\
JAKARTA EE

Jakarta Data

Table of Contents

1670 o) 72 0 ¥4 0L P PP 2
Eclipse Foundation Specification LICENSE.ttt et e et e et e 2
DISCLAIIMIETS . . . oottt ettt e e e e e e e e e 2

JAKATTA DAL . .. e 3
I 4L T L0 et 0 o 4

I R T 4
T2 NON-GOAIS « oottt 5
1.3 CONVENTIONS . . oottt ettt ettt ettt e ettt e ettt e e et e e 5
1.4. Jakarta Data Project TEAIMttt ettt 5
141, PrOJECELEAGAS . .. veettt et ettt e et e e e e e 5
1.4.2. COMIMITEETSottt ettt et ettt e e et i e 5
LLA.3. MBIEOY . . e e 6
144, CONtIIDULOLSottt e 6

2 REPOSIIOTY . . e 7
2.1. Repositories in Jakarta Data.ooiiiiiii it e 8
2.1.1. Repositories with Built-in SUPEItYPESottt e e 9
2.1.2. Repositories without Built-In SUPEITYPest 10

B J00 55 a0 Ly A O 1] 11
3.1. Programming Model for ENtity Classes.ttt et 11
3L Entity INheritance.ot e 12
3.1.2. Persistent FIELAS.ot 13

3 L3, BaASIC T PO - v vt ettt e e 13
3.1.4. Embedded Fields and Embeddable Classest 14
315, ENUILY ASSOCIATIONS .+« vt vttt ettt ettt et ettt et e e e e e e e e e e 16
316, BN NAIIS . oottt et e e e e e e 17
3.1.7. Persistent FIeld NAIMES.ottt i et e 17
3.1.8. Persistent Field Names in Query by Method Name ..., 18
3.1.9. Type-safe Access to Entity Attributes. e e e 19

4. RePOSItOTY INTEITACES.ot e e e e e e 21
4.1, Lifecycle Methods. . ..o oot 22
4.2. Annotated QUery Methodso 23
4.3. Parameter-based automatic query methodsuutiiiiiiiiiiii i 24
4.4. Resource accessor Methods i e i e 25
4.5. Conflicting Repository Method ANNOtAtIONSuuttt e 25
4.6. Query by Method NaIMeot 25
4.6.1. BNF Grammar for Query Methods i e 26
4.6.2. Query by Method Name KEeYWOTAS.uututt ettt ettt 27
4.6.3. RETUIIL TYPES oottt ettt ettt et e e ettt e e e e 30
4.7. Special Parameters for Limits, Sorting, and Paginationoooiiiiiiiiiiiiiiiiiiiiiiiinn, 30
4.8. Precedence of SOrt Criteria.ottt i i e 31
4.8.1. Sort Criteria within QUery LangUage.ttt et 31
4.8.2. Static Mechanisms for Sort Criteria ... i e 31
4.8.3. Dynamic Mechanisms for SOrt Criteria.ueiiiiteeiiiiiit ittt 31

4.8.4. Examples of Sort Criteria Precedencettt e 32

4.9. Pagination in Jakarta Data 32
4.9.1. Offset-based Pagination.t e e e 32
4.9.2. Cursor-based Paginationt e 34

4.10. Precedence of Repository Methods e e e 39

5.Jakarta Data QUEry LanGUageottt e 40

S L TYPE SYSTRIML . ot ettt ettt ettt et e ettt e e e e e e e e 40

5.2. LexXiCal STIUCTUTEottt ettt e e i e 40
5.2.1. Identifiers and KeyWOrdsottt e e 40
32,2, PATAIMBTOYS . . ottt 41
5.2.3. Operators and PUNCLUALIONouii ittt e 41
5,24, SITINgG Iterals . . .o e e 41
5.2.5. Numeric literals.o 41
5. 2.8, W S PACE . . . vttt e e 41

5.3, EXPISSIONIS & oottt ettt e e e e e e e e e e e e e e e e 42
5.3.1. Literal @XPIreSSIONSo vttt ettt ettt ettt ettt et e e e e e 42
5.3.2. SPECIal VAlUES.ot e e 42
5.3.3. Parameter eXPIeSSIONS . ..ottt ittt ettt ettt et e e e 42
5.3 4. Enum LIterals . ..o 42
5.3.5. Path EXPIeSSIONS . . .o vttt ettt e e e 43
5.3.6. FUNCHON CallS. . ..o 43
5.3.7. OPerator EXPIeSSIONS . . o vt vttt ettt ettt ettt e e e e e e e 44
5.3.8. Numeric types and NumMeric type PromMOtiON.ttt 45

5.4. Conditional XPIESSIONS ettt ettt ettt e e e 45
5.4. 1. NUIL COMPATISOIIS . . o v vttt ettt ettt ettt ettt et e e e e e e e 45
5.4.2. TN @XPIESSIONS . . vt vttt ettt ettt ettt ettt ettt e e e e e e e e e e e 46
5.4.3. BEtWEEN EXPIeSSIONS . . oottt ittt ettt ettt ettt et e e e e e e 46
5.4.4. LIKE EXPIESSIONS . . o vt vttt ettt ettt ettt ettt e e e e e et e e e e 46
5.4.5. Equality and inequality OPerators e 46
LT 0) o (=) o 0 = 47
5.4.7. LOGICAl OPEIAtOLS. . . o v vttt ettt ettt ettt ettt e e e e e e e e e 47

SR TR O - 10 1 47
5.5. 1. FTOM ClAUSE . ..o 48
5.5.2. Where Clauseo 48
5.5.3. SeIECE ClAUSE . . . oottt 48
5,54, St ClAUSE. . ..ot 49
5.5.5. 0T AT ClAUSE . . o oottt ettt ettt e et e 49

5.6, STALEIMEIITS . .. oo e 49
5.6.1. SeleCt StAtEIMENES.\ttt et 49
5.6.2. Update StAteIMENTSottt ettt ettt 50
5.6.3. Delete StatemMentsot 50

TR) 2 1 - P 50

6. Jakarta Data ProvVIAerso 52

6.1. Providers and REPOSITOTIES.ttt e et e e e e e e e e e e e e e e e 52

6.2. Provider support fOr ENtItIes.ot e e e 52

6.3. ProvIder NAITIEttt ittt e e e e 53

7. Interoperability with other Jakarta EE Specifications. 54

7.1. Jakarta Contexts and Dependency INJECTIONottt e 54

7.1.1. CDI Extensions for Jakarta Data providers.ttt 55
7.2, JARATta INTEICEPLOTS et ettt ettt et e ettt et et e e e e e e e e e e e e e e 55
7.3. Jakarta TTANSACTIONSttt ettt et ettt et e e e e e e e e e e e e e e e e e e 55
7.4, JaRarta PerSIStEIICEot e e 56
7.5.JARATta NOSQLo e e 56
7.6. Jakarta Bean Validation.ttt ettt e e e e e e e 56

8. Portability in Jakarta Data 58
8.1. Portability for Relational Databases.ttt e 58
8.2. Portability for NOSQL Databases.uuutttt et et e e e e e e e e 58

8.2.1. Key-Value Databases. oottt ittt ettt 58

8.2.2. Wide-Column Databases 59

8.2.3. Document Databasest 59

8.2.4. Graph Databasesottt e 59

Specification: Jakarta Data
Version: 1.0.0-M4
Status: Draft

Release: March 23, 2024

Copyright

Copyright (c) 2022, 2024 Eclipse Foundation.

Eclipse Foundation Specification License

By using and/or copying this document, or the Eclipse Foundation document from which this statement is linked, you
(the licensee) agree that you have read, understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document from which this
statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, provided that you
include the following on ALL copies of the document, or portions thereof, that you use:

¢ link or URL to the original Eclipse Foundation document.

 All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual representation is
permitted) of the form: "Copyright (c) [$date-of-document] Eclipse Foundation, Inc. <<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be provided in any
software, documents, or other items or products that you create pursuant to the implementation of the contents of this
document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to this license,
except anyone may prepare and distribute derivative works and portions of this document in software that
implements the specification, in supporting materials accompanying such software, and in documentation of such
software, PROVIDED that all such works include the notice below. HOWEVER, the publication of derivative works of
this document for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) 2022, 2024 Eclipse Foundation. This software or document includes material copied from or derived from

Jakarta Data and <a href="https://jakarta.ee/specifications/data/.
."

class="bare">https://jakarta.ee/specifications/data/

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF
THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL
NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR
IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in advertising or
publicity pertaining to this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

Jakarta Data

Chapter 1. Introduction

The Jakarta Data specification provides an API to simplify data access. It enables the Java developer to focus on the data
model, while delegating away the complexities of data persistence. To make this possible, Jakarta Data includes a
variety of features such as pre-built interfaces for data access, offset and cursor based pagination strategies, and the
ability to compose custom query methods that the framework implements.

Data is a primary concern of most applications, and dealing with a database presents one of the most significant
challenges within software architecture. Beyond selecting from the various database options available in the market, it
is necessary to consider the intricacies of persistence integrations. Jakarta Data simplifies the lives of Java developers
by providing a solution that streamlines data access and manipulation.

In this context, a domain-centric approach refers to designing the application’s architecture primarily focusing on the
domain model. It means that the application’s data and logic structure and organization revolve around the core
domain concepts and business rules, ensuring that the domain model plays a central role in shaping the application’s
structure.

1.1. Goals

Jakarta Data addresses a fundamental challenge in Java application development: the seamless integration of diverse
data sources amid the dissimilarities in their respective programming models. Offering the Java developer a common,
familiar starting point for data access is helpful for solutions involving multiple databases and storage technologies.

The primary problem Jakarta Data sets out to solve is the complexity and inconsistency that arises when Java
applications encounter various database systems—relational, document, column, key-value, graph, and others.
Managing these diverse data sources can be daunting, often requiring developers to write specialized code for each
storage technology.

Jakarta Data combines the concept of a persistence agnostic API with a domain-centric approach. This approach
enables developers to work with different databases and storage engines while aligning their data access strategies
with the core principles of a domain-centric architecture, where the domain model plays a central role in shaping the
application’s structure.

Jakarta Data is guided by a set of clear and well-defined objectives to simplify data integration and enhance data access
for Java developers. These objectives serve as the pillars of its design philosophy, ensuring that it addresses real-world
challenges and provides concrete advantages to developers:

 Jakarta Data is engineered to tackle a fundamental problem: simplifying data access and manipulation within
Java applications that interact with diverse databases and storage sources.

 Jakarta Data is designed to be persistence agnostic: In this context, agnostic does not mean that you can switch
the underlying persistence without changes but implies that Jakarta Data is not tied to a specific database
technology. It offers a flexible, adaptable framework that allows you to work with the databases and storage sources
that best suit your project’s needs. This agnostic approach ensures that Jakarta Data can cater to various use cases.

* Enhancing a Domain-Centric Approach: Jakarta Data enhances the concept of a persistence agnostic API by
incorporating a domain-centric approach. It enables developers to align their data access strategies with the core
principles of a domain-centric architecture, where the domain model plays a central role in shaping the
application’s structure.

 Unified API: Jakarta Data provides a unified and standardized API for interacting with various data sources. This
consistency simplifies development by allowing developers to use the same tools and practices regardless of the
underlying database technology.

* Pluggable and Extensible: Jakarta Data is designed to be pluggable and extensible. Even in cases where the API

doesn’t directly support a specific behavior of a storage engine, Jakarta Data aims to provide an extensible API to
enable developers to customize and adapt as needed.

* Simplified and Domain-Centric Querying and Database Operations: Jakarta Data strongly emphasizes
simplifying and aligning querying and database operations with your application’s domain model. By offering
domain-centric query capabilities through annotations, built-in repository interfaces, or query-by-method, Jakarta
Data strives to be compatible with multiple databases and inherently closer to your application’s domain logic. This
approach ensures that your queries and operations are more versatile across various persistence engines, making
working with different data sources easier while maintaining a cohesive and domain-focused codebase.

« Seamless Integration: Jakarta Data enables seamless integration between Java applications and various persistence
layers, making it easier for developers to work with different databases and storage sources without extensive
customization.

1.2. Non-Goals

The following are not goals of Jakarta Data:

1. Specific Features of Jakarta Persistence, Jakarta NoSQL, etc., and Specializations: Jakarta Data does not intend
to replicate or replace the specific features provided by other Jakarta specifications, such as Jakarta Persistence and
Jakarta NoSQL, along with their associated specializations and extensions. These specifications have well-defined
scopes and functionalities that cater to specific use cases. Jakarta Data operates with the understanding that it
complements these specifications by providing a higher-level, agnostic API. It does not seek to duplicate their
capabilities but aims to simplify data access and integration across diverse data sources.

2. Replacement of Jakarta Persistence or Jakarta NoSQL Specifications: Jakarta Data’s primary goal is not to
replace or supersede the Jakarta Persistence or Jakarta NoSQL specifications. Instead, it works in harmony with
these specifications, serving as an additional layer that abstracts the complexities of data access. Jakarta Data
enhances the developer experience by offering a persistence-agnostic approach while leveraging the capabilities of
Jakarta Persistence and Jakarta NoSQL. Its role is to complement and simplify, not replace, these established
specifications.

1.3. Conventions

The terms, entity attribute and entity property, are used interchangeably throughout the specification.

1.4. Jakarta Data Project Team

This specification is being developed as part of Jakarta Data project under the Jakarta EE Specification Process. It is the
result of the collaborative work of the project committers and various contributors.

1.4.1. Project Leads

¢ Nathan Rauh

* Otavio Santana

1.4.2. Committers

* Denis Stepanov

* Dmitry Kornilov

Emily Jiang
* Gavin King

https://projects.eclipse.org/content/nathan-rauh-committer-jakarta-data
https://projects.eclipse.org/content/otavio-santana-committer-jakarta-data
https://projects.eclipse.org/content/denis-stepanov-committer-jakarta-data
https://projects.eclipse.org/content/dmitry-kornilov-committer-jakarta-data
https://projects.eclipse.org/content/emily-jiang-committer-jakarta-data
https://projects.eclipse.org/content/gavin-king-committer-jakarta-data

* Graeme Rocher
* James Krueger
¢ James Stephens
* Kyle Aure

* Mark Swatosh

* Michael Redlich
Nathan Rauh

* Otavio Santana

* Werner Keil

1.4.3. Mentor

* Dmitry Kornilov

1.4.4. Contributors

The complete list of Jakarta Data contributors may be found here.

https://projects.eclipse.org/content/graeme-rocher-committer-jakarta-data
https://projects.eclipse.org/content/james-krueger-committer-jakarta-data
https://projects.eclipse.org/content/james-stephens-committer-jakarta-data
https://projects.eclipse.org/content/kyle-aure-committer-jakarta-data
https://projects.eclipse.org/content/mark-swatosh-committer-jakarta-data
https://projects.eclipse.org/content/michael-redlich-committer-jakarta-data
https://projects.eclipse.org/content/nathan-rauh-committer-jakarta-data
https://projects.eclipse.org/content/otavio-santana-committer-jakarta-data
https://projects.eclipse.org/content/werner-keil-committer-jakarta-data
https://projects.eclipse.org/content/dmitry-kornilov-committer-jakarta-data
https://github.com/jakartaee/data/graphs/contributors

Chapter 2. Repository

In the realm of software design, the repository pattern encapsulates the logic required to access data sources. This
pattern consolidates data access functionality, offering improved maintainability and decoupling the infrastructure or
technology used to access databases from the domain model layer.

Data Access
Layer?

Web Service

The Repository pattern is a fundamental concept within Jakarta Data that plays a central role in data access and
management. Essentially, a repository is a mediator between an application’s domain logic and the underlying data
storage, be it a relational database, NoSQL database, or any other data source.

In Jakarta Data, a Repository provides a structured and organized way to interact with data. It abstracts data storage
and retrieval complexities, allowing you to work with domain-specific objects and perform common operations on data
without writing low-level database queries.

As employed in Jakarta Data, the Repository pattern exhibits several key characteristics that make it a powerful tool for
managing data access within Java applications. These characteristics collectively define how repositories function
within Jakarta Data, providing a structured and domain-centric approach to working with data. These key
characteristics offer insight into how repositories simplify data access and enhance the maintainability of code.

« Abstraction: Repositories abstract the details of how data is stored, enabling the developer to focus on the
application’s domain logic without being tightly coupled to a specific database technology.

» Structured Data Access: Jakarta Data repositories offer a structured and consistent way to perform data access
operations. This structured approach ensures that the codebase remains organized and maintainable.

* Domain-Centric: Repositories are designed to be domain-centric, aligning with the application’s domain model. It
means that data access operations are closely tied to business entities, making code more intuitive and expressive.

In summary, the Repository pattern in Jakarta Data offers a structured and domain-centric approach to data access,
providing a balance between abstraction and ease of use. It simplifies data access by encapsulating the details of the
data source while aligning closely with the application’s domain model. It makes it a valuable choice for many Java

developers, especially in projects where a clean separation of concerns and maintainable codebase are essential.

2.1. Repositories in Jakarta Data

Within the context of Jakarta Data, the repository plays a pivotal role in simplifying data access for various persistence
stores. The repository is a Java interface that acts as a gateway for accessing persistent data of one or more entity types.
Repositories offer a streamlined approach to working with data by exposing operations for querying, retrieving, and
modifying entity class instances that represent data in the persistent store.

Several characteristics define repositories:

* Reduced Boilerplate Code: One of the primary goals of a repository abstraction is to significantly reduce the
boilerplate code required to implement data access layers for diverse persistence stores. This reduction in repetitive
code enhances code maintainability and developer productivity.

« Jakarta Data Annotations: In Jakarta Data, repositories are defined as interfaces and are annotated with the
@Repository annotation. This annotation serves as a marker to indicate that the interface represents a repository.

 Built-In Interfaces: The Jakarta Data specification provides a set of built-in interfaces from which repositories can
inherit. These built-in interfaces offer a convenient way to include a variety of pre-defined methods for common
operations. They also declare the entity type to use for methods where the entity type cannot otherwise be inferred.

* Data Retrieval and Modification: Repositories facilitate data retrieval and modification operations. This includes
querying for persistent instances in the data store, creating new persistent instances in the data store, removing
existing persistent instances, and modifying the state of persistent instances. Conventionally, these operations are
named insert, update, save and delete for modifying operations and find, count, and exists for retrieval operations.

* Subset of Data: Repositories may expose only a subset of the full data set available in the data store, providing a
focused and controlled access point to the data.

« Entity Associations: Entities within a repository may have associations between them, especially in the case of
relational data access. However, this specification does not define the semantics of associations between entities
belonging to different repositories.

 Stateless Repositories: Repositories are stateless. This specification does not address the definition of repositories
that externalize Jakarta Persistence-style stateful persistence contexts.

Repositories in Jakarta Data serve as efficient gateways for managing and interacting with persistent data, offering a
simplified and consistent approach to data access and modification within Java applications.

The application must provide the following when using repositories in Jakarta Data:

1. Entity Classes and Mappings: Developers define a set of entity classes and mappings tailored to a specific data
store. These entities represent the data structure and schema, offering a powerful means to interact with the
underlying data.

2. Repository Interfaces: Jakarta Data enables the creation of one or more repository interfaces, following predefined
rules that include the guidelines set forth by this specification. These interfaces are the gateways to accessing and
manipulating the data, offering a structured and efficient way to perform data operations.

An implementation of Jakarta Data, specifically tailored to the chosen data store, assumes the responsibility of
implementing each repository interface. This symbiotic relationship between developers and Jakarta Data ensures that
data access and manipulation remain consistent, efficient, and aligned with best practices.

Jakarta Data empowers developers to shape their data access strategies by defining entity classes and repositories, with
implementations seamlessly adapting to the chosen data store. This flexibility and Jakarta Data’s persistence-agnostic
approach promote robust data management within Java applications.

The Jakarta Data specification supports two basic ways to define a repository interface:

* by extending one of the generic repository supertype interfaces defined by Jakarta Data, or

* by annotating the methods of an interface which does not extend any built-in supertype.

A Java developer creates an interface, marks it with the @Repository annotation, and has the option to extend one or
more built-in generic repository interfaces, or to annotate its lifecycle methods.

o Jakarta Data allows applications to intermix the two approaches by defining methods annotated with
@Insert, @Update, @Delete, or @Save on repositories which inherit the built-in supertypes.

2.1.1. Repositories with Built-in Supertypes

Jakarta Data defines a hierarchy of built-in interfaces which user-defined repositories may inherit. At the root of this
hierarchy is the DataRepository interface. A repository is permitted to extend one or more of the members of the
hierarchy, or none at all. When a repository extends a built-in interface, the implementation of every method inherited
from the built-in interface must preserve the semantics specified by the built-in interface.

DataRepository

!

BasicRepository

!

CrudRepository

A repository which extends a built-in supertype usually acts as a home for operations acting on a single entity type
called the primary entity type of the repository. The primary entity type is determined by the argument to the first
generic type variable of the generic supertype.

» The BasicRepository interface includes some of the most common operations applying to a single type of entity,
including save(), delete(), and findById().

* The CrudRepository interface inherits BasicRepository, adding insert() and update() methods corresponding to the
Create and Update operations of the CRUD (Create, Read, Update, Delete) pattern.

Given a Product entity with ID of type long, the repository could be as simple as:

public interface ProductRepository extends BasicRepository<Product, Long> {

}

There is no nomenclature restriction requiring the Repository suffix. For example, a repository for the Car entity does
not need to be named CarRepository. It could be named Cars, Vehicles, or even Garage.

public interface Garage extends BasicRepository<Car, String> {

}

2.1.2. Repositories without Built-in Supertypes

Alternatively, Jakarta Data allows a custom repository interface which does not extend any built-in type. This option:

» provides the developer with complete control over the operations available, and over their naming, and
« allows a single repository to declare operations acting on a family of related entities, instead of being limited to just
one entity type.

In this approach, database operations involving fundamental data changes, such as insertion, update, and removal, are
realized via the use of lifecycle annotations like @Insert, @Update, @Delete, and @Save. These annotations enable the
crafting of expressive and contextually meaningful repository methods, resulting in a repository API that closely
mirrors the semantics of the domain.

For instance, consider the Garage repository interface below:

public interface Garage {

Car park(Car car);

void unpark(Car car);

Notice that the @Insert annotation is used to declare the park() method.

The previous example illustrates the design of a repository interface which captures some of the essence of the
business domain. This approach fosters a shared understanding and more intuitive communication within the
development team, with database operations named according to the language of the domain.

10

Chapter 3. Entity Classes

The notion of an entity is the fundamental building block with which a data model may be constructed. Abstractly, an
entity (or entity type) is a schema for data.

« The schema may be as simple as a tuple of types, as is typical in the relational model, or it might be structured, as in
document data stores.

* The schema might be explicit, as in the case of SQL DDL declaring a relational table, or it might be implicit, as is
commonplace in key/value stores.

« Either way, we assume that the entity is represented in Java as a class, which we call the entity class. ™

e When there’s no risk of confusion, we often use the word “entity” to mean the entity class, or even an
instance of the entity class.

Data represented by an entity is persistent, that is, the data itself outlives any Java process which makes use of it. Thus,
it is necessary to maintain an association between instances of Java entity classes and state held in a data store.

* Each persistent instantiation of the schema is distinguishable by a unique identifier. For example, a row of a
relational database table is identifiable by the value of its primary key.

* Any persistent instantiation of the schema is representable by an instance of the entity class. In a given Java
program, multiple entity class instances might represent the same persistent instance of the schema.

In Jakarta Data, the concrete definition of an entity may be understood to encompass the following aspects:

1. The entity class itself: An entity class is simple Java object equipped with fields or accessor methods designating
each property of the entity. An entity class is identified by an annotation.

2. Its data schema: Some data storage technologies require an explicit schema defining the structure and properties of
the data the entity represents. For example, a relational database requires that the schema be specified using SQL
Data Definition Language (DDL) statements. The schema might be generated by the Jakarta Data provider, from the
information available in the Java entity class, or it might be managed independently. When the data store itself does
not require an explicit schema, the data schema is implicit.

3. Its association with a repository: Each entity class is associated with at least one repository, which exposes
operations for retrieving and storing instances of the entity.

o A Jakarta Data provider might allow the state of a single Jakarta Data entity to be stored across multiple
entities in the data store. For example, in Jakarta Persistence, the @SecondaryTable annotation allows the
state of an entity to be mapped across more than one database table.

3.1. Programming Model for Entity Classes

A programming model for entity classes specifies:

* a set of restrictions on the implementation of a Java class which allows it to be used as an entity class with a given
Jakarta Data provider, and

 a set of annotations allowing the identification of a Java class as an entity class, and further specification of the
schema of the entity.

Jakarta Data does not define its own programming model for entities, but instead:

¢ is compatible with the programming models defined by the Jakarta Persistence and Jakarta NoSQL specifications,
and

11

« allows for vendor-specific entity programming models to be defined by Jakarta Data providers.

This section lays out the core requirements that an entity programming model must satisfy in order to be compatible
with Jakarta Data, and for the defining provider to be considered a fully-compliant implementation of this
specification.

Every entity programming model specifies an entity-defining annotation. For Jakarta Persistence, this is
jakarta.persistence.Entity. For Jakarta NoSQL, it is jakarta.nosql.Entity. A Jakarta Data provider must provide
repository implementations for entity classes bearing the entity-defining annotations it supports, and must ignore
entity classes with entity-defining annotations it does not support.

0 To maintain clarity and to disambiguate the desired Jakarta Data provider, a single entity class should
not mix entity-defining annotations from different providers. For example, an entity class should not
be annotated both jakarta.persistence.Entity and jakarta.nosql.Entity. This practice allows the entity-
defining annotation to indicate the desired provider in programs where multiple Jakarta Data
providers are available.

Furthermore, an entity programming model must define an annotation which identifies the field or property holding
the unique identifier of an entity. For Jakarta Persistence, it is jakarta.persistence.Id or jakarta.persistence.EmbeddedId.
For Jakarta NoSQL, it is jakarta.nosql.Id. Alternatively, an entity programming model might allow the identifier field or
property to be identified via some convention.

Typically, an entity programming model specifies additional annotations which are used to make the schema of the
entity explicit, for example, jakarta.persistence.Id and jakarta.persistence.Column, or jakarta.nosql.Id and
jakarta.nosql.Column. The nature of such annotations is beyond the scope of this specification.

In a given entity programming model, entity classes might always be mutable, or might always be immutable, or,
alternatively, the model might support a mix of mutable and immutable entity classes.

¢ A programming model which supports immutable entity classes may require that every mutable entity class declare
a constructor with no parameters, and might place limits on the visibility of this constructor.

¢ A programming model which supports the use of immutable entity classes—ideally represented as Java record
types—would not typically require the existence of such a constructor.

In either case, an entity programming model might place restrictions on the visibility of fields and property accessors

of an entity class.

3.1.1. Entity Inheritance

An entity programming model might support inheritance between entities. Two entities are related by inheritance if:

1. the entity classes are related by Java language inheritance, and

2. the Jakarta Data provider supports retrieving and querying the entities in a polymorphic fashion.

It’s possible for two entity classes to be related by Java inheritance, but not by entity inheritance in the sense defined
here. An entity programming model specifies which Java inheritance relationships are interpreted as entity
inheritance.

When entities are related by inheritance, a query method which returns the entity supertype might also return
instances of its subtypes.

The Jakarta Data provider determines how entity classes which participate in an entity inheritance hierarchy "map" to
the data schema. For example, in a relational datastore, all entities in the hierarchy might be stored together on one
table, or each entity might have its own dedicated table.

12

Support for entity inheritance is not required by this specification.

3.1.2. Persistent Fields

A field of an entity class may or may not represent state which is persistent in the datastore. A persistent field has some
corresponding representation in the data schema of the entity, for example, it might map to a column or columns in a
relational database table. Any programming model for entity classes must provide well-defined rules for distinguishing
fields which are persistent in the datastore from which fields are transient, having no persistent representation in the
datastore. Furthermore, the programming model must specify how the Jakarta Data provider accesses the persistent
fields of an entity to read and write their values.

Every programming model for entity classes must support direct field access, that is, access to the persistent fields of an
entity class without triggering any intermediating user-written code such as JavaBeans-style property accessors. When
direct field access is used, every Java field marked with the Java language transient modifier must be treated as
transient. A programming model might place constraints on the visibility of persistent fields. For example, Jakarta
Persistence disallows public persistent fields. Every programming model must permit private persistent fields.

A programming model for entity classes might also support property-based access, that is, access to persistent fields via
JavaBeans-style property accessors, or, especially for Java record types, via accessor methods combined with
constructor-based initialization. Such programming models should provide an annotation or other convention to
distinguish transient properties. For example, Jakarta Persistence provides jakarta.persistence.Transient. When
property-based access is supported, a programming model might place constraints on the visibility of property
accessors. For example, Jakarta Persistence requires that property accessors be public or protected. Support for
property-based access is not required by this specification.

Jakarta Data distinguishes three kinds of persistent field within entity classes.

* A basic field holds a value belonging to some fundamental data type supported natively by the Jakarta Data
Provider. Support for the set of basic types enumerated in the next section below is mandatory for all Jakarta Data
providers.

* An embedded field allows the inclusion of the state of a finer-grained Java class within the state of an entity. The type
of an embedded field is often a user-written Java class. Support for embedded fields varies depending on the Jakarta
Data provider and the database type.

* An association field implements an association between entity types. Support for association fields varies depending
on the Jakarta Data provider and the database type.

3.1.3. Basic Types

Every Jakarta Data provider must support the following basic types within its programming model:

Basic Data Type Description

Primitive types and wrapper classes All Java primitive types, such as int, double, boolean, etc., and
their corresponding wrapper types from java.lang (e.g.,

Integer, Double, Boolean).

java.lang.String Represents text data.
LocalDate, LocalDateTime, LocalTime, Instant from java.time Represent date and time-related data.
java.util.uuId Universally Unique IDentifier for identifying entities.

13

Basic Data Type Description

BigInteger and BigDecimal from java.math Represent large integer and decimal numbers.
byte[] Represents binary data.
User-defined enum types Custom enumerated types defined by user-written code.

In this specification, "string" means java.lang.String, "numeric" means any primitive numeric type,
wrapper for a primitive numeric type, BigInteger, or BigDecimal, and "date/time" means LocalDate,

LocalDateTime, LocalTime, or Instant.

For example, the following entity class has five basic fields:

public class Person {

private UUID id;

private String name;
private long ssn;

private LocalDate birthdate;
private byte[] photo;

In addition to the types listed above, an entity programming model might support additional domain-specific basic
types. This extended set of basic types might include types with a nontrivial internal structure. An entity programming
model might even provide mechanisms to convert between user-written types and natively-supported basic types. For
example, Jakarta Persistence defines the AttributeConverter interface.

0 Many key-value, wide-column, document, and relational databases feature native support for arrays or
even associative arrays of these basic types. Unfortunately, the semantics of such types—along with
their performance characteristics—are extremely nonuniform, and so support for such types is left
undefined by the Jakarta Data specification.

3.1.4. Embedded Fields and Embeddable Classes

An embeddable class differs from an entity class in that:

* the embeddable class lacks its own persistent identity, and

* the state of an instance of the embeddable class can only be stored in the database when the instance is referenced
directly or indirectly by a "parent” entity class instance.

An embedded field is a field whose type is an embeddable class.

Like entities, embeddable classes may have basic fields, embeddable fields, and association fields, but, unlike entities,
they do not have identifier fields.

Like entities, a programming model for entity classes might support mutable embeddable classes, immutable
embeddable classes, or both.

A programming model for entity classes might define an annotation that identifies a user-written class as an
embeddable class. For example, Jakarta Persistence defines the annotation jakarta.persistence.Embeddabe. Alternatively,
the programming model might define an annotation that identifies a field as an embedded field. For example, Jakarta
Persistence defines the annotation jakarta.persistence.Embedded.

14

There are two natural ways that a Jakarta Data provider might store the state of an instance of an embedded class in a

database:

* by flattening the fields of the embeddable class into the data structure representing the parent entity, or

* by grouping the fields of the embedded class into a fine-grained structured type (a UDT, for example).

In a flattened representation of an embedded field, the fields of the embeddable class occur directly alongside the basic
fields of the entity class in the data schema of the entity. There is no representation of the embeddable class itself in the

data schema.

For example, consider the following Java classes:

public class Address {
private String street;
private String city;
private String postalCode;

public class Person {

private Long id;
private String name;
private Address address; // embedded field

In a document, wide-column, or graph database, the JSON representation of an instance of the Person entity might be as

follows:

"id": 1,

"name": "John Doe",
"street": "123 Main St",
"city": "Sampleville",
"postalCode": "12345"

Or, in a relational database, the DDL for the Person table might look like this:

create table Person (
id bigint primary key,
name varchar,
street varchar,
city varchar,
postalCode varchar

In a structured representation, the fields of the embeddable class are somehow grouped together in the data schema.

For example, the JSON representation of Person might be:

"id": 1,

"name": "John Doe",

"address":

{
"street": "123 Main St",
"city": "Sampleville",
"postalCode": "12345"

}

15

Or the SQL DDL could be:

create type Address as (
street varchar,
city varchar,
postalCode varchar

)

create table Person (
id bigint primary key,
name varchar,
address Address

o Support for embeddable classes and embedded fields is not required by this specification. However,
every Jakarta Data provider is strongly encouraged to provide support for embeddable classes within
its entity programming model.

3.1.5. Entity Associations

An association field is a field of an entity class whose declared type is also an entity class. Given an instance of the first
entity class, its association field holds a reference to an instance of a second entity class.

For example, consider the following Java classes:

public class Author {

private UUID id;
private String name;
private List<Book> books;

public class Book {

private Long id;

private String title;

private String category;
private List<Author> authors;

In a relational database, these entities might map to the following data schema:

create table Author (
uuid id primary key,
name varchar,

)

create table BookAuthor(
book bigint,
author uuid,
primary key (book, author),
foreign key (author) references Author,
foreign key (book) references Book

)

create table Book (
id bigint primary key,

16

title varchar,
category varchar

e Support for entity associations is not required by this specification.

3.1.6. Entity Names

Each entity must be assigned an entity name by the provider. By default, this must be the unqualified Java class name of
the entity class. A programming model for entity classes might provide a way to explicitly specify an entity name. For
example, Jakarta Persistence allows the entity name to be specified via the name member of the @Entity annotation.

3.1.7. Persistent Field Names

Each persistent field of an entity, as defined above in Persistent Fields, or of an embeddable class, as defined in
Embedded Fields and Embeddable Classes, must be assigned a name, allowing the persistent field to be referenced by
an automatic query method, a Query by Method Name, or from a query specified within the @Query annotation.

* when direct field access is used, the name of a persistent field is simply the name of the Java field, but

* when property-based access is used, the name of the field is derived from the accessor methods.

Any programming model for entity classes which supports property-based access must also define a rule for assigning
names to persistent fields. Typically, a property with accessors named getX and setX is assigned a persistent field name
obtained by calling java.beans.Introspector.decapitalize("X").

Within a given entity class or embeddable class, names assigned to persistent fields must be unique ignoring case. A
Jakarta Data provider is permitted to reject an entity class if two persistent fields would be assigned the same name.

Furthermore, within the context of a given entity, each persistent field of an embeddable class reachable by navigation
from the entity class may be assigned a compound name. The compound name is obtained by concatenating the names
assigned to each field traversed by navigation from the entity class to the persistent field of the embedded class,
optionally joined by a delimiter.

The rule for concatenating compound names depends on the context, and is specified in Field Name Concatenation and
Delimiters. The examples in the table assume an Order entity has an address of type MailingAddress with a zipCode of type

int.
Table 1. Field Name Concatenation and Delimiters
Context Type Delimi Example
ter
@Find Parameter name _ @Find List<Order> find(int address_zipCode);
©Query Path expression . @Query("FROM Order WHERE address.zipCode = ?1")
within query
Query by Method Name Method name _ List<Order> findByAddress_zipCode(int zip);
Sort String argument .or _ Sort.asc("address_zipCode")
@By or @OrderBy Annotation value . or _ @F]nd List<Order> find(@By("address.ZipCOde") int Z'lp);

17

o Application programmers are strongly encouraged to follow Java’s camel case naming standard for
fields of entities, relations, and embeddable classes, avoiding underscores in field names. The
resolution algorithm for persistent field identification relies on the use of underscore as a delimiter.
Adhering to the camel case naming convention ensures consistency and eliminates ambiguity.

3.1.8. Persistent Field Names in Query by Method Name

For Query by Method Name, the use of delimiters within a compound name is optional. Delimiters may be omitted
entirely from a compound name when they are not needed to disambiguate the persistent field to which the name
refers. But for a given entity property name, delimiter usage must be consistent: either the delimiter must be used
between every pair of persistent field names within the compound name, or it must not occur within the compound
name.

Resolution of a persistent field involves the following steps:

1. A persistent field name is extracted from the method name according to the BNF Grammar for Query Methods. For
example, if the query method name is findByAddressZipCode, the extracted field name is AddressZipCode.

2. The extracted name is matched against the fields of the entity class. If the name assigned to a persistent field of the
entity class matches the extracted name, ignoring case, then the extracted name resolves to that field.

3. Otherwise, if no match is found among the fields of the entity, the extracted name is matched against the fields of
entity classes and embedded classes reachable from the entity class, interpreting the extracted name as a compound
name, as outlined in the previous section, both with and without the optional delimiter. If the compound name
assigned to a persistent field matches the extracted name, also interpreted as a compound name, and ignoring case,
then the extracted name resolves to that field.

4. If no matching persistent field is found in either of the previous steps, the provider is permitted to reject the query
method or to throw UnsupportedOperationException when the method is called.

A persistent field name used in a Query by Method Name must not contain a keyword reserved by Query by Method
Name.

3.1.8.1. Scenario 1: Person Repository with Unambiguous Resolution
In this scenario, we have the following data model:
class Person {
private Long id;

private MailingAddress address;

}

class MailingAddress {
private int zipcode;

}

The Person entity does not have an addressZipCode field, so use of the delimiter is optional. It is valid to write both of the
following repository methods, which have the same meaning,

List<Person> findByAddressZipCode(int zipCode);
List<Person> findByAddress_zipcode(int zipCode);

3.1.8.2. Scenario 2: Order Repository with Resolution that requires a Delimiter

In this scenario, we have the following data model:

18

class Order {
private Long id;
private String addressZipCode;
private MailingAddress address;

}
class MailingAddress {

private int zipcode;

}

The Order entity has an addressZipCode field, as well as an address field for an embeddable class with a zipcode field. The
method name findByAddressZipCode points to the addressZipCode field and cannot be used to navigate to the embedded
class. To navigate to the zipcode field of the embedded class, the delimiter must be used:

List<Order> findByAddress_zipcode(int zipCode);

3.1.9. Type-safe Access to Entity Attributes

Jakarta Data provides a static metamodel that allows entity attributes to be accessed by applications in a type-safe
manner.

For each entity class, the application developer or a compile-time annotation processor can define a corresponding
metamodel class following a prescribed set of conventions.

* The metamodel class must be annotated with @StaticMetamodel, specifying the entity class as its value.
* The metamodel class contains one or more public static fields corresponding to persistent fields of the entity class.

» The type of each of these fields must be either java.lang.String, jakarta.data.metamodel.Attribute, or a subinterface of
Attribute from the package jakarta.data.metamodel.

The application can use the field values of the metamodel class to obtain artifacts relating to the entity attribute in a
type-safe manner, for example, Book.title.asc() or Sort.asc(_Book.title.name()) or Sort.asc(_Book.TITLE) rather than
Sort.asc("title").

3.1.9.1. Application Requirements for a Metamodel Class

When an application programmer writes a static metamodel class for an entity by hand:

« each field corresponding to a persistent field of an entity must have modifiers public, static, and final, and

« the fields must be statically initialized.
The static metamodel class is not required to include a field for every persistent field of the entity.

A convenience implementation of each subinterface of Attribute is provided in the package jakarta.data.metamodel.impl.

3.1.9.2. Compile-time Annotation Processor Requirements for a Metamodel Class

When an annotation processor generates a static metamodel class for an entity:

e the metamodel class must be annotated with jakarta.annotation.Generated,

« each field corresponding to a persistent field of an entity must have modifiers public, static, and either final or
volatile,

* the name of each field, ignoring case, must match the name of an entity attribute, according to the conventions
specified below in Conventions for Metamodel Fields, and with the _ character in the field name delimiting the
attribute names of hierarchical structures or relationships, such as embedded classes.

19

The fields may be statically initialized, or they may be initialized by the provider during system initialization.

3.1.9.3. Conventions for Metamodel Fields

The following are conventions for static metamodel classes:

* The name of the static metamodel class should consist of underscore (_) followed by the entity class name.
* Fields of type String should be named with all upper case.
¢ Fields of type Attribute (or a subinterface of Attribute) should be named in lower case or mixed case.

 Uninitialized fields should have modifiers public, static, and volatile.

Initialized fields must have modifiers public, static, and final.

Fields of type String must always be statically initialized, enabling their use in annotation values.

3.1.9.4. Example Metamodel Class and Usage

Example entity class:

public class Product {
public long id;
public String name;
public float price;
}

Example metamodel class for the entity:

(Product.class)
public class _Product {

public static final String ID = "id";

public static final String NAME = "name";

public static final String PRICE = "price";

public static final SortableAttribute<Product> id = new SortableAttributeRecord<>("id");
public static final TextAttribute<Product> name = new TextAttributeRecord<>("name");

public
}

static final

Example usage:

List<Product> found =

SortableAttribute<Product> price = new SortableAttributeRecord<>("price");

products.findByNameLike(searchPattern,
_Product.price.desc(),
_Product.name.asc(),
_Product.id.asc());

[1] We will not consider generic programs which work with entity data via detyped representations.

20

Chapter 4. Repository Interfaces

A TJakarta Data repository is a Java interface annotated with @Repository. A repository interface may declare:

e abstract (non-default) methods, and

* concrete (default) methods.
A concrete method may call other methods of the repository, including abstract methods.
Every abstract method of the interface is usually either:

* an entity instance lifecycle method,
* an annotated query method,
e an automatic query method with parameter-based conditions or Query by Method Name, or

e aresource accessor method.

A repository may declare lifecycle methods for a single entity type, or for multiple related entity types. Similarly, a
repository might have query methods which return different entity types.

A repository interface may inherit methods from a superinterface. A superinterface of a repository interface must
either:

* be one of the built-in generic repository supertypes defined by this specification, DataRepository, BasicRepository, or
CrudRepository, or

* be a non-generic toplevel interface with no type parameters, whose abstract methods likewise declare no type
parameters.

A Jakarta Data implementation must treat abstract methods inherited by a repository interface as if they were directly
declared by the repository interface.

Repositories perform operations on entities. For repository methods that are annotated with @Insert, @Update, @Save, or
@Delete, the entity type is determined from the method parameter type. For find and delete methods where the return
type is an entity, array of entity, or parameterized type such as List<MyEntity> or Page<MyEntity>, the entity type is
determined from the method return type. For count, exists, and other delete methods that do not return the entity or
accept the entity as a parameter, the entity type cannot be determined from the method signature and a primary entity
type must be defined for the repository.

Users of Jakarta Data declare a primary entity type for a repository by inheriting from a built-in repository super
interface, such as BasicRepository, and specifying the primary entity type as the first type variable. For repositories that
do not inherit from a super interface with a type parameter to indicate the primary entity type, lifecycle methods on
the repository determine the primary entity type. To do so, all lifecycle methods where the method parameter is a type,
an array of type, or is parameterized with a type that is annotated as an entity, must correspond to the same entity type.
The primary entity type is assumed for methods that do not otherwise specify an entity type, such as
countByPriceLessThan. Methods that require a primary entity type raise MappingException if a primary entity type is not
provided.

e A Jakarta Data provider might go beyond what is required by this specification and support abstract
methods which do not fall into any of the above categories. Such functionality is not defined by this
specification, and so applications with repositories which declare such methods are not portable
between providers.

The subsections below specify the rules that an abstract method declaration must observe so that the Jakarta Data
implementation is able to provide an implementation of the abstract method.

21

« If every abstract method of a repository complies with the rules specified below, then the Jakarta Data
implementation must provide an implementation of the repository.

* Otherwise, if a repository declares an abstract method which does not comply with the rules specified below, or
makes use of functionality which is not supported by the Jakarta Data implementation, then an error might be
produced by the Jakarta Data implementation at build time or at runtime.

The portability of a given repository interface between Jakarta Data implementations depends on the portability of the
entity types it uses. If an entity class is not portable between given implementations, then any repository which uses
the entity class is also unportable between those implementations.

e Additional portability guarantees may be provided by specifications which extend this specification,
specializing to a given class of datastore.

4.1. Lifecycle methods

A lifecycle method is an abstract method annotated with a lifecycle annotation. Lifecycle methods allow the program to
make changes to persistent data in the data store.

A lifecycle method must be annotated with a lifecycle annotation. The method signature of the lifecycle method,
including its return type, must follow the requirements that are specified by the Javadoc of the lifecycle annotation.

Lifecycle method signatures follow one of these generic patterns:

void lifecycle(Entity e);

Entity lifecycle(Entity e);
where Lifecycle is a lifecycle annotation, lifecycle is the arbitrary name of the method, and Entity is either E, List<E>, or
E[], where E is a concrete entity class.

This specification defines four built-in lifecycle annotations: @Insert, @Update, @Delete, and @Save. The semantics of these
annotations is defined in their Javadoc.

For example:

void insertBook(Book book);

Lifecycle methods are not guaranteed to be portable between all providers.

Jakarta Data providers must support lifecycle methods to the extent that the data store is capable of the corresponding
operation. If the data store is not capable of the operation, the Jakarta Data provider must raise
UnsupportedOperationException when the operation is attempted, per the requirements of the Javadoc for the lifecycle
annotation, or the Jakarta Data provider must report the error at compile time.

There is no special programming model for lifecycle annotations. The Jakarta Data implementation automatically
recognizes the lifecycle annotations it supports.

A Jakarta Data provider might extend this specification to define additional lifecycle annotations, or to
support lifecycle methods with signatures other than the usual signatures defined above. For example,
a provider might support "merge" methods declared as follows:

22

Book mergeBook(Book book);

Such lifecycle methods are not portable between Jakarta Data providers.

4.2. Annotated Query methods

An annotated query method is an abstract method annotated by a query annotation type. The query annotation specifies
a query in some datastore-native query language.

Each parameter of an annotated query method must either:

* have exactly the same name and type as a named parameter of the query,

* have exactly the same type and position within the parameter list of the method as a positional parameter of the
query, or

 be of type Limit, Order, PageRequest, or Sort.

A repository with annotated query methods with named parameters must be compiled so that parameter names are
preserved in the class file (for example, using javac -parameters), or the parameter names must be specified explicitly
using the @Param annotation.

An annotated query method must not also be annotated with a lifecycle annotation.

The return type of the annotated query method must be consistent with the result type of the query specified by the
query annotation.

e The result type of a query depends on datastore-native semantics, and so the return type of an
annotated query method cannot be specified here. However, Jakarta Data implementations are
strongly encouraged to support the following return types:

 for a query which returns a single result of type T, the type T itself, or Optional<T>,

« for a query which returns many results of type T, the types List<T>, Page<T>, and T[].

Furthermore, implementations are encouraged to support void as the return type for a query which
never returns a result.

This specification defines the built-in @Query annotation, which may be used to specify a query written in the Jakarta
Data Query Language defined in the next chapter.

For example, using a named parameter:

("where title like :title order by title")
Page<Book> booksByTitle(String title, PageRequest<Book> pageRequest);

("where p.name = :prodname")
Optional<Product> findByName(("prodname") String name);

Or, using a positional parameter:

("delete from Book where isbn = ?1")
void deleteBook(String isbn);

Programs which make use of annotated query methods are not portable between providers.

23

A Jakarta Data provider might extend this specification to define its own query annotation types. For
example, a provider might define a @SQL annotation for declaring queries written in SQL.

There is no special programming model for query annotations. The Jakarta Data implementation automatically
recognizes the query annotations it supports.

4.3. Parameter-based automatic query methods

A parameter-based automatic query method is an abstract method annotated with an automatic query annotation.

Each automatic query method must be assigned an entity type. The rules for inferring the entity type depend on the
semantics of the automatic query annotation. Typically:

« If the automatic query method returns an entity type, the method return type identifies the entity. For example, the
return type might be E, Optional<E>, E[], Page<E>, or List<E>, where E is an entity class. Then the automatic query
method would be assigned the entity type E.

o If the query does not return an entity type, the entity assigned to the automatic query method is the primary entity
type of the repository.

Jakarta Data infers a query based on the parameters of the method. Each parameter must either:

* have exactly the same type and name as a persistent field or property of the entity class, or

* be of type Limit, Order, PageRequest, or Sort.

Parameter names map parameters to persistent fields. A repository with parameter-based automatic query methods
must either:

* be compiled so that parameter names are preserved in the class file (for example, using javac -parameters), or

o explicitly specify the name of the persistent field mapped by each parameter of an automatic query method using
the @By annotation.

The parameter name or explicit field name specified using @By may be a compound name, as specified below in
Persistent Field Names.

This specification defines the built-in automatic query annotations @Find and @Delete. The semantics of these
annotations are specified in their Javadoc. Note that @Delete is both a lifecycle annotation and an automatic query
annotation. The signature of a repository method annotated @Delete must be used to disambiguate the interpretation of
the @Delete annotation.

For example:

Book bookByIsbn(String isbn);
List<Book> booksByYear(Year year, Sort order, Limit limit);

Page<Book> find(@By("year") Year publishedIn,
("genre") Category type,
PageRequest<Book> pageRequest);

Automatic query methods annotated with @Find or @elete are portable between providers.

o A Jakarta Data provider might extend this specification to define its own automatic query annotation

24

types. In this case, an automatic query method is not portable between providers.

4.4. Resource accessor methods

A resource accessor method is a method with no parameters which returns a type supported by the Jakarta Data
provider. The purpose of this method is to provide the program with direct access to the data store.

For example, if the Jakarta Data provider is based on JDBC, the return type might be java.sql.Connection or
javax.sql.DataSource. Or, if the Jakarta Data provider is backed by Jakarta Persistence, the return type might be
jakarta.persistence.EntityManager.

The Jakarta Data provider recognizes the connection types it supports and implements the method such that it returns
an instance of the type of resource. If the resource type implements java.lang.AutoCloseable and the resource is
obtained within the scope of a default method of the repository, then the Jakarta Data provider automatically closes the
resource upon completion of the default method. If the method for obtaining the resource is invoked outside the scope
of a default method of the repository, then the user is responsible for closing the resource instance.

0 A Jakarta Data implementation might allow a resource accessor method to be annotated with
additional metadata providing information about the connection.

For example:

Connection connection();
default void cleanup() {
try (Statement s = connection().createStatement()) {

s.executeUpdate("truncate table books");

}

A repository may have at most one resource accessor method.

4.5. Conflicting Repository Method Annotations

Annotations like @Find, @Query, @Insert, @Update, @Delete, and @Save are mutually-exclusive. A given method of a repository
interface may have at most one:

* @Find annotation,
¢ lifecycle annotation, or

* query annotation.

If a method of a repository interface has more than one such annotation, the annotated repository method must raise
UnsupportedOperationException every time it is called. Alternatively, a Jakarta Data provider is permitted to reject such a
method declaration at compile time.

4.6. Query by Method Name

The Query by method mechanism allows for creating query commands by naming convention.

public interface ProductRepository extends BasicRepository<Product, Long> {

List<Product> findByName(String name);

25

("price")
List<Product> findByNamelLike(String namePattern);

(value = "price", descending = true)
List<Product> findByNameLikeAndPricelLessThan(String namePattern, float priceBelow);

The parsing of query method names follows a specific format:

* The method name consists of the subject, the predicate, and optionally the order clause.

* The subject begins with the action (such as find or delete) and is optionally followed by an expression (for example,
First10), followed by any number of other characters, followed by By.

* The predicate defines the query’s condition or filtering criteria, where multiple conditions are delimited by And or Or.
For example, PricelLessThanAndNameL ike

* The order clause, which is optional, begins with OrderBy and is followed by one or more ordered pairings consisting
of entity attribute name and direction of sorting (Asc or Desc). The direction can be omitted on the final property, in
which case Asc is implied. Ordering of results is performed by sorting the first entity attribute according to its
respective direction, where results that sort to the same position are subsequently sorted by the second entity
attribute according to its respective direction, and so forth.

* The method name is formed by combining the subject, predicate, and order clause, in that order.

This specification uses the terms subject and predicate in a way that aligns with industry terminology
rather than how they are defined in English grammar.

Queries can also handle entities with relation attributes by specifying the relationship using dot notation, with the dot
converted to underscore so that it is a valid character within the method name. See Scenario 3 below for an example.
Example query methods:

e findByName(String name): Find entities by the name' property.
* findByAgeGreaterThan(int age): Find entities where 'age' is greater than the specified value.

o findByAuthorName(String authorName): Find entities by the 'authorName' property of a related entity.

findByCategoryNameAndPricelessThan(String categoryName, double price): Find entities by 'categoryName' and 'price'
properties, applying an 'And’ condition.

o findByNameLikeOrderByPriceDescIdAsc: Find entities by matching the 'name’ property against a pattern, sorting the
results by 'price’ in descending order, and sorting results with the same "price’ by the 'id' in ascending order.

4.6.1. BNF Grammar for Query Methods

Query methods allow developers to create database queries using method naming conventions. These methods consist
of a subject, predicate, and optional order clause. This BNF notation provides a structured representation for
understanding and implementing these powerful querying techniques in your applications.

<query-method> ::= <subject> <predicate> [<order-clause>]

<subject> ::= (<action> | "find" <find-expression>) [<ignored-text>] "By"

<action> ::= "find" | "delete" | "update" | "count" | "exists"

<find-expression> ::= "First" [<positive-integer>]

<predicate> ::= <condition> { ("And" | "Or") <condition> }

<condition> ::= <property> ["IgnoreCase"] ["Not"] [<operator>]

<operator> ::= "Contains" | "EndsWith" | "StartsWith" | "LessThan"| "LessThanEqual" | "GreaterThan" |
"GreaterThanEqual" | "Between" | "Like" | "In" | "Null" | "True" | "False"

<property> ::= <identifier> | <identifier> "_" <property>

<identifier> ::= <word>

26

<positive-integer> ::= <digit> { <digit> }
<order-clause> ::= "OrderBy" { <order-item> } (<order-item> | <property>)
<order-item> ::= <property> ("Asc" | "Desc")

Explanation of the BNF elements:

* <query-method>: Represents a query method, which consists of a subject, a predicate, and an optional order clause.
* <subject>: Defines the action (e.g., "find" or "delete") followed by an optional expression and "By."

 <action>: Specifies the action, such as "find" or "delete.”

« <find-expression>: Represents an optional expression for find operations, such as "First10."

e <ignored-text>: Optional text that does not contain "By".

* <predicate>: Represents the query’s condition or filtering criteria, which can include multiple conditions separated
by llAndll OI‘ "OI‘_"

* <condition>: Specifies a property and an operator for the condition.

* <operator>: Defines the operator for the condition, like "Between" or "LessThan."

o <property>: Represents a property name, which can include underscores for nested properties.

e <identifier>: Represents a word (e.g., property names, action names, etc.).

* <positive-integer>: Represents a whole number greater than zero.

 <order-clause>: Specifies the optional order clause, starting with "OrderBy" and followed by one or more order items.

o <order-item>: Represents an ordered collection of entity attributes by which to sort results, including an optional
"Asc" or "Desc" to specify the sort direction.

4.6.2. Query by Method Name Keywords

The following table lists the Query by Method Name keywords that must be supported by Jakarta Data providers, except
where explicitly indicated for a type of database.

Keyword Description Not Required For

findBy General query method returning Key-value, Wide-Column
entities.

deleteBy Delete query method returning either Key-value, Wide-Column

no result (void) or the delete count.

countBy Count projection returning a numeric Key-value, Wide-Column
result.

existsBy Exists projection, returning as a boolean = Key-value, Wide-Column
result.

o The "Not Required For" column indicates the database types for which the respective keyword is not
required or applicable.

Jakarta Data implementations must support the following list of Query by Method Name keywords, except where

indicated for a database type. A repository method must raise java.lang.UnsupportedOperationException or a more specific
subclass of the exception if the database does not provide the requested functionality.

27

Keyword

And

Or

Not

Between

Contains

EndsWith

First

LessThan

GreaterThan

LessThanEqual

GreaterThanEqual

28

Description

The And operator requires
both conditions to match.

The Or operator requires at
least one of the conditions to
match.

Negates the condition that
immediately follows the Not
keyword. When used
without a subsequent
keyword, means not equal
to.

Find results where the
property is between
(inclusive of) the given
values

Matches String values with
the given substring, which
can be a pattern.

Matches String values with
the given ending, which can
be a pattern.

For a query with ordered
results, limits the quantity of
results to the number
following First, or if there is
no subsequent number, to a
single result.

Find results where the
property is less than the
given value

Find results where the
property is greater than the
given value

Find results where the
property is less than or
equal to the given value

Find results where the
property is greater than or
equal to the given value

Method signature Sample

findByNameAndYear

findByNameOrYear

findByNameNotLike

findByDateBetween

findByProductNameContain
s

findByProductNameEndsWit
h

findFirst10By

findByAgeLessThan

findByAgeGreaterThan

findByAgeLessThanEqual

findByAgeGreaterThanEqual

Not Required For

Key-value, Wide-Column

Key-value, Wide-Column

Key-value, Wide-Column

Key-value, Wide-Column

Key-value, Wide-Column,
Document, Graph

Key-value, Wide-Column,
Document, Graph

Key-value, Wide-Column,
Document, Graph

Key-value, Wide-Column

Key-value, Wide-Column

Key-value, Wide-Column

Key-value, Wide-Column

Keyword

Like

IgnoreCase

In

Null

StartsWith

True

False

OrderBy

Desc

Asc

Description

Matches String values
against the given pattern.

Requests that string values
be compared independent of
case for query conditions
and ordering.

Find results where the
property is one of the values
that are contained within
the given list

Finds results where the
property has a null value.

Matches String values with
the given beginning, which
can be a pattern.

Finds results where the
property has a boolean
value of true.

Finds results where the
property has a boolean
value of false.

Specify a static sorting order
followed by one or more
ordered pairings of a
property path and direction
(Asc or Desc). The direction
Asc can be omitted from the
final property listed, in
which case ascending order
is implied for that property.

Specify a static sorting order
of descending.

Specify a static sorting order
of ascending.

Method signature Sample

findByTitleLike

findByStreetNamelgnoreCas

eLike

findByIdIn

findByYearRetiredNull

findByFirstNameStartsWith

findBySalariedTrue

findByCompletedFalse

findByAgeOrderByHeightDe
scIdAsc findByAgeOrderByld

findByNameOrderByAgeDes
c

findByNameOrderByAgeAsc

Not Required For

Key-value, Wide-Column,
Document, Graph

Key-value, Wide-Column,
Document, Graph

Key-value, Wide-Column,
Document, Graph

Key-value, Wide-Column,
Document, Graph

Key-value, Wide-Column,

Document, Graph

Key-value, Wide-Column

Key-value, Wide-Column

Key-value, Wide-Column

Key-value, Wide-Column

Key-value, Wide-Column

o The "Not Required For" column indicates the database types for which the respective keyword is not

required or applicable.

4.6.2.1. Patterns

Wildcard characters for patterns are determined by the data access provider. For relational databases, _ matches any

29

one character and % matches 0 or more characters.

4.6.2.2. Logical Operator Precedence

For relational databases, the logical operator And takes precedence over 0r, meaning that And is evaluated on conditions
before 0r when both are specified on the same method. For other database types, the precedence is limited to the
capabilities of the database. For example, some graph databases are limited to precedence in traversal order.

4.6.3. Return Types

Refer to the Jakarta Data module Javadoc section on "Return Types for Repository Methods" for a listing of valid return
types for methods using Query by Method Name.

4.7. Special Parameters for Limits, Sorting, and Pagination

An annotated, parameter-based, or method name query method may have special parameters of type Limit, Order, Sort,
or PageRequest if the method return type indicates that the method may return multiple entities, that is, if the return
type is:

* an array type,
e List or Stream, or

* Page or CursoredPage.

A special parameter controls which query results are returned to the caller of a repository method, or in what order
the results are returned:

e a limit allows the query results to be limited to a given range defined in terms of an offset and maximum number of
results,

* a Sort or Order allows the query results to be sorted by a given entity field or list of fields, respectively, and

* a PageRequest combines a range with optional sorting criteria, and a parameter of this type must be declared when
the repository method returns a Page of results, as specified below in Offset-based Pagination, or a CursoredPage, as
specified in Cursor-based Pagination.

A repository method must throw UnsupportedOperationException if it has:

¢ more than one parameter of type PageRequest or Limit,
* a parameter of type PageRequest and a parameter of type Limit,
» a parameter of type PageRequest or Limit, in combination with the keyword First, or

* more than one parameter of type Order.
Alternatively, a Jakarta Data provider is permitted to reject such a repository method declaration at compile time.

A repository method must throw I1legalArgumentException if it is called with an argument or arguments of type Sort or
Order and a separate argument of type PageRequest with nonempty sort criteria.

A repository method must throw DataException if the database is incapable of ordering the query results using the given
sort criteria.

The following example demonstrates the use of special parameters:

public interface ProductRepository extends BasicRepository<Product, Long> {

List<Product> findByName(String name, PageRequest<Product> pageRequest);

30

List<Product> findByNamelLike(String pattern, Limit max, Sort<?>... sorts);

An instance of Sort may be obtained by specifying an entity field name:

Sort nameAscending = Sort.asc("name");

Even better, the static metamodel may be used to obtain an instance of Sort in a typesafe way:

Sort<Employee> nameAscending = _Employee.name.asc();

This PageRequest combines sorting with a starting page and maximum page size:

PageRequest<Product> pageRequest =
PageRequest.of(Product.class)
.size(20).page(1)
.sortBy(_Product.price.desc());
List<Product> first20 = products.findByName(name, pageRequest);

4.8. Precedence of Sort Criteria

The specification defines different ways of providing sort criteria on queries. This section discusses how these different
mechanisms relate to each other.

4.8.1. Sort Criteria within Query Language

Sort criteria can be hard-coded directly within query language by making use of the @Query annotation. A repository
method that is annotated with @Query with a value that contains an ORDER BY clause (or query language equivalent) must
not provide sort criteria via the other mechanisms.

A repository method that is annotated with @Query with a value that does not contain an ORDER BY clause and ends with a
WHERE clause (or query language equivalents to these) can use other mechanisms that are defined by this specification
for providing sort criteria.

4.8.2. Static Mechanisms for Sort Criteria

Sort criteria are provided statically for a repository method by using the OrderBy keyword or by annotating the method
with one or more @0rderBy annotations. The OrderBy keyword cannot be intermixed with the @0rderBy annotation or the
@Query annotation. Static sort criteria takes precedence over dynamic sort criteria in that static sort criteria are
evaluated first. When static sort criteria sorts entities to the same position, dynamic sort criteria are applied to further
order those entities.

4.8.3. Dynamic Mechanisms for Sort Criteria

Sort criteria are provided dynamically to repository methods either via Sort parameters or via a PageRequest or Order
parameter that has one or more Sort values. Sort and PageRequest containing Sort must not both be provided to the same
method. Similarly, Order and PageRequest containing Sort must not both be provided to the same method.

31

4.8.4. Examples of Sort Criteria Precedence

The following examples work through scenarios where static and dynamic sort criteria are provided to the same
method.

// Sorts first by type. When type is the same, applies the PageRequest's sort criteria
Page<User> findByNameStartsWithOrderByType(String namePrefix, PageRequest<User> pagination);

// Sorts first by type. When type is the same, applies the criteria in the Sorts
List<User> findByNameStartsWithOrderByType(String namePrefix, Sort<?>... sorts);

// Sorts first by age. When age is the same, applies the PageRequest's sort criteria
(nageu)
Page<User> findByNameStartsWith(String namePrefix, PageRequest<User> pagination);

// Sorts first by age. When age is the same, applies the criteria in the Sorts
("agell)
List<User> findByNameStartsWith(String namePrefix, Sort<?>... sorts);

// Sorts first by name. When name is the same, applies the PageRequest's sort criteria
("WHERE (u.age > ?1)")
("name")
CursoredPage<User> olderThan(int age, PageRequest<User> pagination);

4.9. Pagination in Jakarta Data

Dividing up large sets of data into pages is a beneficial strategy for data access and retrieval in many applications,
including those developed in Java. Pagination helps improve the efficiency of handling large datasets in a way that is
also user-friendly. In Jakarta Data, APIs are provided to help Java developers efficiently manage and navigate through
data.

Jakarta Data supports two types of pagination: offset-based and cursor-based. These approaches differ in how they
manage and retrieve paginated data:

Offset pagination is the more traditional form based on position relative to the first record in the dataset. It is typically
used with a fixed page size, where a specified number of records is retrieved starting from a given offset position.

Cursor-based pagination, also known as seek method or keyset pagination, uses a unique key or unique combination of
values (referred to as the key) to navigate the dataset relative to the first or last record of the current page. Cursor-
based pagination is typically used with fixed page sizes but can accommodate varying the page size if desired. It is
more robust when dealing with datasets where the underlying data might change and offers the the potential for
improved performance by avoiding the need to scan records prior to the cursor.

The critical differences between offset-based and cursor-based pagination lie in their retrieval methods:

* Offset-based pagination uses a fix