the renderer as the value
the escape attribute on the UIOutput component.

9.4.21. <f:view>

Container for all Jakarta Faces core and component custom actions used on a page.

9.4.21.1. Syntax

<f:view

[locale=”locale” renderKitId=”alternate”]

[beforePhase=”methodExpression”]

[afterPhase=”methodExpression”]>

Nested template text and custom actions

</f:view>

9.4.21.2. Body Content

JSP. May contain any combination of template text, other Jakarta Faces custom actions, and custom
actions from other custom tag libraries.

9.4.21.3. Attributes

Name Expr Type Description

renderKitId VE String The identifier for the render kit to use for rendering this
page.

locale VE String or Locale Name of a Locale to use for localizing this page (such as
en_uk), or value binding expression that returns a Locale
instance

beforePhase ME String MethodExpression expression that points to a method whose
signature is that of
jakarta.faces.event.PhaseListener.beforePhase()

9.4. Jakarta Faces Core Tag Library

292 Jakarta Server Faces Final

Name Expr Type Description

afterPhase ME String MethodExpression expression that points to a method whose
signature is that of
jakarta.faces.event.PhaseListener.afterPhase()

9.4.21.4. Constraints

• [P1-start f:view constraints] Any Jakarta Server Pages-created response using actions from the
Jakarta Faces Core Tag Library, as well as actions extending
jakarta.faces.webapp.UIComponentELTag from other tag libraries, must be nested inside an
occurrence of the <f:view> action.

• Jakarta Server Pages page fragments included via the standard <%@ include %> directive need not
have their Jakarta Faces actions embedded in a <f:view> action, because the included template text
and custom actions will be processed as part of the outer page as it is compiled, and the <f:view>
action on the outer page will meet the nesting requirement.

• If the renderKitId attribute is present, its value is stored in UIViewRoot. If the renderKitId attribute
is not present, then the default render kit identifier as returned by
Application.getDefaultRenderKitId() is stored in UIViewRoot if it is not null. Otherwise, the render kit
identifier as specified by the constant RenderKitFactory.HTML_BASIC_RENDER_KIT is stored in
UIViewRoot. Specifying a renderKitId for the current view also affects all subsequent views, unless
overridden by another use of the renderKitId attribute. Please refer to ViewHandler for more
information.

• If the locale attribute is present, its value overrides the Locale stored in UIViewRoot, normally set
by the ViewHandler, and the doStartTag() method must store it by calling UIViewRoot.setLocale().

• The doStartTag() method must call jakarta.servlet.jsp.jstl.core.Config.set(), passing the
ServletRequest instance for this request, the constant
jakarta.servlet.jsp.jstl.core.Config.FMT_LOCALE, and the Locale returned by calling
UIViewRoot.getLocale(). [P1-end]

9.4.21.5. Description

Provides the Jakarta Faces implementation a convenient place to perform state saving during the
render response phase of the request processing lifecycle, if the implementation elects to save state as
part of the response.

The implementation class for this action must meet the following requirements:

• Must extend jakarta.faces.UIComponentELTag.

• The getComponentType() method must return “ViewRoot”.

• The getRendererType() method must return null.

Please refer to the javadocs for jakarta.faces.application.StateManager for details on what the tag
handler for this tag must do to implement state saving.

9.4. Jakarta Faces Core Tag Library

Final Jakarta Server Faces 293

9.5. Standard HTML RenderKit Tag Library
All Jakarta Faces implementations must provide a tag library containing actions that correspond to
each valid combination of a supported component class (see Standard User Interface Components”)
and a Renderer from the Standard HTML RenderKit (see Standard HTML RenderKit Implementation)
that supports that component type. [P1-start html_basic taglib requirements] The tag library descriptor
for this tag library must meet the following requirements:

• Must declare a tag library version (<tlib-version>) value of 1.2.

• Must declare a URI (<uri>) value of http://java.sun.com/jsf/html.

• Must be included in the META-INF directory of a JAR file containing the corresponding
implementation classes, suitable for inclusion with a web application, such that the tag library
descriptor will be located automatically by the algorithm described in Section 7.3 of the _ Jakarta
Server Pages Specification_ (version 1.2).[P1-end]

[P1-start html_basic return values]The custom actions defined in this tag library must specify the
following return values for the getComponentType() and getRendererType() methods, respectively:.

Table 15. Standard HTML RenderKit Tag Library

getComponentType() getRendererType() custom action name

jakarta.faces.Column (null)18 column

jakarta.faces.HtmlCommandButton jakarta.faces.Button commandButton

jakarta.faces.HtmlCommandLink jakarta.faces.Link commandLink

jakarta.faces.HtmlDataTable jakarta.faces.Table dataTable

jakarta.faces.HtmlForm jakarta.faces.Form form

jakarta.faces.HtmlGraphicImage jakarta.faces.Image graphicImage

jakarta.faces.HtmlInputHidden jakarta.faces.Hidden inputHidden

jakarta.faces.HtmlInputSecret jakarta.faces.Secret inputSecret

jakarta.faces.HtmlInputText jakarta.faces.Text inputText

jakarta.faces.HtmlInputTextarea jakarta.faces.Textarea inputTextarea

jakarta.faces.HtmlMessage jakarta.faces.Message message

jakarta.faces.HtmlMessages jakarta.faces.Messages messages

jakarta.faces.HtmlOutputFormat jakarta.faces.Format outputFormat

jakarta.faces.HtmlOutputLabel jakarta.faces.Label outputLabel

jakarta.faces.HtmlOutputLink jakarta.faces.Link outputLink

jakarta.faces.Output jakarta.faces.Body body

jakarta.faces.Output jakarta.faces.Head head

9.5. Standard HTML RenderKit Tag Library

294 Jakarta Server Faces Final

http://java.sun.com/jsf/html

getComponentType() getRendererType() custom action name

jakarta.faces.Output jakarta.faces.resource.Script outputScript

jakarta.faces.Output jakarta.faces.resource.Stylesheet outputStylesheet

jakarta.faces.HtmlOutputText jakarta.faces.Text outputText

jakarta.faces.HtmlPanelGrid jakarta.faces.Grid panelGrid

jakarta.faces.HtmlPanelGroup jakarta.faces.Group panelGroup

jakarta.faces.HtmlSelectBooleanCheckbox jakarta.faces.Checkbox selectBooleanCheckbox

jakarta.faces.HtmlSelectManyCheckbox jakarta.faces.Checkbox selectManyCheckbox

jakarta.faces.HtmlSelectManyListbox jakarta.faces.Listbox selectManyListbox

jakarta.faces.HtmlSelectManyMenu jakarta.faces.Menu selectManyMenu

jakarta.faces.HtmlSelectOneListbox jakarta.faces.Listbox selectOneListbox

jakarta.faces.HtmlSelectOneMenu jakarta.faces.Menu selectOneMenu

jakarta.faces.HtmlSelectOneRadio jakarta.faces.Radio selectOneRadio

Note, to avoid confusion between Jakarta Server Pages and Facelets, any Renderers that are only
supported in Facelets are specified in Standard HTML RenderKit Tag Library.

[P1-end] [P1-start html_basic taglibrary requirements 2]The tag library descriptor for this tag library
(and the corresponding tag handler implementation classes) must meet the following requirements:

• The attributes for the tags, both in the TLD and in the associated tag handlers, must conform
exactly to the type, name, and description given in the VDLDocs for the html_basic tag library.

• If the type of the attribute is jakarta.el.ValueExpression, the TLD for the attribute must contain a
<deferred-value> with a nested <type> element, inside of which is nested the expected type, as given
in the VDLDocs. The JavaBeans setter method in the tag handler for the tag must be of type
jakarta.el.ValueExpression.

• If the type of the attribute is jakarta.el.MethodExpression, the TLD for the attribute must contain a
<deferred-method> with a nested <method-signature>, inside of which is the method signature for
that MethodExpression, as given in the VDLDocs. The actual name of the method in the signature
declaration is immaterial and unspecified. The JavaBeans setter method in the tag handler for the
tag must be of type jakarta.el.MethodExpression.

• Any attributes listed in the VDLDocs with a request-time value of true must specify an <rtexprvalue>
of true in the TLD.

• The following action must be taken to handle the value of the converter property. If isLiteralText()
on the converter property returns true, get the value of the property and treat it as a converterId by
passing it as the argument to the createConverter() method of the Application instance for this
webapp, then pass the created Converter to the setConverter() method of the component for this tag.
If isLiteralText() on the converter property returns false, call setValueExpression() on the
component, passing “converter” as the name of the ValueExpression and the ValueExpression

9.5. Standard HTML RenderKit Tag Library

Final Jakarta Server Faces 295

instance as the value.

• For a non-null action attribute on custom actions related to ActionSource2 components
(commandButton, commandLink), the setProperties() method of the tag handler implementation
class must pass the value of the action attribute, which is a MethodExpression, to the component’s
setActionExpression() method.

• For other non-null attributes that correspond to MethodExpression attributes on the underlying
components (actionListener, validator, valueChangeListener), the setProperties() method of the tag
handler implementation class must store that instance as the value of the corresponding
component property.

• For any non-null id, scope, or var attribute, the setProperties() method of the tag handler
implementation class must simply set the value of the corresponding component attribute.

• For all other non-null attributes, the setProperties() of the tag handler implementation class method
must:

◦ If the attribute.isLiteralText() returns true, set the corresponding attribute on the underlying
component (after performing any necessary type conversion).

◦ Otherwise, call the setValueExpression() method on the underlying component, passing the
attribute name and the ValueExpression instance as parameters.[P1-end]

9.5. Standard HTML RenderKit Tag Library

296 Jakarta Server Faces Final

Chapter 10. Facelets and its use in Web
Applications
Jakarta Faces implementations must support (although Jakarta Faces-based applications need not
utilize) using Facelets as the view declaration language for Jakarta Faces pages. Facelets technology
was created by JSR-252 EG Member Jacob Hookom.

10.1. Non-normative Background
To aid implementors in providing a spec compliant runtime for Facelets, this section provides a non-
normative background to motivate the discussion of the Facelets feature. Facelets is a replacement for
Jakarta Server Pages that was designed from the outset with Jakarta Faces in mind. New features
introduced in pre-Jakarta Faces JSF version 2 (under the JCP) and later are only exposed to page
authors using Facelets. Jakarta Server Pages is retained for backwards compatibility.

10.1.1. Differences between Jakarta Server Pages and Facelets

Facelets was the first non-Jakarta Server Pages view declaration language designed for Jakarta Faces.
As such, Facelets was able to provide a simpler and more powerful programming model to Jakarta
Faces developers than that provided by Jakarta Server Pages, largely by leveraging Jakarta Faces as
much as possible without carrying backwards compatibility with Jakarta Server Pages. The following
table lists some of the differences between Facelets and Jakarta Server Pages

Table 16. Comparison of Facelets and Jakarta Server Pages

Feature Name Jakarta Server Pages Facelets

Pages are compiled
to…

A Servlet that gets executed each time
the page renders. The UIComponent
hierarchy is built by the presence of
custom tags in the page.

An abstract syntax tree that, when
executed, builds a UIComponent
hierarchy.

Handling of tag
attributes

All tag attributes must be declared in a
TLD file. Conformance instances of
components in a page with the expected
attributes can be enforced with a
taglibrary validator.

Tag attributes are completely dynamic
and automatically map to properties,
attributes and ValueExpressions on
UIComponent instances

Page templating Not supported, must go outside of core
Jakarta Server Pages

Page templating is a core feature of
Facelets

Performance Due to the common implementation
technique of compiling a Jakarta Server
Pages page to a Servlet, performance
can be slow

Facelets is simpler and faster than
Jakarta Server Pages

10.1. Non-normative Background

Final Jakarta Server Faces 297

Feature Name Jakarta Server Pages Facelets

Expression
Language
Expressions

Expressions in template text cause
unexpected behavior when used in
Jakarta Server Pages

Expressions in template text operate as
expected.

JCP Standard Yes, the specification is separate from
the implementation for Jakarta Server
Pages

No, the specification is defined by and is
one with the implementation.

10.1.2. Differences between Pre JSF 2.0 Facelets and Facelets in Jakarta Faces

The work of taking a snapshot of a version of Facelets and producing the specification for Facelets in
Pre-Jakarta Faces JSF 2.0 consists of extracting the parts of Facelets that are intended to be “public” and
leaving the rest as implementation details. A decision was made early in this process to strive for
backwards compatibility between the latest popular version of Facelets and Facelets in pre-Jakarta
Faces JSF 2.0. The sole determinant to backwards compatibility lies in the answer to the question, “is
there any Java code in the application, or in libraries used by the application, that extends from or
depends on any class in package com.sun.facelets and/or its sub-packages?”

• If the answer to this question is “yes”, Facelets in pre-Jakarta Faces JSF 2.0 is not backwards
compatibile with Facelets and such an application must continue to bundle the Facelets jar file
along with the application, continue to set the Facelets configuration parameters, and also set the
jakarta.faces.DISABLE_FACELET_JSF_VIEWHANDLER <context-param> to true. Please see
Application Configuration Parameters for details on this option. Any code that extends or depends
on any class in package com.sun.facelets and/or its sub-packages must be modified to depend on the
appropriate classes in package jakarta.faces.webapp.vdl and/or its sub-packages.

• If the answer to this question is “no”, Facelets in pre-Jakarta Faces JSF 2.0 is backwards compatible
with pre-JSF 2.0 Facelets and such an application must not continue to bundle the Facelets jar file
along with the application, and must not continue to set the Facelets configuration parameters.

Thankfully, most applications that use Facelets fall into the latter category, or, if they fall in the former,
their dependence will easily be migrated to the new public classes.

Facelets in Jakarta Faces provides tag libraries that are compatible with the following libraries already
found in pre JSF 2.0 Facelets.

Table 17. Taglibs in pre JSF 2.0 Facelets that are available in Facelets in JSF 2.0

Common prefix Namespace URI

h http://java.sun.com/jsf/html

f http://java.sun.com/jsf/core

c http://java.sun.com/jsp/jstl/core

fn http://java.sun.com/jsp/jstl/functions

10.1. Non-normative Background

298 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6088
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/functions

Common prefix Namespace URI

ui http://java.sun.com/jsf/facelets

Naturally, new features built on Facelets in Jakarta Faces are not available in pre JSF 2.0 Facelets and
will only work in Jakarta Faces.

10.1.3. Resource Library Contracts Background

Jakarta Faces defines a system called “resource library contracts” for applying facelet templates to an
entire application in a re-usable and interchangeable manner. The feature is built on top of the
resource library facility described in Libraries of Localized and Versioned Resources. A configurable
set of Facelet VDL views in the application will be able to declare themselves to be template-clients of
any template in a resource library contract. Facelet VDL views in the application can also make use of
resources contained in a resource library contract, but the feature has ample value when only used
with templates.

10.1.3.1. Non-normative Example

Consider this resource library contract, called siteLayout.

siteLayout/
 topNav_template.xhtml
 leftNav_foo.xhtml
 styles.css
 script.js
 background.png

This simple example takes advantage of several conventions built into the feature, most notably the
default application of all available contracts in the application to all views in the application. It is
possible to customize how resource library contracts are applied to the application, including using
several different contracts in the same or different parts of the application. Such customizing is
accomplished by including a <resource-library-contracts> element within the <application> element of
the faces-config.xml (or similar) file. Because this example is designed with the convention in mind, it
does not need a faces-config.xml file.

The siteLayout contract offers two templates: topNav_template.xhtml and leftNav_foo.xhtml. For
discussion, these are known as “declared templates”. When used by a template client, they will lay out
the template client’s contents with a navigation menu on the top or the left side of the page,
respectively. In siteLayout, each of the templates has <ui:insert> tags named “title”, “content”, and
“nav”. For discussion, these are knows as “declared insertion points”. Furthermore, each of the
templates uses the CSS styles declared in styles.css, some scripts defined in script.js, and the
background image background.png. For discussion, these are known as “declared resources”. In order
to use a resource library contract, one must know its declared templates, their declared insertion
points, and, optionally, their declared resources. No constraint is placed on the naming and

10.1. Non-normative Background

Final Jakarta Server Faces 299

http://java.sun.com/jsf/facelets

arrangement of declared templates, insertion points, or resources, but all three concepts together can
informally be thought of as the declaration of the resource library contract. The contract declaration of
siteLayout can be stated as follows.

siteLayout provides two declared templates, topNav_template.xhtml and leftNav_foo.xhtml. Each
templates offers declared insertion points “title”, “content”, and “nav”.

In this case, the css, script, and image are left out of the contract declaration but this distinction is
completely arbitrary. The important content of topNav_template.xhtml is shown next.

<?xml version='1.0' encoding='UTF-8' ?>
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ui="http://java.sun.com/jsf/facelets"
 xmlns:h="http://java.sun.com/jsf/html">
 <h:head>
 <h:outputStylesheet id="default" name="default.css" />
 <h:outputStylesheet name="cssLayout.css" />
 <title><ui:insert name="title"></ui:insert></title>
 </h:head>
 <h:body>
 <div id="top" class="top">
 <p>Top Navigation Menu</p>
 <ui:insert name="nav">Nav content</ui:insert>
 </div>
 <div id="content" class="center_content">
 <ui:insert name="content">Content</ui:insert>
 </div>
 </h:body>
</html>

This example packages the entire siteLayout directory and its contents into the META-INF/contracts
entry of a JAR file named siteLayout.jar. The simplest possible way to use siteLayout is to drop
siteLayout.jar into WEB-INF/lib and apply the knowledge of the resource library contract declaration to
the facelet views in the app.

Consider this simple web app, called useContract, the file layout for which is shown next. The example
is shown using a simplified maven war packaging.

useContract/
 pom.xml
 src/main/webapp/
 /WEB-INF/lib/siteLayout.jar
 index.xhtml
 page2.xhtml

10.1. Non-normative Background

300 Jakarta Server Faces Final

Notice the absence of a faces-config.xml file. Because this example is content to let all the contracts in
siteLayout.jar be applied to all views in the app, this file is not necessary. The two pages are shown
next.

index.xhtml.

<!DOCTYPE HTML>
<html xmlns=”http://www.w3.org/1999/xhtml”
 xmlns:ui=”http://java.sun.com/jsf/facelets”
 xmlns:h=”http://java.sun.com/jsf/html”>
 <body>
 <ui:composition template=”/topNav_template.xhtml”>
 <ui:define name=”title”>#{msgs.contactsWindowTitle}</ui:define>
 <ui:define name=”content”>
 <h:commandButton value=”next” action=”page2” />
 </ui:define>
 <ui:define name=”nav”>#{msgs.contactsNavMessage}</ui:define>
 </ui:composition>
 </body>
</html>

page2.xhtml

<!DOCTYPE HTML>
<html xmlns=”http://www.w3.org/1999/xhtml”
 xmlns:ui=”http://java.sun.com/jsf/facelets”
 xmlns:h=”http://java.sun.com/jsf/html”>
 <body>
 <ui:composition template=”/leftNav_foo.xhtml”>
 <ui:define name=”title”>Hard coded title</ui:define>
 <ui:define name=”content”>
 <h:commandButton value=”back” action=”index” />
 </ui:define>
 <ui:define name=”nav”>Hard coded nav</ui:define>
 </ui:composition>
 </body>
</html>

To complete the example, the execution of the useContract app is illustrated.

When useContract.war is deployed, the runtime will discover that siteLayout.jar is a resource library
contract and make its contents available for template clients.

When the user agent visits http://localhost:8080/useContract/faces/index.xhtml, because the siteLayout
resource library contract provides /topNav_template.xhtml , that file will be loaded as the template.
Likewise, when the next button is pressed, /leftNav_foo.xhtml, also from siteLayout, will be loaded as

10.1. Non-normative Background

Final Jakarta Server Faces 301

http://localhost:8080/useContract/faces/index.xhtml

the template.

Now, consider there is an alternate implementation of the siteLayout contract, packaged as
newSiteLayout.jar. This implementation doesn’t change the contract declaration, but completely
changes the arrangement and style of the views. As long as the contract declaration does not change,
useContract can take advantage of newSiteLayout simply by replacing one JAR in WEB-INF/lib.

10.1.3.2. Non-normative Feature Overview

The normative requirements of the feature are stated in the context of the part of the specification
impacted. This section gives the reader a non-normative overview of the feature that touches on all the
parts of the specification that intersect with this feature.

Design Time

At design time, the developer has packaged any resource library contracts to be used in the application
in the right place in the web application, or JAR file classpath. This behavior is normatively specified in
Resource Library Contracts.

Startup Time

At startup time, the runtime will discover the set of resource library contracts available for this
application. If there is one or more <resource-library-contracts> element, only those contracts explicitly
named will be made available for use in the application. If there is no such element, all of the
discovered contracts are made available for use in the application. This behavior is normatively
specified in Resource Library Contracts and in the XML schema for the application configuration
resources.

Facelet Processing Time

The specification for ViewDeclarationLanguage.createView() requires a call to
ViewDeclarationLanguage.calculateResourceLibraryContracts(), passing the current viewId. This
method will examine the data structure assembled at startup and return a List<String> representing
the resource library contracts eligible for use in this view. This value is set as the value of the
resourceLibraryContracts property on the FacesContext. This behavior is normatively specified in
ViewDeclarationLanguage.createView().

The specification of the tag handler for <f:view> is the one other place where the
resourceLibraryContracts property may be set. This behavior is normatively specified in the tag handler
for <f:view>.

In any <ui:composition> or <ui:decorate> tag reached from that view, it is valid to use any of the
templates in any of the listed contracts as the value of the template attribute. This behavior happens
naturally as a side effect of the requirements of ResourceHandler.createViewResource(), where the
implementation of that method is required to first consult the resourceLibraryContracts property of the
current FacesContext. If the value of the property is non-null and non empty, the implementation must
first look for the named view resource within each of the contracts in the list, and return the first
matching one found. Otherwise, the implementation just returns the matching resource, if found. This
behavior is normatively specified in the javadoc for ResourceHandler.createViewResource().

10.1. Non-normative Background

302 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6215

View Rendering Time

When the view is being rendered, any resources that reside in a resource library contract will have
additional metadata so that a subsequent request from the user agent is able to quickly find the
resource inside the named contract. This behavior is normatively specified in the javadoc for
Resource.getRequestPath().

User-Agent Rendering Time

By the point in time that the User-Agent is rendering the view, all of the work related to resource
library contracts will have been completed, but it is worth mentioning that any resources in the page
that originate from within resource library contracts will be correctly fetched.

10.1.4. HTML5 Friendly Markup

Without the HTML5 Friendly Markup feature the view authoring model relies entirely on the concept
of a Jakarta Faces UI component in a view as a means to encapsulate arbitrarily complex web user
interface code behind a simple UI component tag in a page. For example, the act of including
<my:datePicker value=”#{user.dob}” /> in a view could cause a large amount of HTML, CSS, JavaScript,
and images to be delivered to the user agent. This abstraction is very appropriate when the view
author is content to delegate the work of designing the user experience for such components to a
component author. As web designer skills have become more widespread, the need has arisen to
expose the hitherto hidden complexity so the view author has near total control on the user experience
of each individual element in the view. The HTML5 Friendly Markup feature addresses this
requirement, as well as providing access to the loosened attribute syntax also present in HTML5.

This feature is only available to views written in Facelets. It is not available to views written in Jakarta
Server Pages.

10.1.4.1. Non-normative Feature Overview

The normative requirements of the feature are stated in the context of the part of the specification
impacted. This section gives the reader a non-normative overview of the feature that touches on all the
parts of the specification that intersect with this feature. There are two main aspects to the feature,
pass through attributes and pass through elements.

Pass Through Attributes

For any given Jakarta Faces component tag in a view, the set of available attributes that component
supports is determined by a combination of the UIComponent and Renderer for that tag. In some cases
the value of the attribute is interpreted by the UIComponent or Renderer (for example, the columns
attribute of h:panelGrid) and in others the value is passed straight through to the user agent (for
example, the lang attribute of h:inputText). In both cases, the UIComponent/Renderer has a priori
knowledge of the set of allowable attributes. Pass Through Attributes allows the view author to list
arbitrary name value pairs that are passed straight through to the user agent without interpretation by
the UIComponent/Renderer. This behavior is normatively specified in the “Rendering Pass Through
Attributes” section of the overview of the standard HTML_BASIC render kit.

10.1. Non-normative Background

Final Jakarta Server Faces 303

The view author may specify pass through attributes in three ways.

• Nesting the <f:passThroughAttribute> tag within a UIComponent tag. For example,

 <h:inputText value=”#{user.name}”>
 <f:passThroughAttribute name=”data-sermon” value=”#{pastor.message}” />
 </h:inputText>

• Nesting the <f:passThroughAttributes> tag within a UIComponent tag, For example,

 <h:inputText value=”#{user.name}”>
 <f:passThroughAttributes value=”#{service.nameValuePairs}” />
 </h:inputText>

The Jakarta Expression Language expression must point to a Map<String, Object>. If the value is a
ValueExpresison call getValue() the value first. Whether the value is a ValueExpression or not, the
value must have its toString() called on it.

• Prefixing the attribute with the shortname assigned to the http://java.sun.com/jsf/passthrough XML
namespace. For example

 <html xmlns:p=”http://java.sun.com/jsf/passthrough”
 xmlns:h=”http://java.sun.com/jsf/html”>
 <h:inputText p:foo=”{bar.baz}” value=”#{user.name}” />
 </html>

This behavior is normatively specified in the VDLdoc for <f:passthroughAttribute>,
<f:passThroughAttributes> tags in the “Faces Core” tag library, and the “Pass Through Attributes” tag
library.

Pass Through Elements

This feature circumvents the traditional component abstraction model of Jakarta Faces, allowing the
page author nearly complete control of the rendered markup, without sacrificing any of the server side
lifecycle offered by Jakarta Faces. This is accomplished by means of enhancements to the Facelet
TagDecorator API. This API describes a mapping from the common markup elements to target tags in
the HTML_BASIC RenderKit such that the actual markup specified by the view author is what gets
rendered, but the server side component is an actual component from the HTML_BASIC RenderKit. A
special Renderer is provided to cover cases when none of the mappings specified in TagDecorator fit
the incoming markup. To allow further flexibility, the existing Facelets TagDecorator mechanism
allows complete control of the mapping process. This behavior is normatively specified in the javadocs
for class jakarta.faces.view.facelets.TagDecorator and in the section “Rendering Pass Through Attributes”
in the “General Notes On Encoding” in the Standard HTML_BASIC RenderKit.

10.1. Non-normative Background

304 Jakarta Server Faces Final

http://java.sun.com/jsf/passthrough

An example will illustrate the mapping process.

<!DOCTYPE HTML>
<html xmlns=”http://www.w3.org/1999/xhtml”
 xmlns:jsf=”http://java.sun.com/jsf”>
 <body>
 <input type=”number” pattern=”[0-9]*” jsf:value=”#{my.age}” />
 </body>
</html>

As required in Specification of the ViewDeclarationLanguage Implementation for Facelets for Jakarta
Faces TagDecorator is called during the facelet processing. Because the <input> element has an
attribute from the http://java.sun.com/jsf namespace, the system treats the element as a pass through
element. The table listed in the javadocs for TagDecorator is consulted and it is determined that this
component should act as an <h:inputText> component for the purposes of postback processing.
However, the rendering is entirely taken from the markup in the facelet view. Another example
illustrates the special Renderer that is used when no mapping can be found in the table in the javadocs
for TagDecorator.

<!DOCTYPE HTML>
<html xmlns=”http://www.w3.org/1999/xhtml”
 xmlns:jsf=”http://java.sun.com/jsf”>
 <body>
 <meter jsf:id="meter2" min="#{bean.min}" max="#{bean.max}" value="350">
 350 degrees
 </meter>
 </body>
</html>

As in the preceding example, the TagDecorator mechanism is activated but it is determined that this
component should act as a <jsf:element> component for the purposes of postback processing. The
behavior of the <jsf:element> is normatively specified in the VDLdoc for that tag. The behavior of the
jakarta.faces.passthrough.Element renderer is normatively specified in the RenderKitDoc for that
renderer.

10.2. Java Programming Language Specification for
Facelets in Jakarta Faces
The subsections within this section specify the Java API requirements of a Facelets implementation.
Adherence to this section and the next section, which specifies the XHTML specification for Facelets in
Jakarta Faces, will ensure applications and Jakarta Faces component libraries that make use of Facelets
are portable across different implementations of Jakarta Faces.

10.2. Java Programming Language Specification for Facelets in Jakarta Faces

Final Jakarta Server Faces 305

http://java.sun.com/jsf

The original Facelet project did not separate the API and the implementation into separate jars, as is
common practice with specifications. Thus, a significant task for integrating Facelets into Jakarta Faces
was deciding which classes to include in the public Java API, and which to keep as an implementation
detail.

There were two guiding principles that influenced the task of integrating Facelets into Jakarta Faces.

• The original decision in pre-Jakarta Faces JSF 1.0 (under the JCP) to allow the ViewHandler to be
pluggable enabled the concept of a View Declaration Language for JSF. The two most popular ones
were Facelets and JSFTemplating. The new integration should preserve this pluggability, since it is
still valuable to be able to replace the View Declaration Language.

• After polling users of Facelets, the JCP expert group decided that most of them were only using the
markup based API and were not extending from the Java classes provided by the Facelet project.
Therefore, we decided to keep the Java API for Facelets in Jakarta Faces as small as possible, only
exposing classes where absolutely necessary.

The application of these principles produced the classes in the package jakarta.faces.view.facelets.
Please consult the Javadocs for that package, and the classes within it, for additional normative
specification.

10.2.1. Specification of the ViewDeclarationLanguage Implementation for
Facelets for Jakarta Faces

As normatively specified in the javadocs for
ViewDeclarationLanguageFactory.getViewDeclarationLanguage(), a Jakarta Faces implementation must
guarantee that a valid and functional ViewDeclarationLanguage instance is returned from this method
when the argument is a reference to either a Jakarta Server Pages view, a Faces XML View or a Facelets
View. This section describes the specification for the Facelets implementation.

public void buildView(FacesContext context, UIViewRoot root)
 throws IOException

The argument root will have been created with a call to either createView() or
ViewMetadata.createMetadataView(). If the root already has non-metadata children, the view must still
be re-built, but care must be taken to ensure that the existing components are correctly paired up with
their VDL counterparts in the VDL page. The implementation must examine the viewId of the argument
root, which must resolve to an entity written in Facelets for Jakarta Faces markup language. Because
Facelets views are written in XHTML, an XML parser is well suited to the task of processing such an
entity. Each element in the XHTML view falls into one of the following categories, each of which
corresponds to an instance of a Java object that implements jakarta.faces.view.facelets.FaceletHandler,
or a subinterface or subclass thereof, and an instance of jakarta.faces.view.facelets.TagConfig, or a
subinterface or subclass thereof, which is passed to the constructor of the object implementing
FaceletHandler.

10.2. Java Programming Language Specification for Facelets in Jakarta Faces

306 Jakarta Server Faces Final

When constructing the TagConfig implementation to be passed to the FaceletHandler implementation,
the runtime must ensure that the instance returned from TagConfig.getTag() has been passed through
the tag decoration process as described in the javadocs for jakarta.faces.view.facelets.TagDecorator
prior to the TagConfig being passed to the FaceletHandler implementation.

The mapping between the categories of elements in the XHTML view and the appropriate sub-interface
or subclass of FaceletHandler is specified below. Each FaceletHandler instance must be traversed and
its apply() method called in the same depth-first order as in the other lifecycle phase methods in
Jakarta Faces. Each FaceletHandler instance must use the getNextHandler() method of the TagConfig
instance passed to its constructor to perform the traversal starting from the root FaceletHandler.

• Standard XHTML markup elements

◦ These are declared in the XHTML namespace http://www.w3.org/1999/xhtml. Such elements
should be passed through as is to the rendered output.

◦ These elements correspond to instances of jakarta.faces.view.facelets.TextHandler. See the
javadocs for that class for the normative specification.

• Markup elements that represent UIComponent instance in the view.

◦ These elements can come from the Standard HTML Renderkit namespace http://java.sun.com/
jsf/html, or from the namespace of a custom tag library (including composite components) as
described in Facelet Tag Library mechanism.

◦ These elements correspond to instances of jakarta.faces.view.facelets.ComponentHandler. See
the javadocs for that class for the normative specification.

• Markup elements that take action on their parent or children markup element(s). Usually these
come from the Jakarta Faces Core namespace http://java.sun.com/jsf/core, but they can also be
provided by a custom tag library.

◦ Such elements that represent an attached object must correspond to an appropriate subclass of
jakarta.faces.view.facelets.FaceletsAttachedObjectHandler. The supported subclasses are
specified in the javadocs.

◦ Such elements that represent a facet component must correspond to an instance of
jakarta.faces.component.FacetHandler.

◦ Such elements that represent an attribute that must be pushed into the parent UIComponent
element must correspond to an instance of jakarta.facelets.view.facelets.AttributeHandler.

• Markup Elements that indicate facelet templating, as specified in the VDL Docs for the namespace
http://java.sun.com/jsf/facelets.

◦ Such elements correspond to an instance of jakarta.faces.view.facelets.TagHandler.

• Markup elements from the Facelet version of the JSTL namespaces http://java.sun.com/jsp/jstl/core
or http://java.sun.com/jsp/jstl/functions, as specified in the VDL Docs for those namespaces.

◦ Such elements correspond to an instance of jakarta.faces.view.facelets.TagHandler.

10.2. Java Programming Language Specification for Facelets in Jakarta Faces

Final Jakarta Server Faces 307

http://www.w3.org/1999/xhtml
http://java.sun.com/jsf/html
http://java.sun.com/jsf/html
http://java.sun.com/jsf/core
http://java.sun.com/jsf/facelets
http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/functions

10.3. XHTML Specification for Facelets for Jakarta Faces

10.3.1. General Requirements

[P1-start_facelet_xhtml]Facelet pages are authored in XHTML. The runtime must support all XHTML
pages that conform to the XHTML-1.0-Transitional DTD, as described at http://www.w3.org/TR/xhtml1/#
a_dtd_XHTML-1.0-Transitional.

The runtime must ensure that Jakarta Expression Language expressions that appear in the page
without being the right-hand-side of a tag attribute are treated as if they appeared on the right-hand-
side of the value attribute of an <h:outputText /> element in the http://java.sun.com/jsf/html namespace.
This behavior must happen regardless of whether or not the http://java.sun.com/jsf/html namespace
has been declared in the page.

10.3.1.1. DOCTYPE and XML Declaration

When processing Facelet VDL files, the system must ensure that at most one XML declaration and at
most one DOCTYPE declaration appear in the rendered markup, if and only if there is corresponding
markup in the Facelet VDL files for those elements. If multiple occurrences of XML declaration and
DOCTYPE declaration are encountered when processing Facelet VDL files, the “outer-most” occurrence
is the one that must be rendered. If an XML declaration is present, it must be the very first markup
rendered, and it must precede any DOCTYPE declaration (if present). The output of the XML and
DOCTYPE declarations are subject to the configuration options listed in the table titled “Valid <process-
as> values and their implications on the processing of Facelet VDL files” in The facelets-processing
element.

[P1-end_facelet_xhtml]

10.3.2. Facelet Tag Library mechanism

Facelets leverages the XML namespace mechanism to support the concept of a “tag library” analogous
to the same concept in Jakarta Server Pages. However, in Facelets, the role of the tag handler java class
is greatly reduced and in most cases is unnecessary. The tag library mechanism has two purposes.

• Allow page authors to access tags declared in the supplied tag libraries declared in Standard Facelet
Tag Libraries, as well as accessing third-party tag libraries developed by the application author, or
any other third party

• Define a framework for component authors to group a collection of custom UIComponent s into a
tag library and expose them to page authors for use in their pages.

[P1_start_facelet_taglib_decl]The runtime must support the following syntax for making the tags in a
tag library available for use in a Facelet page.

10.3. XHTML Specification for Facelets for Jakarta Faces

308 Jakarta Server Faces Final

http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional
http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional
http://java.sun.com/jsf/html
http://java.sun.com/jsf/html
JSFMetadata.pdf#a7061
JSFMetadata.pdf#a7061
JSFMetadata.pdf#a5691
JSFMetadata.pdf#a5691

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:prefix="namespace_uri">

Where prefix is a page author chosen arbitrary string used in the markup inside the <html> tag to refer
to the tags declared within the tag library and namespace_uri is the string declared in the <namespace>
element of the facelet tag library descriptor. For example, declaring
xmlns:h="http://java.sun.com/jsf/html" within the <html> element in a Facelet XHTML page would cause
the runtime to make all tags declared in Standard HTML RenderKit Tag Library to be available for use
in the page using syntax like: <h:inputText />.

The unprefixed namespace, also known as the root namespace, must be passed through without
modification or check for validity. The passing through of the root namespace must occur on any non-
prefixed element in a facelet page. For example, the following markup declaration:.

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html">
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <msup>
 <msqrt>
 <mrow>
 <mi>a</mi>
 <mo>+</mo>

 <mi>b</mi>
 </mrow>
 </msqrt>
 <mn>27</mn>
 </msup>
</math>

would be rendered as

10.3. XHTML Specification for Facelets for Jakarta Faces

Final Jakarta Server Faces 309

<html xmlns="http://www.w3.org/1999/xhtml">
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <msup>
 <msqrt>
 <mrow>
 <mi>a</mi>
 <mo>+</mo>

 <mi>b</mi>
 </mrow>
 </msqrt>
 <mn>27</mn>
 </msup>
</math>

[P1_end_facelet_taglib_decl]

[P1_start_facelet_taglib_discovery]The run time must support two modes of discovery for Facelet tag
library descriptors

• Via declaration in the web.xml, as specified in Application Configuration Parameters

• Via auto discovery by placing the tag library discriptor file within a jar on the web application
classpath, naming the file so that it ends with “.taglib.xml”, without the quotes, and placing the file
in the META-INF directory in the jar file.

The discovery of tag library files must happen at application startup time and complete before the
application is placed in service. Failure to parse, process and otherwise interpret any of the tag library
files discovered must cause the application to fail to deploy and must cause an informative error
message to be logged.[P1_end_facelet_taglib_discovery]

The specification for how to interpret a facelet tag library descriptor is included in the documentation
elements of the schema for such files, see XML Schema Definition For Facelet Taglib.

10.3.3. Requirements specific to composite components

The text in this section makes use of the terms defined in Composite Component Terms. When such a
term appears in this section, it will be in emphasis font face.

10.3.3.1. Declaring a composite component library for use in a Facelet page

[P1_start_composite_library_decl]The runtime must support the following two ways of declaring a
composite component library.

• If a facelet taglibrary is declared in an XHTML page with a namespace starting with the string
“http://java.sun.com/jsf/composite/” (without the quotes), the remainder of the namespace

10.3. XHTML Specification for Facelets for Jakarta Faces

310 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6088
JSFMetadata.pdf#a7134
http://java.sun.com/jsf/composite/

declaration is taken as the name of a resource library as described in Libraries of Localized and
Versioned Resources, as shown in the following example:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:ez="http://java.sun.com/jsf/composite/ezcomp">

The runtime must look for a resource library named ezcomp. If the substring following
“http://java.sun.com/jsf/composite/” contains a “/” character, or any characters not legal for a library
name the following action must be taken. If application.getProjectStage() is Development an
informative error message must be placed in the page and also logged. Otherwise the message
must be logged only.

• As specified in facelet taglibrary schema, the runtime must also support the <composite-library-
name> element. The runtime must interpret the contents of this element as the name of a resource
library as described in Libraries of Localized and Versioned Resources. If a facelet tag library
descriptor file is encountered that contains this element, the runtime must examine the
<namespace> element in that same tag library descriptor and make it available for use in an XML
namespace declaration in facelet pages.[P1_end_composite_library_decl]

10.3.3.2. Creating an instance of a top level component

[P1_start_top_level_component_creation]If, during the process of building the view, the facelet runtime
encounters an element in the page using the prefix for the namespace of a composite component
library, the runtime must create a Resource instance with a library property equal to the library name
derived in Declaring a composite component library for use in a Facelet page]and call the variant of
application.createComponent() that takes a Resource.

After causing the top level component to be instantiated, the runtime must create a UIComponent with
component-family of jakarta.faces.Panel and renderer-type jakarta.faces.Group to be installed as a
facet of the top level component under the facet name
UIComponent.COMPOSITE_FACET_NAME.[P1_end_top_level_component_creation]

10.3.3.3. Populating a top level component instance with children

[P1_start_top_level_component_population]As specified in How does one make a composite
component? the runtime must support the use of composite: tag library in the defining page pointed to
by the Resource derived as specified in Creating an instance of a top level component.
[P1_start_top_level_component_population]The runtime must ensure that all UIComponent children in
the composite component definition within the defining page are placed as children of the
UIComponent.COMPOSITE_FACET_NAME facet of the top level facet.
[P1_end_top_level_component_population]

Please see the tag library documentation for the <composite:insertChildren> and
<composite:insertFacet> tags for details on these two tags that are relevant to populating a top level
component instance with children.

10.3. XHTML Specification for Facelets for Jakarta Faces

Final Jakarta Server Faces 311

http://java.sun.com/jsf/composite/

Special handling is required for attributes declared on the composite component tag instance in the
using page. [P1_start_composite_component_tag_attributes]The runtime must ensure that all such
attributes are copied to the attributes map of the top level component instance in the following manner.

• Obtain a reference to the ExpressionFactory, for discussion called expressionFactory.

• Let the value of the attribute in the using page be value.

• If value is “id” or “binding” without the quotes, skip to the next attribute.

• If the value of the attribute starts with “#{“ (without the quotes) call
expressionFactory.createValueExpression(elContext, value, Object.class)

• If the value of the attribute does not start with “#{“, call
expressionFactory.createValueExpression(value, Object.class)

• If there already is a key in the map for value, inspect the type of the value at that key. If the type is
MethodExpression take no action.[P1_end_composite_component_tag_attributes]

For code that handles tag attributes on UIComponent XHTML elements special action must be taken
regarding composite components. [P1_start_composite_component_method_expression]If the type of
the attribute is a MethodExpression, the code that takes the value of the attribute and creates an actual
MethodExpression instance around it must take the following special action. Inspect the value of the
attribute. If the Jakarta Expression Language expression string starts with the cc implicit object, is
followed by the special string “attrs” (without the quotes), as specified in Composite Component
Attributes ELResolver, and is followed by a single remaining expression segment, let the value of that
remaining expression segment be attrName. In this case, the runtime must guarantee that the actual
MethodExpression instance that is created for the tag attribute have the following behavior in its
invoke() method.

• Obtain a reference to the current composite component by calling
UIComponent.getCurrentCompositeComponent().

• Look in the attribute of the component for a key under the value attrName.

• There must be a value and it must be of type MethodExpression. If either of these conditions are
false allow the ensuing exception to be thrown.

• Call invoke() on the discovered MethodExpression, passing the arguments passed to our invoke()
method.[P1_end_composite_component_method_expression]

[P1_start_composite_component_retargeting]Once the composite component has been populated with
children, the runtime must ensure that ViewHandler.retargetAttachedObjects() and then
ViewHandler.retargetMethodExpressions() is called, passing the top level
component.[P1_end_composite_component_retargeting] The actions taken in these methods set the
stage for the tag attribute behavior and the special MethodExpression handling behavior described
previously.

[P1_start_nested_composite_components]The runtime must support the inclusion of composite
components within the composite component definition. [P1_end_nested_composite_components].

10.3. XHTML Specification for Facelets for Jakarta Faces

312 Jakarta Server Faces Final

10.4. Standard Facelet Tag Libraries
This section specifies the tag libraries that must be provided by an implementation.

10.4.1. Jakarta Faces Core Tag Library

This tag library must be equivalent to the one specified in Jakarta Faces Core Tag Library.

For all of the tags that correspond to attached objects, the Facelets implementation supportes an
additional attribute, for, which is intended for use when the attached object tag exists within a
composite component. If present, this attribute refers to the value of one of the exposed attached
objects within the composite component inside of which this tag is nested.

The following additional tags apply to the Facelet Core Tag Library only.

10.4.1.1. <f:ajax>

This tag serves two roles depending on its placement. If this tag is nested within a single component, it
will associate an Ajax action with that component. If this tag is placed around a group of components it
will associate an Ajax action with all components that support the “events” attribute. In there is an
outer

Syntax

<f:ajax [event=”Literal”]

[execute=”Literal | Value Expression”] [render=”Literal | Value Expression”]

[onevent=”Literal | Value Expression”] [onerror=”Literal | Value Expression”]

[listener=”Method Expression”]

[disabled=”Literal | Value Expression”] [immediate=”Literal | ValueExpression]/>

Body Content

empty.

Attributes

The following optional attributes are available:

Name Expr Type Description

event String String A String identifying the type of event the Ajax action will
apply to. If specified, it must be one of the events supported
by the component the Ajax behavior is being applied to. If
not specified, the default event is determined for the
component. The default event is “action” for ActionSource
components and “valueChange” for EditableValueHolder
components.

10.4. Standard Facelet Tag Libraries

Final Jakarta Server Faces 313

Name Expr Type Description

execute VE Collection<String
>

If a literal is specified, it must be a space delimited String of
component identifiers and/or one of the keywords outlined
in Keywords. If not specified, then @this is the default. If a
ValueExpression is specified, it must refer to a property that
returns a Collection of Strings. Each String in the Collection
must not contain spaces.

render VE Collection<String
>

If a literal is specified, it must be a space delimited String of
component identifiers and/or one of the keywords outlined
in Keywords. If not specified, then @none is the default . If a
ValueExpression is specified, it must refer to a property that
returns a Collection of Strings. Each String in the Collection
must not contain spaces.

onevent VE String The name of a JavaScript function that will handle events

onerror VE String The name of a JavaScript function that will handle errors.

disabled VE boolean “false” indicates the Ajax behavior script should be
rendered; “true” indicates the Ajax behavior script should
not be rendered. “false” is the default.

listener ME MethodExpressio
n

The listener method to execute when Ajax requests are
processed on he server.

immediate VE boolean If “true” behavior events generated from this behavior are
broadcast during Apply Request Values phase. Otherwise,
the events will be broadcast during Invoke Aplications
phase.

Specifying “execute”/”render” Identifiers

The String value for identifiers specified for execute and render may be specified as a search
expression as outlined in the JavaDocs for UIComponent.findComponent. [P1_start_execrenderIds]The
implementation must resolve these identifiers as specified for UIComponent.findComponent.[P1_end]

Constraints

This tag may be nested within any of the standard HTML components. It may also be nested within any
custom component that implements the ClientBehaviorHolder interface. Refer to Component Behavior
Model for more information about this interface. [P1_start_ajaxtag_events]A TagAttibuteException
must be thrown if an “event” attribute value is specified that does not match the events supported by
the component type. [P1_end_ajaxtag_events] For example:

<h:commandButton ..>
 <f:ajax event=”valueChange”/>
</h:commandButton id=”button1” ...>

10.4. Standard Facelet Tag Libraries

314 Jakarta Server Faces Final

An attempt is made to apply a “valueChange” Ajax event to an “action” component. This is invalid and
the Ajax behavior will not be applied. [P1_start_bevent]The event attribute that is specified, must be
one of the events returned from the ClientBehaviorHolder component implementation of
ClientBehaviorHolder.getEventNames. If an event is not specified the value returned from the
component implementation of ClientBehaviorHolder.getDefaultEventName must be used. If the event
is still not determined, a TagAttributeException must be thrown.[P1_end]

This tag may also serve to “ajaxify” regions of a page by nesting a group of components within it:

<f:ajax>
 <h:panelGrid>
 <h:inputText id=”text1”/>
 <h:commandButton id=”button1”/>
 </h:panelGrid>
</f:ajax>

From this example, “text1” and “button1” will have ajax behavior applied to them. The default events
for these components would cause Ajax requests to fire. For “text1” a “valueChange” event would
apply and for “button1” an “action” event would apply. <h:panelGrid> has no default event so in this
case a behavior would not be applied.

<f:ajax event=”click”>
 <h:panelGrid id=”grid1”>
 <h:inputText id=”text1”/>
 <h:commandButton id=”button1”>
 <f:ajax event=”mouseover”/>
 </h:commandButton>
 </h:panelGrid>
</f:ajax>

From this example, “grid1” and “text1” would have ajax behavior applied for an “onclick” event.
“button1” would have ajax behavior applied for both “mouseover” and “onclick” events. The “oncick”
event is a supported event type for PanelGrid components.

<f:ajax>
 <h:commandButton id=”button1”>
 <f:ajax/>
 </h:commandButton>
</f:ajax>

For this example, the inner <f:ajax/> would apply to “button1”. The outer (wrapping) <f:ajax> would
not be applied, since it is the same type of submitting behavior (AjaxBehavior) and the same event type
(action).

10.4. Standard Facelet Tag Libraries

Final Jakarta Server Faces 315

<f:ajax event=”click”>
 <h:inputText id=”text1”>
 <f:ajax event=”click”/>
 </h:inputText>
</f:ajax>

For this example, since the event types are the same, the inner <f:ajax> event overrides the outer one.

<f:ajax event=”action”>
 <h:commandButton id=”button1”>
 <b:greet event=”action”/>
 </h:commandButton>
</f:ajax>

Here, there is a custom behavior “greet” attached to “button1”. the outer <f:ajax> Ajax behavior will
also get applied to “button1”. But it will be applied after the “greet” behavior.

Description

Enable one or more components in the view to perform Ajax operations. This tag handler must create
an instance of jakarta.faces.component.behavior.AjaxBehavior instance using the tag attribute values.
If this tag is nested within a single ClientBehaviorHolder component:

• If the event attribute is not specified, determine the event by calling the component’s
getDefaultEventName method. If that returns null, throw an exception.

• If the event attribute is specified, ensure that it is a valid event - that is one of the events contained
in the Collection returned from getEventNames method. If it does not exist in this Collection, throw
an exception.

• Add the AjaxBehavior to the component by calling the addBehavior method, passing the event and
AjaxBehavior instance.

If this tag is wrapped around component children add the AjaxBehavior instance to the data structure
holding the behaviors for that component. As subsequent child components that implement the
BehaviorHolder interface are evaluated, this AjaxBehavior instance must be added as a Behavior to the
component. Please refer to the Javadocs for the core tag handler AjaxHandler for additional
requirements.

Examples

Apply Ajax to “button1” and “text1”:

10.4. Standard Facelet Tag Libraries

316 Jakarta Server Faces Final

<f:ajax>
 <h:form>
 <h:commandButton id=”button1” ...>
 <h:inputText id=”text1” ..>
 </h:form>
</f:ajax>

Apply Ajax to “text1”:

<f:ajax event=”valueChange”>
 <h:form>
 <h:commandButton id=”button1” ...>
 <h:inputText id=”text1” ..>
 </h:form>
</f:ajax>

Apply Ajax to “button1”:

<f:ajax event=”action”>
 <h:form>
 <h:commandButton id=”button1” ...>
 <h:inputText id=”text1” ..>
 </h:form>
</f:ajax>

Override default Ajax action. “button1” is associated with the Ajax “execute=’cancel’” action:

<f:ajax event=”action” execute=”reset”>
 <h:form>
 <h:commandButton id=”button1” ...>
 <f:ajax execute=”cancel”/>
 </h:commandButton>
 <h:inputText id=”text1” ..>
 </h:form>
</f:ajax>

10.4.1.2. <f:event>

Allow Jakarta Faces page authors to install ComponentSystemEventListener instances on a component
in a page. Because this tag is closely tied to the event system, please see section Declarative Listener
Registration for the normative specification.

10.4. Standard Facelet Tag Libraries

Final Jakarta Server Faces 317

10.4.1.3. <f:metadata>

Register a facet on the parent component, which must be the UIViewRoot. This must be a child of the
<f:view> . This tag must reside within the top level XHTML file for the given viewId, not in a template.
The implementation must ensure that the direct child of the facet is a UIPanel, even if there is only one
child of the facet. The implementation must set the id of the UIPanel to be the value of the
UIViewRoot.METADATA_FACET_NAME symbolic constant.

10.4.1.4. <f:validateBean>

Register a BeanValidator instance on the parent EditableValueHolder UIComponent or the
EditableValueHolder UIComponent whose client id matches the value of the "for" attribute when used
within a composite component. If neither criteria is satisfied, save the validation groups in an attribute
on the parent UIComponent to be used as defaults inherited by any BeanValidator in that branch of the
component tree. Don’t save the validation groups string if it is null or empty string. If the
validationGroups attribute is not defined on this tag when used in an EditableValueHolder, or the
value of the attribute is empty string, attempt to inherit the validation groups from the nearest parent
component on which a set of validation groups is stored. If no validation groups are inherited, assume
the Default validation group, jakarta.validation.groups.Default. If the BeanValidator is one of the
default validators, then this tag simply specializes the validator by providing the list of validation
groups to be used. There are two usage patterns for this tag, both shown below. The tags surrounding
and nested within the <f:validateBean> tag, as well as the attributes of the tag itself, are show for
illustrative purposes only.

Syntax

<h:inputText value=”#{model.property}”>
 <f:validateBean validationGroups=
 "jakarta.validation.groups.Default,app.validation.groups.Order"/>
</h:inputText>

or

<h:form>
 <f:validateBean>
 <h:inputText value=”#{model.property}” />
 <h:selectOneRadio value=”#{model.radioProperty}” >
 ...
 </h:selectOneRadio>
 <!-- other input components here -->
 </f:validateBean>
</h:form>

Body Content

Empty in the case when the Bean Validator is to be registered on a parent component.

10.4. Standard Facelet Tag Libraries

318 Jakarta Server Faces Final

Filled with input components when the Bean Validator is to be set on all of the ensclosing input
components.

Table 18. Attributes

Name Exp Type Description

binding VE ValueExpression A ValueExpression that evaluates to an object that
implements jakarta.faces.validate.BeanValidator

disabled VE Boolean A flag which indicates whether this validator, or a default
validator with the id "jakarta.faces.Bean", should be
permitted to be added to this component

validationGro
ups

VE String A comma-delimited of type-safe validation groups that are
passed to the Bean Validation API when validating the value

Constraints

Must be nested in an EditableValueHolder or nested in a composite component and have a for
attribute. Otherwise, it simply defines enables or disables the validator as a default for the branch of
the component tree under the parent component and/or sets the validation group defaults for the
branch. No exception is thrown if one of the first two conditions are not met, unlike other standard
validators.

Description

• Must use or extend the jakarta.faces.view.facelets.ValidatorHandler class

• If not within an EditableValueHolder or composite component, store the validation groups as
defaults for the current branch of the component tree, but only if the value is a non-empty string.

• If the disabled attribute is true, the validator should not be added. In addition, the validatorId, if
present, should be added to an exclusion list on the parent component to prevent a default
validator with the same id from being registered on the component.

• The createValidator() method must:

◦ If binding is non-null, create a ValueExpression by invoking
Application.createValueExpression() with binding as the expression argument, and
Validator.class as the expectedType argument. Use the ValueExpression to obtain a reference to
the Validator instance. If there is no exception thrown, and ValueExpression.getValue()
returned a non-null object that implements jakarta.faces.validator.Validator, it must then cast
the returned instance to jakarta.faces.validator.BeanValidator, configure its properties based on
the specified attributes, and return the configured instance. If there was an exception thrown,
rethrow the exception as a TagException.

◦ Use the validatorId if the validator instance could not be created from the binding attribute.
Call the createValidator() method of the Application instance for this application, passing
validator id "jakarta.faces.Bean". If the binding attribute was also set, evaluate the expression
into a ValueExpression and store the validator instance by calling setValue() on the
ValueExpression. It must then cast the returned instance to

10.4. Standard Facelet Tag Libraries

Final Jakarta Server Faces 319

jakarta.faces.validator.BeanValidator, configure its properties based on the specified attributes,
and return the configured instance. If there was an exception thrown, rethrow the exception as
a TagException.

10.4.1.5. <f:validateRequired>

Register a RequiredValidator instance on the parent EditableValueHolder UIComponent or the
EditableValueHolder UIComponent whose client id matches the value of the "for" attribute when used
within a composite component.

Syntax

<f:validateRequired/>

Body Content

empty

Table 19. Attributes

Name Exp Type Description

binding VE ValueExpression A ValueExpression that evaluates to an object that
implements jakarta.faces.validate.RequiredValidator

disabled VE Boolean A flag which indicates whether this validator, or a default
validator with the id "jakarta.faces.Required", should be
permitted to be added to this component

Constraints

Must be nested in an EditableValueHolder or nested in a composite component and have a for attribute
(Facelets only). Otherwise, it simply enables or disables the use of the validator as a default for the
branch of the component tree under the parent. No exception is thrown if one of the first two
conditions are not met, unlike other standard validators.

Description

• Must use or extend the jakarta.faces.view.facelets.ValidatorHandler class

• If the disabled attribute is true, the validator should not be added. In addition, the validatorId, if
present, should be added to an exclusion list on the parent component to prevent a default
validator with the same id from being registered on the component

• The createValidator() method must:

◦ If binding is non-null, create a ValueExpression by invoking
Application.createValueExpression() with binding as the expression argument, and
Validator.class as the expectedType argument. Use the ValueExpression to obtain a reference to
the Validator instance. If there is no exception thrown, and ValueExpression.getValue()
returned a non-null object that implements jakarta.faces.validator.Validator, it must then cast

10.4. Standard Facelet Tag Libraries

320 Jakarta Server Faces Final

the returned instance to jakarta.faces.validator.RequiredValidator, configure its properties
based on the specified attributes, and return the configured instance. If there was an exception
thrown, rethrow the exception as a TagException..

◦ Use the validatorId if the validator instance could not be created from the binding attribute.
Call the createValidator() method of the Application instance for this application, passing
validator id "jakarta.faces.Required". If the binding attribute was also set, evaluate the
expression into a ValueExpression and store the validator instance by calling setValue() on the
ValueExpression. It must then cast the returned instance to
jakarta.faces.validator.RequiredValidator, configure its properties based on the specified
attributes, and return the configured instance. If there was an exception thrown, rethrow the
exception as a TagException.

10.4.1.6. <f:validateWholeBean>

Support multi-field validation by enabling class-level bean validation on CDI based backing beans.

Syntax

<!-- one or more components validated by <f:validateBean />
 precede this tag in the tree, with each one using the same
 validationGroups value and referencing properties on the same
 model object -->
<f:validateWholeBean value="#{model}"
 validationGroups="fully.qualified.class.Name" />

Body Content

empty

Table 20. Attributes

Name Exp Type Description

disabled VE Boolean A flag which indicates whether this validator, or a default
validator with the id "jakarta.faces.Required", should be
permitted to be added to this component

validationGro
ups

VE String A comma-delimited of type-safe validation groups that are
passed to the Bean Validation API when validating the value

value VE Object A ValueExpression referencing the bean to be validated.

Constraints

This tag must be placed in the component tree after all of the fields that are to be included in the multi-
field validation. If this precondition is not met, the results of applying this tag are unspecified.

Description

• See the VDLDoc for <f:validateWholeBean /> for the normative specification and a usage example.

10.4. Standard Facelet Tag Libraries

Final Jakarta Server Faces 321

10.4.1.7. <f:websocket>

This tag registers a websocket push connection at the client side by rendering the necessary scripts.
Push messages can be sent from server side via jakarta.faces.push.PushContext interface which is
injected into a using class with the @jakarta.faces.push.Push CDI qualifier.

 <f:websocket> is designed for push from server to client

Although W3C WebSocket supports two-way communication, the <f:websocket> push is designed for
one-way communication, from server to client. In case you intend to send some data from client to
server, continue using Jakarta Faces ajax the usual way. This has among others the advantage of
maintaining the Jakarta Faces view state, the HTTP session and, critically, all security constraints on
business service methods.

Syntax

<f:websocket [binding="ValueExpression"] [id="Literal | ValueExpression"]

channel="Literal" [scope="Literal"]

[user="Literal | ValueExpression"] [onopen="Literal | ValueExpression"]

[onmessage="Literal | ValueExpression"] [onclose="Literal | ValueExpression"]

[connected="Literal | ValueExpression"] [rendered="Literal | ValueExpression"] />

Body Content

Empty, or one or more <f:ajax> tags with the event attribute set to exactly the push message content.

Attributes

The following required attribute must be set:

Name Expr Type Description

channel String String The name of the websocket channel. It may not be a Jakarta
Expression Language expression and it may only contain
alphanumeric characters, hyphens, underscores and
periods. All open websockets on the same channel name will
receive the same push notification from the server.

The following optional attributes are available:

Name Exp Type Description

id VE String Component identifier of the UIWebSocket component to be
created.

10.4. Standard Facelet Tag Libraries

322 Jakarta Server Faces Final

Name Exp Type Description

scope String String The scope of the websocket channel. It may not be a Jakarta
Expression Language expression and allowed values are
application, session and view, case insensitive. When the
value is application, then all channels with the same name
throughout the application will receive the same push
message. When the value is session, then only the channels
with the same name in the current user session will receive
the same push message. When the value is view, then only
the channel in the current view will receive the push
message. The default scope is application. When the user
attribute is specified, then the default scope is session.

user VE Serializable The user identifier of the websocket channel, so that user-
targeted push messages can be sent. It must implement
Serializable and preferably have low memory footprint.
Suggestion: use #{request.remoteUser} or
#{someLoggedInUser.id}. All open websockets on the same
channel and user will receive the same push message from
the server.

onopen VE String The JavaScript event handler function that is invoked when
the websocket is opened. The function will be invoked with
one argument: the channel name.

onmessage VE String The JavaScript event handler function that is invoked when
a push message is received from the server. The function
will be invoked with three arguments: the push message, the
channel name and the raw MessageEvent itself.

onclose VE String The JavaScript event handler function that is invoked when
the websocket is closed. The function will be invoked with
three arguments: the close reason code, the channel name
and the raw CloseEvent itself. Note that this will also be
invoked on errors and that you can inspect the close reason
code if an error occurred and which one (i.e. when the code
is not 1000). See also RFC 6455 section 7.4.1 and
jakarta.websocket.CloseReason.CloseCodes API for an
elaborate list of all close codes.

10.4. Standard Facelet Tag Libraries

Final Jakarta Server Faces 323

Name Exp Type Description

connected VE Boolean Whether to (auto)connect the websocket or not. Defaults to
true. It’s interpreted as a JavaScript instruction whether to
open or close the websocket push connection. This attribute
is implicitly re-evaluated on every ajax request by a
PreRenderViewEvent listener on the UIViewRoot. You can
also explicitly set it to false and then manually control in
JavaScript by jsf.push.open(clientId) and
jsf.push.close(clientId).

rendered VE Boolean Whether to render the websocket scripts or not. Defaults to
true. This attribute is implicitly re-evaluated on every ajax
request by a PreRenderViewEvent listener on the
UIViewRoot. If the value changes to false while the
websocket is already opened, then the websocket will
implicitly be closed.

binding VE UIComponent Value binding expression to a backing bean property bound
to the component instance for the UIComponent created by
this tag.

Configuration

First, enable the websocket endpoint using the context parameter:

<context-param>
 <param-name>jakarta.faces.ENABLE_WEBSOCKET_ENDPOINT</param-name>
 <param-value>true</param-value>
</context-param>

In case your server is configured to run a WebSocket container on a different TCP port than the HTTP
container, then you can use the optional jakarta.faces.WEBSOCKET_ENDPOINT_PORT integer context
parameter in web.xml to explicitly specify the port.

<context-param>
 <param-name>jakarta.faces.WEBSOCKET_ENDPOINT_PORT</param-name>
 <param-value>8000</param-value>
</context-param>

Usage (client)

Declare <f:websocket> tag in the Jakarta Faces view with at least a channel name and an onmessage
JavaScript listener function. The channel name may not be an Expression Language expression and it
may only contain alphanumeric characters, hyphens, underscores and periods.

Here’s an example which refers an existing JavaScript listener function.

10.4. Standard Facelet Tag Libraries

324 Jakarta Server Faces Final

<f:websocket channel="someChannel"
 onmessage="someWebsocketListener" />

function someWebsocketListener(message, channel, event) {
 console.log(message);
}

Here’s an example which declares an inline JavaScript listener function.

<f:websocket channel="someChannel"
 onmessage="function(m){console.log(m);}" />

The onmessage JavaScript listener function will be invoked with three arguments:

1. message: the push message as JSON object.

2. channel: the channel name.

3. event: the raw MessageEvent instance.

When successfully connected, the websocket is by default open as long as the document is open, and it
will auto-reconnect at increasing intervals when the connection is closed/aborted as result of e.g. a
network error or server restart. It will not auto-reconnect when the very first connection attempt
already fails. The websocket will be implicitly closed once the document is unloaded.

Usage (server)

On the Java programming side, you can inject a PushContext via @Push annotation on the given
channel name in any CDI/container managed artifact, such as @Named, @WebServlet, wherever you’d
like to send a push message and then invoke PushContext.send(Object) with any Java object
representing the push message.

@Inject @Push
private PushContext someChannel;

public void sendMessage(Object message) {
 someChannel.send(message);
}

By default the name of the channel is taken from the name of the variable into which injection takes
place.

The channel name can be optionally specified via the channel attribute. The example below injects the
push context for channel name foo into a variable named bar.

10.4. Standard Facelet Tag Libraries

Final Jakarta Server Faces 325

@Inject @Push(channel="foo")
private PushContext bar;

The message object will be encoded as JSON and be delivered as message argument of the onmessage
JavaScript listener function associated with the channel name. It can be a plain vanilla String, but it
can also be a collection, map and even a Java bean.

Scopes and Users

By default the websocket is application scoped, i.e. any view/session throughout the web application
having the same websocket channel open will receive the same push message. The push message can
be sent by all users and the application itself.

The optional scope attribute can be set to session to restrict the push messages to all views in the
current user session only. The push message can only be sent by the user itself and not by the
application.

<f:websocket channel="someChannel" scope="session" ... />

The scope attribute can also be set to view to restrict the push messages to the current view only. The
push message will not show up in other views in the same session even if it’s the same URL. The push
message can only be sent by the user itself and not by the application..

<f:websocket channel="someChannel" scope="view" ... />

The scope attribute may not be an EL expression and allowed values are application, session and view,
case insensitive.

Additionally, the optional user attribute can be set to the unique identifier of the logged-in user, usually
the login name or the user ID. This way the push message can be targeted to a specific user and can
also be sent by other users and the application itself. The value of the user attribute must at least
implement Serializable and have a low memory footprint, so an entire user entity is not
recommended.

E.g. when you’re using container managed authentication or a related framework/library:.

<f:websocket channel="someChannel" user="#{request.remoteUser}" ... />

Or when you have a custom user entity accessible via EL, such as as #{someLoggedInUser} which has
an id property representing its identifier:.

10.4. Standard Facelet Tag Libraries

326 Jakarta Server Faces Final

<f:websocket channel="someChannel" user="#{someLoggedInUser.id}" ... />

When the user attribute is specified, then the scope defaults to session and cannot be set to application.

On the server side, the push message can be targeted to the user specified in the user attribute via
PushContext.send(Object, Serializable). The push message can be sent by all users and the application
itself..

@Inject @Push
private PushContext someChannel;

public void sendMessage(Object message, User recipientUser) {
 Long recipientUserId = recipientUser.getId();
 someChannel.send(message, recipientUserId);
}

Multiple users can be targeted by passing a Collection holding user identifiers to
PushContext.send(Object, Collection)..

public void sendMessage(Object message, Group recipientGroup) {
 Collection<Long> recipientUserIds = recipientGroup.getUserIds();
 someChannel.send(message, recipientUserIds);
}

Conditionally Connecting

You can use the optional connected attribute to control whether to auto-connect the websocket or not..

<f:websocket ... connected="#{bean.pushable}" />

The connected attribute defaults to true and is interpreted as a JavaScript instruction whether to open
or close the websocket push connection. If the value is a Jakarta Expression Language expression and
it becomes false during an ajax request, then the push connection will explicitly be closed during
oncomplete of that ajax request.

You can also explicitly set it to false and manually open the push connection in client side by invoking
jsf.push.open(clientId), passing the component’s client ID..

<h:commandButton ... onclick="jsf.push.open('foo')">
 <f:ajax ... />
</h:commandButton>
<f:websocket id="foo" channel="bar" scope="view" ... connected="false" />

10.4. Standard Facelet Tag Libraries

Final Jakarta Server Faces 327

In case you intend to have an one-time push and don’t expect more messages, you can optionally
explicitly close the push connection from client side by invoking jsf.push.close(clientId), passing the
component’s client ID. For example, in the onmessage JavaScript listener function as below:.

function someWebsocketListener(message) {
 // ...
 jsf.push.close('foo');
}

Events (client)

The optional onopen JavaScript listener function can be used to listen on open of a websocket in client
side. This will be invoked on the very first connection attempt, regardless of whether it will be
successful or not. This will not be invoked when the websocket auto-reconnects a broken connection
after the first successful connection.

<f:websocket ... onopen="websocketOpenListener" />

function websocketOpenListener(channel) {
 // ...
}

The onopen JavaScript listener function will be invoked with one argument:

1. channel: the channel name, useful in case you intend to have a global listener.

The optional onclose JavaScript listener function can be used to listen on a normal or abnormal close
of a websocket. This will be invoked when the very first connection attempt fails, or the server has
returned close reason code 1000 (normal closure) or 1008 (policy violated), or the maximum reconnect
attempts has been exceeded. This will not be invoked when the websocket can make an auto-reconnect
attempt on a broken connection after the first successful connection

<f:websocket ... onclose="websocketCloseListener" />

function websocketCloseListener(code, channel, event) {
 if (code == -1) {
 // Websockets not supported by client.
 } else if (code == 1000) {
 // Normal close (as result of expired session or view).
 } else {
 // Abnormal close reason (as result of an error).
 }
}

10.4. Standard Facelet Tag Libraries

328 Jakarta Server Faces Final

The onclose JavaScript listener function will be invoked with three arguments:

1. code: the close reason code as integer. If this is -1, then the websocket is simply not supported by
the client. If this is 1000, then it was normally closed. Otherwise, if this is not 1000, then there may
be an error. See also RFC 6455 section 7.4.1 and jakarta.websocket.CloseReason.CloseCodes API for
an elaborate list of all close codes.

2. channel: the channel name.

3. event: the raw CloseEvent instance.

When a session or view scoped socket is automatically closed with close reason code 1000 by the server
(and thus not manually by the client via jsf.push.close(clientId)), then it means that the session or view
has expired.

Events (server)

When a session or view scoped socket is automatically closed with close reason code 1000 by the server
(and thus not manually by the client via jsf.push.close(clientId)), then it means that the session or view
has expired.

@ApplicationScoped
public class WebsocketObserver {

public void onOpen(@Observes @Opened WebsocketEvent event) {
 String channel = event.getChannel();
 // Returns <f:websocket channel>.
 Long userId = event.getUser();
 // Returns <f:websocket user>, if any.
 // ...
}

public void onClose(@Observes @Closed WebsocketEvent event) {
 String channel = event.getChannel();
 // Returns <f:websocket channel>.
 Long userId = event.getUser();
 // Returns <f:websocket user>, if any.
 CloseCode code = event.getCloseCode();
 // Returns close reason code.
 // ...
}

Security Considerations

If the socket is declared in a page which is only restricted to logged-in users with a specific role, then
you may want to add the URL of the push handshake request URL to the set of restricted URLs.

The push handshake request URL is composed of the URI prefix /jakarta.faces.push/, followed by
channel name. In the example of container managed security which has already restricted an example

10.4. Standard Facelet Tag Libraries

Final Jakarta Server Faces 329

page /user/foo.xhtml to logged-in users with the example role USER on the example URL pattern /user/*
in web.xml like below,

<security-constraint>
 <web-resource-collection>
 <web-resource-name>
 Restrict access to role USER.
 </web-resource-name>
 <url-pattern>/user/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>USER</role-name>
 </auth-constraint>
</security-constraint>

and the page /user/foo.xhtml in turn contains a <f:websocket channel="foo">, then you need to add a
restriction on push handshake request URL pattern of /jakarta.faces.push/foo as shown next.

<security-constraint>
 <web-resource-collection>
 <web-resource-name>
 Restrict access to role USER.
 </web-resource-name>
 <url-pattern>/user/*</url-pattern>
 <url-pattern>/jakarta.faces.push/foo</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>USER</role-name>
 </auth-constraint>
</security-constraint>

As extra security, particularly for those public channels which can’t be restricted by security
constraints, the <f:websocket> will register all so previously declared channels in the current HTTP
session, and any incoming websocket open request will be checked whether they match these channels
in the current HTTP session. In case the channel is unknown (e.g. randomly guessed or spoofed by end
users or manually reconnected after the session is expired), then the websocket will immediately be
closed with close reason code CloseCodes.VIOLATED_POLICY (1008). Also, when the HTTP session gets
destroyed, all session and view scoped channels which are still open will explicitly be closed from
server side with close reason code CloseCodes.NORMAL_CLOSURE (1000). Only application scoped
sockets remain open and are still reachable from server end even when the session or view associated
with the page in client side is expired.

Ajax Support

In case you’d like to perform complex UI updates depending on the received push message, then you

10.4. Standard Facelet Tag Libraries

330 Jakarta Server Faces Final

can nest <f:ajax> inside <f:websocket>. Here’s an example:

<h:panelGroup id="foo">
 ... (some complex UI here) ...
</h:panelGroup>

<h:form>
 <f:websocket channel="someChannel" scope="view">
 <f:ajax event="someEvent" listener="#{bean.pushed}" render=":foo" />
 </f:websocket>
</h:form>

Here, the push message simply represents the ajax event name. You can use any custom event name.

someChannel.send("someEvent");

An alternative is to combine <f:websocket> with <h:commandScript>. The <f:websocket onmessage>
can reference exactly the <h:commandScript name>. For example,

<h:panelGroup id="foo">
 ... (some complex UI here) ...
</h:panelGroup>
<f:websocket channel="someChannel" scope="view" onmessage="pushed" />
<h:form>
 <h:commandScript name="pushed" action="#{bean.pushed}" render=":foo" />
</h:form>

If you pass a Map<String,V> or a JavaBean as push message object, then all entries/properties will
transparently be available as request parameters in the command script method #{bean.pushed}.

10.4.2. Standard HTML RenderKit Tag Library

This tag library must be equivalent to the one specified in Standard HTML RenderKit Tag Library.

The following additional renderers are added to the ones defined in the other section.

Table 21. Renderers Unique to Facelets

getComponentType() getRendererType() custom action name

jakarta.faces.Command jakarta.faces.Script commandScript

jakarta.faces.Script jakarta.faces.Websocket does not apply

10.4. Standard Facelet Tag Libraries

Final Jakarta Server Faces 331

10.4.3. Facelet Templating Tag Library

This tag library is the specified version of the ui: tag library found in pre JSF 2.0 Facelets. The
specification for this library can be found in the VDLDocs for the ui: library.

10.4.4. Composite Component Tag Library

This tag library is used to declare composite components. The specification for this tag library can be
found in the VDLDocs for the composite: library.

10.4.5. JSTL Core and Function Tag Libraries

Facelets exposes a subset of the JSTL Core tag library and the entirety of the JSTL Function tag library.
Please see the VDLDocs for the JSTL Core and JSTL Functions tag libraries for the normative
specification.

10.5. Assertions relating to the construction of the view
hierarchy

[P1-start processListenerForAnnotation] When the VDL calls for the creation of a UIComponent
instance, after calling Application.createComponent() to instantiate the component instance, and after
calling setRendererType() on the newly instantiated component instance, the following action must be
taken.

• Obtain the Renderer for this component. If no Renderer is present, ignore the following steps.

• Call getClass() on the Renderer instance and inspect if the ListenerFor annotation is present. If so,
inspect if the Renderer instance implements ComponentSystemEventListener. If neither of these
conditions are true, ignore the following steps.

• Obtain the value of the systemEventClass() property of the ListenerFor annotation on the Renderer
instance.

• Call subscribeToEvent() on the UIComponent instance from which the Renderer instance was
obtained, using the systemEventClass from the annotation as the second argument, and the
Renderer instance as the third argument.

[P1-end]

10.5. Assertions relating to the construction of the view

332 Jakarta Server Faces Final

Chapter 11. Using Jakarta Faces in Web
Applications
This specification provides Jakarta Faces implementors significant freedom to differentiate themselves
through innovative implementation techniques, as well as value-added features. However, to ensure
that web applications based on Jakarta Faces can be executed unchanged across different Jakarta Faces
implementations, the following additional requirements, defining how a Jakarta Faces-based web
application is assembled and configured, must be supported by all Jakarta Faces implementations.

11.1. Web Application Deployment Descriptor
Jakarta Faces-based applications are web applications that conform to the requirements of the Jakarta
Servlet Specification (version 5.0 or later), and also use the facilities defined in this specification.
Conforming web applications are packaged in a web application archive (WAR), with a well-defined
internal directory structure. A key element of a WAR is the web application deployment descriptor, an
XML document that describes the configuration of the resources in this web application. This
document is included in the WAR file itself, at resource path /WEB-INF/web.xml.

Portable Jakarta Faces-based web applications must include the following configuration elements, in
the appropriate portions of the web application deployment descriptor. Element values that are
rendered in italics represent values that the application developer is free to choose. Element values
rendered in bold represent values that must be utilized exactly as shown.

Executing the request processing lifecycle via other mechanisms is also allowed (for example, an MVC-
based application framework can incorporate calling the correct phase implementations in the correct
order); however, all Jakarta Faces implementations must support the functionality described in this
chapter to ensure application portability.

11.1.1. Servlet Definition

Jakarta Faces implementations must provide request processing lifecycle services through a standard
servlet, defined by this specification. [P1-start-servlet]This servlet must be defined, in the deployment
descriptor of an application that wishes to employ this portable mechanism, as follows:

<servlet>

 <servlet-name> faces-servlet-name </servlet-name>

 <servlet-class> jakarta.faces.webapp.FacesServlet </servlet-class>

</servlet>

The servlet name, denoted as faces-servlet-name above, may be any desired value; however, the same

11.1. Web Application Deployment Descriptor

Final Jakarta Server Faces 333

value must be used in the servlet mapping (see Servlet Mapping).[P1-end]

In addition to FacesServlet, Jakarta Faces implementations may support other ways to invoke the
Jakarta Faces request processing lifecycle, but applications that rely on these mechanisms will not be
portable.

11.1.2. Servlet Mapping

All requests to a web application are mapped to a particular servlet based on matching a URL pattern
(as defined in the Jakarta Servlet Specification) against the portion of the request URL after the context
path that selected this web application. [P1-start-mapping]Jakarta Faces implementations must support
web application that define a <servlet-mapping> that maps any valid url-pattern to the FacesServlet.
[P1-end]Prefix or extension mapping may be used. When using prefix mapping, the following mapping
is recommended, but not required:

<servlet-mapping>

 <servlet-name> faces-servlet-name </servlet-name>

 <url-pattern> /faces/* </url-pattern>

</servlet-mapping>

When using extension mapping the following mapping is recommended, but not required:

<servlet-mapping>

 <servlet-name> faces-servlet-name </servlet-name>

 <url-pattern> *.faces </url-pattern>

</servlet-mapping>

In addition to FacesServlet, Jakarta Faces implementations may support other ways to invoke the
Jakarta Faces request processing lifecycle, but applications that rely on these mechanisms will not be
portable.

11.1.3. Application Configuration Parameters

Servlet containers support application configuration parameters that may be customized by including
<context-param> elements in the web application deployment descriptor. [P1-start-configParams]All
Jakarta Faces implementations are required to support the following application configuration
parameter names:

• jakarta.faces.ALWAYS_PERFORM_VALIDATION_WHEN_REQUIRED_IS_TRUE — See the javadocs for

11.1. Web Application Deployment Descriptor

334 Jakarta Server Faces Final

the constant
jakarta.faces.component.UIInput.ALWAYS_PERFORM_VALIDATION_WHEN_REQUIRED_IS_TRUE for
the specification of this feature.

• jakarta.faces.CLIENT_WINDOW_MODE — The context-param that controls the operation of the
ClientWindow feature. See the javadocs for the constant
jakarta.faces.lifecycle.ClientWindow.CLIENT_WINDOW_MODE_PARAM_NAME for the specification
of this feature.

• jakarta.faces.CONFIG_FILES — Comma-delimited list of context-relative resource paths under
which the Jakarta Faces implementation will look for application configuration resources (see
Application Configuration Resource Format), before loading a configuration resource named
“/WEB-INF/faces-config.xml” (if such a resource exists). If “/WEB-INF/faces-config.xml” is present in
the list, it must be ignored.

• jakarta.faces.DATETIMECONVERTER_DEFAULT_TIMEZONE_IS_SYSTEM_TIMEZONE — If this param
is set, and calling toLowerCase().equals("true") on a String representation of its value returns true,
Application.createConverter() must guarantee that the default for the timezone of all
jakarta.faces.convert.DateTimeConverter instances must be equal to TimeZone.getDefault() instead
of “GMT”.

• jakarta.faces.DEFAULT_SUFFIX — Allow the web application to define an alternate suffix for Jakarta
Server Pages pages containing Jakarta Faces content. See the javadocs for the symbolic constant
ViewHandler.DEFAULT_SUFFIX_PARAM_NAME for the complete specification.

• jakarta.faces.DISABLE_FACELET_JSF_VIEWHANDLER — If this param is set, and calling
toLowerCase().equals("true") on a String representation of its value returns true, the default
ViewHandler must behave as specified in the latest 1.2 version of this specification. Any behavior
specified in Default ViewDeclarationLanguage Implementation and implemented in the default
ViewHandler that pertains to handling requests for pages authored in the Jakarta Server Faces View
Declaration Language must not be executed by the runtime.
For backward compatibility with previous versions of Facelets, the value
DISABLE_FACELET_JSF_VIEWHANDLER must be supported.

• jakarta.faces.DISABLE_FACESSERVLET_TO_XHTML — If this param is set, and calling
toLowerCase().equals("true") on a String representation of its value returns true, the default
mapping of the FacesServlet to *.xhtml must not take effect.

• jakarta.faces.FACELETS_LIBRARIES — If this param is set, the runtime must interpret it as a
semicolon (;) separated list of paths, starting with “/” (without the quotes). The runtime must
interpret each entry in the list as a path relative to the web application root and interpret the file
found at that path as a facelet tag library, conforming to the facelet taglibrary schema and expose
the tags therein according to Facelet Tag Library mechanism. The runtime must also consider the
facelets.LIBRARIES param name as an alias to this param name for backwards compatibility with
existing facelets tag libraries.

• jakarta.faces.FACELETS_BUFFER_SIZE — The buffer size to set on the response when the
ResponseWriter is generated. By default the value is 1024. A value of -1 will not assign a buffer size
on the response. This should be increased if you are using development mode in order to guarantee

11.1. Web Application Deployment Descriptor

Final Jakarta Server Faces 335

that the response isn’t partially rendered when an error is generated. The runtime must also
consider the facelets.BUFFER_SIZE param name as an alias to this param name for backwards
compatibility with existing facelets tag libraries.

• jakarta.faces.FACELETS_DECORATORS — A semicolon (;) delimitted list of class names of type
jakarta.faces.view.facelets.TagDecorator, with a no-argument constructor. These decorators will be
loaded when the first request for a Facelets VDL view hits the ViewHandler for page
compilation.The runtime must also consider the facelets.DECORATORS param name as an alias to
this param name for backwards compatibility with existing facelets tag libraries.

• jakarta.faces.FACELETS_REFRESH_PERIOD — When a page is requested, what interval in seconds
should the compiler check for changes. If you don’t want the compiler to check for changes once
the page is compiled, then use a value of -1. Setting a low refresh period helps during development
to be able to edit pages in a running application.The runtime must also consider the
facelets.REFRESH_PERIOD param name as an alias to this param name for backwards compatibility
with existing facelets tag libraries.

• jakarta.faces.FACELETS_RESOURCE_RESOLVER — If this param is set, the runtime must interpret its
value as a fully qualified classname of a java class that extends
jakarta.faces.view.facelets.ResourceResolver and has a zero argument public constructor or a one
argument public constructor where the type of the argument is ResourceResolver. If this param is
set and its value does not conform to those requirements, the runtime must log a message and
continue. If it does conform to these requirements and has a one-argument constructor, the default
ResourceResolver must be passed to the constructor. If it has a zero argument constructor it is
invoked directly. In either case, the new ResourceResolver replaces the old one. The runtime must
also consider the facelets.RESOURCE_RESOLVER param name as an alias to this param name for
backwards compatibility with existing facelets tag libraries.

Related to this param is the corresponding annotation,
jakarta.faces.view.facelets.FaceletsResourceResolver. The presence of this annotation must be
ignored if the corresponding param has been specified. If present, this annotation must be attached
to a class that extends jakarta.faces.view.facelets.ResourceResolver. If more than one class in the
application has this annotation, an informative error message with logging level SEVERE must be
logged indicating this case. Exactly one of the classes with the annotation must be taken to be the
ResourceResolver for the application and any other classes with the annotation must be ignored.
See Ordering of Artifacts for the means to put application configuration resources in order such
that the chosen class can be defined. The same rules regarding decoration of the instance as listed
above must apply to the annotated class.

• jakarta.faces.FACELETS_SKIP_COMMENTS — If this param is set, and calling
toLowerCase().equals("true") on a String representation of its value returns true, the runtime must
ensure that any XML comments in the Facelets source page are not delivered to the client. The
runtime must also consider the facelets.SKIP_COMMENTS param name as an alias to this param
name for backwards compatibility with existing facelets tag libraries.

• jakarta.faces.FACELETS_SUFFIX — Allow the web application to define an alternate suffix for
Facelet based XHTML pages containing Jakarta Faces content. See the javadocs for the symbolic

11.1. Web Application Deployment Descriptor

336 Jakarta Server Faces Final

constant ViewHandler.FACELETS_SUFFIX_PARAM_NAME for the complete specification.

• jakarta.faces.FACELETS_VIEW_MAPPINGS — If this param is set, the runtime must interpret it as a
semicolon (;) separated list of strings that is used to forcibly declare that certain pages in the
application must be interpreted as using Facelets, regardless of their extension. The runtime must
also consider the facelets.VIEW_MAPPINGS param name as an alias to this param name for
backwards compatibility with existing facelets applications. See the javadocs for the symbolic
constant ViewHandler.FACELETS_VIEW_MAPPINGS_PARAM_NAME for the complete specification.

• jakarta.faces.FULL_STATE_SAVING_VIEW_IDS — The runtime must interpret the value of this
parameter as a comma separated list of view IDs, each of which must have their state saved using
the state saving mechanism specified in pre-Jakarta Faces JSF 1.2 (under the JCP).

• jakarta.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL — If this param is set,
and calling toLowerCase().equals("true") on a String representation of its value returns true, any
implementation of UIInput.validate() must take the following additional action.

If the jakarta.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL context parameter
value is true (ignoring case), and UIInput. getSubmittedValue() returns a zero-length String call
UIInput.setSubmittedValue(null) and continue processing using null as the current submitted value

• jakarta.faces.LIFECYCLE_ID — Lifecycle identifier of the Lifecycle instance to be used when
processing Jakarta Faces requests for this web application. If not specified, the Jakarta Faces default
instance, identified by LifecycleFactory.DEFAULT_LIFECYCLE, must be used.

• jakarta.faces.PARTIAL_STATE_SAVING --The ServletContext init parameter consulted by the runtime
to determine if the partial state saving mechanism should be used.
If undefined, the runtime must determine the version level of the application.

◦ For applications versioned at 1.2 and under, the runtime must not use the partial state saving
mechanism.

◦ For applications versioned at 2.0 and above, the runtime must use the partial state saving
mechanism.

If this parameter is defined, and the application is versioned at 1.2 and under, the runtime must
not use the partial state saving mechanism. Otherwise, If this param is defined, and calling
toLowerCase().equals("true") on a String representation of its value returns true, the runtime must
use partial state mechanism. Otherwise the partial state saving mechanism must not be used.

• jakarta.faces.PROJECT_STAGE — A human readable string describing where this particular Jakarta
Faces application is in the software development lifecycle. Valid values are “Development”,
“UnitTest”, “SystemTest”, or “Production”, corresponding to the enum constants of the class
jakarta.faces.application.ProjectStage. It is also possible to set this value via JNDI. See the javadocs
for Application.getProjectStage().

• jakarta.faces.SEPARATOR_CHAR --The context param that allows the character used to separate
segments in a UIComponent clientId to be set on a per-application basis.

• jakarta.faces.SERIALIZE_SERVER_STATE --If this param is set, and calling

11.1. Web Application Deployment Descriptor

Final Jakarta Server Faces 337

toLowerCase().equals("true") on a String representation of its value returns true, and the
jakarta.faces.STATE_SAVING_METHOD is set to “server” (as indicated below), the server state must
be guaranteed to be Serializable such that the aggregate state implements java.io.Serializable. The
intent of this parameter is to ensure that the act of writing out the state to an ObjectOutputStream
would not throw a NotSerializableException, but the runtime is not required verify this before
saving the state.

• jakarta.faces.STATE_SAVING_METHOD — The location where state information is saved. Valid
values are “server” (typically saved in HttpSession) and “client (typically saved as a hidden field in
the subsequent form submit). If not specified, the default value “server” must be used. When
examining the parameter value, the runtime must ignore case.

• jakarta.faces.VALIDATE_EMPTY_FIELDS — If this param is set, and calling
toLowerCase().equals("true") on a String representation of its value returns true, all submitted fields
will be validated. This is necessary to allow the model validator to decide whether null or empty
values are allowable in the current application. If the value is false, null or empty values will not be
passed to the validators. If the value is the string “auto”, the runtime must check if JSR-303 Beans
Validation is present in the current environment. If so, the runtime must proceed as if the value
“true” had been specified. If JSR-303 Beans Validation is not present in the current environment,
the runtime most proceed as if the value “false” had been specified. If the param is not set, the
system must behave as if the param was set with the value “auto”.

• jakarta.faces.validator.DISABLE_DEFAULT_BEAN_VALIDATOR — If this param is set, and calling
toLowerCase().equals("true") on a String representation of its value returns true, the runtime must
not automatically add the validator with validator-id equal to the value of the symbolic constant
jakarta.faces.validator. VALIDATOR_ID to the list of default validators. Setting this parameter to true
will have the effect of disabling the automatic installation of Bean Validation to every input
component in every view in the application, though manual installation is still possible.

• jakarta.faces.validator.ENABLE_VALIDATE_WHOLE_BEAN — If this param is set, and calling
toLowerCase().equals("true") on a String representation of its value returns true, the
<f:validateWholeBean /> tag is enabled. If not set or set to false, this tag is a no-op.

• jakarta.faces.VIEWROOT_PHASE_LISTENER_QUEUES_EXCEPTIONS — If this param is set, and
calling toLowerCase().equals("true") on a String representation of its value returns true, exceptions
thrown by PhaseListeners installed on the UIViewRoot are queued to the ExceptionHandler instead
of being logged and swallowed. If this param is not set or is set to false, the old behavior prevails.

• jakarta.faces.ENABLE_WEBSOCKET_ENDPOINT — Enable WebSocket support. See the javadoc for
jakarta.faces.component.UIWebsocket.

• jakarta.faces.WEBAPP_RESOURCES_DIRECTORY

If this param is set, the runtime must interpret its value as a path, relative to the web app root,
where resources are to be located. This param value must not start with a “/”, though it may
contain “/” characters. If no such param exists, or its value is invalid, the value “resources”, without
the quotes, must be used by the runtime as the value.

• jakarta.faces.WEBAPP_CONTRACTS_DIRECTORY

11.1. Web Application Deployment Descriptor

338 Jakarta Server Faces Final

If this param is set, the runtime must interpret its value as a path, relative to the web app root,
where resource library contracts are to be located. This param value must not start with a “/”,
though it may contain “/” characters. If no such param exists, or its value is invalid, the value
“contracts”, without the quotes, must be used by the runtime as the value.

[P1-end]

Jakarta Faces implementations may choose to support additional configuration parameters, as well as
additional mechanisms to customize the Jakarta Faces implementation; however, applications that rely
on these facilities will not be portable to other Jakarta Faces implementations.

11.2. Included Classes and Resources
A Jakarta Faces-based application will rely on a combination of APIs, and corresponding
implementation classes and resources, in addition to its own classes and resources. The web
application archive structure identifies two standard locations for classes and resources that will be
automatically made available when a web application is deployed:

• /WEB-INF/classes — A directory containing unpacked class and resource files.

• /WEB-INF/lib — A directory containing JAR files that themselves contain class files and resources.

In addition, servlet and portlet containers typically provide mechanisms to share classes and resources
across one or more web applications, without requiring them to be included inside the web application
itself.

The following sections describe how various subsets of the required classes and resources should be
packaged, and how they should be made available.

11.2.1. Application-Specific Classes and Resources

Application-specific classes and resources should be included in /WEB-INF/classes or /WEB-INF/lib, so
that they are automatically made available upon application deployment.

11.2.2. Servlet and Jakarta Server Pages API Classes (jakarta.servlet.*)

These classes will typically be made available to all web applications using the shared class facilities of
the servlet container. Therefore, these classes should not be included inside the web application
archive.

11.2.3. Jakarta Server Pages Standard Tag Library (JSTL) API Classes
(jakarta.servlet.jsp.jstl.*)

These classes will typically be made available to all web applications using the shared class facilities of
the servlet container. Therefore, these classes should not be included inside the web application
archive.

11.2. Included Classes and Resources

Final Jakarta Server Faces 339

11.2.4. Jakarta Server Pages Standard Tag Library (JSTL) Implementation
Classes

These classes will typically be made available to all web applications using the shared class facilities of
the servlet container. Therefore, these classes should not be included inside the web application
archive.

11.2.5. Jakarta Server Faces API Classes (jakarta.faces.*)

These classes will typically be made available to all web applications using the shared class facilities of
the servlet container. Therefore, these classes should not be included inside the web application
archive.

11.2.6. Jakarta Server Faces Implementation Classes

These classes will typically be made available to all web applications using the shared class facilities of
the servlet container. Therefore, these classes should not be included inside the web application
archive.

11.2.6.1. FactoryFinder

jakarta.faces.FactoryFinder implements the standard discovery algorithm for all factory objects
specified in the Jakarta Server Faces APIs. For a given factory class name, a corresponding
implementation class is searched for based on the following algorithm. Items are listed in order of
decreasing search precedence:

1. If a default Jakarta Server Faces configuration file (/WEB-INF/faces-config.xml) is bundled into the
web application, and it contains a factory entry of the given factory class name, that factory class is
used.

2. If the Jakarta Server Faces configuration resource(s) named by the jakarta.faces.CONFIG_FILES
ServletContext init parameter (if any) contain any factory entries of the given factory class name,
those factories are used, with the last one taking precedence.

3. If there are any META-INF/faces-config.xml resources bundled any JAR files in the web
ServletContext’s resource paths, the factory entries of the given factory class name in those files are
used, with the last one taking precedence.

4. If a META-INF/services/{factory-class-name} resource is visible to the web application class loader
for the calling application (typically as a result of being present in the manifest of a JAR file), its
first line is read and assumed to be the name of the factory implementation class to use.

5. If none of the above steps yield a match, the Jakarta Server Faces implementation specific class is
used.

If any of the factories found on any of the steps above happen to have a one-argument constructor,
with argument the type being the abstract factory class, that constructor is invoked, and the previous
match is passed to the constructor. For example, say the container vendor provided an implementation

11.2. Included Classes and Resources

340 Jakarta Server Faces Final

of FacesContextFactory, and identified it in META-
INF/services/jakarta.faces.context.FacesContextFactory in a jar on the webapp ClassLoader. Also say this
implementation provided by the container vendor had a one argument constructor that took a
FacesContextFactory instance. The FactoryFinder system would call that one-argument constructor,
passing the implementation of FacesContextFactory provided by the Jakarta Server Faces
implementation.

If a Factory implementation does not provide a proper one-argument constructor, it must provide a
zero-arguments constructor in order to be successfully instantiated.

Once the name of the factory implementation class is located, the web application class loader for the
calling application is requested to load this class, and a corresponding instance of the class will be
created. A side effect of this rule is that each web application will receive its own instance of each
factory class, whether the Jakarta Server Faces implementation is included within the web application
or is made visible through the container’s facilities for shared libraries.

public static Object getFactory(String factoryName);

Create (if necessary) and return a per-web-application instance of the appropriate implementation
class for the specified Jakarta Server Faces factory class, based on the discovery algorithm described
above.

Jakarta Faces implementations must also include implementations of the several factory classes. In
order to be dynamically instantiated according to the algorithm defined above, the factory
implementation class must include a public, no-arguments constructor. [P1-start-factoryNames]For
each of the public static final String fields on the class FactoryFinder whose field names end with the
string “_FACTORY” (without the quotes), the implementation must provide an implementation of the
corresponding Factory class using the algorithm described earlier in this section.[P1-end]

11.2.6.2. FacesServlet

FacesServlet is an implementation of jakarta.servlet.Servlet that accepts incoming requests and passes
them to the appropriate Lifecycle implementation for processing. This servlet must be declared in the
web application deployment descriptor, as described in Servlet Definition, and mapped to a standard
URL pattern as described in Servlet Mapping.

public void init(ServletConfig config) throws ServletException;

Acquire and store references to the FacesContextFactory and Lifecycle instances to be used in this web
application. For the LifecycleInstance, first consult the init-param set for this FacesServlet instance for a
parameter of the name jakarta.faces.LIFECYCLE_ID. If present, use that as the lifecycleID attribute to
the getLifecycle() method of LifecycleFactory. If not present, consult the context-param set for this web
application. If present, use that as the lifecycleID attribute to the getLifecycle() method of
LifecycleFactory. If neither param set has a value for jakarta.faces.LIFECYCLE_ID, use the value

11.2. Included Classes and Resources

Final Jakarta Server Faces 341

DEFAULT. As an implementation note, please take care to ensure that all PhaseListener instances
defined for the application are installed on all lifecycles created during this process.

public void destroy();

Release the FacesContextFactory and Lifecycle references that were acquired during execution of the
init() method.

public void service(ServletRequest request, ServletResponse response)
 throws IOException, ServletException;

For each incoming request, the following processing is performed:

• Using the FacesContextFactory instance stored during the init() method, call the getFacesContext()
method to acquire a FacesContext instance with which to process the current request.

• Call the execute() method of the saved Lifecycle instance, passing the FacesContext instance for this
request as a parameter. If the execute() method throws a FacesException, re-throw it as a
ServletException with the FacesException as the root cause.

• Call the render() method of the saved Lifecycle instance, passing the FacesContext instance for this
request as a parameter. If the render() method throws a FacesException, re-throw it as a
ServletException with the FacesException as the root cause.

• Call the release () method on the FacesContext instance, allowing it to be returned to a pool if the
Jakarta Faces implementation uses one.

[P1-start-servletParams]The FacesServlet implementation class must also declare two static public final
String constants whose value is a context initialization parameter that affects the behavior of the
servlet:

• CONFIG_FILES_ATTR — the context initialization attribute that may optionally contain a comma-
delimited list of context relative resources (in addition to /WEB-INF/faces-config.xml which is
always processed if it is present) to be processed. The value of this constant must be
“jakarta.faces.CONFIG_FILES”.

• LIFECYCLE_ID_ATTR — the lifecycle identifier of the Lifecycle instance to be used for processing
requests to this application, if an instance other than the default is required. The value of this
constant must be “jakarta.faces.LIFECYCLE_ID”.[P1-end]

11.2.6.3. UIComponentELTag

[P1-start-uicomponenteltag]UIComponentELTag is an implementation of
jakarta.servlet.jsp.tagext.BodyTag, and must be the base class for any Jakarta Server Pages custom
action that corresponds to a Jakarta Faces UIComponent.[P1-end] See Integration with Jakarta Server
Pages, and the Javadocs for UIComponentELTag, for more information about using this class as the base

11.2. Included Classes and Resources

342 Jakarta Server Faces Final

class for your own UIComponent custom action classes.

11.2.6.4. FacetTag

Jakarta Server Pages custom action that adds a named facet (see Facet Management) to the
UIComponent associated with the closest parent UIComponent custom action. See <f:facet>.

11.2.6.5. ValidatorTag

Jakarta Server Pages custom action (and convenience base class) that creates and registers a Validator
instance on the UIComponent associated with the closest parent UIComponent custom action. See
<f:validateLength>, <f:validateRegex>, <f:validateLongRange>, and <f:validator>.

11.3. Deprecated APIs in the webapp package
Faces depends on version Jakarta Server Pages 2.1 or later, and the Jakarta Server Pages tags in Faces
expose properties that leverage concepts specific to that release of Jakarta Server Pages. Importantly,
most Faces Jakarta Server Pages tag attributes are either of type jakarta.el.ValueExpression or
jakarta.el.MethodExpression. For backwards compatability with existing Faces component libraries
that expose themselves as Jakarta Server Pages tags, the existing classes relating to Jakarta Server
Pages have been deprecated and new ones introduced that leverage the Jakarta Expression Language
API.

11.3.1. AttributeTag

[P1-start-attributetag]The faces implementation must now provide this class.[P1-end]

11.3.2. ConverterTag

This has been replaced with ConverterELTag

11.3.3. UIComponentBodyTag

All component tags now implement BodyTag by virtue of the new class UIComponentClassicTagBase
implementing BodyTag. This class has been replaced by UIComponentELTag.

11.3.4. UIComponentTag

This component has been replaced by UIComponentELTag.

11.3.5. ValidatorTag

This component has been replaced by ValidatorELTag.

11.3. Deprecated APIs in the webapp package

Final Jakarta Server Faces 343

11.4. Application Configuration Resources
This section describes the Jakarta Faces support for portable application configuration resources used
to configure application components.

11.4.1. Overview

Jakarta Faces defines a portable configuration resource format (as an XML document) for standard
configuration information. Please see the Javadoc overview for a link, titled “faces-config XML Schema
Documentation” to the XML Schema Definition for such documents.

One or more such application resources will be loaded automatically, at application startup time, by
the Jakarta Faces implementation. The information parsed from such resources will augment the
information provided by the Jakarta Faces implementation, as described below.

In addition to their use during the execution of a Jakarta Faces-based web application, configuration
resources provide information that is useful to development tools created by Tool Providers. The
mechanism by which configuration resources are made available to such tools is outside the scope of
this specification.

11.4.2. Application Startup Behavior

Implementations may check for the presence of a servlet-class definition of class
jakarta.faces.webapp.FacesServlet in the web application deployment descriptor as a means to abort
the configuration process and reduce startup time for applications that do not use Jakarta Server Faces
Technology.

At application startup time, before any requests are processed, the [P1-start-startup]Jakarta Faces
implementation must process zero or more application configuration resources, located as follows

Make a list of all of the application configuration resources found using the following algorithm:

• Check for the existence of a context initialization parameter named jakarta.faces.CONFIG_FILES. If
it exists, treat it as a comma-delimited list of context relative resource paths (starting with a “/”),
and add each of the specified resources to the list. If this parameter exists, skip the searching
specified in the next bullet item in this list.

• Search for all resources that match either “META-INF/faces-config.xml” or end with “.faces-
config.xml” directly in the “META-INF” directory. Each resource that matches that expression must
be considered an application configuration resource.

• Using the java.util.ServiceLoader, locate all implementations of the
jakarta.faces.ApplicationConfigurationResourceDocumentPopulator service. For each
implementation, create a fresh org.w3c.dom.Document instance, configured to be in the XML
namespace of the application configuration resource format, and invoke the implementation’s
populateApplicationConfigurationResource() method. If no exception is thrown, add the document
to the list, otherwise log a message and continue.

11.4. Application Configuration Resources

344 Jakarta Server Faces Final

Let this list be known as applicationConfigurationResources for discussion. Also, check for the existence
of a web application configuration resource named “/WEB-INF/faces-config.xml”, and refer to this as
applicationFacesConfig for discussion, but do not put it in the list. When parsing the application
configuration resources, the implementation must ensure that applicationConfigurationResources are
parsed before applicationFacesConfig.[P1-end]

Please see Ordering of Artifacts for details on the ordering in which the decoratable artifacts in the
application configuration resources in applicationConfigurationResources and applicationFacesConfig
must be processed.

This algorithm provides considerable flexibility for developers that are assembling the components of
a Jakarta Faces-based web application. For example, an application might include one or more custom
UIComponent implementations, along with associated Renderers, so it can declare them in an
application resource named “/WEB-INF/faces-config.xml” with no need to programmatically register
them with Application instance. In addition, the application might choose to include a component
library (packaged as a JAR file) that includes a “META-INF/faces-config.xml” resource. The existence of
this resource causes components, renderers, and other Jakarta Faces implementation classes that are
stored in this library JAR file to be automatically registered, with no action required by the application.

Perform the actions specified in Faces Flows.

Perform the actions specified in Resource Library Contracts.

[P1-start-PostConstructApplicationEvent]The runtime must publish the
jakarta.faces.event.PostConstructApplicationEvent immediately after all application configuration
resources have been processed.[P1-end]

[P1-start-startupErrors]XML parsing errors detected during the loading of an application resource file
are fatal to application startup, and must cause the application to not be made available by the
container. Jakarta Faces implementations that are part of a Jakarta EE technology-compliant
implementation are required to validate the application resource file against the XML schema for
structural correctness. [P1-end]The validation is recommended, but not required for Jakarta Faces
implementations that are not part of a Jakarta EE technology-compliant implementation.

11.4.2.1. Resource Library Contracts

[P1-start-ResourceLibraryContractScanning]If the parsing of the application configuration resources
completed successfully, scan the application for resource library contracts. Any resource library
contract as described in Resource Library Contracts must be discovered at application startup time.
The complete set of discovered contracts has no ordering semantics and effectively is represented as a
Set<String> where the values are just the names of the resource libraries. If multiple sources in the
application configuration resources contained <resource-library-contracts>, they are all merged into
one element. Duplicates are resolved in as specified in Ordering of Artifacts. If the application
configuration resources produced a <resource-library-contracts> element, create an implementation
private data structure (called the “resource library contracts data structure”) containing the mappings
between viewId patterns and resource library contracts as listed by the contents of that element.

11.4. Application Configuration Resources

Final Jakarta Server Faces 345

The <resource-library-contracts> element is contained with in the <application> element and contains
one or more <contract-mapping> elements. Each <contract-mapping> element must one or more <url-
pattern> elements and one or more <contract> elements.

The value of the <url-pattern> element may be any of the following.

• The literal string *, meaning all views should have these contracts applied.

• An absolute prefix mapping, relative to the web app root, such as /directoryName/* meaning only
views matching that prefix should have these contracts applied.

• An exact fully qualified file path, relative to the web app root, such as
/directoryName/fileName.xhtml, meaning exactly that view should have the contracts applied.

See ViewDeclarationLanguage.calculateResourceLibraryContracts() for the specification of how the
values of the <url-pattern> are to be processed.

The value of the <contracts> element is a comma separated list of resource library contract names. A
resource library contract name is the name of a directory within the contracts directory of the web app
root, or the contracts directory within the META-INF/contracts JAR entry.

Only the contracts explicitly mentioned in the <resource-library-contracts> element are included in the
data structure. If the information from the application configuration resources refers to a contract that
is not available to the application, an informative error message must be logged.

If the application configuration resources did not produce a <resource-library-contracts> element, the
data structure should be populated as if this were the contents of the <resource-library-contracts>
element:

<resource-library-contracts>
 <contract-mapping>
 <url-pattern>*</url-pattern>
 <contracts>”all available contracts”</contracts>
 </contract-mapping>
</resource-library-contracts>

Where “all available contracts” is replaced with a comma separated list of all the contracts discovered
in the startup scan. In the case where there is no <resource-library-contracts> element in the
application configuration resources, ordering of contracts is unspecified, which may lead to
unexpected behavior in the case of multiple contracts that have the same contract declaration.

11.4.3. Faces Flows

[P1-start-FacesFlowScanning]If the parsing of the application configuration resources completed
successfully, any XML based flow definitions in the application configuration resources will have been
successfully discovered as well. The discovered flows must be exposed as thread safe immutable

11.4. Application Configuration Resources

346 Jakarta Server Faces Final

application scoped instances of jakarta.faces.flow.Flow, and made accessible to the runtime via the
FlowHandler. If flows exist in the application, but the jakarta.faces.CLIENT_WINDOW_MODE context-
param was not specified, the runtime must behave as if the value “url” (without the quotes) was
specified for this context-param.

11.4.3.1. Defining Flows

Flows are defined using the <flow-definition> element. This element must have an id attribute which
uniquely identifies the flow within the scope of the Application Configuration Resource file in which
the element appears. To enable multiple flows with the same id to exist in an application, the <faces-
config><name> element is taken to be the definingDocumentId of the flow. If no <name> element is
specified, the empty string is taken as the value for definingDocumentId. Please see FlowHandler for an
overview of the flow feature. Note that a number of conventions exist to make defining flows simpler.
These conventions are specified in Packaging Flows in Directories.

[P1-end]

11.4.3.2. Packaging Faces Flows in JAR Files

[P1-start-FacesFlowJarPackaging] The runtime must support packaging Faces Flows in JAR files as
specified in this section. Any flows packaged in a jar file must have its flow definition included in a
faces-config.xml file located at the META-INF/faces-config.xml JAR entry. This ensures that such flow
definitions are included in the application configuration resources. Any view nodes included in the jar
must be located within sub entries of the META-INF/flows/<flowName> JAR entry, where <flowName> is
a JAR directory entry whose name is identical to that of a flow id in the corresponding faces-config.xml
file. If there are @FlowScoped beans or beans with @FlowDefinition in the JAR, there must be a JAR
entry named META-INF/beans.xml. This ensures that such beans and definitions are discovered by the
runtime at startup. None of the flow definition conventions specified in Packaging Flows in Directories
apply when a flow is packaged in a JAR file. In other words, the flow must be explicitly declared in the
JAR file’s faces-config.xml.

[P1-end]

11.4.3.3. Packaging Flows in Directories

The view nodes of a flow need not be collected in any specific directory structure, but there is a benefit
in doing so: flow definition conventions. [P1-start-FacesFlowDirectoryPackaging] If the
jakarta.faces.CONFIG_FILES context parameter includes references to files of the form
/<flowName>/<flowName>-flow.xml or /WEB-INF/<flow-Name>/<flowName>-flow.xml, and if such files
exist in the current application (even if they are zero length), they are treated as flow definitions. Flow
definitions defined in this way must not be nested any deeper in the directory structure than one level
deep from the web app root or the WEB-INF directory.

The following conventions apply to flows defined in this manner. Any flow definition in the
corresponding -flow.xml file will override any of the conventions in the case of a conflict.

11.4. Application Configuration Resources

Final Jakarta Server Faces 347

UsingJSFInWebApplications.pdf#a6236

• Every vdl file in that directory is a view node of that flow.

• The start node of the flow is the view whose name is the same as the name of the flow.

• Navigation among any of the views in the directory is considered to be within the flow.

• The flow defining document id is the empty string.

In the case of a zero length flow definition file, the following also applies:

• There is one return node in the flow, whose id is the id of the flow with the string “-return” (without
the quotes) appended to it. For example, if flowId is shopping, the return node id is shopping-return.

• The from-outcome of the return node is a string created with the following formula:
"/" + flowId + "-return".

For each directory packaged flow definition, the runtime must synthesize an instance of
jakarta.faces.flow.Flow that represents the union of the flow definition from the
/<flowName>/<flowName>-flow.xml file for that directory, and any of the preceding naming
conventions, with precedence being given to the -flow.xml file. Such Flow instances must be added to
the FlowHandler before the PostConstructApplicationEvent is published.

[P1-end]

11.4.4. Application Shutdown Behavior

When the Jakarta Faces runtime is directed to shutdown by its container, the following actions must be
taken.[p1-start-application-shutdown]

1. Ensure that calls to FacesContext.getCurrentInstance() that happen during application shutdown
return successfully, as specified in the Javadocs for that method.

2. Publish the jakarta.faces.event.PreDestroyApplicationEvent.

3. Call FactoryFinder.releaseFactories().

[p1-end]

11.4.5. Application Configuration Resource Format

Application configuration resources that are written to run on Jakarta Faces 3.0 must include the
following schema declaration and must conform to the schema shown in Appendix A - JSF Metadata

<faces-config
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_3_0.xsd"
 version="2.3">

11.4. Application Configuration Resources

348 Jakarta Server Faces Final

Application configuration resources that are written to run on pre-Jakarta Faces JSF 2.3 must include
the following schema declaration and must conform to the schema shown in Appendix A - JSF
Metadata

<faces-config
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_3.xsd"
 version="2.3">

[P1-start-schema]Application configuration resources that are written to run on pre-Jakarta Faces JSF
2.2 must include the following schema declaration and must conform to the schema shown in
Appendix A - JSF Metadata:

<faces-config
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd"
 version="2.2">

Note that the “hostname” of the xmlns and xsi:schemaLocation attributes has changed from
“java.sun.com” to “xmlns.jcp.org”. The “xmlns.jcp.org” hostname must be used when using version=
"2.2" and web-facesconfig_2_2.xsd. It is not valid to use this hostname with versions prior to 2.2.
Likewise, it is not valid to use the “java.sun.com” hostname when using version= "2.2" and web-
facesconfig_2_2.xsd.

Application configuration resources that are written to run on pre-Jakarta Faces JSF 2.1 must include
the following schema declaration:

<faces-config
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_2_1.xsd"
 version="2.1">

Application configuration resources that are written to run on pre-Jakarta Faces JSF 2.0 must include
the following schema declaration:

11.4. Application Configuration Resources

Final Jakarta Server Faces 349

<faces-config
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd"
 version="2.0">

Application configuration resources that are written to run on pre-Jakarta Faces JSF 1.2 Application
configuration resources must include the following schema declaration and must conform to the
schema referenced in the schemalocation URI shown below:

<faces-config version="1.2"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd">

Application configuration resources that are written to run on pre-Jakarta Faces JSF 1.1
implementations must use the DTD declaration and include the following DOCTYPE declaration:

<!DOCTYPE faces-config PUBLIC
 “-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN”
 “http://java.sun.com/dtd/web-facesconfig_1_1.dtd”>

Application configuration resources that are written to run on pre-Jakarta Faces JSF 1.0
implementations must use the DTD declaration for the 1.0 DTD contained in the binary download of
the JSF reference implementation. They must also use the following DOCTYPE declaration:[P1-end]

<!DOCTYPE faces-config PUBLIC
 “-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN”
 “http://java.sun.com/dtd/web-facesconfig_1_0.dtd”>

11.4.6. Configuration Impact on Jakarta Faces Runtime

<!DOCTYPE faces-config PUBLIC
 “-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN”
 “http://java.sun.com/dtd/web-facesconfig_1_1.dtd”>

The following XML elements19 in application configuration resources cause registration of Jakarta
Faces objects into the corresponding factories or properties. It is an error if the value of any of these
elements cannot be correctly parsed, loaded, set, or otherwise used by the implementation.

11.4. Application Configuration Resources

350 Jakarta Server Faces Final

• /faces-config/component — Create or replace a component type / component class pair with the
Application instance for this web application.

• /faces-config/converter — Create or replace a converter id / converter class or target class /
converter class pair with the Application instance for this web application.

• /faces-config/render-kit — Create and register a new RenderKit instance with the RenderKitFactory,
if one does not already exist for the specified render-kit-id.

• /faces-config/render-kit/renderer — Create or replace a component family + renderer id / renderer
class pair with the RenderKit associated with the render-kit element we are nested in.

• /faces-config/validator — Create or replace a validator id / validator class pair with the Application
instance for this web application.

For components, converters, and validators, it is legal to replace the implementation class that is
provided (by the Jakarta Faces implementation) by default. This is accomplished by specifying the
standard value for the <component-type>, <converter-id>, or <validator-id> that you wish to replace,
and specifying your implementation class. To avoid class cast exceptions, the replacement
implementation class must be a subclass of the standard class being replaced. For example, if you
declare a custom Converter implementation class for the standard converter identifier
jakarta.faces.Integer, then your replacement class must be a subclass of
jakarta.faces.convert.IntegerConverter.

For replacement Renderers, your implementation class must extend jakarta.faces.render.Renderer.
However, to avoid unexpected behavior, your implementation should recognize all of the render-
dependent attributes supported by the Renderer class you are replacing, and provide equivalent
decode and encode behavior.

The following XML elements cause the replacement of the default implementation class for the
corresponding functionality, provided by the Jakarta Faces implementation. See Delegating
Implementation Support for more information about the classes referenced by these elements:

• /faces-config/application/action-listener — Replace the default ActionListener used to process
ActionEvent events with an instance with the class specified. The contents of this element must be a
fully qualified Java class name that, when instantiated, is an ActionListener.

• /faces-config/application/navigation-handler — Replace the default NavigationHandler instance
with the one specified. The contents of this element must be a fully qualified Java class name that,
when instantiated, is a NavigationHandler.

• /faces-config/application/property-resolver — Replace the default PropertyResolver instance with
the one specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a PropertyResolver.

• /faces-config/application/resource-handler — Replace the default ResourceHandler instance with
the one specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a ResourceHandler.

• /faces-config/application/search-expression-handler — This element contains the fully qualified

11.4. Application Configuration Resources

Final Jakarta Server Faces 351

class name of the concrete jakarta.faces.component.search.SearchExpressionHandler
implementation class that will be used for processing of a search expression.

• /faces-config/application/search-keyword-resolver — This element contains the fully qualified class
name of the concrete jakarta.faces.component.search.SearchKeywordResolver implementation
class that will be used during the processing of a search expression keyword.

• /faces-config/application/state-manager — Replace the default StateManager instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a StateManager.

• /faces-config/application/system-event-listener — Instantiate a new instance of the class specified as
the content within a nested system-event-listener-class element, which must implement
SystemEventListener. This instance is referred to as systemEventListener for discussion. If a system-
event-class is specified as a nested element within system-event-listener, it must be a class that
extends SystemEvent and has a public zero-arguments constructor. The Class object for system-
event-class is obtained and is referred to as systemEventClass for discussion. If system-event-class is
not specified, SystemEvent.class must be used as the value of system EventClass. If source-class is
specified as a nested element within system-event-listener, it must be a fully qualified class name.
The Class object for source-class is obtained and is referred to as sourceClass for discussion. If
source-class is not specified, let sourceClass be null. Obtain a reference to the Application instance
and call subscribeForEvent(facesEventClass , sourceClass , systemEventListener) , passing the
arguments as assigned in the discussion.

• /faces-config/application/variable-resolver — Replace the default VariableResolver instance with the
one specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a VariableResolver.

• /faces-config/application/view-handler — Replace the default ViewHandler instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a ViewHandler.

The following XML elements cause the replacement of the default implementation class for the
corresponding functionality, provided by the Jakarta Faces implementation. Each of the referenced
classes must have a public zero-arguments constructor:

• /faces-config/factory/application-factory — Replace the default ApplicationFactory instance with the
one specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is an ApplicationFactory.

• /faces-config/factory/client-window-factory — Replace the default ClientWindowFactory instance
with the one specified. The contents of this element must be a fully qualified Java class name that,
when instantiated, is a ClientWindowFactory.

• /faces-config/factory/exception-handler-factory — Replace the default ExceptionHandlerFactory
instance with the one specified. The contents of this element must be a fully qualified Java class
name that, when instantiated, is a ExceptionHandlerFactory.

• /faces-config/factory/faces-context-factory — Replace the default FacesContextFactory instance with
the one specified. The contents of this element must be a fully qualified Java class name that, when

11.4. Application Configuration Resources

352 Jakarta Server Faces Final

instantiated, is a FacesContextFactory.

• /faces-config/factory/flash-factory — Replace the default FlashFactory instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a FlashFactory.

• /faces-config/factory/flow-handler-factory — Replace the default FlowHandlerFactory instance with
the one specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a FlowHandlerFactory.

• /faces-config/factory/lifecycle-factory — Replace the default LifecycleFactory instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a LifecycleFactory.

• /faces-config/factory/render-kit-factory — Replace the default RenderKitFactory instance with the
one specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a RenderKitFactory.

• /faces-config/factory/search-expression-context-kit-factory — This element contains the fully
qualified class name of the concrete SearchExpressionContextFactory implementation class that
will be called when FactoryFinder.getFactory(SEARCH_EXPRESSION_CONTEXT_FACTORY) is called.

• /faces-config/factory/view-declaration-language-factory — Replace the default
ViewDeclarationLanguageFactory instance with the one specified. The contents of this element
must be a fully qualified Java class name that, when instantiated, is a
ViewDeclarationLanguageFactory.

The following XML elements cause the addition of event listeners to standard Jakarta Faces
implementation objects, as follows. Each of the referenced classes must have a public zero-arguments
constructor.

• /faces-config/lifecycle/phase-listener — Instantiate a new instance of the specified class, which must
implement PhaseListener, and register it with the Lifecycle instance for the current web
application.

In addition, the following XML elements influence the runtime behavior of the Jakarta Faces
implementation, even though they do not cause registration of objects that are visible to a Jakarta
Faces-based application.

• /faces-config/managed-bean — Make the characteristics of a managed bean with the specified
managed-bean-name available to the default VariableResolver implementation.

• /faces-config/navigation-rule — Make the characteristics of a navigation rule available to the default
NavigationHandler implementation.

11.4.7. Delegating Implementation Support

[P1-decoratable_artifacts]The runtime must support the decorator design pattern as specified below
for the following artifacts.

11.4. Application Configuration Resources

Final Jakarta Server Faces 353

• ActionListener

• ApplicationFactory

• ExceptionHandlerFactory

• FacesContextFactory

• FlashFactory

• FlowHandlerFactory

• LifecycleFactory

• NavigationHandler

• PartialViewContext

• PropertyResolver

• RenderKit

• RenderKitFactory

• ResourceHandler

• ResourceResolver

• StateManager

• TagHandlerDelegateFactory

• VariableResolver

• ViewHandler

• ViewDeclarationLanguage

• VisitContextFactory

[P1_end_decoratable_artifacts]For all of these artifacts, the decorator design pattern is leveraged, so
that if one provides a constructor that takes a single argument of the appropriate type, the custom
implementation receives a reference to the implementation that was previously fulfilling the role. In
this way, the custom implementation is able to override just a subset of the functionality (or provide
only some additional functionality) and delegate the rest to the existing implementation.

The implementation must also support decoration of a RenderKit instance. At the point in time of when
the <render-kit> element is processed in an application configuration resources, if the current
RenderKitFactory already has a RenderKit instance for the <render-kit-id> within the <render-kit>
element, and the Class whose fully qualified java class name is given as the value of the <render-kit-
class> element within the <render-kit> element has a constructor that takes an RenderKit instance, the
existing RenderKit for that <render-kit-id> must be passed to that constructor, and the RenderKit
resulting from the executing of that constructor must be passed to RenderKitFactory.addRenderKit().

For example, say you wanted to provide a custom ViewHandler that was the same as the default one,
but provided a different implementation of the calculateLocale() method. Consider this code excerpt
from a custom ViewHandler :

11.4. Application Configuration Resources

354 Jakarta Server Faces Final

public class MyViewHandler extends ViewHandler {

 public MyViewHandler() { }

 public MyViewHandler(ViewHandler handler) {
 super();
 oldViewHandler = handler;
 }

 private ViewHandler oldViewHandler = null;

 // Delegate the renderView() method to the old handler
 public void renderView(FacesContext context, UIViewRoot view)
 throws IOException, FacesException {
 oldViewHandler.renderView(context, view);
 }

 // Delegate other methods in the same manner

 // Overridden version of calculateLocale()
 public Locale calculateLocale(FacesContext context) {
 Locale locale = ... // Custom calculation
 return locale;
 }
}

The second constructor will get called as the application is initially configured by the Jakarta Faces
implementation, and the previously registered ViewHandler will get passed to it.

In pre-Jakarta Faces JSF 1.2, we added new wrapper classes to make it easier to override a subset of the
total methods of the class and delegate the rest to the previous instance. We provide wrappers for
jakarta.faces.application.ViewHandler, jakarta.faces.application.StateManager, and
jakarta.faces.context.ResponseWriter. For example, you could have a faces-config.xml file that contains
the following:

<application>
 <view-handler>com.foo.NewViewHandler</view-handler>
 <state-manager>com.foo.NewStateManager</state-manager>
</application>

Where your implementations for these classes are simply:

11.4. Application Configuration Resources

Final Jakarta Server Faces 355

package com.foo;

import jakarta.faces.application.ViewHandler;
import jakarta.faces.application.ViewHandlerWrapper;

public class NewViewHandler extends ViewHandlerWrapper {
 private ViewHandler oldViewHandler = null;

 public NewViewHandler(ViewHandler oldViewHandler) {
 this.oldViewHandler = oldViewHandler;
 }

 public ViewHandler getWrapped() {
 return oldViewHandler;
 }
}

package com.foo;

import jakarta.faces.application.StateManager;
import jakarta.faces.application.StateManagerWrapper;

public class NewStateManager extends StateManagerWrapper {
 private StateManager oldStateManager = null;

 public NewStateManager(StateManager oldStateManager) {
 this.oldStateManager = oldStateManager;
 }

 public StateManager getWrapped() {
 return oldStateManager;
 }
}

This allows you to override as many or as few methods as you’d like.

11.4.8. Ordering of Artifacts

Because the specification allows the application configuration resources to be composed of multiple
files, discovered and loaded from several different places in the application, the question of ordering
must be addressed. This section specifies how application configuration resource authors may declare
the ordering requirements of their artifacts.

Application Startup Behavior defines two concepts: applicationConfigurationResources and
applicationFacesConfig. The former is an ordered list of all the application configuration resources
except the one at “WEB-INF/faces-config.xml”, and the latter is a list containing only the one at “WEB-

11.4. Application Configuration Resources

356 Jakarta Server Faces Final

INF/faces-config.xml”.

An application configuration resource may have a top level <name> element of type javaee:java-
identifierType. [P1-facesConfigIdStart]If a <name> element is present, it must be considered for the
ordering of decoratable artifacts (unless the duplicate name exception applies, as described below).

Two cases must be considered to allow application configuration resources to express their ordering
preferences.

1. Absolute ordering: an <absolute-ordering> element in the applicationFacesConfig

In this case, ordering preferences that would have been handled by case 2 below must be ignored.

Any <name> element direct children of the <absolute-ordering> must be interpreted as indicating
the absolute ordering in which those named application configuration resources, which may or
may not be present in applicationConfigurationResources, must be processed.

The <absolute-ordering> element may contain zero or one <others /> elements. The required action
for this element is described below. If the <absolute-ordering> element does not contain an <others
/> element, any application configuration resources not specifically mentioned within <name />
elements must be ignored.

Duplicate name exception : if, when traversing the children of <absolute-ordering> , multiple
children with the same <name> element are encountered, only the first such occurrence must be
considered.

If an <ordering> element appears in the applicationFacesConfig, an informative message must be
logged and the element must be ignored.

2. Relative ordering: an <ordering> element within a file in the applicationConfigurationResources

An entry in applicationConfigurationResources may have an <ordering> element. If so, this element
must contain zero or one <before> elements and zero or one <after> elements. The meaning of
these elements is explained below.

Duplicate name exception : if, when traversing the constituent members of
applicationConfigurationResources, multiple members with the same <name> element are
encountered, the application must log an informative error message including information to help
fix the problem, and must fail to deploy. For example, one way to fix this problem is for the user to
use absolute ordering, in which case relative ordering is ignored.

If an <absolute-ordering> element appears in an entry in applicationConfigurationResources, an
informative message must be logged and the element must be ignored.

Consider this abbreviated but illustrative example. faces-configA, faces-configB and faces-configC are
found in applicationConfigurationResources, while my-faces-config is the applicationFacesConfig. The
principles that explain the ordering result follow the example code.

11.4. Application Configuration Resources

Final Jakarta Server Faces 357

faces-configA:.

<faces-config>
 <name>A</name>
 <ordering><after><name>B</name></after></ordering>
 <application>
 <view-handler>com.a.ViewHandlerImpl</view-handler>
 </application>
 <lifecycle>
 <phase-listener>com.a.PhaseListenerImpl</phase-listener>
 </lifecycle>
</faces-config>

faces-configB:.

<faces-config>
 <name>B</name>
 <application>
 <view-handler>com.b.ViewHandlerImpl</view-handler>
 </application>
 <lifecycle>
 <phase-listener>com.b.PhaseListenerImpl</phase-listener>
 </lifecycle>
</faces-config>

faces-configC:.

<faces-config>
 <name>C</name>
 <ordering><before><others/></before></ordering>
 <application>
 <view-handler>com.c.ViewHandlerImpl</view-handler>
 </application>
 <lifecycle>
 <phase-listener>com.c.PhaseListenerImpl</phase-listener>
 </lifecycle>
</faces-config>

my-faces-config:.

11.4. Application Configuration Resources

358 Jakarta Server Faces Final

<faces-config>
 <name>my</name>
 <application>
 <view-handler>com.my.ViewHandlerImpl</view-handler>
 </application>
 <lifecycle>
 <phase-listener>com.my.PhaseListenerImpl</phase-listener>
 </lifecycle>
</faces-config>

In this example, the processing order for the applicationConfigurationResources and
applicationFacesConfig will be.

Implementation Specific Config
C
B
A
my

The preceding example illustrates some, but not all, of the following principles.[P1-start-
decoratableOrdering]

• <before> means the document must be ordered before the document with the name matching the
name specified within the nested <name> element.

• <after> means the document must be ordered after the document with the name matching the
name specified within the nested <name> element.

• There is a special element <others /> which may be included zero or one time within the <before> or
< after> elements, or zero or one time directly within the <absolute-ordering> elements. The <others
/> element must be handled as follows.

• The <others /> element represents a set of application configuration resources. This set is described
as the set of all application configuration resources discovered in the application, minus the one
being currently processed, minus the application configuration resources mentioned by name in
the <ordering/> section. If this set is the empty set, at the time the application configuration
resources are being processed, the <others /> element must be ignored.

◦ If the <before> element contains a nested <others />, the document will be moved to the
beginning of the list of sorted documents. If there are multiple documents stating <before>
<others />, they will all be at the beginning of the list of sorted documents, but the ordering
within the group of such documents is unspecified.

◦ If the <after> element contains a nested <others /> , the document will be moved to the end of
the list of sorted documents. If there are multiple documents requiring <after> < others /> , they
will all be at the end of the list of sorted documents, but the ordering within the group of such
documents is unspecified.

11.4. Application Configuration Resources

Final Jakarta Server Faces 359

◦ Within a <before> or <after> element, if an <others /> element is present, but is not the only
<name> element within its parent element, the other elements within that parent must be
considered in the ordering process.

◦ If the <others /> element appears directly within the <absolute-ordering> element, the runtime
must ensure that any application configuration resources in applicationConfigurationResources
not explicitly named in the <absolute-ordering> section are included at that point in the
processing order.

• If a faces-config file does not have an <ordering> or <absolute-ordering> element the artifacts are
assumed to not have any ordering dependency.

• If the runtime discovers circular references, an informative message must be logged, and the
application must fail to deploy. Again, one course of action the user may take is to use absolute
ordering in the applicationFacesConfig.

The previous example can be extended to illustrate the case when applicationFacesConfig contains an
ordering section.

my-faces-config:.

<faces-config>
 <name>my</name>
 <absolute-ordering>
 <name>C</name>
 <name>A</name>
 </absolute-ordering>
 <application>
 <view-handler>com.my.ViewHandlerImpl</view-handler>
 </application>
 <lifecycle>
 <phase-listener>com.my.PhaseListenerImpl</phase-listener>
 </lifecycle>
</faces-config>

In this example, the constructor decorator ordering for ViewHandler would be C, A, my.

Some additional example scenarios are included below. All of these apply to the
applicationConfigurationResources relative ordering case, not to the applicationFacesConfig absolute
ordering case.

11.4. Application Configuration Resources

360 Jakarta Server Faces Final

Document A - <after><others/><name>C</name></after>
Document B - <before><others/></before>
Document C - <after><others/></after>
Document D - no ordering
Document E - no ordering
Document F - <before><others/><name>B</name></before>

The valid parse order is F, B, D/E, C, A, where D/E may appear as D, E or E, D

Document <no id> - <after><others/></after>
 <before><name>C</name></before>
Document B - <before><others/></before>
Document C - no ordering
Document D - <after><others/></after>
Document E - <before><others/></before>
Document F - no ordering

The complete list of parse order solutions for the above example is

B,E,F,<no id>,C,D

B,E,F,<no_id>,D,C

E,B,F,<no id>,C,D

E,B,F,<no_id>,D,C

B,E,F,D,<no id>,C

E,B,F,D,<no id>,C

Document A - <after><name>B</name></after>
Document B - no ordering
Document C - <before><others/></before>
Doucment D - no ordering

Resulting parse order: C, B, D, A. The parse order could also be: C, D, B, A.

[P1-endDecoratableOrdering]

11.4.9. Example Application Configuration Resource

The following example application resource file defines a custom UIComponent of type Date, plus a
number of Renderers that know how to decode and encode such a component:

11.4. Application Configuration Resources

Final Jakarta Server Faces 361

<?xml version=”1.0”?>

<faces-config version="1.2"
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd">

 <!-- Define our custom component -->
 <component>
 <description>
 A custom component for rendering
 user-selectable dates in various formats.
 </description>
 <display-name>My Custom Date</display-name>
 <component-type>Date</component-type>
 <component-class>
 com.example.components.DateComponent
 </component-class>
 </component>

 <!-- Define two renderers that know how to deal with dates -->
 <render-kit>
 <!-- No render-kit-id, so add them to default RenderKit -->
 <renderer>
 <display-name>Calendar Widget</display-name>
 <component-family>MyComponent</component-family>
 <renderer-type>MyCalendar</renderer-type>
 <renderer-class>
 com.example.renderers.MyCalendarRenderer
 </renderer-class>
 </renderer>

 <renderer>
 <display-name>Month/Day/Year</display-name>
 <renderer-type>MonthDayYear</renderer-type>
 <renderer-class>
 com.example.renderers.MonthDayYearRenderer
 </renderer-class>
 </renderer>
 </render-kit>
</faces-config>

Additional examples of configuration elements that might be found in application configuration
resources are in Managed Bean Configuration Example and Example NavigationHandler
Configuration.

11.4. Application Configuration Resources

362 Jakarta Server Faces Final

11.5. Annotations that correspond to and may take the
place of entries in the Application Configuration
Resources
An implementation must support several annotation types that take may take the place of entries in
the Application Configuration Resources. The implementation requirements are specified in this
section.

11.5.1. Requirements for scanning of classes for annotations

• [P1_start-annotation-discovery]If the <faces-config> element in the WEB-INF/faces-config.xml file
contains metadata-complete attribute whose value is “true”, the implementation must not perform
annotation scanning on any classes except for those classes provided by the implementation itself.
Otherwise, continue as follows.

• If the runtime discovers a conflict between an entry in the Application Configuration Resources
and an annotation, the entry in the Application Configuration Resources takes precedence.

• All classes in WEB-INF/classes must be scanned.

• For every jar in the application’s WEB-INF/lib directory, if the jar contains a “META-INF/faces-
config.xml” file or a file that matches the regular expression “.*\.faces-config.xml” (even an empty
one), all classes in that jar must be scanned.[P1_end-annotation-discovery]

11.5. Annotations that correspond to and may take the place of entries in the Application Configuration Resources

Final Jakarta Server Faces 363

Chapter 12. Lifecycle Management
In Request Processing Lifecycle, the required functionality of each phase of the request processing
lifecycle was described. This chapter describes the standard APIs used by Jakarta Faces
implementations to manage and execute the lifecycle. Each of these classes and interfaces is part of the
jakarta.faces.lifecycle package.

Page authors, component writers, and application developers, in general, will not need to be aware of
the lifecycle management APIs—they are primarily of interest to tool providers and Jakarta Faces
implementors.

12.1. Lifecycle
Upon receipt of each Jakarta Faces-destined request to this web application, the Jakarta Faces
implementation must acquire a reference to the Lifecycle instance for this web application, and call its
execute() and render() methods to perform the request processing lifecycle. The Lifecycle instance
invokes appropriate processing logic to implement the required functionality for each phase of the
request processing lifecycle, as described in Standard Request Processing Lifecycle Phases.

public void execute(FacesContext context) throws FacesException;
public void render(FacesContext context) throws FacesException;

The execute() method performs phases up to, but not including, the Render Response phase. The
render() method performs the Render Response phase. This division of responsibility makes it easy to
support Jakarta Server Faces processing in a portlet-based environment.

As each phase is processed, registered PhaseListener instances are also notified. The general processing
for each phase is as follows:

• From the set of registered PhaseListener instances, select the relevant ones for the current phase,
where “relevant” means that calling getPhaseId() on the PhaseListener instance returns the phase
identifier of the current phase, or the special value PhaseId.ANY_PHASE.

• Call the beforePhase() method of each relevant listener, in the order that the listeners were
registered.

• If no called listener called the FacesContext.renderResponse() or FacesContext.responseComplete()
method, execute the functionality required for the current phase.

• Call the afterPhase() method of each relevant listener, in the reverse of the order that the listeners
were registered.

• If the FacesContext.responseComplete() method has been called during the processing of the current
request, or we have just completed the Render Response phase, perform no further phases of the
request processing lifecycle.

• If the FacesContext.renderResponse() method has been called during the processing of the current

12.1. Lifecycle

364 Jakarta Server Faces Final

request, and we have not yet executed the Render Response phase of the request processing
lifecycle, ensure that the next executed phase will be Render Response

public void addPhaseListener(PhaseListener listener);
public void removePhaseListener(PhaseListener listener);

These methods register or deregister a PhaseListener that wishes to be notified before and after the
processing of each standard phase of the request processing lifecycle. Implementations should prevent
duplicate PhaseListener registrations and log an exception if an attempt is made. The webapp author
can declare a PhaseListener to be added using the phase-listener element of the application
configuration resources file. Please see PhaseListener.

12.2. PhaseEvent
This class represents the beginning or ending of processing for a particular phase of the request
processing lifecycle, for the request encapsulated by the FacesContext instance passed to our
constructor.

public PhaseEvent(FacesContext context,
 PhaseId phaseId, Lifecycle lifecycle);

Construct a new PhaseEvent representing the execution of the specified phase of the request
processing lifecycle, on the request encapsulated by the specified FacesContext instance. The Lifecycle
instance must be the lifecycle used by the current FacesServlet that is processing the request. It will
serve as the source of the java.util.EventObject from which PhaseEvent inherits.

public FacesContext getFacesContext();
public PhaseId getPhaseId();

Return the properties of this event instance. The specified FacesContext instance will also be returned
if getSource() (inherited from the base EventObject class) is called.

12.3. PhaseListener
This interface must be implemented by objects that wish to be notified before and after the processing
for a particular phase of the request processing lifecycle, on a particular request. Implementations of
PhaseListener must be programmed in a thread-safe manner.

public PhaseId getPhaseId();

The PhaseListener instance indicates for which phase of the request processing lifecycle this listener

12.2. PhaseEvent

Final Jakarta Server Faces 365

wishes to be notified. If PhaseId.ANY_PHASE is returned, this listener will be notified for all standard
phases of the request processing lifecycle.

public void beforePhase(PhaseEvent event);
public void afterPhase(PhaseEvent event);

The beforePhase() method is called before the standard processing for a particular phase is performed,
while the afterPhase() method is called after the standard processing has been completed. The Jakarta
Faces implementation must guarantee that, if beforePhase() has been called on a particular instance,
then afterPhase() will also be called, regardless of any Exceptions that may have been thrown during
the actual execution of the lifecycle phase. For example, let’s say there are three PhaseListeners
attached to the lifecycle: A, B, and C, in that order. A.beforePhase() is called, and executes successfully.
B.beforePhase() is called and throws an exception. [P1-start_publishExceptionBefore] Any exceptions
thrown during the beforePhase() listeners must be caught and published to the ExceptionHandler, as
described below.[P1-end_publishExceptionBefore] In this example, C.beforePhase() must not be called.
Then the actual lifecycle phase executes. Any exceptions thrown during the execution of the actual
phase, that reach the runtime code that implements the Jakarta Faces lifecycle phase, [P1-
start_publishExceptionDuring] must be caught and and published to the ExceptionHandler, as
described below[P1-end_publishExceptionDuring]. When the lifecycle phase exits, due to an
exeception or normal termination, the afterPhase() listeners must be called in reverse order from the
beforePhase() listeners in the following manner. C.afterPhase() must not be called, since C.beforePhase()
was not called. B.afterPhase() must not be called, since B.beforePhase() did not execute successfully.
A.afterPhase() must be called. [P1-start_publishExceptionAfter]Any exceptions thrown during the
afterPhase() liseteners must be caught and published to the ExceptionHandler, as described below.[P1-
start_publishExceptionAfter]

The previous paragraph detailed several cases where exceptions should be published to the Exception
handler. [P1-start_publishExceptionSpec] The following action must be taken by the runtime to
implement this requirement as well as an additional requirent to cause the ExceptionHandler to take
action on the published Exception(s). The specification is shown in pseudocode. This code does not
implement the before/after matching guarantees specified above and is only intended to describe the
specification for publishing and handling ExceptionQueuedEvent instances that arise from exceptions
being thrown during the execution of a lifecycle phase. Methods shown in thisTypeface() are not a part
of the API and are just included for discussion.

12.3. PhaseListener

366 Jakarta Server Faces Final

FacesContext facesContext = FacesContext.getCurrentInstance();
Application app = facesContext.getApplication();
ExceptionHandler handler = facesContext.getExceptionHandler();

try {
 callBeforePhaseListeners();
} catch (Throwable thrownException) {
 jakarta.faces.event.ExceptionEventContext eventContext =
 new ExceptionEventContext(
 thrownException, null, facesContext.getPhaseId());
 eventContext.getAttributes()
 .put(EventContext.IN_BEFORE_PHASE, Boolean.TRUE);
 app.publishEvent(ExceptionQueuedEvent.class, eventContext);
}

try {
 doCurrentPhase();
} catch (Throwable thrownException) {
 jakarta.faces.event.ExceptionEventContext eventContext =
 new ExceptionEventContext(
 thrownException, null, facesContext.getPhaseId());
 app.publishEvent(ExceptionQueuedEvent.class, eventContext);
} finally {
 try {
 callAfterPhaseListeners();
 } catch (Throwable thrownException) {
 jakarta.faces.event.ExceptionEventContext eventContext =
 new ExceptionEventContext(
 thrownException, null, facesContext.getPhaseId());
 eventContext.getAttributes()
 .put(EventContext.IN_AFTER_PHASE, Boolean.TRUE);
 app.publishEvent(ExceptionQueuedEvent.class, eventContext);
 }
 handler.handle();
}

body text.

[P1-end_publishExceptionSpec]

PhaseListener implementations may affect the remainder of the request processing lifecycle in several
ways, including:

• Calling renderResponse() on the FacesContext instance for the current request, which will cause
control to transfer to the Render Response phase of the request processing lifecycle, once processing
of the current phase is complete.

12.3. PhaseListener

Final Jakarta Server Faces 367

• Calling responseComplete() on the FacesContext instance for the current request, which causes
processing of the request processing lifecycle to terminate once the current phase is complete.

12.4. LifecycleFactory
A single instance of jakarta.faces.lifecycle.LifecycleFactory must be made available to each Jakarta
Faces-based web application running in a servlet or portlet container. The factory instance can be
acquired by Jakarta Faces implementations or by application code, by executing:

LifecycleFactory factory = (LifecycleFactory)
 FactoryFinder.getFactory(FactoryFinder.LIFECYCLE_FACTORY);

The LifecycleFactory implementation class supports the following methods:

public void addLifecycle(String lifecycleId, Lifecycle lifecycle);

Register a new Lifecycle instance under the specified lifecycle identifier, and make it available via calls
to the getLifecycle method for the remainder of the current web application’s lifetime.

public Lifecycle getLifecycle(String lifecycleId);

The LifecycleFactory implementation class provides this method to create (if necessary) and return a
Lifecycle instance. All requests for the same lifecycle identifier from within the same web application
will return the same Lifecycle instance, which must be programmed in a thread-safe manner.

Every Jakarta Faces implementation must provide a Lifecycle instance for a default lifecycle identifier
that is designated by the String constant LifecycleFactory.DEFAULT_LIFECYCLE . For advanced uses, a
Jakarta Faces implementation may support additional lifecycle instances, named with unique lifecycle
identifiers.

public Iterator<String> getLifecycleIds();

This method returns an iterator over the set of lifecycle identifiers supported by this factory. This set
must include the value specified by LifecycleFactory.DEFAULT_LIFECYCLE.

12.4. LifecycleFactory

368 Jakarta Server Faces Final

Chapter 13. Ajax Integration
This chapter of the specification describes how Ajax integrates with the Jakarta Faces framework to
create dynamic web applications. This chapter describes the resources and JavaScript APIs that are
used to expose the Ajax capabilities of Jakarta Faces to page authors and component authors. It also
describes the necessary ingredients of a Jakarta Faces Ajax framework, namely, a resource delivery
mechanism, partial tree traversal, partial page update.

13.1. JavaScript Resource
There must be a single JavaScript resource that exists with the resource identifier given by the value of
the constant jakarta.faces.application.ResourceHandler.JSF_SCRIPT_RESOURCE_NAME and it must exist
under the resource library given by the value of the constant
jakarta.faces.application.ResourceHandler.JSF_SCRIPT_LIBRARY_NAME, following the conventions in
Resource Handling. This resource contains the JavaScript APIs that facilitate Ajax interaction with
Jakarta Faces.

13.1.1. JavaScript Resource Loading

The JavaScript resource can become available to a Jakarta Faces application using a number of
different approaches.

13.1.1.1. The Annotation Approach

Component authors can specify that a custom component or renderer requires the Ajax resource with
the use of the ResourceDependency annotation.

@ResourceDependency (name="jsf.js", library="jakarta.faces", target="head")
public class MyComponent extends UIOutput...

For more information on this approach refer to Relocatable Resources and Resource Rendering Using
Annotations.

13.1.1.2. The Resource API Approach

Component authors can also specify that a custom component or renderer requires the JavaScript
resource by using the resource APIs. For example, a component or renderer’s encode method may
contain:

13.1. JavaScript Resource

Final Jakarta Server Faces 369

Resource resource = context.getApplication().getResourceHandler()
 .createResource(“jsf.js”, “jakarta.faces”);
...
writer.startElement("script", component);
writer.writeAttribute("type", "text/javascript", "type");
writer.writeAttribute("src",
 ((resource != null)? resource.getRequestPath(): "RES_NOT_FOUND"), ”src”);
writer.endElement(“script”);

Script resources are relocatable resources (see Relocatable Resources) which means you can control
the rendering location for these resources by setting the “target” attribute on the resource component:

public class MyComponent extends UIOutput {
...
 getAttributes().put(“target”, “head”);
...
}

This attribute must be set before the component is added to the view. The component or renderer must
also implement the event processing method:

public void processEvent(SystemEvent event)
 throws AbortProcessingException {
 UIComponent component = (UIComponent) event.getSource();
 FacesContext context = FacesContext.getCurrentInstance();
 if (component.getAttributes().get("target") != null) {
 context.getViewRoot().addComponentResource(context, component);
 }
}

When the component is added to the view, an event will be published. This event handling method will
add the component resource to one of the resource location facets under the view root so it will be in
place before rendering.

13.1.1.3. The Page Declaration Language Approach

Page authors can make the Ajax resource available to the current view using the outputScript tag. For
example:

13.1. JavaScript Resource

370 Jakarta Server Faces Final

<f:view contentType=”text/html”/>
 <h:head>
 <meta...
 <title...
 </h:head>
 <h:body>
 ...
 <h:outputScript name=”jsf.js” library=”jakarta.faces” target=”body”/>
 ...
 </h:body>
 ...

13.2. JavaScript Namespacing
JavaScript objects that are not enclosed within a namespace are global, which means they run the risk
of interfering, overriding and/or clobbering previously defined JavaScript objects. This section defines
the requirements for implementations intending to use the Jakarta Faces 2.0 JavaScript API.

[P1-start javascript namespace]Any implementation that intends to use the Jakarta Faces JavaScript
API must define a top level JavaScript object name jsf, whose type is a JavaScript associative array.
Within that top level JavaScript object, there must be a property named ajax..

if (jsf == null || typeof jsf == "undefined") {
 var jsf = new Object();
}
if (jsf.ajax == null || typeof jsf.ajax == "undefined") {
 jsf["ajax"] = new Object();
}

[P1-end]

13.3. Ajax Interaction
This section of the specification outlines the Ajax JavaScript APIs that are used to initiate client side
interactions with the Jakarta Faces framework including partial tree traversal and partial page update.
All of the functions in this JavaScript API will be exposed on a page scoped JavaScript object. Refer to
JavaScript API for details about the individual API functions.

13.3.1. Sending an Ajax Request

The JavaScript function jsf.ajax.request is used to send information to the server to control partial view
processing (Partial View Processing) and partial view rendering (Partial View Rendering). All requests
using the jsf.ajax.request function will be made asynchronously to the server. Refer to Initiating an

13.2. JavaScript Namespacing

Final Jakarta Server Faces 371

Ajax Request.

13.3.2. Ajax Request Queueing

[P1-start-ajaxrequest-queue] All Ajax requests must be put into a client side request queue before they
are sent to the server to ensure Ajax requests are processed in the order they are sent. The request that
has been waiting in the queue the longest is the next request to be sent. After a request is sent, the Ajax
request callback function must remove the request from the queue (also known as dequeuing). If the
request completed successfully, it must be removed from the queue. If there was an error, the client
must be notified, but the request must still be removed from the queue so the next request can be sent.
The next request (the oldest request in the queue) must be sent. Refer to the jsf.ajax.request JavaScript
documentation for more specifics about the Ajax request queue.[P1-end]

13.3.3. Request Callback Function

The Ajax request callback function is called when the Ajax request/response interaction is complete.
[P1-start-callback]This function must perform the following actions:

• If the return status is >= 200 and < 300, send a “complete” event following Sending Events. Call
jsf.ajax.response passing the Ajax request object (for example the XMLHttpRequest instance) and
the request context (containing the source DOM element, onevent event function callback and
onerror error function callback).

• If the return status is outside the range mentioned above, send a “complete” event following
Sending Events. Send an “httpError” error following Signaling Errors.

• Regardless of whether the request completed successfully or not:

◦ remove the completed requests (Ajax readystate 4) from the request queue (dequeue) -
specifically the requests that have been on the queue the longest.

◦ find the next oldest unprocessed (Ajax readystate 0) request on the queue, and send it. The
implementation must ensure that the request that is sent does not enter the queue again.[P1-
end]

Refer to Receiving The Ajax Response. Also refer to the jsf.ajax.request JavaScript documentation for
more specifics about the request callback function.

13.3.4. Receiving The Ajax Response

The jsf.ajax.response function is responsible for examining the markup that is returned from the
server and updating the client side DOM. The Ajax request callback function should call this function
when a request completes successfully. [P1-start-ajaxresponse]The implementation of jsf.ajax.response
must handle the response as outlined in the JavaScript documentation for jsf.ajax.response. The
elements in the response must be processed in the order they appear in the response.[P1-end]

13.3. Ajax Interaction

372 Jakarta Server Faces Final

13.3.5. Monitoring Events On The Client

JavaScript functions can be registered to be notified during various stages of the Ajax request/response
cycle. Functions can be set up to monitor individual Ajax requests, and functions can also be set up to
monitor all Ajax requests.

13.3.5.1. Monitoring Events For An Ajax Request

There are two ways to monitor events for a single Ajax request by registering an event callback
function:

• By using the <f:ajax> tag with the onevent attribute.

• By using the JavaScript API function jsf.ajax.request with onevent as an option.

Refer to <f:ajax> for details on the use of the <f:ajax> tag approach. Refer to Initiating an Ajax Request
for details about using the jsf.ajax.request function approach. [P1-start-event-request]The
implementation must ensure the JavaScript function that is registered for an Ajax request must be
called in accordance with the events outlined in Events.[P1-end]

13.3.5.2. Monitoring Events For All Ajax Requests

The JavaScript API provides the jsf.ajax.addOnEvent function that can be used to register a JavaScript
function that will be notified when any Ajax request/response event occurs. Refer to Registering
Callback Functions for more details. The jsf.ajax.addOnEvent function accepts a JavaScript function
argument that will be notified when events occur during any Ajax request/response event cycle. [P1-
start-event] The implementation must ensure the JavaScript function that is registered must be called
in accordance with the events outlined in Events.[P1-end]

13.3.5.3. Sending Events

[P1-start-event-send]The implementation must send events to the runtime as follows:

• Construct a data payload for events using the properties described in Event Data Payload.

• If an event handler function was registered with the “onevent” attribute (Monitoring Events For An
Ajax Request) call it passing the data payload.

• If any event handling functions were registered with the “addOnEvent” function (Monitoring
Events For All Ajax Requests) call them passing the data payload.[P1-end]

13.3.6. Handling Errors On the Client

JavaScript functions can be registered to be notified when Ajax requests complete with error status
codes from the server to give implementations a chance to handle the errors. Functions can be set up
to handle errors from individual Ajax requests and functions can be setup to handle errors for all Ajax
requests.

13.3. Ajax Interaction

Final Jakarta Server Faces 373

13.3.6.1. Handling Errors For An Ajax Request

There are two ways to handle errors for a single Ajax request by registering an error callback function:

• By using the <f:ajax> tag with the onerror attribute.

• By using the JavaScript API function jsf.ajax.request with onerror as an option.

Refer to <f:ajax> for details on the use of the <f:ajax> tag approach. Refer to Initiating an Ajax Request
for details about using the jsf.ajax.request function approach. [P1-start-event-request]The
implementation must ensure the JavaScript function that is registered for an Ajax request must be
called in accordance when the request status code from the server is as outlined in Errors.[P1-end]

13.3.6.2. Handling Errors For All Ajax Requests

The JavaScript API provides the jsf.ajax.addOnError function that can be used to register a JavaScript
function that will be notified when an error occurs for any Ajax request/response. Refer to Registering
Callback Functions for more details. The jsf.ajax.addOnError function accepts a JavaScript function
argument that will be notified when errors occur during any Ajax request/response cycle. [P1-start-
event] The implementation must ensure the JavaScript function that is registered must be called in
accordance with the errors outlined in Errors.[P1-end]

13.3.6.3. Signaling Errors

[P1-start-error-signal]The implementation must signal errors to the runtime as follows:

• Construct a data payload for errors using the properties described in Error Data Payload.

• If an error handler function was registered with the “onerror” attribute (Handling Errors For An
Ajax Request) call it passing the data payload.

• If any error handling functions were registered with the “addOnError” function (Handling Errors
For All Ajax Requests) call them passing the data payload.

• If the project stage is “development” (see Determining An Application’s Project Stage) use
JavaScript “alert” to signal the error(s).[P1-end]

13.3.7. Handling Errors On The Server

Jakarta Faces handles exceptions on the server as outlined in ExceptionHandler. [P1-start-error-
server]Jakarta Faces Ajax frameworks must ensure exception information is written to the response in
the format:

13.3. Ajax Interaction

374 Jakarta Server Faces Final

<partial-response id="j_id1">
 <error>
 <error-name>...</error-name>
 <error-message>...</error-message>
 </error>
</partial-response>

• Extract the “class” from the “Throwable” object and write that as the contents of error-name in the
response.

• Extract the “cause” from the “Throwable” object if it is available and write that as the contents of
error-message in the response. If “cause” is not available, write the string returned from
“Throwable.getMessage()”.

Implementations must ensure that an ExceptionHandler suitable for writing exceptions to the partial
response is installed if the current request required an Ajax response
(PartialViewContext.isAjaxRequest() returns true).[P1-end]

Implementations may choose to include a specialized ExceptionHandler for Ajax that extends from
jakarta.faces.context.ExceptionHandlerWrapper, and have the
jakarta.faces.context.ExceptionHandlerFactory implementation install it if the environment requires it.

13.4. Partial View Traversal
The Jakarta Faces lifecycle, can be viewed as consisting of an execute phase and a render phase.

13.4. Partial View Traversal

Final Jakarta Server Faces 375

Partial traversal is the technique that can be used to “visit” one or more components in the view,
potentially to have them pass through the “execute” and/or “render” phases of the request processing
lifecycle. This is a key feature for JSF and Ajax frameworks and it allows selected components in the
view to be processed and/or rendered. There are a variety of Jakarta Faces Ajax frameworks available,
and they all perform some variation of partial traversal.

13.4.1. Partial Traversal Strategy

Frameworks use a partial traversal strategy to perform partial view processing and partial view
rendering. This specification does not dictate the use of a specific partial traversal strategy. However,
frameworks must implement their desired strategy by implementing the
PartialViewContext.processPartial method. Refer to the JavaDocs for details about this method.

13.4.2. Partial View Processing

Partial view processing allows selected components to be processed through the “execute” portion of
the lifecycle. Although the diagram in Partial View Traversal depicts the “execute” portion as
encompassing everything except the “Render Response Phase”, for the purposas of an ajax request, the
execute portion of the lifecycle is the “Apply Request Values Phase”, “Update Model Values Phase” and
“Process Validations Phase”. Partial view processing on the server is triggered by a request from the
client. The request does not have to be an Ajax request. The request contains special parameters that
indicate the request is a partial execute request (not triggered by Ajax) or a partial execute request that
was triggered using Ajax. The client also sends a set of client ids of the components that must be
processed through the execute phase of the request processing lifecycle. Refer to Sending an Ajax
Request about the request sending details. The FacesContext has methods for retrieving the
PartialViewContext instance for the request. The PartialViewContext may also be retrieved by using
the PartialViewContextFactory class. The XML schema allows for the definition of a
PartialViewContextFactory using the “partial-view-context-factory” element. Refer to the partial
response schema in the Javadoc section of the spec for more information on this element. The
PartialViewContext has properties and methods that indicate the request is a partial request based on
the values of these special request parameters. Refer to the JavaDocs for
jakarta.faces.context.PartialViewContext and Partial View Context for the specifics of the
PartialViewContext constants and methods that facilitate partial processing. [P1-start-partialExec]The
UIViewRoot processDecodes, processValidators and processUpdates methods must determine if the
request is a partial request using the
FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest() method. If
FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest() returns true, then the
implementation of these methods must retrieve a PartialViewContext instance and invoke
PartialViewContext.processPartial. Refer to Apply Request Values, Apply Request Values Partial
Processing, Process Validations, Partial Validations Partial Processing, Update Model Values, Update
Model Values Partial Processing.[P1-end]

13.4.3. Partial View Rendering

Partial view rendering on the server is triggered by a request from the client. It allows one or more

13.4. Partial View Traversal

376 Jakarta Server Faces Final

components in the view to perform the encoding process. The request contains special parameters that
indicate the request is a partial render request. The client also sends a set of client ids of the
components that must be processed by the render phase of the request processing lifecycle. Refer to
Sending an Ajax Request about the request sending details. The PartialViewContext has methods that
indicate the request is a partial request based on the values of these special request parameters. Refer
to Partial Processing Methods for the specifics of the FacesContext constants and methods that
facilitate partial processing. [P1-start-partialRender]The UIViewRoot getRendersChildren and
encodeChildren methods must determine if the request is an Ajax request using the
FacesContext.getCurrentInstance().getPartialViewContext().isAjaxRequest() method. If
PartialViewContext.isAjaxRequest() returns true, then the getRendersChildren method must return
true and the encodeChildren method must perform partial rendering using the
PartialViewContext.processPartial implementation. Refer to the JavaDocs for
UIViewRoot.encodeChildren for specific details.[P1-end]

13.4.4. Sending The Response to The Client

The Ajax response (also known as partial response) is formulated and sent to the client during the
Render Response phase of the request processing lifecycle. The partial response consists of markup
rendered by one or more components. The response should be in a common format so JavaScript
clients can interpret the markup in a consistent way - an important requirement for component
compatability. The agreed upon format and content type for the partial response is XML. This means
there should be a ResponseWriter suitable for writing the response in XML. The
UIViewRoot.encodeChildren method delegates to a partial traversal strategy. The partial traversal
strategy implementation produces the partial response. The markup that is sent to the client must
contain elements that the client can recognize. In addition to the markup produced by server side
components, the response must contain “instructions” for the client to interpret, so the client will
know, for example, that it is to add new markup to the client DOM, or update existing areas of the
DOM. When the response is sent back to the client, it must contain the view state. [P1-start-sending-
response]Implementations must adhere to the response format as specified in the JavaScript docs for
jsf.ajax.response.[P1-end] Refer to the XML schema definition in the XML Schema Definition for
Composite Components section. This XML schema is another important area for component library
compatability.

13.4.4.1. Writing The Partial Response

Jakarta Faces provides jakarta.faces.context.PartialResponseWriter to ensure the Ajax response that is
written follows the standard format as specified in XML Schema Definition for Composite Components.
Implementations must take care to properly handle nested CDATA sections when writing the response.
PartialResponseWriter decorates an existing ResponseWriter implementation by extending
jakarta.faces.context.ResponseWriterWrapper. Refer to the
jakarta.faces.context.PartialResponseWriter JavaDocs, and the JavaScript documentation for the
jsf.ajax.response function for more specifics.

13.4. Partial View Traversal

Final Jakarta Server Faces 377

Chapter 14. JavaScript API
This chapter of the specification describes the JavaScript functions that are used to facilitate Ajax
operations in a Jakarta Server Faces framework. All of these functions are contained in the canonical
jsf.js file.

14.1. Collecting and Encoding View State
In Jakarta Server Faces the jakarta.faces.ViewState parameter was standardized to facilitate “postback”
requests to the server in a Jakarta Faces application. Implementations must use this parameter to save
the view state between requests. Refer to the Javadocs for jakarta.faces.render.ResponseStateManager.

Collecting and encoding view state that will be sent to the server is a common operation used by most
Jakarta Server Faces Ajax frameworks. When a Jakarta Faces view is rendered, it will contain a hidden
field with the identifier jakarta.faces.ViewState whose value contains the state for the current view.
Jakarta Faces Ajax clients collect additional view state, combine it with the current view state and send
it’s encoded form to the server.

jsf.getViewState(FORM_ELEMENT)

Collect and encode element data for the given FORM_ELEMENT and return it as the view state that will
be sent to the server. FORM_ELEMENT is the identifier for a DOM form element. All input elements of
type “hidden” should be included in the collection and encoding process.

• Encode the name and value for each input element of FORM_ELEMENT. Only select elements that
have at least one of their options selected must be included. only checkbox elements that are
checked must be included.

• Find the element identified as jakarta.faces.ViewState in the specified FORM_ELEMENT and encode
the name and value.

• Return a concatenated String of the encoded input elements and jakarta.faces.ViewState element.

14.1.1. Use Case

Collect and Encode Elements Of a Form

var viewState = jsf.getViewState(form);

14.2. Initiating an Ajax Request

jsf.ajax.request(source, |event|, { |OPTIONS| });

14.1. Collecting and Encoding View State

378 Jakarta Server Faces Final

The jsf.ajax.request function is responsible for sending an Ajax request to the server. [P1-start-
ajaxrequest]The requirements for this function are as follows:

• The request must be sent asynchronously

• The request must be sent with method type POST

• The request URL will be the form action attribute

• All requests will be queued with the use of a client side request queue to help ensure request
ordering

[P1-end]

14.2.1. Usage

Typically, this function is attached as a JavaScript event handler (such as “onclick”).

<ANY_HTML_OR_FACES_ELEMENT
 on|EVENT|="jsf.ajax.request(source, event, { |OPTIONS| });" />

The function arguments are as follows:

source is the DOM element that triggered this Ajax request. [P1-start-source]It must be a DOM element
object or a string identifier for a DOM element. [P1-end]The event argument is the JavaScript event
object. The optional |OPTIONS| argument is a JavaScript associative object array that may contain the
following name/value pairs:

Table 22. request OPTIONS

Name Value

execute A space delimited list of client identifiers or one of the keywords (Keywords).
These reference the components that will be processed during the “execute”
portion of the request processing lifecycle.

render A space delimited list of client identifiers or one of the keywords (Keywords).
These reference the components that will be processed during the “render”
portion of the request processing lifecycle.

onevent A String that is the name of the JavaScript function to call when an event occurs.

onerror A String that is the name of the JavaScript function to call when an error occurs.

params An object that may include additional parameters to include in the request.

14.2.2. Keywords

The following keywords can be used for the value of the “execute” and “render” attributes:

14.2. Initiating an Ajax Request

Final Jakarta Server Faces 379

Table 23. Execute / Render Keywords

Keyword Description

@all All component identifiers

@none No identifiers

@this The element that triggered the request

@form The enclosing form

14.2.3. Default Values

Values for the execute and render attributes are not required. When using the JavaScript API, the
default values for execute is @this. The default value for render is @none.

<h:commandButton id=”button1” value=”submit”
 onclick="jsf.ajax.request(this,event);" />

is the same as:

<h:commandButton id=”button1” value=”submit”>
 onclick="jsf.ajax.request(this, event,
 {execute:’@this’, render:’@this’});" />

<h:commandButton id=”button1” value=”submit”
 onclick="jsf.ajax.request(this,event, {execute:’@this’});" />

is the same as:

<h:commandButton id=”button1” value=”submit”>
 onclick="jsf.ajax.request(this,event, {execute:’button1’});" />

Refer to <f:ajax> for the default values for the execute and render attributes when they are used with
the core “<f:ajax>” tag.

14.2.4. Request Sending Specifics

The mechanics of sending an Ajax request becomes very important to promote component
compatability. Even more important, is standardizing on the post data that is sent to server
implementations, so they all can expect the same arguments. [P1-start-ajaxrequest-send]The request
header must be set with the name Faces-Request and the value partial/ajax. Specifics of formulating
post data and sending the request must be followed as outlined in the JavaScript documentation for
the jsf.ajax.request function. The post data arguments that must be sent are:

14.2. Initiating an Ajax Request

380 Jakarta Server Faces Final

Name Value

jakarta.faces.ViewState The value of the jakarta.faces.ViewState hidden field. This is included
when using the jsf.getViewState function.

jakarta.faces.partial.ajax true

jakarta.faces.source The identifier of the element that is the source of this request

[P1-end]

14.2.5. Use Case

<h:commandbutton id="submit" value="submit"
 onclick="jsf.ajax.request(this, event,
 {execute:'submit',render:'outtext'}); return false;" />

This use case assumes there is another component in the view with the identifier outtext.

14.3. Processing The Ajax Response

jsf.ajax.response(request, context);

The jsf.ajax.response function is called when a request completes successfully. This typically means
that returned status code is >= 200 and < 300. The jsf.ajax.response function must extract the XML
response from the request argument. The XML response is expected to follow the format that is
outlined in the JavaScript documentation for this function. The response format is an “instruction set”
telling this function how it should update the DOM. The context argument contains properties that
facilitate event and error processing such as the source DOM element (the DOM element that triggered
the Ajax request), onevent (the event handling callback for the request) and onerror (the error
handling callback for the request). [P1-start-ajaxresponse] The specifics details of this function’s
operation must follow the jsf.ajax.response JavaScript documentation.[P1-end]

14.4. Registering Callback Functions
The JavaScript API allows you to register callback functions for Ajax request/response event
monitoring and error handling. The event callbacks become very useful when monitoring request
connection status. The error callback provides a convenient way for implementations to trap errors.
The handling of the errors is left up to the implementation. These callback function names can also be
set using the JavaScript API (request OPTIONS), and the core <f:ajax> tag (<f:ajax>).

14.3. Processing The Ajax Response

Final Jakarta Server Faces 381

14.4.1. Request/Response Event Handling

jsf.ajax.addOnEvent(callback);

The callback argument must be a reference to an existing JavaScript function that will handle the
events. The events that can be handled are:

Table 24. Events

Event Name Description

begin Occurs immediately before the request is sent.

complete Occurs immediately after the request has completed. For successful
requests, this is immediately before jakarta.faces.response is called.
For unsuccessful requests, this is immediately before the error
handling callback is invoked.

success Occurs immediately after jsf.ajax.response has completed.

The callback function has access to the following “data payload”:.

Table 25. Event Data Payload

Name Description/Value

type “event”

status One of the events specified in Events

source The DOM element that triggered the Ajax request.

responseCode Ajax request object ‘status’ (XMLHttpRequest.status); Not present for
“begin” event;

responseXML The XML response (XMLHttpRequest.responseXML); Not present for
“begin” event;

responseText The text response (XMLHttpResponse.responseText) Not present for
“begin” event;

14.4.1.1. Use Case

An event listener can be installed from JavaScript in this manner.

function statusUpdate(data) {
 // do something with data.status or other parts of data payload
}
...
jsf.ajax.addOnEvent(statusUpdate);

14.4. Registering Callback Functions

382 Jakarta Server Faces Final

An event listener can be installed from markup in this manner.

<f:ajax ... onevent="statusUpdate" />

14.4.2. Error Handling

jsf.ajax.addOnError(callback);

The callback argument must be a reference to an existing JavaScript function that will handle errors
from the server.

Table 26. Errors

Error Name Description

httpError request status==null or request.status==undefined or
request.status<200 or request.status >=300

serverError The Ajax response contains an “error” element.

malformedXML The Ajax response does not follow the proper format. See XML Schema
Definition for Composite Components

emptyResponse There was no Ajax response from the server.

The callback function has access to the following “data payload”:.

Table 27. Error Data Payload

Name Description/Value

type “error”

status One of error names defined Errors

description Text describing the error

source The DOM element that triggered the Ajax request.

responseCode Ajax request object ‘status’ (XMLHttpRequest.status);

responseXML The XML response (XMLHttpRequest.responseXML)

responseText The text response (XMLHttpResponse.responseTxt)

errorName The error name taken from the Ajax response “error” element.

errorMessage The error messages taken from the Ajax response “error” element.

14.4.2.1. Use Case

14.4. Registering Callback Functions

Final Jakarta Server Faces 383

jsf.ajax.addOnError(handleError);
...
var handleError = function handleError(data) {
 ... do something with “data payload” ...
}

14.5. Determining An Application’s Project Stage

jsf.getProjectStage();

[P1-start-projStage]This function must return the constant representing the current state of the
running application in a typical product development lifecycle. The returned value must be the value
returned from the server side method jakarta.faces.application.Application.getProjectStage(); Refer to
ProjectStage Property for more details about this property.[P1-end]

14.5.1. Use Case

var projectStage = jakarta.faces.Ajax.getProjectStage();
if (projectStage == “Production”) {
 throw exception
} else if (projectStage == “Development”) {
 send an alert for debugging
}

14.6. Script Chaining

jsf.util.chain(source, event, |<script>, <script>,...|)

This utility function invokes an arbitrary number of scripts in sequence. If any of the scripts return
false, subsequent scripst will not be executed. The arguments are:

• source - The DOM element that triggered this Ajax request, or an id string of the element to use as
the triggering element.

• event - The DOM event that triggered this Ajax request. A value does not have to be specified for
this argument.

The variable number of script arguments follow the source and event arguments. Refer to the
JavaScript API documentation in the source for more details.

14.5. Determining An Application’s Project Stage

384 Jakarta Server Faces Final

Appendix A: Jakarta Faces Metadata
The XML Schema Definition for Application Configuration Resource files is included in a web browser
optimized format along with the Javadoc. That is the canonical location of the schemas in the
specification.

A.1. Required Handling of *-extension elements in the
application configuration resources files
As specified in the XML Schema for Application Configuration Resources, many of the elements in the
file have *-extension elements declared in a similar fashion to this one for the faces-config-extension :

<xsd:complexType name ="faces-config-extensionType">
 <xsd:annotation>
 <xsd:documentation>
 Extension element for faces-config. It may contain
 implementation specific content.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="##any" processContents="lax"
 minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID"/>
</xsd:complexType>

This section specifies the required handling of such elements.

Note that it is normal for an application to have several application configuration resources files. If
multiple such resource files have conflicting *-extension elements, the last element processed takes
precedence over preceding elements. Processing order can be controlled as specified in See Ordering
of Artifacts.

A.1.1. faces-config-extension handling

If an application configuration resource contains a faces-config-extension element, the children of the
element must be inspected for containing well-formed XML conforming to the syntax specified in the
following subsection(s). DTD syntax is used for convenience since the content of a *-extension element
may not be constrained due to its declaration as containing <xsd:any> .

A.1.1.1. The facelets-processing element

DTD syntax..

A.1. Required Handling of *-extension elements in the application configuration resources files

Final Jakarta Server Faces 385

UsingJSFInWebApplications.pdf#a6435
UsingJSFInWebApplications.pdf#a6435

<!ELEMENT facelets-processing (file-extension, process-as) >
<!ELEMENT file-extension ANY>
<!ELEMENT process-as ANY>

The <facelets-processing> element is used to affect the processing of Facelets VDL files. Therefore, this
setting only applies to those requests that reach the Facelets ViewDeclarationLanguage
implementation, as specified to the runtime via the jakarta.faces.FACELETS_VIEW_MAPPINGS and
jakarta.faces.DEFAULT_SUFFIX <context-param> entries. The specification defines three processing
modes for Facelets files: Facelets XHTML syntax, XML View syntax, and Facelets JSPX syntax. This last
syntax is intended to ease the migration to Facelets for applications already using the Jakarta Server
Pages document syntax (also known as JSPX syntax). The affect on the processing of files in each of
these three modes is specified in the following table.

Table 28. Valid <process-as> values and their implications on the processing of Facelet VDL files.

<process-
as>html5</process-
as>
HTML 5 (default)

<process-
as>xhtml</process-
as>
Facelets XHTML

<process-
as>xml</process-
as>
XML View

<process-
as>jspx</process-
as>
Facelets JSPX

XML Doctype Simplified to
<!DOCTYPE html>

passed through consumed consumed

XML declaration passed through passed through consumed consumed

Processing
instructions

passed through passed through consumed consumed

CDATA section start
and end tags

passed through passed through consumed consumed

Escaping of inline
text

escaped escaped escaped not escaped

XML Comments passed through passed through consumed consumed

In the preceding table, “passed through” means that the content is passed through unmodified to the
user agent. “consumed” means the content is silently consumed on the server. Note that for CDATA
sections, the content of the CDATA section itself is passed through, even if the start and end tags should
be consumed. “escaped” means that sensivite content in the response is automatically escaped: &
becomes & , for example. “not escaped” means that such content is not escaped.

The content of the <file-extension> element is particular to the file extension of the physical resource
for the Facelets VDL content, as specified in the jakarta.faces.FACELETS_VIEW_MAPPINGS and
jakarta.faces.DEFAULT_SUFFIX <context-param> elements. Consider the following example faces-
config.xml .

A.1. Required Handling of *-extension elements in the application configuration resources files

386 Jakarta Server Faces Final

<?xml version='1.0' encoding='UTF-8'?>
<faces-config
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_2_1.xsd"
 version="2.1">
 <faces-config-extension>
 <facelets-processing>
 <file-extension>.jspx</file-extension>
 <process-as>jspx</process-as>
 </facelets-processing>
 <facelets-processing>
 <file-extension>.view.xml</file-extension>
 <process-as>xml</process-as>
 </facelets-processing>
 </faces-config-extension>
</faces-config>

And web.xml content

<context-param>
 <param-name>jakarta.faces.FACELETS_VIEW_MAPPINGS</param-name>
 <param-value>*.xhtml;*.view.xml;*.jspx</param-value>
</context-param>
<context-param>
 <param-name>jakarta.faces.DEFAULT_SUFFIX</param-name>
 <param-value>.xhtml .view.xml .jsp .jspx</param-value>
</context-param>

This configuration states that .xhtml, .view.xml, and .jspx files must be treated as Facelets VDL files
declares the processing mode of .jspx files to be jspx and declares the processing mode of .view.xml
files to be xml.

A.2. XML Schema Definition For Facelet Taglib
The XML Schema Definition for Facelet Taglib is included in a web browser optimized format along
with the Javadoc. That is the canonical location of the schemas in the specification.

[P1_start_facelet_taglib_decl]To ease migration for Facelet taglibraries declared using pre-JSF 2.0
versions of Facelets, implementations must support loading facelet taglibrary files that conform to the
pre-JSF 2.0 Facelets DTD. Per DTD conventions, Facelet taglibrary files declare conformance to this DTD
by including text similar to the following in at the top of their declaring file.

A.2. XML Schema Definition For Facelet Taglib

Final Jakarta Server Faces 387

<!DOCTYPE facelet-taglib PUBLIC
 "-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"
 "http://java.sun.com/dtd/facelet-taglib_1_0.dtd">

Use of this DTD is officially deprecated. This DTD is included for reference in See Deprecated DTD for
Facelet Taglibraries Used by Versions of Facelets Prior to pre-Jakarta Faces JSF 2.0. It is expected that
proper Jakarta Faces Facelet Taglibraries will declare conformance to the following schema, rather
than the deprecated DTD.[P1_end_facelet_taglib_decl]

A.2.1. Deprecated DTD for Facelet Taglibraries Used by Versions of Facelets
Prior to pre-Jakarta Faces JSF 2.0

This DTD is deprecated and is included so implementors will have a reference.

<!ELEMENT facelet-taglib (library-class|(namespace,(tag|function)+))>
<!ATTLIST facelet-taglib xmlns CDATA #FIXED "http://java.sun.com/JSF/Facelet">
<!ELEMENT namespace (#PCDATA)>
<!ELEMENT library-class (#PCDATA)>
<!ELEMENT tag (tag-name,(handler-class|component|converter|validator|source))>
<!ELEMENT tag-name (#PCDATA)>
<!ELEMENT handler-class (#PCDATA)>
<!ELEMENT component (component-type,renderer-type?,handler-class?)>
<!ELEMENT component-type (#PCDATA)>
<!ELEMENT renderer-type (#PCDATA)>
<!ELEMENT converter (converter-id, handler-class?)>
<!ELEMENT converter-id (#PCDATA)>
<!ELEMENT validator (validator-id, handler-class?)>
<!ELEMENT validator-id (#PCDATA)>
<!ELEMENT source (#PCDATA)>
<!ELEMENT function (function-name,function-class,function-signature)>
<!ELEMENT function-name (#PCDATA)>
<!ELEMENT function-class (#PCDATA)>
<!ELEMENT function-signature (#PCDATA)>

A.3. XML Schema Definition for Composite Components

<xsd:schema
 targetNamespace="http://java.sun.com/xml/ns/javaee"
 xmlns:javaee="http://java.sun.com/xml/ns/javaee"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xml="http://www.w3.org/XML/1998/namespace"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"

A.3. XML Schema Definition for Composite Components

388 Jakarta Server Faces Final

JSFMetadata.pdf#a7139
JSFMetadata.pdf#a7139

 version="2.0">

 <xsd:annotation>
 <xsd:documentation>
 $Id: web-facesuicomponent_2_0.xsd,v 1.1.8.2 2008/03/20 21:12:50 edburns Exp $
 </xsd:documentation>
 </xsd:annotation>

 <xsd:annotation>
 <xsd:documentation>
 Copyright 2007 Sun Microsystems, Inc.,
 901 San Antonio Road,
 Palo Alto, California 94303, U.S.A.
 All rights reserved.

 Sun Microsystems, Inc. has intellectual property
 rights relating to technology described in this document. In
 particular, and without limitation, these intellectual
 property rights may include one or more of the U.S. patents
 listed at http://www.sun.com/patents and one or more
 additional patents or pending patent applications in the
 U.S. and other countries.

 This document and the technology which it describes are
 distributed under licenses restricting their use, copying,
 distribution, and decompilation. No part of this document
 may be reproduced in any form by any means without prior
 written authorization of Sun and its licensors, if any.

 Third-party software, including font technology, is
 copyrighted and licensed from Sun suppliers.

 Sun, Sun Microsystems, the Sun logo, Solaris, Java, Java EE,
 JavaServer Pages, Enterprise JavaBeans and the Java Coffee
 Cup logo are trademarks or registered trademarks of Sun
 Microsystems, Inc. in the U.S. and other countries.

 Federal Acquisitions: Commercial Software - Government Users
 Subject to Standard License Terms and Conditions.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The XML Schema for a Jakarta Server Faces UIComponent (Version 2.0).

A.3. XML Schema Definition for Composite Components

Final Jakarta Server Faces 389

 The elements in this schema may be used in an XHTML page for
 a composite component, by pulling in the composite namespace:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:composite="http://java.sun.com/jsf/composite">

 <composite:interface>
 <composite:attribute name="foo" default="bar" />
 </composite:/interface>
 <!-- the rest omitted -->
</html>

 The elements in this schema may also be used in a facelet taglibrary
 file in the same manner:

<facelet-taglib xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:composite="http://java.sun.com/jsf/composite"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facelettaglibary_2_0.xsd"
 version="2.0">
 <namespace>http://domain.com/test_schema</namespace>
 <tag>
 <tag-name>testSchema</tag-name>
 <component>
 <component-type>jakarta.faces.Input</component-type>
 <renderer-type>jakarta.faces.Text</renderer-type>
 <handler-class>com.sun.faces.facelets.tag.jsf.ComponentHandler</handler-class>
 <component-extension>
 <composite:attribute name="foo" default="bar" />
 </component-extension>
 </component>
 </tag>
</facelet-taglib>

 The instance documents may indicate the published
 version of the schema using xsi:schemaLocation attribute
 for javaee namespace with the following location:

 http://java.sun.com/xml/ns/javaee/web-facesuicomponent_2_0.xsd

]]>

 </xsd:documentation>
 </xsd:annotation>

 <xsd:include schemaLocation="javaee_5.xsd"/>

A.3. XML Schema Definition for Composite Components

390 Jakarta Server Faces Final

 <!-- ** -->

 <xsd:element name = "attribute" type="javaee:uicomponent-attributeType">
 </xsd:element>

 <!-- ** -->

 <xsd:complexType name="uicomponent-attributeType">
 <xsd:annotation>
 <xsd:documentation>

 The "attribute" element declares an attribute of this
 ui component.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:choice minOccurs="0" maxOccurs="unbounded">
 <xsd:element name="attribute"
 type="javaee:uicomponent-attributeType"/>
 </xsd:choice>

 <xsd:attribute name="name"
 type="xsd:string"
 use="required"/>

 <xsd:attribute name="displayName"
 type="xsd:string"
 use="optional"/>

 <xsd:attribute name="shortDescription"
 type="xsd:string"
 use="optional"/>

 <xsd:attribute name="default"
 type="xsd:string"
 use="optional"/>

 <xsd:attribute name="method-signature"
 type="xsd:string"
 use="optional">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 Provides the signature of the Java method. The syntax of
 the method-signature element is as follows (taken from
 function-signature in web-jsptaglibrary_2_1.xsd):

A.3. XML Schema Definition for Composite Components

Final Jakarta Server Faces 391

 MethodSignature ::= ReturnType S MethodName S?
 '(' S? Parameters? S? ')'

 ReturnType ::= Type

 MethodName ::= Identifier

 Parameters ::= Parameter
 | (Parameter S? ',' S? Parameters)

 Parameter ::= Type
 Where:

 * Type is a basic type or a fully qualified
 Java class name (including package name),
 as per the 'Type' production in the Java
 Language Specification, Second Edition,
 Chapter 18.

 * Identifier is a Java identifier, as per
 the 'Identifier' production in the Java
 Language Specification, Second
 Edition, Chapter 18.

 Example:

 java.lang.String nickName(java.lang.String, int)

]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>

 <xsd:attribute name="applyTo"
 type="xsd:string"
 use="optional"/>

 <xsd:attribute name="required"
 type="xsd:boolean"
 use="optional"/>

 <xsd:attribute name="preferred"
 type="xsd:boolean"
 use="optional"/>

 <xsd:attribute name="expert"
 type="xsd:boolean"
 use="optional"/>

A.3. XML Schema Definition for Composite Components

392 Jakarta Server Faces Final

 </xsd:complexType>

 <!-- ** -->

</xsd:schema>

A.3. XML Schema Definition for Composite Components

Final Jakarta Server Faces 393

Appendix B: Change Log
Note: this refers to historic issues and titles using the term "JSF". This refers to the pre-Jakarta Faces
specification under the JCP.

B.1. Changes between 2.2 and 2.3
This section gives the reader a survey of the changes between version 2.3 of the specification and
version 2.2, using the categories from the issue tracker at https://github.com/eclipse-ee4j/faces-api/
issues/.

B.1.1. Big Ticket Features

• WebSocket Integration
Issue ID 1396
See the VDLDocs for <f:websocket /> and <f:websocket>.

• Multi-field Validation
Issue ID 1
See the VDLDocs for <f:validateWholeBean />.

• Java Time Support
Issue ID 1370
See the VDLDocs for <f:convertDateTime />.

• Use CDI for evaluation of JSF specific EL implicit Objects
Issue ID 1311, 1322, 1325, 1327, 1328, 1334, 1332, 1331, 1384, 1385, 1383, 1386 - 1394
See Expression Language Resolution

• Issue ID 1417
Deprecate javax.faces.bean.

• Support @Inject on JSF specific artifacts
Issue ID 1316, 527, 1309, 1323, 1283, 1353, 1335, 1333, 1349, 1351, 1350, 1345
See Jakarta Faces Objects Valid for @Inject Injection

• Issue ID 1364
UIData and <ui:repeat> supports Map and Iterable

• Issue ID 1102
ui:repeat condition check.

• Issue ID 1418
CDI Replacement for @ManagedProperty. See javadocs for
javax.faces.annotation.ManagedProperty.

• Issue ID 1103, 1364
See the Javadoc for javax.faces.component.UIData, and javax.faces.model.IterableDataModel.

B.1. Changes between 2.2 and 2.3

394 Jakarta Server Faces Final

https://github.com/eclipse-ee4j/faces-api/issues/
https://github.com/eclipse-ee4j/faces-api/issues/
https://github.com/eclipse-ee4j/faces-api/issues/1396
https://github.com/eclipse-ee4j/faces-api/issues/1
https://github.com/eclipse-ee4j/faces-api/issues/1370
https://github.com/eclipse-ee4j/faces-api/issues/1311
https://github.com/eclipse-ee4j/faces-api/issues/1322
https://github.com/eclipse-ee4j/faces-api/issues/1325
https://github.com/eclipse-ee4j/faces-api/issues/1327
https://github.com/eclipse-ee4j/faces-api/issues/1328
https://github.com/eclipse-ee4j/faces-api/issues/1334
https://github.com/eclipse-ee4j/faces-api/issues/1332
https://github.com/eclipse-ee4j/faces-api/issues/1331
https://github.com/eclipse-ee4j/faces-api/issues/1384
https://github.com/eclipse-ee4j/faces-api/issues/1385
https://github.com/eclipse-ee4j/faces-api/issues/1383
https://github.com/eclipse-ee4j/faces-api/issues/1386
https://github.com/eclipse-ee4j/faces-api/issues/1394
https://github.com/eclipse-ee4j/faces-api/issues/1417
https://github.com/eclipse-ee4j/faces-api/issues/1316
https://github.com/eclipse-ee4j/faces-api/issues/527
https://github.com/eclipse-ee4j/faces-api/issues/1309
https://github.com/eclipse-ee4j/faces-api/issues/1323
https://github.com/eclipse-ee4j/faces-api/issues/1283
https://github.com/eclipse-ee4j/faces-api/issues/1353
https://github.com/eclipse-ee4j/faces-api/issues/1335
https://github.com/eclipse-ee4j/faces-api/issues/1333
https://github.com/eclipse-ee4j/faces-api/issues/1349
https://github.com/eclipse-ee4j/faces-api/issues/1351
https://github.com/eclipse-ee4j/faces-api/issues/1350
https://github.com/eclipse-ee4j/faces-api/issues/1345
https://github.com/eclipse-ee4j/faces-api/issues/1364
https://github.com/eclipse-ee4j/faces-api/issues/1102
https://github.com/eclipse-ee4j/faces-api/issues/1418
https://github.com/eclipse-ee4j/faces-api/issues/1103
https://github.com/eclipse-ee4j/faces-api/issues/1364

• DataModel implementations can be registered
Issue ID 1078
See the javadoc for annotation javax.faces.model.FacesDataModel.

• Issue ID 1412
See the javadoc for annotation javax.faces.partialViewContext.getEvalScripts().

• Issue ID 613
Ajax Method Invocation. See vdldoc for <h:commandScript>.

• Issue ID 1238
Enhanced component search facility. See the javadoc for package javax.faces.component.search.

B.1.2. Other Features, by Functional Area

B.1.2.1. Components/Renderers

Larger Changes

• Issue ID 217
styleClass attribute added to h:column

• Issue ID 329
Add “group” attribute to <h:selectOneRadio>.

• Issue ID 1423, 1404
ResourceHandler.markResourceRendered(), and isResourceRendered(),
UIViewRoot.getComponentResources() enable the discovery of dynamically added resources, even
within Ajax requests.

• Issue ID 1404
Add API to check if a resource has already been rendered. See Javadoc for
javax.faces.application.ResourceHandler.markResourceRendered() and isResourceRendered().

• Issue ID 1436
In Render Response, specify how Server Push is utilized.

Smaller Changes

• Issue ID 1422
UISelectMany detects converter based on first item.

• Issue ID 1007
Explicit support for dynamic component manipulation

• Issue ID 819
Add “disabled” attribute for h:button

• Issue ID 1300
UIViewRoot.getViewMap() and publishEvent().

• Issue ID 1229
Document UIData.setRowStatePreserved() in VDLDoc and RenderKit Doc.

B.1. Changes between 2.2 and 2.3

Final Jakarta Server Faces 395

https://github.com/eclipse-ee4j/faces-api/issues/1078
https://github.com/eclipse-ee4j/faces-api/issues/1412
https://github.com/eclipse-ee4j/faces-api/issues/613
https://github.com/eclipse-ee4j/faces-api/issues/1238
https://github.com/eclipse-ee4j/faces-api/issues/217
https://github.com/eclipse-ee4j/faces-api/issues/329
https://github.com/eclipse-ee4j/faces-api/issues/1423
https://github.com/eclipse-ee4j/faces-api/issues/1404
https://github.com/eclipse-ee4j/faces-api/issues/1404
https://github.com/eclipse-ee4j/faces-api/issues/1436
https://github.com/eclipse-ee4j/faces-api/issues/1422
https://github.com/eclipse-ee4j/faces-api/issues/1007
https://github.com/eclipse-ee4j/faces-api/issues/819
https://github.com/eclipse-ee4j/faces-api/issues/1300
https://github.com/eclipse-ee4j/faces-api/issues/1229

• Issue ID 1135
Add PostRenderViewEvent.

• Issue ID 1258
Clarify text escaping for <h:outputText> or equivalent EL expressions.

• Issue ID 807
Pass FacesContext to system event listeners.

• Issue ID 1113
Remove onselect attribute from SELECT components.

• Issue ID 1433
Add a context-param to enable forcing validation to happen even when there is no parameter
corresponding to the current component.

B.1.2.2. Lifecycle

Larger Changes

• Issue ID 790
javax.faces.ViewState and ajax with cross form submit.

Smaller Changes

• Issue ID 473
FacesEvent.getFacesContext().

• Issue ID 1241
faces-config supports client-window-factory.

• Issue ID 1346
Simplify decoration of FaceletCacheFactory.

• Issue ID 1361
Correct oversight regarding re-entrancy of flow scoped beans.

• Issue ID 821
Implement ExternalContext.getRealPath() on startup and shutdown.

• Issue ID 1401
Explicitly prohibit using NavigationHandler from within ExceptionHandler invoked during
RENDER RESPONSE.

• Issue ID 1306
@FlowScoped should be @NormalScope(passivating=true).

• Issue ID 1382
Generify return from ExternalContext.getInitParameterMap().

• Issue ID 1329
@NotNull and <f:viewParam>.

• Issue ID 1403
Allow entry into flow via <f:viewAction>.

B.1. Changes between 2.2 and 2.3

396 Jakarta Server Faces Final

https://github.com/eclipse-ee4j/faces-api/issues/1135
https://github.com/eclipse-ee4j/faces-api/issues/1258
https://github.com/eclipse-ee4j/faces-api/issues/807
https://github.com/eclipse-ee4j/faces-api/issues/1113
https://github.com/eclipse-ee4j/faces-api/issues/1433
https://github.com/eclipse-ee4j/faces-api/issues/790
https://github.com/eclipse-ee4j/faces-api/issues/473
https://github.com/eclipse-ee4j/faces-api/issues/1241
https://github.com/eclipse-ee4j/faces-api/issues/1346
https://github.com/eclipse-ee4j/faces-api/issues/1361
https://github.com/eclipse-ee4j/faces-api/issues/821
https://github.com/eclipse-ee4j/faces-api/issues/1401
https://github.com/eclipse-ee4j/faces-api/issues/1306
https://github.com/eclipse-ee4j/faces-api/issues/1382
https://github.com/eclipse-ee4j/faces-api/issues/1329
https://github.com/eclipse-ee4j/faces-api/issues/1403

• Issue ID 1216
Improve consistency in handling PhaseListener instances registered on UIViewRoot components.

• Issue ID 1435
Add ResourceHandler.getViewResources() method.

B.1.2.3. Platform Integration

• Issue ID 1379
ExternalContext.getResponseCharacterEncoding() and Portlet 3.0.

B.1.2.4. Facelets/VDL

Larger Changes

• Issue ID 1424
Add tag <f:importConstants>, see VDLDoc for that tag.

Smaller Changes

• Issue ID 1362
Revisit some cardinality rules regarding <tag> and <component> elements.

• Issue ID 936
Set FACELETS_REFRESH_PERIOD to -1 if ProjectStage is Production.

B.1.2.5. Spec Clarifications

• Issue ID 1254
Loosen language regarding the contracts attribute on <f:view>.

• Issue ID 1338
Clarify pseudocode for resource libraries.

• Issue ID 1279
Specify UIInput.isEmpty()

• Issue ID 1242
Remove mentione of OpenAjax hub.

• Issue ID 1215
Additional warning on DelegatingMetaTagHandler.getTagHandlerDelegate.

• Issue ID 1131
“name” attribute not required.

• Issue ID 1270
TagDecorator spec namespace modifications.

• Issue ID 1401
Advisory text for ExceptionHandler.

• Issue ID 1402

B.1. Changes between 2.2 and 2.3

Final Jakarta Server Faces 397

https://github.com/eclipse-ee4j/faces-api/issues/1216
https://github.com/eclipse-ee4j/faces-api/issues/1435
https://github.com/eclipse-ee4j/faces-api/issues/1379
https://github.com/eclipse-ee4j/faces-api/issues/1424
https://github.com/eclipse-ee4j/faces-api/issues/1362
https://github.com/eclipse-ee4j/faces-api/issues/936
https://github.com/eclipse-ee4j/faces-api/issues/1254
https://github.com/eclipse-ee4j/faces-api/issues/1338
https://github.com/eclipse-ee4j/faces-api/issues/1279
https://github.com/eclipse-ee4j/faces-api/issues/1242
https://github.com/eclipse-ee4j/faces-api/issues/1215
https://github.com/eclipse-ee4j/faces-api/issues/1131
https://github.com/eclipse-ee4j/faces-api/issues/1270
https://github.com/eclipse-ee4j/faces-api/issues/1401
https://github.com/eclipse-ee4j/faces-api/issues/1402

Explicitly declare that flow eagerness not supported.

• Issue ID 677
Document automatic UIPanel behavior for f:facet.

• Issue ID 1095
Description for “rendered” attribute for repeat and fragment.

• Issue ID 1066
Application.getNavigationHandler() and application element.

• Issue ID 803
VisitHint.EXECUTE_LIFECYCLE clarifications.

• Issue ID 1217
EnumConverter.getAsString() clarifications.

• Issue ID 1356
UIInput.processValidators() clarifications.

• Issue ID 1424
Public constants for source, behavior, and partial.event. See the Javadocs for
javax.faces.component.behavior.ClientBehaviorContext, and
javax.faces.conetxt.PartialViewContext.

• Issue ID 1428
API constants for jsf.js and javax.faces in JavaScript.

• Issue ID 1260
Support for exact mapping of FacesServlet. See ViewHandler Methods that Derive Information
From the Incoming Request and ViewHandler Methods Relating to Navigation.

Issue ID 1250
Fix entries in table Jakarta Faces Artifacts Eligible for Injection.

B.1.2.6. Resources

B.1.2.7. Expression Language

B.1.2.8. Configuration and Bootstrapping

B.1.2.9. Miscellaneous

Smaller Changes

• Issue ID 1225
Clarify requirements to support BCP-47 regarding localization. See Determining the active Locale

• Issue ID 1429
Add constructor to make wrapping easier.

• Issue ID 1430
Leverage Java SE 8 repeatable annotations where appropriate.

B.1. Changes between 2.2 and 2.3

398 Jakarta Server Faces Final

https://github.com/eclipse-ee4j/faces-api/issues/677
https://github.com/eclipse-ee4j/faces-api/issues/1095
https://github.com/eclipse-ee4j/faces-api/issues/1066
https://github.com/eclipse-ee4j/faces-api/issues/803
https://github.com/eclipse-ee4j/faces-api/issues/1217
https://github.com/eclipse-ee4j/faces-api/issues/1356
https://github.com/eclipse-ee4j/faces-api/issues/1424
https://github.com/eclipse-ee4j/faces-api/issues/1428
https://github.com/eclipse-ee4j/faces-api/issues/1260
https://github.com/eclipse-ee4j/faces-api/issues/1250
https://github.com/eclipse-ee4j/faces-api/issues/1225
https://github.com/eclipse-ee4j/faces-api/issues/1429
https://github.com/eclipse-ee4j/faces-api/issues/1430

B.1.3. Backward Compatibility with Previous Versions

JSF 2.3 is fully backward compatible with previous releases of JSF, unless any of the following context-
parameter values are specified. See UsingJSFInWebApplications.pdf for details.

javax.faces.ALWAYS_PERFORM_VALIDATION_WHEN_REQUIRED_IS_TRUE

javax.faces.DISABLE_FACESSERVLET_TO_XHTML

javax.faces.VIEWROOT_PHASE_LISTENER_QUEUES_EXCEPTIONS.

JSF 2.3 is fully backward compatible with previous releases of JSF unless a CDI managed bean is
included in the application with the annotation @javax.faces.annotation.FacesConfig. See the javadocs
for that annotation for details.

B.1.4. Breakages in Backward Compatibility

B.2. Changes between 2.1 and 2.2
This section gives the reader a survey of the changes between this version of the specification and the
previous version, using the categories from the issue tracker at < https://github.com/eclipse-ee4j/faces-
api/issues/ >.

B.2.1. Big Ticket Features

• HTML5 Friendly Markup
Issue ID 1090
Start with HTML5 Friendly Markup

• Resource Library Contracts
Issue ID 1142
Start with Resource Library Contracts Background.

• Faces Flows
Issue ID 730
Start with FlowHandler.

• Stateless Views
Issue ID 1055
Start with Stateless Views.

B.2.2. Other Features, by Functional Area

B.2.2.1. Components/Renderers

Larger Changes

• Issue ID 479
UIData supports the Collection Interface rather than List.

B.2. Changes between 2.1 and 2.2

Final Jakarta Server Faces 399

UsingJSFInWebApplications.pdf#a6088
https://github.com/eclipse-ee4j/faces-api/issues/
https://github.com/eclipse-ee4j/faces-api/issues/
https://github.com/eclipse-ee4j/faces-api/issues/1090
https://github.com/eclipse-ee4j/faces-api/issues/1142
https://github.com/eclipse-ee4j/faces-api/issues/730
https://github.com/eclipse-ee4j/faces-api/issues/1055
https://github.com/eclipse-ee4j/faces-api/issues/479

• Issue ID 1134
Add the "role" pass through attribute.

Smaller Changes

• Issue ID 1080
Warn about some important corner cases when UIComponent.findComponent() may not provide the
expected results.

• Issue ID 1068
New section describing what happens with respect to partial processing during render response.
See Render Response Partial Processing.

• Issue ID 1067
Spec clarifications. See the VDLDoc for cc:insertChildren , cc:insertFacet

• Issue ID 1061
Clarify that both Application.publishEvent() and the manual traversal based delivery are required
for publishing the PostRestoreStateEvent .

• Issue ID 1030
Clarify docs for h:message h:messages

• Issue ID 1023
Modify JavaDoc to relax requirements for PostAddToViewEvent publishing

• Issue ID 1019
Modify spec for ResponseWriter.writeURIAttribute() to explicitly require adherence to the W3C URI
spec

• Issue ID 997
javax.faces.component.ComponentSystemEvent: Override isAppropriateListener so that it first asks
the listener, "are you a ComponentSystemEventListener", then, if not, asks
super.isAppropriateListener()

• Issue ID 984
Component Context Manager, see javax.faces.component.visit.ComponentModificationManager .

• Issue ID 943
See javax.faces.view.ViewDeclarationLanguageWrapper

• Issue ID 784
Deprecate the CURRENT_COMPONENT and CURRENT_COMPOSITE_COMPONENT attributes

• Issue ID 599
Make it possible to programmatically create components in the same way as they are created by
Facelets. See javax.faces.application.Application.createComponent(FacesContext, String taglibUri,
String tagName, Map attrs)

• Issue ID 703
Make "value" optional for @FacesComponent.

• Issue ID 585

B.2. Changes between 2.1 and 2.2

400 Jakarta Server Faces Final

https://github.com/eclipse-ee4j/faces-api/issues/1134
https://github.com/eclipse-ee4j/faces-api/issues/1080
https://github.com/eclipse-ee4j/faces-api/issues/1068
https://github.com/eclipse-ee4j/faces-api/issues/1067
https://github.com/eclipse-ee4j/faces-api/issues/1061
https://github.com/eclipse-ee4j/faces-api/issues/1030
https://github.com/eclipse-ee4j/faces-api/issues/1023
https://github.com/eclipse-ee4j/faces-api/issues/1019
https://github.com/eclipse-ee4j/faces-api/issues/997
https://github.com/eclipse-ee4j/faces-api/issues/984
https://github.com/eclipse-ee4j/faces-api/issues/943
https://github.com/eclipse-ee4j/faces-api/issues/784
https://github.com/eclipse-ee4j/faces-api/issues/599
https://github.com/eclipse-ee4j/faces-api/issues/703
https://github.com/eclipse-ee4j/faces-api/issues/585

outputText and inputText do not render children by default

• Issue ID 550
OutputStylesheet "media" attribute

• Issue ID 1125
javax.faces.application.Application event subscription clarifications.

B.2.2.2. Lifecycle

Larger Changes

• Issue ID 949, 947
Give JSF the ability to correctly handle browsing context (tab, browser window, pop-up, etc). See
javax.faces.lifecycle.ClientWindow .

• Issue ID 758 and 1042

A jsf-api/src/main/java/javax/faces/component/UIViewAction.java

The heart of this changebundle, this class came over from the JBoss Seam Faces Module, but I’ve
rewritten most of the javadoc.

M jsf-api/src/main/java/javax/faces/event/PhaseId.java

new methods

public String getName()

public static PhaseId phaseIdValueOf(String phase)

Change Default NavigationHandler Algorithm to account for UIViewAction

• Issue ID 1062 and 802
File Upload

• Issue ID 766
Events from the flash

• Issue ID 1050
Add support for delay value in options for Ajax requests

Smaller Changes

• Issue ID 1129
In validate(), clarify that setSubmittedValue() null must be called if validation succeeds.

• Issue ID 1071 Add FlashFactory. See Delegating Implementation Support.

• Issue ID 1065
When calculating the locale for the resource library prefix, if there is a UIViewRoot, use its locale
first, otherwise, just use the Applications’s ViewHandler’s calculateLocale() method. See Libraries
of Localized and Versioned Resources

B.2. Changes between 2.1 and 2.2

Final Jakarta Server Faces 401

https://github.com/eclipse-ee4j/faces-api/issues/550
https://github.com/eclipse-ee4j/faces-api/issues/1125
https://github.com/eclipse-ee4j/faces-api/issues/949
https://github.com/eclipse-ee4j/faces-api/issues/947
https://github.com/eclipse-ee4j/faces-api/issues/758
https://github.com/eclipse-ee4j/faces-api/issues/1042
https://github.com/eclipse-ee4j/faces-api/issues/1062
https://github.com/eclipse-ee4j/faces-api/issues/802
https://github.com/eclipse-ee4j/faces-api/issues/766
https://github.com/eclipse-ee4j/faces-api/issues/1050
https://github.com/eclipse-ee4j/faces-api/issues/1129
https://github.com/eclipse-ee4j/faces-api/issues/1071
UsingJSFInWebApplications.pdf#a6336
https://github.com/eclipse-ee4j/faces-api/issues/1065

• Issue ID 1039
In ApplicationWrapper, mark things as deprecated

• Issue ID 1028
Deprecate StateManager, point to StateManagementStrategy. In StateManagementStrategy, require
the use of the visit API to perform the saving.

• Issue ID 993
Wrapper for ActionListener

• Tweak circumstances for skipping intervening lifecycle phases in the case of view metadata Issue
ID 762

Section 2.2.1. Now has this text.

Otherwise, call getViewMetadata() on the ViewDeclarationLanguage instance. If the result is
non-null, call createMetadataView() on the ViewMetadata instance. Call
ViewMetadata.getViewParameters(). If the result is a non-empty Collection, do not call
facesContext.renderResponse(). If the result is an empty collection, try to obtain the metadata
facet of the UIViewRoot by asking the UIViewRoot for the facet named
UIViewRoot.METADATA_FACET_NAME. This facet must exist. If the facet has no children, call
facesContext.renderResponse(). Otherwise, none of the previous steps have yielded the
discovery any of metadata, so call facesContext.renderResponse().

• Issue ID 566
UIOutput.getValue() value returns.

• Issue ID 220
In web-partialresponse_2_2.xsd, require that the <partial-response> element has an “id” attribute
whose value is the return from UIViewRoot.getContainerClientId() .

B.2.2.3. Platform Integration

• Issue ID 763
Change Managed Bean Annotations to account for new injectability requirements.

• Issue ID 976
In Javadoc for “Faces Managed Bean Annotation Specification For Containers Conforming to Servlet
2.5 and Beyond”, indicate that javax.faces.bean will be deprecated in the next version.

• Issue ID 1087
Introduce CDI based @ViewScoped annotation.

B.2.2.4. Facelets/VDL

Larger Changes

• Issue ID 1001
Allow cc and non-cc components in one taglib

A jsf-api/doc/web-facelettaglibrary_2_2.xsd

B.2. Changes between 2.1 and 2.2

402 Jakarta Server Faces Final

https://github.com/eclipse-ee4j/faces-api/issues/1039
https://github.com/eclipse-ee4j/faces-api/issues/1028
https://github.com/eclipse-ee4j/faces-api/issues/993
https://github.com/eclipse-ee4j/faces-api/issues/762
https://github.com/eclipse-ee4j/faces-api/issues/566
https://github.com/eclipse-ee4j/faces-api/issues/220
https://github.com/eclipse-ee4j/faces-api/issues/763
https://github.com/eclipse-ee4j/faces-api/issues/976
https://github.com/eclipse-ee4j/faces-api/issues/1087
https://github.com/eclipse-ee4j/faces-api/issues/1001

First change to the facelet taglib schema in 2.2: introduce the ability to declare a resource which
will be the composite component for a tag. Now, before you get all excited about what conventions
we can use to make this easier, let me stop you right there. Here is a summary of the ease of use
story regarding taglib files.

The 80/20 rule says we should make taglib files optional most of the time. Here are the 80%
cases.

Employs the cc naming convention http://java.sun.com/jsf/composite/<libraryName>

The user employs a java component has a @FacesComponent on it that declares the necessary
metadata. Issue ID 594

Here are some of the cases where you must have a taglib file, the 20% cases.

If you want to employ a cc with a namespace other than
http://java.sun.com/jsf/composite/<libraryName> you need to have a taglib file that declares
<composite-library-name>. Currently you must not detlare any <tag> elements in such a taglib
file. All the tags in such a library must come from the same resource library.

If the user is not employs a java component but is not using @FacesComponent.

This patch introduces the following syntax.

<?xml version="1.0" encoding="UTF-8"?>
<facelet-taglib xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facelettaglibary_2_2.xsd"
 version="2.2">
 <namespace>test</namespace>
 <tag>
 <tag-name>layout</tag-name>
 <resource-id>myCC/whatever.xhtml</resource-id>
 </tag>
</facelet-taglib>

Where <resource-id> is a valid resource identifier as specified in section 2.6.1.3.

• Issue ID 548
Require additional check to handle the case where, in one resource library, there are both localized
and non-localized resources. See See Libraries of Localized and Versioned Resources.

Smaller Changes

• Issue ID 1038
Declare an annotation corresponding to the javax.faces.FACELETS_RESOURCE_RESOLVER
application configuration parameter. See See Requirements for scanning of classes for annotations

B.2. Changes between 2.1 and 2.2

Final Jakarta Server Faces 403

https://github.com/eclipse-ee4j/faces-api/issues/594
https://github.com/eclipse-ee4j/faces-api/issues/548
https://github.com/eclipse-ee4j/faces-api/issues/1038
UsingJSFInWebApplications.pdf#a6598

and See Application Configuration Parameters.

• Issue ID 1082
Account for DOCTYPE discrepancy between server side representation of Facelet VDL files, which
are proper XHTML, and processed files which are sent to the client, which now, by default, are
HTML5 HTML syntax files. See See The facelets-processing element.

• Fix incorrect VDLDoc Issue ID 967 f:selectItems itemValue description incorrect.

• Issue ID 922
Remove maxlength from f:viewParam

• Issue ID 998
Document that ui:fragment should not be bound to a bean with wider than request scope,
document that the type of the property must extend from UIComponent.

• Issue ID 999
Changes to "template" attribute requiredness for ui:decorate and ui:composition

• Issue ID 901
Deprecate “targets” concept.

• Issue ID 1088
add short-name to schema.

• Issue ID 746
Missing method-signature element in taglib xsd.

B.2.2.5. Spec Clarifications

• Issue ID 1136
In ExternalContext.dispatch() , clarify what is to be done if getRequestDispatcher() returns null .

• Issue ID 1132
Replace literal strings with symbolic constants where possible.

• Issue ID 1127
State Saving Serializability concerns.

• Issue ID 1114
javax.faces.view.facelets.Facelet.apply() spec version reference error.

• Issue ID 1100, 1097
HTML5 id attribute sensitivity

• Issue ID 1064
In The facelets-processing element, clarify that in XML and JSPX modes, only the CDATA section
start and end tags, not the entire CDATA section and contents, should be consumed.

• Issue ID 1063
javax.faces.component.UIViewParameter.getSubmittedValue() return value.

• Issue ID 1058
ui:repeat tag size attribute

B.2. Changes between 2.1 and 2.2

404 Jakarta Server Faces Final

UsingJSFInWebApplications.pdf#a6088
https://github.com/eclipse-ee4j/faces-api/issues/1082
JSFMetadata.pdf#a7061
https://github.com/eclipse-ee4j/faces-api/issues/967
https://github.com/eclipse-ee4j/faces-api/issues/922
https://github.com/eclipse-ee4j/faces-api/issues/998
https://github.com/eclipse-ee4j/faces-api/issues/999
https://github.com/eclipse-ee4j/faces-api/issues/901
https://github.com/eclipse-ee4j/faces-api/issues/1088
https://github.com/eclipse-ee4j/faces-api/issues/746
https://github.com/eclipse-ee4j/faces-api/issues/1136
https://github.com/eclipse-ee4j/faces-api/issues/1132
https://github.com/eclipse-ee4j/faces-api/issues/1127
https://github.com/eclipse-ee4j/faces-api/issues/1114
https://github.com/eclipse-ee4j/faces-api/issues/1100
https://github.com/eclipse-ee4j/faces-api/issues/1097
https://github.com/eclipse-ee4j/faces-api/issues/1064
JSFMetadata.pdf#a7061
https://github.com/eclipse-ee4j/faces-api/issues/1063
https://github.com/eclipse-ee4j/faces-api/issues/1058

• Issue ID 1036
In ValueExpression properties, clarify which attributes are expression enabled,

• Issue ID 1035
Change section FacesMessage to clarify the meaning of having FacesMessage instances on the
FacesContext.

• Issue ID 1026
f:ajax event attribute is String (not VE)

• Issue ID 1014

12.1.3

The specification for the context-param that declares the list of TagDecorator implementations
to the runtime should have always been javax.faces.FACELETS_DECORATORS. Prior to this
revision, the name of this context param was incorrectly specified as javax.faces.DECORATORS.
The reference implementation has always used the correct name, however.

• Issue ID 1010
Check existing usages of the state saving method parameter to ensure case insensitivity.

• Issue ID 1004

M usingFacesInWebapps.fm

12.1.3 Set default for javax.faces.FACELETS_BUFFER_SIZE to be 1024.

• Issue ID 998
Additional clarification about binding attribute in VDLdocs

• Issue ID 915, 1015
Non-normative text about http methods and prefix mapping

• Issue ID 2740
In Component Bindings, clarify a corner case regarding bean scope and component binding.

B.2.2.6. Resources

Larger Changes

• Issue ID 809
This commit introduces a cleaner contract for allowing views to be loaded from the Filesystem
(including inside of JAR files). All VDL resources must be loaded using
ResourceHandler.createViewResource().

Smaller Changes

• Issue ID 996
Enable configuring the web app resources directory. See Application Configuration Parameters.

• Issue ID 719

B.2. Changes between 2.1 and 2.2

Final Jakarta Server Faces 405

https://github.com/eclipse-ee4j/faces-api/issues/1036
https://github.com/eclipse-ee4j/faces-api/issues/1035
https://github.com/eclipse-ee4j/faces-api/issues/1026
https://github.com/eclipse-ee4j/faces-api/issues/1014
https://github.com/eclipse-ee4j/faces-api/issues/1010
https://github.com/eclipse-ee4j/faces-api/issues/1004
https://github.com/eclipse-ee4j/faces-api/issues/998
https://github.com/eclipse-ee4j/faces-api/issues/915
https://github.com/eclipse-ee4j/faces-api/issues/1015
https://github.com/eclipse-ee4j/faces-api/issues/2740
https://github.com/eclipse-ee4j/faces-api/issues/809
https://github.com/eclipse-ee4j/faces-api/issues/996
UsingJSFInWebApplications.pdf#a6088
https://github.com/eclipse-ee4j/faces-api/issues/719

Method to map a viewId to a resourcePath

• Issue ID 1130
Modify State Saving Alternatives and Implications to clarify there is no requirement to serialize
server state by default when state saving method is server. Introduce a context parameter to this
effect in Application Configuration Parameters

B.2.2.7. Expression Language

• Issue ID 1092

Remove text from MethodExpressionValueChangeListener and MethodExpressionActionListener
regarding wrapping any exception thrown by the invoked method being wrapped in an
AbortProcessingException. Such a requirement is incorrect and should not have been introduced.

In section See ExceptionHandler, add AbortProcessingException , to the list of exceptions that do
not get to the ExceptionHandler .

• Issue ID 1043
When publishing a ComponentSystemEvent, ensure the EL current component is pushed correctly

• Issue ID 1164
If running in a container that supports EL 3.0, add the necessary ELResolvers. See See Stream,
StaticField, Map, List, Array, and Bean ELResolvers.

B.2.2.8. Configuration and Bootstrapping

• Issue ID 533
Modify Application Startup Behavior to account for requirement to call new API when starting up.

B.2.2.9. Miscellaneous

• Issue ID 1169

New XML Namespace for XSD files introduced in JSF 2.2, and also for facelet tag libraries.

The following XSD files are new for JSF 2.2, and each will be in the XML namespace
http://xmlns.jcp.org/xml/ns/javaee .

web-facelettaglibrary_2_2.xsd

web-facesconfig_2_2.xsd

web-partialresponse_2_2.xsd

Facelet Tag Libraries will now respond to the following URIs

B.2. Changes between 2.1 and 2.2

406 Jakarta Server Faces Final

https://github.com/eclipse-ee4j/faces-api/issues/1130
UsingJSFInWebApplications.pdf#a6088
https://github.com/eclipse-ee4j/faces-api/issues/1092
https://github.com/eclipse-ee4j/faces-api/issues/1043
https://github.com/eclipse-ee4j/faces-api/issues/1164
https://github.com/eclipse-ee4j/faces-api/issues/533
UsingJSFInWebApplications.pdf#a6201
https://github.com/eclipse-ee4j/faces-api/issues/1169
http://xmlns.jcp.org/xml/ns/javaee

Library Old URI New URI

Composite
Components

http://java.sun.com/jsf/composite http://xmlns.jcp.org/jsf/composite

Faces Core http://java.sun.com/jsf/core http://xmlns.jcp.org/jsf/core

HTML_BASIC http://java.sun.com/jsf/html http://xmlns.jcp.org/jsf/html

JSTL Core http://java.sun.com/jsp/jstl/core http://xmlns.jcp.org/jsp/jstl/core

JSTL Functions http://java.sun.com/jsp/jstl/functions http://xmlns.jcp.org/jsp/jstl/functions

Facelets Templating http://java.sun.com/jsf/facelets http://xmlns.jcp.org/jsf/facelets

Pass Through
Attributes

http://java.sun.com/jsf/passthrough http://xmlns.jcp.org/jsf/passthrough

Pass Through
Elements

http://java.sun.com/jsf http://xmlns.jcp.org/jsf

Developers are requested to use the values from the New URI column, though both columns will
work.

• Issue ID 997

M jsf-api/src/main/java/javax/faces/event/ComponentSystemEvent.java

Override isAppropriateListener so that it first asks the listener, "are you a
ComponentSystemEventListener", then, if not, asks super.isAppropriateListener()

M jsf-api/src/main/java/javax/faces/event/SystemEvent.java

in isAppropriateListener(), document the default implementation.

M jsf-api/src/main/java/javax/faces/component/UIComponent.java

Make inner class ComponentSystemEventListenerAdapter implement
ComponentSystemEventListener.

• Issue ID 917

javax.faces.application.ResourceWrapper:

getContentType()

getLibraryName()

getResourceName()

B.2. Changes between 2.1 and 2.2

Final Jakarta Server Faces 407

http://java.sun.com/jsf/composite
http://xmlns.jcp.org/jsf/composite
http://java.sun.com/jsf/core
http://xmlns.jcp.org/jsf/core
http://java.sun.com/jsf/html
http://xmlns.jcp.org/jsf/html
http://java.sun.com/jsp/jstl/core
http://xmlns.jcp.org/jsp/jstl/core
http://java.sun.com/jsp/jstl/functions
http://xmlns.jcp.org/jsp/jstl/functions
http://java.sun.com/jsf/facelets
http://xmlns.jcp.org/jsf/facelets
http://java.sun.com/jsf/passthrough
http://xmlns.jcp.org/jsf/passthrough
http://java.sun.com/jsf
http://xmlns.jcp.org/jsf
https://github.com/eclipse-ee4j/faces-api/issues/997
https://github.com/eclipse-ee4j/faces-api/issues/917

setContentType(String)

setLibraryName(String)

setResourceName(String)

javax.faces.context.ExternalContextWrapper:

getSessionMaxInactiveInterval()

isSecure()

setSessionMaxInactiveInterval()

javax.faces.context.PartialViewContextWrapper

setPartialRequest(boolean)

• 12.1.3 add this text to the javax.faces.STATE_SAVING_METHOD spec. When examining the value, the
runtime must ignore the case.

• Add ExternalContext.getApplicationContextPath() Issue ID 1012

• Issue ID 787
restore ViewScope before templates are processed with buildView()

• 7.6.2.6 typo in spec for renderView(). Should be
Return immediately if calling isRendered() on the argument UIViewRoot returns false.

• Per Matt Benson, remove duplicate descriptions of the cc and component implicit object from the
getValue() specification for the composite component ELResolver in section 5.6.2.1.

• Issue ID 869

Specify Cross Site Request Forgery protection.

Add text in Restore View to describe how non-postback requests are inspected for protection, if
necessary.

Remove text for writeState() in ResponseStateManager, point to the JavaDocs.

Add View Protection methods to Overview for ViewHandler.

Introduce subsections to Default ViewHandler Implementation that group the methods by their
purpose. Add a new section ViewHandler Methods that relate to View Protection, which points to
the javadocs. In ViewHandler Methods Relating to Navigation, in the spec for getActionUrl() ,
specify how view protection is affected.

• Remove tables in section Requirements for scanning of classes for annotations
The Javadoc tool lists annotations in a separate section, making the tables that list JSF related
annotations redundant.

• Issue ID 1082

B.2. Changes between 2.1 and 2.2

408 Jakarta Server Faces Final

https://github.com/eclipse-ee4j/faces-api/issues/1012
https://github.com/eclipse-ee4j/faces-api/issues/787
https://github.com/eclipse-ee4j/faces-api/issues/869
UsingJSFInWebApplications.pdf#a6598
https://github.com/eclipse-ee4j/faces-api/issues/1082

Add new section DOCTYPE and XML Declaration.

• Issue ID 1141
In Resource Identifiers, declare that resourceName and resourceVersion, in addition to the already
listed other segments, are subject to the same constraints.

• Issue ID 1129
In Render Response Partial Processing, require calling UIViewRoot.resetValues() if necessary.

B.2.3. Backward Compatibility with Previous Versions

Faces 2.2 is backwards compatible with Faces 2.1 and 2.0. This means that a web-application that was
developed to run with Faces 2.1 or 2.0 won’t require any modification when run with Faces 2.2 except
in the cases described in the following section.

B.2.4. Breakages in Backward Compatibility

• Issue ID 1092
Due to an error in previous versions of the specification, exceptions were silently being swallowed
that now will bubble up to the exception handler. Code that was relying on this incorrect behavior
may need to be modified to account for fixing this problem.

• Issue ID 745

5.6.2.2 Table 5-11. Make the following changes to the spec for Composite Component Attribute
ELResoler

Modify getType() according to new specification language.

Require the implementation of containsKey() on the Map.

▪ containsKey(): If the attributes map contains the key, return true. Otherwise, if a default
value has been declared for the attribute, return true. Otherwise, return false.

Composite Component Metadata

New text dealing with <cc:attribute>

Any additional attributes on <composite:attribute/ > are exposed as attributes accessible from
the getValue() and attributeNames() methods on PropertyDescriptor . The return type from
getValue() must be a ValueExpression with the exception of the getValue(“type”) . The return
type from getValue(“type”) must be Class . If the value specified for the type attribute of
<cc:attribute/> cannot be converted to an actual Class , a TagAttributeException must be thrown,
including the Tag and TagAttribute instances in the constructor.

Yes, this is a backwards incompatible change, but because the usecase is so specific, and the
performance benefit so substantial, it was judged to be worth the cost.

B.2. Changes between 2.1 and 2.2

Final Jakarta Server Faces 409

https://github.com/eclipse-ee4j/faces-api/issues/1141
https://github.com/eclipse-ee4j/faces-api/issues/1129
https://github.com/eclipse-ee4j/faces-api/issues/1092
https://github.com/eclipse-ee4j/faces-api/issues/745

B.3. Changes between 2.0 Rev a and 2.1

B.3.1. Facelet Tag Library mechanism

Document that the unprefixed namespace must pass through.

B.3.2. New feature: <facelets-processing>

See Required Handling of *-extension elements in the application configuration resources files

B.3.3. Update schema for 2.1

The only new element is <facelet-cache-factory>. See the full schema in the Javadoc section of the
documents.

B.3.4. Change Restore View Phase

Change See Restore View to require a call to ViewHandler.deriveLogicalViewId() before trying to find
the ViewDeclarationLanguage .

B.3.5. Default ViewHandler Implementation

Document deriveLogicalViewId().

B.4. Changes between 2.0 Final and 2.0 Rev a

B.4.1. Global changes

B.4.1.1. ExceptionQueuedEvent

The specification incorrectly refers to the ExceptionQueuedEvent as the ExceptionEvent. All instances
should be replaced, as there is no such class ExceptionEvent in JSF.

B.4.1.2. Usage of the term "page" in the JSF 2.0 spec

This might be kind of nit-picky, but there are several occurrences of the term "Facelet page" in the JSF
2.0 spec, but I’d like to set forth the argument that the term "Facelet document" or "Facelet view" would
be more appropriate, depending on context. Similarly, the spec uses the term "Composite component
markup page" which isn’t always appropriate either. Better to call it a "Composite component markup
document" or something like that.

All Facelet XHTML files are documents, but not all Facelet XHTML files are pages. There is a built-in
bias to the word "page" that assumes the markup output will be rendered as a "web page" which is not
always the case. In the case of portlets, the rendered output is a fragment of markup (normally a
<div>…</div>). In the case of a custom renderkit, the rendered output might be some mobile device. In

B.3. Changes between 2.0 Rev a and 2.1

410 Jakarta Server Faces Final

JSFMetadata.pdf#a7040

the case of ICEfaces, the rendered markup is a server-side DOM tree. In the case of a composite
component, a Facelet XHTML file is not a page, but a "Composite Component markup document" (or
definition) file.

For example.. Instead of a "Facelet Page", I think the following should be called a "Facelet Document" or
a "Facelet View" (since the f:view tag is optional, but implied)

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:ez="http://java.sun.com/jsf/composite/ezcomp">
 <h:head>
 <title>A simple example of EZComp</title>
 </h:head>
 <h:body>
 <h:form>
 </h:form>
 </h:body>
</html>

But in the case of Portlets, the <html> , <head>, and <body> tags are forbidden. The equivalent "Facelet
Document" or "Facelet View" for portlets would look like this:

<f:view xmlns="http://www.w3.org/1999/xhtml"
 xmlns:h="http://java.sun.com/jsf/html"
 xmlns:f="http://java.sun.com/jsf/core"
 xmlns:ez="http://java.sun.com/jsf/composite/ezcomp">
 ...
</f:view>

B.4.2. Front Matter

Change Sun logo to Oracle Logo. Sun postal address to Oracle postal address, and Sun phone number to
Oracle phone number

Update spec license.

B.4.3. Chapter 2

B.4.3.1. Restore View

Per Andy Schwartz recommendation, loosen the spec requirements for the delivery of the
PostRestoreStateEvent to be "somewhere during RestoreView".

B.4. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Server Faces 411

B.4.3.2. Localized Application Messages

Suggestion: Change to

Validation Error: Length is less than allowable minimum of 5.

B.4.3.3. JSR 303 Bean Validation

Change "leas" to "least"

B.4.3.4. JSR 303 Bean Validation needs to reference "Bean Validation Integration" section

While reading section 2.5.7, one becomes very disappointed with the limited about of information that
it provides. But section 3.5.6 provides more information, so the recommendation is that these sections
reference each other, or perhaps are combined in some way if that makes sense.

B.4.3.5. Resource Identifiers

Tighten spec for the localePrefix, libraryName, and resourceVersion segments of the resource
identifier.

B.4.4. Chapter 3

B.4.4.1. Clarify meaning of "javax.faces.bean" in Bean Validator Activation

Section 3.5.6.1 says:

"If Bean Validation is present in the runtime environment, the system must ensure that the
javax.faces.Bean standard validator is added with a call to Application.addDefaultValidatorId()"

But the reader of the Spec has no idea what the "javax.faces.Bean" standard validator is, within the
context of this paragraph. Recommend adding some verbiage that says that javax.faces.Bean is the
validatorId of the standard JSR 303 validator of the JSF 2.0 API, which equates to the
javax.faces.validator.BeanValidator class as mentioned in Section 10.4.1.4.

B.4.4.2. Need to be consistent between Declarative Listener Registration of the JSF 2.0 Spec and
the VDLDoc for f:event

Section 3.4.3.4 of the JSF 2.0 Spec reads:

The method signature for the MethodExpression pointed to by the listener attribute must match the
signature of

javax.faces.event.ComponentSystemEventListener.processEvent().

And the VDLDocs for f:event read:

(signature must match public void listener(javax.faces.event.ComponentSystemEvent event) throws

B.4. Changes between 2.0 Final and 2.0 Rev a

412 Jakarta Server Faces Final

javax.faces.event.AbortProcessingException)

Both of these are true, and indeed saying the same thing. But I think it would be helpful to say BOTH
things, in BOTH documents.

B.4.4.3. Typo in Declarative Listener Registration of the JSF 2.0 Spec regarding "beforeRender"

Section 3.4.3.4 of the JSF 2.0 Spec has this example:

<h:inputText value="#{myBean.text}">
 <f:event type="beforeRender" listener="#{myBean.beforeTextRender}" />
</h:inputText>

But "beforeRender" is a typo. The correct value is "preRenderComponent" as stated in the f:event
VDLDocs.

B.4.4.4. Validation Registration, What does it mean to be a JSF User Interface component?

Remove references to UInput.encodeEnd(). Not for a very long time has this method been used to
instigate validation.

B.4.4.5. Composite Component Metadata

Section 3.6.2.1 of the Spec indicates that the "hidden" property of the javax.bean.FeatureDescriptor is to
appear as an attribute for tags like composite:actionSource, composite:attribute, composite:facet, and
composite:interface but the VDLDocs do not declare that the "hidden" property is available.

B.4.5. Chapter 4

B.4.5.1. Events

Remove text pertaining to PostRestoreStateEvent, rely instead on text in setion 2.2.1.

B.4.6. Chapter 7

B.4.6.1. Overview

getNavigationCase should return NavigationCase and not void.

B.4.6.2. Default NavigationHandler Algorithm

Add faces-include-view-params

B.4.6.3. Default ViewHandler Implementation

Fix typo the specified createView() should be called in renderView() and restoreView().

B.4. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Server Faces 413

B.4.7. Chapter 9

B.4.7.1. <f:actionListener> of Spec PDF — Missing "for" attribute of f:actionListener in Spec PDF

The example for f:selectItems includes a noSelectionValue attribute, but that attribute isn’t
documented. VDLDocs for f:selectItems does not document the noSelectionValue attribute.

Actually, it does document it, but it only looks like it doesn’t. It seems as though the itemLabelEscaped
attribute is documented twice, but really the second occurance is the noSelectionValue.

B.4.7.2. <f:actionListener> and <f:valueChangeListener>

Add this non-normative text.

Note that if the binding attribute is used, the scope of the ValueExpression must be chosen carefully so
as not to introduce undesireable results. In general, when using the binding attribute, do not point to
beans in request or narrower scope.

B.4.8. Chapter 10

Need to change "confirm with" to "conform with".

Confusing verbiage in table 10-1 of JSF 2.0 spec regarding the word "template"

In table 10-1, it correctly says that "page templating" is not a feature of JSP.

But later on in the table, it says "Expressions in template text cause unexpected behavior when used in
JSP."

Somehow there needs to be an explanation of the distinction of "page templating" and "template text"
here. Right now it kind of reads as a contradiction.

B.4.8.1. General Requirements

Add an assertion to section 10.3.1 stating that EL expressions that appear in the facelet XHTML page
must appear in the rendered view as if they were the right hand side of the value attribute of an at the
same point in the page as the EL expression

B.4.8.2. Facelet Tag Library mechanism

Section 10.3.2. Correct xref to point to section in appendix that includes the facelet taglib schema.

Correct xref to point to section in appendix that includes the facelet taglib schema.

B.4.8.3. VDLDocs and PDL documentation

See Facelet Templating Tag Library, See Facelet Templating Tag Library, and See JSTL Core and
Function Tag Libraries refer the reader to the "VDLDocs" for Facelet, CC, and JSTL tag libraries

B.4. Changes between 2.0 Final and 2.0 Rev a

414 Jakarta Server Faces Final

IntegrationWithJSP.adoc..pdf#a4654

respectively.

However, when one checks out the Mojarra 2.0.0 Beta 2 page, it talks about the "PDL" tag library
documentation. Also, when one clicks on the "PDL Documentation for Facelets2", it uses the term "PDL"
in several places.

So it looks like the View Declaration Language (VDL) terminology hasn’t made its way into the tag
library docs yet.

B.4.8.4. Possible error in section <f:ajax> of the JSF 2.0 Spec regarding f:ajax and h:panelGrid

Section 10.4.1.1, shows this example:

<f:ajax>
 <h:panelGrid>
 <h:inputText id=˝text1˝/>
 <h:commandButton id=˝button1˝/>
 </h:panelGrid>
</f:ajax>

And then has the following about the example:

<h:panelGrid> has no default event so in this case a behavior would not be applied.

BUT the very next example is this:

<f:ajax event=˝click˝>
 <h:panelGrid id=˝grid1˝>
 <h:inputText id=˝text1˝/>
 <h:commandButton id=˝button1˝>
 <f:ajax event=˝mouseover˝/>
 </h:commandButton>
 </h:panelGrid>
</f:ajax>

And then has the following comment:

From this example, grid1˝ and text1˝ would have ajax behavior applied for an onclick˝ event

So… which is it? Does h:panelGrid get ajax behavior or not? Can an HTML table have an "onclick"
JavaScript event?

B.4. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Server Faces 415

B.4.8.5. Redundant mentioning of Facelets in <f:validateBean> of the JSF 2.0 Spec

Since the parent section (10.4.1) indicates that sub-sections are Facelets-only in nature, then it is not
necessary to have (Facelets only) in the "Constraints" paragraph of Section 10.4.1.4 of the spec.

B.4.8.6. Availability of f:validateBean and f:validateRequired in Jakarta Server Pages

See Standard Facelet Tag Libraries outlines the f: namespaced tags that are only applicable to Facelets
(and not Jakarta Server Pages). In that section, f:validateBean, and f:validateRequired are listed.
However, they are both listed as working with Jakarta Server Pages as well (kind of like
f:validateRegex), as can be seen from the Jakarta Server Pages TLDDocs.

According to Dan Allen: "those tags only work partially in Jakarta Server Pages. Yes, they work as single
field validators. But the branch validator capability does not work (wrapping the validator tag around
a branch). The later feature is Facelets only. So the validators do have their feet in both ponds, but only
Facelets has full support. I suppose we could mention this tidbit in the Jakarta Server Pages section."

Dan is correct that it should be mentoned in the Jakarta Server Pages section, but also, that
f:validateBean and f:validateRequired belong in both Section 10.4 and 9.4, with the limits of their
functionality described in each section.

B.4.9. Chapter 13

B.4.9.1. Redundancy in Partial View Processing of the JSF 2.0 Spec

Section 13.4.2 of the JSF 2.0 spec has this sentence:

The request contains special parameters that indicate the request is a partial execute request or a
partial execute request that was triggered using Ajax

This needs clarification — does this mean to say:

partial execute request (not triggered by Ajax) or a partial execute request (that was triggered using
Ajax)

B.4.9.2. "Execute portions" of the JSF request processing lifecycle in the JSF 2.0 Spec

Section 13.4.2 reads:

Although the diagram in Section 13.4 Partial View Traversal˝ depicts the execute˝ portion as
encompassing everything except the Render Response Phase˝, it really is the Apply Request Values
Phase˝, Update Model Values Phase˝ and Process Validations Phase˝.

Why does the diagram include the INVOKE_APPLICATION phase if it’s not "really" considered to be
part of the execute portions?

B.4. Changes between 2.0 Final and 2.0 Rev a

416 Jakarta Server Faces Final

B.4.10. Chapter 14

B.4.10.1. Initiating an Ajax Request Typo in table 14.2.2 of the JSF 2.0 Spec

Table 14.2.2 reads:

"execute" phase

But in order to be consistent with the rest of the spec, it should read:

"execute" portion

Also, the same goes for "render" in that the word "portion" should be used instead of "phase".

B.4.10.2. Request/Response Event Handling Table 14.4.1

Change responseTxt to responseText.

Table 14.3: Reorder rows

B.4.11. Appendix A Metadata

Update schema to remove partial-traversal, as well as fixing 768.

B.4.11.1. Deprecated DTD for Facelet Taglibraries Used by Versions of Facelets Prior to JSF 2.0

To ease migration for Facelet taglibraries declared using pre-JSF 2.0 versions of Facelets,
implementations must support loading facelet taglibrary files that conform to the pre-JSF 2.0 Facelets
DTD. Per DTD conventions, Facelet taglibrary files declare conformance to this DTD by including text
similar to the following in at the top of their declaring file.

<!DOCTYPE facelet-taglib PUBLIC
 "-//Sun Microsystems, Inc.//DTD Facelet Taglib 1.0//EN"
 "http://java.sun.com/dtd/facelet-taglib_1_0.dtd">

Use of this DTD is officially deprecated. This DTD is included for reference in Section 1.2.1 "Deprecated
DTD for Facelet Taglibraries Used by Versions of Facelets Prior to JSF 2.0". It is expected that proper JSF
2.0 Facelet Taglibraries will declare conformance to the following schema, rather than the deprecated
DTD.

B.4.12. VDLDoc changes

B.4.12.1. Typo in f:selectItems VDLDocs

Change "mest" to "must"

B.4. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Server Faces 417

JSFMetadata.adoc.html.pdf#a7139

B.4.12.2. Need clarification on execute attribute of f:ajax

The VDLDocs for f:ajax say "Identifiers of components" but, for some reason, it wasn’t obvious to me
that this term referred to the "id" attributes of components. The recommendation isthat this be
clarified to say "list of id attribute values" instead. Also, the value of an id attribute like
"mycomponent" or something should be added to an example that includes a keyword… something
like this: "@this componentone componenttwo"

B.4.12.3. Spelling error in VDLDocs for f:ajax

This one from Lincoln:

See the "onerror" attribute

There is an extra 'e' → "oneerror"

B.4.12.4. Need clarification on required attribute in VDLDocs for tags that got a new "for"
attribute in JSF 2.0

The VDLDocs correctly have green for the new "for" attribute, but the "required" column says false,
when that’s not always the case.

For example, with f:actionListener the VDLDocs say that that it is not required. However, when the tag
is used as a child of a Composite Component, then the for attribute is indeed required. This would be
true of all tags like that, such as f:convertDateTime, f:convertNumber, etc.

B.4.12.5. Uppercase typo in VDLDocs for f:event

Change uppercase "P" to lowercase for: PostAddToView for the f:event VDLDocs

B.4.12.6. Need to change "JSP" to "Facelets" in "Body Content" of VDLDocs

Search for "JSP" on the f:event VDLDocs [1]. My suspicion is that this is a problem across the board.

B.4.12.7. Need clarification in VDLDocs for f:metadata

In the VDLDocs for f:metadata, recommend changing:

"This tag must reside within the top level XHTML file for the given viewId, not in a template"

to this:

"This tag must reside within the top level Facelet view, or in a template-client, but not in a template"

Also, it needs to be clarified that the page01.xhtml example is a template-client. So recommend
changing this:

"viewId XHTML page, page01.xhtml"

B.4. Changes between 2.0 Final and 2.0 Rev a

418 Jakarta Server Faces Final

to this:

"template-client XHTML page, page01.xhtml"

B.4.12.8. Missing description in VDLDocs for name attribute of f:viewParam

The VDLDocs for f:viewParam are missing documentation of the "name" attribute, which is pretty
important since it is required.

B.4.12.9. VLDDocs on "for" attribute of f:viewParam claim it can be used in a CC

The VDLDocs for f:viewParam claim that the "for" attribute is supported. I just checked Mojarra’s jsf-
api and UIViewParameter.java does not support the "for" attribute, since it does not have a getter/setter
for "for" like HtmlOutputLabel does. There are restrictions on f:viewParam such that it may only be
used inside of f:metadata, and f:metadata may only be used inside of f:view. So that disqualifies the
f:viewParam tag from being able to be used inside of a Composite Component. Therefore I recommend
that the documentation of the "for" attribute be totally removed.

B.4.12.10. Miscellaneous VDLDoc items

• VDLDocs for "execute" attribute of f:ajax say (must evaluate to java.lang.Object) but then say
"Evaluates to Collection"

• VDLDocs f:selectItem lists the new JSF 2.0 "noSelectionOption" but is not colored green to indicate
"new in JSF 2.0" and the link for f:selectItem in the navigation frame needs to be orange

• VDLDocs for f:validateBean should have all of its attributes in green to indicate "new in JSF 2.0"
since it is a new tag.

• VDLDocs for f:validateRegex has a typo in the description which reads "RegexpValidator" rather
than "RegexValidator"

• In spec, the "Changes between 1.2 and EDR2" section refers the reader to section 3.5.2 for the
addition of "javax.faces.RegularExpressionValidator" but actually it should be section 3.5.5

• VDLDocs for h:button say that the outcome attribute is not required, but really it should be
required otherwise there is no purpose of f:button — you would end up navigating back to the
current view. The whole point of f:button is to perform navigation to a different view that
potentially contains view parameters. Why have a bookmarkable URL back to itself?

• VDLDocs for h:button don’t mention a disabled attribute, but the h:link one does have the disabled
attribute. My guess would be that both should have this attribute?

• VDLDocs for h:outputScript and h:outputStylesheet should indicate that even though the UIOutput
class implements the ValueHolder interface, the coverter and value attributes are basically ignored
by the renderers, since the value attribute has no meaning. This is basically a design flaw — a new
class named UIOutputResource should have been created instead of UIOutput being reused.

• VDLDocs for h:outputScript and h:outputStylesheet should indicate that the "name" attribute is
required, since section 2.6.1.3 implies that this is the case with the following resource pattern:

B.4. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Server Faces 419

• VDLDocs for h:outputScript needs to have all the possible values for the target attribute
documented. I think the only valid values are "head", "body", and "form"

• VDLDocs for h:graphicImage has a dead hyperlink to "Common Algorithm for Obtaining A
Resource to Render

• VDLDocs for h:selectManyCheckbox indicate orange for the collectionType and
hideNoSelectionOption attributes but they should be green to indicate "new in JSF 2.0"

• VDLDocs for h:selectManyCheckbox says that the return type must evaluate to a String, but that’s
not entirely true. It can also evaluate to a concrete class that implements java.util.Collection

• VDLDocs for ui:param have two "name" attributes specified. The second one should be the "value"
attribute

B.4.12.11. Should TLDDocs now be VDLDocs?

The Spec introduces this term VDLDocs (which as I said in the other email, was formerly PDLDocs), but
it also refers the reader to the TLDDocs. Should we just settle on VDLDocs as the standard term
throughout the Spec?

B.4.12.12. Typo in VDLDocs for f:event.

The VDLDocs for f:event specify a "name" attribute, but the Description column of the page talks about
a "type" column (not "name"), which would be consistent with Section 3.4.3.4 of the Spec which talks
about a "type" column.

Jim Driscoll verified that there is a doc bug in the VDLDocs for f:event and that the "name" attribute is
actually "type"

B.4.13. Accepted Changes from JCP Change Log for JSF 2.0 Rev a

The referenced spec public issue number can be found in the issue tracker at
https://github.com/eclipse-ee4j/faces-api/issues/

ID Category Description Fixed in
Source Code
Repository of
Specification

Issue

C002 Errata Section 5.6.2.2 is out of sync with the current resolver
implementation.

yes Issue
ID:848

C004 Errata RenderKitDoc for OutcomeTarget Renderers are
incorrect with respect to intended design. Refer to
appendixB-changelog.html#UNKNOWNChangeC006 in
the footnotes section below.

yes Issue
ID:823

B.4. Changes between 2.0 Final and 2.0 Rev a

420 Jakarta Server Faces Final

https://github.com/eclipse-ee4j/faces-api/issues/
https://github.com/eclipse-ee4j/faces-api/issues/848
https://github.com/eclipse-ee4j/faces-api/issues/848
appendixB-changelog.html#UNKNOWN
https://github.com/eclipse-ee4j/faces-api/issues/823
https://github.com/eclipse-ee4j/faces-api/issues/823

C007 Errata Section JSF.11.4.7 Ordering. After the sentence "The
<others /> element must be handled as follows" add a
bullet point: "The <others /> element represents a set of
application configuration resources. This set is
described as the set of all application configuration
resources discovered in the application minus the one
currently being processed, minus the application
configuration resources mentioned by name in the
<ordering /> section. If this set is the empty set, at the
time the application configuration resources are being
processed, the <others > element must be ignored."

yes Issue
ID:824

C008 Errata taglib docs for composite:interface are missing
documentation for componentType attribute.

yes Issue
ID:849

C011 Errata Section JSF.3.6.2.1 Composite Component Metadata
Specification. Add BehaviorHolderAttachedObjectTarget
after iii. ActionSource2AttachedObjectTarget

yes Issue
ID:825

C012 Errata Javadocs for ResourceHandler.createResource(String
resourceId) need to me ammended to state that if there
is an error in argument resourceId, null must be
returned by this method.

yes Issue
ID:851

C013 Errata PDL DOCS: f:event listener attribute clarification:Change
description to: "A method expression that JSF invokes
when an event occurs. That event is specified with the
name attribute."

yes Issue
ID:586

C015 Errata UIViewRoot.setBeforePhaseListeners() removed the
statement that all phases including RestoreView will
have their beforePhaseListeners called. Reverted to the
way it was in 1.2

yes Issue
ID:826

C016 Errata Section 2.6.2.1 Relocatable Resources: code snippet:
<f:view…./> should be <f:view…>

yes Issue
ID:565

C017 Errata UISelectItem doesn’t mention itemEscaped . yes Issue
ID:430

C018 Errata ViewDeclarationLanguage.retargetAttachedObjects()
misses talking about Behaviors

yes Issue
ID:827

C021 Errata ui:insert missing existing "name" attribute,
implemented, tested, but not documented

yes Issue
ID:667

C022 Errata f:valueChangeListener missing "for" attribute.
Implemented, tested, but not documented

yes Issue
ID:828

C023 Change in facelets VDLdoc, mark f:verbatim and f:subview as
deprecated

no Issue
ID:852

B.4. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Server Faces 421

https://github.com/eclipse-ee4j/faces-api/issues/824
https://github.com/eclipse-ee4j/faces-api/issues/824
https://github.com/eclipse-ee4j/faces-api/issues/849
https://github.com/eclipse-ee4j/faces-api/issues/849
https://github.com/eclipse-ee4j/faces-api/issues/825
https://github.com/eclipse-ee4j/faces-api/issues/825
https://github.com/eclipse-ee4j/faces-api/issues/851
https://github.com/eclipse-ee4j/faces-api/issues/851
https://github.com/eclipse-ee4j/faces-api/issues/586
https://github.com/eclipse-ee4j/faces-api/issues/586
https://github.com/eclipse-ee4j/faces-api/issues/826
https://github.com/eclipse-ee4j/faces-api/issues/826
https://github.com/eclipse-ee4j/faces-api/issues/565
https://github.com/eclipse-ee4j/faces-api/issues/565
https://github.com/eclipse-ee4j/faces-api/issues/430
https://github.com/eclipse-ee4j/faces-api/issues/430
https://github.com/eclipse-ee4j/faces-api/issues/827
https://github.com/eclipse-ee4j/faces-api/issues/827
https://github.com/eclipse-ee4j/faces-api/issues/667
https://github.com/eclipse-ee4j/faces-api/issues/667
https://github.com/eclipse-ee4j/faces-api/issues/828
https://github.com/eclipse-ee4j/faces-api/issues/828
https://github.com/eclipse-ee4j/faces-api/issues/852
https://github.com/eclipse-ee4j/faces-api/issues/852

C024 Errata Add an assertion to section 10.3.1 stating that EL
expressions that appear in the facelet XHTML page must
appear in the rendered view as if they were the right
hand side of the value attribute of an <h:outputText> at
the same point in the page as the EL expression

yes Issue
ID:829

C027 Errata web-facelettaglibrary_2_0.xsd type incorrect for
composite-library-name. Should be javae:string

no Issue
ID:854

C028 Errata ui:remove VDLDoc has attribute with no name no Issue
ID:842

C029 Errata ui:param has attribute duplicated. One of them should
be "value"

yes Issue
ID:855

C030 Errata RenderKit Docs javax.faces.CompositeFacet change " The
implementation of encodeBegin() , must obtain " to be "
The implementation of encodeChildren() , must obtain "

no Issue
ID:843

C031 Errata VDL docs state that composite:attribute has a target
attribute with required=true . This attribute is not really
required on composite:attribute .

yes Issue
ID:644

C032 Errata Mention in spec that Objects put in view scope may need
to be Serializable

yes Issue
ID:830

C033 Errata Modify the javadoc for ResourceHandler to state that for
resources residing at META-
INF/resources/<resourceidentifier> . The implementation
is not required to support the optional libraryVersion
and resourceVersion segments

yes Issue
ID:844

C034 Change Modify table 5-10 to state that implicit object cc returns
the current composite component, relative to the
composite component markup page in which the
expression appears

yes Issue
ID:831

C035 Errata 3.6.2.1 Modify composite component metadata
specification to state that, within the cc:interface
element, the following attributes are not available
unless ProjectStage is Development : displayName,
expert, hidden, preferred, shortDescription

yes Issue
ID:832

C037 Errata UIComponent.restoreState() javadocs must be changed to
say NPE is thrown if context is null, but no action is
taken if state argument is null

yes Issue
ID:845

C040 Errata VDLDocs for f:metadata . Don’t mention f:view . State,
"This tag must reside within the top level facelet page
whose filename corresponds ot the viewid being loaded."

yes Issue
ID:856

B.4. Changes between 2.0 Final and 2.0 Rev a

422 Jakarta Server Faces Final

https://github.com/eclipse-ee4j/faces-api/issues/829
https://github.com/eclipse-ee4j/faces-api/issues/829
https://github.com/eclipse-ee4j/faces-api/issues/854
https://github.com/eclipse-ee4j/faces-api/issues/854
https://github.com/eclipse-ee4j/faces-api/issues/842
https://github.com/eclipse-ee4j/faces-api/issues/842
https://github.com/eclipse-ee4j/faces-api/issues/855
https://github.com/eclipse-ee4j/faces-api/issues/855
https://github.com/eclipse-ee4j/faces-api/issues/843
https://github.com/eclipse-ee4j/faces-api/issues/843
https://github.com/eclipse-ee4j/faces-api/issues/644
https://github.com/eclipse-ee4j/faces-api/issues/644
https://github.com/eclipse-ee4j/faces-api/issues/830
https://github.com/eclipse-ee4j/faces-api/issues/830
https://github.com/eclipse-ee4j/faces-api/issues/844
https://github.com/eclipse-ee4j/faces-api/issues/844
https://github.com/eclipse-ee4j/faces-api/issues/831
https://github.com/eclipse-ee4j/faces-api/issues/831
https://github.com/eclipse-ee4j/faces-api/issues/832
https://github.com/eclipse-ee4j/faces-api/issues/832
https://github.com/eclipse-ee4j/faces-api/issues/845
https://github.com/eclipse-ee4j/faces-api/issues/845
https://github.com/eclipse-ee4j/faces-api/issues/856
https://github.com/eclipse-ee4j/faces-api/issues/856

C043 Errata Document SEPARATOR_CHAR in section 11.1.3 where all
the other context-params are documented

yes Issue
ID:833

C044 Errata Section 11.4.6 doesn’t include ViewDeclarationLanguage
, VisitContextFactory , ExceptionHandlerFactory ,
PartialViewContext , TagHandlerDelegateFactory as
decoratable

yes Issue
ID:834

C046 Errata Section 10.4.1.1 specifies the use of AjaxBehaviors
pushBehavior but AjaxBehaviors is an implementation
detail (the class exists under com package)

yes Issue
ID:836

C047 Errata Add "defaults" for "execute", "render" AjaxBehavior in
vdldocs.

yes Issue
ID:568

C048 Errata JSP should not have f:viewParam . Facelets f:viewParam
must have name attribute.

yes Issue
ID:656

C049 Errata Spec section 3.2.5 is empty. Fix that yes Issue
ID:835

C050 Errata Spec for UIComponent.setParent() incomplete yes Issue
ID:837

C054 Errata f:event name attribute should be type. yes Issue
ID:639

C058 Errata Section 14.4.1: Table 14-4: responseTxt should be
responseText. Table 14-4: Add status property; Table 14-
4: There is no "name" property. Table 14-3: reorder
"status" values to be in chronological order. Section
14.4.1.1: Fix use case.

yes Issue
ID:642

C060 Change Replace the last sentence in the javadoc for
FacesServlet.service() to say "The implementation must
make it so FacesContext.release() is called within a
finally block as late as possible in the processing for the
JSF related portion of this request".

yes Issue
ID:846

C061 Change Non-normatively document that JavaBeans
PropertyEditors will be used for EL Coercion. Mention
this in the context of JSF converters

yes Issue
ID:838

C062 Change In 3.1.5, explicitly mention not to use view scope yes Issue
ID:839

C063 Change 7.4.1 Clarify that, in the case of navigation actions, an
empty string should be treated the same way as null:
stay on the same page.

yes Issue
ID:747

C064 Change Correct StateHolder.setTransient JavaDoc (specified
backwards)

yes Issue
ID:840

B.4. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Server Faces 423

https://github.com/eclipse-ee4j/faces-api/issues/833
https://github.com/eclipse-ee4j/faces-api/issues/833
https://github.com/eclipse-ee4j/faces-api/issues/834
https://github.com/eclipse-ee4j/faces-api/issues/834
https://github.com/eclipse-ee4j/faces-api/issues/836
https://github.com/eclipse-ee4j/faces-api/issues/836
https://github.com/eclipse-ee4j/faces-api/issues/568
https://github.com/eclipse-ee4j/faces-api/issues/568
https://github.com/eclipse-ee4j/faces-api/issues/656
https://github.com/eclipse-ee4j/faces-api/issues/656
https://github.com/eclipse-ee4j/faces-api/issues/835
https://github.com/eclipse-ee4j/faces-api/issues/835
https://github.com/eclipse-ee4j/faces-api/issues/837
https://github.com/eclipse-ee4j/faces-api/issues/837
https://github.com/eclipse-ee4j/faces-api/issues/639
https://github.com/eclipse-ee4j/faces-api/issues/639
https://github.com/eclipse-ee4j/faces-api/issues/642
https://github.com/eclipse-ee4j/faces-api/issues/642
https://github.com/eclipse-ee4j/faces-api/issues/846
https://github.com/eclipse-ee4j/faces-api/issues/846
https://github.com/eclipse-ee4j/faces-api/issues/838
https://github.com/eclipse-ee4j/faces-api/issues/838
https://github.com/eclipse-ee4j/faces-api/issues/839
https://github.com/eclipse-ee4j/faces-api/issues/839
https://github.com/eclipse-ee4j/faces-api/issues/747
https://github.com/eclipse-ee4j/faces-api/issues/747
https://github.com/eclipse-ee4j/faces-api/issues/840
https://github.com/eclipse-ee4j/faces-api/issues/840

C065 Change Correct typos in Composite.tld (for pdldocs). Specifically,
quotes around actionListener , method-signature
(spelling). Also clarify the default value "false" for
"required" attribute.

yes Issue
ID:841

C066 Change Specify that the Component Resource container facet
must be marked transient. Specifically, the JavaDocs for
UIViewRoot.getComponentResources should include: "Set
the transient property of the facet to true."

yes Issue
ID:800

C068 Change Modify the facelet taglib xsd so that older versions of
taglibs are acceptable.

yes Issue
ID:744

C069 Change Make sure vdldocs for f:event list event all possible event
types

yes Issue
ID:712

C072 Errata Neither applyNextHandler of
DelegatingMetaTagHandler or nextHandler of
TagHandler are documented.

yes Issue
ID:780

C073 Errata Specify f:ajax execute/render id behavior in vdldocs (as
outlined in Section 10.4.1.1 of the spec).

yes Issue
ID:567

C074 Errata <view-param> has no business being a child of
<redirect> and should be renamed to <redirect-param>.

yes Issue
ID:698

C075 Errata includeViewParams implicit navigation flag should be
faces-include-view-params.

yes Issue
ID:699

C077 Errata Event broadcasting should apply to Behaviors (not just
ClientBehaviors).

yes Issue
ID:798

C078 Errata PostAddToViewEvent delivery specification needs
clarification. Clarify UIComponent.getParent and
getChildren for consistency.

yes Issue
ID:805

C079 Errata RenderKit Docs - TableRenderer:Clarification - the docs
say to render the footer the same as the header which
causes the problem.

yes Issue
ID:255

C080 Errata RenderKit Docs - ButtonRenderer Encode behavior w/r/t
onclick attribute - should not be passthrough attribute.

yes Issue
ID:257

C081 Errata h:message "for" attribute is mis-specified:"for" attribute
should be relative id (not clientid).

yes Issue
ID:266

C082 Errata clarify whether expression of binding-attribute of
f:xxxxListener should be evaluated on postback.

yes Issue
ID:320

C083 Errata Option rendering, specifically when dealing with
SelectItemGroups, is too generic.

yes Issue
ID:420

B.4. Changes between 2.0 Final and 2.0 Rev a

424 Jakarta Server Faces Final

https://github.com/eclipse-ee4j/faces-api/issues/841
https://github.com/eclipse-ee4j/faces-api/issues/841
https://github.com/eclipse-ee4j/faces-api/issues/800
https://github.com/eclipse-ee4j/faces-api/issues/800
https://github.com/eclipse-ee4j/faces-api/issues/744
https://github.com/eclipse-ee4j/faces-api/issues/744
https://github.com/eclipse-ee4j/faces-api/issues/712
https://github.com/eclipse-ee4j/faces-api/issues/712
https://github.com/eclipse-ee4j/faces-api/issues/780
https://github.com/eclipse-ee4j/faces-api/issues/780
https://github.com/eclipse-ee4j/faces-api/issues/567
https://github.com/eclipse-ee4j/faces-api/issues/567
https://github.com/eclipse-ee4j/faces-api/issues/698
https://github.com/eclipse-ee4j/faces-api/issues/698
https://github.com/eclipse-ee4j/faces-api/issues/699
https://github.com/eclipse-ee4j/faces-api/issues/699
https://github.com/eclipse-ee4j/faces-api/issues/798
https://github.com/eclipse-ee4j/faces-api/issues/798
https://github.com/eclipse-ee4j/faces-api/issues/805
https://github.com/eclipse-ee4j/faces-api/issues/805
https://github.com/eclipse-ee4j/faces-api/issues/255
https://github.com/eclipse-ee4j/faces-api/issues/255
https://github.com/eclipse-ee4j/faces-api/issues/257
https://github.com/eclipse-ee4j/faces-api/issues/257
https://github.com/eclipse-ee4j/faces-api/issues/266
https://github.com/eclipse-ee4j/faces-api/issues/266
https://github.com/eclipse-ee4j/faces-api/issues/320
https://github.com/eclipse-ee4j/faces-api/issues/320
https://github.com/eclipse-ee4j/faces-api/issues/420
https://github.com/eclipse-ee4j/faces-api/issues/420

C084 Errata submittedValue get/set methods underspecified yes Issue
ID:434

C085 Errata Current wording in renderkit docs leads to double
encoding of query parameters

yes Issue
ID:436

C086 Errata SelectManyCheckBox Clarification yes Issue
ID:466

C087 Errata PDL document for JSTL(Facelets) has the incorrect URI
for the NameSpace.

yes Issue
ID:509

C088 Errata API docs missing for ExceptionEventContext. yes Issue
ID:515

C089 Errata composite:attribute component documentation for the
attribute type should be for attribute method-signature.

yes Issue
ID:524

C090 Errata The UML Diagram for javax.faces.event is out of date. yes Issue
ID:525

C091 Errata Minor typo in the Interface BehaviorHolder API. yes Issue
ID:534

C092 Errata Two references to the itemLabelEscaped attribute. yes Issue
ID:536

C093 Errata Missing class description for
javax.faces.event.PostValidateEvent and
javax.faces.event.PreValidateEvent.

yes Issue
ID:537

C094 Errata Section 3.7.5 typo - ClientBehavorHolder should be
ClientBehaviorHolder.

yes Issue
ID:540

C095 Errata Section 4.1.3 typo - NamingContaier should be
NamingContainer.

yes Issue
ID:541

C096 Errata API Docs: Application.publishEvent: Docs say to throw
NPE if any of the arguments is null. However,
sourceBaseType arg can be null.

yes Issue
ID:553

C097 Errata Facelets TLD Docs: Missing "for" attribute for "message"
and "messages" tags.

yes Issue
ID:558

C099 Errata ResourceHandler docs: Clarify that relative paths are
disallowed in library names.

yes Issue
ID:577

C100 Errata Renderkit Docs: h:link - Formatting - add paragraphs yes Issue
ID:588

C101 Errata Spec Section 2.5.9: Fix Grammar: "The first client
behavior to provided by the JSF specification is the
AjaxBehavior." should be: "The first client behavior
provided by the JSF specification is the AjaxBehavior."

yes Issue
ID:590

B.4. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Server Faces 425

https://github.com/eclipse-ee4j/faces-api/issues/434
https://github.com/eclipse-ee4j/faces-api/issues/434
https://github.com/eclipse-ee4j/faces-api/issues/436
https://github.com/eclipse-ee4j/faces-api/issues/436
https://github.com/eclipse-ee4j/faces-api/issues/466
https://github.com/eclipse-ee4j/faces-api/issues/466
https://github.com/eclipse-ee4j/faces-api/issues/509
https://github.com/eclipse-ee4j/faces-api/issues/509
https://github.com/eclipse-ee4j/faces-api/issues/515
https://github.com/eclipse-ee4j/faces-api/issues/515
https://github.com/eclipse-ee4j/faces-api/issues/524
https://github.com/eclipse-ee4j/faces-api/issues/524
https://github.com/eclipse-ee4j/faces-api/issues/525
https://github.com/eclipse-ee4j/faces-api/issues/525
https://github.com/eclipse-ee4j/faces-api/issues/534
https://github.com/eclipse-ee4j/faces-api/issues/534
https://github.com/eclipse-ee4j/faces-api/issues/536
https://github.com/eclipse-ee4j/faces-api/issues/536
https://github.com/eclipse-ee4j/faces-api/issues/537
https://github.com/eclipse-ee4j/faces-api/issues/537
https://github.com/eclipse-ee4j/faces-api/issues/540
https://github.com/eclipse-ee4j/faces-api/issues/540
https://github.com/eclipse-ee4j/faces-api/issues/541
https://github.com/eclipse-ee4j/faces-api/issues/541
https://github.com/eclipse-ee4j/faces-api/issues/553
https://github.com/eclipse-ee4j/faces-api/issues/553
https://github.com/eclipse-ee4j/faces-api/issues/558
https://github.com/eclipse-ee4j/faces-api/issues/558
https://github.com/eclipse-ee4j/faces-api/issues/577
https://github.com/eclipse-ee4j/faces-api/issues/577
https://github.com/eclipse-ee4j/faces-api/issues/588
https://github.com/eclipse-ee4j/faces-api/issues/588
https://github.com/eclipse-ee4j/faces-api/issues/590
https://github.com/eclipse-ee4j/faces-api/issues/590

C102 Errata Spec Section 9.4 doesn’t list all the validation tags and it
lists the validateDoubleRange tag twice.

no Issue
ID:591

C103 Errata Vdldocs and Spec section 3.6.2.1 have
component:actionSource target attribute with commas
as delimiters - should be "space" as delimiter.

yes Issue
ID:592

C104 Errata Spec Section 7.4.1: getNavigationCase should return
NavigationCase and not void.

yes Issue
ID:605

C105 Errata Spec Section 10.4.1.4 says: f:validateBean should extend
validateHandler. Should be ValidatorHandler.

yes Issue
ID:615

C106 Errata Typo: Pages in the TLD docs says "JSF 2.0 Page
Decraration Language". Should be "Declaration".

yes Issue
ID:617

C107 Errata Typos: Table 14-1, 14-2, page 14-3. yes Issue
ID:629

C108 Errata UIData.invokeOnComponent docs need to be updated to
include handling of column level facets.

yes Issue
ID:632

C109 Errata Spec Section 3.5.6.1 needs to be corrected to state that
default validators are added during tag execution time.

yes Issue
ID:635

C110 Errata validateBean and validateRequired tags need to be
removed from the Jakarta Server Pages PDL
documentation

yes Issue
ID:645

C111 Errata jsf.ajax.response update element clarification needed in
JavaScript docs.

yes Issue
ID:646

C112 Errata Spec Section 10.4.1.1: Clarify what happens when
nesting and wrapping f:ajax tags collide.

yes Issue
ID:652

C113 Errata Typo: Spec Section 8.3.1: "renderkit-id" should be
"render-kit-id" and "renderkit" should be "render-kit".

yes Issue
ID:660

C114 Errata Add "rendered" attribute to VDL docs for ui:component
and ui:fragment.

yes Issue
ID:661

C115 Errata JavaDocs for UIComponent.processValidators is
incomplete. It should mention popComponentFromEL .

yes Issue
ID:664

C116 Errata Dead link in VDL docs. yes Issue
ID:666

C117 Errata Spec Section 2.5.2.4: Standard messages for
LengthValidator are confusing.

yes Issue
ID:668

C118 Errata Spec/pdldocs don’t say what the default is for "target" in
h:outputScript.

yes Issue
ID:673

B.4. Changes between 2.0 Final and 2.0 Rev a

426 Jakarta Server Faces Final

https://github.com/eclipse-ee4j/faces-api/issues/591
https://github.com/eclipse-ee4j/faces-api/issues/591
https://github.com/eclipse-ee4j/faces-api/issues/592
https://github.com/eclipse-ee4j/faces-api/issues/592
https://github.com/eclipse-ee4j/faces-api/issues/605
https://github.com/eclipse-ee4j/faces-api/issues/605
https://github.com/eclipse-ee4j/faces-api/issues/615
https://github.com/eclipse-ee4j/faces-api/issues/615
https://github.com/eclipse-ee4j/faces-api/issues/617
https://github.com/eclipse-ee4j/faces-api/issues/617
https://github.com/eclipse-ee4j/faces-api/issues/629
https://github.com/eclipse-ee4j/faces-api/issues/629
https://github.com/eclipse-ee4j/faces-api/issues/632
https://github.com/eclipse-ee4j/faces-api/issues/632
https://github.com/eclipse-ee4j/faces-api/issues/635
https://github.com/eclipse-ee4j/faces-api/issues/635
https://github.com/eclipse-ee4j/faces-api/issues/645
https://github.com/eclipse-ee4j/faces-api/issues/645
https://github.com/eclipse-ee4j/faces-api/issues/646
https://github.com/eclipse-ee4j/faces-api/issues/646
https://github.com/eclipse-ee4j/faces-api/issues/652
https://github.com/eclipse-ee4j/faces-api/issues/652
https://github.com/eclipse-ee4j/faces-api/issues/660
https://github.com/eclipse-ee4j/faces-api/issues/660
https://github.com/eclipse-ee4j/faces-api/issues/661
https://github.com/eclipse-ee4j/faces-api/issues/661
https://github.com/eclipse-ee4j/faces-api/issues/664
https://github.com/eclipse-ee4j/faces-api/issues/664
https://github.com/eclipse-ee4j/faces-api/issues/666
https://github.com/eclipse-ee4j/faces-api/issues/666
https://github.com/eclipse-ee4j/faces-api/issues/668
https://github.com/eclipse-ee4j/faces-api/issues/668
https://github.com/eclipse-ee4j/faces-api/issues/673
https://github.com/eclipse-ee4j/faces-api/issues/673

C119 Errata partial-view-context-factory is only mentioned in the
schema part of the spec. Houls be added to Spec Section
13.4.2.

yes Issue
ID:705

C120 Errata Specification edits needed - see: here no Issue
ID:714

C121 Errata Typo - Spec Section 7.5.2: "ViewHanlder" should be
"ViewHandler"; "renderView" and "restoreView"
methods should call
"ViewDeclarationLanguage.renderView" and
"ViewDeclarationLanguage.restoreView".

yes Issue
ID:729

C122 Errata Spec Section 2.6.1.3: Specify that a libraryName or
resourceName contains only XML NameChar, but not a
colon; a libraryName or resourceName does not match
the regex "[0-9]+(_[0-9]+)* or [A-Za-z]{2}(_[A-Za-z]{2}(_[A-
Za-z]+)*)?"

yes Issue
ID:740

C123 Errata Typos in PDLDocs for ui:repeat yes Issue
ID:743

C124 Errata Remove "partial-traversal" application element from the
spec as it does not exist in the schema.

yes Issue
ID:767

C125 Errata Add mssing ID attributes to schema for: faces-config-
orderingType,faces-config-ordering-orderingType,faces-
config-absoluteOrderingType,faces-config-default-
valueType,faces-config-from-view-idType,faces-config-
client-behavior-rendererType,faces-config-
behaviorType,faces-config-value-classType,faces-config-
rendererType

yes Issue
ID:768

C126 Errata UIInput JavaDocs: Specify the handling of conversion
failures.

yes Issue
ID:775

C127 Errata EditableValueHodler JavaDocs: Missing "@Since 2.0" for
"resetValue" method.

yes Issue
ID:779

C128 Errata VDL documentation for f:selectItem references the
"escape" attribute. It should be "itemEscaped".

yes Issue
ID:788

C129 Errata Specify description for "f:param" "disabled" attribute. yes Issue
ID:794

C130 Errata Simplify PostRestoreStateEvent delivery requirements. yes Issue
ID:806

B.4. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Server Faces 427

https://github.com/eclipse-ee4j/faces-api/issues/705
https://github.com/eclipse-ee4j/faces-api/issues/705
http://docs.google.com/Doc?docid=0AW2H0u_g8JuTZGYycDZzdmhfMTRmOHo3ZmJncQ&hl=en
https://github.com/eclipse-ee4j/faces-api/issues/714
https://github.com/eclipse-ee4j/faces-api/issues/714
https://github.com/eclipse-ee4j/faces-api/issues/729
https://github.com/eclipse-ee4j/faces-api/issues/729
https://github.com/eclipse-ee4j/faces-api/issues/740
https://github.com/eclipse-ee4j/faces-api/issues/740
https://github.com/eclipse-ee4j/faces-api/issues/743
https://github.com/eclipse-ee4j/faces-api/issues/743
https://github.com/eclipse-ee4j/faces-api/issues/767
https://github.com/eclipse-ee4j/faces-api/issues/767
https://github.com/eclipse-ee4j/faces-api/issues/768
https://github.com/eclipse-ee4j/faces-api/issues/768
https://github.com/eclipse-ee4j/faces-api/issues/775
https://github.com/eclipse-ee4j/faces-api/issues/775
https://github.com/eclipse-ee4j/faces-api/issues/779
https://github.com/eclipse-ee4j/faces-api/issues/779
https://github.com/eclipse-ee4j/faces-api/issues/788
https://github.com/eclipse-ee4j/faces-api/issues/788
https://github.com/eclipse-ee4j/faces-api/issues/794
https://github.com/eclipse-ee4j/faces-api/issues/794
https://github.com/eclipse-ee4j/faces-api/issues/806
https://github.com/eclipse-ee4j/faces-api/issues/806

B.5. Changes in versions below 2.0 Final
See the JavaServer Faces specification document for these changes. The change log items are removed
from this document in Jakarta Server Faces specification version 3.0.

[.footnoteNumber]# 1.# Typically, component selection will be driven by the occurrence of special
markup (such as the existence of a Jakarta Server Pages custom tag) in the template text associated
with the component tree.

[.footnoteNumber]# 2.# For example, this technique is used when custom tags in Jakarta Server Pages
pages are utilized as the rendering technology, as described in Integration with Jakarta Server Pages.

[.footnoteNumber]# 3.# The default ViewHandler implementation performs a
RequestDispatcher.forward call to the web application resource that will actually perform the
rendering, so it expects the tree identifier to be the context-relative path (starting with a / character) of
the web application resource

[.footnoteNumber]# 4.# In a Jakarta Server Pages environment, these steps are performed by a custom
tag extending ConverterTag.

[.footnoteNumber]# 5.# Accessing attributes via this Map will cause the creation of a session associated
with this request, if none currently exists.

[.footnoteNumber]# 6.# Converters can also be requested based on the object class of the value to be
converted.

[.footnoteNumber]# 7.# It is an error to specify more than one <navigation-case>, nested within one or
more <navigation-rule> elements with the same <from-view-id> matching pattern, that have exactly
the same combination of <from-xxx>, unless each is discriminated by a unique <if> element.

[.footnoteNumber]# 8.# The presence of the <if> element in the absense of the <from-outcome>
element is characterized as an alternate, contextual means of obtai

ning a logical outcome and thus the navigation case is checked even when the application action
returns a a null (or void) outcome value.

[.footnoteNumber]# 9.# Note that multiple conditions can be checked using the built-in operators and
grouping provided by the Expression Language (e.g., and, or, not).

[.footnoteNumber]# 10.# Or, equivalently, with no <from-view-id> element at all.

[.footnoteNumber]# 11.# The implementation classes for attached object must include a public zero-
arguments constructor.

[.footnoteNumber]# 12.# The actual Method selected for execution must be selected as if by calling
Class.getMethod() and passing the method name and the parameters signature specified in the

B.5. Changes in versions below 2.0 Final

428 Jakarta Server Faces Final

createMethodBinding() call.

[.footnoteNumber]# 13.# If this extension is used, it must be declared in the web application
deployment descriptor, as described in the Jakarta Server Pages 2.0 (or later) specification.

[.footnoteNumber]# 14.# This example illustrates a non-normative convention for naming custom
actions based on a combination of the component name and the renderer type. This convention is
useful, but not required; custom actions may be given any desired custom action name; however the
convention is rigorously followed in the Standard HTML RenderKit Tag Library.

[.footnoteNumber]# 15.# Consistent with the way that namespace prefixes work in XML, the actual
prefix used is totally up to the page author, and has no semantic meaning. However, the values shown
above are the suggested defaults, which are used consistently in tag library examples throughout this
specification.

[.footnoteNumber]# 16.# If you need multiple components in a facet, nest them inside a
<h:panelGroup> custom action that is the value of the facet.

[.footnoteNumber]# 17.# In a Jakarta Server Pages 2.0 or later environment, the same effect can be
accomplished by using <include-prelude> and <include-coda> elements in the <jsp-config> element in
the web application deployment descriptor.

[.footnoteNumber]# 18.# This component has no associated Renderer, so the getRendererType()
method must return null instead of a renderer type.

[.footnoteNumber]# 19.# Identified by XPath selection expressions.

B.5. Changes in versions below 2.0 Final

Final Jakarta Server Faces 429

	Jakarta Server Faces
	Table of Contents
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	Preface
	Changes between 3.0 and 2.3
	Backward Compatibility with Previous Versions

	Related Technologies
	Other Jakarta Platform Specifications
	Related Documents and Specifications

	Terminology
	Providing Feedback
	Acknowledgements

	Chapter 1. Overview
	1.1. Solving Practical Problems of the Web
	1.2. Specification Audience
	1.2.1. Page Authors
	1.2.2. Component Writers
	1.2.3. Application Developers
	1.2.4. Tool Providers
	1.2.5. Jakarta Faces Implementors

	1.3. Introduction to Jakarta Faces APIs
	1.3.1. package jakarta.faces
	1.3.2. package jakarta.faces.application
	1.3.3. package jakarta.faces.component
	1.3.4. package jakarta.faces.component.html
	1.3.5. package jakarta.faces.context
	1.3.6. package jakarta.faces.convert
	1.3.7. package jakarta.faces.el
	1.3.8. package jakarta.faces.flow and jakarta.faces.flow.builder
	1.3.9. package jakarta.faces.lifecycle
	1.3.10. package jakarta.faces.event
	1.3.11. package jakarta.faces.render
	1.3.12. package jakarta.faces.validator
	1.3.13. package jakarta.faces.webapp

	Chapter 2. Request Processing Lifecycle
	2.1. Request Processing Lifecycle Scenarios
	2.1.1. Non-Faces Request Generates Faces Response
	2.1.2. Faces Request Generates Faces Response
	2.1.3. Faces Request Generates Non-Faces Response

	2.2. Standard Request Processing Lifecycle Phases
	2.2.1. Restore View
	2.2.2. Apply Request Values
	2.2.2.1. Apply Request Values Partial Processing

	2.2.3. Process Validations
	2.2.3.1. Partial Validations Partial Processing

	2.2.4. Update Model Values
	2.2.4.1. Update Model Values Partial Processing

	2.2.5. Invoke Application
	2.2.6. Render Response
	2.2.6.1. Render Response Partial Processing

	2.3. Common Event Processing
	2.4. Common Application Activities
	2.4.1. Acquire Faces Object References
	2.4.1.1. Acquire and Configure Lifecycle Reference
	2.4.1.2. Acquire and Configure FacesContext Reference

	2.4.2. Create And Configure A New View
	2.4.2.1. Create A New View
	2.4.2.2. Configure the Desired RenderKit
	2.4.2.3. Configure The View’s Components
	2.4.2.4. Store the new View in the FacesContext

	2.5. Concepts that impact several lifecycle phases
	2.5.1. Value Handling
	2.5.1.1. Apply Request Values Phase
	2.5.1.2. Process Validators Phase
	2.5.1.3. Executing Validation
	2.5.1.4. Update Model Values Phase

	2.5.2. Localization and Internationalization (L10N/I18N)
	2.5.2.1. Determining the active Locale
	2.5.2.2. Determining the Character Encoding
	2.5.2.3. Localized Text
	2.5.2.4. Localized Application Messages

	2.5.3. State Management
	2.5.3.1. State Management Considerations for the Custom Component Author
	2.5.3.2. State Management Considerations for the Jakarta Faces Implementor

	2.5.4. Resource Handling
	2.5.5. View Parameters
	2.5.6. Bookmarkability
	2.5.7. Jakarta Bean Validation
	2.5.8. Ajax
	2.5.9. Component Behaviors
	2.5.10. System Events

	2.6. Resource Handling
	2.6.1. Packaging Resources
	2.6.1.1. Packaging Resources into the Web Application Root
	2.6.1.2. Packaging Resources into the Classpath
	2.6.1.3. Resource Identifiers
	2.6.1.4. Libraries of Localized and Versioned Resources

	2.6.2. Rendering Resources
	2.6.2.1. Relocatable Resources
	2.6.2.2. Resource Rendering Using Annotations

	2.7. Resource Library Contracts

	Chapter 3. User Interface Component Model
	3.1. UIComponent and UIComponentBase
	3.1.1. Component Identifiers
	3.1.2. Component Type
	3.1.3. Component Family
	3.1.4. ValueExpression properties
	3.1.5. Component Bindings
	3.1.6. Client Identifiers
	3.1.7. Component Tree Manipulation
	3.1.8. Component Tree Navigation
	3.1.9. Facet Management
	3.1.10. Managing Component Behavior
	3.1.11. Generic Attributes
	3.1.11.1. Special Attributes

	3.1.12. Render-Independent Properties
	3.1.13. Component Specialization Methods
	3.1.14. Lifecycle Management Methods
	3.1.15. Utility Methods

	3.2. Component Behavioral Interfaces
	3.2.1. ActionSource
	3.2.1.1. Properties
	3.2.1.2. Methods
	3.2.1.3. Events

	3.2.2. ActionSource2
	3.2.2.1. Properties
	3.2.2.2. Methods
	3.2.2.3. Events

	3.2.3. NamingContainer
	3.2.4. StateHolder
	3.2.4.1. Properties
	3.2.4.2. Methods
	3.2.4.3. Events

	3.2.5. PartialStateHolder
	3.2.5.1. Properties
	3.2.5.2. Methods
	3.2.5.3. Events

	3.2.6. ValueHolder
	3.2.6.1. Properties
	3.2.6.2. Methods
	3.2.6.3. Events

	3.2.7. EditableValueHolder
	3.2.7.1. Properties
	3.2.7.2. Methods
	3.2.7.3. Events

	3.2.8. SystemEventListenerHolder
	3.2.8.1. Properties
	3.2.8.2. Methods
	3.2.8.3. Events

	3.2.9. ClientBehaviorHolder

	3.3. Conversion Model
	3.3.1. Overview
	3.3.2. Converter
	3.3.3. Standard Converter Implementations

	3.4. Event and Listener Model
	3.4.1. Overview
	3.4.2. Application Events
	3.4.2.1. Event Classes
	3.4.2.2. Listener Classes
	3.4.2.3. Phase Identifiers
	3.4.2.4. Listener Registration
	3.4.2.5. Event Queueing
	3.4.2.6. Event Broadcasting

	3.4.3. System Events
	3.4.3.1. Event Classes
	3.4.3.2. Listener Classes
	3.4.3.3. Programmatic Listener Registration
	3.4.3.4. Declarative Listener Registration
	3.4.3.5. Listener Registration By Annotation
	3.4.3.6. Listener Registration By Application Configuration Resources
	3.4.3.7. Event Broadcasting

	3.5. Validation Model
	3.5.1. Overview
	3.5.2. Validator Classes
	3.5.3. Validation Registration
	3.5.4. Validation Processing
	3.5.5. Standard Validator Implementations
	3.5.6. Bean Validation Integration
	3.5.6.1. Bean Validator Activation
	3.5.6.2. Obtaining a ValidatorFactory
	3.5.6.3. Class-Level Validation
	3.5.6.4. Localization of Bean Validation Messages

	3.6. Composite User Interface Components
	3.6.1. Non-normative Background
	3.6.1.1. What does it mean to be a Jakarta Faces User Interface component?
	3.6.1.2. How does one make a custom Jakarta Faces User Interface component?
	3.6.1.3. How does one make a composite component?
	3.6.1.4. A simple composite component example
	3.6.1.5. Walk through of the run-time for the simple composite component example
	3.6.1.6. Composite Component Terms

	3.6.2. Normative Requirements
	3.6.2.1. Composite Component Metadata

	3.7. Component Behavior Model
	3.7.1. Overview
	3.7.2. Behavior Interface
	3.7.3. BehaviorBase
	3.7.4. The Client Behavior Contract
	3.7.5. ClientBehaviorHolder
	3.7.6. ClientBehaviorRenderer
	3.7.7. ClientBehaviorContext
	3.7.8. ClientBehaviorHint
	3.7.9. ClientBehaviorBase
	3.7.10. Behavior Event / Listener Model
	3.7.10.1. Event Classes
	3.7.10.2. Listener Classes
	3.7.10.3. Listener Registration

	3.7.11. Ajax Behavior
	3.7.11.1. AjaxBehavior
	3.7.11.2. Ajax Behavior Event / Listener Model

	3.7.12. Adding Behavior To Components
	3.7.13. Behavior Registration
	3.7.13.1. XML Registration
	3.7.13.2. Registration By Annotation

	Chapter 4. Standard User Interface Components
	4.1. Standard User Interface Components
	4.1.1. UIColumn
	4.1.1.1. Component Type
	4.1.1.2. Properties
	4.1.1.3. Methods
	4.1.1.4. Events

	4.1.2. UICommand
	4.1.2.1. Component Type
	4.1.2.2. Properties
	4.1.2.3. Methods
	4.1.2.4. Events

	4.1.3. UIData
	4.1.3.1. Component Type
	4.1.3.2. Properties
	4.1.3.3. Methods
	4.1.3.4. Events

	4.1.4. UIForm
	4.1.4.1. Component Type
	4.1.4.2. Properties
	4.1.4.3. Methods.
	4.1.4.4. Events

	4.1.5. UIGraphic
	4.1.5.1. Component Type
	4.1.5.2. Properties
	4.1.5.3. Methods
	4.1.5.4. Events

	4.1.6. UIInput
	4.1.6.1. Component Type
	4.1.6.2. Properties
	4.1.6.3. Methods
	4.1.6.4. Events

	4.1.7. UIMessage
	4.1.7.1. Component Type
	4.1.7.2. Properties
	4.1.7.3. Methods.
	4.1.7.4. Events

	4.1.8. UIMessages
	4.1.8.1. Component Type
	4.1.8.2. Properties
	4.1.8.3. Methods.
	4.1.8.4. Events

	4.1.9. UIOutcomeTarget
	4.1.9.1. Component Type
	4.1.9.2. Properties
	4.1.9.3. Methods
	4.1.9.4. Events

	4.1.10. UIOutput
	4.1.10.1. Component Type
	4.1.10.2. Properties
	4.1.10.3. Methods
	4.1.10.4. Events

	4.1.11. UIPanel
	4.1.11.1. Component Type
	4.1.11.2. Properties
	4.1.11.3. Methods
	4.1.11.4. Events

	4.1.12. UIParameter
	4.1.12.1. Component Type
	4.1.12.2. Properties
	4.1.12.3. Methods
	4.1.12.4. Events

	4.1.13. UISelectBoolean
	4.1.13.1. Component Type
	4.1.13.2. Properties
	4.1.13.3. Methods
	4.1.13.4. Events

	4.1.14. UISelectItem
	4.1.14.1. Component Type
	4.1.14.2. Properties
	4.1.14.3. Methods
	4.1.14.4. Events

	4.1.15. UISelectItems
	4.1.15.1. Component Type
	4.1.15.2. Properties
	4.1.15.3. Methods
	4.1.15.4. Events

	4.1.16. UISelectMany
	4.1.16.1. Component Type
	4.1.16.2. Properties
	4.1.16.3. Methods
	4.1.16.4. Events

	4.1.17. UISelectOne
	4.1.17.1. Component Type
	4.1.17.2. Properties
	4.1.17.3. Methods
	4.1.17.4. Events

	4.1.18. UIViewParameter
	4.1.19. UIViewRoot
	4.1.19.1. Component Type
	4.1.19.2. Properties
	4.1.19.3. Methods
	4.1.19.4. Events
	4.1.19.5. Partial Processing

	4.2. Standard UIComponent Model Beans
	4.2.1. DataModel
	4.2.1.1. Properties
	4.2.1.2. Methods
	4.2.1.3. Events
	4.2.1.4. Concrete Implementations

	4.2.2. SelectItem
	4.2.2.1. Properties
	4.2.2.2. Methods
	4.2.2.3. Events

	4.2.3. SelectItemGroup
	4.2.3.1. Properties
	4.2.3.2. Methods
	4.2.3.3. Events

	Chapter 5. Expression Language and Managed Bean Facility
	5.1. Value Expressions
	5.1.1. Overview
	5.1.2. Value Expression Syntax and Semantics

	5.2. MethodExpressions
	5.2.1. MethodExpression Syntax and Semantics

	5.3. The Managed Bean Facility
	5.3.1. Managed Bean Configuration Example

	5.4. Managed Bean Annotations
	5.4.1. Jakarta Faces Managed Classes and Jakarta EE Annotations
	5.4.2. Managed Bean Lifecycle Annotations

	5.5. How Faces Leverages the Expression Language
	5.5.1. ELContext
	5.5.1.1. Lifetime, Ownership and Cardinality
	5.5.1.2. Properties
	5.5.1.3. Methods
	5.5.1.4. Events

	5.5.2. ELResolver
	5.5.2.1. Lifetime, Ownership, and Cardinality
	5.5.2.2. Properties
	5.5.2.3. Methods
	5.5.2.4. Events

	5.5.3. ExpressionFactory
	5.5.3.1. Lifetime, Ownership, and Cardinality
	5.5.3.2. Properties
	5.5.3.3. Methods
	5.5.3.4. Events

	5.6. ELResolver Instances Provided by Faces
	5.6.1. Faces ELResolver for Jakarta Server Pages Pages
	5.6.1.1. Faces Implicit Object ELResolver For Jakarta Server Pages
	5.6.1.2. ManagedBean ELResolver
	5.6.1.3. Resource ELResolver
	5.6.1.4. ResourceBundle ELResolver for Jakarta Server Pages Pages
	5.6.1.5. ELResolvers in the application configuration resources
	5.6.1.6. VariableResolver Chain Wrapper
	5.6.1.7. PropertyResolver Chain Wrapper
	5.6.1.8. ELResolvers from Application.addELResolver()

	5.6.2. ELResolver for Facelets and Programmatic Access
	5.6.2.1. Implicit Object ELResolver for Facelets and Programmatic Access
	5.6.2.2. Composite Component Attributes ELResolver
	5.6.2.3. The CompositeELResolver
	5.6.2.4. ManagedBean ELResolver
	5.6.2.5. Resource ELResolver
	5.6.2.6. el.ResourceBundleELResolver
	5.6.2.7. ResourceBundle ELResolver for Programmatic Access
	5.6.2.8. Stream, StaticField, Map, List, Array, and Bean ELResolvers
	5.6.2.9. ScopedAttribute ELResolver

	5.6.3. CDI for Expression Language Resolution

	5.7. Current Expression Evaluation APIs
	5.7.1. ELResolver
	5.7.2. ValueExpression
	5.7.3. MethodExpression
	5.7.4. Expression Evaluation Exceptions

	5.8. Deprecated Expression Evaluation APIs
	5.8.1. VariableResolver and the Default VariableResolver
	5.8.2. PropertyResolver and the Default PropertyResolver
	5.8.3. ValueBinding
	5.8.4. MethodBinding
	5.8.5. Expression Evaluation Exceptions

	5.9. CDI Integration
	5.9.1. Jakarta Faces Objects Valid for @Inject Injection
	5.9.2. Expression Language Resolution

	Chapter 6. Per-Request State Information
	6.1. FacesContext
	6.1.1. Application
	6.1.2. Attributes
	6.1.3. ELContext
	6.1.4. ExternalContext
	6.1.4.1. Flash

	6.1.5. ViewRoot
	6.1.6. Message Queue
	6.1.7. RenderKit
	6.1.8. ResponseStream and ResponseWriter
	6.1.9. Flow Control Methods
	6.1.10. Partial Processing Methods
	6.1.11. Partial View Context
	6.1.12. Access To The Current FacesContext Instance
	6.1.13. CurrentPhaseId
	6.1.14. ExceptionHandler

	6.2. ExceptionHandler
	6.2.1. Default ExceptionHandler implementation
	6.2.2. Backwards Compatible ExceptionHandler
	6.2.3. Default Error Page

	6.3. FacesMessage
	6.4. ResponseStream
	6.5. ResponseWriter
	6.6. FacesContextFactory
	6.7. ExceptionHandlerFactory
	6.8. ExternalContextFactory

	Chapter 7. Application Integration
	7.1. Application
	7.1.1. ActionListener Property
	7.1.2. DefaultRenderKitId Property
	7.1.3. FlowHandler Property
	7.1.4. NavigationHandler Property
	7.1.5. StateManager Property
	7.1.6. ELResolver Property
	7.1.7. ELContextListener Property
	7.1.8. ViewHandler Property
	7.1.9. ProjectStage Property
	7.1.10. Acquiring ExpressionFactory Instance
	7.1.11. Programmatically Evaluating Expressions
	7.1.12. Object Factories
	7.1.12.1. Default Validator Ids

	7.1.13. Internationalization Support
	7.1.14. System Event Methods
	7.1.14.1. Subscribing to system events
	7.1.14.2. Unsubscribing from system events

	7.2. ApplicationFactory
	7.3. Application Actions
	7.4. NavigationHandler
	7.4.1. Overview
	7.4.2. Default NavigationHandler Algorithm
	7.4.2.1. Requirements for Explicit Navigation in Faces Flow Call Nodes other than ViewNodes
	7.4.2.2. Requirements for Entering a Flow
	7.4.2.3. Requirements for Exiting a Flow
	7.4.2.4. Requirements for Calling A Flow from the Current Flow

	7.4.3. Example NavigationHandler Configuration

	7.5. FlowHandler
	7.5.1. Non-normative example
	7.5.2. Non-normative Feature Overview

	7.6. ViewHandler
	7.6.1. Overview
	7.6.2. Default ViewHandler Implementation
	7.6.2.1. ViewHandler Methods that Derive Information From the Incoming Request
	7.6.2.2. ViewHandler Methods that are Called to Fill a Specific Role in the Lifecycle
	7.6.2.3. ViewHandler Methods Relating to Navigation
	7.6.2.4. ViewHandler Methods that relate to View Protection

	7.7. ViewDeclarationLanguage
	7.7.1. ViewDeclarationLanguageFactory
	7.7.2. Default ViewDeclarationLanguage Implementation
	7.7.2.1. ViewDeclarationLanguage.createView()
	7.7.2.2. ViewDeclarationLanguage.calculateResourceLibraryContracts()
	7.7.2.3. ViewDeclarationLanguage.buildView()
	7.7.2.4. ViewDeclarationLanguage.getComponentMetadata()
	7.7.2.5. ViewDeclarationLanguage.getViewMetadata() and getViewParameters()
	7.7.2.6. ViewDeclarationLanguage.getScriptComponentResource()
	7.7.2.7. ViewDeclarationLanguage.renderView()
	7.7.2.8. ViewDeclarationLanguage.restoreView()

	7.8. StateManager
	7.8.1. Overview
	7.8.1.1. Stateless Views

	7.8.2. State Saving Alternatives and Implications
	7.8.3. State Saving Methods.
	7.8.4. State Restoring Methods
	7.8.5. Convenience Methods

	7.9. ResourceHandler
	7.10. Deprecated APIs
	7.10.1. PropertyResolver Property
	7.10.2. VariableResolver Property
	7.10.3. Acquiring ValueBinding Instances
	7.10.4. Acquiring MethodBinding Instances
	7.10.5. Object Factories
	7.10.6. StateManager
	7.10.7. ResponseStateManager

	Chapter 8. Rendering Model
	8.1. RenderKit
	8.2. Renderer
	8.3. ClientBehaviorRenderer
	8.3.1. ClientBehaviorRenderer Registration

	8.4. ResponseStateManager
	8.5. RenderKitFactory
	8.6. Standard HTML RenderKit Implementation
	8.7. The Concrete HTML Component Classes

	Chapter 9. Integration with Jakarta Server Pages
	9.1. UIComponent Custom Actions
	9.2. Using UIComponent Custom Actions in Jakarta Server Pages Pages
	9.2.1. Declaring the Tag Libraries
	9.2.2. Including Components in a Page
	9.2.3. Creating Components and Overriding Attributes
	9.2.4. Deleting Components on Redisplay
	9.2.5. Representing Component Hierarchies
	9.2.6. Registering Converters, Event Listeners, and Validators
	9.2.7. Using Facets
	9.2.8. Interoperability with Jakarta Server Pages Template Text and Other Tag Libraries
	9.2.9. Composing Pages from Multiple Sources

	9.3. UIComponent Custom Action Implementation Requirements
	9.3.1. Considerations for Custom Actions written for pre-Jakarta Faces JSF 1.1 and 1.0
	9.3.1.1. Past and Present Tag constraints
	9.3.1.2. Faces 1.0 and 1.1 Taglib migration story

	9.4. Jakarta Faces Core Tag Library
	9.4.1. <f:actionListener>
	9.4.1.1. Syntax
	9.4.1.2. Body Content
	9.4.1.3. Attributes
	9.4.1.4. Constraints
	9.4.1.5. Description

	9.4.2. <f:attribute>
	9.4.2.1. Syntax
	9.4.2.2. Body Content
	9.4.2.3. Attributes
	9.4.2.4. Constraints
	9.4.2.5. Description

	9.4.3. <f:convertDateTime>
	9.4.3.1. Syntax
	9.4.3.2. Body Content
	9.4.3.3. Attributes
	9.4.3.4. Constraints
	9.4.3.5. Description

	9.4.4. <f:convertNumber>
	9.4.4.1. Syntax
	9.4.4.2. Body Content
	9.4.4.3. Attributes
	9.4.4.4. Constraints
	9.4.4.5. Description

	9.4.5. <f:converter>
	9.4.5.1. Syntax
	9.4.5.2. Body Content
	9.4.5.3. Attributes
	9.4.5.4. Constraints
	9.4.5.5. Description

	9.4.6. <f:facet>
	9.4.6.1. Syntax
	9.4.6.2. Body Content
	9.4.6.3. Attributes
	9.4.6.4. Constraints
	9.4.6.5. Description

	9.4.7. <f:loadBundle>
	9.4.7.1. Syntax
	9.4.7.2. Body Content
	9.4.7.3. Attributes
	9.4.7.4. Constraints
	9.4.7.5. Description

	9.4.8. <f:param>
	9.4.8.1. Syntax
	9.4.8.2. Body Content
	9.4.8.3. Attributes
	9.4.8.4. Constraints
	9.4.8.5. Description

	9.4.9. <f:phaseListener>
	9.4.9.1. Syntax
	9.4.9.2. Body Content
	9.4.9.3. Attributes
	9.4.9.4. Constraints
	9.4.9.5. Description

	9.4.10. <f:selectItem>
	9.4.10.1. Syntax
	9.4.10.2. Body Content
	9.4.10.3. Attributes
	9.4.10.4. Constraints
	9.4.10.5. Description

	9.4.11. <f:selectItems>
	9.4.11.1. Syntax
	9.4.11.2. Body Content
	9.4.11.3. Attributes
	9.4.11.4. Constraints
	9.4.11.5. Description

	9.4.12. <f:setPropertyActionListener>
	9.4.12.1. Syntax
	9.4.12.2. Body Content
	9.4.12.3. Attributes
	9.4.12.4. Constraints
	9.4.12.5. Description

	9.4.13. <f:subview>
	9.4.13.1. Syntax
	9.4.13.2. Body Content
	9.4.13.3. Attributes
	9.4.13.4. Constraints
	9.4.13.5. Description

	9.4.14. <f:validateDoubleRange>
	9.4.14.1. Syntax
	9.4.14.2. Body Content
	9.4.14.3. Attributes
	9.4.14.4. Constraints
	9.4.14.5. Description

	9.4.15. <f:validateLength>
	9.4.15.1. Syntax
	9.4.15.2. Body Content
	9.4.15.3. Attributes
	9.4.15.4. Constraints
	9.4.15.5. Description

	9.4.16. <f:validateRegex>
	9.4.16.1. Syntax
	9.4.16.2. Body Content
	9.4.16.3. Attributes
	9.4.16.4. Constraints
	9.4.16.5. Description

	9.4.17. <f:validateLongRange>
	9.4.17.1. Syntax
	9.4.17.2. Body Content
	9.4.17.3. Attributes
	9.4.17.4. Constraints
	9.4.17.5. Description

	9.4.18. <f:validator>
	9.4.18.1. Syntax
	9.4.18.2. Body Content
	9.4.18.3. Attributes
	9.4.18.4. Constraints
	9.4.18.5. Description

	9.4.19. <f:valueChangeListener>
	9.4.19.1. Syntax
	9.4.19.2. Body Content
	9.4.19.3. Attributes
	9.4.19.4. Constraints
	9.4.19.5. Description

	9.4.20. <f:verbatim>
	9.4.20.1. Syntax
	9.4.20.2. Body Content
	9.4.20.3. Attributes
	9.4.20.4. Constraints
	9.4.20.5. Description

	9.4.21. <f:view>
	9.4.21.1. Syntax
	9.4.21.2. Body Content
	9.4.21.3. Attributes
	9.4.21.4. Constraints
	9.4.21.5. Description

	9.5. Standard HTML RenderKit Tag Library

	Chapter 10. Facelets and its use in Web Applications
	10.1. Non-normative Background
	10.1.1. Differences between Jakarta Server Pages and Facelets
	10.1.2. Differences between Pre JSF 2.0 Facelets and Facelets in Jakarta Faces
	10.1.3. Resource Library Contracts Background
	10.1.3.1. Non-normative Example
	10.1.3.2. Non-normative Feature Overview

	10.1.4. HTML5 Friendly Markup
	10.1.4.1. Non-normative Feature Overview

	10.2. Java Programming Language Specification for Facelets in Jakarta Faces
	10.2.1. Specification of the ViewDeclarationLanguage Implementation for Facelets for Jakarta Faces

	10.3. XHTML Specification for Facelets for Jakarta Faces
	10.3.1. General Requirements
	10.3.1.1. DOCTYPE and XML Declaration

	10.3.2. Facelet Tag Library mechanism
	10.3.3. Requirements specific to composite components
	10.3.3.1. Declaring a composite component library for use in a Facelet page
	10.3.3.2. Creating an instance of a top level component
	10.3.3.3. Populating a top level component instance with children

	10.4. Standard Facelet Tag Libraries
	10.4.1. Jakarta Faces Core Tag Library
	10.4.1.1. <f:ajax>
	10.4.1.2. <f:event>
	10.4.1.3. <f:metadata>
	10.4.1.4. <f:validateBean>
	10.4.1.5. <f:validateRequired>
	10.4.1.6. <f:validateWholeBean>
	10.4.1.7. <f:websocket>

	10.4.2. Standard HTML RenderKit Tag Library
	10.4.3. Facelet Templating Tag Library
	10.4.4. Composite Component Tag Library
	10.4.5. JSTL Core and Function Tag Libraries

	10.5. Assertions relating to the construction of the view

	Chapter 11. Using Jakarta Faces in Web Applications
	11.1. Web Application Deployment Descriptor
	11.1.1. Servlet Definition
	11.1.2. Servlet Mapping
	11.1.3. Application Configuration Parameters

	11.2. Included Classes and Resources
	11.2.1. Application-Specific Classes and Resources
	11.2.2. Servlet and Jakarta Server Pages API Classes (jakarta.servlet.*)
	11.2.3. Jakarta Server Pages Standard Tag Library (JSTL) API Classes (jakarta.servlet.jsp.jstl.*)
	11.2.4. Jakarta Server Pages Standard Tag Library (JSTL) Implementation Classes
	11.2.5. Jakarta Server Faces API Classes (jakarta.faces.*)
	11.2.6. Jakarta Server Faces Implementation Classes
	11.2.6.1. FactoryFinder
	11.2.6.2. FacesServlet
	11.2.6.3. UIComponentELTag
	11.2.6.4. FacetTag
	11.2.6.5. ValidatorTag

	11.3. Deprecated APIs in the webapp package
	11.3.1. AttributeTag
	11.3.2. ConverterTag
	11.3.3. UIComponentBodyTag
	11.3.4. UIComponentTag
	11.3.5. ValidatorTag

	11.4. Application Configuration Resources
	11.4.1. Overview
	11.4.2. Application Startup Behavior
	11.4.2.1. Resource Library Contracts

	11.4.3. Faces Flows
	11.4.3.1. Defining Flows
	11.4.3.2. Packaging Faces Flows in JAR Files
	11.4.3.3. Packaging Flows in Directories

	11.4.4. Application Shutdown Behavior
	11.4.5. Application Configuration Resource Format
	11.4.6. Configuration Impact on Jakarta Faces Runtime
	11.4.7. Delegating Implementation Support
	11.4.8. Ordering of Artifacts
	11.4.9. Example Application Configuration Resource

	11.5. Annotations that correspond to and may take the place of entries in the Application Configuration Resources
	11.5.1. Requirements for scanning of classes for annotations

	Chapter 12. Lifecycle Management
	12.1. Lifecycle
	12.2. PhaseEvent
	12.3. PhaseListener
	12.4. LifecycleFactory

	Chapter 13. Ajax Integration
	13.1. JavaScript Resource
	13.1.1. JavaScript Resource Loading
	13.1.1.1. The Annotation Approach
	13.1.1.2. The Resource API Approach
	13.1.1.3. The Page Declaration Language Approach

	13.2. JavaScript Namespacing
	13.3. Ajax Interaction
	13.3.1. Sending an Ajax Request
	13.3.2. Ajax Request Queueing
	13.3.3. Request Callback Function
	13.3.4. Receiving The Ajax Response
	13.3.5. Monitoring Events On The Client
	13.3.5.1. Monitoring Events For An Ajax Request
	13.3.5.2. Monitoring Events For All Ajax Requests
	13.3.5.3. Sending Events

	13.3.6. Handling Errors On the Client
	13.3.6.1. Handling Errors For An Ajax Request
	13.3.6.2. Handling Errors For All Ajax Requests
	13.3.6.3. Signaling Errors

	13.3.7. Handling Errors On The Server

	13.4. Partial View Traversal
	13.4.1. Partial Traversal Strategy
	13.4.2. Partial View Processing
	13.4.3. Partial View Rendering
	13.4.4. Sending The Response to The Client
	13.4.4.1. Writing The Partial Response

	Chapter 14. JavaScript API
	14.1. Collecting and Encoding View State
	14.1.1. Use Case

	14.2. Initiating an Ajax Request
	14.2.1. Usage
	14.2.2. Keywords
	14.2.3. Default Values
	14.2.4. Request Sending Specifics
	14.2.5. Use Case

	14.3. Processing The Ajax Response
	14.4. Registering Callback Functions
	14.4.1. Request/Response Event Handling
	14.4.1.1. Use Case

	14.4.2. Error Handling
	14.4.2.1. Use Case

	14.5. Determining An Application’s Project Stage
	14.5.1. Use Case

	14.6. Script Chaining

	Appendix A: Jakarta Faces Metadata
	A.1. Required Handling of *-extension elements in the application configuration resources files
	A.1.1. faces-config-extension handling
	A.1.1.1. The facelets-processing element

	A.2. XML Schema Definition For Facelet Taglib
	A.2.1. Deprecated DTD for Facelet Taglibraries Used by Versions of Facelets Prior to pre-Jakarta Faces JSF 2.0

	A.3. XML Schema Definition for Composite Components

	Appendix B: Change Log
	B.1. Changes between 2.2 and 2.3
	B.1.1. Big Ticket Features
	B.1.2. Other Features, by Functional Area
	B.1.2.1. Components/Renderers
	B.1.2.2. Lifecycle
	B.1.2.3. Platform Integration
	B.1.2.4. Facelets/VDL
	B.1.2.5. Spec Clarifications
	B.1.2.6. Resources
	B.1.2.7. Expression Language
	B.1.2.8. Configuration and Bootstrapping
	B.1.2.9. Miscellaneous

	B.1.3. Backward Compatibility with Previous Versions
	B.1.4. Breakages in Backward Compatibility

	B.2. Changes between 2.1 and 2.2
	B.2.1. Big Ticket Features
	B.2.2. Other Features, by Functional Area
	B.2.2.1. Components/Renderers
	B.2.2.2. Lifecycle
	B.2.2.3. Platform Integration
	B.2.2.4. Facelets/VDL
	B.2.2.5. Spec Clarifications
	B.2.2.6. Resources
	B.2.2.7. Expression Language
	B.2.2.8. Configuration and Bootstrapping
	B.2.2.9. Miscellaneous

	B.2.3. Backward Compatibility with Previous Versions
	B.2.4. Breakages in Backward Compatibility

	B.3. Changes between 2.0 Rev a and 2.1
	B.3.1. Facelet Tag Library mechanism
	B.3.2. New feature: <facelets-processing>
	B.3.3. Update schema for 2.1
	B.3.4. Change Restore View Phase
	B.3.5. Default ViewHandler Implementation

	B.4. Changes between 2.0 Final and 2.0 Rev a
	B.4.1. Global changes
	B.4.1.1. ExceptionQueuedEvent
	B.4.1.2. Usage of the term "page" in the JSF 2.0 spec

	B.4.2. Front Matter
	B.4.3. Chapter 2
	B.4.3.1. Restore View
	B.4.3.2. Localized Application Messages
	B.4.3.3. JSR 303 Bean Validation
	B.4.3.4. JSR 303 Bean Validation needs to reference "Bean Validation Integration" section
	B.4.3.5. Resource Identifiers

	B.4.4. Chapter 3
	B.4.4.1. Clarify meaning of "javax.faces.bean" in Bean Validator Activation
	B.4.4.2. Need to be consistent between Declarative Listener Registration of the JSF 2.0 Spec and the VDLDoc for f:event
	B.4.4.3. Typo in Declarative Listener Registration of the JSF 2.0 Spec regarding "beforeRender"
	B.4.4.4. Validation Registration, What does it mean to be a JSF User Interface component?
	B.4.4.5. Composite Component Metadata

	B.4.5. Chapter 4
	B.4.5.1. Events

	B.4.6. Chapter 7
	B.4.6.1. Overview
	B.4.6.2. Default NavigationHandler Algorithm
	B.4.6.3. Default ViewHandler Implementation

	B.4.7. Chapter 9
	B.4.7.1. <f:actionListener> of Spec PDF — Missing "for" attribute of f:actionListener in Spec PDF
	B.4.7.2. <f:actionListener> and <f:valueChangeListener>

	B.4.8. Chapter 10
	B.4.8.1. General Requirements
	B.4.8.2. Facelet Tag Library mechanism
	B.4.8.3. VDLDocs and PDL documentation
	B.4.8.4. Possible error in section <f:ajax> of the JSF 2.0 Spec regarding f:ajax and h:panelGrid
	B.4.8.5. Redundant mentioning of Facelets in <f:validateBean> of the JSF 2.0 Spec
	B.4.8.6. Availability of f:validateBean and f:validateRequired in Jakarta Server Pages

	B.4.9. Chapter 13
	B.4.9.1. Redundancy in Partial View Processing of the JSF 2.0 Spec
	B.4.9.2. "Execute portions" of the JSF request processing lifecycle in the JSF 2.0 Spec

	B.4.10. Chapter 14
	B.4.10.1. Initiating an Ajax Request Typo in table 14.2.2 of the JSF 2.0 Spec
	B.4.10.2. Request/Response Event Handling Table 14.4.1

	B.4.11. Appendix A Metadata
	B.4.11.1. Deprecated DTD for Facelet Taglibraries Used by Versions of Facelets Prior to JSF 2.0

	B.4.12. VDLDoc changes
	B.4.12.1. Typo in f:selectItems VDLDocs
	B.4.12.2. Need clarification on execute attribute of f:ajax
	B.4.12.3. Spelling error in VDLDocs for f:ajax
	B.4.12.4. Need clarification on required attribute in VDLDocs for tags that got a new "for" attribute in JSF 2.0
	B.4.12.5. Uppercase typo in VDLDocs for f:event
	B.4.12.6. Need to change "JSP" to "Facelets" in "Body Content" of VDLDocs
	B.4.12.7. Need clarification in VDLDocs for f:metadata
	B.4.12.8. Missing description in VDLDocs for name attribute of f:viewParam
	B.4.12.9. VLDDocs on "for" attribute of f:viewParam claim it can be used in a CC
	B.4.12.10. Miscellaneous VDLDoc items
	B.4.12.11. Should TLDDocs now be VDLDocs?
	B.4.12.12. Typo in VDLDocs for f:event.

	B.4.13. Accepted Changes from JCP Change Log for JSF 2.0 Rev a

	B.5. Changes in versions below 2.0 Final

