
Jakarta Connectors
Jakarta Connectors Team, https://projects.eclipse.org/projects/ee4j.jca

2.1, 17 April 2022

Table of Contents
Eclipse Foundation Specification License . 1

Disclaimers. 2

1. Jakarta Connectors, Version 2.1 . 3

2. Introduction . 4

2.1. Overview. 4

2.2. Scope . 5

2.3. Target Audience . 6

2.4. JDBC and Jakarta Connectors . 6

2.5. Relationship With Other Integration Technologies (JBI and SCA) . 7

2.6. Organization. 7

2.7. Document Conventions . 8

3. Overview. 9

3.1. Definitions . 9

3.1.1. Enterprise Information System (EIS) . 9

3.1.2. Connector Architecture . 9

3.1.3. EIS Resource . 9

3.1.4. Resource Manager (RM) . 10

3.1.5. Managed Environment . 10

3.1.6. Non-Managed Environment . 10

3.1.7. Connection . 10

3.1.8. Application Component . 10

3.1.9. Container. 11

3.2. Rationale . 11

3.2.1. System Contracts . 11

3.2.2. Common Client Interface . 12

3.3. Goals. 13

4. Architecture of Jakarta Connectors . 14

4.1. System Contracts . 14

4.2. Client API . 16

4.3. Requirements. 17

4.4. Non-Managed Environment. 17

4.5. Standalone Container Environment . 17

5. Roles and Scenarios . 19

5.1. Roles . 19

5.1.1. Resource Adapter Provider. 19

5.1.2. Application Server Vendor . 19

5.1.3. Container Provider . 19

5.1.4. Application Component Provider . 20

5.1.5. Enterprise Tools Vendors . 20

5.1.6. Application Assembler. 21

5.1.7. Deployer . 21

5.1.8. System Administrator . 22

5.2. Scenario: Integrated Purchase Order System . 22

5.2.1. Illustration of a Scenario Based on the Connector Architecture . 22

5.3. Scenario: Business Integration . 24

5.3.1. Connector Architecture Usage in Business Integration Scenario . 25

6. Lifecycle Management . 26

6.1. Overview. 26

6.2. Goals. 26

6.3. Lifecycle Management Model . 26

6.3.1. ResourceAdapter JavaBean and Bootstrapping a Resource Adapter Instance 27

6.3.2. ManagedConnectionFactory JavaBean and Outbound Communication 29

6.3.3. ActivationSpec JavaBean and Inbound Communication. 30

6.3.4. Resource Adapter Shutdown Procedure . 31

6.3.4.1. Phase One . 32

6.3.4.2. Phase Two . 32

6.3.5. Requirements . 33

6.3.6. Resource Adapter Implementation Guidelines . 34

6.3.7. JavaBean Configuration and Deployment. 34

6.3.7.1. ResourceAdapter JavaBean Instance Configuration . 34

6.3.7.2. Resource Adapter Deployment. 35

6.3.7.3. ManagedConnectionFactory JavaBean Instance Configuration . 35

6.3.7.4. ActivationSpec JavaBean Instance Configuration . 35

6.3.7.5. JavaBean Validation . 36

6.3.7.6. Configuration Property Attributes . 37

6.3.7.7. Resource Adapter Implementation Guidelines . 38

6.3.8. Lifecycle Management in a Non-Managed Environment . 38

6.3.9. A Sample Resource Adapter Implementation . 38

7. Connection Management . 41

7.1. Overview. 41

7.2. Goals. 41

7.3. Architecture: Connection Management . 42

7.3.1. Overview: Managed Application Scenario . 42

7.4. Application Programming Model . 43

7.4.1. Managed Application Scenario . 44

7.4.2. Non-Managed Application Scenario . 45

7.4.3. Guidelines . 45

7.5. Interface/Class Specification . 46

7.5.1. ConnectionFactory and Connection [3] . 47

7.5.1.1. Requirements . 49

7.5.1.2. ConnectionRequestInfo . 50

7.5.1.3. Additional Requirements. 51

7.5.2. ConnectionManager . 51

7.5.2.1. Interface. 51

7.5.2.2. Requirements . 52

7.5.3. ManagedConnectionFactory. 53

7.5.3.1. Interface. 53

7.5.3.2. Requirements . 55

7.5.3.3. Connection Pool Implementation . 55

7.5.3.4. Detecting Invalid Connections . 56

7.5.3.5. Requirement for XA Recovery . 56

7.5.4. ManagedConnection. 57

7.5.4.1. Interface. 57

7.5.4.2. Connection Sharing and Multiple Connection Handles . 59

7.5.4.3. Connection Matching Contract. 59

7.5.4.4. Cleanup of ManagedConnection . 60

7.5.4.5. Requirements . 60

7.5.5. ManagedConnectionMetaData. 61

7.5.5.1. Interface. 61

7.5.5.2. Requirements . 61

7.5.6. ConnectionEventListener . 61

7.5.6.1. Interface. 61

7.5.7. ConnectionEvent . 63

7.6. Error Logging and Tracing . 63

7.6.1. ManagedConnectionFactory. 63

7.6.2. ManagedConnection. 64

7.7. Object Diagram . 64

7.8. Illustrative Scenarios . 65

7.8.1. Scenario: Connection Pool Management. 66

7.8.2. Scenario: Connection Matching . 68

7.8.3. Scenario: Connection Event Notifications and Connection Close . 70

7.8.3.1. Connection Cleanup . 71

7.8.3.2. Connection Destroy. 71

7.9. Architecture: Non-Managed Environment . 72

7.9.1. Scenario: Programmatic Access to ConnectionFactory . 73

7.9.2. Scenario: Connection Creation in Non-Managed Application Scenario. 75

7.10. Requirements . 76

7.10.1. Resource Adapter . 76

7.10.2. Application Server . 77

8. Transaction Management. 79

8.1. Overview. 79

8.2. Transaction Management Scenarios . 80

8.2.1. Transactions Across Multiple Resource Managers . 80

8.2.2. Local Transaction Management . 81

8.3. Transaction Management Contract . 82

8.3.1. Interface: ManagedConnection . 83

8.3.2. Interface: XAResource . 84

8.3.2.1. Implementation . 85

8.3.3. Interface: LocalTransaction . 86

8.4. Relationship to Jakarta Transaction and JTS . 86

8.4.1. Jakarta Transaction Interfaces. 86

8.5. Object Diagram . 87

8.6. XAResource-based Transaction Contract . 88

8.6.1. Scenarios Supported. 88

8.6.2. Resource Adapter Requirements. 89

8.6.2.1. General. 90

8.6.2.2. One-phase Commit . 90

8.6.2.3. Two-phase Commit . 90

8.6.2.4. Transaction Association and Calling Protocol . 91

8.6.2.5. Unilateral Roll-back . 91

8.6.2.6. Read-Only Optimization. 91

8.6.2.7. XID Support. 91

8.6.2.8. Support for Failure Recovery . 92

8.6.3. Transaction Manager Requirements . 92

8.6.3.1. Interfaces. 92

8.6.3.2. XID Requirements . 92

8.6.3.3. One-phase Commit Optimization . 92

8.6.3.4. Implementation Options . 93

8.6.4. Scenario: Transactional Setup for a ManagedConnection . 93

8.6.5. Scenario: Connection Close and Jakarta Transaction Transactional Cleanup 95

8.6.6. OID: Transaction Completion . 96

8.7. Local Transaction Management Contract . 97

8.7.1. Interface: LocalTransaction . 98

8.7.2. Interface: ConnectionEventListener. 98

8.7.2.1. Requirements . 99

8.8. Scenarios: Local Transaction Management . 99

8.8.1. Local Transaction Cleanup . 100

8.8.2. Component Termination . 100

8.8.3. Transaction Interleaving. 100

8.8.4. Scenario. 100

8.9. Connection Sharing . 101

8.9.1. Sharing Violation Detection . 102

8.9.1.1. Scenario 1 . 102

8.9.1.2. Scenario 2 . 103

8.10. Transaction Scenarios . 103

8.10.1. Requirements. 103

8.10.2. Illustrative Scenarios . 104

8.10.3. Scenario: Local Transaction . 105

8.11. Connection Association. 108

8.11.1. Scenario. 109

8.11.2. Connection Association . 110

8.11.3. Requirements. 110

8.12. Local Transaction Optimization . 111

8.12.1. Requirements. 111

8.13. Runtime Transaction Support Level Specification. 111

8.14. Interface: TransactionSynchronizationRegistry . 113

8.15. Requirements . 113

8.15.1. Resource Adapter . 113

8.15.1.1. Auto Commit. 114

8.15.2. Application Server . 114

8.16. Connection Optimizations . 115

8.16.1. Lazy Connection Association Optimization . 115

8.16.1.1. API Additions . 117

8.16.2. Lazy Transaction Enlistment Optimization . 118

8.16.3. API Additions . 118

9. Security Architecture . 120

9.1. Overview. 120

9.2. Goals . 120

9.3. Terminology. 121

9.4. Application Security Model . 122

9.4.1. Scenario: Container-Managed Sign-on. 122

9.4.2. Scenario: Component-Managed Sign-on . 123

9.5. EIS Sign-on . 124

9.5.1. Authentication Mechanism . 124

9.5.2. Resource Principal . 124

9.5.3. Authorization Model . 125

9.5.4. Secure Association . 126

9.6. Roles and Responsibilities . 127

9.6.1. Application Component Provider . 127

9.6.2. Deployer . 127

9.6.3. Application Server . 128

9.6.4. EIS Vendor . 128

9.6.5. Resource Adapter Provider . 128

9.6.6. System Administrator . 129

10. Security Contract . 130

10.1. Security Contract . 130

10.1.1. Interfaces and Classes . 130

10.1.2. Subject . 130

10.1.3. Resource Principal . 131

10.1.4. GenericCredential. 131

10.1.4.1. Interface . 132

10.1.4.2. Implementation. 133

10.1.5. GSSCredential . 133

10.1.5.1. Implementation. 133

10.1.6. PasswordCredential . 133

10.1.7. ConnectionManager. 134

10.1.8. ManagedConnectionFactory . 135

10.1.8.1. Contract for the Application Server . 136

10.1.8.2. Contract for Resource Adapter . 138

10.1.9. ManagedConnection . 140

10.2. Requirements . 141

10.2.1. Resource Adapter . 141

10.2.2. Application Server . 141

11. Work Management . 143

11.1. Overview . 143

11.2. Goals . 144

11.3. Work Management Model . 144

11.3.1. Requirements. 144

11.3.2. Work Interface . 150

11.3.3. WorkManager Interface . 151

11.3.3.1. Work Submit . 152

11.3.3.2. Work Accepted. 153

11.3.3.3. Work Rejected . 153

11.3.3.4. Work Started . 153

11.3.3.5. Work Completed . 153

11.3.3.6. Requirements. 154

11.3.4. WorkListener Interface and WorkEvent Class . 155

11.3.4.1. Requirements. 158

11.3.5. ExecutionContext Class . 158

11.3.6. Resource Adapter Thread Usage Recommendations . 159

11.4. Periodic Execution of Work Instances . 160

11.4.1. Illustration: Using a Work Instance to Listen on Multiple Network Endpoints 161

11.4.2. Work Management in a Non-Managed Environment . 162

11.4.3. Resource Adapter association . 162

11.4.4. Distributed Work processing . 162

11.4.4.1. DistributableWork Interface . 162

11.4.4.2. DistributableWorkManager Interface . 163

11.4.4.3. DistributableWork Submission and Processing . 164

12. Generic Work Context . 166

12.1. Overview . 166

12.2. Goals . 166

12.3. Generic Work Context Model . 167

12.3.1. Standard and Custom Work Contexts . 167

12.3.2. Requirements. 168

12.4. WorkContextProvider and WorkContext Interface . 172

12.4.1. Indicating Support for a WorkContext Type . 174

12.4.2. Checking Support for a WorkContext Type . 175

12.4.3. Handling Errors During Context Assignment . 175

12.5. TransactionContext Class . 177

12.6. HintsContext Interface . 178

12.6.1. Standard Hints. 180

12.6.1.1. Work Name Hint . 180

12.6.1.2. Long-running Work instance Hint . 180

12.7. WorkContextLifecycleListener Interface . 180

12.8. Illustrative Example. 182

13. Inbound Communicaton . 186

13.1. Overview . 186

13.2. An Illustrative Use Case . 186

14. Message Inflow . 188

14.1. Overview . 188

14.2. Goals . 189

14.3. Message Inflow Model. 189

14.4. Endpoint Deployment . 195

14.4.1. Message Endpoint. 196

14.4.2. Resource Adapter . 197

14.4.2.1. List of Supported Message Listener Types . 198

14.4.2.2. ActivationSpec JavaBean. 198

14.4.2.3. Administered Objects . 199

14.4.2.4. Configuring Administered Objects . 200

14.4.3. Endpoint Deployer . 200

14.4.4. Application Server . 200

14.4.5. Message Provider . 201

14.4.6. Endpoint Deployment Steps . 202

14.4.7. Requirements. 203

14.4.8. Structure of a Message Listener Interface . 203

14.4.9. Multiple Endpoint Activations With Similar Activation Configuration. 204

14.4.9.1. Requirements. 204

14.5. Message Delivery . 205

14.5.1. Sample Resource Adapter Code To Illustrate Message Delivery . 206

14.5.1.1. Requirements. 208

14.5.2. Message Redelivery Upon Crash Recovery. 208

14.5.3. Durable Message Delivery Setup. 209

14.5.4. Concurrent Delivery of Messages . 210

14.5.4.1. Requirements. 210

14.5.5. Delivery Semantics and Acknowledgement . 210

14.5.6. Transacted Delivery (Using Container-Managed Transaction) . 211

14.5.7. Non-Transacted Delivery . 213

14.5.8. Transacted Delivery Using an Imported Transaction . 214

14.5.9. Requirements. 214

14.6. Endpoint Undeployment. 215

14.7. Jakarta Messaging Use Case . 219

14.7.1. Message-Driven Bean Asynchronously Receiving Messages . 225

14.7.1.1. Message-Driven Bean Deployment . 225

14.7.1.2. Message Delivery. 225

14.7.1.3. Message-Driven Bean Undeployment . 226

14.7.2. Jakarta Enterprise Beans Using Jakarta Messaging API to Send and Synchronously Receive

Messages Via a Jakarta Messaging Resource Adapter

 226

14.7.2.1. Using Jakarta Messaging API to Send Messages. 226

14.7.2.2. Jakarta EE Component Using Jakarta Messaging API to Synchronously Receive

Messages

 227

14.8. A Non-Jakarta Messaging Use Case . 228

14.9. Resource Adapter Deployment Descriptor. 228

14.9.1. Resource Adapter Deployment . 230

14.9.2. Message-Driven Bean Asynchronously Receiving Notifications From an EIS 230

14.9.2.1. The Message-Driven Bean Deployment Descriptor . 230

14.9.3. Message-Driven Bean and Resource Adapter Activation . 232

14.9.4. Message Delivery . 233

15. Jakarta Enterprise Beans Invocation. 234

15.1. Overview . 234

15.2. Jakarta Enterprise Beans Invocation Model . 234

15.3. An Illustrative Use Case . 235

15.3.1. Message-Driven Bean Dispatcher Pattern . 237

16. Transaction Inflow. 238

16.1. Overview . 238

16.2. Goals . 238

16.3. Use Case Scenario . 239

16.4. Transaction Inflow Model . 240

16.4.1. Processing of Transactional Calls . 240

16.4.2. Transaction Completion Processing . 241

16.4.3. Crash Recovery Processing. 243

16.4.4. Requirements. 245

16.4.5. Non-Requirements . 246

16.4.6. Recommendations . 247

16.5. Transaction Inflow in a Non-Managed Environment . 247

17. Security Inflow . 248

17.1. Overview . 248

17.2. Goals . 248

17.3. Security Inflow Model . 249

17.4. SecurityContext Class . 253

17.4.1. Establishing the Security Context . 254

17.4.2. Callbacks for Information from the Application Server . 256

17.4.3. Case 1: Identity in the Container Security Domain. 257

17.4.4. Case 2: Identity Translated Between Security Domains . 258

17.4.5. Establising a Principal as the Caller Identity . 260

17.4.5.1. Case A: Establishing a Single Principal as the Caller Identity . 261

17.4.5.2. Case B: Establishing an Unauthenticated Security Context . 261

17.4.6. Security Configuration Responsibilities . 262

17.5. Requirements . 263

17.6. Illustrative Example. 263

17.6.1. Case 1: Identity in the Container Security Domain. 263

17.6.2. Case 2: Identity Translated Between Security Domains . 265

18. Common Client Interface . 267

18.1. Overview . 267

18.2. Goals . 267

18.3. Scenarios . 268

18.3.1. Enterprise Application Integration Framework . 268

18.3.2. Metadata Repository and API . 268

18.3.3. Enterprise Application Development Tool . 268

18.4. Common Client Interface . 269

18.4.1. Requirements. 270

18.5. Connection Interfaces . 271

18.5.1. ConnectionFactory . 271

18.5.2. Requirements. 272

18.6. ConnectionSpec. 273

18.6.1. Connection . 273

18.6.1.1. Auto Commit. 274

18.7. Interaction Interfaces . 275

18.7.1. Interaction . 275

18.7.2. InteractionSpec . 276

18.7.2.1. Standard Properties . 276

18.7.2.2. ResultSet Properties . 277

18.7.2.3. Additional Properties . 278

18.7.2.4. Implementation. 278

18.7.2.5. Administered Object. 278

18.7.2.6. Illustrative Scenario . 278

18.7.3. LocalTransaction . 279

18.7.3.1. Requirements. 279

18.8. Basic Metadata Interfaces . 279

18.8.1. ConnectionMetaData . 280

18.8.1.1. Implementation. 280

18.8.2. ResourceAdapterMetaData. 280

18.9. Service Endpoint Message Listener Interface . 282

18.10. Exception Interfaces . 282

18.10.1. ResourceException. 282

18.10.2. ResourceWarning . 282

18.11. Record . 283

18.11.1. Component-View Contract . 284

18.11.1.1. Type Mapping . 284

18.11.1.2. Record Interface . 285

18.11.1.3. MappedRecord and IndexedRecord Interfaces . 286

18.11.1.4. RecordFactory . 287

18.11.2. Interaction and Record . 287

18.11.3. Resource Adapter-view Contract . 288

18.11.3.1. Streamable Interface . 288

18.12. ResultSet . 289

18.12.1. ResultSet Interface . 291

18.12.1.1. Type Mapping . 291

18.12.1.2. ResultSet Types . 291

18.12.1.3. Scrolling . 291

18.12.1.4. Concurrency Types. 292

18.12.1.5. Updatability . 292

18.12.1.6. Persistence of Java Objects . 292

18.12.1.7. Support for SQL Types . 293

18.12.1.8. Support for Customized SQL Type Mapping . 293

18.12.2. ResultSetMetaData . 293

18.12.3. ResultSetInfo . 293

18.13. Code Samples. 295

18.13.1. Connection . 295

18.13.2. InteractionSpec . 295

18.13.3. Mapped Record . 296

18.13.4. ResultSet . 297

18.13.5. Custom Record . 298

19. Metadata Annotations. 300

19.1. Overview . 300

19.2. Goals . 300

19.3. Deployment Descriptors and Annotations . 300

19.3.1. metadata-complete Deployment Descriptor Element . 301

19.3.2. Merging Annotations and Deployment Descriptor. 302

19.3.3. Annotation Processing Requirements of Superclasses . 303

19.4. @Connector . 303

19.4.1. Implementing the ResourceAdapter Interface . 305

19.4.2. Example . 305

19.4.3. @AuthenticationMechanism . 306

19.4.4. @SecurityPermission. 307

19.5. @ConfigProperty . 307

19.5.1. Discovery of Configuration Properties . 309

19.6. @ConnectionDefinition and @ConnectionDefinitions . 309

19.6.1. Example . 310

19.7. @Activation . 311

19.7.1. Example . 311

19.8. @AdministeredObject . 312

19.9. Resource Definition Annotations . 313

19.9.1. @ConnectionFactoryDefinition . 314

19.9.1.1. Example. 315

19.9.2. @ConnectionFactoryDefinitions . 316

19.9.2.1. Example. 316

19.9.3. @AdministeredObjectDefinition. 317

19.9.3.1. Example. 319

19.9.4. @AdministeredObjectDefinitions . 319

19.9.4.1. Example. 320

20. API Requirements . 322

20.1. Requirements of the Application Server. 322

20.2. Requirements of the Resource adapter. 322

20.3. JavaBean Requirements . 323

20.4. Equality Constraints . 323

20.4.1. Equality based on Java Object Identity . 323

20.4.2. Equality Based on Config Properties and Class Information . 323

21. Packaging Requirements . 325

21.1. Overview . 325

21.2. Packaging . 326

21.2.1. Resource Adapter Archive . 327

21.2.2. RAR Contents . 327

21.2.3. Sample Directory Structure . 328

21.2.4. Requirements. 328

21.3. Class Loading Requirements . 329

21.4. Deployment . 329

21.4.1. Resource Adapter Provider . 330

21.4.2. Deployer . 332

21.4.2.1. Standalone Resource Adapter Module. 333

21.4.2.2. Resource Adapter Module with Jakarta EE Application . 333

21.4.2.3. Configuration . 333

21.4.2.4. Security Configuration. 333

21.5. Interfaces/Classes . 334

21.5.1. ResourceAdapter. 334

21.5.1.1. Requirements. 334

21.5.2. ManagedConnectionFactory . 334

21.5.2.1. Requirements. 335

21.5.3. Properties Conventions . 335

21.5.4. Standard Properties . 335

21.6. JNDI Configuration and Lookup . 336

21.6.1. Responsibilities . 336

21.6.1.1. Deployer . 337

21.6.1.2. Resource Adapter . 337

21.6.1.3. Application Server . 337

21.6.2. Scenario: Serializable . 338

21.6.3. Scenario: Referenceable . 339

21.6.3.1. ObjectFactory Implementation . 340

21.6.3.2. Deployment . 341

21.6.3.3. Scenario: Connection Factory Lookup . 342

21.6.4. Requirements. 344

21.7. Resource Adapter XML Schema Definition . 345

22. Runtime Environment . 370

22.1. Programming APIs . 370

22.2. Security Permissions . 370

22.3. Requirements . 373

22.3.1. Example . 373

22.4. Privileged Code . 374

22.4.1. Example . 374

22.5. Dependency Injection . 375

23. Exceptions . 377

23.1. ResourceException. 377

23.2. System Exceptions . 377

23.2.1. Exception Hierarchy . 378

23.3. Work Exceptions. 380

23.4. Additional Exceptions . 380

24. Compatibility and Migration . 381

24.1. Compatibility . 381

25. Caching Manager . 382

25.1. Overview . 382

26. Synchronization Contract . 384

26.1. Interface . 384

26.2. Implementation . 384

27. Security Scenarios . 385

27.1. eStore Application . 385

27.1.1. Scenario. 386

27.1.2. Security Environment . 386

27.1.3. Deployment . 387

27.2. Employee Self-Service Application. 388

27.2.1. Architecture . 388

27.2.2. Security Environment . 388

27.2.3. Deployment . 389

27.2.4. Scenario. 389

27.3. Integrated Purchasing Application . 390

27.3.1. Architecture . 390

27.3.2. Security Environment . 391

27.3.3. Deployment . 391

28. JAAS Based Security Architecture . 393

28.1. Java Authentication and Authorization Service (JAAS). 393

28.2. Requirements . 393

28.3. Security Architecture. 394

28.3.1. JAAS Modules. 394

28.3.2. Illustrative Examples: JAAS Module. 395

28.3.2.1. Principal Mapping Module . 395

28.3.2.2. Credential Mapping Module. 395

28.3.2.3. Kerberos Module . 396

28.4. Security Configuration . 397

28.4.1. JAAS Configuration. 397

28.5. Scenarios . 397

28.5.1. Scenario: Resource Adapter Managed Authentication . 397

28.5.2. Scenario: Kerberos and Principal Delegation . 398

28.5.3. Scenario: GSS-API . 399

28.5.4. Scenario: Kerberos Authentication After Principal Mapping . 400

28.5.5. Scenario: EIS-Specific Authentication . 401

Specification: Jakarta Connectors

Version: 2.1

Status: Final

Release: 17 April 2022

Copyright (c) 2018, 2022 Eclipse Foundation.

Eclipse Foundation Specification License
By using and/or copying this document, or the Eclipse Foundation document from which this statement
is linked, you (the licensee) agree that you have read, understood, and will comply with the following
terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or portions
thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse Foundation,
Inc. https://www.eclipse.org/legal/efsl.php"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be
provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to
this license, except anyone may prepare and distribute derivative works and portions of this document
in software that implements the specification, in supporting materials accompanying such software,
and in documentation of such software, PROVIDED that all such works include the notice below.
HOWEVER, the publication of derivative works of this document for use as a technical specification is
expressly prohibited.

The notice is:

"Copyright (c) 2018, 2022 Eclipse Foundation. This software or document includes material copied from
or derived from Jakarta™ Connectors https://jakarta.ee/specifications/connectors/2.1/"

Eclipse Foundation Specification License

Jakarta Connectors 1

https://www.eclipse.org/legal/efsl.php
https://jakarta.ee/specifications/connectors/2.1/

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

Eclipse Foundation Specification License

2 Jakarta Connectors

Chapter 1. Jakarta Connectors, Version 2.1
Copyright (c) 2013, 2022 Eclipse Foundation, Oracle and/or its affiliates

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

Chapter 1. Jakarta Connectors, Version 2.1

Jakarta Connectors 3

Chapter 2. Introduction
The Jakarta Platform, Enterprise Edition (Jakarta EE platform) provides containers for client
applications, web components based on Jakarta Servlets and Jakarta Server Pages and Jakarta
Enterprise Beans components. These containers provide deployment and runtime support for
application components. They provide a federated view of the services provided by the underlying
application server for the application components.

Containers can run on existing systems; for example, web servers for the web containers; application
servers, TP monitors, and database systems for Enterprise Bean containers. This enables enterprises to
leverage both the advantages of their existing systems and those of Jakarta EE. Enterprises can write,
or rewrite, new applications using Jakarta EE capabilities and can also encapsulate parts of existing
applications in Enterprise Beans, Jakarta Server Pages or servlets.

Enterprise applications access functions and data associated with applications running on Enterprise
Information Systems (EIS). Application servers extend their containers and support connectivity to
heterogeneous EISs. Enterprise tools and Enterprise Application Integration (EAI) vendors add value
by providing tools and frameworks to simplify the EIS integration task.

For enterprise application integration, bi-directional connectivity between enterprise applications and
EIS is essential. Jakarta Connectors defines standard contracts that allow bi-directional connectivity
between enterprise applications and EISs. It also formalizes the relationships, interactions, and the
packaging of the integration layer, thus enabling enterprise application integration.

2.1. Overview
Jakarta Connectors defines a standard architecture for connecting the Jakarta EE platform to
heterogeneous EISs. Examples of EISs include Enterprise Resource Planning (ERP), mainframe
transaction processing (TP), and database systems.

Jakarta Connectors defines a set of scalable, secure, and transactional mechanisms that enable the
integration of EISs with application servers1 and enterprise applications.

Jakarta Connectors also defines a Common Client Interface (CCI) for EIS access. The CCI defines a client
API for interacting with heterogeneous EISs.

Jakarta Connectora enables an EIS vendor to provide a standard resource adapter for its EIS. A
resource adapter is a system-level software driver that is used by a Java application to connect to an
EIS. The resource adapter plugs into an application server and provides connectivity between the EIS,
the application server, and the enterprise application. The resource adapter serves as a protocol
adapter that allows any arbitrary EIS communication protocol to be used for connectivity.

An application server vendor extends its system once to support the connector architecture and is then
assured of seamless connectivity to multiple EISs. Likewise, an EIS vendor provides one standard
resource adapter which has the capability to plug in to any application server that supports the

2.1. Overview

4 Jakarta Connectors

#a10022

connector architecture.

2.2. Scope
Version 2.1 of the connector architecture defines:

• A standard set of system-level contracts between an application server and EIS. These contracts
focus on the important system-level aspects of integration: connection management, transaction
management, and security.

• A Common Client Interface (CCI) that defines a client API for interacting with multiple EISs.

• A standard deployment and packaging protocol for resource adapters.

Refer to section 2.2.2 for the rationale behind the Common Client Interface.

• Lifecycle management contract. A contract between an application server and a resource adapter
that allows an application server to manage the lifecycle of a resource adapter. This contract
provides a mechanism for the application server to bootstrap a resource adapter instance during
its deployment or application server startup, and to notify the resource adapter instance during its
undeployment or during an orderly shutdown of the application server.

• Work management contract. A contract between an application server and a resource adapter
that allows a resource adapter to do work (monitor network endpoints, call application
components, etc.) by submitting Work instances to an application server for execution. The
application server dispatches threads to execute submitted Work instances. This allows a resource
adapter to avoid creating or managing threads directly, and allows an application server to
efficiently pool threads and have more control over its runtime environment. The resource adapter
can control the security context and transaction context with which Work instances are executed.

• Transaction inflow contract. A contract between an application server and a resource adapter
that allows a resource adapter to propagate an imported transaction to an application server. This
contract also allows a resource adapter to transmit transaction completion and crash recovery calls
initiated by an EIS, and ensures that the ACID (Atomicity, Consistency, Isolation and Durability)
properties of the imported transaction are preserved.

• Message inflow contract. A standard, generic contract between an application server and a
resource adapter that allows a resource adapter to asynchronously deliver messages to message
endpoints residing in the application server independent of the specific messaging style, messaging
semantics, and messaging infrastructure used to deliver messages. This contract also serves as the
standard message provider pluggability contract that allows a wide range of message providers
(Java Message Service (JMS), Java API for XML Messaging (JAXM), etc.) to be plugged into any Java
EE compatible application server by way of a resource adapter.

• Packaging Model. Describes the packaging model for different types of resource adapters
(outbound only, inbound only, or both).

• Generic work context contract. A generic contract that enables a resource adapter to control the
execution context of a Work instance that it has submitted to the application server for execution.

2.2. Scope

Jakarta Connectors 5

The Generic work contract provides the mechanism for a resource adapter to augment the runtime
context of a Work instance with additional contextual information flown-in from the EIS. This
contract enables a resource adapter to control, in a more flexible manner, the contexts in which the
Work instances submitted by it are executed by the application server’s WorkManager .

• Security work context. A standard contract that enables a resource adapter to establish security
information while submiting a Work instance for execution to a WorkManager and while
delivering messages to message endpoints residing in the application server. This contract provides
a mechanism to support the execution of a Work instance in the context of an established identity.
It also supports the propagation of user information/Principal information from an EIS to a
MessageEndpoint during Message Inflow.

Version 2.1 of Jakarta Connectors provides minor updates required for Jakarta EE 10 including
compiled with Java 11 Version 2.0 of Jakarta Connectors moves the old Java Connectors Architecture
specification to Jakarta EE.

2.3. Target Audience
The target audience for this specification includes:

• EIS vendors and resource adapter providers

• Messaging system vendors

• Application server vendors and container providers

• Enterprise application developers and system integrators

• Enterprise tool and EAI vendors

The system-level contracts between an application server and an EIS are targeted towards EIS vendors
(or resource adapter providers, if the two roles are different) and application server vendors. The CCI
is targeted primarily towards enterprise tools and EAI vendors.

2.4. JDBC and Jakarta Connectors
The JavaTM DataBase Connectivity ("JDBCTM") API defines a standard Java API for accessing relational
databases. The JDBC technology provides an API for sending SQL statements to a database and
processing the tabular data returned by the database.

The connector architecture is a standard architecture for integrating Java EE applications with EISs
that are not relational databases. Each of these EISs currently provides a native function call API for
identifying a function to call, specifying its input data, and processing its output data. The goal of the
Common Client Interface (CCI) is to provide an EIS independent API for coding these EIS function calls.

The CCI is targeted at EIS development tools and other sophisticated users of EISs. The CCI provides a
way to minimize the EIS specific code required by such tools. Most Java EE developers will access EISs
using these tools rather than using CCI directly.

2.3. Target Audience

6 Jakarta Connectors

It is expected that many Java EE applications will combine relational database access using JDBC with
EIS access using EIS access tools based on CCI.

The connector architecture defines a standard SPI (Service Provider Interface) for integrating the
transaction, security, and connection management facilities of an application server with those of a
transactional resource manager. The JDBC 3.0 specification JDBC API Specification, version 4.1 specifies
the relationship of JDBC to the SPI specified in the connector architecture.

2.5. Relationship With Other Integration Technologies
(JBI and SCA)
The Enterprise Application Integration (EAI) and Business to Business integration (B2B) functional
space may be considered, in an abstract sense, as forms of network service composition. That is, in a
typical EAI/B2B scenario, an enterprise application may make use of network resources to realize some
of its functionality. In this context, the network resource may be a REST service, a SOAP service, a
database server, a JMS topic/queue, some legacy application, etc.

The Java Business Integration (JBI) and Service Component Architecture (SCA) are integration
technologies that come to mind in the EAI/B2B space. They allow the creation and consumption of such
network services. They enable the building of applications through composition of services in an
enterprise by adopting a Service Oriented Architecture (SOA). These technologies can be used to
implement integration with various forms of network resources that are not tied to a specific external
architectural style.

The Connector architecture covers the category of network resources that expose some form of
connection oriented protocol. Database servers, JMS systems, legacy apps, etc. typically fall into this
category of network resource. The Connector architecture is the mechanism that the Java EE platform
provides to simplify use of such network resources.

2.6. Organization
This document begins by describing the rationale and goals for creating a standard architecture to
integrate an application server with multiple heterogeneous EISs. It then describes the key concepts
relevant to the connector architecture. These sections provide an overview of the architecture.

This document then describes typical scenarios for using the connector architecture. This chapter
introduces the various roles and responsibilities involved in the development and deployment of
enterprise applications that integrate with multiple EISs.

After these descriptive sections, this document focuses on the prescriptive aspects of the connector
architecture.

2.5. Relationship With Other Integration Technologies (JBI and SCA)

Jakarta Connectors 7

2.7. Document Conventions
A regular Palatino font is used for describing the connector architecture.

An italic font is used for paragraphs that contain descriptive notes providing clarifications.

A regular Courier font is used for Java source code, class, interface and method names.

The requirements section occurring in various chapters of this document highlight only the salient
requirements, but do not contain all the requirements. So, this entire document must be used as a
requirements specification.

Note that the scenarios described in this document are illustrative in scope. The intent of the scenarios
is not to specify a prescriptive way of implementing a particular contract.

This document uses the Jakarta Enterprise Beans component model to describe some scenarios. The
Jakarta Enterprise Beans specification (see Jakarta Enterprise Beans Specification, version 4.0 provides
the latest details of the component model.

2.7. Document Conventions

8 Jakarta Connectors

Chapter 3. Overview
This chapter introduces key concepts that are required to understand Jakarta Connectors. It lays down
a reference framework to facilitate a formal specification of the connector architecture in the
subsequent chapters of this document.

3.1. Definitions

3.1.1. Enterprise Information System (EIS)

An EIS provides the information infrastructure for an enterprise. An EIS offers a set of services to its
clients. These services are exposed to clients as local and/or remote interfaces. Examples of an EIS
include:

• Enterprise Resource Planning (ERP) system

• Mainframe transaction processing (TP) system

• Legacy database system

There are two aspects of an EIS:

• System level services - for example, SAP RFC, CICS ECI

• An application specific interface - for example, the table schema and specific stored procedures of a
database, the specific CICS TP program

3.1.2. Connector Architecture

An architecture for integrating Jakarta EE servers with EISs. There are two parts to this architecture:
an EIS vendor-provided resource adapter and an application server that allows this resource adapter
to be plugged in. This architecture defines a set of contracts (such as transactions, security, connection
management) that a resource adapter has to support to plug in to an application server.

These contracts support bi-directional communication (outbound and inbound) between an
application server and an EIS by way of a resource adapter. That is, the application server may use the
resource adapter for outbound communication to the EIS, and it may also use the resource adapter for
inbound communication from the EIS.

3.1.3. EIS Resource

An EIS resource provides EIS-specific functionality to its clients. Examples are:

• A record or set of records in a database system

• A business object in an ERP system

• A transaction program in a transaction processing system

3.1. Definitions

Jakarta Connectors 9

3.1.4. Resource Manager (RM)

A resource manager manages a set of shared EIS resources. A client requests access to a resource
manager to use its managed resources. A transactional resource manager can participate in
transactions that are externally controlled and coordinated by a transaction manager.

In the context of the connector architecture, a client of a resource manager can either be a middle-tier
application server or a client-tier application. A resource manager is typically in a different address
space or on a different machine from the client that accesses it.

This document refers to an EIS as a resource manager when it is mentioned in the context of
transaction management. Examples of resource managers are a database system, a mainframe TP
system, and an ERP system.

3.1.5. Managed Environment

A managed environment defines an operational environment for a Jakarta EE-based, multi-tier, web-
enabled application that accesses EISs. The application consists of one or more application
components—Jakarta Enterprise Beans, Jakarta Server Pages, servlets—which are deployed on
containers. These containers can be one of the following:

• Web containers that host Jakarta Server Pages, servlets, and static HTML pages

• Enterprise Bean containers that host Enterprise Bean components

• Application client containers that host standalone application clients

3.1.6. Non-Managed Environment

A non-managed environment defines an operational environment for a two-tier application. An
application client directly uses a resource adapter to access the EIS, which defines the second tier of a
two-tier application.

3.1.7. Connection

A connection provides connectivity to a resource manager. It enables an application client to connect
to a resource manager, perform transactions, and access services provided by that resource manager.
A connection can be either transactional or non-transactional. Examples include a database connection
and an SAP R/3 connection. A connection to a resource manager may be used by a client for bi-
directional communication, depending on the capabilities of the resource manager.

3.1.8. Application Component

An application component can be a server-side component, such as an Jakarta Enterprise Bean, Jakarta
Server Page, or servlet, that is deployed, managed, and executed on an application server. It can also
be a component executed on the web-client tier but made available to the web-client by an application
server. Examples of the latter type of application component include a Java applet, and a DHTML page.

3.1. Definitions

10 Jakarta Connectors

3.1.9. Container

A container is a part of an application server that provides deployment and runtime support for
application components. It provides a federated view of the services provided by the underlying
application server for the application components. For more details on different types of standard
containers, refer to the Jakarta Enterprise Beans (see Jakarta™ Enterprise Beans Specification, Version
4.0, Jakarta Server Pages, and servlet specifications.

3.2. Rationale
This section describes the rationale behind Jakarta Connectors.

3.2.1. System Contracts

A standard architecture is needed to integrate various EISs with an application server. Without a
standard, EIS vendors and application server vendors may have to use vendor-specific architectures to
provide EIS integration.

Jakarta Connectors provides a Java solution to the problem of bi-directional connectivity between the
multitude of application servers and EISs. By using the Jakarta Connectors, it is no longer necessary for
EIS vendors to customize their product for each application server. An application server vendor who
conforms to the Jakarta Connectors also does not need to add custom code whenever it wants to extend
its application server to support connectivity to a new EIS.

Jakarta Connectors enables an EIS vendor to provide a standard resource adapter for its EIS. The
resource adapter plugs into an application server and provides the underlying infrastructure for the
integration between an EIS and the application server.

An application server vendor extends its system only once to support Jakarta Connectors and is then
assured of connectivity to multiple EISs. Likewise, an EIS vendor provides one standard resource
adapter and it has the capability to plug in to any application server that supports Jakarta Connectors.

The following figure shows that a standard EIS resource adapter can plug into multiple application
servers. Similarly, multiple resource adapters for different EISs can plug into an application server.
This system-level pluggability is made possible through Jakarta Connectors.

If there are m application servers and n EISs, Jakarta Connectors reduces the scope of the integration
problem from an m x n problem to an m + n problem.

Figure System Level Pluggability Between Application Servers and EISs

3.2. Rationale

Jakarta Connectors 11

Application Server

Application Servers

Resource Adapters

Enterprise Information Systems

Resource Adapter

Enterprise Information System

Application server extension for
resource adapter pluggability

Standard resource adapter

3.2.2. Common Client Interface

An enterprise tools vendor provides tools that lead to a simple application programming model for EIS
access, thereby reducing the effort required in EIS integration. An EAI vendor provides a framework
that supports integration across multiple EISs. Both types of vendors need to integrate across
heterogeneous EISs.

Each EIS typically has a client API that is specific to the EIS. Examples of EIS client APIs are RFC for SAP
R/3 and ECI for CICS.

An enterprise tools vendor adapts different client APIs for target EISs to a common client API. The
adapted API is typically specific to a tools vendor and supports an application programming model
common across all EISs. Adapting the API requires significant effort on the part of a tools vendor. In
this case, the m x n integration problem applies to tools vendors.

Jakarta Connectors provides a solution for the m x n integration problem for tools and EAI vendors.
Jakarta Connectors specifies a standard Common Client Interface (CCI) that supports a common client
API across heterogeneous EISs.

All EIS resource adapters that support CCI are capable of being plugged into enterprise tools and EAI
frameworks in a standard way. A tools vendor need not do any API adoption; the vendor can focus on
providing its added value of simplifying EIS integration.

The CCI drastically reduces the effort and learning requirements for tools vendor by narrowing the
scope of an m x n problem to an m + n problem if there are m tools and n EISs.

3.2. Rationale

12 Jakarta Connectors

3.3. Goals
Jakarta Connectors has been designed with the following goals:

• Simplify the development of scalable, secure, and transactional resource adapters for a wide range
of EISs—ERP systems, database systems, mainframe-based transaction processing systems.

• Be sufficiently general to cover a wide range of heterogeneous EISs. The sufficient generality of
Jakarta Connectors ensures that there are various implementation choices for different resource
adapters; each choice is based on the characteristics and mechanisms of an underlying EIS.

• Be not tied to a specific application server implementation, but applicable to all Jakarta EE
platform compliant application servers from multiple vendors.

• Provide a standard client API for enterprise tools and EAI vendors. The standard API will be
common across heterogeneous EISs.

• Express itself in a manner that allows an organization to unambiguously determine whether or not
an implementation is compatible.

• Be simple to understand and easy to follow, regardless of whether one is designing a resource
adapter for a particular EIS or developing/deploying application components that need to access
multiple EISs. This simplicity means Jakarta Connectors introduces only a few new concepts, and
places minimal implementation requirements so that it can be leveraged across different
integration scenarios and environments.

• Define contracts and responsibilities for various roles that provide pieces for standard bi-
directional connectivity to an EIS. This enables a standard resource adapter from a EIS vendor to
be pluggable across multiple application servers.

• Enable an enterprise application programmer in a non-managed application environment to
directly use the resource adapter to access the underlying EIS. This is in addition to managed access
to an EIS, with the resource adapter deployed in the middle-tier application server.

3.3. Goals

Jakarta Connectors 13

Chapter 4. Architecture of Jakarta Connectors
This chapter gives an overview of the architecture.

Multiple resource adapters—that is, one resource adapter per type of EIS—are pluggable into an
application server. This capability enables application components deployed on the application server
to access the underlying EISs.

An application server and an EIS collaborate to keep all system-level mechanisms—transactions,
security, and connection management—transparent from the application components. As a result, an
application component provider focuses on the development of business and presentation logic for its
application components and need not get involved in the system-level issues related to EIS integration.
This leads to an easier and faster cycle for the development of scalable, secure, and transactional
enterprise applications that require connectivity with multiple EISs.

Figure Overview of the Jakarta Connectors architecture

Application Server Resources Adapter

Enterprise Information
System

Application Component

Container-Component
Contract

System Contracts

Client API

4.1. System Contracts
To achieve a standard system-level pluggability between application servers and EISs, Jakarta
Connectors defines a standard set of system-level contracts between an application server and an EIS.
The EIS side of these system-level contracts are implemented in a resource adapter.

A resource adapter is specific to an underlying EIS. It is a system-level software driver that is used by
an application server or an application component to connect to an EIS.

A resource adapter plugs into an application server. The resource adapter and application server
collaborate to provide the underlying mechanisms—transactions, security, connection pooling, and
dispatch to application components.

A resource adapter is used within the address space of the application server. Examples of resource
adapters are:

• A JDBC driver to connect to a relational database, as specified in the JDBC specification. For more

4.1. System Contracts

14 Jakarta Connectors

information on JDBC, see JDBC API Specification, version 4.1

• A resource adapter to connect to an ERP system

• A resource adapter to connect to a TP system

• A resource adapter to plug-in a messaging system

A resource adapter may provide different types of connectivity between an application and an EIS.

• Outbound communication. The resource adapter allows an application to connect to an EIS
system and perform work. All communication is initiated by the application. In this case, the
resource adapter serves as a passive library for connecting to an EIS, and executes in the context of
the application threads.

• Inbound communication. The resource adapter allows an EIS to call application components and
perform work. All communication is initiated by the EIS. The resource adapter may request threads
from the application server or create its own threads.

• Bi-directional communication. The resource adapter supports both outbound and inbound
communication.

Jakarta Connectors defines the following set of standard contracts between an application server and
EIS:

• A connection management contract that enables an application server to pool connections to an
underlying EIS, and enables application components to connect to an EIS. This leads to a scalable
application environment that can support a large number of clients requiring access to EISs.

• A transaction management contract between the transaction manager and an EIS that supports
transactional access to EIS resource managers. This contract enables an application server to use a
transaction manager to manage transactions across multiple resource managers. This contract also
supports transactions that are managed internal to an EIS resource manager without the necessity
of involving an external transaction manager.

• A security contract that enables secure access to an EIS. This contract provides support for a secure
application environment that reduces security threats to the EIS and protects valuable information
resources managed by the EIS.

• A lifecycle management contract that allows an application server to manage the lifecycle of a
resource adapter. This contract provides a mechanism for the application server to bootstrap a
resource adapter instance during its deployment or application server startup, and to notify the
resource adapter instance during its undeployment or during an orderly shutdown of the
application server.

• A work management contract that allows a resource adapter to do work (monitor network
endpoints, call application components, etc.) by submitting Work instances to an application server
for execution. The application server dispatches threads to execute submitted Work instances. This
allows a resource adapter to avoid creating or managing threads directly, and allows an application
server to efficiently pool threads and have more control over its runtime environment. The
resource adapter can control the security context and transaction context with which Work

4.1. System Contracts

Jakarta Connectors 15

instances are executed.

• A generic work context contract that enables a resource adapter to control the execution context of
a Work instance that it has submitted to the application server for execution. The Generic Work
Context Contract provides the mechanism for a resource adapter to augment the runtime context
of a Work instance with additional contextual information flown-in from the EIS. This contract
enables a resource adapter to control, in a more flexible manner, the contexts in which the Work
instances submitted by it are executed by the application server’s WorkManager .

• A transaction inflow contract that allows a resource adapter to propagate an imported transaction
to an application server. This contract also allows a resource adapter to transmit transaction
completion and crash recovery calls initiated by an EIS, and ensures that the ACID properties of the
imported transaction are preserved.

• A security work context that enables a resource adapter to establish security information while
submiting a Work instance for execution to a WorkManager and while delivering messages to
message endpoints residing in the application server. This contract provides a mechanism to
support the execution of a Work instance in the context of an established identity. It also supports
the propagation of user information/Principal information from an EIS to a MessageEndpoint
during Message Inflow.

• A message inflow contract that allows a resource adapter to asynchronously deliver messages to
message endpoints residing in the application server independent of the specific messaging style,
messaging semantics, and messaging infrastructure used to deliver messages. This contract also
serves as the standard message provider pluggability contract that allows a wide range of message
providers (Jakarta Messaging, Jakarta XML Web Services, etc.) to be plugged into any Jakarta EE
compatible application server by way of a resource adapter.

Overview of Jakarta Connectors Architecture does not illustrate any contracts that are internal to an
application server implementation. The specific mechanisms and contracts within an application
server are outside the scope of the connector architecture specification. This specification focuses on
the system-level contracts between the application server and the EIS.

Overview of Jakarta Connectors Architecture, the application server, application component and
resource adapter are shown as separate entities. This is done to illustrate that there is a logical
separation of the respective roles and responsibilities defined for the support of the system level
contracts. However, this separation does not imply a physical separation, as in an application server,
application component and a resource adapter running in separate processes.

4.2. Client API
The client API used by application components for EIS access may be defined as:

• The standard Common Client Interface (CCI) as specified in Common Client Interface.

• A client API specific to the type of a resource adapter and its underlying EIS. An example of such an
EIS specific client API is JDBC for relational databases.

4.2. Client API

16 Jakarta Connectors

The Common Client Interface (CCI) defines a common client API for accessing EISs. The CCI is targeted
towards Enterprise Application Integration (EAI) and enterprise tools vendors.

4.3. Requirements
Jakarta Connectors requires that the Jakarta Connectors-compliant resource adapter and the
application server support the system contracts. Detailed requirements for each system contract are
specified in later chapters.

Jakarta Connectors recommends, though it does not mandate, that a resource adapter support CCI as
the client API. The recommendation enables Jakarta Connectors to provide a solution for the m x n
integration problem for application development tools and EAI vendors.

Jakarta Connectors allows a resource adapter with an EIS-specific client API to support system
contracts and to be capable of standard Jakarta Connectors-based pluggability into an application
server.

4.4. Non-Managed Environment
Jakarta Connectors supports access to EISs from non-managed application clients; for example, Java
applications and applets.

In a non-managed two-tier application environment, an application client directly uses a resource
adapter library. A resource adapter, in this case, exposes its low-level transactions and security APIs to
its clients. An application client has to take responsibility for managing security and transactions (and
rely on connection pooling if done by the resource adapter internally) by using the low-level APIs
exposed by the resource adapter. This model is similar to the way a two-tier JDBC application client
accesses a database system in a non-managed environment.

4.5. Standalone Container Environment
Server Providers can provide a Connector container within a product that implements the Jakarta EE
Full Profile or within a subset profile such as the Jakarta EE Web Profile. The complete set of
application server requirements in this specification is required for a compliant Jakarta EE Connectors
container within an implementation of the Jakarta EE Full Profile. The minimum set, listed below, must
be supported for a compliant Jakarta EE Connectors container within an implementation of any subset
of the Jakarta EE Full Profile. Overall profile requirements are described within the Jakarta™ EE
Platform Specification Version 10.

Non-”Full Profile” implementations may only support a subset of the component specifications that
were mandated to be present in a full Jakarta EE platform product implementation. An
implementation of the Connector specification bundled in such a managed environment is described
as standalone connector container below.

Based on the availability of other dependent component specification implementations, the following

4.3. Requirements

Jakarta Connectors 17

requirements must be satisfied by a standalone connector container.

• If a MessageEndpointFactory implementation (such as support for message-driven beans) is
available, the Message Inflow requirements specified in Message Inflow must be satisfied by it.

• If an implementation of the Bean Validation specification is provided, the requirements in Jakarta™
Bean Validation Specification, Version 3.0 must be supported.

An existing resource adapter archive RAR may not be fully functional in a standalone implementation,
though. For example a bi-directional resource adapter archive deployed on a standalone
implementation that does not support Message Inflow would not have the corresponding Message
Inflow support (endpointActivation) provided to the resource adapter.

A standalone connector container implementation that does not support one of the dependent
component specification implementations listed above must not fail the deployment of a resource
adapter that uses the capabilities in the unsupported specifications. For instance, if a bi-directional
resource adapter is deployed to a standalone connector container that does not support Message
Inflow, the container will not be able to make calls to the endpointActivation method in the
ResourceAdapter JavaBean because the implementation does not support Message Inflow (and
therefore MessageEndpoint deployment). However, the container must support the deployment of a bi-
directional resource adapter and support other capabilities of the resource adapter that do not rely on
support for Message Inflow (outbound communication, use of the WorkManager etc.).

The standalone connector container must support the baseline compatibility requirements as defined
by the Jakarta™ Authentication specification and support the Security Inflow requirements specified in
Security Inflow. See Jakarta™ Authentication Specification, Version 3.0 for more information on the
Jakarta™ Authentication specification.

This specification does not define new application components or require any particular existing
application component to be supported in the standalone connector container environment.

4.5. Standalone Container Environment

18 Jakarta Connectors

Chapter 5. Roles and Scenarios
This chapter describes a set of roles specific to the connector architecture. The goal of this chapter is to
specify contracts that ensure that the output of each role is compatible with the input of the other role.
Later chapters specify a detailed set of responsibilities for each role, relative to the system-level
contracts.

5.1. Roles
This section describes the roles and responsibilities specific to the connector architecture.

5.1.1. Resource Adapter Provider

The resource adapter provider is an expert in the technology related to an EIS and is responsible for
providing a resource adapter for an EIS. Since this role is highly EIS specific, an EIS vendor typically
provides the resource adapter for its system.

A third-party vendor (who is not an EIS vendor) may also provide an EIS resource adapter and its
associated set of application development tools. Such a provider typically specializes in writing
resource adapters and related tools for a large number of EISs.

5.1.2. Application Server Vendor

The application server vendor provides an implementation of a Jakarta EE-compliant application
server that provides support for component based enterprise applications. A typical application server
vendor is an OS vendor, middleware vendor, or database vendor. The role of an application server
vendor is typically the same as that of a container provider.

The Jakarta EE platform specification (see Jakarta Platform, Enterprise Edition (Jakarta EE)
Specification, version 10) specifies requirements for a Jakarta EE platform provider.

5.1.3. Container Provider

The container provider is responsible for providing a container implementation for a specific type of
application component. For example, the container provider may provide a container for Jakarta
Enterprise Beans components. Each type of application component—Jakarta Enterprise Bean, Jakarta
Servlet, Server Pages—has its own set of responsibilities for its container provider. The respective
specifications outline these responsibilities.

A container implementation typically provides the following functionality:

• It provides deployed application components with transaction and security management,
distribution of clients, scalable management of resources, and other services that are generally
required as part of a managed server platform.

5.1. Roles

Jakarta Connectors 19

• It provides application components with connectivity to an EIS by transparently managing security,
resources, and transactions using the system-level contracts with the EIS-specific resource adapter.

• It insulates application components from the specifics of the underlying system-level mechanisms
by supporting a simple, standard contract with the application component. Refer to the Jakarta
Enterprise Beans specification (Jakarta Enterprise Beans Specification, version 4.0) for more details
on the Jakarta Enterprise Beans component contract.

The expertise of the container provider is system-level programming, with its focus on the
development of a scalable, secure, and transaction-enabled container.

The container provider is also responsible for providing deployment tools necessary for the
deployment of application components and resource adapters. It is also required to provide runtime
support for the deployed application components.

The container provider typically provides tools that allow the system administrator to monitor and
manage a container and application components during runtime.

5.1.4. Application Component Provider

In the context of the connector architecture, the application component provider produces an
application component that accesses one or more EISs to provide its application functionality.

The application component provider is an application domain expert. In the case of application
components targeted towards integration with multiple EISs, various business tasks and entities are
implemented based on access to EIS data and functions.

The application component provider typically programs against easy-to-use Java abstractions
produced by application development tools. These Java abstractions are based on the Common Client
interface (CCI).

The application component provider is not required to be an expert at system level programming. The
application component provider does not program transactions, security, concurrency, or distribution,
but relies on a container to provide these services transparently.

The application component provider is responsible for specifying structural information for an
application component and its external dependencies. This information includes, for example, the
name and type of the connection factories, and security information.

The output of an application component provider is a Java™ Archive (JAR) file that contains the
application components and any additional Java classes required to connect to EISs.

5.1.5. Enterprise Tools Vendors

The application component provider relies on tools to simplify application development and EIS
integration. Since programming client access to EIS data and functions is a complex application
development task, an application development tool reduces the effort and complexity involved in this

5.1. Roles

20 Jakarta Connectors

task.

Enterprise tools serve different roles in the application development process, as follows:

• Data and function mining tool - enables application component providers to look at the scope and
structure of data and functions existing in an EIS

• Analysis and design tool - enables application component providers to design an application in
terms of EIS data and functions

• Code generation tool - generates Java classes for accessing EIS data and functions. A mapping tool
that bridges across two different programming models (object to relational or vice-versa) falls into
this category of tools.

• Application composition tool - enables application component providers to compose application
components from Java classes generated by a code generation tool. This type of tool typically uses
the JavaBeans™ component model to enhance the ease of programming and composition.

• Deployment tool - used by application component providers and deployers to set transaction,
security, and other deployment time requirements.

A number of these tools may be integrated together to form an end-to-end application development
environment.

In addition, various tools and middleware vendors offer EAI frameworks that simplify integration
across heterogeneous EISs.

5.1.6. Application Assembler

The application assembler combines various application components into a larger set of deployable
units. The input of the application assembler is one or more JAR files produced by an application
component provider and the output is one or more JAR files with a deployment descriptor. A
deployment descriptor may not be provided by the application assembler if metadata annotations (see
Metadata Annotations) are used to describe deployment information.

The application assembler is typically a domain expert who assembles application components to
produce an enterprise application. To achieve this goal, the application assembler takes application
components, possibly from multiple application component providers, and assembles these
components.

5.1.7. Deployer

The deployer takes one or more deployable units of application components, produced by the
application assembler or component provider, and deploys the application components in a target
operational environment. An operational environment is comprised of an application server and
multiple connected EISs.

The deployer is responsible for resolving all external dependencies declared by the application
component provider. For example, the deployer ensures that all connection factories used by the

5.1. Roles

Jakarta Connectors 21

application components are present in an operational environment. To perform its role, the deployer
typically uses the application server-provided deployment tools.

The deployer is also responsible for the deployment of resource adapters. Since an operational
environment may include multiple EISs, the role of the deployer is more intensive and complex than
that in a non-EIS scenario. The deployer has to understand security, transaction, and connection
management-related aspects of multiple EISs that are configured in an operational environment.

5.1.8. System Administrator

The system administrator is responsible for the configuration and administration of a complete
enterprise infrastructure that includes multiple containers and EISs.

In an operational environment that has multiple EISs, the deployer should manage the operational
environment by working closely with the system administrators of respective EISs. This enables the
deployer to resolve deployment issues while deploying application components and resource adapters
in a target operational environment.

This chapter introduced the roles involved in the connector architecture. The later chapters specify
responsibilities for each role in more detail.

5.2. Scenario: Integrated Purchase Order System
This section describes a scenario that illustrates the use of the connector architecture. The following
description is kept at a high level. Specific scenarios related to transaction management, security,
connection management, and inbound communications are described in subsequent chapters.

The following diagram shows the different pieces that comprise this scenario:

5.2.1. Illustration of a Scenario Based on the Connector Architecture

5.2. Scenario: Integrated Purchase Order System

22 Jakarta Connectors

Application Server

Resources Adapter

ERP System

Purchase Order JEB

Container-Component
Contract

System Contracts

Common Client Interface

Resources Adapter
System Contracts

TP System

EIS Specific Interface

Client Component

ERP Software Inc. is an enterprise system vendor that provides an enterprise resource planning (ERP)
system. ERP Software wants to integrate its ERP system with various application servers. It achieves
this goal by providing a standard resource adapter for its ERP system. The resource adapter for ERP
systems supports the standard inbound communication, transaction, connection management and
security contracts. The resource adapter also supports the Common Client Interface (CCI) as its client
API.

TPSoft Inc. is another enterprise system vendor that provides a transaction processing (TP) system.
TPSoft has also developed a standard resource adapter for its TP system. The resource adapter library
supports CCI as part of its implementation.

AppServer Inc. is a system vendor that has an application server product which supports the
development and deployment of component-based enterprise applications. This application server
product has an Jakarta Enterprise Beans container that provides deployment and runtime support for
Jakarta Enterprise Bean components. The application server supports the system-level contracts that
enable a resource adapter, which also supports these contracts, to plug into the application server and
provide bi-directional connectivity to the underlying EIS. The Jakarta Enterprise Beans container
insulates Jakarta Enterprise Bean components from the communication, transaction, security, and
connection management mechanisms required for connecting to the EIS.

Manufacturer Corp. is a big manufacturing firm that uses a purchase order processing system based
on the ERP system for its business processes. Recently, Manufacturer has acquired a firm that uses
TPSoft’s TP system for its purchase order processing. Manufacturer aims to integrate these two systems
together into a single integrated purchase order system. It requires a scalable, multi-user, secure,

5.2. Scenario: Integrated Purchase Order System

Jakarta Connectors 23

transaction-enabled integrated purchase order system that is not tied to a specific computing platform.
Manufacturer plans to deploy the middle-tier of this system on the application server from AppServer
Inc.

The MIS department of Manufacturer develops a PurchaseOrder Jakarta Enterprise Bean that provides
an integrated view of the two underlying purchase order systems. While developing PurchaseOrder
Jakarta Enterprise Bean, the bean provider does not program the transactions, security, connection
management or inbound communication mechanisms required for connectivity to the ERP and TP
systems; it relies on the Jakarta Enterprise Beans container and application server to provide these
services.

The bean provider uses an application programming model based on the CCI to access the business
objects and function modules for purchase order processing in the ERP system. The bean provider uses
a similar application programming model based on the CCI to access the purchase order processing
programs in the TP system.

The MIS department of Manufacturer assembles an integrated web-based purchase order application
using PurchaseOrder Jakarta Enterprise Bean with other types of application components, such as
Jakarta Server Pages and Jakarta Servlets.

The MIS department installs and configures the application server, ERP, and TP system as part of its
operational environment. It then deploys the integrated purchase order application on this operational
environment. As part of the deployment, the MIS department configures the operational environment
based on the deployment requirements for the various application components that have been
assembled into the integrated enterprise application.

After deploying and successfully testing the integrated purchase order system, the MIS department
makes the system available for other departments to use.

5.3. Scenario: Business Integration
This scenario illustrates the use of the connector architecture in a business integration scenario.

Wombat Systems is a manufacturing firm that aims to adopt an e-business strategy. Wombat has huge
existing investments in its EIS systems. The EISs include ERP systems, mainframe transaction
processing systems, and message providers.

Wombat requires to interact with its various partners. In order to do this, it requires support for
different interaction mechanisms. It also requires a mechanism to involve all its EIS systems in the
interaction. Further, it requires an application sever to host its business applications which participate
in the various interactions.

Wombat buys a Jakarta EE based application server from EComm, Inc. to host its business applications
which interact with its EISs and its various partners. The application server supports the connector
architecture contracts which make it possible to use appropriate resource adapters to drive
interactions with its partners and its EISs.

5.3. Scenario: Business Integration

24 Jakarta Connectors

The connector architecture enables Wombat to integrate its existing infrastructure with the application
server. Wombat buys off-the-shelf resource adapters for its existing set of EISs and to support
interactions with its partners and uses them to integrate its business applications (deployed on the
application server).

5.3.1. Connector Architecture Usage in Business Integration Scenario

External Client Applications

App Server Based on
Jakarta EE

Resource Adapters

App Server Based on
Jakarta EE

Messaging System

Web Clients

Firm: Wombat Corp

Internal Client Applications

EIS

Java based
Application
Clients

XML over HTTP/s

Supplier A

Supplier B

Supplier C

5.3. Scenario: Business Integration

Jakarta Connectors 25

Chapter 6. Lifecycle Management
This chapter specifies a contract between an application server and a resource adapter that allows an
application server to manage the lifecycle of a resource adapter. This contract provides a mechanism
for the application server to bootstrap a resource adapter instance during its deployment or
application server startup, and to notify the resource adapter instance during its undeployment or
during an orderly shutdown of the application server.

6.1. Overview
A resource adapter is a system component which is deployed in an application server. When a
resource adapter is deployed, or during application server startup, an application server requires to
bootstrap an instance of the resource adapter in its address space. When a resource adapter is
undeployed, or during application server shutdown, the application server requires a mechanism to
notify the resource adapter instance to stop functioning so that it can be safely unloaded.

The lifecycle management contract provides such a mechanism for an application server to manage
the lifecycle of a resource adapter instance. This allows an application server to bootstrap a resource
adapter instance during resource adapter deployment or application server startup and also to expose
some of its useful facilities to the resource adapter instance. It also provides a mechanism to notify the
resource adapter instance while it is undeployed or during an orderly shutdown of the application
server.

6.2. Goals
• Provide a mechanism for an application server to manage the lifecycle of a resource adapter

instance.

6.3. Lifecycle Management Model
Lifecycle Management Contract (Interfaces)

jakarta.resource.spi

BootstrapContext
(from app server)

getWorkManager()

ResourceAdapter
(from adapter)

start()
stop()

Lifecycle Management (Object Diagram)

6.1. Overview

26 Jakarta Connectors

BootstrapContext

WorkManager

Application Server Resource Adapter

Resource Adapter
start(BootstrapContext)

stop()

getWorkManager()

 package jakarta.resource.spi;

 import jakarta.resource.spi.work.WorkManager;

 public interface ResourceAdapter {

 void start(BootstrapContext) // startup notification
 throws ResourceAdapterInternalException;

 void stop(); // shutdown notification
 ... // other operations
 }

public interface BootstrapContext {

 WorkManager getWorkManager();
 ... // other operations
}

An application server implements the BootstrapContext and WorkManager interfaces. A resource
adapter implements the ResourceAdapter interface.

6.3.1. ResourceAdapter JavaBean and Bootstrapping a Resource Adapter
Instance

The implementation class name of the ResourceAdapter interface is specified in the resource adapter
deployment descriptor or through the Connector annotation described in @Connector. The
ResourceAdapter class must be a JavaBean. Refer to JavaBean Requirements. During resource adapter
deployment, the resource adapter deployer creates a ResourceAdapter JavaBean and configures it with
the appropriate properties.

When a resource adapter is deployed, or during application server startup, an application server

6.3. Lifecycle Management Model

Jakarta Connectors 27

bootstraps an instance of the resource adapter in its address space. In order to bootstrap a resource
adapter instance, the application server must use the configured ResourceAdapter JavaBean and call
its start method. The start method call is a startup notification from the application server, and this
method is called by an application server thread.

During the start method call the ResourceAdapter JavaBean is responsible for initializing the resource
adapter instance. This may involve creating resource adapter instance specific objects, creating
threads (refer to Work Management), and setting up network endpoints. A ResourceAdapter JavaBean
represents exactly one functional resource adapter unit or instance. The application server must
instantiate exactly one ResourceAdapter JavaBean per functional resource adapter instance. The
application server must create at least one functional resource adapter instance per resource adapter
deployment. An application server may create more than one functional resource adapter instance per
resource adapter deployment, in order to create replicas of a single functional resource adapter
instance on multiple Java™ Virtual Machines (2). In general, however, there should be just one
functional resource adapter instance per deployment.

The application server is allowed to have multiple instances of a ResourceAdapter JavaBean active
simultaneously, in the same JVM™ instance, provided the instances are not equal. Their equality is
determined using the equals method, and therefore, the ResourceAdapter JavaBean is required to
implement the equals method.

During the start method call, an application server must provide a BootstrapContext instance
containing references to some of the application server facilities (for example, WorkManager) for use
by the resource adapter instance. The application server facilities exposed through the
BootstrapContext instance may be used by the resource adapter instance during its lifetime.

During the start method call, the resource adapter instance initializes itself, and may use the
WorkManager to submit Work instances for execution (see Work Management). The start method call
should return in a timely manner, and should avoid blocking calls, such as use of doWork method call
on the WorkManager instance. The application server may throw a WorkRejectedException in
response to any or all doWork method calls on the WorkManager instance, in order to enforce that a
start method call does not block. Resource adapter implementations are strongly recommended to use
startWork and scheduleWork methods on the WorkManager , instead of the doWork method.

Any exception thrown during the start method call indicates an error condition, and the attempt by the
application server to create a resource adapter instance fails. A future version of the specification may
add a two-phase startup procedure.

A resource adapter instance at runtime may contain several objects that may be created and discarded
during its lifetime. Such objects include ManagedConnectionFactory JavaBean (refer to Connection
Management), ActivationSpec JavaBean (refer to Message Inflow), various connection objects, resource
adapter private objects, and other resource adapter specific objects that are exposed to applications.

The ResourceAdapter JavaBean represents a resource adapter instance and contains the configuration
information pertaining to that resource adapter instance. This configuration information may also be
used as global defaults for ManagedConnectionFactory and ActivationSpec JavaBeans. That is, when

6.3. Lifecycle Management Model

28 Jakarta Connectors

ManagedConnectionFactory or ActivationSpec JavaBeans are created they may inherit the global
defaults (ResourceAdapter JavaBean configuration information), which make it easier to configure
them.

A resource adapter instance may provide bi-directional connectivity to multiple EIS instances. A
ManagedConnectionFactory JavaBean can be used to provide outbound connectivity to a single EIS
instance. An ActivationSpec JavaBean can be used to provide inbound connectivity from an EIS
instance. A resource adapter instance may contain several such ManagedConnectionFactory and
ActivationSpec JavaBeans. The following figure describes the association between a resource adapter
instance and its various ManagedConnectionFactory and ActivationSpec JavaBeans.

Resource Adapter Instance (Composition)

Resource Adapter
JavaBean (exactly one)

Application

Application

Application

Application

EIS Instance

EIS Instance

EIS Instance

EIS Instance

Outbound Communication

Inbound Communication

ManagedConnectionFactory
JavaBean

ManagedConnectionFactory
JavaBean

ManagedConnectionFactory
JavaBean

ManagedConnectionFactory
JavaBean

Resource adapter instance
(within an application server)

6.3.2. ManagedConnectionFactory JavaBean and Outbound Communication

A ManagedConnectionFactory JavaBean represents outbound connectivity information to an EIS
instance from an application by way of a specific resource adapter instance. This contains the
configuration information pertaining to outbound connectivity to an EIS instance. Refer to Connection
Management for more details on the ManagedConnectionFactory JavaBean.

6.3. Lifecycle Management Model

Jakarta Connectors 29

When a ManagedConnectionFactory JavaBean is created, it may inherit the ResourceAdapter JavaBean
(which represents the resource adapter instance) configuration information, and overrides specific
global defaults, if any, and may add other configuration information specific to outbound connectivity.

That is, in the case of outbound communication, the outbound connectivity configuration is a union of
ResourceAdapter JavaBean and ManagedConnectionFactory JavaBean configuration, with the
intersecting configuration properties based on the ManagedConnectionFactory JavaBean settings.

Outbound communication is initiated by an application and the communication occurs in the context
of an application thread, even though resource adapter threads may be involved in the interaction.
Note, a resource adapter may use the work management contract (refer to Work Management) to
request threads to do work.

import jakarta.resource.spi.ResourceAdapterAssociation;
import jakarta.resource.spi.ManagedConnectionFactory;

public class ManagedConnectionFactoryImpl
 implements ManagedConnectionFactory,
 ResourceAdapterAssociation {

 ResourceAdapter getResourceAdapter();

 void setResourceAdapter(ResourceAdapter) throws ResourceException;

 ... // other methods
}

The ResourceAdapterAssociation interface specifies the methods to associate a
ManagedConnectionFactory JavaBean with a ResourceAdapter JavaBean.

Prior to using a ManagedConnectionFactory JavaBean, the application server must create an
association between the ManagedConnectionFactory JavaBean and a ResourceAdapter JavaBean, by
calling the setResourceAdapter method on the ManagedConnectionFactory JavaBean. A successful
association is established only when the setResourceAdapter method on the
ManagedConnectionFactory JavaBean returns without throwing an exception.

The setResourceAdapter method on the ManagedConnectionFactory JavaBean must be called exactly
once; that is, the association must not change during the lifetime of a ManagedConnectionFactory
JavaBean.

6.3.3. ActivationSpec JavaBean and Inbound Communication

An ActivationSpec JavaBean represents inbound connectivity information from an EIS instance to an
application by way of a specific resource adapter instance. This contains the configuration information
pertaining to inbound connectivity from an EIS instance. Refer to Message Inflow for more details on

6.3. Lifecycle Management Model

30 Jakarta Connectors

the ActivationSpec JavaBean.

When an ActivationSpec JavaBean is created, it may inherit the ResourceAdapter JavaBean (which
represents the resource adapter instance) configuration information, and overrides specific global
defaults, if any, and may add other configuration information specific to inbound connectivity.

That is, in the case of inbound communication, the inbound connectivity configuration is a union of
ResourceAdapter JavaBean and ActivationSpec JavaBean configuration, with the intersecting
configuration properties based on the ActivationSpec JavaBean settings.

Inbound communication is initiated by an EIS instance and the communication occurs in the context of
a resource adapter thread. There are no application threads involved. Note, a resource adapter may
use the work management contract (refer to Work Management) to request threads to do work.

import jakarta.resource.spi.ActivationSpec;

// ActivationSpec interface extends ResourceAdapterAssociation interface.

public class ActivationSpecImpl implements ActivationSpec {

 ResourceAdapter getResourceAdapter();

 void setResourceAdapter(ResourceAdapter) throws ResourceException;

 ... // other methods
}

The ResourceAdapterAssociation interface specifies the methods to associate an ActivationSpec
JavaBean with a ResourceAdapter JavaBean.

Prior to using an ActivationSpec JavaBean, the application server must create an association between
the ActivationSpec JavaBean and a ResourceAdapter JavaBean, by calling the setResourceAdapter
method on the ActivationSpec JavaBean. A successful association is established only when the
setResourceAdapter method on the ActivationSpec JavaBean returns without throwing an exception.

The setResourceAdapter method on the ActivationSpec JavaBean must be called exactly once; that is,
the association must not change during the lifetime of an ActivationSpec JavaBean.

6.3.4. Resource Adapter Shutdown Procedure

The following are some likely situations during which an application server would shutdown a
resource adapter instance:

• The application server is being shutdown.

• The resource adapter is being undeployed.

6.3. Lifecycle Management Model

Jakarta Connectors 31

Irrespective of what causes a resource adapter instance to be shutdown, the application server must
use the following two phases to shutdown a resource adapter instance.

6.3.4.1. Phase One

Before calling the stop method on the ResourceAdapter JavaBean, the application server must ensure
that all dependant applications using the specific resource adapter instance are stopped. This includes
deactivating all message endpoints receiving messages by way of the specific resource adapter. Note,
however, since dependant applications typically cannot be stopped until they are undeployed, the
application server may have to delay stopping the resource adapter instance, until all such dependant
applications are undeployed.

Completion of phase one guarantees that application threads will not use the resource adapter
instance, even though the resource adapter instance specific objects may still be in the memory heap.
This ensures that all application activities including transactional activities are completed.

Thus, phase one ensures that even if a resource adapter instance does not properly shutdown during
phase two, the resource adapter instance is practically unusable.

6.3.4.2. Phase Two

The application server calls the stop method on the ResourceAdapter JavaBean to notify the resource
adapter instance to stop functioning so that it can be safely unloaded. This is a graceful shutdown
notification from the application server, and this method is called by an application server thread.

The ResourceAdapter JavaBean is responsible for performing an orderly shutdown of the resource
adapter instance during the stop method call. This may involve closing network endpoints,
relinquishing threads, releasing all active Work instances, allowing resource adapter internal in-flight
transactions to complete if they are already in the process of doing a commit, and flushing any cached
data to the EIS.

The resource adapter instance is considered fully functional until the application server calls the stop
method on the ResourceAdapter JavaBean.

Any unchecked exception thrown by the stop method call does not alter the processing of the
application server shutdown or resource adapter undeployment that caused the stop method call. The
application server may log the exception information for error reporting purposes.

Note, it is possible for a resource adapter instance to become non-functional during its lifetime even
before the stop method is called, due to EIS failure or other reasons. In such cases, the resource
adapter instance should throw exceptions to indicate the failure condition, when it is accessed by an
application (during outbound communication) or the application server.

A future version of the specification may add a forced shutdown method in addition to the current
graceful stop method.

6.3. Lifecycle Management Model

32 Jakarta Connectors

6.3.5. Requirements

• The application server must use a new ResourceAdapter JavaBean for managing the lifecycle of
each resource adapter instance and must discard the ResourceAdapter JavaBean after its stop
method has been called. That is, the application server must not reuse the same ResourceAdapter
JavaBean object to manage multiple instances of a resource adapter, since the ResourceAdapter
JavaBean object may contain resource adapter instance specific state information.

• The application server must call the start method on the ResourceAdapter JavaBean (in order to
create a functional resource adapter instance), before accessing other methods on the
ResourceAdapter JavaBean instance or before using other objects that belong to the same resource
adapter instance.

• The application server thread which calls the start and the stop method on the ResourceAdapter
JavaBean executes in an unspecified context. However, the application server thread must have at
least the same level of security permissions as that of the resource adapter instance.

Resource Adapter Lifecycle (State Diagram)

Resourse
Adapter

Deployment
Tool

Application
Server

deploy

Unconfigured
resource adapter

undeploy

Resource
Adapter
Deployer

Configured
resource adapter

Non-functional
resource adapter

Functional resource
adapter instance

Resource adapter
is deployed in the
application server

The resource adapter deployer

configures the various JavaBean classes

Application server calls start method
on the Resource Adapter JavaBean

Application server calls stop method
on the Resource Adapter JavaBean

The start method of the Resource Adapter JavaBean is called each time a
resource adapter instance is created. This may be during resource adapter
deployment, application server start, or other situations.

The stop method of the Resource Adapter JavaBean is called each time a
resource adapter instance is removed. This may be during resource
adapter undeployment, application server shutdown, or other situations.

6.3. Lifecycle Management Model

Jakarta Connectors 33

6.3.6. Resource Adapter Implementation Guidelines

The ResourceAdapter JavaBean should be treated as a central authority or registry for resource
adapter instance specific information, and it should have access to the overall state of the resource
adapter instance (network endpoints, etc.). This helps in the manageability of the resource adapter
instance, and in performing an orderly shutdown.

Some conventions to follow:

• Any resource adapter specific object (for example, ManagedConnectionFactory JavaBean,
ActivationSpec JavaBean, or others) which creates network endpoints should register them with
the ResourceAdapter JavaBean.

• The resource adapter threads should periodically scan the ResourceAdapter JavaBean state and
behave accordingly. It is desirable that such threads avoid boundless blocking on I/O calls, and
instead use a bounded blocking duration. This helps in resource adapter shutdown, and also
potentially avoids deadlock situations during shutdown.

The above conventions enable a ResourceAdapter JavaBean to effectively manage the resource adapter
instance and to perform an orderly shutdown of the resource adapter instance.

6.3.7. JavaBean Configuration and Deployment

There is at most one ResourceAdapter JavaBean instance per resource adapter instance. But there can
be many ManagedConnectionFactory, ActivationSpec or administered object instances (Administered
Objects) per resource adapter instance.

The ResourceAdapter JavaBean instance is created and configured during resource adapter
deployment. The ManagedConnectionFactory, ActivationSpec and administered object instances are
created and configured during the lifetime of a resource adapter instance.

At runtime, the resource adapter internally uses a union of the configured ResourceAdapter and
ManagedConnectionFactory JavaBean properties, to represent outbound communication configuration.

Similarly, at runtime, the resource adapter internally uses a union of the configured ResourceAdapter
and ActivationSpec JavaBean properties, to represent inbound communication configuration.

6.3.7.1. ResourceAdapter JavaBean Instance Configuration

• Create a ResourceAdapter JavaBean instance. This will initialize the instance with the defaults
specified by way of the JavaBean mechanism.

• Apply the ResourceAdapter class configuration properties specified in the resource adapter
deployment descriptor, on the ResourceAdapter instance. This may override some of the default
values specified through the JavaBean mechanism. The application server is required to merge
values specified by way of annotations and deployment descriptors as specified in Deployment
Descriptors and Annotations, before applying the ResourceAdapter class configuration properties.

6.3. Lifecycle Management Model

34 Jakarta Connectors

• The ResourceAdapter deployer may further override the values of the ResourceAdapter instance
before deployment.

6.3.7.2. Resource Adapter Deployment

The ResourceAdapter instance property values may be stored separately and reused later while
configuring ManagedConnectionFactory, ActivationSpec, or administered object instances.

6.3.7.3. ManagedConnectionFactory JavaBean Instance Configuration

• Create a ManagedConnectionFactory JavaBean instance. This will initialize the instance with the
defaults specified by way of the JavaBean mechanism.

• Apply the ResourceAdapter instance property values, that were stored earlier, on the
ManagedConnectionFactory instance. Note, that the ManagedConnectionFactory JavaBean may
have none, some or all of the properties of the ResourceAdapter JavaBean.

• Apply the ManagedConnectionFactory class configuration properties specified in the resource
adapter deployment descriptor, on the ManagedConnectionFactory instance.

• The application server is required to merge values specified by way of annotations and deployment
descriptors as specified in Deployment Descriptors and Annotations, before applying the
ManagedConnectionFactory class configuration properties.

• The ManagedConnectionFactory deployer may further override the values of the
ManagedConnectionFactory instance before deployment.

At runtime, the resource adapter internally uses a union of the configured ResourceAdapter and
ManagedConnectionFactory JavaBean properties, to represent outbound communication
configuration. Note, the ManagedConnectionFactory instance and the ResourceAdapter instance may
have intersecting property names. In such a situation, the values specified in the
ManagedConnectionFactory instance takes precedence.

6.3.7.4. ActivationSpec JavaBean Instance Configuration

• Create an ActivationSpec JavaBean instance. This will initialize the instance with the defaults
specified by way of the JavaBean mechanism.

• Apply the ResourceAdapter instance property values, that were stored earlier, on the
ActivationSpec instance. Note, that the ActivationSpec JavaBean may have none, some, or all of the
properties of the ResourceAdapter JavaBean.

• Apply the ActivationSpec class configuration properties specified in the application deployment
descriptor, on the ActivationSpec instance.

• The application server is required to merge values specified by way of annotations and deployment
descriptors as specified in Deployment Descriptors and Annotations, before applying the
ActivationSpec class configuration properties.

• The ActivationSpec deployer may further override the values of the ActivationSpec instance before
deployment.

6.3. Lifecycle Management Model

Jakarta Connectors 35

At runtime, the resource adapter internally uses a union of the configured ResourceAdapter and
ActivationSpec JavaBean properties, to represent inbound communication configuration. Note, the
ActivationSpec instance and the ResourceAdapter instance may have intersecting property names. In
such a situation, the values specified in the ActivationSpec instance takes precedence.

6.3.7.5. JavaBean Validation

The Jakarta Bean Validation specification (see Jakarta Bean Validation Specification, version 3.0)
defines “a metadata model and API for JavaBean validation. The default metadata source is
annotations, with the ability to override and extend the meta-data through the use of XML validation
descriptors.”

The JavaBeans provided by the resource adapter implementation, like ResourceAdapter ,
ManagedConnectionFactory etc, may use the annotations or the XML validation descriptor facilities
defined by the Jakarta Bean Validation specification to express their validation requirements of its
configuration properties to the application server. A constraint annotation, can be applied to a
JavaBean type, on any of the type’s fields or on any of the JavaBeans-compliant properties.The use of
Jakarta Bean Validation constraint annotations by the resource adapter implementation as a self-
validation check behavior is optional.

The Jakarta Bean Validation specification defines a set of standard built-in constraints. The resource
adapter implementation is encouraged to use them instead of redefining custom annotations for the
same use cases. The resource adapter implementation may (but is not limited to) use the Jakarta Bean
Validation facilities for the following use cases:

• Range or limits specification. To ensure that the value provided by a deployer for a configuration
property falls within prescribed limits. The resource adapter implementation may use @Min ,
@Max , @Size constraints for this purpose.

• Mandatory attributes. To require the deployer to provide a value for a configuration property.
The resource adapter implementation may use the @NotNull constraint for this use case.

In the Jakarta EE 9 environment, as specified in the Jakarta EE platform specification, the Jakarta Bean
Validation facilities are available. The application server must check the validity of the configuration
settings provided by the deployer for a JavaBean, using the capabilities provided by the Jakarta Bean
Validation specification. This validation must be performed before using the JavaBean. This helps to
catch configuration errors earlier on without having to wait until the JavaBean is put to use. As the
application server may check the validation of the configuration settings at deployment time and
runtime, the constraint validation implementation must not make any assumptions of the availability
of a live resource adapter instance. The application server must support the decoration of the
following JavaBeans with constraint annotations:

• ResourceAdapter

• ManagedConnectionFactory

• ActivationSpec

6.3. Lifecycle Management Model

36 Jakarta Connectors

• Administered Objects

The application server must, by default, target the jakarta.validation.groups.Default group for
validation. The application server must validate the JavaBean by obtaining a Validator instance from
its ValidatorFactory and invoking the validate method with the targeted groups. If the set of
ConstraintViolation objects returned by the validate method is not empty, the application server must
fail validation by throwing the jakarta.validation.ConstraintValidationException containing a reference
to the returned set of ConstraintViolation objects, and must not put the JavaBean in use. The
application server must treat all JavaBean properties as “reachable” and “cascadable” as defined by
the BeanValidation Specification. For more details on reachability and cascaded validation, see Section
3.5 of the Jakarta Bean Validation Specification, version 3.0.

Application server configuration tools and third-party tools are recommended to leverage the
constraint metadata request API defined in the Jakarta Bean Validation specification to provide a
richer interaction model during configuration of the JavaBeans.

6.3.7.6. Configuration Property Attributes

Dynamic Reconfigurable Configuration Properties

Configuration properties whose values could be configured dynamically during the lifetime of the
JavaBean are referred to as dynamically reconfigurable configuration properties. A resource adapter
may indicate that a configuration property is dynamically reconfigurable through the config-property-
supports-dynamic-updates attribute in the deployment descriptor (see Resource Adapter XML Schema
Definition) or the supportsDynamicUpdates annotation element in the ConfigProperty annotation (see
@ConfigProperty).

Neither the application server nor the resource adapter must support the dynamic reconfiguration of
configuration properties. If an application server supports this feature and the resource adapter
employs JavaBean Validation (see JavaBean Validation), the application server must perform JavaBean
Validation after reconfiguring all the modified values of the JavaBean. When the JavaBean is validated,
the resource adapter can deduce that the reconfiguration has been completed by the deployer or
administrator.

Invalid reconfiguration of the state of a JavaBean by an application server may be indicated by the
resource adapter through the following means:

Throwing an exception when the field is updated

For configuration properties that can only be validated based on the state of other configuration
properties, throwing an exception during the validation phase.

Confidential Properties

Certain configuration properties of a JavaBean, such as Password (see Standard Properties for more
information on Password), may be confidential and must not be presented as clear text in
configuration tools. The resource adapter may indicate such properties as “Confidential Properties”

6.3. Lifecycle Management Model

Jakarta Connectors 37

through the config-property-confidential attribute in the deployment descriptor (see Resource Adapter
XML Schema Definition) or the confidentialProperty annotation element in the ConfigProperty
annotation (see @ConfigProperty). The application server’s configuration tool may use this attribute to
use special visual aids denoting confidentiality.

6.3.7.7. Resource Adapter Implementation Guidelines

A resource adapter implementation may choose to use common properties, that is, a
ManagedConnectionFactory or an ActivationSpec JavaBean, may contain some or all of the properties
of the ResourceAdapter JavaBean. The choice is up to the resource adapter implementation.

In general, there is no need for common properties, since these various objects are associated at
runtime with the ResourceAdapter JavaBean. However, there may be situations, for example, a
ManagedConnectionFactory JavaBean may need to override the ResourceAdapter JavaBean values in
order to successfully connect to a different EIS. In such a scenario, providing common properties
between the ResourceAdapter and ManagedConnectionFactory JavaBeans, allows the
ManagedConnectionFactory deployer to override the ResourceAdapter property values and configure
the ManagedConnectionFactory appropriately.

6.3.8. Lifecycle Management in a Non-Managed Environment

Although the lifecycle management contract is primarily intended for a managed environment, it may
still be used in a non-managed environment provided that the application that bootstraps a resource
adapter instance is capable of managing its lifecycle.

6.3.9. A Sample Resource Adapter Implementation

6.3. Lifecycle Management Model

38 Jakarta Connectors

Sample Resource Adapter

package com.xyz.adapter;

import jakarta.resource.spi.ResourceAdapter;
import jakarta.resource.spi.BootstrapContext;
import jakarta.resource.spi.work.*;

public class MyResourceAdapterImpl implements ResourceAdapter {

 void start(BootstrapContext serverCtx) {
 // 1. setup network endpoints
 ...

 // 2. get WorkManager reference
 WorkManager wm = serverCtx.getWorkManager();

 // 3. provide Work objects to WorkManager
 for (i = 0; i < 10; i++) {
 Work work = new MyWork(...);
 try {
 wm.startWork(work);
 } catch (WorkException we) {
 // handle the exception
 }
 }
 }

 void stop() {
 // release Work instances, do cleanup and return.
 }
}

public class MyWork implements Work {

 void release() {
 // set a flag to hint the Work instance to complete.
 // Note, the calling thread is different from
 // the active thread in which this instance is executing.
 }

 void run() {
 // do work (call application components, monitor
 // network ports, etc.).

 }
}

6.3. Lifecycle Management Model

Jakarta Connectors 39

Lifecycle Management Model (Sequence Diagram)

Jakarta EE
app server

1. create an instance

WorkManager
(from app server)

BootstrapContext
(from app server)

ResourceAdapter
(from adapter)

Work
(from adapter)

Application Server Startup

Resource adapter startup and bootstrap procedure. This may be when a resource
adapter is deployed or during server startup for those resource adapter instances
which had previously been deployed.

During runtime, the Resource adapter may submit more Work instances and use
dispatch contract to dispatch calls to application components, etc.

Resource adapter undeployment / app server shutdown

2. create an instance (pass handle to WorkManager, etc.)

3. create an instance

4. start(BootstrapContext)

5. getWorkManager()

6. create Work instances

7. submit Work instances for execution

9. stop()

6.3. Lifecycle Management Model

40 Jakarta Connectors

Chapter 7. Connection Management
This chapter specifies the connection management contract between an application server and a
resource adapter. It introduces the concepts and mechanisms relevant to this contract, and delineates
the responsibilities of the roles of the resource adapter provider and application server vendor in
terms of their system-level support for the connection management contract. To complete the
description of the connection management contract, this chapter also refers to the responsibilities of
the application component provider and deployer. The chapter includes scenarios to illustrate the
connection management contract.

7.1. Overview
An application component uses a connection factory to access a connection instance, which the
component then uses to connect to the underlying EIS. A resource adapter acts as a factory of
connections. Examples of connections include database connections, Jakarta Messaging connections,
and SAP R/3 connections.

Connection pooling manages connections that are expensive to create and destroy. Connection pooling
of expensive connections leads to better scalability and performance in an operational environment.
The connection management contract provides support for connection pooling.

7.2. Goals
The connection management contract has been designed with the following goals:

• To provide a consistent application programming model for connection acquisition for both
managed and non-managed (two-tier) applications.

• To enable a resource adapter to provide a connection factory and connection interfaces based on
the CCI specific to the type of resource adapter and EIS. This enables JDBC drivers to be aligned
with the connector architecture with minimum impact on the existing JDBC APIs.

• To provide a generic mechanism by which an application server can provide different
services—transactions, security, advanced pooling, error tracing/logging—for its configured set of
resource adapters.

• To provide support for connection pooling.

The goal of the Jakarta Connector Architecture is to enable efficient, scalable, and extensible
connection pooling mechanisms, not to specify a mechanism or implementation for connection
pooling. The goal is accomplished by defining a standard contract for connection management with the
providers of connections—that is, resource adapters. An application server should use the connection
management contract to implement a connection pooling mechanism in its own implementation-
specific way.

7.1. Overview

Jakarta Connectors 41

7.3. Architecture: Connection Management
The connection management contract specifies an architected contract between an application server
and a resource adapter. This connection management contract is shown with bold flow lines in
Architecture Diagram: Managed Application scenario. It includes the set of interfaces shown in the
architecture diagram.

7.3.1. Overview: Managed Application Scenario

The application server uses the deployment information specified by way of the deployment descriptor
mechanism (specified in section Requirements) and metadata annotations (specified in Deployment
Descriptors and Annotations) to configure the resource adapter in the operational environment.

The resource adapter provides connection and connection factory interfaces. A connection factory acts
as a factory for EIS connections. For example, javax.sql.DataSource and java.sql.Connection interfaces
are JDBC-based interfaces for connecting to a relational database.

The CCI (specified in Common Client Interface) defines jakarta.resource.cci.ConnectionFactory and
jakarta.resource.cci.Connection as interfaces for a connection factory and a connection, respectively.

The application component does a lookup of a connection factory in the Java Naming and Directory
Interface™ (JNDI) name space. It uses the connection factory to get a connection to the underlying EIS.
The connection factory instance delegates the connection creation request to the ConnectionManager
instance.

The ConnectionManager enables the application server to provide different quality-of-services in the
managed application scenario. These quality-of-services include transaction management, security,
error logging and tracing, and connection pool management. The application server provides these
services in its own implementation-specific way. The connector architecture does not specify how the
application server implements these services.

The ConnectionManager instance , on receiving a connection creation request from the connection
factory , does a lookup in the connection pool provided by the application server. If there is no
connection in the pool that can satisfy the connection request, the application server uses the
ManagedConnectionFactory interface (implemented by the resource adapter) to create a new physical
connection to the underlying EIS. If the application server finds a matching connection in the pool, it
uses the matching ManagedConnection instance to satisfy the connection request.

If a new ManagedConnection instance is created, the application server adds the new
ManagedConnection instance to the connection pool.

The application server registers a ConnectionEventListener with the ManagedConnection instance. This
listener enables the application server to get event notifications related to the state of the
ManagedConnection instance. The application server uses these notifications to manage connection
pooling, manage transactions, cleanup connections, and handle any error conditions.

7.3. Architecture: Connection Management

42 Jakarta Connectors

The application server uses the ManagedConnection instance to get a connection instance that acts as
an application-level handle to the underlying physical connection. An instance of type
jakarta.resource.cci.Connection is an example of such a connection handle. An application component
uses the connection handle to access EIS resources.

The resource adapter implements the XAResource interface to provide support for transaction
management. The resource adapter also implements the LocalTransaction interface so that the
application server can manage transactions internal to a resource manager. The chapter on
transaction management describes this transaction management contract between the application
server (and its transaction manager) and the resource adapter (and its underlying resource manager).

Architecture Diagram: Managed Application scenario

ConnectionFactory Connection

Enterprise Information System (EIS)

Architected Contract

Implementation Specific

Resource Adapter

Application Component

Application Server

SecurityService
Manager

Pool
Manager

Transaction
Manager

ConnectionManager

ConnectionEventListener

ManagedConnectionFactory

LocalTransaction

XAResource

ManagedConnection

7.4. Application Programming Model
The application programming model for getting an EIS connection is similar across both managed
(application server based) and non-managed scenarios. The following sections explain a typical
application programming model scenario.

7.4. Application Programming Model

Jakarta Connectors 43

7.4.1. Managed Application Scenario

The following steps are involved in a managed scenario:

1 The application assembler or component provider specifies connection factory requirements for an
application component using a deployment descriptor mechanism. For example, a bean provider
specifies the following elements in the deployment descriptor for a connection factory reference. Note
that the connection factory reference is part of the deployment descriptor for Jakarta Enterprise Bean
components and not the resource adapter. Refer Jakarta Enterprise Beans specification (see Jakarta
Enterprise Beans Specification, version 4.0) for details on the deployment mechanism for Jakarta
Enterprise Bean components:

• res-ref-name: eis/MyEIS

• res-type: jakarta.resource.cci.ConnectionFactory

• res-auth: Application or Container

2 During resource adapter deployment, the deployer sets the configuration information (example:
server name, port number) for the resource adapter. The application server uses a configured resource
adapter to create physical connections to the underlying EIS. Refer to API Requirements for details on
packaging and deployment of a resource adapter.

3 The application component looks up a connection factory instance in the component’s environment
using the JNDI interface.

// obtain the initial JNDI Naming context
Context initctx = new InitialContext();

// perform JNDI lookup to obtain the connection factory
jakarta.resource.cci.ConnectionFactory cxf =
 (jakarta.resource.cci.ConnectionFactory)
 initctx.lookup(“java:comp/env/eis/MyEIS”);

The JNDI name passed in the method NamingContext.lookup is the same as that specified in the res-ref-
name element of the deployment descriptor. The JNDI lookup results in a connection factory instance
of type jakarta.resource.cci.ConnectionFactory as specified in the res-type element.

4 The application component invokes the getConnection method on the connection factory to get an EIS
connection. The returned connection instance represents an application-level handle to an underlying
physical connection.

An application component obtains multiple connections by calling the method getConnection on the
connection factory multiple times.

jakarta.resource.cci.Connection cx = cxf.getConnection();

5 The application component uses the returned connection to access the underlying EIS by way of the

7.4. Application Programming Model

44 Jakarta Connectors

resource adapter. Common Client Interface specifies in detail the application programming model for
EIS access.

The JNDI context of an accessing application is available to a resource adapter
through the application thread that uses its connection object. The resource adapter
may use the JNDI context to access other resources.

6 After the component finishes with the connection, it closes the connection using the close method on
the Connection interface.

cx.close();

7 If an application component fails to close an allocated connection after its use, that connection is
considered an unused connection. The application server manages the cleanup of unused connections.
When a container terminates a component instance, the container cleans up all connections used by
that component instance. Refer section ManagedConnection and Scenario: Connection Event
Notifications and Connection Close for details on the cleanup of connections.

7.4.2. Non-Managed Application Scenario

In a non-managed application scenario, the application developer follows a similar programming
model to the managed application scenario. The non-managed case involves looking up of a connection
factory instance, getting an EIS connection, using the connection for EIS access, and finally closing the
connection.

7.4.3. Guidelines

Connection handles are application level handles to underlying physical connections and are light-
weight objects, especially when dissociated from the ManagedConnection . Creation of a connection
handle does not necessarily result in the creation of a new physical connection to the EIS. The
ManagedConnection , which represents the actual underlying physical connection, should maintain
any session or transaction state data associated with that connection to the EIS. An application
component may not derive much benefit from caching these handles, although this is allowed in this
specification. Application components are recommended to obtain and cache the Connection Factory
objects instead. For more information, see ConnectionFactory and Connection.

An application component is recommended to obtain a connection handle from the connection factory,
use the connection handle to interact with the EIS by way of the resource adapter, and close the
connection handle after finishing with it.

7.4. Application Programming Model

Jakarta Connectors 45

 //recommended: connection handle creation, use and close
 Connection con = null;
 try {
 con = cf.getConnection();
 //use the con handle to interact with the EIS
 } finally {
 if (con != null){
 con.close();
 }
 }

The application component is recommended to explicitly close the connection handle as soon as the
handle has been used and is not required later. This reduces the possibility of connection leaks and
enhances the application server’s ability to pool physical connections to the EIS (see Connection Pool
Implementation).

7.5. Interface/Class Specification
This section specifies the Java classes and interfaces defined as part of the connection management
contract. For a complete specification of these classes and interfaces, refer to the API documentation
distributed with this document.

The following figure shows the class hierarchy for the connection management contract. The diagram
also illustrates the responsibilities for the definition of an interface and its implementation:

Class Diagram: Connection Management Architecture

7.5. Interface/Class Specification

46 Jakarta Connectors

DefaultConnectionManager

ConnectionImpl

package: jakarta.resource.spi

<interface>
ConnectionManager

ManagedConnectionImpl

LocalTransactionImpl

XAResourceImpl

ConnectionFactoryImpl

Implements

Inherits

<interface>
ManagedConnectionFactory

<interface>
ManagedConnection

<interface>
ManagedConnectionMetaData

<interface>
ConnectionEventListener

package: (Application Server specific)

ConnectionManagerImpl

ConnectionEventListenerImpl

package: javax.transaction.xa

<interface>
XAResource

<interface>
ConnectionFactory

<interface>
Connection

package: jakarta.resource.cci

package: Resource Adapter Specific

ManagedConnectionFactoryImpl

ManagedConnection-
MetaDataImpl

<interface>
LocalTransaction

0-1

0-1

0-1

0-1

0-1

7.5.1. ConnectionFactory and Connection [3]

A connection factory provides an interface to get a connection to an EIS instance. A connection
provides connectivity to an underlying EIS.

One goal of the Jakarta Connector Architecture is to support a consistent application programming
model across both CCI and EIS specific client APIs. To achieve this goal, the Jakarta Connector
Architecture recommends a design pattern (specified as an interface template) for both the connection
factory and connection interfaces.

The CCI connection factory and connection interfaces (defined in the package jakarta.resource.cci) are
based on the above design pattern. Refer to Connection Interfaces for details on the CCI connection
factory and connection interfaces. The following code sample shows the CCI interfaces:

7.5. Interface/Class Specification

Jakarta Connectors 47

public interface jakarta.resource.cci.ConnectionFactory extends java.io.Serializable,
 jakarta.resource.Referenceable{

 public jakarta.resource.cci.Connection getConnection()
 throws jakarta.resource.ResourceException;
 ...
}

public interface jakarta.resource.cci.Connection {

 public void close() throws jakarta.resource.ResourceException;
 ...
}

An example of a non-CCI interface is a resource adapter that uses the package com.myeis for its EIS
specific interfaces, as follows:

public interface com.myeis.ConnectionFactory extends java.io.Serializable,
 jakarta.resource.Referenceable {

 public com.myeis.Connection getConnection()
 throws com.myeis.ResourceException;
 ...
}

public interface com.myeis.Connection {

 public void close() throws com.myeis.ResourceException;
 ...
}

The JDBC interfaces— javax.sql.DataSource , java.sql.Connection —are examples of non-CCI connection
factory and connection interfaces.

Note that the methods defined on a non-CCI interface are not required to throw a ResourceException .
The exception can be specific to a resource adapter, for example: java.sql.SQLException for JDBC (see
JDBC API Specification, version 4.1) interfaces.

The following are additional guidelines for the recommended interface template:

• A resource adapter is allowed to add additional getConnection methods to its definition of a
connection factory interface. These additional methods are specific to a resource adapter and its
EIS. For example, CCI defines a variant of the getConnection method that takes
jakarta.resource.cci.ConnectionSpec as a parameter.

7.5. Interface/Class Specification

48 Jakarta Connectors

• A resource adapter should only introduce additional getConnection methods if it requires
additional flexibility (beyond that offered by the default getConnection method) in the connection
request invocations.

• A connection interface must provide a close method to close the connection. The behavior of such
an application-level connection closure is described in the OID OID: Connection Event Notification.

The above design pattern leads to a consistent application programming model for connection creation
and connection closing.

7.5.1.1. Requirements

A resource adapter must provide implementations for both the connection factory and connection
interfaces.

In the Jakarta Connector Architecture, a resource adapter provides an implementation of the
connection factory interface in both managed and non-managed scenarios. This differs from the JDBC
(see JDBC API Specification, version 4.1) architecture.

In the JDBC architecture, an application server provides the implementation of javax.sql.DataSource
interface. Using a similar design approach for the connector architecture would have required an
application server to provide implementations of various connection factory interfaces defined by
different resource adapters. Since the connection factory interface may be defined as specific to an EIS,
the application server may find it difficult to provide implementations of connection factory interfaces
without any code generation.

The connection factory implementation class delegates the getConnection method invocation from an
application component to the associated ConnectionManager instance. The ConnectionManager
instance is associated with a connection factory instance at its instantiation [refer to the OID shown in
OID:Lookup of a ConnectionFactory Instance from JNDI].

Note that the connection factory implementation class must call the
ConnectionManager.allocateConnection method in the same thread context in which the application
component had called the getConnection method.

The connection factory implementation class is responsible for taking connection request information
and passing it in a form required by the ConnectionManager . allocateConnection method.

7.5. Interface/Class Specification

Jakarta Connectors 49

public interface jakarta.resource.spi.ConnectionManager
 extends java.io.Serializable {

 public Object allocateConnection(ManagedConnectionFactory mcf,
 ConnectionRequestInfo cxRequestInfo)
 throws ResourceException;
}

public interface jakarta.resource.spi.ConnectionRequestInfo {

 public boolean equals(Object other);

 public int hashCode();

}

7.5.1.2. ConnectionRequestInfo

The ConnectionRequestInfo parameter to the ConnectionManager.allocateConnection method enables a
resource adapter to pass its own request-specific data structure across the connection request flow.

A resource adapter extends the ConnectionRequestInfo interface to support its own data structure for
the connection request.

This is typically used to allow a resource adapter to handle application component-specified per-
connection request properties (for example, clientID and language). The application server passes
these properties to the createManagedConnection and matchManagedConnections method calls on the
ManagedConnectionFactory . These properties remain opaque to the application server during the
connection request flow.

It is important to note that the properties passed through the ConnectionRequestInfo instance should be
client-specific (for example, user name, password, language) and not related to the configuration of a
target EIS instance (for example, port number, server name).

The ManagedConnectionFactory instance is configured with properties required for the creation of a
connection to a specific EIS instance. Note that a configured ManagedConnectionFactory instance must
have the complete set of properties that are needed for the creation of the physical connections. This
enables the container to manage connection request without requiring an application component to
pass any explicit connection parameters. Configured properties on a ManagedConnectionFactory can
be overridden through ConnectionRequestInfo in cases when a component provides client-specific
properties in the getConnection method invocation. Refer to ResourceAdapter for details on the
configuration of a ManagedConnectionFactory .

When the ConnectionRequestInfo reaches the createManagedConnection or matchManagedConnections
methods on the ManagedConnectionFactory instance, the resource adapter uses this additional per-

7.5. Interface/Class Specification

50 Jakarta Connectors

request information to create and match connections.

A resource adapter must implement the equals and hashCode methods defined in the
ConnectionRequestInfo interface. The equality must be defined in the complete set of properties for the
ConnectionRequestInfo instance. An application server can use these methods to structure its
connection pool in an implementation-specific way. Since ConnectionRequestInfo represents a resource
adapter specific data structure, the conditions for equality are defined and implemented by a resource
adapter.

7.5.1.3. Additional Requirements

A resource adapter implementation is not required to support the mechanism for passing resource
adapter-specific connection request information. It can choose to pass null for ConnectionRequestInfo
in the allocateConnection invocation.

An implementation class for a connection factory interface must implement java.io.Serializable . This
enables a connection factory instance to be stored in the JNDI naming environment. A connection
factory implementation class must implement the interface jakarta.resource.Referenceable . Note that
the jakarta.resource.Referenceable interface extends the javax.naming.Referenceable interface. Refer to
section Scenario: Referenceable for details on the JNDI reference mechanism.

A connection implementation class implements its methods in a resource adapter implementation-
specific way. It must use a jakarta.resource.spi.ManagedConnection instance as its underlying physical
connection.

7.5.2. ConnectionManager

The jakarta.resource.spi.ConnectionManager interface provides a hook for a resource adapter to pass a
connection request to an application server. An application server provides different quality-of-service
as part of its handling of the connection request.

7.5.2.1. Interface

The connection management contract defines a standard interface for the ConnectionManager as
follows:

public interface jakarta.resource.spi.ConnectionManager
 extends java.io.Serializable {

 public Object allocateConnection(ManagedConnectionFactory mcf,
 ConnectionRequestInfo cxRequestInfo)
 throws ResourceException;
}

The method allocateConnection is called by a resource adapter’s connection factory instance so that the
instance can delegate a connection request to the ConnectionManager instance.

7.5. Interface/Class Specification

Jakarta Connectors 51

The ConnectionRequestInfo parameter represents information specific to a resource adapter to handle
the connection request.

7.5.2.2. Requirements

An application server must provide an implementation of the ConnectionManager interface. This
implementation is not specific to any particular resource adapter or connection factory interface.

The ConnectionManager implementation delegates to the internal mechanisms of an application server
to provide various services: security, connection pool management, transaction management, and
error logging and tracing.

An application server should implement these services in a generic manner, independent of any
resource adapter and EIS-specific mechanisms. The connector architecture does not specify how an
application server implements these services; the implementation is specific to each application
server.

After an application server hooks-in its services, the connection request is delegated to a
ManagedConnectionFactory instance either for the creation of a new physical connection or for the
matching of an already existing physical connection.

An implementation class for the ConnectionManager interface must implement the java.io.Serializable
interface.

A resource adapter must provide a default implementation of the
jakarta.resource.spi.ConnectionManager interface. The implementation class comes into play when a
resource adapter is used in a non-managed two-tier application scenario. In an application server-
managed environment, the resource adapter must not use the default ConnectionManager
implementation class. A default implementation of ConnectionManager enables the resource adapter
to provide services specific to itself. These services can include connection pooling, error logging and
tracing, and security management. The default ConnectionManager delegates to the
ManagedConnectionFactory the creation of physical connections to the underlying EIS.

An implementation of the ConnectionManager interface may only be provided by a resource adapter,
for the purpose described in this section, or by an application server that fully meets the requirements
of this specification.

ConnectionManager and Application Server Specific Services

7.5. Interface/Class Specification

52 Jakarta Connectors

SecurityService
Manager

Pool
Manager

Transaction
Manager

ConnectionManager ConnectionFactory

ManagedConnectionFactory

7.5.3. ManagedConnectionFactory

A jakarta.resource.spi.ManagedConnectionFactory instance is a factory of both ManagedConnection and
connection factory instances. This interface supports connection pooling by defining methods for
matching and creating connections.

7.5.3.1. Interface

The following code extract shows the interface specification for the ManagedConnectionFactory .

7.5. Interface/Class Specification

Jakarta Connectors 53

public interface jakarta.resource.spi.ManagedConnectionFactory
 extends java.io.Serializable {

 public Object createConnectionFactory(ConnectionManager connectionManager)
 throws ResourceException;

 public Object createConnectionFactory()
 throws ResourceException;

 public ManagedConnection createManagedConnection(javax.security.auth.Subject
subject,
 ConnectionRequestInfo cxRequestInfo)
 throws ResourceException;

 public ManagedConnection matchManagedConnections(java.util.Set connectionSet,
 javax.security.auth.Subject
subject,
 ConnectionRequestInfo
cxRequestInfo)
 throws ResourceException;

 public boolean equals(Object other);

 public int hashCode();
}

The method createConnectionFactory creates a connection factory instance. For CCI, the connection
factory instance is of the type jakarta.resource.cci.ConnectionFactory . The connection factory instance
is initialized with the ConnectionManager instance provided by the application server.

When the createConnectionFactory method takes no arguments, ManagedConnectionFactory provides a
default ConnectionManager instance. This occurs in a non-managed application scenario.

The method createManagedConnection creates a new physical connection to the underlying EIS
instance. The ManagedConnectionFactory instance uses the security information (passed as a Subject
instance) and an optional ConnectionRequestInfo instance to create this new physical connection (refer
to Security Contract for more details).

A created ManagedConnection instance typically maintains internal information about the security
context (under which the connection has been created) and any connection-specific parameters (for
example, the socket connection).

The matchManagedConnections method enables the application server to use resource adapter-specific
criteria for matching a ManagedConnection instance to service a connection request. The application
server finds a candidate set of ManagedConnection instances from its connection pool based on
application server-specific criteria, and passes this candidate set to the matchManagedConnections

7.5. Interface/Class Specification

54 Jakarta Connectors

method. If the application server implements connection pooling, it must use the
matchManagedConnections method to choose a suitable connection.

The matchManagedConnections method matches a candidate set of connections using criteria known
internally to the resource adapter. The criteria used for matching connections is specific to a resource
adapter and is not specified by the connector architecture.

A ManagedConnection instance has specific internal state information based on its security context and
physical connection. The ManagedConnectionFactory implementation compares this information for
each ManagedConnection instance in the candidate set against the information passed in through the
matchManagedConnections method and the configuration of this ManagedConnectionFactory instance.
The ManagedConnectionFactory uses the results of this comparison to choose the ManagedConnection
instance that can best satisfy the current connection request.

If the resource adapter cannot find an acceptable ManagedConnection instance, it returns a null value .
In this case, the application server requests the resource adapter to create a new connection instance.

If the resource adapter does not support connection matching, it must throw a NotSupportedException
when matchManagedConnections method is invoked. This allows an application server to avoid pooling
connections obtained from that resource adapter.

7.5.3.2. Requirements

A resource adapter must provide an implementation of the ManagedConnectionFactory interface.

It is required that the ManagedConnectionFactory implementation class extend the implementation of
the hashCode and equals methods defined in java.lang.Object . These two methods are used by an
application server to structure its connection pool in an implementation-specific way. The equals and
hashCode method implementation should be based on a complete set of configuration properties that
make a ManagedConnectionFactory instance unique and specific to an EIS instance.

An implementation class for ManagedConnectionFactory interface must be a JavaBean. Refer to
JavaBean Requirements.

7.5.3.3. Connection Pool Implementation

The Jakarta Connector Architecture does not specify how an application server implements connection
pooling. However, it recommends that an application server should structure its connection pool such
that it uses the connection creation and matching facility in an efficient manner and does not cause
resource starvation.

The following paragraphs provide non-prescriptive guidelines for the connection pool implementation
by an application server.

An application server may partition its pool on a per ManagedConnectionFactory instance (and thereby
on a per EIS instance) basis. An application server may choose to guarantee, in an implementation
specific way, that it will always partition connection pools with at least per ManagedConnectionFactory

7.5. Interface/Class Specification

Jakarta Connectors 55

instance granularity.

The per- ManagedConnectionFactory instance pool may be further partitioned based on the transaction
or security context or any client-specific parameters (as associated with the ConnectionRequestInfo).
When an application server calls the matching facility, it is recommended that the application server
narrow down the candidate set of ManagedConnection instances to a reasonable limit, and achieves
matching efficiently. For example, an application server may pass only those ManagedConnection
instances to the matchManagedConnections method that are associated with the target
ManagedConnectionFactory instance (and thereby a specific target EIS instance).

An application server may use additional parameters for its search and matching criteria used in its
connection pool management. These parameters may be EIS- or application server- specific. The equals
and hashCode methods defined in both ManagedConnectionFactory and ConnectionRequestInfo
facilitate connection pool management and structuring by an application server.

7.5.3.4. Detecting Invalid Connections

import java.util.Set;

interface ValidatingManagedConnectionFactory {

 Set getInvalidConnections(Set connectionSet) throws ResourceException;

}

This interface may be implemented by a ManagedConnectionFactory instance that supports the ability
to validate ManagedConnection objects. The getInvalidConnections method returns a set of invalid
ManagedConnection objects chosen from a specified set of ManagedConnection objects.

This optional functionality may be used by the application server to prune invalid ManagedConnection
objects from its connection pool periodically. The application server may use this functionality to test
for the validity of a ManagedConnection by passing in a Set of size one (with the ManagedConnection
that has to be tested for validity as the only member of the Set).

7.5.3.5. Requirement for XA Recovery

The ManagedConnectionFactory implementation for a transaction authority (XA) protocol capable
resource adapter (refer to Transaction Management for more details on transactions) must support the
createManagedConnection method that takes a Subject and a null for the parameter
ConnectionRequestInfo . This enables the application server to get an XAResource instance using
ManagedConnection.getXAResource and then call the XAResource.recover method. Note that the
application server uses this special case only to get to the XAResource instance for the underlying
resource manager.

The reason for this requirement is that the application server may not have a valid

7.5. Interface/Class Specification

56 Jakarta Connectors

ConnectionRequestInfo instance when it is required to get the ManagedConnection instance to initiate
recovery. Refer to ManagedConnectionFactory for additional details on the
ManagedConnectionFactory.createManagedConnection method.

7.5.4. ManagedConnection

A jakarta.resource.spi.ManagedConnection instance represents a physical connection to an underlying
EIS.

The Jakarta Connector Architecture allows one or more ManagedConnection instances
to be multiplexed over a single physical pipe to an EIS. However, for simplicity, this
specification describes a ManagedConnection instance as being mapped 1-1 to a
physical connection.

The creation of a ManagedConnection instance typically results in the allocation of EIS and resource
adapter resources (for example, memory and network sockets) for each physical connection. Since
these resources can be costly and scarce, an application server pools ManagedConnection instances in a
managed environment.

Connection pooling improves the scalability of an application environment. An application server uses
the ManagedConnectionFactory and ManagedConnection interfaces to implement connection pool
management.

An application server also uses the transaction management-related methods (getXAResource and
getLocalTransaction) on the ManagedConnection interface to manage transactions. These methods are
discussed in more detail in Transaction Management.

The ManagedConnection interface also provides methods to support error logging and tracing in a
managed environment.

7.5.4.1. Interface

The connection management contract defines the following interface for a ManagedConnection . The
following code extract shows only the methods that are used for connection pool management. The
remaining methods are introduced in other parts of the specification.

7.5. Interface/Class Specification

Jakarta Connectors 57

public interface jakarta.resource.spi.ManagedConnection {

 public Object getConnection(javax.security.auth.Subject subject,
 ConnectionRequestInfo cxRequestInfo)
 throws ResourceException;

 public void destroy() throws ResourceException;

 public void cleanup() throws ResourceException;

 // Methods for Connection and transaction event notifications

 public void addConnectionEventListener(ConnectionEventListener listener);

 public void removeConnectionEventListener(ConnectionEventListener listener);

 public ManagedConnectionMetaData getMetaData() throws ResourceException;

 // Additional methods - specified in the other sections

 ...

}

The getConnection method creates a new application-level connection handle. A connection handle is
tied to an underlying physical connection represented by a ManagedConnection instance. For CCI, the
connection handle created by a ManagedConnection instance is of the type
jakarta.resource.cci.Connection . A connection handle is tied to its ManagedConnection instance in a
resource adapter implementation-specific way.

A ManagedConnection instance may use the getConnection method to change the state of the physical
connection based on the Subject and ConnectionRequestInfo arguments. For example, a resource
adapter can re-authenticate a physical connection to the underlying EIS when the application server
calls the getConnection method. ManagedConnection specifies re-authentication requirements in more
detail.

The method addConnectionEventListener allows a connection event listener to register with a
ManagedConnection instance. The ManagedConnection instance notifies connection close/error and
local transaction-related events to its registered set of listeners.

The removeConnectionEventListener method removes a registered ConnectionEventListener instance
from a ManagedConnection instance. Since an application server may modify the list of event listeners
at a time when the ManagedConnection may be iterating through its list of event listeners, the resource
adapter is recommended to handle this scenario by synchronizing access to its list of event listeners.

The method getMetaData returns the metadata information (represented by the

7.5. Interface/Class Specification

58 Jakarta Connectors

ManagedConnectionMetaData interface) for a ManagedConnection and the connected EIS instance.

7.5.4.2. Connection Sharing and Multiple Connection Handles

To support connection sharing, the application server can call getConnection multiple times on a
ManagedConnection instance. In this case, a call to the method ManagedConnection.getConnection does
not invalidate any previously created connection handles. Multiple connection handles can exist
concurrently for a single ManagedConnection instance. This design supports the connection sharing
mechanism. Refer to Connection Sharing for more details.

Because multiple connection handles to a single ManagedConnection can exist concurrently, a resource
adapter implementation may:

• Provide thread-safe semantics for a ManagedConnection implementation to support concurrent
access to a ManagedConnection instance from multiple connection handles. It is strongly
recommended that resource adapters provide support for concurrent access to a
ManagedConnection instance from multiple connection handles. This may be required in a future
release of the specification.

• Ensure that there is at most one connection handle associated actively with a ManagedConnection
instance. The active connection handle is the only connection using the ManagedConnection
instance until an application-level close is called on this connection handle. The active connection
handle may also be modified by the container as a result of Connection Association (see Connection
Association) or the dissociation of a lazily associatable ManagedConnection (see Lazy Connection
Association Optimization). For example, a ManagedConnection.getConnection method
implementation associates a newly created connection handle as the active connection handle. Any
operations on the ManagedConnection from any previously created connection handles should
result in an application level exception. An example application level exception extends the
jakarta.resource.ResourceException interface and is specific to a resource adapter. A scenario
illustrating this implementation is shown in the Scenario: Local Transaction.

7.5.4.3. Connection Matching Contract

The application server invokes the ManagedConnectionFactory.matchManagedConnections method
(implemented by a resource adapter) to find a matching ManagedConnection for servicing a connection
request. The application server passes a candidate set of ManagedConnection instances to the
matchManagedConnections method.

The application server should use the connection matching contract for ManagedConnection instances
that have no existing connection handles. A candidate set passed to the matchManagedConnections
method should not have any ManagedConnection instances with existing connection handles.

There is no requirement that the matchManagedConnections implementation be capable of performing
a match across a candidate set that includes ManagedConnection instances with existing connection
handles. Note that a resource adapter can return a successful match with the requirement that the
ManagedConnection.getConnection method will later change the state of the matched
ManagedConnection . To avoid any unexpected matching behavior, the application server should not

7.5. Interface/Class Specification

Jakarta Connectors 59

pass a ManagedConnection instance with existing connection handles to the matchManagedConnections
method as part of a candidate set.

A connection request can lead to the creation of additional connection handles for a
ManagedConnection instance that already has one or more existing connection handles. In this case,
the application server should take the responsibility of checking whether or not the chosen
ManagedConnection instance can service such a request. Refer to Connection Sharing for details.

7.5.4.4. Cleanup of ManagedConnection

A resource adapter typically allocates system resources (outside a JVM instance) for a
ManagedConnection instance. Additionally, a ManagedConnection instance can have state specific to a
client, such as security context, data/function access structures, and result set from a query.

The method ManagedConnection.cleanup initiates a cleanup of any client-specific state maintained by a
ManagedConnection instance. The cleanup must invalidate all connection handles created using the
ManagedConnection instance. Any attempt by an application component to use the associated
connection handle after cleanup of the underlying ManagedConnection should result in an exception.

The container always drives the cleanup of a ManagedConnection instance. The container keeps track
of created connection handles in an implementation specific mechanism. It invokes
ManagedConnection.cleanup when it has to invalidate all connection handles associated with this
ManagedConnection instance and put the ManagedConnection instance back in to the pool. This may be
called after the end of a connection sharing scope or when the last associated connection handle is
closed for a ManagedConnection instance.

The invocation of the ManagedConnection.cleanup method on an already cleaned-up connection should
not throw an exception.

The cleanup of a ManagedConnection instance resets its client-specific state and prepares the
connection to be put back into a connection pool. The cleanup method should not cause the resource
adapter to close the physical pipe and reclaim system resources associated with the physical
connection.

An application server should explicitly call ManagedConnection.destroy to destroy a physical
connection. An application server should destroy a physical connection to manage the size of its
connection pool and to reclaim system resources.

A resource adapter should destroy all allocated system resources for this ManagedConnection instance
when the method destroy is called.

7.5.4.5. Requirements

A resource adapter must provide an implementation of the ManagedConnection interface.

7.5. Interface/Class Specification

60 Jakarta Connectors

7.5.5. ManagedConnectionMetaData

The method ManagedConnection.getMetaData returns a
jakarta.resource.spi.ManagedConnectionMetaData instance. The ManagedConnectionMetaData
provides information about a ManagedConnection and the connected EIS instance. This information is
only available to the caller of this method if a valid physical connection exists for an EIS instance.

7.5.5.1. Interface

The ManagedConnectionMetaData interface provides the following information about an EIS instance:

• Product name of the EIS instance

• Product version of the EIS instance

• Maximum number of concurrent connections from different processes that an EIS instance can
support

• User name for this connection, as known to the EIS instance

The method getUserName returns the user name known to the underlying EIS instance for an active
connection. The name corresponds to the resource principal under whose security context the
connection to the EIS instance has been established.

7.5.5.2. Requirements

A resource adapter must provide an implementation of the ManagedConnectionMetaData interface. An
instance of this implementation class should be returned from the ManagedConnection.getMetaData
method.

7.5.6. ConnectionEventListener

The Jakarta Connector Architecture provides an event callback mechanism that enables an application
server to receive notifications from a ManagedConnection instance. An application server uses these
event notifications to manage its connection pool, to clean up invalid or terminated connections, and
to manage local transactions. Transaction Management discusses local transaction-related event
notifications in more detail.

An application server implements the jakarta.resource.spi.ConnectionEventListener interface. It uses
the ManagedConnection.addConnectionEventListener method to register a connection listener with a
ManagedConnection instance.

7.5.6.1. Interface

The following code extract specifies the ConnectionEventListener interface:

7.5. Interface/Class Specification

Jakarta Connectors 61

public interface jakarta.resource.spi.ConnectionEventListener {

 public void connectionClosed(ConnectionEvent event);

 public void connectionErrorOccurred(ConnectionEvent event);

 // Local Transaction Management related events

 public void localTransactionStarted(ConnectionEvent event);

 public void localTransactionCommitted(ConnectionEvent event);

 public void localTransactionRolledback(ConnectionEvent event);

}

A ManagedConnection instance calls the ConnectionEventListener.connectionClosed method to notify its
registered set of listeners when an application component closes a connection handle. The application
server uses this connection close event to make a decision on whether or not to put the
ManagedConnection instance back into the connection pool.

The ManagedConnection instance calls the ConnectionEventListener.connectionErrorOccurred method
to notify its registered listeners of the occurrence of a physical connection-related error. The event
notification happens just before a resource adapter throws an exception to the application component
using the connection handle.

The connectionErrorOccurred method indicates that the associated ManagedConnection instance is now
invalid and unusable. The application server handles the connection error event notification by
initiating application server-specific cleanup (for example, removing ManagedConnection instance
from the connection pool) and then calling ManagedConnection.destroy method to destroy the physical
connection.

A ManagedConnection instance also notifies its registered listeners for transaction-related events by
calling the following methods—localTransactionStarted, localTransactionCommitted, and
localTransactionRolledback. An application server uses these notifications to manage local
transactions. See Local Transaction Management Contract for details on the local transaction
management.

The processing of event notifications by the registered event listeners may be synchronous or
asynchronous. That is, a listener may process an event notification immediately (as part of the
notification method call) or it may defer event processing to a later in time. The resource adapter must
not assume the processing of event notifications by its listeners to be synchronous or asynchronous.

7.5. Interface/Class Specification

62 Jakarta Connectors

7.5.7. ConnectionEvent

A jakarta.resource.spi.ConnectionEvent class provides information about the source of a connection-
related event. A ConnectionEvent instance contains the following information:

• Type of the connection event

• ManagedConnection instance that has generated the connection event. A ManagedConnection
instance is returned from the ConnectionEvent.getSource method.

• Connection handle associated with the ManagedConnection instance; required for the
CONNECTION_CLOSED event and optional for the other event types.

• Optionally, an exception indicating a connection related error. Refer to System Exceptions for
details on the system exception. Note that the exception is used for the
CONNECTION_ERROR_OCCURRED notification.

This class defines the following types of event notifications: * CONNECTION_CLOSED *
LOCAL_TRANSACTION_STARTED * LOCAL_TRANSACTION_COMMITTED *
LOCAL_TRANSACTION_ROLLEDBACK * CONNECTION_ERROR_OCCURRED

7.6. Error Logging and Tracing
The Jakarta Connector Architecture provides basic support for error logging and tracing in both
managed and non-managed environments. This support enables an application server to detect errors
related to a resource adapter and its EIS, and to use error information for debugging.

7.6.1. ManagedConnectionFactory

The jakarta.resource.spi.ManagedConnectionFactory interface defines the following methods for error
logging and tracing:

public interface jakarta.resource.spi.ManagedConnectionFactory
 extends java.io.Serializable {

 public void setLogWriter(java.io.PrintWriter out)
 throws ResourceException;

 public java.io.PrintWriter getLogWriter()
 throws ResourceException;

 ...

}

The log writer is a character output stream to which all logging and tracing messages for a
ManagedConnectionFactory instance are printed.

7.6. Error Logging and Tracing

Jakarta Connectors 63

A character output stream can be registered with a ManagedConnectionFactory instance using the
setLogWriter method. A ManagedConnectionFactory implementation uses this character output stream
to output error log and trace information.

An application server manages the association of a log writer with a ManagedConnectionFactory .
When a ManagedConnectionFactory instance is created, the log writer is initially null and logging is
disabled. Associating a log writer with a ManagedConnectionFactory instance enables logging and
tracing for the ManagedConnectionFactory instance.

An application server administrator primarily uses the error and trace information printed on a log
writer by a ManagedConnectionFactory instance. This information is typically system-level in nature
(for example, information related to connection pooling and transactions) rather than of direct interest
to application developers.

7.6.2. ManagedConnection

The jakarta.resource.spi.ManagedConnection interface defines the following methods to support error
logging and tracing specific to a physical connection.

public interface jakarta.resource.spi.ManagedConnection {

 public void setLogWriter(java.io.PrintWriter out)
 throws ResourceException;

 public java.io.PrintWriter getLogWriter()
 throws ResourceException;
 ...
}

A newly created ManagedConnection instance gets the default log writer from the
ManagedConnectionFactory instance that creates the ManagedConnection instance. The default log
writer can be overridden by an application server using the ManagedConnection.setLogWriter method.
The setting of the log writer on a ManagedConnection enables an application server to manage error
logging and tracing specific to the physical connection represented by a ManagedConnection instance.

An application server can optionally disassociate the log writer from a ManagedConnection instance
when this connection instance is put back into the connection pool by using setLogWriter and passing
null .

7.7. Object Diagram
The following shows the object diagram for the connection management architecture. It shows
invocations across the various object instances that correspond to the architected interfaces in the
connection management contract, as opposed to those instances specific to implementations of the
application server and the resource adapter.

7.7. Object Diagram

64 Jakarta Connectors

To keep the diagram simple, it does not show the transaction management contract-related interfaces (
XAResource and LocalTransaction) and invocations.

Object Diagram: Connection Management Architecture

ConnectionFactory Connection

Enterprise Information System (EIS)
Architected Interface

Implementation Specific

Resource Adapter

Application Component

Application Server

SecurityService
Manager

Pool Manager

Transaction
Manager

ConnectionManager

ConnectionEventListener

ManagedConnectionFactory

Managed
Connection

Instantiation

application server specific

application server specific

Resource Adapter

allocation connection

createManagedConnection
matchManagedConnections
createConnectionFactory

getConnection

add/removeConnectionEventListener

Connection Event
notifications

EIS specific

create new instance

create
new instance

create
new
instance

ResourceAdapter
specific

7.8. Illustrative Scenarios
This section uses sequence diagrams to illustrate various interactions between the object instances
involved in the connection management contract.

Some sequence diagrams include a box labeled “Application Server”. This box refers to various
modules and classes internal to an application server. These modules and classes communicate
through contracts that are application server implementation specific.

7.8. Illustrative Scenarios

Jakarta Connectors 65

In this section, the CCI interfaces— jakarta.resource.cci.ConnectionFactory and
jakarta.resource.cci.Connection —represent connection factory and connection interfaces respectively.

The description of these sequence diagrams does not include transaction-related details. These are
covered in Transaction Management.

7.8.1. Scenario: Connection Pool Management

The following object interactions are involved in the scenario shown in OID: Connection Event
Notification:

• The application component calls the getConnection method on the
jakarta.resource.cci.ConnectionFactory instance (returned from the JNDI lookup) to get a
connection to the underlying EIS instance. Refer to JNDI Configuration and Lookup for details on
the JNDI configuration and lookup.

• The ConnectionFactory instance initially handles the connection request from the application
component in a resource adapter specific way. It then delegates the connection request to the
associated ConnectionManager instance. The ConnectionManager instance has been associated with
the ConnectionFactory instance when the ConnectionFactory was instantiated. The
ConnectionFactory instance receives all connection request information passed through the
getConnection method and, in turn, passes it in a form required by the method ConnectionManager
. allocateConnection . The ConnectionRequestInfo parameter to the allocateConnection method
enables a ConnectionFactory implementation class to pass on client-specific connection request
information. This information is opaque to an application server and is used subsequently by a
resource adapter to do connection matching and creation.

• The ConnectionManager instance (provided by the application server) handles the
allocateConnection request by interacting with the application server specific connection pool
manager. The interaction between a ConnectionManager instance and pool manager is internal and
specific to an application server.

• The application server finds a candidate set of ManagedConnection instances from its connection
pool. The candidate set includes all ManagedConnection instances that the application server
considers suitable for handling the current connection allocation request. The application server
finds the candidate set using its own implementation-specific structuring and lookup criteria for
the connection pool. Refer to ManagedConnectionFactory for guidelines of connection pool
implementation by an application.

• If the application server finds no matching ManagedConnection instance that can best handle this
connection allocation request, or if the candidate set is empty, the application server calls the
ManagedConnectionFactory.createManagedConnection method to create a new physical connection
to the underlying EIS instance. The application server passes necessary security information (as
JAAS Subject) as part of this method invocation. For details on the security contract, refer to the
Security Management chapter. It can also pass the ConnectionRequestInfo information to the
resource adapter. The connection request information has been associated with the connection
allocation request by the resource adapter and is used during connection creation.

7.8. Illustrative Scenarios

66 Jakarta Connectors

• The ManagedConnectionFactory instance creates a new physical connection to the underlying EIS to
handle the createManagedConnection method. This new physical connection is represented by a
ManagedConnection instance. The ManagedConnectionFactory uses the security information
(passed as a Subject instance), ConnectionRequestInfo , and its default set of configured properties
(port number, server name) to create a new ManagedConnection instance. Refer to Security
Contract for more details on the createManagedConnection method.

• The ManagedConnectionFactory instance initializes the created ManagedConnection instance and
returns it to the application server.

• The application server registers a ConnectionEventListener instance with the ManagedConnection
instance, enabling it to receive notifications for events on this connection. The application server
uses these event notifications to manage connection pooling and transactions.

• The ManagedConnection instance obtains its log writer (for error logging and tracing support) from
the ManagedConnectionFactory instance that created this connection. However, an application
server can set a new log writer with a ManagedConnection instance to do additional error logging
and tracing at the level of a ManagedConnection .

• The application server does the necessary transactional setup for the ManagedConnection instance.
Transaction Management explains this step in more detail.

• Next, the application server calls ManagedConnection.getConnection method to get an application
level connection handle of type jakarta.resource.cci.Connection . A ManagedConnection instance
uses the Subject and ConnectionRequestInfo parameters to the getConnection method to change the
state of the ManagedConnection . Calling the getConnection method does not necessarily create a
new physical connection to the EIS instance. Calling getConnection produces a temporary
connection handle that is used by an application component to access the underlying physical
connection. The actual underlying physical connection is represented by a ManagedConnection
instance.

• The application server returns the connection handle to the resource adapter. The resource
adapter then passes the connection handle to the application component that initiated the
connection request.

OID: Connection Pool Management with New Connection Creation

7.8. Illustrative Scenarios

Jakarta Connectors 67

Application
Component

getConnection

jakarta.resource.cci.
ConnectionFactory

Application
Server

ConnectionManager.allocateConnection

getXAResource

getConnection(Subject, ConnectionRequestInfo)

Resource Adapter Resource Adapter

Transaction
Manager

ManagedConnectionFactory
XAResources
ManagedConnection

return jakarta.resource.cci.Connection

return jakarta.resource.cci.Connection

Optional: setLogWriter(PrintWriter)

Application server hooks up a candidate
connection set from the connection pool

Application server performs transactional setup for the
ManagedConnection instance. For example, application
server performs following setup for JTA transactions

Note: Following steps happen if no
matching connection is found or if
candidate set is empty

createManagedConnection

create a new instance

addConnectionEventListener(ConnectionEventListener)

Transaction.enlistResource(XAResource)

XAResource.start(XID)

7.8.2. Scenario: Connection Matching

OID: Connection Pool Management with Connection Matching shows the object interactions for a
connection matching scenario—that is, a scenario in which the application server finds a non-empty
candidate connection set and calls the resource adapter to do matching on the candidate set. The
following steps are involved in this scenario:

1. The application server handles the connection allocation request by creating a candidate set of
ManagedConnection instances from the connection pool. The candidate set includes the
ManagedConnection instances that the application server considers suitable for handling the

7.8. Illustrative Scenarios

68 Jakarta Connectors

current connection allocation request. The application server finds this candidate set using its own
implementation-specific structuring and lookup criteria for the connection pool. Refer to
ManagedConnectionFactory for guidelines on connection pool implementation by an application.

2. The application server calls the ManagedConnectionFactory.matchManaged-Connections method to
enable the resource adapter to do the connection matching. It passes the candidate connection set,
security information (as a Subject instance associated with the current connection request), and
any ConnectionRequestInfo .

3. The ManagedConnectionFactory instance matches the candidate set of connections using the
criteria known internally to the resource adapter. The matchManagedConnections method returns
a ManagedConnection instance that the resource adapter considers to be an acceptable match for
the current connection allocation request.

4. The application server can set a new log writer with the ManagedConnection instance to do error
logging and tracing at the level of the ManagedConnection.

5. The application server does the necessary transactional setup for the ManagedConnection instance.
Transaction Management explains this step in more detail.

6. The application server calls the ManagedConnection.getConnection method to get a new application
level connection handle.

7. The ManagedConnection.getConnection method implementation uses the Subject parameter and any
ConnectionRequestInfo to set the state of the ManagedConnection instance based on the current
connection allocation request. Refer to ManagedConnection for details if a resource adapter
implements support for re-authentication of a ManagedConnection instance.

8. The application server returns the connection handle to the resource adapter. The resource
adapter then passes the connection handle to the application component that initiated the
connection request.

OID: Connection Pool Management with Connection Matching

7.8. Illustrative Scenarios

Jakarta Connectors 69

Application
Component

getConnection

jakarta.resource.cci.
ConnectionFactory

Application
Server

ConnectionManager.allocateConnection

getConnection(Subject, ConnectionRequestInfo)

Resource Adapter Resource Adapter

Transaction
Manager

ManagedConnectionFactory
XAResources
ManagedConnection

return jakarta.resource.cci.Connection

return jakarta.resource.cci.Connection

Optional: setLogWriter(PrintWriter)

Application server hooks up a candidate
connection set from the connection pool

Application server performs transactional setup for the
ManagedConnection instance. For example, application
server performs following setup for JTA transactions

Case: ManagedConnection found
that satisfies allocation request

addConnectionEventListener(ConnectionEventListener)

Transaction.enlistResource(XAResource)

XAResource.start(XID)

matchManagedConnection

7.8.3. Scenario: Connection Event Notifications and Connection Close

For each ManagedConnection instance in the pool, the application server registers a
ConnectionEventListener instance to receive close and error events on the connection. This scenario
explains how the connection event callback mechanism enables an application server to manage
connection pooling.

The scenario involves the following steps (see OID: Connection Event Notification) when an application
component initiates a connection close:

1. The application component releases an allocated connection handle using the close method on the

7.8. Illustrative Scenarios

70 Jakarta Connectors

jakarta.resource.cci.Connection instance. The Connection instance delegates the close method to the
associated ManagedConnection instance. The delegation happens through an association between
ManagedConnection instance and the corresponding connection handle Connection instance. The
mechanism by which this association is achieved is specific to the implementation of a resource
adapter.

2. The connection management contract places a requirement that a ManagedConnection instance
must not alter the state of a physical connection while handling the connection close.

3. The ManagedConnection instance notifies all its registered listeners of the application’s connection
close request using the ConnectionEventListener . connectionClosed method. It passes a
ConnectionEvent instance with the event type set to CONNECTION_CLOSED .

4. On receiving the connection close event notification, the application server performs the
transaction management-related cleanup of the ManagedConnection instance. Refer to OID:
Connection Event Notification for details on the cleanup of a ManagedConnection instance
participating in a Jakarta Transactions transaction.

5. The application server also uses the connection close event notification to manage its connection
pool. On receiving the connection close notification, the application server calls the
ManagedConnection.cleanup method (depending on whether the ManagedConnection is shared and
the presence of other active connection handles) to perform cleanup on the ManagedConnection
instance that raised the connection close event. The application server-initiated cleanup of a
ManagedConnection instance prepares this ManagedConnection instance to be reused for
subsequent connection requests. See Connection Sharing for a discussion of connection sharing
and its implications on ManagedConnection cleanup.

6. After initiating the necessary cleanup for the ManagedConnection instance, the application server
puts the ManagedConnection instance back into the connection pool. The application server should
be able to use this available ManagedConnection instance to handle future connection allocation
requests from application components.

7.8.3.1. Connection Cleanup

The application server can also initiate cleanup of a ManagedConnection instance when the container
terminates the application component instance that has the corresponding connection handle. The
application server should call ManagedConnection.cleanup to initiate the connection cleanup. After the
cleanup, the application server puts the ManagedConnection instance into the pool to serve future
allocation requests.

7.8.3.2. Connection Destroy

To manage the size of the connection pool, the application server can call ManagedConnection.destroy
method to destroy a ManagedConnection. A ManagedConnection instance handles this method call by
closing the physical connection to the EIS instance and releasing all system resources held by this
instance.

The application server also calls ManagedConnection.destroy when it receives a connection error event

7.8. Illustrative Scenarios

Jakarta Connectors 71

notification that signals a fatal error on the physical connection.

OID: Connection Event Notification

Application
Component

dose()

jakarta.resource.cci.
ConnectionFactory

Application
Server

Internal: Resource Adapter implementation specific

ManagedConnection.cleanup

Resource Adapter Resource Adapter

Transaction
Manager

ManagedConnectionFactory
XAResources
ManagedConnection

Application server hooks up
a candidate connection set
from the connection pool

Application Server returns ManagedConnection instance
to the connection pool

Case: JTA transaction

Transaction.enlistResource(XAResource)

XAResource.start(XID)

connectionClosed(ConnectionEvent: CONNECTION_CLOSED)

7.9. Architecture: Non-Managed Environment
The connection management contract enables a resource adapter to be used in a two-tier application
directly from an application client.

In a non-managed application scenario, the ConnectionManager implementation class may be provided

7.9. Architecture: Non-Managed Environment

72 Jakarta Connectors

either by a resource adapter (as a default ConnectionManager implementation) or by application
developers. Note that a default implementation of the ConnectionManager should be defined for a
resource adapter (in terms of the functionality provided and third-party components added) only at
development time.

The default ConnectionManager instance interposes on the connection request and delegates the
request to the ManagedConnectionFactory instance. The ManagedConnectionFactory creates a physical
connection (represented by a ManagedConnection instance) to the underlying EIS. The
ConnectionManager gets a connection handle (of type jakarta.resource.cci.Connection for CCI) from the
ManagedConnection and returns it to the connection factory. The connection factory returns the
connection handle to the application.

A resource adapter supports interactions (shown as light shaded lines in the following figure) between
its internal objects in an implementation-specific way. For example, a resource adapter can use the
connection event listening mechanism as part of its ManagedConnection implementation for
connection management. However, the resource adapter is not required to use the connection event
mechanism to drive its internal interactions.

Architecture Diagram: Non-Managed Application Scenario

ConnectionManager

ConnectionFactory

ManagedConnectionFactory

Connection

ManagedConnection

Enterprise Information System (EIS)

Architected contract

Implementation specific

Resource Adapter

Application Component

7.9.1. Scenario: Programmatic Access to ConnectionFactory

To maintain the consistency of the application programming model across both managed and non-

7.9. Architecture: Non-Managed Environment

Jakarta Connectors 73

managed environments, application code should use the JNDI namespace to look-up a connection
factory instance.

The following code extract shows how an application client accesses a connection factory instance in a
non-managed environment. The code extract does not show the use of JNDI. It is used as an example to
illustrate the use of ManagedConnectionFactory and ConnectionFactory interfaces in the application
code. Refer to section JNDI Configuration and Lookup for details on JNDI configuration and lookup.

// Application Client Code
// Create an instance of the ManagedConnectionFactory
// implementation class passing in initialization parameters
// (if any) for this instance

com.myeis.ManagedConnectionFactoryImpl mcf =
 new com.myeis.ManagedConnectionFactoryImpl(...);

// Set properties on the ManagedConnectionFactory instance
// Note: Properties are defined on the implementation class
// and not on the jakarta.resource.spi.ManagedConnectionFactory
// interface
mcf.setServerName(...);
mcf.setPortNumber(...);

// set remaining properties
...

// Get access to connection factory. The ConnectionFactory instance
// gets initialized with the default ConnectionManager provided
// by the resource adapter

jakarta.resource.cci.ConnectionFactory cxf =
 (jakarta.resource.cci.ConnectionFactory) mcf.createConnectionFactory();

// Get a connection using the ConnectionFactory instance
jakarta.resource.cci.Connection cx = cxf.getConnection(...);

// use connection to access the underlying EIS instance

...

// Close the connection
cx.close();

7.9. Architecture: Non-Managed Environment

74 Jakarta Connectors

7.9.2. Scenario: Connection Creation in Non-Managed Application Scenario

The following object interactions are involved in the scenario shown in OID: Connection Creation in a
Non-Managed Application Scenario:

• The application client calls a method on the jakarta.resource.cci.ConnectionFactory instance,
returned from the JNDI lookup, to get a connection to the underlying EIS instance.

• The ConnectionFactory instance delegates the connection request from the application to the
default ConnectionManager instance. The resource adapter provides the default
ConnectionManager implementation.

• The ConnectionManager instance creates a new physical connection to the underlying EIS instance
by calling the ManagedConnectionFactory.createManagedConnection method.

• The ManagedConnectionFactory instance handles the createManagedConnection method by creating
a new physical connection to the underlying EIS, represented by a ManagedConnection instance.
The ManagedConnectionFactory uses the security information, passed as a Subject instance, any
ConnectionRequestInfo instance , and its configured set of properties, such as port number, server
name, to create a new ManagedConnection instance.

• The ManagedConnectionFactory initializes the state of the created Managed-Connection instance
and returns it to the default ConnectionManager instance.

• The ConnectionManager instance calls the ManagedConnection.getConnection method to get an
application-level connection handle. Calling the getConnection method does not necessarily create a
new physical connection to the EIS instance. Calling getConnection produces a temporary handle
that is used by an application to access the underlying physical connection. The actual underlying
physical connection is represented by a ManagedConnection instance.

• The ConnectionManager instance returns the connection handle to the ConnectionFactory instance,
which then returns the connection to the application that initiated the connection request.

OID: Connection Creation in a Non-Managed Application Scenario

7.9. Architecture: Non-Managed Environment

Jakarta Connectors 75

Application
Client

getConnection

jakarta.resource.cci.
ConnectionFactory

Connection
Manager

allocateConnection

getConnection(Subject, ConnectionRequestInfo)

Resource Adapter

ManagedConnection
Factory

Managed
Connection

return jakarta.resource.cci.Connection

return jakarta.resource.cci.Connection

createManagedConnection

create a new instance

7.10. Requirements
This section outlines requirements for the connection management contract.

7.10.1. Resource Adapter

The requirements for a resource adapter are as follows:

• A resource adapter must provide implementations of the following interfaces:

◦ jakarta.resource.spi.ManagedConnectionFactory

◦ jakarta.resource.spi.ManagedConnection

◦ jakarta.resource.spi.ManagedConnectionMetaData

• The ManagedConnection implementation provided by a resource adapter must use the following
interface and classes to provide support to an application server for connection management and
transaction management, as explained later:

7.10. Requirements

76 Jakarta Connectors

◦ jakarta.resource.spi.ConnectionEvent

◦ jakarta.resource.spi.ConnectionEventListener To support non-managed environments, a
resource adapter is not required to use the above two interfaces to drive its internal object
interactions.

• A resource adapter must provide support for basic error logging and tracing by implementing the
following methods:

◦ ManagedConnectionFactory.set/getLogWriter

◦ ManagedConnection.set/getLogWriter

• A resource adapter must provide a default implementation of the
jakarta.resource.spi.ConnectionManager interface. The implementation class comes into play when
a resource adapter is used in a non-managed two-tier application scenario. In an application
server-managed environment, the resource adapter must not use the default ConnectionManager
implementation class. A default implementation of ConnectionManager enables the resource
adapter to provide services specific to itself. These services can include connection pooling, error
logging and tracing, and security management. The default ConnectionManager delegates to the
ManagedConnectionFactory the creation of physical connections to the underlying EIS.

• In a managed environment, with the exception of application client containers, a resource adapter
must not asynchronously (that is, using a separate thread other than the application thread) call
application objects other than message-driven beans. However, this restriction does not apply to a
non-managed scenario, as well as application client containers. A resource adapter deployer may
use the ResourceAdapter JavaBean to configure the resource adapter during its deployment to set
the desired behavior, based on the requirements of the deployment environment.

• A resource adapter is not allowed to support its own internal connection pooling in a managed
environment. In this case, the application server is responsible for connection pooling. However, a
resource adapter may multiplex connections (one or more ManagedConnection instances per
physical connection) over a single physical pipe transparent to the application server and
components.

In a non-managed two tier application scenario, a resource adapter is allowed to support connection
pooling internal to the resource adapter.

7.10.2. Application Server

The requirements for an application server are as follows:

• An application server must use the interfaces defined in the connection management contract to
use services provided by a resource adapter. These interfaces are as follows:

◦ jakarta.resource.spi.ManagedConnectionFactory

◦ jakarta.resource.spi.ManagedConnection

◦ jakarta.resource.spi.ManagedConnectionMetaData

• An application server must provide an implementation of the

7.10. Requirements

Jakarta Connectors 77

jakarta.resource.spi.ConnectionManager interface. This implementation should not be specific to
any particular type of resource adapter, EIS, or connection factory interface.

• An application server must implement the jakarta.resource.spi.-ConnectionEventListener interface
and to register ConnectionEventListener with a resource adapter to get connection-related event
notifications. An application server uses these event notifications to do its pool management,
transaction management, and connection cleanup.

• An application server must use the following interfaces (supported by the resource adapter) to
provide basic error logging and tracing for its configured set of resource adapters:

◦ ManagedConnectionFactory.set/getLogWriter

◦ ManagedConnection.set/getLogWriter

• An application server must use the jakarta.resource.spi.ConnectionManager hook-in mechanism to
provide its specific quality-of-services. The Jakarta Connector Architecture does not specify the set
of services the application server provides, nor does it specify how the application server
implements these services.

7.10. Requirements

78 Jakarta Connectors

Chapter 8. Transaction Management
This chapter specifies the transaction management contract between an application server (and
supported transaction manager) and an EIS resource manager.

This chapter focuses only on the system-level aspects of transaction management. The Jakarta EE
component model specifications describe the application level transaction model. For example, the
Jakarta Enterprise Beans specification (see Jakarta Enterprise Beans Specification, version 4.0)
specifies the transaction model for Jakarta Enterprise Bean components.

8.1. Overview
The following figure shows an application component deployed in a container provided by an
application server. The application component performs transactional access to multiple resource
managers. The application server uses a transaction manager that takes the responsibility of managing
transactions across multiple resource managers.

Transaction Management Contract

Application Server

Enterprise Information System (EIS)

Resource Adapter

Application Component

Transaction Manager

EIS Specific Interface

Container-Component
Contract

Transaction
Management
System Contract

A resource manager can support two types of transactions:

• A transaction that is controlled and coordinated by a transaction manager external to the resource
manager. This document refers to such a transaction as Jakarta Transaction or XA transaction.

• A transaction that is managed internal to a resource manager. The coordination of such
transactions involves no external transaction managers. This document refers to such transactions
as RM local transactions (or local transactions).

A transaction manager coordinates transactions across multiple resource managers. It also provides
additional low-level services that enable transactional context to be propagated across systems. The
services provided by a transaction manager are not visible directly to the application components.

8.1. Overview

Jakarta Connectors 79

The Jakarta Connector Architecture defines a transaction management contract between an
application server and a resource adapter and its underlying resource manager. The transaction
management contract has two parts, depending on the type of transaction:

• a Jakarta Transactions javax.transaction.xa.XAResource based contract between a transaction
manager and a resource manager

• a local transaction management contract

These contracts enable an application server to provide the infrastructure and runtime environment
for transaction management. Application components rely on this transaction infrastructure to
support their component-level transaction model. Connection Handles obtained in the context of an
application component should not be passed between application component boundaries, especially if
the connection handles are involved in a transaction, and an application server is not required to
support this usage.

8.2. Transaction Management Scenarios
This section uses a set of scenarios to present an overview of the transaction management
architecture.

8.2.1. Transactions Across Multiple Resource Managers

In the following figure, an application client invokes Jakarta Enterprise Beans component X. Enterprise
Bean X accesses transaction programs managed by a TP system and calls Enterprise Bean Y to access
an ERP system.

Scenario: Transactions Across Multiple Resource Managers

Application Server

Transaction Manager

client

X Y

TP System ERP System

XAResource based
contract

The application server uses a transaction manager to support a transaction management
infrastructure that enables an application component to perform transactional access across multiple
EIS resource managers. The transaction manager manages transactions across multiple resource
managers and supports propagation of the transaction context across distributed systems.

8.2. Transaction Management Scenarios

80 Jakarta Connectors

The transaction manager supports a Jakarta Transaction XAResource -based transaction management
contract with a resource adapter and its underlying resource manager. The ERP system supports
Jakarta Transaction by implementing an XAResource interface through its resource adapter. The TP
system also implements an XAResource interface. This interface enables the two resource managers to
participate in transactions that are coordinated by an external transaction manager. The transaction
manager uses the XAResource interface to manage transactions across the two underlying resource
managers.

The Enterprise Beans X and Y access the ERP and TP system using the respective client access API for
the two systems. Behind the scenes, the application server enlists the connections to both systems,
obtained from their respective resource adapters, as part of the transaction. When the transaction
commits, the transaction manager performs a two-phase commit protocol across the two resource
managers, ensuring that all read/write access to resources managed by both the TP system and ERP
system is either entirely committed or entirely rolled back.

8.2.2. Local Transaction Management

The transactions are demarcated either by the container (called container-managed demarcation) or
by a component (called component-managed demarcation). In component-managed demarcation, an
application component can use the Jakarta Transaction UserTransaction interface or a transaction
demarcation API specific to an EIS (for example, JDBC transaction demarcation using
java.sql.Connection).

The Jakarta Enterprise Beans specification requires a Jakarta Enterprise Beans container to support
both container-managed and component-managed transaction demarcation models. The Jakarta
Server Pages and servlet specifications require a web container to support component-managed
transaction demarcation.

If multiple resource managers participate in a transaction, the Jakarta Enterprise Beans container uses
a transaction manager to coordinate the transaction. The contract between the transaction manager
and resource manager is defined using the XAResource interface.

If a single resource manager instance participates in a transaction (either component-managed or
container-managed), the container has two choices:

• Using the transaction manager to manage this transaction. The transaction manager uses one-
phase commit-optimization, described in Scenarios Supported, to coordinate the transaction for
this single resource manager instance.

• Letting the resource manager coordinate this transaction internally without involving an external
transaction manager.

If an application accesses a single resource manager using an XA transaction, it has more performance
overhead compared to using a local transaction. The overhead is due to the involvement of an external
transaction manager in the coordination of the XA transaction.

To avoid the overhead of using an XA transaction in a single resource manager scenario, the

8.2. Transaction Management Scenarios

Jakarta Connectors 81

application server may optimize this scenario by using a local transaction instead of an XA transaction.
This scenario is shown in the following figure.

Scenario: Local Transaction on a Single Resource Manager

Application Server

client

X

TP System

Local
Transaction
contract

Application
Contract

8.3. Transaction Management Contract
This section specifies the transaction management contract. The transaction management contract
builds on the connection management contract specified in Connection Management.

The following figure shows the interfaces and flows in the transaction management contract. It does
not show the interfaces, classes, and flows that are the same in the connection management contract.

Architecture Diagram: Transaction Management

8.3. Transaction Management Contract

82 Jakarta Connectors

ConnectionFactory Connection

Enterprise Information System (EIS)

Architected Contract

Implementation Specific

Resource AdapterResource Adapter

Transaction
Manager

ConnectionManager

ConnectionEventListener

LocalTransaction

XAResource

ManagedConnection

8.3.1. Interface: ManagedConnection

The jakarta.resource.spi.Managed Connection instance represents a physical connection to an EIS and
acts as a factory for connection handles.

The following code extract shows the methods on the ManagedConnection interface that are defined
specifically for the transaction management contract:

public interface jakarta.resource.spi.ManagedConnection {

 public XAResource getXAResource() throws ResourceException;

 public LocalTransaction getLocalTransaction()
 throws ResourceException;
 ...

}

A Managed Connection instance provides access to a pair of interfaces:

8.3. Transaction Management Contract

Jakarta Connectors 83

javax.transaction.xa.XAResource and jakarta.resource.spi.LocalTransaction .

Depending on the transaction support level of a resource adapter, these methods should raise
appropriate exceptions. For example, if the transaction support level for a resource adapter is
NoTransaction , an invocation of getXAResource method should throw a ResourceException . Refer to
Exceptions for details on the exception hierarchy.

The following figure illustrates this concept:

ManagedConnection Interface for Transaction Management

Resource Adapter

Application Server

Transaction
Manager

LocalTransaction

Managed
Connection

Resource Adapter

getXAResource
getLocalTransaction

XAResource

Enterprise Information System (EIS)

create
new
instance

EIS specific

create
new
instance

The transaction manager uses the XAResource interface to associate and dissociate a transaction with
the underlying EIS resource manager instance and to perform a two-phase commit protocol. The
transaction manager does not directly use the ManagedConnection interface. The next section
describes the XAResource interface in more detail.

The application server uses the LocalTransaction interface to manage local transactions.

8.3.2. Interface: XAResource

The javax.transaction.xa.XAResource interface is a Java mapping of the industry standard XA interface
based on X/Open CAE specification (see X/Open CAE Specification — Distributed Transaction Processing:
the XA Specification, X/Open document).

8.3. Transaction Management Contract

84 Jakarta Connectors

The following code extract shows the interface specification for the XAResource interface. For more
details and API documentation, refer to the Jakarta Transaction (see Jakarta™ Transaction
Specification]) and XA (see <<a9729, X/Open CAE Specification — Distributed Transaction Processing:
the XA Specification, X/Open document) specifications:

public interface
javax.transaction.xa.XAResource {

 public void commit(Xid xid, boolean onePhase) throws XAException;

 public void end(Xid xid, int flags) throws XAException;

 public void forget(Xid xid) throws XAException;

 public int prepare(Xid xid) throws XAException;

 public Xid[] recover(int flag) throws XAException;

 public void rollback(Xid xid) throws XAException;

 public void start(Xid xid, int flags) throws XAException;

}

8.3.2.1. Implementation

A resource adapter for an EIS resource manager implements the XAResource interface. This interface
enables the resource manager to participate in transactions that are controlled and coordinated by an
external transaction manager. The transaction manager uses the XAResource interface to
communicate transaction association, completion, and recovery to the resource manager.

A resource adapter typically implements the XAResource interface using a low-level library available
for the underlying EIS resource manager. This low-level library either supports a native
implementation of the XA interface or provides a proprietary vendor-specific interface for transaction
management.

A resource adapter is responsible for maintaining a 1-1 relationship between the ManagedConnection
and XAResource instances. Each time a ManagedConnection.getXAResource method is called, the same
XAResource instance has to be returned.

A transaction manager can use any XAResource instance (if it refers to the proper resource manager
instance) to initiate transaction completion. The XAResource instance used during the transaction
completion process need not be the one initially enlisted with the transaction manager for this
transaction.

8.3. Transaction Management Contract

Jakarta Connectors 85

8.3.3. Interface: LocalTransaction

The following code extract shows the jakarta.resource.spi.LocalTransaction interface:

public interface
jakarta.resource.spi.LocalTransaction {

 public void begin() throws ResourceException;

 public void commit() throws ResourceException;

 public void rollback() throws ResourceException;

}

A resource adapter implements the LocalTransaction interface to provide support for local
transactions that are performed on the underlying resource manager. An application server uses the
LocalTransaction interface to manage local transactions for a resource manager.

Interface: LocalTransaction has more details on the local transaction management contract.

8.4. Relationship to Jakarta Transaction and JTS
The Jakarta Transaction (see Jakarta™ Transaction Specification) is a specification of interfaces
between a transaction manager and the other parties involved in a distributed transaction processing
system: application programs, resource managers, and an application server.

The Java™ Transaction Service (JTS) API is a Java binding of the Common Object Request Broker
Architecture (CORBA) Object Transaction Service (OTS) 1.1 specification. JTS provides transaction
interoperability using the standard Internet Inter-ORB Protocol (IIOP) for transaction propagation
between servers. The JTS API is intended for vendors who implement transaction processing
infrastructure for enterprise middleware. For example, an application server vendor can use a JTS
implementation as the underlying transaction manager.

8.4.1. Jakarta Transaction Interfaces

The application server uses the jakarta.transaction.TransactionManager and
jakarta.transaction.Transaction interfaces, specified in the Jakarta Transaction specification, for its
contract with the transaction manager.

The application server uses the jakarta.transaction.TransactionManager interface to control the
transaction boundaries on behalf of the application components that are being managed by the
application server. For example, an Jakarta Enterprise Beans container manages the transaction states
for transactional Jakarta Enterprise Beans components. The Jakarta Enterprise Beans container uses
the TransactionManager interface to demarcate transaction boundaries based on the calling thread’s

8.4. Relationship to Jakarta Transaction and JTS

86 Jakarta Connectors

transaction context.

The application server also uses the jakarta.transaction.Transaction interface to enlist and delist
transactional connections with the transaction manager. This enables the transaction manager to
coordinate transactional work performed by all enlisted resource managers within a transaction.

8.5. Object Diagram
The following figure shows the object instances and their interactions related to transaction
management. Since the transaction management contract builds upon the connection management
contract, the following diagram does not show object interactions that have already been discussed in
Connection Management.

Object Diagram: Transaction Management

8.5. Object Diagram

Jakarta Connectors 87

Connection

Architected Interface

Implementation Specific

Resource Adapter

Application Component

Application Server

Pool Manager

Transaction
Manager

ConnectionManager

ConnectionEventListener

LocalTransaction

Managed
Connection

Instantiation

Resource Adapter

getXAResource

getLocalTransaction

Connection Event notifications

EIS specific

create
new
instance

ResourceAdapter
specific

XAResource

Enterprise Information System (EIS)

create new instance

create
new
instance

EIS specific

8.6. XAResource-based Transaction Contract
This section specifies detailed requirements for a resource manager and a transaction manager for the
XAResource -based transaction management contract. In this section, the following abbreviations are
used: RM (Resource Manager), TM (Transaction Manager), 1PC (one-phase commit protocol), and 2PC
(two-phase commit protocol).

8.6.1. Scenarios Supported

The following table specifies various transaction management scenarios and mentions whether these
scenarios are within the scope of Jakarta Connectors.

Table 1. Table

8.6. XAResource-based Transaction Contract

88 Jakarta Connectors

Description Supported / NotSupported

TM does two-phase commit (2PC) on RMs that
support two-phase commit (as defined in RM’s
requirements for XAResource implementation in
the subsection below)

Examples of RM: Oracle and DB2 installations that
support 2PC in their XAResource implementations.

Supported based on TM’s requirement to be
Jakarta Transaction/JTS and X/Open compliant,
and RM’s support for 2PC in the XAResource
interface.

TM does one-phase commit (1PC) optimization on
the only RM involved in a transaction. RM
supports 2PC in its XAResource implementation
(as defined in RM’s requirements for the
XAResource implementation in the subsection
below).

Example of RM: DB2 installation that supports 2PC
in its XAResource implementation.

Supported based on TM’s requirement to be
Jakarta Transaction/JTS and X/Open compliant,
and RM’s support for the XAResource interface.

Note: This scenario will also work if TM does 2PC
on RM.

TM does one-phase commit optimization on the
only RM involved in a transaction. RM does not
support 2PC but supports 1PC in its XAResource
implementation.

Example of RM: ERP system or mainframe TP
system that does not support 2PC, but implements
1PC in its XAResource implementation as defined
in the RM’s requirements for 1PC.

Supported by requiring that TM must support 1PC
optimization. A successful transaction
coordination of 1PC only RM comes as a result of
required 1PC optimization for a TM.

The rationale behind this requirement is that this
scenario will be an important scenario to support
for Jakarta Connectors.

TM does last-resource commit optimization across
multiple RMs involved in a transaction—RMs that
support 2PC (for example: Oracle and DB2) and a
single RM that supports only 1PC (for example: an
ERP system).

Out of the scope of the Jakarta Connectors
specification

More than one RM that support only 1PC involved
in a transaction with none or multiple 2PC
enabled RMs

Out of the scope of the Jakarta Connectors
specification

8.6.2. Resource Adapter Requirements

Jakarta Connectors does not require that all resource adapters must support Jakarta Transaction
XAResource based transaction contract.

If a resource adapter decides to support an XAResource based contract, then Jakarta Connectors places
certain requirements on a resource adapter and its underlying resource manager (RM).

The following requirements refer to a resource adapter and its resource manager together as a
resource manager (RM). The division of responsibility between a resource adapter and its underlying
resource manager for supporting the transaction contract is implementation-specific and is out of the

8.6. XAResource-based Transaction Contract

Jakarta Connectors 89

scope of Jakarta Connectors.

These requirements assume that a transaction manager ™ supports Jakarta Transaction/XA and JTS
requirements.

The following set of requirements are based on the Jakarta Transaction and XA specifications and
should be read in conjunction with these specifications. These detailed requirements are included in
this document to clearly specify the requirements from the Jakarta Connectors perspective.

8.6.2.1. General

• If an RM supports an XAResource contract, then it must support the one-phase commit protocol by
implementing XAResource.commit when the boolean flag onePhase is set to True . The RM is not
required to implement the two-phase commit protocol support in its XAResource implementation.

• However, if an RM supports the two-phase commit protocol, then the RM must use the XAResource
interface for supporting the two-phase commit protocol.

• An RM is allowed to combine the implementation of 2PC protocol with 1PC optimization by
implementing XAResource.commit (onePhase = True) in addition to the implementation
requirements for 2PC.

8.6.2.2. One-phase Commit

• An RM should allow XAResource.commit (onePhase = True) even if it has not received
XAResource.prepare for the transaction branch.

• If the RM fails to commit a transaction during a 1PC commit, then the RM should throw one of the
XA_RB* exceptions. In the exception case, an RM should roll back the transaction branch’s work
and release all held RM resources.

• The RM is responsible for deciding the outcome of a transaction branch on an XA Resource.commit
method. The RM can discard knowledge of the transaction branch once it returns from the commit
call.

• The RM is not required to maintain knowledge of transaction branches to support failure recovery
for the TM.

• If an XAResource.prepare method is called on an RM that supports only one-phase commit, then the
RM should throw an XAException with XAER_PROTO or XA_RB* flag .

• The RM should return an empty list of XIDs for XAResource.recover , because the RM is not
required to maintain stable knowledge about transaction branches.

8.6.2.3. Two-phase Commit

• If the RM supports 2PC, then its implementation of 2PC must be compliant with the 2PC protocol
definition with presumed rollback as specified in the OSI TP (Transaction Protocol defined by ISO
(ISO92)) specification.

• The RM must implement the XAResource.prepare method and must be able to report whether it can

8.6. XAResource-based Transaction Contract

90 Jakarta Connectors

guarantee its ability to commit the transaction branch. If the RM reports that it can, the RM must
hold and record in a stable way all the resources necessary to commit the branch. It must hold all
these resources until the TM directs it to commit or rollback the branch.

• An RM that reports a heuristic completion to the TM must not discard its knowledge of the
transaction branch. The RM should discard its knowledge of the branch only when the TM calls
XAResource.forget . The RM must notify the TM of all heuristic decisions.

• On the TM’s XAResource.commit and XAResource.rollback calls, the RM is allowed to report through
an XAException that it has heuristically completed the transaction branch. This feature is optional.

A TM supporting the OSI TP specification uses the one-phase commit optimization by default to
manage an RM that is the only resource involved in the transaction. The mechanism to identify to the
TM a particular RM that only supports 1PC is beyond the scope of this specification.

8.6.2.4. Transaction Association and Calling Protocol

• The RM XAResource implementation must support XAResource.start and XAResource.end for
association and disassociation of a transaction, as represented by, unique XID, with recoverable
units of work being done on the RM.

• The RM must ensure that the TM invokes XAResource calls in the legal sequence, and must return
XAER_PROTO or another suitable error if the caller TM violates the state tables, as defined in
Chapter 6 of the XA specification (see Jakarta™ Transaction Specification, Version 2.0).

8.6.2.5. Unilateral Roll-back

• The RM need not wait for global transaction completion to report an error. The RM can return a
rollback-only flag as a result of any XAResource.start or XAResource.end call. This can happen
anytime except after a successful prepare .

• The RM is allowed to unilaterally rollback and forget a transaction branch any time before it
prepares it.

8.6.2.6. Read-Only Optimization

Support for read-only optimization is optional for RM implementation. An RM can respond to the TM’s
request to prepare a transaction by asserting that the RM was not asked to update shared resources in
this transaction branch. This response concludes the RM’s involvement in the transaction, and the RM
can release all resources and discard its knowledge of the transaction.

8.6.2.7. XID Support

• The RM must accept XIDs from TMs. The RM is responsible for using the XID to maintain an
association between a transaction branch and recoverable units of work done by the application
programs.

• The RM must not alter in any way the bits associated in the data portion of an XID. For example, if
an RM remotely communicates an XID, it must ensure that the data bits of the XID are not altered

8.6. XAResource-based Transaction Contract

Jakarta Connectors 91

by the communication process.

8.6.2.8. Support for Failure Recovery

• A full Jakarta Transaction compliant XAResource implementation that supports 2PC must maintain
the status of all transaction branches in which it is involved. After responding affirmatively to the
TM prepare call, an RM should not erase its knowledge of the branch or of the work done in
support of the branch until it successfully receives a TM’s invocation to commit or rollback the
branch.

• If an RM that supports 2PC heuristically completes a branch, it should not forget a branch until the
TM explicitly tells it to by calling XAResource.forget .

• On the TM’s XAResource.recover call, an RM that supports 2PC must return a list of all transaction
branches that it has prepared or has heuristically completed.

• When an RM recovers from its own failure, it must recover prepared and heuristically completed
branches. It should discard its knowledge of all other branches.

8.6.3. Transaction Manager Requirements

The following section specifies requirements of a TM. This section assumes that the TM is compliant
with Jakarta Transaction/JTS and X/Open (see X/Open CAE Specification — Distributed Transaction
Processing: the XA Specification, X/Open document) specifications.

8.6.3.1. Interfaces

The TM must use the XAResource interface supported by an RM for transaction coordination and
recovery. The TM must be written to handle consistently any information or status that an RM can
legally return. The TM must assume that it can support RMs that have different capabilities as allowed
by the RM requirements specification section, for instance RMs that make heuristic decisions and RMs
that use the read-only optimization. [Requirement derived from Section 7.3, XA specification]

8.6.3.2. XID Requirements

The TM must generate XIDs conforming to the structure defined in section 4.2 on page 19 of the XA
specification (see Jakarta™ Transaction Specification, Version 2.0). The generated XIDs must be globally
unique and must adequately describe a transaction branch.

8.6.3.3. One-phase Commit Optimization

• The TM must support one-phase commit protocol optimization. The TM uses the 1PC optimization
when the TM knows there is only one RM registered in a transaction that is making changes to
shared resources. In this optimization, the TM makes its phase 2 commit request to that RM without
having made a phase 1 prepare request.

• The TM is not required to record such transactions in a stable manner, and in some failure cases,
the TM may not record the outcome of the transaction completion.

8.6. XAResource-based Transaction Contract

92 Jakarta Connectors

8.6.3.4. Implementation Options

The support of last-resource optimization is an implementation-specific option for a TM. A detailed
specification of TM and RM requirements for this optimization is outside the scope of Jakarta
Connectors.

8.6.4. Scenario: Transactional Setup for a ManagedConnection

The following object interactions are involved in the scenario shown in OID: Transactional Setup For
Newly Created ManagedConnection Instances.

1. The runtime scenario begins with a client method invocation on an Jakarta Enterprise Beans
instance. This invocation has a transaction context, represented by a unique transaction Xid ,
associated with it if the invocation came from a client that was already participating in the
transaction. Alternatively, the Jakarta Enterprise Beans container starts a transaction before
dispatching the client request to the Jakarta Enterprise Beans method.

2. The Jakarta Enterprise Beans instance calls the getConnection method on the ConnectionFactory
instance. The resource adapter delegates the connection request to the application server using the
connection management contract. OID: Connection Pool Management with Connection Matching
explains this step.

3. The application server gains control and handles the connection allocation request.

4. To handle the connection allocation request, the application server gets a Managed-Connection
instance either from the connection pool or creates a new Managed-Connection instance. OID:
Connection Pool Management with Connection Matching describes this step.

5. The application server registers itself as a ConnectionEventListener with the ManagedConnection
instance. This enables the application server to receive notifications for various events on this
connection instance. The application server uses these event notifications to manage connection
pooling and transactions.

6. Based on the current transaction context associated with the connection-requesting thread and the
Jakarta Enterprise Beans instance, the application server decides whether or not the transaction
manager will participate in the coordination of the currently active transaction.

7. If the application server decides that the transaction manager will manage the current transaction,
it conducts the following transactional setup on the ManagedConnection instance:

8. The application server invokes the ManagedConnection.getXAResource method to get the
XAResource instance associated with the ManagedConnection instance.

9. The application server enlists the XAResource instance with the transaction manager for the
current transaction context. The application server uses the Transaction . enlistResource method
(specified in the Jakarta Transaction specification) to enlist the XAResource instance with the
transaction manager. This enlistment informs the transaction manager about the resource
manager instance participating in the transaction.

10. The transaction manager invokes XAResource.start to associate the current transaction with the
underlying resource manager instance. This enables the transaction manager to inform the

8.6. XAResource-based Transaction Contract

Jakarta Connectors 93

participating resource manager that all units of work performed by the application on the
underlying ManagedConnection instance should now be associated with this transaction.

11. The application server calls the ManagedConnection.getConnection method to get a new
application-level connection handle. The underlying physical connection is represented by a
ManagedConnection instance.

12. The application server returns the connection handle to the resource adapter. The resource
adapter then passes the connection handle to the application component that had initiated the
connection request.

OID: Transactional Setup For Newly Created ManagedConnection Instances

Application
Component

getConnection

jakarta.resource.xxi.
ConnectionFactory

Application
Server

ConnectionManager.allocateConnection

getConnection(Subject, ConnectionRequestInfo)

Resource Adapter Resource Adapter

Transaction
Manager

ManagedConnectionFactory
XAResources
ManagedConnection

return jakarta.resource.cci.Connection

return jakarta.resource.cci.Connection

Application server gets a
ManagedConnection instance from the
connection pool or creates a new instance.

Case: TM coordinated Transaction

getXAResource

XAResource?????????????

XAResource?????????????

8.6. XAResource-based Transaction Contract

94 Jakarta Connectors

8.6.5. Scenario: Connection Close and Jakarta Transaction Transactional
Cleanup

For each ManagedConnection instance in the pool, the application server registers a
ConnectionEventListener instance to receive specific events on the connection. The connection event
callback mechanism enables the application server to manage connection pooling and transactions.

Object Diagram: Connection Management Architecture describes the following steps when an
application component closes a connection:

1. The application component releases a Connection instance by calling the close method. The
Connection instance delegates the connection close request to its associated ManagedConnection
instance. A ManagedConnection must not alter any state on the physical connection while handling
a delegated connection close request.

2. The ManagedConnection instance notifies all its registered listeners of the application’s connection
close request using the ConnectionEventListener . connectionClosed method. It passes a
ConnectionEvent instance with the event type set to CONNECTION_CLOSED.

3. On receiving the connection close notification, the application server performs transactional
cleanup for the ManagedConnection instance. If the ManagedConnection instance was participating
in a transaction manager-enlisted Jakarta Transactions transaction, the application server takes the
following steps:

4. The application server dissociates the XAResource instance, corresponding to the
ManagedConnection instance, from the transaction manager using the method
Transaction.delistResource .

5. The transaction manager calls XAResource.end(Xid,flag) to inform the resource manager that any
further operations on the ManagedConnection instance are no longer associated with the
transaction, represented by the Xid passed in XAResource.end call. This method invocation
dissociates the transaction from the resource manager instance.

6. After the transaction completes, the application server initiates a cleanup of the physical
connection instance by calling ManagedConnection.cleanup method. After calling the method
cleanup on the ManagedConnection instance, the application server returns the ManagedConnection
instance to the connection pool.

7. The application server can now use the ManagedConnection instance to handle future connection
allocation requests from either the same or another component instance.

OID: Connection Close and Transactional Cleanup

8.6. XAResource-based Transaction Contract

Jakarta Connectors 95

Application
Component

jakarta.resource.cci.
Connection

Application
Server

Internal: Resource Adapter implementation specific

ManagedConnection.cleanup

Resource Adapter Resource Adapter

Transaction
Manager

ManagedConnectionFactory
XAResources
ManagedConnection

Case: TM coordinated Transaction

???

???

ManagedConnection
notifies all registered
ConnectionEvent-Listener

Application Server returns
ManagedConnection instance
to the connection pool

connectionClosed(ConnectionEvent: CONNECTION_CLOSED)

8.6.6. OID: Transaction Completion

The scenario in the following figure illustrates the steps taken by the transaction manager to commit a
transaction across multiple resource manager instances. These steps are executed after the transaction
manager calls the XAResource.end method for each enlisted resource manager instance.

The following steps happen in this scenario:

1. The transaction manager calls XAResource.prepare to begin the first phase of the transaction
completion protocol. The transaction manager can call any XAResource instance associated with
the proper underlying resource manager instance, and is not restricted to the XAResource instance

8.6. XAResource-based Transaction Contract

96 Jakarta Connectors

initially involved with the transaction. The application server can assume that all XAResource
instances produced by a ManagedConnectionFactory instance refer to the same underlying
resource manager instance.

2. Assuming all resource manager instances involved in the transaction agree to commit, the
transaction manager calls XAResource.commit to commit the transaction. Otherwise, the
transaction manager calls XAResource.rollback .

OID: Transaction Completion

XAResource
Transaction
Manager XAResource

XAResource prepare

Resource Manager Instance Resource Manager Instance

Pre-condition: XAResource.end method called by TMon each
participating resource manager instance

Transaction manager initiates transaction completion
process on XAResource instances – one for each
participating resource manager instance

XAResource prepare

Case: All resource manager instances vote to commit

XAResource commit

XAResource commit

8.7. Local Transaction Management Contract
The main motivation for defining a local transaction contract between an application server and a
resource manager is to enable an application server to manage resource manager local transactions,
hereafter called local transactions.

The local transaction management contract has two parts:

• The application server uses the jakarta.resource.spi.LocalTransaction interface to manage local

8.7. Local Transaction Management Contract

Jakarta Connectors 97

transactions transparently to an application component. The scenarios in Transaction Scenarios
illustrate this part of the local transaction management contract.

• The other part of the contract relates to notifications for local transaction-related events. If the
resource adapter supports a local transaction demarcation API, for example,
jakarta.resource.cci.LocalTransaction for the Common Client Interface, the resource adapter is
required to notify the application server of the events (transaction begin, commit, and rollback)
related to the local transaction. An application server uses this part of the contract, as explained in
Scenarios: Local Transaction Management.

8.7.1. Interface: LocalTransaction

The jakarta.resource.spi.LocalTransaction interface defines the contract between an application server
and resource adapter for local transaction management. This interface is defined in Interface:
LocalTransaction.

8.7.2. Interface: ConnectionEventListener

An application server implements the jakarta.resource.spi.ConnectionEventListener interface. It
registers this listener instance with the ManagedConnection instance by using
ManagedConnection.addConnectionEventListener method.

The following code extract specifies the ConnectionEventListener interface related to the local
transaction management contract:

public interface
jakarta.resource.spi.ConnectionEventListener {

 // Local Transaction Management related events

 public void localTransactionStarted(ConnectionEvent event);

 public void localTransactionCommitted(ConnectionEvent event);

 public void localTransactionRolledback(ConnectionEvent event);
 ...

}

The ManagedConnection instance notifies its registered listeners for transaction related events by
calling the methods localTransactionStarted, localTransactionCommitted, and
localTransactionRolledback.

The ConnectionEvent class defines the following types of event notifications related to the local
transaction management contract:

8.7. Local Transaction Management Contract

98 Jakarta Connectors

• LOCAL_TRANSACTION_STARTED - a local transaction was started using the ManagedConnection
instance

• LOCAL_TRANSACTION_COMMITTED - a local transaction was committed using the
ManagedConnection instance

• LOCAL_TRANSACTION_ROLLEDBACK - a local transaction was rolled back using the
ManagedConnection instance

8.7.2.1. Requirements

The connector specification requires an application server to implement the ConnectionEventListener
interface and handle local transaction related events. This enables the application server to achieve
local transaction cleanup and transaction serial interleaving, as illustrated in Scenarios: Local
Transaction Management. The connector specification provides the necessary mechanisms for
transaction management. Whether these mechanisms are used in an application server depends on
the application server’s implementation of the transaction requirements of the Jakarta EE component
specifications.

The resource adapter must send local transaction events through the ConnectionEventListener
interface when an application component starts a local transaction using the application level
transaction demarcation interface. An exception to this requirement is when the transaction
demarcation API supports the concept of an implicit begin of a local transaction. The JDBC API is an
example where there is no explicit local transaction begin method.

However, resource adapters that allow implicit begin of a local transaction, for instance, JDBC drivers,
are strongly encouraged to provide support for local transaction events. This may be required in a
future release of the specification.

The resource adapter must not send local transaction events for local transactions managed by the
container.

8.8. Scenarios: Local Transaction Management
This section illustrates how an application server uses the event notifications from the resource
adapter to manage local transactions and to restrict illegal transaction demarcations by an application
component.

In these scenarios, an application component starts a local transaction using an application-level
transaction demarcation interface, for example, jakarta.resource.cci.LocalTransaction as defined in the
CCI, supported by the resource adapter. The resource adapter, in its implementation of the transaction
demarcation interface, sends event notifications related to the local transaction, namely, local
transaction begin, commit, and rollback. The application server is notified of these local transaction-
related events through the ConnectionEventListener mechanism.

8.8. Scenarios: Local Transaction Management

Jakarta Connectors 99

8.8.1. Local Transaction Cleanup

A stateless session bean with bean-managed transaction demarcation starts a local transaction in a
method invocation. It returns from the business method without completing the local transaction.

The application server implements the ConnectionEventListener interface. The resource adapter
notifies the application server with a LOCAL_TRANSACTION_STARTED event when the local
transaction is started by the session bean instance.

When the session bean instance returns from the method invocation without completing the local
transaction, the application server detects this as an incomplete local transaction because it has not
received any matching LOCAL_TRANSACTION_COMMITTED or LOCAL_TRANSACTION_ROLLEDBACK
events from the resource adapter.

On detecting an incomplete local transaction, the application server aborts the transaction, terminates
the stateless session bean instance, and throws an exception to the client.

8.8.2. Component Termination

The application server terminates a component instance, for example, because of some system
exception in a method invocation.

On termination of a component instance, the application server cleans up all ManagedConnection
instances being used by this component instance. The cleanup of a connection involves resetting all
local transaction and client-specific state. This state is maintained internal to the ManagedConnection
instance.

The application server initiates a cleanup of a ManagedConnection instance by calling
ManagedConnection.cleanup . After cleanup, the application server returns this connection to the pool
to serve future allocation requests.

8.8.3. Transaction Interleaving

The application server uses the connection event listener mechanism, specified through the interfaces
ConnectionEventListener and ConnectionEvent , to flag illegal cases of transaction demarcation. The
application server implements the ConnectionEventListener interface to support this scenario.

The following subsection illustrates a scenario for component-managed transaction demarcation.

8.8.4. Scenario

A Jakarta Enterprise Beans component with bean managed transaction demarcation starts a local
transaction using the application-level transaction demarcation interface, for example,
jakarta.resource.cci.LocalTransaction as defined in the CCI, supported by the resource adapter. It then
calls the UserTransaction.begin method to start a Jakarta Transactions transaction before it has
completed the local transaction.

8.8. Scenarios: Local Transaction Management

100 Jakarta Connectors

In this scenario, the Jakarta Enterprise Beans component has started but not completed the local
transaction. When the application component attempts to start a Jakarta Transactions transaction by
invoking the UserTransaction.begin method, the application server detects it as a transaction
demarcation error and throws an exception from the UserTransaction.begin method.

When the application component starts the local transaction, the resource adapter notifies the
application server of the LOCAL_TRANSACTION_STARTED connection event. When the component
invokes the UserTransaction.begin method, the application server detects an error condition, because it
has not received the matching LOCAL_TRANSACTION_COMMITTED or
LOCAL_TRANSACTION_ROLLEDBACK event from the resource adapter for the currently active local
transaction.

8.9. Connection Sharing
Sharing connections typically results in efficient use of resources and better performance. An
application can indicate the ability to share its various resource references, or connections, in its
deployment descriptor. A connection can be marked either as shareable or unshareable. The default is
shareable.

When multiple shareable connections x and y acquired by an application are used within a global
transaction scope (for instance, container-managed or bean-managed), the application server must
provide a single shared connection behavior under the following conditions:

• x and y are collocated in a single Java Virtual Machine process address space

• x and y are using a single transactional resource manager

• x and y have identical properties

• x and y are marked as shareable

• x and y are used within a container-managed or bean-managed transaction scope

The ability to share is unspecified for connections marked shareable that are used outside a global
transaction scope. Sharing is not supported for connections obtained from a non-transactional _
resource adapter, that is, transaction support level is _NoTransaction .

The intent of the connection sharing requirement is to avoid resource manager lock contentions and
read isolation problems, and thus ensure portable behavior for transactional applications. The
application server may implement the connection sharing semantics either using a single shared
connection or through other mechanisms4.

If a connection is marked as shareable , it must be transparent to the application whether a single
shared connection is used or not. The application must not make assumptions about a single shared
connection being used, and hence must use the connection in a shareable manner.

However, a Jakarta EE application component that intends to use a connection in an unshareable way
must leave a deployment hint to that effect, which will prevent the connection from being shared by

8.9. Connection Sharing

Jakarta Connectors 101

#a10025

the container. Examples of unshareable usage of a connection include changing the security attributes,
isolation levels, character settings, and localization configuration.

Containers must not attempt to share connections that are marked unshareable .

Jakarta EE application components may use the optional deployment descriptor element res-sharing-
scope or the shareable annotation element of Resource annotation defined in the Common Annotations
specification (see Jakarta™ Annotations 2.1), to indicate whether a connection to a resource manager is
shareable or unshareable. Containers must assume connections to be shareable if no deployment hint
is provided. Refer to the Enterprise Beans specification (see Jakarta™ Enterprise Beans Specification,
Version 4.0) and the servlet specification (see Jakarta™ Servlet Specification, Version 6.0) for a
description of the deployment descriptor element.

Jakarta EE application components may cache connection objects and reuse them across multiple
transactions. Containers that provide connection sharing should transparently switch such cached
connection objects, at dispatch time, to point to an appropriate shared connection with the correct
transaction scope. Refer to Connection Association for more details on connection association.

Refer to Transaction Scenarios for a special case of connection sharing as applied to resource adapters
that support local transactions.

8.9.1. Sharing Violation Detection

A resource adapter may detect sharing violations. Any operation on a shareable connection which
violates shareability is a sharing violation, for example, mutable operations like changing connection
attributes, security settings, isolation levels, etc.

When such a mutable operation is performed on a ManagedConnection , it may throw a
SharingViolationException when both the following conditions are true:

• The number of connection handle objects associated with the ManagedConnection is more than
one.

• The ManagedConnection is associated with a transaction, either local or XA.

Further, a resource adapter may reject creation of a connection handle, by throwing a
SharingViolationException, if the connection is already in a unshareable condition. Any mutable
operation performed on a connection makes it unshareable.

8.9.1.1. Scenario 1

Application component A gets a shareable connection to a resource and invokes component B which
also gets a shareable connection to the same resource. Both A and B are involved in a common
transaction scope, either local or XA. The application server shares the connections acquired by both A
and B. From this point onwards, any attempt to change a mutable property, such as isolation level, by
either component, results in a SharingViolationException being thrown by the resource adapter to the
offending component.

8.9. Connection Sharing

102 Jakarta Connectors

8.9.1.2. Scenario 2

Application component A gets a shareable connection to a resource. A is involved in a transaction,
either local or XA. A then modifies one of the mutable properties of the resource, such as isolation
level. This makes the connection unshareable. The resource adapter does not throw an exception since
only one connection handle is present.

Later, A invokes B under the same transaction scope. B also attempts to acquire a shareable connection
to the same resource. The application server chooses to share the connection that is already in use by
A. At this point, the resource adapter throws a SharingViolationException to B since sharing had been
attempted on an unshareable connection. The resource adapter does this by saving that the connection
had been made unshareable earlier.

The resource adapter might throw a SharingViolationException to B, even if A had closed its
connection handle before it invoked B, since the connection acquired by A had become unshareable.

8.10. Transaction Scenarios
This section specifies requirements for various transaction scenarios.

8.10.1. Requirements

The Jakarta EE platform specification (see Jakarta™ EE Platform Specification Version 10) identifies the
following as transactional resources:

• JDBC connections

• Jakarta Messaging sessions

• Resource adapter connections at the XATransaction level

The Jakarta EE platform specification requires that Jakarta EE product providers must transparently
support transactions that span multiple components and transactional resources. These requirements
must be met regardless of whether a Jakarta EE product is implemented as a single process, multiple
processes on the same node, or multiple processes on multiple nodes.

In addition, Jakarta EE product providers must support transactional applications that are comprised
of servlets or JSP pages accessing multiple enterprise beans within a single transaction. Each
component may also acquire one or more connections to access transactional resources. Jakarta EE
product providers must support scenarios where multiple components in an application access
transactional resources as part of a single transaction.

The Jakarta EE platform specification requires Jakarta EE platform products to support resource
adapters at the XATransaction level as a transactional resource. It must be possible to access such
resource adapters from multiple application components within a single transaction.

Jakarta Connectors has an additional requirement that is applicable to resource adapters that support
local transactions. Note that both LocalTransaction and XATransaction resource adapters support local

8.10. Transaction Scenarios

Jakarta Connectors 103

transactions, and they are both referred to as “local transaction capable” resource adapters in the
section below.

Application server must use a single local transaction in a scenario where the following conditions
hold:

• Multiple components are involved in a global transaction scope.

• All components use a single resource adapter that is local transaction capable. There is no other
XAResource or local transaction capable resource adapter involved in the global transaction scope.

• All components get connections to the same EIS instance.

• Components have not specified the res-sharing-scope flag as unshareable . This condition accounts
for potential sharing of connections in terms of security context, client-specific connection
parameters, and EIS specific configuration.

Note that this requirement does not apply to a local transaction that is started by a component using an
application level transaction demarcation API that is specific to a resource adapter.

Application server determines this scenario in an implementation-specific manner.

Application server may use connection sharing mechanisms to implement this local transaction
requirement. Please refer to Scenario: Local Transaction for an illustration.

Application servers must support transaction scenarios where access to a non-transactional resource is
combined with access to one or more transactional resources within a single transaction. For example,
in a container-managed transaction, an Enterprise Bean accesses JDBC and Jakarta Messaging
resources, and also accesses a non-transactional EIS using its resource adapter. If there is a failure
during the above scenario, transactional resource managers operating under the transaction should
rollback, but the recovery of the non-transactional resource is unspecified in this specification.

The application server is not required to support any additional transaction scenarios beyond the
above set of scenarios. A Jakarta EE application should not depend on an application server’s support
for any optional transaction scenarios. The application should also not depend on whether or not the
container detects that a specific optional transaction scenario is illegal. Any errors in optional
transaction scenarios are considered application programming errors.

8.10.2. Illustrative Scenarios

The following are examples of optional transaction scenarios. The following section also describes, in a
non-prescriptive manner, issues in support for these scenarios by an application server:

• Within a transaction, a Jakarta Enterprise Beans component acquires connections to two different
resource managers X and Y using their respective non-XA local transaction capable resource
adapters. The container cannot manage a local transaction across two different resource managers.
Since resource adapters and underlying resource managers are not XA capable, the container
cannot use XA in this case. However, a Jakarta EE application should not depend on the container

8.10. Transaction Scenarios

104 Jakarta Connectors

to detect this illegal scenario.

• Within a transaction, Jakarta Enterprise Beans component A acquires a connection to a resource
manager X using a non-XA local transaction capable resource adapter. Next, Enterprise Beans
component B under the same transaction context acquires a connection to a different resource
manager Y using a non-XA local transaction capable resource adapter The container cannot
manage a local transaction across two different resource managers. Since resource adapters are
not XA capable, the container cannot use XA in this case. However, a Jakarta EE application should
not depend on the container to detect this illegal scenario.

• Within a transaction, Jakarta Enterprise Beans component A acquires a connection to a resource
manager X using a non-XA local transaction capable resource adapter. Next, the same Enterprise
Bean (or Enterprise Bean B) under the same transaction context acquires a connection to a
different resource manager Y using an XA capable resource adapter This scenario may be
supported if the transaction manager supports last resource commit optimization. Since this
optimization feature is optional and not specified in the Jakarta Connectors, a Jakarta EE
application should not depend on support for this scenario.

• Within a transaction, Enterprise Bean A acquires a connection to a resource manager X using an
XA capable resource adapter. Next, the same Enterprise Beans component (or another Enterprise
Beans component B) under the same transaction context acquires a connection to a different
resource manager Y using a non-XA local transaction capable resource adapter This scenario may
be supported if the transaction manager supports last resource commit optimization. Since this
optimization feature is optional and not specified in Jakarta Connectors, a Jakarta EE application
should not depend on support for this scenario.

8.10.3. Scenario: Local Transaction

This scenario illustrates the use of the connection sharing mechanism to implement requirement for a
local transaction to span components.

In this scenario, two Jakarta Enterprise Beans components get connections to the same EIS resource
manager within a single transaction. Both Jakarta Enterprise Beans components use the same local
transaction capable resource adapter.

A local transaction is associated with a single physical connection. Both Jakarta Enterprise Beans
components in this scenario share the same physical connection under the local transaction scope. The
container has the responsibility of managing connection sharing as illustrated in this scenario.

To share a physical connection in the local transaction scope, the container assumes the connection to
be shareable unless it has been marked unshareable in the res-sharing-scope . The container uses
connection sharing in a manner that is transparent to application components.

In the following figure, the stateful session beans A and B have container-managed transaction
demarcation with the transaction attribute set to Required . Both A and B access a single EIS resource
manager as part of their business logic.

Scenario to illustrate Local Transaction Management

8.10. Transaction Scenarios

Jakarta Connectors 105

Application Server

client
invocation

JEB A

Local Transaction
Contract

Container

JEB B

The following steps happen in this scenario:

1. The client invokes a method on session bean A with no transaction context. In its method
implementation, the Enterprise Bean A acquires a connection to the EIS instance.

2. When acquiring the connection, the container starts a local transaction by invoking the begin
method of the jakarta.resource.spi.LocalTransaction instance. The local transaction is tied to the
ManagedConnection instance that is associated with the connection handle acquired by the
component in the previous step.

3. After the local transaction starts, any recoverable unit of work performed by A on the EIS resource
manager using the acquired connection is automatically included under the local transaction
context.

4. Session bean A now invokes a method on the session bean B instance. In this scenario, A does not
close the connection handle before invoking the method on B.

A container should ensure that the connection sharing mechanism is equally
applicable if A were to close the connection handle before calling the B instance.

1. In the invoked method, B makes a request to acquire a connection to the same EIS resource
manager.

2. The container returns a connection handle using the same ManagedConnection instance that was
used for handling the connection request from A.

3. The container retains the association of the ManagedConnection instance with the local transaction
context across the method invocation from A to B. This means that any unit of work that B will
perform on the EIS resource manager using its acquired connection handle will be automatically
included as part of the current local transaction. The connection state, for example, any open
cursors, can also be retained across method invocations when the physical connection is shared.

4. Before the method invocation on B completes, B calls the close method on the connection handle.
The container should not initiate any cleanup of the physical connection at this time since there is
still an uncompleted local transaction associated with the shared physical connection. In this
scenario, the cleanup of a physical connection refers to the dissociation of the local transaction
context from the ManagedConnection instance. In the absence of support for Lazy Connection
Association (see Lazy Connection Association Optimization) from the resource adapter and the
application server, the component B should not cache the connection handle. See Guidelines for a

8.10. Transaction Scenarios

106 Jakarta Connectors

suggested scheme of obtaining and closing connection handles. A component caching a connection
handle in this scenario is not portably supported.

5. When A regains control, A can use the same connection handle, provided A had not called the close
method on the connection handle, to access EIS resources. All recoverable units of work on the EIS
resource manager will be included in the existing local transaction context.

If A closes the connection handle before calling B, and then reacquires the connection
handle when regaining control, the container should ensure that the local transaction
context stays associated with the shared connection.

1. A eventually calls the close method on its connection handle. The container gets a connection close
event notification based on the scenario described in Scenario: Connection Event Notifications and
Connection Close.

2. Since there is an incomplete local transaction associated with the underlying physical connection,
the container does not initiate a cleanup of the ManagedConnection on receiving the connection
close event notification. The container must still go through the completion process for the local
transaction.

3. When the business method invocation on A completes successfully without any application error,
the container starts the completion protocol for the local transaction. The container calls the
LocalTransaction.commit method to commit the transaction.

4. After the local transaction completes, the container initiates a cleanup of the physical connection
instance by calling the ManagedConnection.cleanup method.

The container should initiate cleanup of the ManagedConnection instance in the case
where A does not call the close method on the connection handle before returning.
The container identifies the need for cleaning up the ManagedConnection instance
based on the scope of connection sharing.

1. On the cleanup method invocation, the ManagedConnection instance does a cleanup of its local
transaction related state and resets itself to a default state.

2. The container returns the physical connection to the pool for handling subsequent connection
requests.

Connection Sharing Across Component Instances

8.10. Transaction Scenarios

Jakarta Connectors 107

Method Invocation

ManagedConnection.getConnection

ManageConnection

Pre-condition: Container decides to perform connection sharing and local
transaction management

Application Server
Component Group that allows
Local Transaction Management

This container dispatches clients-initiated
business method to JEB A

Connection Request

LocalTransaction.begin

??

Connection Request

ManagedConnection.getConnection

??

close

close

Business methods without any application error

LocalTransaction.commit

LocalTransaction Completed

ManagedConnection.cleanup

Connection cleanup done and
default state is restored

JEB AContainer LocalTransaction jakarta.resource.cci.ConnectionJEB B

8.11. Connection Association
According to the connection management contract, a connection handle is created from a
ManagedConnection instance using the ManagedConnection . getConnection method. A connection
handle maintains an association with the underlying ManagedConnection instance.

8.11. Connection Association

108 Jakarta Connectors

8.11.1. Scenario

In the scenario shown in the following figure, session bean A acts as a client of entity bean C and
makes invocations on methods of entity bean C. Another session bean B also acts as a client of entity
bean C. The C is an entity bean that may be shared across multiple clients.

A, B and C get connections to the same EIS. These Jakarta Enterprise Beans components have marked
res-sharing-scope for these connections to be shareable .

A and C define a connection sharing scope. Both A and C share the same physical connection across a
transaction that spans methods on A and C. Similarly, B and C define another connection sharing scope.
B and C also share the same physical connection across a transaction that spans two components.

Connection Sharing Scenario

client
invocation JEB A

Container

JEB B

JEB C

client
invocation

<Session Bean>

<Session Bean>

<Session Bean>

In this scenario, entity bean C obtains an application-level connection handle using the method
getConnection on the ConnectionFactory during its creation. Entity bean C holds the connection handle
during its lifetime.

A gets a connection handle and invokes a method on C. At a different time, B gets a connection handle
and invokes a method on C.

In both cases, depending on the connection sharing scope, defined in terms of the shared physical
ManagedConnection instance, in which C is called, the container supports a mechanism to associate the
connection handle held by C as part of its state with the current ManagedConnection instance.

State Diagram of Application-Level Connection Handle

associated with a
Active

Connection.close

ManagedConnection

no longer associated with a
Closed

ManagedConnection

ManagedConnection.
getConnection

ManagedConnection.
associateConnection

8.11. Connection Association

Jakarta Connectors 109

8.11.2. Connection Association

The interface ManagedConnection defines method associateConnection as follows:

public interface
jakarta.resource.spi.ManagedConnection {

 public void associateConnection(Object connection) throws ResourceException;

 ...

}

The container typically uses the associateConnection method to change the association of an
application-level connection handle with a ManagedConnection instance. The container finds the right
ManagedConnection instance, depending on the connection sharing scope, and calls the
associateConnection method. To achieve this, the container is required to keep track of connection
handles acquired by component instances and ManagedConnection instances using an
implementation-specific mechanism. In order to set a Connection Handle as the active connection
handle (see Connection Sharing and Multiple Connection Handles), the container may also use the
associateConnection method to set the same ManagedConnection associated with the Connection
handle.

The associateConnection method implementation for a ManagedConnection should dissociate the
connection handle passed as a parameter from its currently associated ManagedConnection and
associate the new connection handle with itself.

Note that the switching of connection associations must happen only for connection handles and
ManagedConnection instances that correspond to the same ManagedConnectionFactory instance. The
container should enforce this restriction in an implementation-specific manner. If a container cannot
enforce the restriction, the container should not use the connection association mechanism.

8.11.3. Requirements

The container must provide a mechanism to change the association of a connection handle to different
ManagedConnection instances depending on the connection sharing and transaction scope. This
mechanism is used in scenarios where components hold on to connection handles across different
local transaction and connection sharing scopes.

The container may use the connection association mechanism in the XAResource -based transaction
management contract.

The resource adapter must implement the associateConnection method to support connection sharing.
The container makes a decision on whether or not to use the associateConnection method implemented
by a resource adapter. The support for this method is required independent of the transaction support

8.11. Connection Association

110 Jakarta Connectors

level of the resource adapter. Note that the container makes the decision to invoke the
associateConnection method.

8.12. Local Transaction Optimization
If all the work done as a part of a transaction uses a single resource manager, the application server
can use a local transaction in place of an externally coordinated Jakarta Transactions transaction. The
use of a local transaction avoids the overhead of initiating a global transaction, and involving the TM
for transaction coordination, and leads to more optimized performance.

Since a typical application accesses a single resource manager, the local transaction optimization is a
useful performance enhancement for transaction management.

The application server manages local transaction optimization transparent to the Jakarta EE
application. Whenever a container-managed or bean-managed transaction is started, the container
may attempt local transaction optimization.

When the transaction begins, a container cannot determine beforehand whether or not the unit of
work done as part of this transaction will use a single resource manager. The container uses an
implementation-specific mechanism to achieve local transaction optimization. For example, the
container can choose to start a local transaction when the first resource manager is accessed and lazily
start a Jakarta Transactions transaction only when more than one resource managers are accessed in
an existing transaction. The mechanism through which the application server and its transaction
manager coordinates the initial local transaction and lazily started Jakarta Transaction transactions is
outside the scope of the connector specification. Refer to the Jakarta EE platform specification (see
Jakarta™ EE Platform Specification Version 10) for more details on the local transaction optimization.

8.12.1. Requirements

The container is not required to support the local transaction optimization.

8.13. Runtime Transaction Support Level Specification
A resource adapter may determine and classify the level of transaction support it can provide at
runtime. The resource adapter can use the configuration details, provided by a deployer, to determine
the transactional capabilities and the requirements of the underlying EIS and then specify the level of
transaction support at runtime.

8.12. Local Transaction Optimization

Jakarta Connectors 111

 package jakarta.resource.spi;

 public interface TransactionSupport extends Serializable {

 public enum TransactionSupportLevel
 {NoTransaction, LocalTransaction, XATransaction}

 public TransactionSupportLevel getTransactionSupport();

 }

To specify the level of transaction support at runtime, a ManagedConnectionFactory must implement
the TransactionSupport interface. It is optional for the ManagedConnectionFactory to implement this
interface.

When a ManagedConnectionFactory does not implement this interface, the container must use the
resource adapter’s level of transaction support classification. The container must use the transaction
support specified in the merged result of the resource adapter’s deployment descriptor and Connector
annotations. Refer to Resource Adapter Provider for more information on the resource adapter
deployment descriptor and @Connector for more information on the Connector annotation. If the
resource adapter deployer has overridden the transaction support value, the overriden value must be
used. Refer to ResourceAdapter JavaBean Instance Configuration for details on resource adapter
configuration.

For ManagedConnectionFactory JavaBeans that implement the TransactionSupport interface, the
application server must perform the following prior to using the JavaBean. The application server
must call the getTransactionSupport method to determine its level of transaction support. The
application server must complete the configuration of the ManagedConnectionFactory instance (see
ManagedConnectionFactory JavaBean and Outbound Communication) before invoking the
getTransactionSupport method. The application server must use the value returned by the
getTransactionSupport method and ignore the value specified by the resource adapter deployment
descriptor/Connector annotation or the deployer configuration. The application server must provide
the transaction levels listed in TransactionSupport.TransactionSupportLevel enum, the same semantics
as the levels detailed in Resource Adapter.

A resource adapter must always return a level of transaction support whose ordinal value in the
TransactionSupport.TransactionSupportLevel enum is equal to or lesser than the resource adapter’s
transaction support classification.

8.13. Runtime Transaction Support Level Specification

112 Jakarta Connectors

8.14. Interface: TransactionSynchronizationRegistry
The TransactionSynchronizationRegistry interface is defined in the Jakarta Transaction specification
(see Jakarta™ Transaction Specification, Version 2.0) and could be used by system level components to
interact with the transaction manager. This interface provides the ability to register synchronization
objects, associate resource objects with the current transaction, get the transaction context of the
current transaction, get current transaction status, and mark the current transaction for rollback.

This interface is implemented by the application server by a stateless service object. A resource
adapter may obtain the TransactionSynchronizationRegistry through the
getTransactionSynchronizationRegistry method (shown below) of BootstrapContext (see
ResourceAdapter JavaBean and Bootstrapping a Resource Adapter Instance). The application server is
required to make a TransactionSynchronizationRegistry object available through its BootstrapContext
implementation. The same TransactionSynchronizationRegistry object can be used by any number of
artifacts in the resource adapter module with thread safety.

public interface
jakarta.resource.spi.BootstrapContext {

 TransactionSynchronizationRegistry getTransactionSynchronizationRegistry();

 ...

}

8.15. Requirements
This section outlines the requirements for the transaction management contract.

8.15.1. Resource Adapter

A resource adapter can be classified based on the level of transaction support, as follows:

• NoTransaction . The resource adapter supports neither resource manager local nor Jakarta
Transactions transactions. It implements neither the XAResource nor LocalTransaction interfaces.

• LocalTransaction - The resource adapter supports resource manager local transactions by
implementing the LocalTransaction interface. The local transaction management contract is
specified in Local Transaction Management Contract.

• XATransaction - The resource adapter supports both resource manager local and Jakarta
Transactions transactions by implementing the LocalTransaction and XAResource interfaces. The
requirements for supporting the XAResource -based contract are specified in XAResource-based
Transaction Contract.

8.14. Interface: TransactionSynchronizationRegistry

Jakarta Connectors 113

Other levels of support (includes any transaction optimizations supported by an
underlying resource manager) are outside the scope of Jakarta Connectors.

The above levels reflect the major steps of transaction support that a resource adapter is required to
allow external transaction coordination. Depending on its transactional capabilities and the
requirements of its underlying EIS, a resource adapter can choose to support any one of the above
transaction support levels.

8.15.1.1. Auto Commit

When a connection is in an auto-commit mode, an operation on the connection automatically commits
after it has been executed. The auto-commit mode must be off if multiple interactions have to be
grouped in a single transaction, either local or XA, and committed or rolled back as a unit.

A resource adapter must manage the auto-commit mode as follows:

A transactional resource adapter, either at XATransaction or LocalTransaction level, must set the auto-
commit mode to false within a transaction, either local or XA, on a connection participating in the
transaction. This requirement holds for both container-managed and bean-managed transaction
demarcation.

A transactional resource adapter must set the auto-commit mode to true, on connections that are used
outside a transaction.

8.15.2. Application Server

An application server must support resource adapters with all three levels of transaction support—
NoTransaction , LocalTransaction , and XATransaction .

The following are the requirements for an application server for the transaction management contract:

• The application server must support a transaction manager that manages transactions using the
Jakarta Transaction XAResource -based contract. The requirements for a transaction manager to
support an XAResource -based contract are specified in Transaction Manager Requirements.

• The application server must use the LocalTransaction interface-based contract to manage local
transactions for a resource manager.

• The application server must use the deployment descriptor mechanism and the values in the
Connector metadata annotation to ascertain the transactional capabilities of a resource adapter.
Refer to Deployment for details on the deployment descriptor specification and @Connector for
details on the Connector annotation.

• If a ManagedConnectionFactory chooses to specify its transactional capability in a dynamic fashion
at runtime (see Runtime Transaction Support Level Specification), the application server must
ascertain the transactional capability provided by the ManagedConnectionFactory instance.

• The application server must implement the ConnectionEventListener interface to get transaction-

8.15. Requirements

114 Jakarta Connectors

related event notifications.

8.16. Connection Optimizations
This section describes two optional connection optimizations:

• Lazy connection association optimization

• Lazy transaction enlistment optimization

8.16.1. Lazy Connection Association Optimization

Application components may acquire connections through a ConnectionFactory object (resource-ref)
obtained from the JNDI namespace. The connection(s) thus obtained may be closed by the application
before method completion, or may be cached by the application for later use.

When a connection is cached by the application component, the cached connection handle is
considered active and remains associated with a ManagedConnection instance from the application
server’s connection pool. If the cached connection handle is used infrequently, then the associated
ManagedConnection instance remains in hibernation during periods of non-use. This is because the
application server cannot detect when the hibernating ManagedConnection instance will be used again
by the application.

Such hibernating ManagedConnection instances result in suboptimal usage of system resources.
Avoiding hibernation of ManagedConnection instances leads to more optimal resource utilization and
better performance.

The following describes a mechanism that allows an application server to avoid hibernating
ManagedConnection instances (by dissociating the ManagedConnection from its connection handles
and using the freed ManagedConnection instance for other applications). This mechanism also
provides a way to notify the application server when a dissociated connection handle is used by the
application, so that it can be associated with an appropriate ManagedConnection instance.

Connection Acquisition Processing describes the processing of a getConnection method call initiated by
an application component (that is, when the application component first acquires a connection). At a
later point in time, the connection may be dissociated by the application server by calling the
dissociateConnections method on the appropriate ManagedConnection instance. This dissociates the
ManagedConnection instance from all its connection handle objects.

When such a dissociated connection is used by the application (upon method re-entry), it is required to
be re-associated with an appropriate ManagedConnection instance. Connection Re-association
Processing describes connection re-association processing. The connection re-association processing
depends on the connection notifying the application server upon re-use (lazy re-association trigger).
The connection object invokes the associateConnection method on the ConnectionManager instance in
order to lazily re-associate itself with an appropriate ManagedConnection instance.

Thus, a connection handle that can be dissociated can exist in one of three states: Active, Inactive or

8.16. Connection Optimizations

Jakarta Connectors 115

Closed. State Diagram of a Dissociatable Application-level Connection Handle describes the state
transitions of a dissociatable connection handle. Note that the state Inactive applies only to
dissociatable connection handles.

The application server may dissociate connections that are shareable. It must not dissociate
connections that are marked unshareable, however, since application-specific state may be retained by
a ManagedConnection instance. The application server may also call the dissociateConnections method
even when an active transaction is in progress in the ManagedConnection .

When a disassociated connection handle is closed, the resource adapter must notify the application
server by calling the inactiveConnectionClosed method on the LazyAssociatableConnectionManager
interface. The application server can then perform any cleanup operations related to the disassociated
connection handle in its connection pool.

Connection Acquisition Processing

4. getConnection(
Subject, ConnectionRequestInfo)

3. createManagedConnection(Subject, ConnectionRequestInfo)
OR matchManagedConnections(ConnectionSet, Subject,

ConnectionRequestInfo)

ManagedConnectionFactory

ManagedConnection

2. allocateConnection(
ManagedConnectionFactory,
ConnectionRequestInfo)

ManagedConnection

1. getConnection(config)

AppComponent

ConnectionManager

ConnectionFactory

Connection Re-association Processing

4. associateConnection(Connection)

3. createManagedConnection(Subject, ConnectionRequestInfo)
OR matchManagedConnections(ConnectionSet, Subject,

ConnectionRequestInfo)

ManagedConnectionFactory

ManagedConnection

2. associateConnection(
Connection,
ManagedConnectionFactory,
ConnectionRequestInfo)

ManagedConnection

1. execute operation

AppComponent

ConnectionManager

Connection

State Diagram of a Dissociatable Application-level Connection Handle

8.16. Connection Optimizations

116 Jakarta Connectors

valid associated with a
Active

Connection.close

ManagedConnection

invalid and not associated with a
Closed

ManagedConnection

ManagedConnection.
getConnection

ManagedConnection.
associateConnection

ManagedConnection.cleanup

valid but not associated with a
Inactive

ManagedConnection

ManagedConnection.
dissociateConnections

ManagedConnection.
associateConnection

8.16.1.1. API Additions

package jakarta.resource.spi;

import jakarta.resource.ResourceException;

interface LazyAssociatableConnectionManager {
 // application server

 void associateConnection(Object connection,
 ManagedConnectionFactory mcf,
 ConnectionRequestInfo info)
 throws ResourceException;

 void inactiveConnectionClosed(Object connection, ManagedConnectionFactory mcf);

}

interface DissociatableManagedConnection {
// resource adapter

 void dissociateConnections() throws ResourceException;

}

Neither the application server nor the resource adapter must support this optimization.

A resource adapter that does not support this optimization must provide a ManagedConnection
implementation that does not implement the DissociatableManagedConnection interface. This allows
an application server to detect that the resource adapter does not support this optimization.

8.16. Connection Optimizations

Jakarta Connectors 117

An application server that does not support this optimization must provide a ConnectionManager
implementation that does not implement the LazyAssociatableConnectionManager interface. This
allows a resource adapter to detect that the application server does not support this optimization. In
reality, a resource adapter will not call this method (in order to re-associate a connection) since an
application server that does not support this optimization would never dissociate a connection.

There are no changes to the resource adapter deployment descriptor since the application server can
programmatically detect whether a resource adapter supports this optimization or not.

8.16.2. Lazy Transaction Enlistment Optimization

Transactions may be started by an application server before a method call on an application
component or it may be started by an application component during a method call. It is also possible
that an application server may use a transaction imported from a different server during a method
call.

Irrespective of how a transaction is started, an application server enlists all connections (cached or
newly acquired by an application component) with the transaction, so that the work done using those
connections will be part of the transaction. This enlistment happens before the method call in the case
of cached connections and during the method call when connections are newly acquired within the
transaction.

But not all the connections that are cached or newly acquired by an application component may be
used within a transaction. Since the application server cannot detect whether these connections would
be used within the transaction, it statically (eagerly) enlists all such connections with the transaction.
Thus, connections that are not used in a transaction are unnecessarily enlisted, which leads to sub-
optimal performance.

The following describes a dynamic mechanism that allows the application server to enlist only those
connections that are used within a transaction. A ManagedConnection that supports this optimization
must invoke the lazyEnlist method on the ConnectionManager every time it is used outside of a local or
XA transaction. The application server uses this method call to lazily enlist the connection in the
transaction (if there is one). The application server may delist the ManagedConnection instances from
the transaction at a later point.

This optimization can be used only on connections that are lazily enlist-able.

8.16.3. API Additions

8.16. Connection Optimizations

118 Jakarta Connectors

package jakarta.resource.spi;

import jakarta.resource.ResourceException;
import javax.transaction.xa.Xid;

interface LazyEnlistableConnectionManager {
// application server

 void lazyEnlist(ManagedConnection) throws ResourceException;

}

interface LazyEnlistableManagedConnection {
// resource adapter
}

Neither the application server nor the resource adapter must support this optimization.

A resource adapter that does not support this optimization must provide a ManagedConnection
implementation which does not implement the LazyEnlistableManagedConnection interface. This
allows an application server to detect that the resource adapter does not support this optimization.

An application server that does not support this optimization must provide a ConnectionManager
implementation that does not implement the LazyEnlistableConnectionManager interface. This allows
a resource adapter to detect that the application server does not support this optimization.

There are no changes to the resource adapter deployment descriptor since the application server can
programmatically detect whether a resource adapter supports this optimization or not.

8.16. Connection Optimizations

Jakarta Connectors 119

Chapter 9. Security Architecture

This chapter specifies the security architecture for the integration of EISs with the Jakarta EE platform.
It adds EIS integration-specific security details to the security requirements specified in other Jakarta
EE specifications.

9.1. Overview
It is critical that an enterprise be able to depend on the information in its EIS for its business activities.
Any loss or inaccuracy of information or any unauthorized access to the EIS can be extremely costly to
an enterprise. There are several mechanisms that can be used to protect an EIS against such security
threats, including:

• Identification and authentication of principals, human users to verify they are who they claim to
be.

• Authorization and access control to determine whether a principal is allowed to access an
application server and/or an EIS.

• Secure communication between an application server and an EIS. Communication over insecure
links can be protected using a protocol, for example, Kerberos, that provides authentication,
integrity, and confidentiality services. Communication can also be protected by using a secure link
protocol, for example, SSL.

9.2. Goals
The security architecture is designed to meet the following goals:

• Extend the end-to-end security model for Jakarta EE applications to include integration with EISs
based on Jakarta Connectors.

• Support authentication and authorization of users who are accessing EISs.

• Keep the security architecture technology neutral and enable the specified security contract to be
supported by various security technologies.

• Enable the security architecture to support a range of EISs with different levels of security support
and existing security environments.

• Support security configuration of a resource adapter in an operational environment.

• Keep the security model for Jakarta Connector-based EIS integration transparent to an application
component provider. This includes providing support for single sign-on across multiple EISs.

The security model for EIS integration is not designed to do the following:

9.1. Overview

120 Jakarta Connectors

• Mandate a specific technology and describe how it can be used to implement the security
architecture for Jakarta Connector-based EIS integration.

• Specify and mandate a specific security policy. The security architecture enables an application
server and EIS to support the implementation and administration of security policies based on
their respective requirements.

9.3. Terminology
The following terms are used in this chapter:

• Principal . A principal is an entity that can be authenticated by an authentication mechanism
deployed in an enterprise. A principal is identified using a principal name and authenticated using
authentication data. The content and format of the principal name and the authentication data
depend upon the authentication mechanism.

• Security Attributes. A principal has a set of security attributes associated with it. These security
attributes are related to the authentication and authorization mechanisms. Some examples are
security permissions, and credentials for a principal.

• Credential. A credential contains or references security information that can authenticate a
principal to additional services. A principal acquires a credential upon authentication or from
another principal that allows its credential to be used. The latter is termed principal delegation.

• End user. An end user is an entity, human or service, that acts as a source of a request to an
application. An end user is represented as a security principal within a Subject as specified in the
JAAS framework (see Java Authentication and Authorization Service Specification, version 1.0).

• Initiating Principal. The security principal representing the end-user that interacts directly with
the application. An end-user can authenticate using either a web client or an application client.

• Caller Principal. A principal that is associated with an application component instance during a
method invocation. For example, a Jakarta Enterprise Beans instance can call the getCallerPrincipal
method to get the principal associated with the current security context.

• Resource Principal. A security principal under whose security context a connection to an EIS
instance is established.

• Security domain. A scope within which certain common security mechanisms and policies are
established. This specification does not specify the scope of a security domain. An enterprise can
contain more than one security domain. Thus an application server and an EIS may either be in the
same or different security domains. Security Scenarios provides illustrative examples of how
security domains can be setup and managed.

In a managed environment, application components are deployed in web or Jakarta Enterprise Beans
containers. When a method gets invoked on a component, the principal associated with the component
instance is termed a caller principal.

The relationship between an initiating principal and a caller principal depends on the principal
delegation option for inter-container and inter-component calls. This form of principal delegation is

9.3. Terminology

Jakarta Connectors 121

out of the scope of Jakarta Connectors.

The relationship of a resource principal and its security attributes, for example, credentials and access
privileges, to an initiating or caller principal depends on how the resource principal has been setup by
the system administrator or deployer.

Refer to Interfaces and Classes for details on interfaces and classes that are used to represent a
resource principal and its credentials.

9.4. Application Security Model
This section is a brief summary of the security model from the perspective of an application
component provider. Refer to the relevant specifications for more detail.

The application component requests a connection to be established under the security context of a
resource principal. The security context includes security attributes—access privileges, authorization
level—for a resource principal. Once a connection is successfully established, all application-level
invocations to the EIS instance using the connection happen under the security context of the resource
principal.

The application component provider has the following two choices related to EIS sign-on:

• Allow the deployer to set up the resource principal and EIS sign-on information. For example, the
deployer sets the user name and password for establishing a connection to an EIS instance.

• Perform sign-on to an EIS from the component code by providing explicit security information for
a resource principal.

The application component provider uses a deployment descriptor element or metadata annotations
defined in the corresponding application component specifications, for example, res-auth for Jakarta
Enterprise Beans components, to indicate the requirements for one of the above two approaches. If the
res-auth element is set to Application , the component code performs a programmatic sign-on to the
EIS. If the res-auth element is Container , the application server takes on the responsibility of setting up
and managing EIS sign-on.

9.4.1. Scenario: Container-Managed Sign-on

The application component provider sets the res-auth deployment descriptor element, or the
equivalent metadata annotation defined in the relevant application component specification, to be
Container letting the application server take the responsibility of managing EIS sign-on.

The Deployer sets up the principal mapping such that the user account for connecting to the EIS
instance is always eStoreUser . The Deployer also configures the authentication data, for example, the
password, needed to authenticate the eStoreUser to the EIS.

The component code invokes the getConnection method on the ConnectionFactory instance with no
security-related parameters. The component relies on the application server to manage sign-on to the

9.4. Application Security Model

122 Jakarta Connectors

EIS instance based on the security information configured by the Deployer.

// Method in an application component

Context initctx = new InitialContext();

// perform JNDI lookup to obtain connection factory
jakarta.resource.cci.ConnectionFactory cxf =
 (jakarta.resource.cci.ConnectionFactory)initctx.lookup(“java:comp/env/eis/MyEIS”);

// Invoke factory to obtain a connection. The security
// information is not passed in the getConnection method

jakarta.resource.cci.Connection cx = cxf.getConnection();

...

9.4.2. Scenario: Component-Managed Sign-on

The application component provider sets the res-auth element to be Application.

The component code performs a programmatic sign-on to the EIS. The application component passes
explicit security information, for example, the username and password, to the getConnection method
of the ConnectionFactory instance.

// Method in an application component

Context initctx = new InitialContext();

// perform JNDI lookup to obtain connectionfactory
jakarta.resource.cci.ConnectionFactory cxf =
 (jakarta.resource.cci.ConnectionFactory)initctx.lookup(“java:comp/env/eis/MyEIS”);

// Invoke factory to obtain a connection

com.myeis.ConnectionSpecImpl properties = ..
// get a new ConnectionSpec
properties.setUserName(“...”);
properties.setPassword(“...”);

jakarta.resource.cci.Connection cx = cxf.getConnection(properties);

...

9.4. Application Security Model

Jakarta Connectors 123

9.5. EIS Sign-on
Creating a new physical connection requires a sign-on to an EIS instance. Changing the security context
on an existing physical connection can also require EIS sign-on. The latter is termed re-authentication.

An EIS sign-on typically involves one or more of the following steps:

• Determine a resource principal under whose security context a physical connection to an EIS will
be established.

• Authenticate a resource principal if it is not already authenticated.

• Establish a secure association between the application server and the EIS. This enables additional
security mechanisms, for example, data confidentiality and integrity, to be applied to
communication between the two entities.

• Set the access control to EIS resources.

9.5.1. Authentication Mechanism

An application server and an EIS collaborate to ensure resource principals are properly authenticated
when the principal connects to the underlying EIS. Jakarta Connectors identifies the following as the
commonly-supported authentication mechanisms:

• BasicPassword - Basic password based authentication mechanism specific to an EIS

• Kerbv5 - Kerberos version 5-based authentication mechanism

The authentication-mechanism-type element is used in the deployment descriptor to specify whether or
not a resource adapter supports a specific authentication mechanism. Refer to Requirements for more
details on the specification of the deployment descriptor for a resource adapter. The authentication
mechanism supported by the resource adapter may also specified through the
AuthenticationMechanism annotation (see @AuthenticationMechanism) as part of the Connector
metadata annotation (see @Connector).

Jakarta Connectors does not require that a specific authentication mechanism be supported by an
application server and an EIS. An application server may support any other authentication
mechanisms for EIS sign-on. The connector security architecture is independent of security
mechanisms.

9.5.2. Resource Principal

When an application component requests a connection from a resource adapter, the connection
request is made under the security context of a resource principal. The Deployer can set a resource
principal based on the following options:

• Configured Identity. In this case, a resource principal has its own configured identity and security
attributes independent of the identity of the initiating or caller principal. The identity of the

9.5. EIS Sign-on

124 Jakarta Connectors

resource principal can be configured either at deployment time or specified dynamically by a
component at the connection creation. The scenario described in eStore Application illustrates an
example where connections to an EIS are always established under the security context of a valid
EIS user account. This happens independent of the initiating or caller principal. For example, if a
caller principal is A, then the configured resource principals can be B and C on two different EIS
instances, where A, B, and C are independent identities.

• Principal Mapping. A resource principal is determined by mapping from the identity and/or
security attributes of the initiating or caller principal. In this case, a resource principal does not
inherit identity or security attributes of a principal that it has been mapped from. The resource
principal gets its identity and security attributes based on the mapping. For example, if the caller
principal has identity A, then the mapped resource principal is mapping(A,EIS1) and mapping(A,
EIS2) on two different EIS instances.

• Caller Impersonation. A resource principal acts on behalf of an initiating or caller principal.
Acting on behalf of a caller principal requires that the caller’s identity and credentials be delegated
to the EIS. The mechanism by which this is accomplished is specific to a security mechanism and an
application server implementation. An example of the impersonation is described in Employee
Self-Service Application.

In some scenarios, a caller principal can be a delegate of an initiating principal. In this case, a resource
principal transitively impersonates an initiating principal.

The support for principal delegation is typically specific to a security mechanism. For example,
Kerberos supports a mechanism for the delegation of authentication. Refer to the Kerberos v5
specification for more details. The security technology specific details are out of the scope of Jakarta
Connectors.

• Credentials Mapping. This mechanism may be used when an application server and EIS support
different authentication domains. For example, the initiating principal has been authenticated and
has public key certificate-based credentials. The security environment for the EIS is configured
with the Kerberos authentication service. The application server is configured to map the public
key certificate-based credentials associated with the initiating principal to the Kerberos credentials.
In this case, the resource principal is the same as the caller principal with the mapped credentials.

In the case of credential mapping, the mapped resource principal has the same identity as the
initiating or caller principal. For example, a principal with identity A has initial credentials
cred(A,mech1) and has credentials cred(A,mech2) after mapping. mech1 and mech2 represents different
mechanism types.

9.5.3. Authorization Model

Authorization checking to ensure that a principal has access to an EIS resource can be applied at one
or more of the following:

• At the EIS

• At the application server

9.5. EIS Sign-on

Jakarta Connectors 125

Authorization checking at the target EIS can be done in an EIS-specific way and is not specified here.
For example, an EIS can define its access control policy in terms of its specific security roles and
permissions.

Authorization checking can also be done at the application server level. For example, an application
server can allow a principal to create a connection to an EIS only if the principal is authorized to do so.
Jakarta EE containers such as Jakarta Enterprise Beans and servlet containers support both
programmatic and declarative security that can be used to define authorization policies. Programmatic
and declarative security are defined in the individual specifications. Refer to the Jakarta Enterprise
Beans and servlet specifications for more details. An application component developer developing
components for EIS access must follow the requirements defined in these specifications.

9.5.4. Secure Association

The communication between an application server and an EIS can be subject to security threats such
as data modification and loss of data. Establishing a secure association counters such threats. A secure
association is shared security information that allows a component on the application server to
communicate securely with an EIS.

Establishing a secure association includes several steps:

• The resource principal is authenticated to the EIS. This may require that the target principal in the
EIS domain authenticate itself back to the application server. A target principal can be set up by the
system administrator as a security principal associated with a running EIS instance or specific EIS
resource.

• Negotiate quality of protection such as confidentiality and integrity.

• A pair of communicating entities—an application server and an EIS instance—establish a shared
security context using the credentials of the resource principal. The security context encapsulates
shared state information, required so that communication between the application server and the
EIS can be protected through integrity and confidentiality mechanisms. Examples of shared state
information are cryptographic keys and message sequence numbers.

A secure association between an application server and an EIS is always established by the resource
adapter implementation. Note that a resource adapter library runs within the address space of the
application server.

A resource adapter can use any security mechanism to establish the secure association. GSS-API (refer
to IETF draft on GSS-API v2[5]) is an example of such a mechanism. Note that Jakarta Connectors does
not require use of the GSS-API by a resource adapter or application server.

Configuring a mechanism for establishing secure associations is outside the scope of Jakarta
Connectors. This includes setting up the desired quality of protection during secure communication.

Once a secure association is successfully established, the connection is associated with the security
context of the resource principal. Subsequently, all application-level invocations to the EIS instance

9.5. EIS Sign-on

126 Jakarta Connectors

using the connection happen under the security context of the resource principal.

9.6. Roles and Responsibilities
This section describes various roles involved in the security architecture. It also describes
responsibilities of each role from the security perspective.

The roles and responsibilities of the Application Component Provider and Deployer are specified in
detail in the respective Jakarta EE component model specifications.

9.6.1. Application Component Provider

The following features are common across different Jakarta EE component models from the
perspective of an Application Component Provider:

• An Application Component Provider invariably avoids the burden of securing its application and
focuses on developing the business functionality of its application.

• A security-aware Application Component Provider can use a simple programmatic interface to
manage security at an application level. The programmatic interface enables the Application
Component Provider to program access control decisions based on the security context—the
principal and role—associated with the caller of a method and to manage programmatic sign-on to
an EIS.

• An Application Component Provider specifies security requirements for its application
declaratively through metadata annotation and deployment descriptor. The security requirements
include security roles, method permissions, and an authentication approach for EIS sign-on.

• More qualified roles - Application Server Vendor, Deployer, System Administrator - have the
responsibility of satisfying overall security requirements through the deployment mechanism for
resource adapters and components, and managing the security environment.

9.6.2. Deployer

The Deployer specifies security policies that ensure secure access to the underlying EISs from
application components. The deployer adapts the intended security view of an application for EIS
access, specified through metadata annotations described in Metadata Annotations or the deployment
descriptor, to the actual security mechanisms and policies used by the application server and EISs in
the target operational environment. The Deployer uses tools to accomplish the above task.

The output of the Deployer’s work is a security policy descriptor specific to the operational
environment. The format of the security policy descriptor is specific to an application server.

The Deployer performs the following deployment tasks for each connection factory reference declared
in the deployment descriptor of an application component:

• Provides a connection factory specific security configuration that is needed for opening and

9.6. Roles and Responsibilities

Jakarta Connectors 127

managing connections to an EIS instance.

• Binds the connection factory reference in the deployment descriptor of an application component
to the JNDI registered reference for the connection factory. Refer to JNDI Configuration and Lookup
for the JNDI configuration of a connection factory during deployment of a resource adapter. The
deployer can use the JNDI LinkRef mechanism to create a symbolic link to the actual JNDI name of
the connection factory.

• Configures the security information for EIS sign-on, if the value of the res-auth deployment
descriptor element is Container . For example, the Deployer sets up the principal mapping for EIS
sign-on.

9.6.3. Application Server

The application server provides a security environment with specific security policies and mechanisms
that support the security requirements of the deployed application components and resource adapters,
thereby ensuring a secure access to the connected EISs.

The typical responsibilities of an application server are as follows:

• Provide tools to set up security information for a resource principal and EIS sign-on when res-auth
element is set to Container . This includes support for principal delegation and mapping for
configuring a resource principal.

• Provide tools to support management and administration of its security domain. For example,
security domain administration can include setting up and maintaining both underlying
authentication services and trusts between domains, plus managing principals, including identities,
keys, and attributes. Such administration is typically security technology specific and is outside the
scope of the Jakarta Connector Architecture.

• Support a single sign-on mechanism that spans the application server and multiple EISs. The
security mechanisms and policies through which single sign-on is achieved are outside the scope of
the Jakarta Connector Architecture.

JAAS Based Security Architecture specifies how JAAS can be used by an application server to support
the requirements of the connector security architecture.

9.6.4. EIS Vendor

EIS provides a security infrastructure and environment that supports the security requirements of the
client applications. An EIS can have its own security domain with a specific set of security policies and
mechanisms, or it can be set up as part of an enterprise-wide security domain.

9.6.5. Resource Adapter Provider

The resource adapter provider provides a resource adapter that supports the security requirements of
the underlying EIS.

9.6. Roles and Responsibilities

128 Jakarta Connectors

The resource adapter implements the security contract specified as part of the Jakarta Connector
Architecture. Security Contract specifies the security contract and related requirements for a resource
adapter.

The resource adapter specifies its security capabilities and requirements through metadata
annotations or its deployment descriptor. Requirements specifies a standard deployment descriptor
for a resource adapter. Metadata Annotations specifies the metadata annotations used to express
security requirements of a resource adapter.

9.6.6. System Administrator

The system administrator typically works in close association with administrators of multiple EISs that
have been deployed in an operational environment. The system administration tasks can also be
performed by the Deployer.

The following tasks are illustrative examples of the responsibilities of the system administrator:

• Set up an operational environment based on the technology and requirements of the
authentication service, and if an enterprise directory is supported.

• Configure the user account information for both the application server and the EIS in the
enterprise directory. The user account information from the enterprise directory can then be used
for authentication of users requesting connectivity to the EIS.

• Establish a password synchronization mechanism between the application server and the EIS. This
ensures that the user’s security information is identical on both the application server and the EIS.
When an EIS requires authentication, the application server passes the user’s password to the EIS.

9.6. Roles and Responsibilities

Jakarta Connectors 129

Chapter 10. Security Contract
This chapter specifies the security contract between the application server and the EIS. It also specifies
the responsibilities of the Resource Adapter Provider and the Application Server Vendor for supporting
the security contract.

This chapter references the following chapters and documents:

The security model specified in the Jakarta EE platform specification (see Jakarta Platform, Enterprise
Edition (Jakarta EE) Specification, version 10).

Security architecture specified in Security Architecture.

Security scenarios based on the Jakarta Connector Architecture (Refer to Security Scenarios).

10.1. Security Contract
The security contract between the application server and the resource adapter extends the connection
management contract (described in Connection Management) by adding security-specific details.

This security contract supports EIS sign-on by:

• Passing the connection request from the resource adapter to the application server, enabling the
application server to hook-in security services.

• Propagation of the security context, that is, JAAS Subject with principal and credentials, from the
application server to the resource adapter.

10.1.1. Interfaces and Classes

The security contract includes the following classes and interfaces:

10.1.2. Subject

The following text has been taken from the JAAS specification. For detailed information, refer to the
JAAS specification (see Java Authentication and Authorization Service Specification, version 1.0).

A Subject represents a grouping of related information for a single entity, such as a person. Such
information includes the Subject’s identities and its security-related attributes, for example, passwords
and cryptographic keys. A Subject can have multiple identities. Each identity is represented as a
Principal within the Subject . A Principal simply binds a name to a Subject .

A Subject can also own security-related attributes, which are referred to as Credentials . Sensitive
credentials that require special protection, such as private cryptographic keys, are stored within a
private credential set.

The Credentials intended to be shared, such as public key certificates or Kerberos server tickets, are

10.1. Security Contract

130 Jakarta Connectors

stored within a public credential set. Different permissions are required to access and modify different
credential sets.

The getPrincipals method retrieves all the principals associated with a Subject . The methods
getPublicCredentials and getPrivateCredentials respectively retrieve all the public or private credentials
belonging to a Subject . The methods defined in the Set class modify the returned set of principals and
credentials.

10.1.3. Resource Principal

The interface java.security.Principal represents a resource principal. The following code extract shows
the Principal interface:

public interface java.security.Principal {

 public boolean equals(Object another);

 public String getName();

 public String toString();

 public int hashCode();

}

The method getName returns the name of a resource principal.

An application server should use the Principal interface, or any derived interface, to pass a resource
principal as part of a Subject to a resource adapter.

10.1.4. GenericCredential

This interface, introduced in Version 1.0 of this specification, has been deprecated.
The preferred way to represent generic credential information is by way of the
org.ietf.jgss.GSSCredential interface in J2SE Version 1.4, which provides similar
functionality.

The interface jakarta.resource.spi.security.GenericCredential defines a security mechanism-
independent interface for accessing the security credential of a resource principal.

The GenericCredential interface provides a Java wrapper around an underlying mechanism-specific
representation of a security credential. For example, the GenericCredential interface can be used to
wrap Kerberos credentials.

The Jakarta Connector Architecture does not define any standard format and requirements for

10.1. Security Contract

Jakarta Connectors 131

security mechanism specific credentials. For example, a security credential wrapped by a Generic
Credential interface can have a native representation specific to an operating system.

A contract for the representation of mechanism-specific credentials must be
established between an application server and a resource adapter and is outside the
scope of the Jakarta Connector Architecture. This includes requirements for the
exchange of mechanism-specific credentials between a JAAS module and GSS
provider. Refer to JAAS Based Security Architecture for details on JAAS-based security
architecture.

The GenericCredential interface enables a resource adapter to extract information about a security
credential. The resource adapter can then manage an EIS sign-on for a resource principal by any of the
following:

• Using the credentials in an EIS specific manner if the underlying EIS supports the security
mechanism type represented by the GenericCredential instance

• Using GSS-AP I (see RFC: Generic Security Service API (GSS-API) Specification, version 2) if the
resource adapter and underlying EIS instance support GSS-API.

10.1.4.1. Interface

The following code extract shows the GenericCredential interface:

public interface jakarta.resource.spi.security.GenericCredential {

 public String getName();

 public String getMechType();

 public byte[] getCredentialData() throws jakarta.resource.spi.SecurityException;

 public boolean equals(Object another);

 public int hashCode();

}

The GenericCredential interface supports a set of getter methods to obtain information about a security
credential.

The method getName returns the name of the resource principal associated with a GenericCredential
instance.

The method getMechType returns the mechanism type for the GenericCredential instance. The
mechanism type definition for GenericCredential must be consistent with the Object Identifier (OID)

10.1. Security Contract

132 Jakarta Connectors

based representation specified in the GSS specification (see RFC: Generic Security Service API (GSS-API)
Specification, version 2). In the GenericCredential interface, the mechanism type is returned as a
stringified representation of the OID specification.

The GenericCredential interface can be used to get security data for a specific security mechanism. An
example is authentication data required for establishing a secure association with an EIS instance on
behalf of the associated resource principal. The getCredentialData method returns the credential
representation as an array of bytes. Note that the Jakarta Connector Architecture does not define a
standard format for the returned credential data.

10.1.4.2. Implementation

If an application server supports the deployment of a resource adapter which supports
GenericCredential as part of the security contract, the application server must provide an
implementation of the GenericCredential interface. Refer to the deployment descriptor specification in
Requirements for details on how a resource adapter specifies its support for GenericCredential . Refer
to @AuthenticationMechanism for details on how a resource adapter may use the
AuthenticationMechanism annotation to specify its support for GenericCredential.

10.1.5. GSSCredential

This interface org.ietf.jgss.GSSCredential is in J2SE Version 1.4. This provides a mechanism to represent
generic credential information. The functionality provided by this interface is similar to the
deprecated GenericCredential interface.

10.1.5.1. Implementation

If an application server supports the deployment of a resource adapter which supports GSSCredential
as part of the security contract, the application server must provide an implementation of the
GSSCredential interface. Refer to the deployment descriptor specification in Requirements for details
on how a resource adapter specifies its support for GSSCredential. Refer to Section 18.4.3
“@AuthenticationMechanism”” for details on how a resource adapter may use the
AuthenticationMechanism annotation to specify its support for GSSCredential.

10.1.6. PasswordCredential

The class jakarta.resource.spi.security.PasswordCredential acts as a holder of username and password
information. This class enables an application server to pass the username and password to the
resource adapter through the security contract.

The method getUserName gets the name of the resource principal. The interface java.security.Principal
represents a resource principal.

The PasswordCredential class must implement the equals and hashCode methods.

10.1. Security Contract

Jakarta Connectors 133

public final class jakarta.resource.spi.security.PasswordCredential
 implements java.io.Serializable {

 public PasswordCredential(String userName, char[] password) { ... }

 public String getUserName() { ... }

 public char[] getPassword() { ... }

 public ManagedConnectionFactory getManagedConnectionFactory() { ... }

 public void setManagedConnectionFactory(ManagedConnectionFactory mcf) { ... }

 public boolean equals(Object other) { ... }

 public int hashCode() { ... }

}

The getManagedConnectionFactory method returns the ManagedConnectionFactory instance for which
the user name and password has been set by the application server. Refer to
ManagedConnectionFactory to see how a resource adapter uses this method.

10.1.7. ConnectionManager

The method allocateConnection is called by the resource adapter’s connection factory instance. This
method lets the resource adapter pass a connection request to the application server, so the
application server can hook-in security and other services.

public interface jakarta.resource.spi.ConnectionManager
 extends java.io.Serializable {

 public Object allocateConnection(ManagedConnectionFactory mcf,
 ConnectionRequestInfo cxRequestInfo)
 throws ResourceException;

}

Security Contract

10.1. Security Contract

134 Jakarta Connectors

Enterprise Information System (EIS)

Architected Contract

Implementation Specific

Resource AdapterApplication Server

Security Service
Manager

ConnectionManager

ManagedConnectionFactory

Application Component

ConnectionFactory

Depending on whether the application server or application component is configured to be responsible
for managing EIS sign-on (refer to Application Component Provider), the resource adapter calls the
ConnectionManager . allocateConnection method in one of the following ways:

• Container-managed Sign-on. The application component passes no security information in the
getConnection method and the application server is configured to manage EIS sign-on.

The application server provides the required security information for the resource principal through
its configured security policies and mechanisms, for example, principal mapping. The application
server requests the authentication of the resource principal to the EIS either itself or passes
authentication responsibility to the resource adapter. This aspect is explained later in the specification
of the ManagedConnectionFactory interface.

• Component-managed Sign-on. In this case, the application component provides explicit security
information in the getConnection method. The resource adapter invokes the allocateConnection
method by passing security information in the ConnectionRequestInfo parameter. Since the security
information in the ConnectionRequestInfo is opaque to the application server, the application
server should rely on the resource adapter to manage EIS sign-on, as explained in the
ManagedConnectionFactory interface specification under option C.

10.1.8. ManagedConnectionFactory

The following code extract shows the methods of the ManagedConnectionFactory interface that are

10.1. Security Contract

Jakarta Connectors 135

relevant to the security contract:

public interface jakarta.resource.spi.ManagedConnectionFactory
 extends java.io.Serializable {

 public ManagedConnection createManagedConnection(
 javax.security.auth.Subject subject,
 ConnectionRequestInfo cxRequestInfo)
 ...
}

During the JNDI lookup, the ManagedConnectionFactory instance is configured by the application
server with a set of configuration properties. These properties include default security information
and EIS instance-specific information, such as hostname and port number, required for initiating a
sign-on to the underlying EIS during the creation of a new physical connection.

The default security configuration on a ManagedConnectionFactory can be overridden by security
information provided either by a component, in component managed sign-on, or by the container, in
container-managed sign-on.

The createManagedConnection method is used by the application server when it requests the resource
adapter to create a new physical connection to the underlying EIS.

10.1.8.1. Contract for the Application Server

The application server may provide specific security services, such as principal mapping and
delegation, and single sign-on, before using the security contract with the resource adapter. For
example, the application server can map the caller principal to a resource principal before calling the
createManagedConnection method to create a new connection under the security context of the
resource principal.

In container-managed sign-on, the application server is responsible for creating a Subject instance
using its implementation-specific security mechanisms and configuration. This should happen before
the application server calls the createManagedConnection method of the ManagedConnectionFactory .
The resource adapter is driven by the application server and acts as consumer of security information
in the created Subject .

If the application server maintains a cache of the security credentials, such as Kerberos ticket granting
ticket (TGT), the application server should reuse the credentials as part of the newly created Subject
instance. For example, the application server uses the Subject.getPrivateCredentials().add(credential)
method to add a credential to the private credential set.

Security Contract: Subject Interface and its Containment Hierarchy

10.1. Security Contract

136 Jakarta Connectors

<class>
javax.security.auth.Subject

contains

<interface>
java.security.Principal

0-n

contains

<class>
PasswordCredential

0-n

contains

0-n

<interface>
GSSCredential

The preceding figure shows the relationship between the Subject , Principal , PasswordCredential and
GSSCredential interfaces. Note that in the following options A and B defined for
createManagedConnection method invocation, the Subject instance contains a single resource principal,
represented as java.security.Principal , and multiple credentials.

The application server has the following options for invoking the createManagedConnection method :

• Option A. The application server invokes the createManagedConnection method by passing in a
non-null Subject instance that carries a single resource principal and its corresponding password-
based credentials, represented by the class PasswordCredential that provides the user name and
password. The PasswordCredential should be set in the Subject instance as part of the private
credential set. Note that the passed Subject can contain multiple PasswordCredential instances.

The resource adapter extracts the username and password from this Subject instance by looking for
the PasswordCredential instance in the Subject , and uses this security information to sign-on to the EIS
instance during connection creation.

• Option B. The application server invokes the createManagedConnection method by passing in a
non-null Subject instance that carries a single resource principal and its security credentials. In this
option, credentials are represented through the GSSCredential interface. A typical example is a
Subject instance with Kerberos credentials.

For example, an application server may use this option for createManagedConnection method
invocation when the resource principal is impersonating the caller or initiating principal, and has
valid credentials acquired through impersonation. An application server may also use this option for
principal mapping scenarios with credentials of a resource principal represented through the
GSSCredential interface.

Note that sensitive credentials requiring special protection, such as private cryptographic keys, are
stored within a private credential set, while credentials intended to be shared, such as public key
certificates or Kerberos server tickets, are stored within a public credential set. The two methods
getPrivateCredentials and getPublicCredentials should be used accordingly.

In the case of Kerberos mechanism type, the application server must pass the principal’s ticket

10.1. Security Contract

Jakarta Connectors 137

granting ticket (TGT) to a resource adapter in a private credential set.

The resource adapter uses the resource principal and its credentials from the Subject instance to go
through the EIS sign-on process before creating a new connection to the EIS.

• Option C. The application server invokes the createManagedConnection method by passing a null
Subject instance. The application server must use this option for the component-managed sign-on
case. In this option, security information is carried in the ConnectionRequestInfo instance. The
application server does not provide any security information that can be used by the resource
adapter for managing EIS sign-on.

During the deployment of a resource adapter, the application server must be configured to use one of
the above specified invocation options. Refer to Packaging Requirements for more details.

10.1.8.2. Contract for Resource Adapter

A resource adapter can do EIS sign-on and connection creation in an implementation-specific way, or it
can use the GSS-API. The latter option is specified in JAAS Based Security Architecture. A resource
adapter has the following options, corresponding to the options for an application server, for handling
the invocation of the createManagedConnection method:

• Option A. The resource adapter explicitly checks whether the passed Subject instance carries a
PasswordCredential instance using the Subject.getPrivateCredentials method.

Note that the security contract assumes that a resource adapter has the necessary security permissions
to extract a private credential set from a Subject instance. The specific mechanism through which such
permission is set up is outside the scope of the Jakarta Connector Architecture.

If the Subject instance contains a PasswordCredential instance, the resource adapter extracts the
username and password from the PasswordCredential . It uses the security information to authenticate
the resource principal, corresponding to the username, to the EIS during the creation of a connection.
In this case, the resource adapter uses an authentication mechanism that is EIS specific.

Since a Subject instance can carry multiple PasswordCredential instances, a ManagedConnectionFactory
should only use a PasswordCredential instance that has been specifically passed to it through the
security contract. The getManagedConnectionFactory method enables a ManagedConnectionFactory
instance to determine whether or not a PasswordCredential instance is to be used for sign-on to the
target EIS instance. The ManagedConnectionFactory implementation uses the equals method to
compare itself with the passed instance.

• Option B. The resource adapter explicitly checks whether the passed Subject instance carries a
GSSCredential instance using the getPrivateCredentials and getPublicCredentials methods defined in
the Subject interface.

In the case of Kerberos mechanism type, the resource adapter must extract Kerberos credentials using
the getPrivateCredentials method in the Subject interface.

10.1. Security Contract

138 Jakarta Connectors

The resource adapter uses the resource principal and its credentials, represented by the GSSCredential
interface, in the Subject instance to go through the EIS sign-on process. For example, this option is used
for Kerberos-based credentials that have been acquired by the resource principal through
impersonation.

A resource adapter uses the getter methods defined in the GSSCredential interface to extract
information about the credential and its principal. If a resource adapter is using the GSS mechanism,
the resource adapter uses a reference to the GSSCredential instance in an opaque manner and is not
required to handle any mechanism-specific credential representation. However, a resource adapter
may need to interpret credential representation if the resource adapter initiates authentication in an
implementation-specific manner.

• Option C. If the application server invokes the
ManagedConnectionFactory.createManagedConnection method with a null Subject instance, a
resource adapter has the following options:

◦ The resource adapter should extract security information passed through the
ConnectionRequestInfo instance. The resource adapter should authenticate the resource
principal by combining the configured security information on the ManagedConnectionFactory
instance with the security information passed through the ConnectionRequestInfo instance . The
default behavior for the resource adapter is to allow the security information in the
ConnectionRequestInfo parameter to override the configured security information in the
ManagedConnectionFactory instance.

◦ If the resource adapter does not find any security configuration in the ConnectionRequestInfo
instance, the resource adapter uses the default security configuration in the
ManagedConnectionFactory instance.

◦ If the EIS does not require authentication, the resource adapter does not need any security
information from the ConnectionRequestInfo instance, and hence may ignore such security
information. This may happen due to a disconnect between the application and the resource
adapter.

In the case of option A and option B, a resource adapter should throw a
jakarta.resource.spi.SecurityException , if the credential information contained in the Subject instance
is insufficient to perform authentication. A non-null Subject instance with no credentials is not
equivalent to a null Subject instance, since they indicate different sign-on modes, and hence the
resource adapter may handle them differently. A non-null Subject instance with no credentials may be
interpreted by the resource adapter as follows:

If the EIS requires authentication, the resource adapter should throw a
jakarta.resource.spi.SecurityException . That is, an empty or insufficient credential information is an
error.

If the EIS does not require authentication, the resource adapter does not need any security information
from the non-null Subject instance, and hence may ignore the Subject instance. This may happen due to
a disconnect between the application and the resource adapter.

10.1. Security Contract

Jakarta Connectors 139

10.1.9. ManagedConnection

A resource adapter can re-authenticate a physical connection (that is, one that already exists in the
connection pool under a different security context) to the underlying EIS. A resource adapter performs
re-authentication when an application server calls the getConnection method with a security context,
passed as a Subject instance, different from the context previously associated with the physical
connection.

If a resource adapter supports re-authentication, the matchManagedConnections method in
ManagedConnectionFactory may return a matched ManagedConnection instance with the assumption
that the ManagedConnection . getConnection method will later switch the security context through re-
authentication. Note that the matchManagedConnections method should consider a
ManagedConnection instance as immutable. There is no authentication involved in the
matchManagedConnections method.

Support for re-authentication depends on whether an underlying EIS supports the re-authentication
mechanism for existing physical connections. If a resource adapter does not support re-authentication,
the getConnection method should throw a jakarta.resource.spi.SecurityException if the passed Subject in
the getConnection method is different from the security context associated with the
ManagedConnection instance.

public interface jakarta.resource.spi.ManagedConnection {

 public Object getConnection(
 javax.security.auth.Subject subject,
 ConnectionRequestInfo cxRequestInfo)
 throws ResourceException;
 ...
}

The getConnection method returns a new connection handle. If re-authentication is successful, the
resource adapter has changed the security context of the underlying ManagedConnection instance to
that associated with the passed Subject instance.

A resource adapter has the following options for handling ManagedConnection.getConnection
invocation if it supports re-authentication:

• Option A. The resource adapter extracts the PasswordCredential instance from the Subject and
performs an EIS-specific authentication. This option is similar to option A defined in the
specification of the method createManagedConnection on the interface ManagedConnectionFactory
(refer to ManagedConnectionFactory).

• Option B. The resource adapter extracts GSSCredential instance from the Subject and manages
authentication either through the GSS mechanism or an implementation-specific mechanism. This
option is similar to option B defined in the specification of the method createManagedConnection
on the interface ManagedConnectionFactory (refer to ManagedConnectionFactory).

10.1. Security Contract

140 Jakarta Connectors

• Option C. In this case, the Subject parameter is null . The resource adapter extracts security
information from the ConnectionRequestInfo (if there is any) and performs authentication in an
implementation-specific manner. This option is similar to option C defined in the specification of
the method createManagedConnection on the interface ManagedConnectionFactory (refer to
ManagedConnectionFactory).

10.2. Requirements
The following are the requirements defined by the security contract:

10.2.1. Resource Adapter

The following are the requirements defined for a resource adapter:

• The resource adapter must support the security contract by implementing the method
ManagedConnectionFactory.createManagedConnection .

• The resource adapter is not required to support re-authentication as part of its
ManagedConnection.getConnection method implementation.

• If the security information provided by the component or the container is not adequate to
authenticate the caller, or if the security information is erroneous, the resource adapter must
throw a SecurityException to indicate the error condition.

• The resource adapter must specify its support for the security contract as part of its deployment
descriptor or through metadata annotations. The relevant deployment descriptor elements are:
authentication-mechanism , authentication-mechanism-type , reauthentication-support and
credential-interface (refer to Requirements for details). The AuthenticationMechanism annotation
described in @AuthenticationMechanism may also be used for this purpose.

10.2.2. Application Server

The following are the requirements defined for an application server:

• The application server must use the method ManagedConnectionFactory .-
createManagedConnection to pass the security context to the resource adapter during EIS sign-on.

• The application server must be capable of using options A and C as specified in
ManagedConnectionFactory for the security contract.

• The application server provides an implementation of the GSSCredential interface if the following
conditions are both true:

◦ The application server supports authentication mechanisms, specified as authentication-
mechanism-type in the deployment descriptor, other than BasicPassword mechanism. For
example, the application server should implement the GSSCredential interface to support the
kerbv5 authentication mechanism type.

◦ The application server supports the deployment of resource adapters that are capable of

10.2. Requirements

Jakarta Connectors 141

handling GSSCredential , and thereby option B as specified in ManagedConnectionFactory, as
part of the security contract.

• The application server must implement the method allocateConnection in its ConnectionManager
implementation.

• The application server must configure its use of the security contract based on the security
requirements specified by the resource adapter in its deployment descriptor. For example, if a
resource adapter specifies that it supports only BasicPassword authentication, the application
server should use the security contract to pass a PasswordCredential instance to the resource
adapter.

10.2. Requirements

142 Jakarta Connectors

Chapter 11. Work Management
This chapter specifies a contract between an application server and a resource adapter that allows a
resource adapter to do work, such as monitor network endpoints and call application components, by
submitting Work instances to an application server for execution. The application server dispatches
threads to execute submitted Work instances. This allows a resource adapter to avoid creating or
managing threads directly, provides a mechanism for a resource adapter to perform work, allows an
application server to efficiently pool threads, and have more control over its runtime environment.
The resource adapter can control the security context and transaction context with which Work
instances are executed.

11.1. Overview
Some resource adapters merely function as a passive library that executes in the context of an
application thread. They do not need to create threads explicitly to do their work. But more
sophisticated resource adapters may need threads to function properly. Such resource adapters may
use threads to listen to network endpoints, process incoming data, communicate with a network peer,
do its internal work, or dispatch calls to application components.

Even though a resource adapter may create Java threads directly and use them to do its work, an
application server may prevent it from creating threads for efficiency, security, and manageability
reasons. In such situations, a resource adapter requires a mechanism to obtain threads from an
application server to do its work.

The work management contract provides such a mechanism which allows a resource adapter to
submit Work instances to an application server for execution. The application server dispatches
threads to execute submitted Work instances. This allows a resource adapter to avoid creating or
managing threads directly, provides a mechanism for the resource adapter to do its work, and allows
an application server more control over its runtime environment.

There are several advantages in allowing an application server to manage threads instead of a
resource adapter:

• An application server is optimally designed to manage system resources such as threads. It may
pool threads and reuse them efficiently across different resource adapters deployed in its runtime
environment.

• A resource adapter may create non-daemon threads that interfere with the orderly shutdown of an
application server. It is desirable for an application server to own all the threads to exercise more
control over its runtime environment.

• Since an application server knows the overall state of its runtime environment, it may make better
decisions on granting threads to a resource adapter, and this leads to better manageability of its
runtime environment.

• An application server may need to enforce control over the runtime behavior of its system

11.1. Overview

Jakarta Connectors 143

components, including resource adapters. For example, an application server may choose to
intercept operations on a thread object, perform checks, and enforce correct behavior.

• An application server may disallow resource adapters from creating their own threads based on its
security policy setting, enforced by a security manager.

11.2. Goals
• Provide a flexible work execution model to handle the thread requirements of a resource adapter.

• Provide a mechanism for an application server to pool and reuse threads.

• Exercise more control over thread behavior in a managed environment.

11.3. Work Management Model
A resource adapter obtains a WorkManager instance from the BootstrapContext instance provided by
the application server during its deployment. The resource adapter may create Work instances to do its
work and submit them to the WorkManager along with an optional execution context for execution.

The application server has a pool of free threads waiting for a Work instance to be submitted. When a
Work instance is submitted, one of the free threads picks up the Work instance, sets up an appropriate
execution context and calls the run method on the Work instance. The application server is free to
choose an appropriate thread to execute the Work instance. There is no restriction on the number of
Work instances submitted by a resource adapter or when Work instances may be submitted. When the
run method on the Work instance completes, the application server reuses the thread.

The application server may decide to reclaim active threads based on load conditions. It calls the
release method on specific Work instances from a separate thread. This serves only as a hint to the
resource adapter to release the active thread executing the Work instance. The resource adapter
should periodically monitor such hints and do the necessary internal cleanup to avoid any
inconsistencies. It is expected that a resource adapter uses thread resources carefully and releases
them when not in use.

The application server is free to implement its own thread pooling strategy. However, the application
server must use threads of the same thread priority level to process Work instances submitted by a
specific resource adapter. This ensures that multiple threads processing Work instances from the same
resource adapter have equal claim over CPU resources. This assumption helps the resource adapter
build its own internal priority-based task queue without having to worry about thread priority levels.

11.3.1. Requirements

The application server must use threads of the same thread priority level to process Work instances
submitted by a specific resource adapter.

Work Management Contract (Object Diagram)

11.2. Goals

144 Jakarta Connectors

BootstrapContext

WorkEvent

Application Server

WorkException

getWorkManager()

workAccepted(), workStarted()

Resource Adapter

Work

WorkManager
doWork(), startWork()

scheduleWork()

run(), release()

getXid(), setXid()
ExecutionContext

WorkRejectedException

WorkListener

getTransactionTimeout()
setTransactionTimeout()

WorkCompleted
Exception

getErrorCode()

workRejected(),
workCompleted()

getType(), getWork()

getStartTime(),
getException()

Work Management Contract (Interfaces)

11.3. Work Management Model

Jakarta Connectors 145

jakarta.resource.spi.work

WorkManager
(from app server)

doWork()
startWork()
scheduleWork()

Work
extends java.lang.Runnable
(from adapter)

release()

WorkEvent
(from app server)

getType()
getWork()
getStartTime()
getExecution()

ExecutionContext
(from adapter)

getXid()
getTransactionTimeout()

WorkException
extends java.lang.Exception
(from app server)

WorkCompletedException
extends WorkException
(from app server)

WorkListener
(from adapter)

workAccepted()
workRejected()
workStarted()
workCompleted()

WorkRejectedException
extends WorkException
(from app server)

getErrorCode()
setErrorCode()

Code Example jakarta.resource.spi.work

package jakarta.resource.spi.work;

import java.util.EventObject;
import java.util.EventListener;
import javax.transaction.xa.Xid;
import jakarta.resource.ResourceException;
import jakarta.resource.NotSupportedException;

public interface Work extends Runnable {
 void release();
}

public interface WorkManager {

 long IMMEDIATE = 0L; // immediate action
 long INDEFINITE = Long.MAX_VALUE; // no time constraint
 long UNKNOWN = -1; // indicates an unknown value.

 void doWork(Work work) throws WorkException; // startTimeout = INDEFINITE

11.3. Work Management Model

146 Jakarta Connectors

 void doWork(Work work, long startTimeout, ExecutionContext ctx, WorkListener lsnr)
throws WorkException;

 long startWork(Work work) throws WorkException; // startTimeout = INDEFINITE

 long startWork(Work work, long startTimeout, ExecutionContext ctx, WorkListener lsnr)
throws WorkException;

 void scheduleWork(Work work) throws WorkException; // startTimeout = INDEFINITE

 void scheduleWork(Work work, long startTimeout, ExecutionContext ctx, WorkListener lsnr)
throws WorkException;

}

public interface WorkListener extends EventListener {

 void workAccepted(WorkEvent e);

 void workRejected(WorkEvent e);

 void workStarted(WorkEvent e);

 void workCompleted(WorkEvent e);

}

public class WorkAdapter implements WorkListener {

 public void workAccepted(WorkEvent e) {}

 public void workRejected(WorkEvent e) {}

 public void workStarted(WorkEvent e) {}

 public void workCompleted(WorkEvent e) {}

}

public class WorkEvent extends EventObject {

 public static final int WORK_ACCEPTED = 1;
 public static final int WORK_REJECTED = 2;
 public static final int WORK_STARTED = 3;
 public static final int WORK_COMPLETED = 4;

11.3. Work Management Model

Jakarta Connectors 147

 public WorkEvent(Object source, int type, Work work, WorkException exc) { ... }

 public WorkEvent(Object source, int type, Work work, WorkException exc, long
startDuration) {
... }

 public int getType() { ... }

 public Work getWork() { ... }

 public long getStartDuration() { ... }

 public WorkException getException() { ... }

}

public class ExecutionContext {

 public void setXid(xid) { ... }

 public Xid getXid() { ... }

 public long getTransactionTimeout() { ... }

 public void setTransactionTimeout(long seconds)

 throws NotSupportedException { ... }

}

public class WorkException extends ResourceException {

 // Indicates an internal error condition.
 public static final String INTERNAL = "-1";

 // Undefined error code.
 public static final String UNDEFINED = "0";

 // Indicates start timeout expiration.
 public static final String START_TIMED_OUT = "1";

 // Indicates that concurrent work within a transaction is

11.3. Work Management Model

148 Jakarta Connectors

 // disallowed.
 public static final String TX_CONCURRENT_WORK_DISALLOWED = "2";

 // Indicates a failure in recreating the specified transaction.
 public static final String TX_RECREATE_FAILED = "3";

 public WorkException() { ... }

 public WorkException(String message) { ...
 }

 public WorkException(Throwable cause) { ...
 }

 public WorkException(String message, Throwable cause) { ... }

 public String getMessage() { ... }

}

public class WorkRejectedException extends WorkException {

 public WorkRejectedException() { ... }

 public WorkRejectedException(String message)
{ ... }

 public WorkRejectedException(Throwable cause) { ... }

 public WorkRejectedException(String message, Throwable cause)
 { ... }

}

public class WorkCompletedException extends WorkException {

 public WorkCompletedException() { ... }

 public WorkCompletedException(String message) { ... }

 public WorkCompletedException(Throwable cause) { ... }

 public WorkCompletedException(String message, Throwable cause)
 { ... }

}

11.3. Work Management Model

Jakarta Connectors 149

public class RetryableUnavailableException extends UnavailableException
 implements jakarta.resource.spi.RetryableException {

}

11.3.2. Work Interface

The Work interface models a Work instance which is executed by a WorkManager upon submission.
This is implemented by a resource adapter.

public interface Work extends Runnable {

 void release();

}

• run method: The WorkManager dispatches a thread that calls the run method to begin execution of
a Work instance. The execution completes when the run method returns, with or without an
exception. The Work instance can treat the calling thread as any Java thread. However, the
application server may interpose java.lang.Thread methods and perform checks. The
WorkManager must catch any exception thrown during Work processing, which includes execution
context setup, and wrap it with a WorkCompletedException set to an appropriate error code, which
indicates the nature of the error condition.

• release method: The WorkManager may call the release method to request the active Work
instance to complete execution as soon as possible. This would be called on a separate thread than
the one currently executing the Work instance. Since this method call causes the Work instance to
be simultaneously acted upon by multiple threads, the Work instance implementation must be
thread-safe, and this method must be re-entrant.

The application server thread that calls the run method in the Work implementation must execute
with an unspecified context if no execution context has been specified, or must execute with the
specified execution context. It must have at least the same level of security permissions as that of the
resource adapter instance. Further, the application server thread that calls the run and release
methods, may or may not have access to a JNDI context.

The JNDI context of an accessing application is available to a resource adapter by way
of the thread that uses its connection object. Refer to the note in Managed Application
Scenario. The thread that accesses the connection object could be an application
thread, or, could be a Work object accessing an application component. In the latter
case, the worker thread gains access to the application’s JNDI context during the
method call on the component.

Both the run and release methods in the Work implementation may contain synchronization blocks

11.3. Work Management Model

150 Jakarta Connectors

but they must not be declared as synchronized methods.

11.3.3. WorkManager Interface

The WorkManager interface provides a mechanism to submit Work instances for execution. This is
implemented by an application server. A WorkManager instance can be obtained by calling the get
WorkManager method of the BootstrapContext instance. The BootstrapContext instance is provided by
the application server when a resource adapter instance is bootstrapped. The WorkManager instance is
not required to be unique.

This WorkManager facility frees the resource adapter from having to create Java threads directly to do
its work. Further, this allows efficient pooling of thread resources by the application server and more
control over thread usage.

public interface WorkManager {

 long IMMEDIATE = 0L; // immediate action (as soon as possible)
 long INDEFINITE = Long.MAX_VALUE; // no time constraint
 long UNKNOWN = -1; // unknown start delay duration

 // startTimeout = INDEFINITE
 void doWork(Work work) throws WorkException;

 void doWork(Work work, long startTimeout, ExecutionContext, WorkListener) throws
WorkException;

 // startTimeout = INDEFINITE
 long startWork(Work work) throws WorkException;

 long startWork(Work work, long startTimeout, ExecutionContext, WorkListener) throws
WorkException;

 // startTimeout = INDEFINITE
 void scheduleWork(Work work) throws WorkException;

 void scheduleWork(Work work, long startTimeout, ExecutionContext, WorkListener) throws
WorkException;

}

• doWork method: This call blocks until the Work instance completes execution. The application server
may execute a Work instance submitted by way of the doWork method using the same calling
thread. This method is useful to do work synchronously. For nested Work submissions, this
provides a first in, first out (FIFO) execution start ordering and last in, first out (LIFO) execution
completion ordering guarantee.

11.3. Work Management Model

Jakarta Connectors 151

• startWork method: This call blocks until the Work instance starts execution but not until its
completion. This returns the time elapsed in milliseconds from Work acceptance until the start of
execution. Note, this does not offer real-time guarantees. A value of -1 (WorkManager .UNKNOWN)
must be returned, if the actual start delay duration is unknown. This method is equivalent to the
java.lang.Thread.start method. For nested Work submissions, this provides a FIFO execution start
ordering guarantee, but no execution completion ordering guarantee.

• scheduleWork method: This call does not block and returns immediately once a Work instance has
been accepted for processing. This is useful for doing work asynchronously. This does not provide
any execution start or execution completion ordering guarantee for nested Work submissions.

The optional startTimeout parameter specifies a time duration in milliseconds within which the
execution of the Work instance must start. Otherwise, the Work instance is rejected with a
WorkRejectedException set to an appropriate error code (WorkException.START_TIMED_OUT). Note,
this does not offer real-time guarantees. The WorkManager may also indicate that the failure to accept
the Work submission is transient and that the resource adapter may retry the Work submission by
throwing the RetryableWorkRejectedException .

The optional ExecutionContext parameter provides an execution context with which the Work instance
must be executed. The execution context is represented by an ExecutionContext instance containing
context information. The resource adapter is responsible for populating the ExecutionContext instance
with an appropriate execution context. The default implementation provides a null context, that is, an
ExecutionContext instance with null values. A Work instance with null context executes with an
unspecified context.

The optional WorkListener parameter provides a callback event listener object which is notified when
the various Work processing events (work accepted, work rejected, work started, work completed)
occur. Refer to WorkListener Interface and WorkEvent Class.

The various stages in Work processing are:

11.3.3.1. Work Submit

A Work instance is being submitted for execution. The Work instance may either be accepted or
rejected with a WorkRejectedException set to an error code. A submitted Work instance, irrespective of
the mode of submission: doWork method, startWork method or scheduleWork method, does not
automatically inherit the submitter’s execution context. It executes with an unspecified execution
context if none is specified, or it executes with the specified context.

Work Processing Stages and their Outcomes

11.3. Work Management Model

152 Jakarta Connectors

work started
work completes

work completed

work rejected

work accepted

start

reject

accept

reject

11.3.3.2. Work Accepted

The submitted Work instance has been accepted for further processing. The accepted Work instance
may either start execution or may be rejected again with a WorkRejectedException set to an
appropriate error code.

There is no guarantee on when the execution starts unless a start timeout duration is specified. When a
start timeout is specified, the Work execution must be started within the specified duration, failing
which a WorkRejectedException set to an error code WorkException.TIMED_OUT is thrown. This is not
a real-time guarantee. The start delay duration is measured from the moment a Work instance is
accepted for processing.

11.3.3.3. Work Rejected

The Work instance has been rejected. The Work instance may be rejected during Work submittal or
after the Work instance has been accepted, but before Work instance starts execution. The rejection
may be due to internal factors or start timeout expiration. A WorkRejectedException with an
appropriate error code which indicates the nature of the error condition, is thrown in both cases.

Since the scheduleWork method returns after a Work instance has been accepted and does not block
until a Work instance starts, a callback event listener may be used to receive the
WorkRejectedException . See WorkListener Interface and WorkEvent Class for details.

11.3.3.4. Work Started

The execution of the Work instance has started. This means a thread has been allocated for Work
execution. But this does not guarantee that the allocated thread has been scheduled to run on a CPU
resource. Once execution is started, the allocated thread sets up an appropriate execution context and
calls the run method on the Work instance. Note, any exception thrown during execution context setup
or while executing the run method on the Work instance leads to processing completion.

11.3.3.5. Work Completed

The execution of the Work instance has been completed. The execution may complete with or without
an exception. The WorkManager must catch any exception thrown during Work processing, which
includes execution context setup, and wrap it with a WorkCompletedException set to an appropriate
error code which indicates the nature of the error condition.

11.3. Work Management Model

Jakarta Connectors 153

Since the scheduleWork method and startWork method do not block until execution completion, a
callback event listener may be used to receive the WorkCompletedException. See WorkListener
Interface and WorkEvent Class for details).

11.3.3.6. Requirements

• The application server must implement the WorkManager interface.

• The application server must allow nested Work submissions.

• Both the run and release methods must be declared as non-synchronized methods.

• When the application server is unable to recreate an execution context if it is specified for the
submitted Work instance, it must throw a WorkCompletedException set to an appropriate error
code.

• The WorkManager must catch any exception thrown during Work processing, which includes
execution context setup and wrap it with a WorkCompletedException set to an appropriate error
code.

• The application server must execute a submitted Work instance with an unspecified context if no
execution context has been specified, or must execute it with the specified execution context. That
is, a submitted Work instance must never inherit the submitter’s execution context when no
execution context is specified.

• If the application server is unable to start Work execution when a start timeout is specified for the
submitted Work instance, it must reject the Work instance with a WorkRejectedException set to
WorkException.START_TIMED_OUT.

• The application server must use a value of -1 (WorkManager .UNKNOWN) to indicate an unknown
Work start delay duration.

Blocking Durations of Various Work Submissions

Work submit Work accepted Work started Work completed

WorkRejectedException WorkCompleted-Exception

doWork()

startWork()

scheduleWork()

11.3. Work Management Model

154 Jakarta Connectors

Work Submission - Blocking Behavior (Sequence Diagram)

Work Manager
(from app server)

1. create an instance

Resource Adapter
(from adapter)

Java thread
(from app server)

Work
(from adapter)

2. doWork() [blocks until work completes]

3. dispatches a Java thread

4. setup execution context

and call run()

1. create an instance

2. startWork() [blocks until work starts (that is, a thread is allocated)]

3. dispatches a Java thread

4. setup execution context

and call run()

1. create an instance

2. scheduleWork() [blocks until work is accepted]

3. dispatches a Java thread

4. setup execution context

and call run()

11.3.4. WorkListener Interface and WorkEvent Class

The WorkListener interface is optionally implemented by the resource adapter. The WorkEvent and
WorkAdapter classes are defined by the Connector 1.5 specification. The WorkListener instance is

11.3. Work Management Model

Jakarta Connectors 155

supplied to the WorkManager during Work submittal and provides an event listener callback
mechanism in order to be notified when the various Work processing events, such as work accepted,
work rejected, work started, and work completed, occur. When a WorkListener is provided by the
resource adapter, the application server must send event notifications to the WorkListener. These
notifications may occur from any thread with an unspecified context.

public interface WorkListener extends EventListener {

 void workAccepted(workEvent);

 void workRejected(WorkEvent);

 void workStarted(WorkEvent);

 void workCompleted(WorkEvent);

}

The WorkEvent class and WorkAdapter abstract class:

11.3. Work Management Model

156 Jakarta Connectors

public class WorkEvent extends EventObject {

 public static final int WORK_ACCEPTED = 1;
 public static final int WORK_REJECTED = 2;
 public static final int WORK_STARTED = 3;
 public static final int WORK_COMPLETED = 4;

 public WorkEvent(Object source, int type, Work work, WorkException exc){ ... }

 public WorkEvent(Object source, int type, Work work, WorkException exc, long
startDuration) {
 ...
 }

 public int getType() { ... }

 public Work getWork() { ... }

 public long getStartDuration() { ... }

 public WorkException getException() { ... }

}

public abstract class WorkAdapter implements WorkListener {

 public void workAccepted(WorkEvent e) {}

 public void workRejected(WorkEvent e) {}

 public void workStarted(WorkEvent e) {}

 public void workCompleted(WorkEvent e) {}
}

The WorkEvent instance provides the following information:

• The event type.

• The source object, that is, the Work instance, on which the event initially occurred.

• A handle to the associated Work instance.

• An optional start delay duration in millisecond.

• Any exceptions that were thrown during Work processing. Possible exceptions are
WorkRejectedException , and WorkCompletedException.

11.3. Work Management Model

Jakarta Connectors 157

The type of the event determines the specific contents of a WorkEvent.

The WorkAdapter class is provided as a convenience for easily creating WorkListener instances by
extending this class and overriding only those methods of interest. This is a standard event listener
pattern used in Java APIs.

11.3.4.1. Requirements

• The WorkListener instance must not make any thread assumptions and must be thread-safe. That
is, a notification can occur from any arbitrary thread with an unspecified context.

• The application server must send Work events to the WorkListener instance, if any, provided by the
resource adapter.

• The WorkListener implementation must not make any assumptions on the ordering of
notifications.

• The application server must use a value of -1 (WorkManager .UNKNOWN) to indicate an unknown
Work start delay duration.

11.3.5. ExecutionContext Class

public class ExecutionContext \{

 public void setXid(xid) { ... }

 public Xid getXid() { ... }

 public long getTransactionTimeout() { ... }

 public void setTransactionTimeout(long seconds) throws NotSupportedException { ... }

}

The ExecutionContext class allows a resource adapter to specify an execution context, such as a
transaction context, with which the Work instance must be executed. The resource adapter is
responsible for populating the ExecutionContext instance with an appropriate execution context. The
default implementation provides a null context.

It is better for ExecutionContext to be a class rather than an interface because:

• There is no need for a resource adapter to implement this class. It is only required to implement
the context information, like transaction context.

• The resource adapter code does not have to change when the ExecutionContext class evolves. For
example, more context types could be added to the ExecutionContext class in the future without
forcing resource adapter implementations to change.

11.3. Work Management Model

158 Jakarta Connectors

Work Submission - Callback Mechanism (Sequence Diagram)

WorkManager
(from app server)

1. create an instance

Resource Adapter
(from adapter)

Work
(from adapter)

Java thread
(from app server)

Work
(from adapter)

2. create an instance

3. scheduleWork() [startWork() or doWork() may be used as well]

4. create an instance

5. workAccepted(), workRejected()

6. when Work is accepted, dispatches a thread which sets up

an execution context and calls run()

7. create an instance

8. workStarted()

9. create an instance

10. workCompleted()

11.3.6. Resource Adapter Thread Usage Recommendations

• Resource adapters are strongly recommended to use the work management contract to do work
and interact with the application server only from within a Work instance, instead of using Java
threads directly. This allows the resource adapter to be maximally portable across multiple
deployment environments with different security settings.

• Resource adapters are allowed to create Java threads directly as permitted by the server security
settings.

11.3. Work Management Model

Jakarta Connectors 159

• If a resource adapter chooses to use Java threads directly, it is recommended they use the threads
as daemon threads, as it does not interfere with an orderly shutdown of the server.

11.4. Periodic Execution of Work Instances
A resource adapter may need to periodically execute Work instances. It may use the java.util.Timer
facility available in the Java platform or may use the BootstrapContext instance provided by the
application server to obtain a Timer instance.

A resource adapter may not be able to directly create a Timer instance, if it does not have adequate
runtime permissions to create threads. This is because the Timer instance starts a background thread.
In such a case, the resource adapter can instead use the BootstrapContext instance to obtain a Timer
instance from the application server.

package jakarta.resource.spi;

import java.util.Timer;
import jakarta.resource.spi.UnavailableException;

public interface BootstrapContext {

 ... // other methods

 // returns a new or an unshared instance
 Timer createTimer() throws UnavailableException;

}

When the createTimer method of the BootstrapContext instance is invoked, the application server
provides a new Timer instance or an unshared instance (that is, no one else has a reference) with an
empty task queue. The application server must throw an UnavailableException if a Timer instance is
unavailable; the resource adapter may retry later. The application server must throw an
java.lang.UnsupportedOperationException, if it does not support the Timer service.

Sample code to illustrate periodic Work executions using a Timer instance:

11.4. Periodic Execution of Work Instances

160 Jakarta Connectors

package com.xyz.adapter;

import java.util.*;
import jakarta.resource.spi.*;
import jakarta.resource.spi.work.WorkManager;

// ResourceAdapter JavaBean
public class MyResourceAdapterImpl implements ResourceAdapter {

 BootstrapContext bootstrapCtx = null;

 public void start(BootstrapContext ctx) {
 bootstrapCtx = ctx;
 ... // other operations
 }

 ... // other methods
}

 { // sample resource adapter code snippet toshow Timer usage

 MyResourceAdapterImpl myRA = ... // getResourceAdapter JavaBean

 Timer timer = myRA.bootstrapCtx.createTimer(); // get a Timer instance

 WorkManager workManager = myRA.bootstrapCtx.getWorkManager();

 timer.schedule(
 new TimerTask () {
 public void run() {
 try {
 workManager.scheduleWork(new MyWork());
 } catch (WorkException we) {
 we.printStackTrace();
 }
 }
 }, 0, 1000); // one second interval

}

11.4.1. Illustration: Using a Work Instance to Listen on Multiple Network
Endpoints

J2SE Version 1.4 provides the java.nio package that includes a multiplexed, non-blocking I/O facility.

11.4. Periodic Execution of Work Instances

Jakarta Connectors 161

Using the java.nio package it is possible for a single thread, such as a Work instance, to listen on
multiple network endpoints or ports. Prior to the java.nio facility each network endpoint needed a
separate thread to listen to incoming data.

11.4.2. Work Management in a Non-Managed Environment

Although the work management contract is primarily intended for a managed environment, it may
still be used in a non-managed environment provided the application that bootstraps a resource
adapter instance is capable of functioning as a WorkManager .

A resource adapter is free to create Java threads as permitted by the security policy settings of the non-
managed environment.

11.4.3. Resource Adapter association

A Work or DistributableWork instance (see Distributed Work processing) may implement the
ResourceAdapterAssociation interface. The ResourceAdapterAssociation interface specifies the methods
to associate the Work instance with a ResourceAdapter JavaBean.

The application server must establish an association between the resource adapter instance and the
Work instance before the exection of the Work instance has been started (Refer Work Started).

When a Work instance has been distributed to a new WorkManager instance (for example, as in
Distributed Work processing), the resource adapter instance that is associated with the Work instance
must be available in the WorkManager instance that the Work has been distributed to. This allows the
Work instance to use application server facilities like WorkManager, MessageEndpointFactory etc that
are specific to the instance that the Work has been distributed to.

11.4.4. Distributed Work processing

An application server instance’s WorkManager may choose to distribute a Work instance submitted by
a resource adapter to another WorkManager residing in a different application server instance.
Distribution of Work processing to different instances may be done for achieving optimal utilization of
system resources or for providing better response times. These WorkManager instances may span
across multiple Java virtual machines running on the same host or different hosts.

Neither the application server nor the resource adapter must support distributed Work processing.

11.4.4.1. DistributableWork Interface

11.4. Periodic Execution of Work Instances

162 Jakarta Connectors

package jakarta.resource.spi.work;

import java.io.Serializable;

//Marker interface to indicate to the WorkManager that the
//Work may be distributed to a different WorkManager for execution

public interface DistributableWork extends Work, Serializable {

}

 Work instances that may be distributed by
a _WorkManager_ must implement the _DistributableWork_ interface. A
Work instance that implements the _DistributableWork_ interface must
not have any reference to local resource-adapter state. This allows the
WorkManager to delegate processing of the _Work_ instance to a
different _WorkManager_ instance that is running in a different Java
virtual machine.

All artifacts that may be coupled to the application server instance where the Work is executed in,
must be obtained through the ResourceAdapterAssociation mechanism discussed in Resource Adapter
association.

11.4.4.2. DistributableWorkManager Interface

package jakarta.resource.spi.work;

//Marker interface to indicate that the WorkManager supports the
//distributed processing of Work instances

public interface DistributableWorkManager extends WorkManager {

}

A WorkManager implementation that supports the submission of DistributableWork instances must
implement the DistributableWorkManager marker interface. This allows the resource adapter to
programmatically determine whether the WorkManager supports the submission of DistributableWork
instances.

When a DistributableWork instance is submitted to DistributableWorkManager , the WorkManager may
finally execute the Work instance in the context of another WorkManager instance. This WorkManager
instance may reside on a different host, process or JVM instance. This specification does not define the
communication protocol or the mechanics of how a Work instance is transmitted and handled between

11.4. Periodic Execution of Work Instances

Jakarta Connectors 163

DistributableWorkManager instances.

The application server that supports DistributableWorkManager along with inputs from the
administrator and deployer , must ensure that the environment made available to the
DistributableWork instance is consistent irrespective of whether the DistributableWork instance is
executed in a local or remote manner.

11.4.4.3. DistributableWork Submission and Processing

A resource adapter submits the DistributableWork instance to the DistributableWorkManager through
the WorkManager submission methods specified in WorkManager Interface. A
DistributableWorkManager may then distribute the submitted DistributableWork instance to another
WorkManager instance for processing as shown in the following figure.

When a DistributableWork instance is submitted to a WorkManager that does not implement
DistributableWorkManager interface, the WorkManager must execute the Work locally.

Although it is recommended for a DistributableWorkManager to process all Work submissions in a
distributed fashion, the DistributableWorkManager may execute a Work submitted through doWork()
locally. When a WorkListener is provided by the resource adapter during Work submission, the
application server must send event notifications to the WorkListener . (see WorkListener Interface and
WorkEvent Class).

A DistributableWork instance may also use the mechanisms described in Generic Work Context and
Security Inflow (see Generic Work Context and Security Inflow) chapters to control the execution
context of the Work instance. A DistributableWorkManager must support the requirements in Generic
Work Context and Security Inflow.

Distributed Work submission and processing (Sequence Diagram)

11.4. Periodic Execution of Work Instances

164 Jakarta Connectors

DistributableWork
Manager (from app server)

1. create an instance

Resource Adapter
(from adapter)

Java thread
(from app server)

Another Work
Manager instance

2. scheduleWork()

3. distribute Work to another application server instance

4. setup execution context

and call run()

DistributableWork
(from adapter)

11.4. Periodic Execution of Work Instances

Jakarta Connectors 165

Chapter 12. Generic Work Context
This chapter specifies a contract between an application server and a resource adapter that enables a
resource adapter to control the execution context of a Work instance that it has submitted to the
application server for execution. To propagate an imported context to the application server, the
resource adapter submits a Work instance that implements the WorkContextProvider interface. The
application server then establishes the provided context as the execution context of the Work instance
during its execution. The WorkContext model is designed to be generic so that a resource adapter can
flow in different types of contextual information apart from the standard transaction and security
WorkContexts defined in this chapter. For more information about Work management, see Work
Management.

12.1. Overview
The Work Management contract between the application server and a resource adapter enables a
resource adapter to do a task, such as communicating with the Enterprise Information System (EIS) or
delivering messages, by delivering Work instances for execution. The Transaction Inflow contract
builds upon the interfaces defined in the Work Management contract as described in Chapter 15,
“Transaction Inflow“. The contract enables the resource adapter to propagate an imported transaction
from the EIS to an application server, so that the application server and subsequent participants can
do work as part of the imported transaction.

The Generic Work Context Contract provides the mechanism for a resource adapter to augment the
runtime context of a Work instance with additional contextual information flown-in from the EIS. This
contract enables a resource adapter to control, in a more flexible manner, the contexts in which the
Work instances it submits are executed by the application server’s WorkManager .

A Generic Work context mechanism also enables an application server to support new message inflow
and delivery schemes. It also provides a richer contextual Work execution environment to the resource
adapter while still maintaining control over concurrent behavior in a managed environment.

Note that the application server is required to support the standard context types listed in Standard
and Custom Work Contexts.

12.2. Goals
The goals of the Generic Work Context Contract are:

• To provide a standard mechanism for a resource adapter to propagate an imported context to an
application server.

• To make the existing execution context mechanisms extensible and to provide better metadata to
both the application server and the resource adapter of new work context types.

• To design the work context contracts to be independent of the Connectors Work Management

12.1. Overview

166 Jakarta Connectors

Contract so as to enable the resource adapter to use such contexts in other asynchronous task
execution approaches. For more information on Work Management, see Chapter 10, “Work
Management“.

• To standardize the most commonly used work contexts, such as Transaction Work Context and
Security Work Context. See Security Inflow.

• To be backward compatible with the existing Work submission and context assignment model
described in Work Management.

• To enable an application server to support new message inflow and delivery schemes and provide
a richer contextual Work execution environment to the resource adapter while still maintaining
control over concurrent behavior in a managed environment.

12.3. Generic Work Context Model
In this chapter all references to WorkManager should be read as references applicable to the
Connector WorkManager . See WorkManager Interface.

When a Work is submitted by a resource adapter to a WorkManager to be executed asynchronously,
one of the free threads picks up the Work instance, sets up an appropriate execution context and then
calls the run method on the Work instance. See Work Management Model for more information on
how a Work instance is handled by a WorkManager .

A resource adapter submits a Work instance that implements WorkContextProvider . The
WorkContextProvider interface indicates to the application server’s WorkManager that the resource
adapter requires additional work contexts to be established in the execution context during Work
execution.

When one of the free threads from the application server’s thread pool picks up the Work instance, if
the Work instance implements WorkContextProvider interface, it iterates through the collection of
WorkContext s provided by the Work instance and establishes the contextual information provided by
the WorkContext s as the execution context of the Work instance. It then calls the run method to
execute the Work instance.

The application server is free to use the WorkContext during context assignment in any order. The
resource adapter must not assume an order in the handling of the WorkContext s.

12.3.1. Standard and Custom Work Contexts

Certain EIS integration use cases require the propagation of other contextual information, apart from
Transactions, from the EIS to the application server. For example, a resource adapter might require the
propagation of security context information from the EIS to the application server during inbound
message delivery. The resource adapter might also require the execution of Work instances in the
context of the "flown-in" Security information. Other use cases that require the flowing in of contextual
information are:

12.3. Generic Work Context Model

Jakarta Connectors 167

• Scenarios where an EIS requires a “conversational” programming model with a MessageEndpoint
and the resource adapter is required to propagate "correlation" information to the
MessageEndpoint container to enable the application server to set up or re-create the necessary
state in the MessageEndpoint to maintain conversational session state.

• Propagating Availability or Quality-of-Service (QoS) related hints or metadata from the EIS so that
the application server WorkManager can execute the Work instance by leveraging those hints.

Transaction and Security work contexts are standardized by means of the TransactionContext and
SecurityContext interfaces. The propagation of Quality-of-Service hints to a WorkManager for the
execution of a Work instance is standardized through the HintsContext class. The application server
must support these three work contexts. A portable resource adapter can assume an application
server’s support for these three work contexts defined in the specification. The specification may
define additional context types in a future version of the specification.

An application server or a resource adapter may define and use custom WorkContext s. However a
resource adapter using these custom WorkContext s is non-portable and might not function as
expected in other application servers that do not implement the custom WorkContext . See Checking
Support for a WorkContext Type for a discussion about how resource adapters can check with the
WorkContext s supported by the application server.

12.3.2. Requirements

• The application server must support the establishment of TransactionContext , SecurityContext ,
and HintsContext contexts.

• The application server must support the WorkContext interface. If a resource adapter submits a
Work instance implementing the WorkContextProvider interface, the application server must use
the WorkContext s provided by the resource adapter to assign the execution context for that Work
instance.

Generic Work Context (Object Diagram)

12.3. Generic Work Context Model

168 Jakarta Connectors

BootstrapContext

Application Server

getWorkManager()

Resource Adapter

Work

WorkManager
doWork(), startWork()

scheduleWork()

run(), release()

getWorkContexts()
WorkContextProvider

WorkContext

WorkContextErrorCodes

getName(),
getDescription()

getXID()
TransactionContext

WorkContextLifecycle
Listener

getTransactionTimeout()

contextSetupComplete()

contextSetupFalled()

Generic Work Context (Interfaces)

12.3. Generic Work Context Model

Jakarta Connectors 169

jakarta.resource.spi.work

WorkManager
(from app server)

doWork()
startWork()
scheduleWork()

WorkContextProvider
(from adapter)

getWorkContexts()

WorkContextErorCodes
(from app server)

WorkContext
(from adapter)

getName()
getDescription()

WorkContextLifecycle-
Listener
(from adapter)

TransactionContext

implements WorkContext

extends ExecutionContext

(from app server)

contextSetupComplete()
contextSetupFailed()

jakarta.resource.spi.work

 package jakarta.resource.spi.work;

 public interface WorkContextProvider extends Serializable {

 List<WorkContext> getWorkContexts();

 }

 public interface WorkContext extends Serializable{

 String getName();

 String getDescription();

 }

 public class TransactionContext extends ExecutionContext implements WorkContext {

 public TransactionContext(Xid xid) { ... }

 public TransactionContext(Xid xid, long timeout){ ... }

 public String getName(){
 return "TransactionContext";

12.3. Generic Work Context Model

170 Jakarta Connectors

 }

 // ... other methods

 }

 public abstract class SecurityContext implements WorkContext {

 public String getName(){
 return "SecurityContext";
 }

 // other SecurityContext related methods

 }

 public class WorkContextErrorCodes {

 // Indicates an unsuppored context type
 public static final String UNSUPPORTED_CONTEXT_TYPE = "1";

 // Indicates more than one contexts
 // of the same type passed in for Work
 public static final String DUPLICATE_CONTEXTS = "2";

 // Indicates failure in recreating the WorkContext
 public static final String CONTEXT_SETUP_FAILED = "3";

 // Indicates that the container cannot support
 // recreating the context
 public static final String CONTEXT_SETUP_UNSUPPORTED = "4";

 }

 public interface WorkContextLifecycleListener {

 // indicates that the WorkContext was set successfully
 void contextSetupComplete();

 // Indicates that the WorkContext setup failed
 void contextSetupFailed(String errorCode);

 }

12.3. Generic Work Context Model

Jakarta Connectors 171

12.4. WorkContextProvider and WorkContext Interface
The WorkContext interface illustrates execution context information of a particular type. This
specification standardizes two WorkContext types: the TransactionContext class and SecurityContext
class, to represent the transaction and security context with which the Work instance must be executed
respectively. For more information on these classes, see TransactionContext Class and SecurityContext
Class.

The getName() and getDescription() methods may be used by the resource adapter developer and the
application server for debugging purposes.

 package jakarta.resource.spi.work;

 public interface WorkContext extends
Serializable{

 String getName();

 String getDescription();

 }

Additional work contexts, based on specific EIS integration scenarios could be supported by an
application server and the resource adapter may use them.

The WorkContextProvider interface is an optional interface implemented by a Work instance to
indicate to the WorkManager , or its equivalent in other thread pooling implementations, that the task
encapsulated as the Work instance requires to be run with a specialized execution context.

 package jakarta.resource.spi.work;

 public interface WorkContextProvider extends
Serializable {

 List<WorkContext> getWorkContexts();

 }

When a resource adapter is required to control the execution context in which a Work instance is
executed, it creates a Work instance that implements WorkContextProvider . The Work instance
provides an implementation of the getWorkContexts method to return a List of WorkContext s that the
Work instance requires established as its execution context prior to execution.

When a Work that implements WorkContextProvider is submitted to the WorkManager for execution,

12.4. WorkContextProvider and WorkContext Interface

172 Jakarta Connectors

one of the free threads in the thread pooling implementation of the application server picks up the
Work for execution. The WorkManager makes a call to getWorkContexts to obtain the WorkContext s
that is required to be set as the execution context for the Work instance, iterates through the returned
List of WorkContext s, and sets them up as the execution context in which the Work instance is
executed in.

If the resource adapter returns a null or an empty List when the WorkManager makes a call to the
getWorkContexts method, the WorkManager must treat it as if no additional execution contexts are
associated with that Work instance and must continue with the Work processing.

When the container’s thread has completed the handling of the Work instance, it must cleanup all the
contextual information associated with that Work instance so that when the thread is reused for
another Work instance, the previous contextual information is not established for the new Work
instance.

The resource adapter must not make any changes to the state of a WorkContext after the Work instance
that is associated with that WorkContext has been submitted to the WorkManager .

Because nested Work submissions are allowed in the Connector WorkManager , the Connector
WorkManager must support nested contexts unless the WorkContext type prohibits them. See
WorkManager Interface for more information on nested Work submission related requirements.

WorkContext establishment during Work submission(Sequence Diagram)

12.4. WorkContextProvider and WorkContext Interface

Jakarta Connectors 173

Work Manager
(from app server)

1. create an instance

Resource Adapter
(from adapter)

Work
(from adapter)

Work
(from adapter)

2. scheduleWork() (startWork() or doWork() may be used as well)

[if Work implements WorkContextProvider]

6. after establishing the execution context, call run()

5. get context information

3. when Work is accepted, dispatch a free
thread and establish execution context

opt

4. getWorkContexts() from Work

loop

[for each WorkContext]

and recreate imported transaction in application server

12.4.1. Indicating Support for a WorkContext Type

A resource adapter provider can declare that it requires a list of WorkContext types to be supported by
the application server through the required-work-context element in the deployment descriptor of the
resource adapter (see Resource Adapter Provider) or by way of the Connector annotation (see
@Connector).

The application server must check whether all of the WorkContext types declared by the resource
adapter are supported by the application server during resource adapter deployment. The application
server must employ an exact type equality check (by using java.lang.Class.equals(java.lang.Class)) to
check for the support.

If the application server cannot support one or more of the WorkContext types declared in required-
work-context elements, it must fail deployment of the resource adapter.

12.4. WorkContextProvider and WorkContext Interface

174 Jakarta Connectors

12.4.2. Checking Support for a WorkContext Type

A resource adapter can check an application server’s support for a particular WorkContext type
through the isContextSupported() method in the BootstrapContext implementation provided by the
application server. This mechanism enables a resource adapter developer to dynamically change the
WorkContext s based on the support provided by the application server. For more information, see
ResourceAdapter JavaBean and Bootstrapping a Resource Adapter Instance.

 public interface BootstrapContext {

 // ... other operations

 boolean isContextSupported(Class<? extends WorkContext> workContextClass);
 }

The application server must employ an exact type equality check (by using
java.lang.Class.equals(java.lang.Class)) in isContextSupported , to check whether it supports the
WorkContext type provided by the resource adapter. This method must be idempotent, that is, all calls
to this method by a resource adapter for a particular WorkContext type must return the same Boolean
value throughout the lifecycle of that resource adapter instance.

This exact type check in isContextSupported enables a resource adapter to decide whether the
application server supports the contexts that the resource adapter is attempting to establish for a Work
instance. If a particular WorkContext class is not supported by the application server a resource
adapter may then either choose to fall back to a superclass that is supported by the application server
(again ascertained by way of the isContextSupported method) or fail the Work submission.

For WorkContext classes that are defined as abstract classes, such as SecurityContext , the resource
adapter must use the abstract class while invoking the isContextSupported method and not its
implementation class. For more information on SecurityContext class, see SecurityContext Class

For custom extensions of the standard WorkContext s, the resource adapter must always check support
for the most specific WorkContext first. It may then go up the inheritance hierarchy in order to find the
most specific WorkContext type supported by the application server.

12.4.3. Handling Errors During Context Assignment

As specified in WorkListener Interface and WorkEvent Class, the WorkManager must catch any
exception thrown during Work processing, which includes execution context setup (including
Checking Support for a WorkContext Type), and wrap it with a WorkCompletedException set to an
appropriate error code defined in WorkContextErrorCodes , which indicates the nature of the error
condition.

12.4. WorkContextProvider and WorkContext Interface

Jakarta Connectors 175

 public class WorkContextErrorCodes \{

 // Indicates an unsupported context type
 public static final String UNSUPPORTED_CONTEXT_TYPE = "1";

 // Indicates more than one contexts of the same type passed
 // in for Work
 public static final String DUPLICATE_CONTEXTS = "2";

 // Indicates failure in recreating the WorkContext
 public static final String CONTEXT_SETUP_FAILED = "3";

 // Indicates that the container cannot support recreating
 // the context
 public static final String CONTEXT_SETUP_UNSUPPORTED = "4";

 }

The application server must make the following checks during context assignment

• Because not all WorkContext instances provided by the resource adapter might be supported by the
application server, the application server must ensure that the WorkContext s provided by the
resource adapter are supported by the application server.

• The application server must also ensure that the WorkContext s provided by the resource adapter
do not have duplicates. For instance, a resource adapter must not be able to submit two instances
of the TransactionContext class. The application server must ensure that only one WorkContext
provided by the resource adapter implements the same WorkContext type supported by the
application server. If duplicates are detected, the application server must fail the Work submission
with a WorkCompletedException set to the DUPLICATE_CONTEXTS error code.

The check for support and duplicates during context assignment listed above, must be less strict than
the checks described in Indicating Support for a WorkContext Type and Checking Support for a
WorkContext Type. The application server must employ a java.lang.Class.isAssignable(java.lang.Class)
style check. Specifically, this method must check whether a WorkContext class that is supported by the
application server can be converted to the type provided by the resource adapter, by way of an identity
conversion or a widening reference conversion.

If a particular WorkContext type provided by the resource adapter is supported by the application
server, the application server must use the WorkContext as-is and not attempt to use it as a supported
parent type. That is, an application server must use the most specific WorkContext type it supports.

If a particular WorkContext type provided by the resource adapter is not supported by the application
server, the application server should be able to safely fallback to a superclass (excluding the
WorkContext interface) that is supported by it.

12.4. WorkContextProvider and WorkContext Interface

176 Jakarta Connectors

If the above conditions are not met, the application server must fail the Work processing with a
WorkCompletedException with an appropriate error code to indicate the nature of the error condition.
Because the WorkCompletedException might not provide a resource adapter with adequate
information about the actual failure during context assignment, the resource adapter may implement
the WorkContextLifecycleListener to interpret the reasons why a context assignment of a particular
WorkContext instance failed. For more information, see Section 11.7 “WorkContextLifecycleListener
Interface”

12.5. TransactionContext Class
The TransactionContext class extends the ExecutionContext class, as described in ExecutionContext
Class. It represents the standard interface a resource adapter can use to propagate transaction context
information from the EIS to the application server. The Work instance and any message deliveries to
MessageEndpoint s in that Work instance must all be carried out in the transaction context provided by
the TransactionContext class.

 public class TransactionContext extends ExecutionContext implements WorkContext {

 public TransactionContext(Xid xid) {..}

 public TransactionContext(Xid xid, long timeout) {..}

 public String getDescription() {
 return "Transaction Context";
 }

 public String getName() {
 return "TransactionContext";
 }

 }

For a resource adapter, using the WorkContextProvider interface to effect transaction inflow is optional
but recommended. A resource adapter could still continue to use the existing Work submission
approach with an ExecutionContext and an application server must support this model as well.

A resource adapter must not submit a Work instance that implements WorkContextProvider along with
a valid ExecutionContext to a Connector WorkManager . When such a Work instance is submitted to the
Connector WorkManager for execution, the application server must detect this scenario and throw a
WorkRejectedException to indicate this error scenario. A resource adapter however, could choose to
use a null value for the ExecutionContext parameter in Connector WorkManager methods that takes an
ExecutionContext as an argument.

12.5. TransactionContext Class

Jakarta Connectors 177

12.6. HintsContext Interface
An application server’s WorkManager implementation may allow a Work instance to provide, during
Work submission, application-server specific hints to control the quality-of-service (QoS)
characteristics afforded to it by the WorkManager . These hints provide guidelines to the WorkManager
about how the Work instance is to be distributed or processed.

The HintsContext is a standard WorkContext defined in this specification. It provides a mechanism for
the resource adapter to pass quality-of-service metadata to the WorkManager during the submission of
a Work instance. The application server may then use the specified hints to control the execution of the
Work instance.

12.6. HintsContext Interface

178 Jakarta Connectors

 public class HintsContext implements WorkContext {

 protected String description = "Hints Context";
 protected String name = "HintsContext";

 public String getDescription() {
 return description;
 }

 public String getName() {
 return name;
 }

 public void setDescription(String description){
 this.description = description;
 }

 public void setName(String name){
 this.name = name;
 }

 Map<String, Serializable> hints = new HashMap<String, Serializable>();

 public void setHint(String hintName, Serializable value) {
 hints.put(hintName, value);
 }

 public Map<String, Serializable> getHints() {
 return hints;
 }

 }

The resource adapter may use an instance of the standard HintsContext class to specify to the
WorkManager the hints that need to be used during the processing of the Work instance.

The resource adapter may use the setHint method to set a hint in the context. It must use a non-null
hintName while calling the setHint method.

This specification defines only a limited set of standard quality-of-service attributes (that is, hint
names) in Standard Hints. The application server is not required to support the standard hint names.

The specification reserves the right to use names with the prefix jakarta.resource. in future versions of
the specification. Resource adapters and application servers must not use names with the

12.6. HintsContext Interface

Jakarta Connectors 179

jakarta.resource. prefix for their custom requirements. The specification also recommends that
resource adapter providers choose hintNames using the same rules that they use for Class names.

The WorkManager must reject the establishment of the HintsContext if the values provided for the
hints are not valid. The WorkManager must ignore any unknown hint names submitted by a resource
adapter instance. Configuration tools provided by the application server implementation may be used
by the resource adapter deployer to override or map the hint name-value pairs provided by the
resource adapter developer.

12.6.1. Standard Hints

12.6.1.1. Work Name Hint

The resource adapter may use the string jakarta.resource.Name , defined as a constant in
HintsContext.NAME_HINT , as the hintName to indicate a name for a Work instance. This hintName
may be used by the resource adapter and the application server for enhanced logging and debugging
purposes. The value for the hint must be a valid java.lang.String .

12.6.1.2. Long-running Work instance Hint

The resource adapter may use the String jakarta.resource.LongRunning , defined as a constant in
HintsContext.LONGRUNNING_HINT , as the hintName to indicate that a Work instance might run for a
long period of time (typically lasting throughout the lifecycle of the resource adapter instance)
compared to regular tasks that have a shorter execution lifecycle. The value of the hint must be a valid
boolean value (true or false).

For example, the resource adapter might employ this hint for a Work instance that maintains network
connectivity to the EIS instance throughout the lifecycle of the resource adapter.

A WorkManager that supports this hintName may handle such long running tasks in a separate thread
pool or manage and monitor such tasks in a different fashion compared to regular short running tasks.
This type of WorkManager must provide the same Work submission and processing semantics to Work
instances submitted with or without this hint.

12.7. WorkContextLifecycleListener Interface
A WorkContext implementation may implement the WorkContextLifecycleListener interface to get fine-
grained notifications (along with error codes, if any) while the WorkManager sets up the execution
context for a Work instance.

12.7. WorkContextLifecycleListener Interface

180 Jakarta Connectors

 public interface WorkContextLifecycleListener {

 // Indicates that the WorkContext was set successfully
 void contextSetupComplete();

 // Indicates that the WorkContext setup failed
 void contextSetupFailed(String errorCode);

 }

When a WorkManager sets up the execution context of a Work instance that implements
WorkContextProvider , the WorkManager must make the relevant lifecycle notifications if a
WorkContext instance implements this interface. The possible error conditions that might occur while
associating a WorkContext with a Work instance is captured in WorkContextErrorCodes . The
WorkManager must call the contextSetupFailed method with the appropriate error code in
WorkContextErrorCodes .

When a Work instance is submitted to the Connector WorkManager using one of the methods that
passes in a WorkListener as a parameter, the WorkManager must send Work related notifications to the
WorkListener and WorkContext setup-related notifications to the WorkContextLifecycleListener
interface.

The WorkManager must make the notifications related to Work accepted and started events prior to
calling the WorkContext setup related notifications. The order of setup-related notifications of
WorkContext types within a list of work contexts of a Work instance is undefined. The WorkManager
must make the notifications related to the Work completed events after the WorkContext setup related
notifications.

Generic Work Context Lifecycle listener callback (Sequence Diagram)

12.7. WorkContextLifecycleListener Interface

Jakarta Connectors 181

Work
(from RA)

1. create an instance

Work Manager
(from server)

Work
(from adapter)

Work
(from adapter)

2. scheduleWork() [startWork() or doWork() may be used as well]

[if Work implements WorkContextProvider]

9. after establishing the execution context, call run()

7. get context information

3. workAccepted() or workRejected()

opt

5. workStarted()

loop

[for each WorkContext]

and recreate context in application server

4. when Work is accepted, dispatch a free thread and establish context
for the WorkInstance

6. getWorkContexts() from Work

8. call contextSetupComplete()

12.8. Illustrative Example
Use Case Scenario, provides details on use case scenarios where the Transaction Inflow contracts
defined in Transaction Inflow are employed. As an example implementing one of the use cases listed
there, let’s consider Wombat Systems, a finance company that has a variety of software systems as part
of its enterprise infrastructure. The software systems include databases, messaging middleware, and
mainframe systems, as well as several Jakarta EE application servers that host business logic written as
Jakarta Enterprise Beans (session, entity, and message-driven beans).

In order to integrate the various disparate software systems, and to allow them to communicate with
each other, Wombat Systems did the following:

• Used the application servers to hold the integration as well as business logic, developed as Jakarta
Enterprise Beans

12.8. Illustrative Example

182 Jakarta Connectors

• Purchased or built resource adapters and deployed them on the application servers in order to
provide bidirectional connectivity between the applications residing on the application servers and
the various software systems

A particular situation at Wombat Systems requires that the work done by the application components
during a message inflow be automatically enlisted as part of the imported transaction. The resource
adapter developer then leverages the interfaces defined in the Transaction Inflow portion of the
Connector specification, and achieves the flow-in of transactional context from the EIS to the
application server.

The resource adapter constructs a Work instance that is expected to do work as part of the
transactional message. It also creates an ExecutionContext instance containing the constructed Xid , as
detailed in Processing of Transactional Calls. However, because the resource adapter has to execute the
Work instance with other Work contexts as well, it uses a Work implementation that implements the
WorkContextProvider interface, as shown below.

12.8. Illustrative Example

Jakarta Connectors 183

 public class MyResourceAdapterImpl implements ResourceAdapter {

 ...

 public void start(BootstrapContext ctx) {
 bootstrapCtx = ctx;
 }

 ...

 {

 WorkManager workManager = myRA.bootstrapCtx.getWorkManager();
 workManager.scheduleWork(new MyWork());

 ...

 }

 }

 public class MyWork implements Work, WorkContextProvider {

 void release(){ ..}

 List<WorkContext> getWorkContexts() {

 TransactionContext txIn = new TransactionContext(xid);
 List<WorkContext> icList = new ArrayList<WorkContext>();
 icList.add(txIn);

 // Add additional WorkContexts
 return icList;

 }

 void run(){
 // Deliver message to MessageEndpoint;
 }

 }

12.8. Illustrative Example

184 Jakarta Connectors

When this instance of MyWork that implements WorkContextProvider is submitted to the
WorkManager for execution, one of the free threads in the thread-pooling implementation of the
application server picks up the Work for execution. The WorkManager then obtains the WorkContext s
(through a call to getWorkContexts method) that need to be set as the execution context for the Work
instance, iterates through the returned WorkContext s, and sets them up as the execution context in
which the Work instance is executed in.

Because an instance of TransactionContext is set, the application server’s WorkManager accepts the
submitted Work instance, and re-creates the transaction execution context. That is, the work to be done
is enlisted as part of the imported transaction. It then calls the run method on the Work object. When
the Work ’s run method is called, all deliveries to the MessageEndpoint runs under the transaction
context of the Work instance, depending on the transaction preference of the bean method that is
being invoked.

12.8. Illustrative Example

Jakarta Connectors 185

Chapter 13. Inbound Communicaton
This chapter provides a high level description of the inbound communication model; that is, the
communication from an EIS to an application residing in an application server’s Jakarta Enterprise
Beans container through a resource adapter. This also introduces concepts used in subsequent
chapters related to inbound communication: Message Inflow Message Inflow, Jakarta Enterprise Beans
Invocation Jakarta Enterprise Beans Invocation, and Transaction Inflow Transaction Inflow).

13.1. Overview
In the inbound communication model, the EIS initiates all communication to an application. In this
case, the application may be composed of Jakarta Enterprise Beans (session, entity and message-driven
beans) and resides in a Jakarta Enterprise Beans container.

Inbound Communication Model

Application
server

Resource
Adapter

EIS
Inbound communication

Application

contract
session, entity,
message-driven
beans

In order to enable inbound communication, a mechanism to invoke Jakarta Enterprise Beans (session,
entity and message-driven beans) from a resource adapter is necessary. Further, a mechanism is
needed to propagate transaction information from an EIS to an application residing in a Jakarta
Enterprise Beans container.

Message Inflow describes a mechanism to invoke message-driven beans from a resource adapter.
Transaction Inflow provides a mechanism to import transaction information from an EIS into a Jakarta
Enterprise Beans container.

13.2. An Illustrative Use Case
Wombat Systems is a finance company which has a variety of software systems as part of its enterprise
infrastructure. The software systems include databases, enterprise resource planning (ERP) and
customer relationship management (CRM) systems, messaging middleware, mainframe systems, as
well as several Jakarta EE application servers which host business logic written as Jakarta Enterprise
Beans (session, entity and message-driven beans). Further, there are web service interactions that
occur as part of the overall corporate workflow.

Inbound Communication Model (an Illustrative Use Case)

13.1. Overview

186 Jakarta Connectors

Outbound Resource Adapters

<interface>

Inbound Resource Adapters

message-drven
beans

session
beans

entity
beans

Application Application Server

Inbound contracts

Outbound contracts

Database
Systems

ERP
Systems

Message
Publishers

Message
Publishers

Web Service
Endpoints

corporate firewall boundary SOAP / HTTP / HTTPS

same address space

corporate firewall boundary

Message
Publishers

Web Service
Endpoints

SOAP / HTTP / HTTPS

ERP
Systems

CRM
Systems

Message
Providers

In order to integrate the various disparate software systems, and to allow them to communicate with
each other, Wombat Systems did the following:

• Used the application servers to hold the integration as well as business logic, developed as Jakarta
Enterprise Beans.

• Purchased resource adapters and deployed them on the application servers, in order to provide bi-
directional connectivity between the applications residing on the application servers and the
various software systems.

Thus, using the resource adapter as a connectivity enabler, Wombat Systems was able to integrate the
disparate software systems in its enterprise infrastructure.

13.2. An Illustrative Use Case

Jakarta Connectors 187

Chapter 14. Message Inflow
This chapter specifies a standard, generic contract between an application server and a resource
adapter that allows a resource adapter to asynchronously deliver messages to message endpoints
residing in the application server independent of the specific messaging style, messaging semantics
and messaging infrastructure used to deliver messages. This contract also serves as the standard
message provider pluggability contract that allows a wide range of message providers to be plugged
into any Jakarta EE compatible application server through a resource adapter.

Note that the usage of the term “Endpoint” in this chapter refers to a message endpoint (for example, a
message-driven application).

14.1. Overview
Asynchronous message delivery or event notification is a widely used application communication
paradigm. Some of the characteristics of the asynchronous message-based communication paradigm
are:

• The message producer may not be directly aware of message consumers. There may be one or
more consumers interested in the message.

• Message delivery is solicited; that is, a message consumer has to express interest in receiving
messages.

• The messaging infrastructure is type-agnostic; that is, it treats messages as a Binary Large Object
(BLOB). It stores and routes messages reliably, to interested messsage consumers, depending on
Quality-of-Service (QoS) capabilities.

• The interaction is inherently loosely coupled. The message producer and the consumer do not
share any execution context.

• The message producer generally is not interested in the outcome of message processing by
consumers. However, it is possible that the provider may care to detect if the message has been
consumed or not.

• The message delivery always involves a message routing infrastructure, which offers varying QoS
capabilities for storing (persistence) and routing messages reliably.

The Jakarta EE application programming model offers a rich set of components: Jakarta Enterprise
Beans (session, entity and message-driven beans), JSPs, and servlets for applications to use. The
message-driven bean is an asynchronous message consumer, or message endpoint.

Jakarta EE applications may use two different patterns to interact with a message provider:

• It may directly use specific messaging APIs, such as Jakarta Messaging, to send and synchronously
receive messages. This is achieved using the standard connector contracts for connection
management. See Connection Management. Any message provider may provide a connector
resource adapter that supplies connection objects for use by applications to send and

14.1. Overview

188 Jakarta Connectors

synchronously receive messages using the specific messaging API.

• It may use message-driven beans to asynchronously receive messages through a message provider.
The Jakarta Enterprise Beans specification (see Jakarta™ Enterprise Beans Specification, Version
4.0) describes the message-driven bean component contract in detail.

While the above patterns allow a Jakarta EE application to send and receive messages, they do not
provide a standard system-level contract to plugin message providers to an application server and to
deliver messages to message endpoints, or message-driven beans, residing in the application server.
Without a standard pluggability contract, an application server would have to use special contracts to
interact with various message providers, and a message provider has to do the same to interact with
different application servers, which is an m x n problem.

Message Inflow Contract

Application
server

Resource
Adapter

Message inflow
Application

contract

EISMessage
Provider

Thus, there is a need for a standard, generic contract between an application server and a message
provider which allows a message provider to deliver messages to message endpoints (message-driven
beans) residing in the application server independent of the specific messaging style, messaging
semantics, and messaging infrastructure used to deliver messages. Such a contract also serves as the
standard message provider pluggability contract which allows a wide range of message providers to be
plugged into any Jakarta EE compatible application server by way of a resource adapter.

14.2. Goals
• Provide a standard, generic mechanism to plug in a wide range of message providers, including

Jakarta Messaging, into a Jakarta EE compatible application server through a resource adapter and
dispatch messages to message endpoints. This will allow Jakarta EE components to act as
consumers of messages with no required changes to the client programming models. Further, the
Jakarta EE components will be able to access messages with no awareness that a resource adapter
is delivering the message.

• This generic contract must be capable of supporting various messaging delivery guarantees
provided by different messaging styles, as well as allow concurrent delivery of messages.

14.3. Message Inflow Model
Message Inflow Contract (Object Diagram)

14.2. Goals

Jakarta Connectors 189

UnavailableException

Application Server Resource Adapter

Message object

MessageEndpoint-
Factory

createEndpoint(XAResource)

isDeliveryTransacted()

message delivery calls

workAccepted(), workStarted()
XAResource

NotSupported-
Exception

Resource Adapter
endpointActivation()

endpointDeactivation()

MessageEndpoint

ActivationSpec

Message Inflow Contract (Interfaces)

14.3. Message Inflow Model

190 Jakarta Connectors

jakarta.resource.spi.work

ResourceAdapter
(from adapter)

endpointActivation()
endpointDeactivation()
getXAResources()

ActivationSpec
(from adapter)

InvalidPropertyException
(from adapter)

getInvalidPropertyDescriptors()
setInvalidPropertyDescriptors()

jakarta.resource.spi.endpoint

WorkManager
(from app server)

createEndpoint()
isDeliveryTransacted()

MessageEndpoint
(from app server)

jakarta.resource

NonSupportedException
(from adapter)

validate()

UnavailableException
(from app server)

beforeDelivery()
afterDelivery()
release()

jakarta.resource.spi

package jakarta.resource.spi;

import java.beans.PropertyDescriptor;
import jakarta.resource.NotSupportedException;
import jakarta.resource.spi.endpoint.MessageEndpointFactory;

public interface ResourceAdapter {

 ... // other methods

 void endpointActivation(MessageEndpointFactory, ActivationSpec) throws
ResourceException;

 void endpointDeactivation(MessageEndpointFactory, ActivationSpec);

 XAResource[] getXAResources(ActivationSpec[] specs) throws ResourceException;
}

public interface ActivationSpec { // JavaBean

 void validate() throws InvalidPropertyException;

14.3. Message Inflow Model

Jakarta Connectors 191

}

public class InvalidPropertyException extends ResourceException {

 public InvalidPropertyException() { ... }

 public InvalidPropertyException(String message) { ... }

 public InvalidPropertyException(String message, String errorCode) { ... }

 public void setInvalidPropertyDescriptors(PropertyDescriptor[] invalidProperties) {
 ...
 }

 public PropertyDescriptor[] getInvalidPropertyDescriptors() {
 ...
 }
}

public class UnavailableException extends ResourceException {

 public UnavailableException() { ... }

 public UnavailableException(String message)
 { ... }

 public UnavailableException(Throwable cause)
 { ... }

 public UnavailableException(String message, Throwable cause) {
 ...
 }

}

public class RetryableUnavailableException extends UnavailableException
 implements jakarta.resource.spi.RetryableException {}

14.3. Message Inflow Model

192 Jakarta Connectors

jakarta.resource.spi.endpoint

package jakarta.resource.spi.endpoint;

import java.lang.Exception;
import java.lang.Throwable;
import java.lang.NoSuchMethodException;
import javax.transaction.xa.XAResource;
import jakarta.resource.ResourceException;
import jakarta.resource.spi.UnavailableException;

public interface MessageEndpointFactory {

 MessageEndpoint createEndpoint(XAResource) throws UnavailableException;

 MessageEndpoint createEndpoint(XAResource, long) throws UnavailableException;

 String getActivationName();

 Class<?> getEndpointClass();

 boolean isDeliveryTransacted(java.lang.reflect.Method)
 throws NoSuchMethodException;
}

public interface MessageEndpoint {

 void beforeDelivery(java.lang.reflect.Method)
 throws NoSuchMethodException, ResourceException;

 void afterDelivery() throws ResourceException;

 void release();
}

The ResourceAdapter interface supports methods used for endpoint activations and deactivations. The
endpointActivation method is called by the application server when a message endpoint is activated
and the endpointDeactivation method is called by the application server when a message endpoint is
deactivated. The resource adapter is supplied a MessageEndpointFactory instance and a configured
ActivationSpec instance during endpoint activations and deactivations. The resource adapter may
reject an activation by throwing a NotSupportedException, if the activation information is incorrect.

The resource adapter uses the MessageEndpointFactory instance to obtain message endpoint instances
for delivering messages either serially or concurrently. The MessageEndpointFactory may be used for
obtaining any number of message endpoint instances. The createEndpoint method call may throw an
UnavailableException for several reasons:

14.3. Message Inflow Model

Jakarta Connectors 193

• The application server has not completed endpoint activation.

• The application server may decide to limit concurrent message deliveries.

• The application server is about to shutdown.

• The application server may have encountered an internal error condition.

In some cases where the offending condition is temporary, the application server may decide to block
the createEndpoint method call instead of throwing an UnavailableException.

In cases where the MessageEndpointFactory may require the rejection of the creation of the
MessageEndpoint and where the failure to create an endpoint is temporary, the
MessageEndpointFactory may use the RetryableUnavailableException . A resource adapter could then
consider the offending condition as transient, and may then retry the MessageEndpoint creation
process later.

The MessageEndpointFactory may also be used to find out whether message deliveries to a target
method on a message listener interface that is implemented by a message endpoint or a target method
in the Class returned by the getEndpointClass method, will be transacted or not through the
isDeliveryTransacted method. The message delivery preferences must not change during the lifetime
of a message endpoint.

The MessageEndpointFactory also provides a unique name for the message endpoint deployment that it
represents. If the message endpoint has been deployed into a clustered application server, then the
application server must provide the same name for that message endpoint’s activation in each
application server instance. It is recommended that this name be human-readable, and is unchanged
even in cases when the application server is restarted or the message endpoint redeployed.

The MessageEndpointFactory allows a resource adapter to get the Class object corresponding to the
message endpoint. The resource adapter may use the Class object to discover annotations, interfaces
implemented, etc. and modify the message delivery behavior of the resource adapter accordingly. In
the case of message driven beans, the Class object returned is the bean class provided by the
application component developer. Refer to the Jakarta Enterprise Beans specification (see Jakarta™
Enterprise Beans Specification, Version 4.0) for more details on the requirements for message driven
beans with no-methods listener interface. The MessageEndpointFactory must return null if the
MessageEndpoint does not implement the business methods of the message endpoint.

A resource adapter capable of message delivery to message endpoints must provide an ActivationSpec
JavaBean class for each supported endpoint message listener type. The ActivationSpec JavaBean has a
set of configurable properties specific to the messaging style and the message provider. An instance of
the ActivationSpec JavaBean is configured by a message endpoint, or application, deployer to setup the
necessary configuration information for the endpoint activation, and passed on to the resource
adapter by way of the application server during endpoint deployment.

The resource adapter is expected to detect the endpoint message listener type, either by using the
ActivationSpec JavaBean contents or based on the ActivationSpec JavaBean class, and deliver messages
to the endpoint. The resource adapter may optionally pass an XAResource instance while creating a

14.3. Message Inflow Model

194 Jakarta Connectors

message endpoint in order to receive transactional notifications when a message delivery is
transacted.

The following steps in sequential order represent the various stages in the message endpoint lifecycle,
during which message inflow contracts are used:

1. Endpoint deployment

2. Message delivery (transacted and non-transacted)

3. Endpoint undeployment

14.4. Endpoint Deployment
Endpoint (Message-Driven Bean) Deployment (Actors)

Deployment
Tool

Endpoint Deployer

Endpoint Application

Deployment Descriptor

Application
Server

Resource Adapter

Deployment Descriptor

Message
Provider

There are several actors involved in the deployment of a message endpoint:

• A message endpoint that is to be deployed on an application server.

• A resource adapter capable of message delivery. The resource adapter is typically provided by a
message provider or a third-party, and is used to plug an external message provider into an
application server. The resource adapter may be standalone that may be shared by different
applications or it may be packaged along with an endpoint application.

• An application server that provides the runtime environment for the application.

• A deployer of the application, a human, who understands the application’s needs, and is also aware
of the details of the runtime environment in which the application will be deployed.

• A message provider, or messaging infrastructure, that is the source for messages. A message
provider may provide special tools that can be used by the deployer to setup the message provider
for message delivery.

The roles and responsibilities of the various actors are as follows:

14.4. Endpoint Deployment

Jakarta Connectors 195

14.4.1. Message Endpoint

The message endpoint is typically a message-driven bean application which is to be deployed on the
application server. A MessageEndpoint may be implemented as other implementation specific objects
as well. It asynchronously consumes messages from a message provider. It is also possible for the
application to send and synchronously receive messages by directly using messaging-style specific
APIs.

The message-driven bean developer provides activation configuration information in the message-
driven bean deployment descriptor or by way of metadata annotations (MessageDriven annotation
when the message-driven bean is realized as MDBs). This includes messaging style specific
configuration details, and possibly message provider-specific details as well, which is used by the
message-driven bean deployer to setup the activation.

The Jakarta Enterprise Beans specification (see Jakarta™ Enterprise Beans Specification, Version 4.0)
has more details on the message-driven bean deployment descriptor element activation-config used to
hold the activation configuration information. For example, the deployment descriptor of a message-
driven bean which consumes from a Jakarta Messaging resource adapter may contain:

14.4. Endpoint Deployment

196 Jakarta Connectors

Message-Driven Bean Deployment Descriptor

<!-- message-driven bean deployment descriptor -->
 ...
 <activation-config>
 <activation-config-property>
 <activation-config-property-name>
 destinationType
 </activation-config-property-name>
 <activation-config-property-value>
 jakarta.jms.Topic
 </activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>
 SubscriptionDurability
 </activation-config-property-name>
 <activation-config-property-value>
 Durable
 </activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <activation-config-property-name>
 MessageSelector
 </activation-config-property-name>
 <activation-config-property-value>
 JMSType = 'car' AND color = 'blue'
 </activation-config-property-value>
 </activation-config-property>
 ...
 </activation-config>
...

The Jakarta Enterprise Beans specification does not specify messaging style-specific descriptor
elements contained within the activation-config element. It is the responsibility of each individual
messaging specification or product to specify the standard descriptor elements specific to the
messaging style for representing the activation configuration information.

14.4.2. Resource Adapter

The resource adapter is a system component located in the application server’s address space (that is,
it has already been deployed) that provides connectivity to message providers and is capable of
delivering messages to message endpoints residing in the application server. The resource adapter is
typically provided by a message provider or a third-party, and is used to plug an external message
provider into an application server. The resource adapter may be standalone, shared by different
applications, or may be packaged along with an endpoint application.

14.4. Endpoint Deployment

Jakarta Connectors 197

The resource adapter provides the following information by way of the resource adapter deployment
descriptor or through metadata annotations described in @Activation, that is used by the endpoint
deployer to setup endpoint activation:

14.4.2.1. List of Supported Message Listener Types

The resource adapter provides a list of endpoint message listener types it supports. Each type is
represented as a name of the Java type of the message listener interface.

14.4.2.2. ActivationSpec JavaBean

The resource adapter provides the Java class name of an ActivationSpec JavaBean, one for each
supported message listener type, containing a set of configurable properties that is used to specify
endpoint activation configuration information during endpoint deployment. Refer to JavaBean
Requirements. An ActivationSpec JavaBean instance is created during endpoint deployment, and the
instance is configured by the endpoint deployer.

During configuration, an ActivationSpec JavaBean instance may check the validity of the configuration
settings provided by the endpoint deployer. The ActivationSpec has a validate method which may be
used during endpoint deployment to validate the overall activation configuration information
provided by the endpoint deployer. This helps to catch activation configuration errors earlier on
without having to wait until endpoint activation time for configuration validation. The implementation
of this self-validation check behavior is optional.

The ActivationSpec JavaBean implementation is recommended to use the JavaBean validation
mechanisms described in JavaBean Validation instead of the validate method to request validation by
the container. If the application server provides an implementation of the Bean Validation
specification (see Jakarta™ Bean Validation Specification, Version 3.0), the application server must
check the validity of the configuration settings provided by the deployer for a JavaBean, using the
capabilities provided by the Bean Validation specification before calling the validate method.

Note, the ActivationSpec JavaBean instance must not make any assumptions about the availability of a
live resource adapter instance.

The resource adapter may also provide in its deployment descriptor, using the required-config-
property element, an optional list of configuration property names required for each activation
specification. This information may be used during deployment to ensure that the required
configuration properties are specified. An endpoint activation should fail if the required property
values are not specified.

The usage of the required-config-property element to require the specification of a configuration
property during deployment is deprecated. Instead, the ActivationSpec JavaBean is recommended to
use the JavaBean Validation facilities described in JavaBean Validation. The ActivationSpec JavaBean
may annotate the field or the JavaBeans-compliant accessor method corresponding to the
configuration property with the @NotNull constraint (or the corresponding XML validation descriptor
equivalent), to indicate that the configuartion property must be specified during activation

14.4. Endpoint Deployment

198 Jakarta Connectors

specification.

The resource adapter may also provide in its deployment descriptor, using the config-property element,
a list of configuration property names for the activation specification.

In the case of Jakarta Messaging message providers, the destination property value (refer to See
Activation Configuration for Message Inflow to Jakarta Messaging Endpoints) may also be an object
that implements the jakarta.jms.Destination interface. In such a case, the resource adapter should
provide an administered object (refer to Administered Objects) that implements the
jakarta.jms.Destination interface. The specific type of the Jakarta Messaging destination is specified by
the destinationType property value. The Jakarta Messaging ActivationSpec JavaBean properties should
be standardized by the Jakarta Messaging community.

14.4.2.3. Administered Objects

The resource adapter may provide the Java class name and the interface type of an optional set of
JavaBean classes representing various administered objects. Refer to JavaBean Requirements.
Administered objects are specific to a messaging style or message provider.

For example, some messaging styles may need applications to use special administered objects for
sending and synchronously receiving messages through connection objects using messaging-style
specific APIs. It is also possible that administered objects may be used to perform transformations on
an asynchronously received message in a message provider-specific way.

Note, administered objects are not used for setting up asynchronous message deliveries to message
endpoints. The ActivationSpec JavaBean is used to hold all the necessary activation information
needed for asynchronous message delivery setup.

An administered object may implement the ResourceAdapterAssociation interface to associate a
resource adapter instance with the administered object.The ResourceAdapterAssociation interface
specifies the methods to associate a administered object JavaBean with a ResourceAdapter JavaBean.

Prior to using the administered object, the application server must create an association between the
administered object and a ResourceAdapter JavaBean, by calling the setResourceAdapter method on the
administered object. A successful association is established only when the setResourceAdapter method
on the administered object returns without throwing an exception.

An administered object instance, that implements ResourceAdapterAssociation interface must ensure
that its Java class and the interface type implements jakarta.resource.Referenceable and
java.io.Serializable interfaces. This enables an application server to store the administered object
instance in the JNDI naming environment. Refer to Scenario: Referenceable for details on the JNDI
reference mechanism.

During deserialization of the administered object, the application server must establish the association
between the administered object and the resource adapter instance by calling setResourceAdapter.

14.4. Endpoint Deployment

Jakarta Connectors 199

activation.html#UNKNOWN
activation.html#UNKNOWN

14.4.2.4. Configuring Administered Objects

• Create an administered object JavaBean instance. This will initialize the instance with the defaults
specified through the JavaBean mechanism.

• Apply the administered object class configuration properties specified in the resource adapter
deployment descriptor, on the administered object instance. This may override some of the default
values specified by way of the JavaBean mechanism.

• The application server is required to merge values specified by way of annotations and deployment
descriptors as specified in Deployment Descriptors and Annotations, before applying the
administered object class configuration properties.

• The deployer may further override the values of the administered object before deployment.

14.4.3. Endpoint Deployer

The endpoint deployer is a human who has the responsibility to deploy the message endpoint, or
application, on an application server. The deployer is expected to know the requirements of the
application and be aware of the details of the runtime environment in which the application will be
deployed.

The deployer selects a suitable resource adapter that matches the requirements of the application
depending on endpoint message listener type, QoS capabilities, and so on. The deployer configures an
ActivationSpec JavaBean instance based on the information provided by the application developer or
assembler, which is contained in the endpoint deployment descriptor or by way of metadata
annotations described in @Activation. The deployer may also use additional provider-specific message
information to configure the ActivationSpec JavaBean instance.

The deployer also configures a set of administered objects, if necessary. The resource adapter provides
the JavaBean classes for such administered objects. The deployer may also interact with a message
provider to do the necessary setup for message delivery.

Then the deployer deploys the application on the application server. As part of the deployment
procedure, the deployer provides all the configured JavaBean instances to the application server, and
also specifies the chosen resource adapter instance to be used for message delivery.

14.4.4. Application Server

The application server provides the runtime environment for the message endpoint. It activates
message endpoints when they are deployed. All such deployed endpoints are automatically reactivated
when an application server restarts after a normal shutdown or system crash. When an application is
undeployed, the application server deactivates the endpoint.

When an endpoint is activated, the application server calls the chosen resource adapter by way of the
endpointActivation method and passes on a MessageEndpointFactory instance and the ActivationSpec
JavaBean, which was configured by the endpoint deployer. The application server does not interpret
the contents of the ActivationSpec JavaBean and treats it as an opaque entity. The resource adapter

14.4. Endpoint Deployment

200 Jakarta Connectors

may reject an endpoint activation by throwing a NotSupportedException during the
endpointActivation method call. This is due to incorrect activation information.

The application server must make the application component environment namespace of the endpoint
(that is being activated), available to the resource adapter during the call to the endpointActivation and
endpointDeactivation methods. The resource adapter may use this JNDI context to access other
resources.

The resource adapter uses the MessageEndpointFactory to create message endpoint instances to
deliver messages either serially or concurrently. There is no limit to the number of such endpoints that
may be created to deliver messages. However, in practice the application server may decide to limit
concurrency by rejecting attempts to create new endpoints by throwing an UnavailableException. The
application server may also attempt to block a message delivery method call in order to limit
concurrency and perform flow control.

Note, a resource adapter may attempt to deliver messages during the endpointActivation method call.
It is up to the application server to decide whether to allow message delivery before activation is
completed. If the application server chooses to prevent message delivery during endpoint activation, it
may block the createEndpoint method call until the activation is completed or throw an
UnavailableException.

The resource adapter may pass an XAResource instance while creating a message endpoint in order to
receive transactional notifications when a message delivery is transacted. The application server must
notify the resource adapter through the XAResource instance if a message delivery is transacted.

During endpoint deployment, the application server places the configured administered objects, if any,
supplied by the endpoint deployer in the component namespace java:comp/env. The endpoint deployer
specifies a location in the component namespace where each administered object should reside. The
configured administered objects residing in the component namespace are used by the endpoint
application in a messaging style-specific manner.

When an endpoint is deactivated, the application server notifies the resource adapter through the
endpointDeactivation method call. The application server must pass the same
MessageEndpointFactory instance and the ActivationSpec JavaBean instance that was used during
endpoint activation.

14.4.5. Message Provider

A message provider, or messaging infrastructure, is typically an external system that is the source for
messages. Message providers may vary in their QoS capabilities. A message provider may provide
special tools that can be directly used by the endpoint deployer to setup the message provider for
message delivery.

Endpoint (Message-Driven Bean) Deployment Steps

14.4. Endpoint Deployment

Jakarta Connectors 201

Deployment
Tool

Endpoint Deployer

Endpoint Application

Application
Server

Resource Adapter

Message
Provider

Deployment Descriptor

Activation configuration
information (messaging
style specific). May also
have message provider
specific details.

i.

4. Get endpoint activation confi-
guration information.

Deployment Descriptor

Message listener types
supported.

i.

An ActivationSpec class
(JavaBean) for each sup-
ported message listener.

ii.

JavaBean classes for
Admistered objects, if any.

iii.

2. Query resource adapter about
message listener types, details
on ActivationSpec, admin objects
and QoS capabilities.

1. Choose a suitable resource adapter.

3. Get activation config details from endpoint.

6. Create a ActivationSpec JavaBean instance
from the chosen resource adapter and
configure the JavaBean properties.

7. Configure necessary administered objects.

8. Deploy application.

5. Setup for message delivery.

10. Place administered objects (if any) in
the component namespace.

11. Endpoint activation: Passes a handle
to a MessageEndpointFactory and the
ActivationSpec JavaBean.9. Supply the ActivationSpec

JavaBean and administered
objects (if any), and specify
the chosen resource adapter.

14.4.6. Endpoint Deployment Steps

The sequence of steps involved in endpoint deployment involving the various actors is as follows:

1. The endpoint deployer obtains a list of resource adapters capable of delivering messages to the
message endpoint, and chooses a suitable one. The decision is based on the message listener type
supported by the resource adapter and its QoS capabilities. However, it is possible that the message
endpoint application may already contain a suitable resource adapter. In such a case, the resource
adapter is deployed along with the endpoint application and is used to deliver messages to the
specific endpoint application.

2. The deployer obtains the activation configuration information provided by the endpoint developer
available by way of metadata annotations or in the endpoint deployment descriptor.

3. The deployer may need to setup the message provider for message delivery to the endpoint. This
may be done using a message provider specific tool.

4. The deployer obtains an ActivationSpec JavaBean from the selected resource adapter and
configures it. The configuration information is messaging style-specific and may include message
provider specific details.

5. The deployer configures the JavaBean instances of administered objects, if any are necessary.

14.4. Endpoint Deployment

202 Jakarta Connectors

6. The deployer provides the configured JavaBean instances to the application server, and also
specifies the resource adapter chosen for message delivery. Note, the contract between a
deployment tool and an application server is out of scope for this specification.

7. The application server places the administered objects, if any, in the java:comp/env component
namespace for use by the message endpoint.

8. The application server activates the message endpoint by calling the chosen resource adapter
through the endpointActivation method and passes a MessageEndpointFactory instance and the
configured ActivationSpec JavaBean instance provided by the deployer. The resource adapter may
reject the endpoint activation by throwing a NotSupportedException, which is due to incorrect
activation information.

14.4.7. Requirements

• A resource adapter that is capable of delivering messages to message endpoints must provide a list
of endpoint message listener types it supports, and also must provide an ActivationSpec JavaBean
class for each message listener type it supports. This information must be part of the resource
adapter deployment descriptor.

• ActivationSpec and all administered objects must be JavaBeans.

• A resource adapter must allow an application server to make concurrent endpointActivation
method or endpointDeactivation method calls.

• The endpoint application’s activation-config properties, specified in the endpoint deployment
descriptor or through the message endpoint’s annotation, should be a subset of the ActivationSpec
JavaBean’s properties. There must be a one-to-one correspondence between the activation-config
property names and the ActivationSpec JavaBean’s property names. This allows automatic merging
of the activation-config properties with an ActivationSpec JavaBean instance during endpoint
deployment. Any specified activation-config property which does not have a matching property in
the ActivationSpec JavaBean should be treated as an error.

• When an application server notifies a resource adapter during endpoint deactivation, it must pass
the same MessageEndpointFactory instance and the ActivationSpec JavaBean instance that was
used during endpoint activation.

• Any exception thrown by the endpointDeactivation method call must be ignored. After this method
call the endpoint is deemed inactive.

• All deployed endpoints must be automatically reactivated by the application server when it restarts
after a normal shutdown or system crash.

• Before a resource adapter is undeployed, the application server must deactivate all active
endpoints consuming messages from that specific resource adapter.

14.4.8. Structure of a Message Listener Interface

A message listener interface implemented by a message endpoint, a message-driven bean, is allowed to
have multiple methods. Each method of a message listener interface is allowed to have multiple

14.4. Endpoint Deployment

Jakarta Connectors 203

arguments, a return value, and throw checked application exceptions or unchecked system exceptions.

Checked exceptions are thrown only by a message listener implementation. The message-driven bean
container must propagate to the resource adapter any checked exception that occurs during message
dispatch.

Unchecked exceptions (java.lang.RuntimeException and java.lang.Error) may be thrown by either the
message listener implementation or may be thrown by the application server code during message
dispatch. The application server must wrap such an unchecked exception within a
jakarta.ejb.EJBException, which is a java.lang.RuntimeException, and throw the
jakarta.ejb.EJBException to the resource adapter.

The Jakarta Enterprise Beans specification describes in detail the structural requirements of a message
listener interface implemented by a message-driven bean.

14.4.9. Multiple Endpoint Activations With Similar Activation Configuration

Since multiple endpoints, that is, different applications, with similar activation configuration may be
deployed in a single application server, the application server may call the endpointActivation method
on a resource adapter instance multiple times with similar activation configuration. The resource
adapter must treat multiple endpoint activations with similar activation configuration separately.
When messages start arriving, the resource adapter must, for each active endpoint, deliver a separate
copy of incoming messages, even if there are multiple endpoints with similar activation configuration.

14.4.9.1. Requirements

• The application server must supply a unique MessageEndpointFactory instance for each activation.

• Refer to Equality Constraints for equality constraints on MessageEndpointFactory and
ActivationSpec implementations.

• The resource adapter must treat multiple endpoints with similar activation configuration
separately and guarantee message delivery semantics.

• The resource adapter must treat each ActivationSpec JavaBean uniquely irrespective of its
contents. That is, the resource adapter must not treat two separate ActivationSpec JavaBeans as
equals.

Endpoint Deployment (Sequence Diagram)

14.4. Endpoint Deployment

204 Jakarta Connectors

Resource Adapter
(from adapter)

Jakarta EE
app server

Endpoint
deployer

MessageEndpointFactory
(from app server) Message provider

ActivationSpec
(from adapter)

The endpoint deployer choses a suitable resource adapter based on supported message listener type and QoS
capabilities, configures an ActivationSpec JavaBean instance obtained from the resource adapter. The
configuration includes message style-specific information and may include message provider specific information.

2. deploy endpoint application (pass the configured ActivationSpec JavaBean)

3. create an instance

4. endpointActivation(MessageEndpointFactory, ActivationSpec)

5. setup for message delivery (private contract)

1. create and configure an ActivationSpec JavaBean

14.5. Message Delivery
Once endpoints are activated, they are ready to receive messages. When messages arrive, the resource
adapter uses the MessageEndpointFactory to create an endpoint instance. The resource adapter
narrows the endpoint instance to the actual message listener type (it knows the endpoint type from the
ActivationSpec), and delivers the message to the endpoint instance. The Jakarta Enterprise Beans
specification (see Jakarta™ Enterprise Beans Specification,Version 4.0) prescribes the rules for the
message listener interface structure. The same endpoint instance may be used again to deliver
subsequent messages serially, but it must not use the same endpoint instance concurrently.

Note that the endpoint instance supplied by the createEndpoint method call is a proxy which
implements the endpoint message listener type and the MessageEndpoint interface, and it is not the
actual endpoint. This is necessary because the application server may need to intercept the message
delivery in order to inject transactions, depending on the actual endpoint preferences, and to perform
other checks.

14.5. Message Delivery

Jakarta Connectors 205

The proxy endpoint instance is implemented by the application server and is used to intercept the
message delivery, performs checks, inject transactions, and so on, and to route the message to the
actual message endpoint instance. The resource adapter does not have to make this distinction, and
should treat the proxy endpoint instance as the actual endpoint instance.

The resource adapter may use a proxy endpoint instance to serially deliver messages. The resource
adapter must not use a proxy endpoint instance concurrently from different threads. The proxy
endpoint may throw a java.lang.IllegalStateException when invoked concurrently. However, a proxy
endpoint instance may be used by different threads in a serial fashion.

The resource adapter may call the release method on the proxy endpoint instance to indicate that it no
longer requires the proxy instance. This hint may be used by the application server for proxy endpoint
pooling decisions. This method call frees the state of the proxy instance. The released proxy instance
may be reused for further proxy endpoint requests from the same resource adapter. A proxy endpoint
instance must not be reused across multiple resource adapter instances.

Between the time a proxy endpoint instance is released and before it is granted back to the same
resource adapter (by way of a createEndpoint method call), the proxy endpoint instance is considered
to be in a free and available state. Any attempted use of a free proxy must result in a
java.lang.IllegalStateException thrown by the application server.

The application server may start a transaction before delivering the message to the actual endpoint
depending on the endpoint preferences. The resource adapter may optionally pass an XAResource
instance through the createEndpoint method in order to receive transaction notifications for those
transactions started by an application server before message delivery.

14.5.1. Sample Resource Adapter Code To Illustrate Message Delivery

Message Delivery in a Resource Adapter

// Reader Thread(s)
{
 // 1. Strip off msg header and parse message description
 // 2. Choose a set of endpoints which match message description
 // 3. Place message in appropriate buffer queue
 // 4. Notify worker threads
}

// Worker Thread(s)
{
 // 1. Wake up on notification (message arrival)
 // 2. Pick up the message and locate the MessageEndpointFactory
 // associated with the subscription
 Message msg = ...;
 MessageEndpointFactory endpointFactory = ...;

14.5. Message Delivery

206 Jakarta Connectors

 MyXAResource xaResource = ...; // for transacted delivery

 // 4. Obtain a message endpoint and narrow it to the
 // correct type.
 // ActivationSpec has endpoint message listener type
 // information.
 Object obj = endpointFactory.createEndpoint(xaResource);
 jakarta.jms.MessageListener endpoint = (jakarta.jms.MessageListener) obj;

 // 5. Link the XAResource with the endpoint. This allows the
 // XAResource object to know which endpoint/message delivery
 // is transacted when it receive transaction notifications.
 // This may be unnecessary depending on the implementation.
 xaResource.setEndpoint(endpoint);

 // Note: It may be possible to make the XAResource object
 // thread-safe/reentrant and reuse the same object for receiving
 // transaction notifications for different endpoints.
 // The XAResource object may use thread-local storage to
 // remember state, and thus avoid creating multiple
 // XAResource objects.

 // 6. Deliver the message.
 endpoint.onMessage(msg);

 // 7. Wait for notification of incoming messages
 // and repeat the above steps on message arrival.
}

package com.wombat.ra;

import javax.transaction.xa.*;

class MyXAResource implements javax.transaction.xa.XAResource {

 public void start(Xid xid) throws XAException {
 // Associate the message delivery with the transaction id.
 // That is, create the tuple (msg id, transaction id) in
 // memory.

 }

 public int prepare(Xid xid) throws XAException {
 // Forward the tuple (message id, transaction id) to the
 // message provider. The provider must persist this
 // information, which is used during crash recovery by the
 // application server. During crash recovery,
 // the application calls the message provider, via the

14.5. Message Delivery

Jakarta Connectors 207

 // recover method on an XAResource object, queries for
 // a list of in-doubt transactions and completes them.
 // Upon successful completion, return "ready_to_commit"
 // vote, else return "rollback_only" vote.

 }

 public void commit(Xid xid, boolean onePhase)
 throws XAException {
 // forward the transaction ID to the message provider. This
 // serves as the acknowledgement that a message was
 // delivered.

 }

 public void rollback(Xid xid) throws XAException {
 // forward the transaction ID to the message provider. This
 // indicates to the provider that the message was not
 // delivered.
 }

 ...; // other methods
}

14.5.1.1. Requirements

• The application server’s proxy endpoint instance must implement the endpoint message listener
type and the MessageEndpoint interface.

• The application server must pass by reference all the method parameter objects passed by the
resource adapter during a message delivery method call on a proxy endpoint. The application
server must not copy or clone the passed method parameter objects during message delivery to the
actual endpoint instance.

• If the application server starts a new transaction, depending on endpoint preferences, before
delivering a message to an endpoint instance, it must send all transaction notifications to the
XAResource instance optionally supplied by the resource adapter as part of the createEndpoint
method call.

• A resource adapter must not attempt to deliver messages concurrently to a single endpoint
instance. The application server must reject concurrent usage of an endpoint instance.

14.5.2. Message Redelivery Upon Crash Recovery

An application server may crash during message delivery. In the case of message deliveries transacted
by the application server, the application server must notify the commit decision to the message
provider during crash recovery.

14.5. Message Delivery

208 Jakarta Connectors

During crash recovery:

1. The application server must first restart resource adapter instances by calling the start method on
each persisted ResourceAdapter JavaBean, each corresponding to a resource adapter instance that
was active prior to the crash.

2. The application server must call the getXAResources method on each ResourceAdapter JavaBean,
and pass in an array of ActivationSpec JavaBeans, each of which corresponds to a deployed
endpoint application that was active prior to the system crash. This method need not be called if
there were no endpoint applications that were active prior to the crash.

3. Upon being called by the application server during crash recovery through the getXAResources
method, the resource adapter must return an array of XAResource objects, each of which
represents a unique resource manager. The resource adapter may return null if it does not
implement the XAResource interface. Otherwise, it must return an array of XAResource objects,
each of which represents a unique resource manager that was used by the endpoint applications.
The resource adapter may throw a ResourceException if it encounters an error condition. Since
each returned XAResource object represents a unique resource manager, the number of returned
XAResource objects must be less than or equal to the number of ActivationSpec instances specified.

4. Since it is possible that multiple resource adapters may use the same resource manager, there may
be more than one XAResource object in the collection representing a resource manager. The
application server may still need to narrow the collection of XAResource objects to a unique set of
resource managers by using the isSameRM method on the XAResource object.

5. The application server must use the XAResource objects to query each resource manager for a list
of in-doubt in an already prepared state awaiting a commit decision transactions. Then, it must
complete each pending transaction by sending the commit decision to the participating resource
managers. Note, it is possible that a resource manager may not have pending in-doubt transactions.

The crash recovery procedure ensures that the message provider gets notified about the outcome of all
message deliveries that were in an in-doubt transaction state at the time of the crash. Upon such
notification, the message provider, depending on the delivery outcome, may decide to redeliver the
undelivered messages to the various endpoints when they are reactivated.

14.5.3. Durable Message Delivery Setup

Once message endpoints are activated, they are ready to receive messages from a message provider.
Message delivery setup may either be durable or non-durable.

In the case of non-durable message deliveries, messages are lost during application server downtime.
When the application server becomes functional again, it automatically reactivates all message
endpoints that were previously deployed, and message delivery starts again. But the messages that
were produced during the downtime are lost. This is because messages are not persisted by the
message provider and redelivered when the message endpoints are reactivated.

In the case of durable activations, messages are not lost during application server downtime. When the
application server becomes functional again, it automatically reactivates all message endpoints that

14.5. Message Delivery

Jakarta Connectors 209

were previously deployed, and message delivery starts again. The messages that were produced during
the downtime are persisted by the message provider and redelivered when the message endpoints are
reactivated. It is the responsibility of the message provider to persist undelivered messages and
redeliver them when the endpoint is available; that is, when the endpoint is reactivated by the app
server.

Durability of message delivery may be an attribute of the activation setup, and thus it must be
captured as part of the endpoint activation information. No additional contracts are required to
support durable activations. Activation durability can be specified by an endpoint deployer by way of
the ActivationSpec JavaBean. Note, some message providers may not support durable message
deliveries and hence it is a QoS capability offered by the message provider.

14.5.4. Concurrent Delivery of Messages

During message endpoint activation, the application server supplies a MessageEndpointFactory to the
resource adapter. The MessageEndpointFactory is used to get an endpoint instance through the
createEndpoint method call. Each call results in a new or an unused endpoint instance that may be
used to deliver messages concurrently; that is, for each active message endpoint, there may be multiple
endpoint instances consuming messages concurrently.

Thus, for each message endpoint, depending on traffic, the resource adapter may choose to deliver
messages serially using a single endpoint instance or concurrently using multiple endpoint instances.

There is no limit to the number of such endpoint instances that may be created, although the
application server may limit the concurrency by either throwing an UnavailableException or by
blocking the createEndpoint method call.

The application server may also attempt to block a message delivery method call in order to limit
concurrency and perform flow control.

14.5.4.1. Requirements

The application server must return a new or an unused endpoint instance for every createEndpoint
method call on a MessageEndpointFactory.

14.5.5. Delivery Semantics and Acknowledgement

When the resource adapter delivers a message to an endpoint instance, which is really a proxy
endpoint instance, the application server intercepts the message delivery to perform checks, inject
transactions, and so on, and routes the message to the actual message endpoint instance.

The application server may start a transaction before delivering the message to the actual endpoint
depending on the endpoint preferences. In the case of a transacted delivery, the resource adapter may
use the transaction notifications received through the XAResource object to send back an
acknowledgement to its message provider.

14.5. Message Delivery

210 Jakarta Connectors

In the case of non-transacted delivery, that is, the application server does not start a transaction, the
resource adapter has to rely on the successful completion of the message delivery call in order to send
back an acknowledgement to its provider.

14.5.6. Transacted Delivery (Using Container-Managed Transaction)

Depending on the endpoint preferences, the application server brackets the message delivery to an
endpoint instance with a Jakarta Transaction’s transaction.

• This ensures that all the work done by the endpoint instance is enlisted as part of the transaction.

• This provides atomic message delivery/message consumption; that is, if the transaction were to be
aborted by the application server due to an exceptional condition, all the work done by the
endpoint instance is aborted, and the delivery is undone. If this does not occur, the transaction is
committed, all the work done by the endpoint instance is committed and the delivery is completed.

The application server notifies the resource adapter while beginning and completing transactions by
using the XAResource instance optionally supplied through the createEndpoint method call.

• This allows the adapter to detect the outcome of a transacted delivery, and also influence the
outcome of the transaction via through prepare method call on the XAResource instance.

• This allows the adapter to send back an acknowledgement to its message provider contingent on
successful delivery; that is, when notified through the commit method call on the XAResource
instance.

• This also allows the adapter to be notified of the correct delivery outcome upon failure recovery
processing; that is, if the system crashes when the transaction is in-doubt, that is, when the
transaction has already been prepared, the application server upon recovery correctly completes
the transaction and notifies the adapter of the outcome of the transaction. Thus, the adapter can
send back an acknowledgement to its message provider after failure recovery, if the message had
been successfully delivered.

A resource adapter may optionally provide an XAResource instance through the createEndpoint
method call in order to receive transactional notifications for those transactions started by an
application server before message delivery. The resource adapter may find out whether message
deliveries to a target method on a message endpoint will be transacted or not through the
isDeliveryTransacted method in the MessageEndPointFactory instance, and decide whether to provide
an XAResource instance through the createEndpoint method. Note, this does not require the resource
adapter to support the transaction inflow contract (see Transaction Inflow).

There are two delivery options available to the resource adapter for transacted deliveries:

• Option A, traditional XA style. The resource adapter optionally provides an XAResource instance
through the createEndpoint method in order to receive XA transaction notifications for transacted
message deliveries. In this case, the application server fully controls the transaction boundaries
and the resource adapter is merely a participant (the XAResource Resource Manager (RM)). See
Transacted Message Delivery: Option A(Sequence Diagram).

14.5. Message Delivery

Jakarta Connectors 211

• Option B, beforeDelivery/afterDelivery. The resource adapter still optionally provides an
XAResource instance through the createEndpoint method in order to receive XA transaction
notifications for transacted message deliveries. But the resource adapter controls the transaction
boundaries through the beforeDelivery/afterDelivery calls, in spite of being only a participant (an
XAResource RM).

During the beforeDelivery call from the resource adapter, depending on the transactional preferences
of the intended target method (specified through the java.lang.reflect.Method method parameter), the
application server starts a transaction and enlists the XAResource instance in the transaction. The
processing (by the application server) of the actual message delivery method call on the endpoint must
be independent of the class loader associated with the descriptive method object (parameter).

During the afterDelivery call from the resource adapter, the application server completes the
transaction and sends transaction completion notifications to the XAResource instance. The actual
message delivery happens in between the beforeDelivery and afterDelivery calls.

In this case, the resource adapter controls when the transaction is started and completed by the
application server, even though the application server decides on the outcome of the transaction. This
allows resource adapters more flexibility in handling message deliveries. For example, the resource
adapter may choose to dequeue a message from within the container-managed transaction so that the
message dequeue is automatically undone if the container-managed transaction aborts.

There must not be more than one message delivery in-between a single beforeDelivery and
afterDelivery method call pair. The application server must reject beforeDelivery or afterDelivery calls
that are out of sequence by throwing an IllegalStateException.

The application server must also allow a resource adapter not to perform any message delivery in-
between a single beforeDelivery and afterDelivery method call pair. This scenario arises, for instance,
when a resource adapter first chooses to deliver a message and calls beforeDelivery , but later is unable
to deliver the message (for example in the case of Jakarta Messaging resource adapters, the resource
adapter may abort the message delivery and transfer the message to a Dead Message Queue). The
resource adapter must be able to call afterDelivery and complete the delivery cycle. The application
server must perform any possible cleanup of actions that occurred in between the beforeDelivery and
afterDelivery method calls.

The beforeDelivery and afterDelivery method calls are considered part of a single message delivery
call. For each message delivery, the beforeDelivery, afterDelivery methods and the actual message
delivery method, must be called from a single thread of control.

Further, the application server must set the thread context class loader to the endpoint application
class loader during the beforeDelivery call and must reset it during a corresponding afterDelivery call.
This allows a resource adapter to use the application class loader to load application specific classes
while deserializing, or reconstructing, a message object. Note, setting of the thread context class loader
during the beforeDelivery call is independent of whether an XAResource instance is provided by the
resource adapter.

14.5. Message Delivery

212 Jakarta Connectors

For each message delivery to an endpoint instance, the application server must match an afterDelivery
call with a corresponding beforeDelivery call; that is, for each message delivery to an endpoint
instance, beforeDelivery and afterDelivery calls are treated as a pair. See Transacted Message Delivery:
Option B (Sequence Diagram).

Thus, in the case of transacted deliveries:

• If a resource adapter does not provide an XAResource instance, it does not get XA transaction
notifications.

• If a resource adapter provides an XAResource instance, it gets XA transaction notifications.

• If a resource adapter calls beforeDelivery and afterDelivery methods in addition to providing an
XAResource instance, it not only receives XA transaction notifications but also gains control over
when the transaction is started and completed. The beforeDelivery and afterDelivery calls have no
effect when the resource adapter does not provide an XAResource instance or when the delivery is
not transacted.

These various delivery options provide more choices to the resource adapter and allow a wide range of
resource adapter and messaging provider implementations to be plugged-in. The application server
must support both delivery options, option A and option B.

The release method call on a proxy endpoint instance releases the state of the proxy instance and
makes it available for reuse. If the release method is called while a message delivery is in-progress, the
application server must throw a java.lang.IllegalStateException, since concurrent calls on a proxy
endpoint instance is disallowed. In the case of option B, if the release method is called in-between
beforeDelivery and afterDelivery method calls, any transaction started during the corresponding
beforeDelivery method call must be aborted by the application server.

14.5.7. Non-Transacted Delivery

1. The application server does not bracket the message delivery to an endpoint instance within a
Jakarta Transaction’s transaction.

2. The resource adapter relies on the successful return of the message delivery call on the endpoint
instance for delivery confirmation and may send out an acknowledgement to its message provider
if appropriate.

3. Any exception thrown by an endpoint instance during message delivery is taken as a failed
delivery. The application server must propagate any exception thrown during message delivery to
the resource adapter.

4. The application server does not notify the resource adapter about the delivery outcome upon crash
recovery. Note, system failures may happen before the application server calls the actual endpoint
instance, or while the actual endpoint instance is doing work, or after the endpoint has completed
its work but before the message delivery on the endpoint returns.

The application server does not have delivery status information available during failure recovery, nor
does it detect what state the actual endpoint instance was in when the failure happened. Consequently,

14.5. Message Delivery

Jakarta Connectors 213

it is hard to model exactly once delivery semantics for non-transacted dispatches.

14.5.8. Transacted Delivery Using an Imported Transaction

It is possible that a resource adapter may attempt message delivery to an endpoint instance with a
transaction initiated by a message source, or message provider; that is, the message source initiates a
transaction, and pushes a message to the resource adapter from within the transaction. The resource
adapter in turn imports the transaction and attempts message delivery on an endpoint instance from
within the source managed transaction.

The resource adapter must use the transaction inflow contract (see Transaction Inflow) to import
transactions initiated by a message source.

It must be possible to serially deliver one or more messages to one or more endpoint instances
belonging to one or more endpoint applications within a single transaction, and be able to commit or
abort the transaction as a single unit.

That is, it must be possible for a resource adapter to serially submit one or more Work objects
(associated with a single transaction) that deliver messages to one or more endpoint instances
belonging to one or more endpoint applications. If the enclosing transaction successfully commits, the
messages are deemed to have been successfully delivered. If the enclosing transaction aborts, the
messages that were delivered as part of the transaction are canceled.

14.5.9. Requirements

An application server must implement the following behavior for transacted and non-transacted
message delivery to an endpoint instance. Before invoking the actual endpoint instance the application
server must do the checks prescribed in Application Server Behavior for Transacted and Non-
transacted Message Delivery shown below, depending on the endpoint transaction preferences and the
presence of a source managed transaction:

Table 2. Application Server Behavior for Transacted and Non-transacted Message Delivery

Source managed transaction No source managed
transaction

Endpoint instance requires
transacted message delivery

Use the source managed
transaction. Ignore the
XAResource instance supplied by
the resource adapter, if any.

Start a new transaction. Notify
the XAResource instance
supplied by the resource
adapter, if any.

Endpoint does not need
transacted message delivery

Suspend the source managed
transaction. Ignore the
XAResource instance supplied by
the resource adapter, if any.

No action. Ignore the XAResource
instance supplied by the
resource adapter, if any.

The application server must propagate any exception thrown during a message delivery to the
resource adapter irrespective of whether the delivery is transacted or not.

14.5. Message Delivery

214 Jakarta Connectors

For transacted deliveries, the application server must support both delivery options, option A and
option B.

14.6. Endpoint Undeployment
• When a message endpoint is undeployed, the application server notifies the resource adapter

through the endpointDeactivation method. The application server must pass the same
MessageEndpointFactory instance and the ActivationSpec JavaBean instance that was used during
the endpoint activation.

• The resource adapter removes the endpoint information from its internal state and in turn may
notify the message provider.

Transacted Message Delivery: Option A(Sequence Diagram)

14.6. Endpoint Undeployment

Jakarta Connectors 215

Deployer

1. pushes a message (private contract)

3. createEndpoint(XAResource)

4. create proxy endpoint

Message
Provider

ResourceAdapter
(from adapter)

5. deliver message

8. deliver messages

Proxy endpoint
instance (from
app server)

actual endpoint
instance

MessageEndpointFactory
(from app server)

MessageEndpointFactory
(from app server)

2. create an instance

XAResource
(from adapter)

6. start a transaction

7. start(Xid)

9. complete transaction

10. end(Xid)

11. prepare(Xid)

12. commit(Xid)

Transacted Message Delivery: Option B (Sequence Diagram)

14.6. Endpoint Undeployment

216 Jakarta Connectors

Deployer

1. pushes a message (private contract)

3. createEndpoint(XAResource)

4. create proxy endpoint

Message
Provider

ResourceAdapter
(from adapter)

5. beforeDelivery()

9. deliver messages

Proxy endpoint
instance (from
app server)

actual endpoint
instance

TransactionManager
(from app server)

MessageEndpointFactory
(from app server)

2. create an instance

XAResource
(from adapter)

6. start a transaction

7. start(Xid)

10. complete transaction

11. end(Xid)

12. prepare(Xid)

13. commit(Xid)

8. deliver messages

10. afterDelivery()

Non-transacted Message Delivery (Sequence Diagram)

14.6. Endpoint Undeployment

Jakarta Connectors 217

Deployer

1. pushes a message (private contract)

MessageEndpointFactory
(from app server)

2. createEndpoint(null)

3. create proxy endpoint

Message
Provider

ResourceAdapter
(from adapter)

4. deliver message

5. deliver message

Proxy endpoint
instance (from
app server)

actual endpoint
instance

Endpoint Undeployment (Sequence Diagram)

14.6. Endpoint Undeployment

218 Jakarta Connectors

Deployer

1. undeploy an endpoint

ResourceAdapter
(from adapter)

MessageEndpointFactory
(from app server) Message provider

Resource adapter removes endpoint information from its internal state.

2. endpointDeactivation

3. create proxy endpoint

Jakarta EE
app server

14.7. Jakarta Messaging Use Case
For illustration purposes, a Jakarta Messaging use case involving a Jakarta Messaging resource adapter
is discussed. The intent of this use case is to show the following:

• The Jakarta Messaging resource adapter uses the generic message inflow contract and
asynchronously delivers messages to message-driven beans through the onMessage method on the
jakarta.jms.MessageListener interface.

• The Jakarta Messaging resource adapter is used by an Jakarta Enterprise Beans application to send
and synchronously receive messages through a jakarta.jms.Connection object.

This use case is shown for illustration purposes only and an application server may or may not achieve
all message deliveries to message-driven beans using the generic message inflow contract.

This illustrates how a Jakarta Messaging provider is plugged into a Jakarta EE application server using
the standard connector contracts.

Sample Jakarta Messaging Resource Adapter Deployment Descriptor

<?xml version="1.0" encoding="UTF-8"?>
<connector xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" version="1.5">

 <display-name>Wombat-JMSAdapter</display-name>
 <vendor-name>Wombat Software Systems</vendor-name>
 <eis-type>JMS Provider</eis-type>
 <resourceadapter-version>1.0</resourceadapter-version>

14.7. Jakarta Messaging Use Case

Jakarta Connectors 219

 <resourceadapter>
 <resourceadapter-class>
 com.wombat.connector.jms.JMSAdapterImpl
 </resourceadapter-class>

 <!-- ResourceAdapter default configuration properties -->
 <config-property>
 <config-property-name>ServerName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>WombatServer</config-property-value>
 </config-property>
 <config-property>
 config-property-name>PortNumber</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>1050</config-property-value>
 </config-property>
 <config-property>
 <config-property-name>OperationalMode</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>Managed</config-property-value>
 </config-property>
 <config-property>
 <config-property-name>ContainerType</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>EJB-WEB</config-property-value>
 </config-property>

 <outbound-resourceadapter>
 <connection-definition>
 <managedconnectionfactory-class>
 com.wombat.connector.jms.QueueManagedConnectionFactoryImpl
 </managedconnectionfactory-class>

 <!-- ManagedConnectionFactory default configuration properties -->
 <config-property>
 <config-property-name>ServerName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>
 WombatQueueServer
 </config-property-value>
 <config-property>
 <config-property-name>PortNumber</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>1051</config-property-value>
 </config-property>

 <connectionfactory-interface>

14.7. Jakarta Messaging Use Case

220 Jakarta Connectors

 jakarta.jms.QueueConnectionFactory
 </connectionfactory-interface>
 <connectionfactory-impl-class>
 com.wombat.connector.jms.QueueConnectionFactoryImpl
 </connectionfactory-impl-class>

 <connection-interface>
 jakarta.jms.QueueConnection
 </connection-interface>
 <connection-impl-class>
 com.wombat.connector.jms.QueueConnectionImpl
 </connection-impl-class>
 </connection-definition>

 <connection-definition>
 <managedconnectionfactory-class>
 com.wombat.connector.jms.TopicManagedConnectionFactoryImpl
 </managedconnectionfactory-class>

 <!-- ManagedConnectionFactory default configuration properties -->
 <config-property>
 <config-property-name>ServerName</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>
 WombatTopicServer
 </config-property-value>
 </config-property>
 <config-property>
 <config-property-name>PortNumber</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>1052</config-property-value>
 </config-property>

 <connectionfactory-interface>
 jakarta.jms.TopicConnectionFactory
 </connectionfactory-interface>
 <connectionfactory-impl-class>
 com.wombat.connector.jms.TopicConnectionFactoryImpl
 </connectionfactory-impl-class>

 <connection-interface>
 jakarta.jms.TopicConnection
 </connection-interface>
 <connection-impl-class>
 com.wombat.connector.jms.TopicConnectionImpl
 </connection-impl-class>
 </connection-definition>

14.7. Jakarta Messaging Use Case

Jakarta Connectors 221

 <connection-definition>
 <managedconnectionfactory-class>
 com.wombat.connector.jms.ManagedConnectionFactoryImpl
 </managedconnectionfactory-class>
 <!--

 This ManagedConnectionFactory JavaBean
inherits the ResourceAdapter

 JavaBean configuration properties, and does
not override any

 of the global defaults.
 -->
 <connectionfactory-interface>
 jakarta.jms.ConnectionFactory
 </connectionfactory-interface>
 <connectionfactory-impl-class>
 com.wombat.connector.jms.ConnectionFactoryImpl
 </connectionfactory-impl-class>

 <connection-interface>
 jakarta.jms.Connection
 </connection-interface>
 <connection-impl-class>
 com.wombat.connector.jms.ConnectionImpl
 </connection-impl-class>
 </connection-definition>

 <transaction-support>XATransaction</transaction-support>
 <reauthentication-support>false</reauthentication-support>
 </outbound-resourceadapter>

 <inbound-resourceadapter>
 <messageadapter>
 <messagelistener>
 <messagelistener-type>
 jakarta.jms.MessageListener
 </messagelistener-type>
 <activationspec>
 <activationspec-class>
 com.wombat.connector.jms.ActivationSpecImpl
 </activationspec-class>
 <!--
 The endpoint deployer configures the
ActivationSpec JavaBean
 and may override some of the global defaults
inherited from

14.7. Jakarta Messaging Use Case

222 Jakarta Connectors

 the ResourceAdapter JavaBean. For example,
the ServerName
 and the PortNumber properties.
 -->

 <!-- required config property names for ActivationSpec -->
 <required-config-property>
 <config-property-name>Destination</config-property-name>
 </required-config-property>
 </activationspec>
 </messagelistener>
 </messageadapter>
 </inbound-resourceadapter>

 <adminobject>
 <adminobject-interface>jakarta.jms.Queue</adminobject-interface>
 <adminobject-class>
 com.wombat.connector.jms.QueueImp
 </adminobject-class>
 </adminobject>
 <adminobject>
 <adminobject-interface>jakarta.jms.Topic</adminobject-interface>
 <adminobject-class>
 com.wombat.connector.jms.TopicImpl
 </adminobject-class>
 </adminobject>
 <adminobject>
 <adminobject-interface>
 jakarta.jms.Destination
 </adminobject-interface>
 <adminobject-class>
 com.wombat.connector.jms.DestinationImpl
 </adminobject-class>
 </adminobject>
</resourceadapter>
</connector>

14.7. Jakarta Messaging Use Case

Jakarta Connectors 223

A Sample Jakarta Messaging ActivationSpec Implementation

package com.wombat.connector.jms;

import java.io.Serializable;
import jakarta.resource.spi.ActivationSpec;
import jakarta.resource.spi.InvalidPropertyException;

public class ActivationSpecImpl implements
 ActivationSpec, Serializable {

 public setAcknowledgeMode(String mode) {
 ...
 }

 public String getAcknowledgeMode() { ... }

 public setSubscriptionDurability(String durability) { ... }

 public String getSubscriptionDurability() {
 ... }

 public setMessageSelector(String selector) { ... }

 public String getMessageSelector() { ... }

 public setDestinationType(String destType) { ... }

 public String getDestinationType() { ... }

 public setDestination(String dest) { ... }

 public String getDestination() { ... }

 public setSubscriptionName(String name) { ... }

 public String getSubscriptionName() { ... }

 public setClientId(String id) { ... }

 public String getClientId() { ... }

 public void validate() throws InvalidPropertyException { ... }

}

14.7. Jakarta Messaging Use Case

224 Jakarta Connectors

14.7.1. Message-Driven Bean Asynchronously Receiving Messages

14.7.1.1. Message-Driven Bean Deployment

• A message-driven bean application developer or assembler supplies a deployment descriptor, or
annotated application component, which specifies a destination type, message selector, and
subscription durability information needed to setup subscription to a certain destination, Queue or
Topic. Note, this information is a hint which is used by the message-driven bean deployer to setup
the subscription.

• The message-driven bean deployer selects an appropriate Jakarta Messaging resource adapter
based on the quality-of-service and creates an ActivationSpec JavaBean instance and configures the
required property "Destination" as well as other properties related to the Jakarta Messaging
messaging style and the specific resource adapter.

• The endpoint deployer may need to interact with the Jakarta Messaging provider to setup an
appropriate "Destination" and other steps necessary to complete message-driven bean deployment.

• The deployer deploys the message-driven bean application. During deployment, the deployer
provides the configured ActivationSpec JavaBean to the application server, along with information
about the chosen Jakarta Messaging resource adapter.

• The application server calls the endpointActivation method on the Jakarta Messaging resource
adapter and passes the configured ActivationSpec JavaBean instance and a
MessageEndpointFactory instance. During the endpointActivation method call the Jakarta
Messaging adapter interacts with its provider to setup message delivery to the message-driven
bean. This completes the endpoint activation, and the message-driven bean is ready to receive
messages.

14.7.1.2. Message Delivery

• When messages start arriving, the Jakarta Messaging adapter uses the MessageEndpointFactory
instance to get an endpoint instance and delivers messages to the endpoint through the
jakarta.jms.MessageListener.onMessage method.

• The application server interposes the message delivery and injects transactions based on the
message-driven bean preferences, container-managed transaction or bean-managed transaction,
before delivering the message to a message-driven bean instance.

• When a delivery is transacted, the application server notifies the Jakarta Messaging resource
adapter using the XAResource object. The Jakarta Messaging resource adapter may use the
notifications to send acknowledgements to its message provider.

• The Jakarta Messaging resource adapter, depending on the traffic, may attempt concurrent
delivery of messages by using multiple endpoint instances obtained through
MessageEndpointFactory. The application server appropriately handles concurrent message
deliveries and dispatches messages to separate message-driven bean instances.

14.7. Jakarta Messaging Use Case

Jakarta Connectors 225

14.7.1.3. Message-Driven Bean Undeployment

• When the message-driven bean is undeployed, the application server calls the
endpointDeactivation method on the Jakarta Messaging resource adapter to deactivate the message
endpoint.

• The Jakarta Messaging adapter in turn notifies its message provider.

14.7.2. Jakarta Enterprise Beans Using Jakarta Messaging API to Send and
Synchronously Receive Messages Via a Jakarta Messaging Resource Adapter

• The Jakarta Messaging resource adapter provides jakarta.jms.Connection objects which expose the
Jakarta Messaging API to the Jakarta Enterprise Beans application. The Jakarta Enterprise Beans
directly uses the Jakarta Messaging API to send and synchronously receive messages. The
jakarta.jms.Connection objects are obtained from a ConnectionFactory supplied by the Jakarta
Messaging resource adapter.

• Based on the Jakarta Enterprise Beans deployment descriptor information (resource-ref’s and
resource-env-ref’s) or resource reference injection annotations (Resource annotation defined in
Jakarta™ Annotations Specification, Version 2.1), the Jakarta Enterprise Beans deployer configures
the appropriate ConnectionFactory objects (resource-ref’s) in the component name space
(java:comp/env). The application deployer also configures the necessary Queue or Topic
administered objects (resource-env-ref’s) in the component name space. The Jakarta Messaging
resource adapter provides the implementation of the various ConnectionFactory and administered
objects.

• At runtime, the component does a JNDI lookup of a ConnectionFactory object from its component
name space (java:comp/env), and uses it to create a jakarta.jms.Connection object which is used for
sending and synchronously receiving messages. Similarly, the component uses the JNDI lookup
mechanism to obtain the configured Queue or Topic administered objects.

14.7.2.1. Using Jakarta Messaging API to Send Messages

14.7. Jakarta Messaging Use Case

226 Jakarta Connectors

Sending Messages Using the Jakarta Messaging API

// get JNDI handle
Context jndiContext = new InitialContext();

// get connection factory
ConnectionFactory connectionFactory = (ConnectionFactory) jndiContext.lookup(
"QueueConnectionFactory");

// get connection from factory
Connection connection = connectionFactory.getConnection();

// get session from connection
Session session = connection.createSession(true, AUTO_ACKNOWLEDGE);

// get destination from JNDI
Queue stockQueue = (Queue) jndiContext.lookup("StockQueue");

// create a message producer
MessageProducer sender = session.createProducer(stockQueue);

// create a message
TextMessage message = session.createTextMessage();
message.setText(msgData);

// send the message
sender.send(message);

14.7.2.2. Jakarta EE Component Using Jakarta Messaging API to Synchronously Receive Messages

14.7. Jakarta Messaging Use Case

Jakarta Connectors 227

Synchronously Receiving Messages in a Jakarta EE Component

// get JNDI handle
Context jndiContext = new InitialContext();

// get connection factory
ConnectionFactory connectionFactory = (ConnectionFactory)
 jndiContext.lookup("QueueConnectionFactory");

// get connection from factory
Connection connection = connectionFactory.getConnection();

// get session from connection
Session session = connection.createSession(true, AUTO_ACKNOWLEDGE);

// get destination from JNDI
Queue stockQueue = (Queue) jndiContext.lookup("StockQueue");

// create a message consumer
MessageConsumer receiver = session.createConsumer(stockQueue);

// enable connection to receive messages
connection.start();

// synchronously receive the message
TextMessage message = (TextMessage)receiver.receive(message);

14.8. A Non-Jakarta Messaging Use Case
This illustration is intended to show that it is possible to plug a wide range of message providers into a
Jakarta EE application server by way of the standard connector contracts, such that it is possible for an
application to either asynchronously receive messages through the message inflow contract or to use a
connection object to send and synchronously receive messages.

14.9. Resource Adapter Deployment Descriptor
This is an example deployment descriptor for a resource adapter that can provide both inbound and
outbound communication with a particular EIS.

On the inbound side, it can deliver messages to a message-driven bean that implements a
com.kangaroo.MessageListener. Note, the deployment descriptor has a messagelistener-type element
with the value com.kangaroo.MessageListener. The activationspec-class is of type
com.kangaroo.MyEISActivationSpecImpl. This ActivationSpec JavaBean has a single required property
PortNumber, that is required to establish a connection to the remote EIS. When the EIS data is
received, the resource adapter will convert it to a com.kangaroo.Message and deliver it to a message-

14.8. A Non-Jakarta Messaging Use Case

228 Jakarta Connectors

driven bean instance.

The resource adapter also provides a ManagedConnectionFactory implementation for outbound
communication to the EIS. This also takes a single configuration parameter called PortNumber.

Deployment Descriptor for a Resource Adapter

<?xml version="1.0" encoding="UTF-8"?>
<connector xmlns="https://jakarta.ee/xml/ns/jakartaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 version="2.0">
 <display-name>KangarooAdapter</display-name>
 <vendor-name>Kangaroo Software Inc.</vendor-name>
 <eis-type>JMS Provider</eis-type>
 <resourceadapter-version>1.0</resourceadapter-version>
 <resourceadapter-class>
 com.kangaroo.MyEISAdapterImpl
 </resourceadapter-class>

 <!-- ResourceAdapter default configuration properties -->
 <config-property>
 <description>URL for EIS instance</description>
 <config-property-name>EIS_URL</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>TBD</config-property-value>
 </config-property>
 <outbound-resourceadapter>
 <connection-definition>
 <managedconnectionfactory-class>
 com.Kangaroo.MyManagedConnectionFactoryImpl
 </managedconnectionfactory-class>

 <!-- ManagedConnectionFactory default configuration properties -->
 <config-property>
 <config-property-name>PortNumber</config-property-name>
 <config-property-type>java.lang.String</config-property-type>
 <config-property-value>1051</config-property-value>
 </config-property>

 <connectionfactory-interface>
 jakarta.resource.cci.ConnectionFactory
 </connectionfactory-interface>
 <connectionfactory-impl-class>
 com.Kangaroo.MyConnectionFactoryImpl
 </connectionfactory-impl-class>

 <connection-interface>
 jakarta.resource.cci.Connection

14.9. Resource Adapter Deployment Descriptor

Jakarta Connectors 229

 </connection-interface>
 <connection-impl-class>
 com.Kangaroo.MyConnectionImpl
 </connection-impl-class>
 </connection-definition>

 <transaction-support>NoTransaction</transaction-support>
 <reauthentication-support>false</reauthentication-support>
 </outbound-resourceadapter>

 <inbound-resourceadapter>
 <messageadapter>
 <messagelistener>
 <messagelistener-type>
 com.kangaroo.MessageListener
 </messagelistener-type>
 <activationspec>
 <activationspec-class>
 com.Kangaroo.MyEISActivationSpecImpl
 </activationspec-class>
 <required-config-property>
 <config-property-name>PortNumber</config-property-name>
 </required-config-property>
 </activationspec>
 </messagelistener>
 </messageadapter>
 </inbound-resourceadapter>
</resourceadapter>
</connector>

14.9.1. Resource Adapter Deployment

Before use, the resource adapter is required to be deployed on the application server. During resource
adapter deployment, the deployer configures a ResourceAdapter JavaBean instance and deploys the
resource adapter.

14.9.2. Message-Driven Bean Asynchronously Receiving Notifications From an
EIS

14.9.2.1. The Message-Driven Bean Deployment Descriptor

Deployment Descriptor for a Message-Driven Bean

<?xml version="1.0" encoding="US-ASCII"?>

14.9. Resource Adapter Deployment Descriptor

230 Jakarta Connectors

<!DOCTYPE ejb-jar PUBLIC ?-//Sun
Microsystems, Inc.//DTD

 Enterprise JavaBeans 2.1//EN?
?http://java.sun.com/dtd/ejb-jar_2_1.dtd?>

<ejb-jar>

 <display-name>Ejb1</display-name>

 <enterprise-beans>

 <message-driven>

 <display-name>EIS Receiver
Bean</display-name>

 <ejb-name>EISReceiver</ejb-name>

 <ejb-class>myapp.EISReceiverBean</ejb-class>

<messaging-type>com.kangaroo.MessageListener</messaging-type>

<transaction-type>Container</transaction-type>

 <activation-config>

 <activation-config-property>

 <activation-config-property-name>

 functionName

 </activation-config-property-name>

 <activation-config-property-value>

 CustomerChangeNotification

 </activation-config-property-value>

 </activation-config-property>

14.9. Resource Adapter Deployment Descriptor

Jakarta Connectors 231

 <activation-config-property>

 <activation-config-property-name>

 CustomerName

 </activation-config-property-name>

 <activation-config-property-value>

 Wombat Systems

 </activation-config-property-value>

 </activation-config-property>

 </activation-config>

 </message-driven>

 </enterprise-beans>

</ejb-jar>

When the message-driven bean is deployed, the bean deployer chooses an appropriate resource
adapter based on the type of the message listener it supports. In this case, the deployer chooses the
resource adapter with the ResourceAdapter class com.kangaroo.MyEISAdapterImpl since it supports
the com.kangaroo.MessageListener type.

Then the deployer creates an instance of com.kangaroo.MyEISActivationSpecImpl and populates it
with values. The ActivationSpec JavaBean instance will also contain values of properties that are set in
the activation-config section of the bean’s deployment descriptor. In the example above, the properties
are FunctionName, with the value CustomerChangeNotification, and CustomerName, with the value
Wombat Systems, which the deployer may choose to override.

Finally, the deployer provides the configured ActivationSpec JavaBean instance to the application
server.

14.9.3. Message-Driven Bean and Resource Adapter Activation

When the application server is started, it will activate the resource adapter by calling its start method.
The application server will create an instance of the message-driven bean with class name
myapp.EISReceiverBean. Then the application server will call the endpointActivation method on the
resource adapter instance and pass in the configured ActivationSpec instance associated with the
deployed message-driven bean, and a MessageEndpointFactory instance. The resource adapter will use
the information in the ActivationSpec to establish a subscription to the requested data from the EIS.

14.9. Resource Adapter Deployment Descriptor

232 Jakarta Connectors

14.9.4. Message Delivery

When a notification arrives from the EIS, the resource adapter has the responsibility of converting its
data to a com.kangaroo.Message if it is not already in this format. The resource adapter will then use
the MessageEndpointFactory to deliver the notification to the message-driven bean. Note that, rather
than calling the MessageEndpointFactory directly, the resource adapter is likely to instantiate a Work
object, and pass it to the application server through the WorkManager interface. When the doWork
method of the WorkManager is called the dispatch will occur. This will allow the resource adapter to
continue to process incoming messages without blocking until message-driven bean dispatch has
completed.

14.9. Resource Adapter Deployment Descriptor

Jakarta Connectors 233

Chapter 15. Jakarta Enterprise Beans
Invocation
This chapter describes how to invoke session and entity beans from a resource adapter.

15.1. Overview
A resource adapter may need to call session or entity beans for several reasons:

• To dispatch calls from an EIS to a bean in order to execute business logic

• To use Jakarta Enterprise Beans container-managed persistence (CMP) mechanism for persistence

In order to dispatch calls to a session or entity bean, the resource adapter is required to detect the
target bean type, the method name, and the method parameters. Upon receiving a request from the EIS
by way of a remote protocol, the resource adapter’s dispatch logic is required to:

• Choose an appropriate bean and a target method name based on the request received from the EIS.

• Unmarshall, that is, deserialize, the request parameters received from the EIS and call the target
bean method.

15.2. Jakarta Enterprise Beans Invocation Model
Jakarta Enterprise Beans Invocation Model

Application
server

Resource
Adapter

EIS

Inbound communication

Application

contract

session and
entity beans

message-driven
beans

For session or entity bean invocations, the resource adapter’s bean dispatch logic can use the bean
client view model by way of a message-driven bean. The Jakarta Enterprise Beans specification (see
Jakarta™ Enterprise Beans Specification, Version 4.0) defines the Jakarta Enterprise Beans client view,
and describes how the client view is used to access session or entity beans. The Jakarta Enterprise
Beans client view is available to a message-driven bean.

The resource adapter could structure its code such that its bean dispatch logic is written as a message-

15.1. Overview

234 Jakarta Connectors

driven bean. The message-driven bean chooses an appropriate session or entity bean and a target
method, unmarshalls the request parameters and invokes the chosen bean based on the request
information received from the EIS.

The resource adapter can use the message inflow contract to call a message-driven bean, and use the
message-driven bean to dispatch calls to session and entity beans using the Jakarta Enterprise Beans
client view model. The Jakarta Enterprise Beans specification allows a request-response style message-
driven bean call which could be used for synchronous RPC-style calls. The message-driven bean could
be packaged either with the resource adapter or separately.

Thus, the message-driven bean could be used as a replaceable unit of the resource adapter which
serves the job of a bean dispatcher. The message inflow contract allows the creation of multiple
endpoint instances (message-driven beans) at runtime, and hence it is possible to do concurrent bean
dispatches.

Further, the transaction inflow mechanism (described in Transaction Inflow) allows the resource
adapter to use the transaction information obtained from the EIS for bean invocations. Note, however,
the application server may suspend the imported transaction depending on the transaction preference
of the target bean method.

15.3. An Illustrative Use Case
Wombat Systems is a resource adapter vendor. The resource adapter supports inbound
communication from an EIS to application components residing in an application server container.
The resource adapter uses the message inflow contract to call message-driven beans which serve as a
dispatcher for session and entity bean invocations. In this case, Wombat Systems supplies both the
resource adapter and the message-driven beans, even though these could be supplied by different
vendors.

The EIS uses multiple concurrent conversations in its interactions with the resource adapter. Each
conversation may involve multiple serial requests. The resource adapter has a set of Work objects
(threads), each of which is used for carrying on a specific conversation. The resource adapter manages
the multiple concurrent conversations, and calls a message-driven bean instance whenever a request
message arrives as part of a conversation.

The following code sample shows a possible message-driven bean implementation:

A Message-Driven Bean Implementation

package com.wombat.ra;

import jakarta.ejb.MessageDrivenBean;
import javax.naming.InitialContext;

public class WombatMDB implements MessageDrivenBean,
 WombatMessageListener {

15.3. An Illustrative Use Case

Jakarta Connectors 235

 public static int CONV_START = 0;
 public static int CONV_CONTINUE = 1;
 public static int CONV_END = 2;

 private Context jndiContext = null;
 private ConvBeanHome chome = null;

 public void ejbCreate() {
 jndiContext = new InitialContext();
 chome = (ConvBeanHome)jndi.lookup("java:comp/env/ConvBeanHome");
 }

 ConvResponse onMessage(ConvRequest requestMsg) {
 // get conversation id and request type fromthe request
 // message
 int convId = ...;
 int type = ...;

 if (type == CONV_START) {
 // create entity Jakarta Enterprise Beans for holding the specific
 // conversation state
 ConvBean cbean = chome.create(convId);
 } else if (type == CONV_CONTINUE) {
 ConvBean cbean = chome.findByPrimaryKey(convId);

 // unmarshall Jakarta Enterprise Beans method parameters
 ...;

 // invoke Jakarta Enterprise Beans and return response
 Object resp = cbean.myBusinessMethod(params);
 ConvResponse cresp = Utility.convert(resp);
 return cresponse;
 } else if (type == CONV_END) {
 cbean.remove();
 }
 return null;
 }

 public void ejbRemove() {
 jndiContext = null;
 chome = null;
 }
}

15.3. An Illustrative Use Case

236 Jakarta Connectors

The resource adapter uses the message-driven bean as a generic dispatcher for session and entity bean
invocations, and relies on the application server to efficiently pool message-driven bean instances.
Each message-driven bean call should be just as efficient as a method call on a resource adapter local
object.

15.3.1. Message-Driven Bean Dispatcher Pattern

When a worker thread from a resource adapter accesses a message-driven bean method, the JNDI
context of the bean is available to the thread, although only during the method call on the bean.

The resource adapter may take advantage of this, and use the bean as a dispatcher. That is, the
resource adapter may park the thread within the bean method inside a while loop, and use it to
process resource adapter specific data structures passed into the bean method as method parameters,
and also use the JNDI context of the bean to access resources and other components.

In this case, the bean becomes a special Java object that has access to JNDI context, which the resource
adapter may use. This usage pattern illustrates a tight coupling between the resource adapter and the
message-driven bean, and it is likely that the resource adapter would provide the bean
implementation as well.

15.3. An Illustrative Use Case

Jakarta Connectors 237

Chapter 16. Transaction Inflow
This chapter specifies a contract between an application server and a resource adapter that allows a
resource adapter to propagate an imported transaction to an application server, so that the application
server and subsequent participants can do work as part of the imported transaction. This contract also
allows a resource adapter to flow-in transaction completion and crash recovery calls initiated by an
EIS, and ensures that the atomicity, consistency, isolation and durability (ACID) properties of the
imported transaction are preserved.

16.1. Overview
A resource adapter may need to import an incoming external transaction context obtained from a
remote protocol message and do work as part of the imported transaction. The work done by the
resource adapter as part of the imported transaction may involve interactions with the application
server and the application components.

The resource adapter is expected to process the wire protocol and the transaction context format and
be able to import an incoming transaction in an EIS-specific way. The resource adapter is required to
propagate the imported transaction to the application server and also flow-in transaction completion
and crash recovery calls initiated by the EIS. In order for the resource adapter to accomplish this, it
requires the following:

• A standard form to represent the transaction context imported by the resource adapter.

• A mechanism to associate the work done by the resource adapter as part of the imported
transaction.

• A mechanism to treat the application server like a resource manager in order to make it participate
in the two-phase commit and crash recovery flows initiated by the external transaction originator,
the EIS.

Transaction Inflow Contract

Application
server

Resource
Adapter

EIS
Transaction inflow

Application

contract

Transaction
originator

Transaction
participant

Transaction
participant

Transaction
participant

16.2. Goals
• Provide a standard mechanism for a resource adapter to propagate an imported transaction to an

application server.

• Provide a standard mechanism for a resource adapter to flow-in transaction completion and crash

16.1. Overview

238 Jakarta Connectors

recovery calls from an EIS.

• Ensure that the ACID properties of the transaction imported by a resource adapter are preserved.

16.3. Use Case Scenario
An EIS initiates a transaction and calls application components residing in an application server
through a resource adapter. The EIS propagates the transaction context as part of each call to the
resource adapter, which is used by the application server to recreate the transaction context before the
application components are called. The work done by the application components is automatically
enlisted as part of the imported transaction. When the EIS completes the transaction, the transaction
completion notifications flow to the application server through the resource adapter, and the
transaction is completed.

The transaction inflow contract may be used in various situations. For example:

• A message provider may use the contract to push messages to a resource adapter for delivery to
application components.

• The contract may be leveraged to make the application components do work as part of a
transaction initiated by a legacy EIS.

Note that application components may not always do work as part of an EIS-initiated transaction, for
example, when the declarative transaction attribute of an enterprise bean’s method is RequiresNew ,
Never , NotSupported , or if bean-managed transaction demarcation is used.

Transaction Inflow Contract (Object Diagram)

BootstrapContext

XATerminator

Application Server

XAException

getXATerminator()

XA Method calls

errorCode

Resource Adapter

Xid

16.3. Use Case Scenario

Jakarta Connectors 239

16.4. Transaction Inflow Model

package jakarta.resource.spi;

import javax.transaction.xa.Xid;
import javax.transaction.xa.XAException;
import jakarta.resource.spi.work.WorkManager;

public interface BootstrapContext {

 WorkManager getWorkManager();
 XATerminator getXATerminator();
 ... // other methods

}

public interface XATerminator {

 public void commit(Xid xid, boolean onePhase) throws XAException;
 public void forget(Xid xid) throws XAException;
 public int prepare(Xid xid) throws XAException;
 public Xid[] recover(int flag) throws XAException;
 public void rollback(Xid xid) throws XAException;
}

The BootstrapContext interface allows the resource adapter to obtain a WorkManager instance and an
XATerminator instance. These instances are not required to be unique. The resource adapter uses the
WorkManager instance to submit Work instances for execution, and uses the XATerminator instance
for transaction completion and crash recovery flows.

16.4.1. Processing of Transactional Calls

The steps involved in propagating an imported transaction from a resource adapter to the application
server in order to do transactional work is as follows:

1. The EIS makes a transactional call to the resource adapter. The resource adapter is expected to
process the EIS-specific transaction context structure and the wire protocol. The resource adapter
imports the transaction context that arrived along with the incoming message.

2. The resource adapter represents the imported transaction context in a standard form using the
javax.transaction.xa.Xid instance.

3. The resource adapter constructs a Work instance, which is expected to do work as part of the
transactional message, and also creates an ExecutionContext instance containing the constructed
Xid. It then submits the Work instance along with the ExecutionContext instance to the application
server’s WorkManager for execution. Version 1.6 of the Connector Architecture defines a standard

16.4. Transaction Inflow Model

240 Jakarta Connectors

class, TransactionContext , for the propagation of transaction context information from the EIS to
the application server. Resource adapters may use this instead of ExecutionContext . See
TransactionContext Class for more information on the TransactionContext class.

4. The application server’s WorkManager accepts the submitted Work instance and recreates the
execution context for the Work instance. That is, the work to be done is enlisted as part of the
imported transaction. It then calls the run method on the Work object.
Note, however, all the work done by the Work object may not be part of the transaction. For
example, the application server may suspend the imported transaction depending on the
transaction preference of the bean method that may be invoked.

The above steps may be repeated any number of times for a particular transaction from any resource
adapter. However, the application server must disallow transactional Work submissions with a
WorkCompletedException set to an appropriate error code, irrespective of which resource adapter it
comes from, under the following circumstances:

• If a Work instance associated with the transaction is already present. That is, concurrent work
within an imported transaction is disallowed. The error code to indicate this is
WorkException.TX_CONCURRENT_WORK_DISALLOWED.

• The application server is unable to recreate the transaction. That is, it fails in its attempt to enlist
the Work instance with the transaction. The error code to indicate this is
WorkException.TX_RECREATE_FAILED.

16.4.2. Transaction Completion Processing

The steps involved in completing of the imported transaction initiated by the external EIS are as
follows:

1. The EIS sends a prepare message for a particular transaction.

2. The resource adapter obtains an XATerminator instance from the application server through the
getXATerminator method of the BootstrapContext instance. Note, this step may be done at any time,
and the obtained XATerminator instance may be used for transaction completion flows across
multiple imported transactions. The XATerminator implementation should be thread-safe and re-
entrant.

3. The resource adapter calls the prepare method of the XATerminator instance with an appropriate
Xid instance, and returns the outcome of the prepare operation to the EIS.

4. When the EIS sends a commit message for the transaction, the resource adapter calls the commit
method of the XATerminator instance with an appropriate Xid instance. Note, it is possible for the
commit method to be called without a prior prepare method call in the case of one-phase commit.

Transactional Calls and Transaction Completion Flow (Sequence Diagram)

16.4. Transaction Inflow Model

Jakarta Connectors 241

Xid
(from adapter)

Resource
AdapterEIS

create an instance

1. prepare message

ExecutionContext
(from adapter)

Work
(from adapter)

WorkManager
(from app server)

BootstrapContext
(from app server)

XATerminator
(from app server)

Transaction completion flow

getXATerminator() [this step may be done just once]

2. prepare(Xid)

3. commit rollback message [this may happen without a prior prepare call]

4. commit(Xid) or rollback(Xid)

The above sequence of steps may be repeated any number of times for a given transaction across
any resource adapter.

1. incoming transactional message with an EIS-specific transaction context

2. construct an Xid based on the information derived from the transaction call

3. create an execution context containing the constructed Xid

4. create a work instance

getWorkManager() [this step may be done once at any time]

create an instance

5. submit the Work instance for execution with the execution context

6. dispatches a thread which sets up an execution context and calls run()

16.4. Transaction Inflow Model

242 Jakarta Connectors

16.4.3. Crash Recovery Processing

• If the EIS detects the failure of the application server while the transaction is active (that is,
transaction completion has not begun), it does not wait for the application server to recover or do
any recovery processing. The transactional work done by the application server site is presumed
aborted.

• If the EIS detects the failure of the application server while the transaction is in-doubt (that is, the
transaction has already been prepared), the EIS retries completion by attempting to re-establish
network communication until it succeeds. When the application server recovers from the crash, it
should recover the state of all transactions that were successfully prepared before the crash, and
complete them upon receiving a commit method or rollback method call from the EIS through the
resource adapter.

• If the resource adapter detects the failure of the EIS while the transaction is active (that is,
transaction completion has not begun), it aborts all active transactions that originated from the EIS.
The resource adapter should keep a list of active transactions and abort them upon EIS failure.

• If the resource adapter detects the failure of the EIS while the transaction is in-doubt (that is, the
transaction has already been prepared), it waits for the EIS to recover. When the EIS recovers, it re-
establishes network communication with the resource adapter, and queries it for a list of in-doubt
transactions. It then completes the in-doubt transactions.

Crash Recovery Flows When Application Server Crashes (Sequence Diagram)

16.4. Transaction Inflow Model

Jakarta Connectors 243

Xid
(from adapter)

Resource
Adapter

BootstrapContext
(from app server)

XATerminator
(from app server)

1. commit or rollback message (EISretriescompletion)

EIS

Application server crashes when a transaction is in an active state

When the EIS detects the failure of the application server site while the transaction is active (that is,
transaction completion has not begun), it does not wait for the application server to recover or do any
recovery processing. The transactional work done by the application server site is presumed aborted.

Application server crashes when a transaction is in an in-doubt state

When the EIS detects the failure of the application server site while the transaction is in-doubt (that is,
the transaction has already beeb prepared), the EIS retries completion by attempting to re-establish
the network communication until it succeeds. When the application server recovers from the crash, it
should recover the state of all transactions that were successfully prepared before the crash, and
complete them upon receiving a commit(Xid) or rollback(Xid) from the EIS via the resource adapter.

4. construct an Xid

3. create an instance

5. commit (Xid) or rollback (Xid)

Crash Recovery Flows When EIS Crashes (Sequence Diagram)

16.4. Transaction Inflow Model

244 Jakarta Connectors

XATerminator
(from app server)

1. EIS recovers queries for a list of in-doubt transactions

EIS crashes when a transaction is in an active state

When the resource adapter detects the failure of the EIS site while the transaction is active (that is,
transaction completion has not begun), it aborts all active transactions which originated from the EIS.
The resource adapter must keep a list of active transactions and abort them upon EIS failure.

EIS crashes when a transaction is in an in-doubt state

When the resource adapter detects the failure of the EIS site while the transaction is in-doubt (that is,
the transaction has already beeb prepared), it waits for the EIS to recover. When the EIS recovers, it
re-establishes network communication with the resource adapter, and queries it for a list of in-doubt
transactions. It then completes the in-doubt transactions.

4. construct a Xid for each in-doubt transaction

5. commit (Xid) or rollback (Xid) the in-doubt transaction

Xid
(from adapter)

Resource
AdapterEIS

1. create a Xid for each active transaction

2. rollback (Xid) for each active transaction

2. recover() [returns a list of in-doubt transactions]

3. send commit or rollback to the in-doubt transactions

16.4.4. Requirements

• An application server must implement the transaction inflow contract. That is, it must allow Work
submissions with a transaction context, an Xid, and provide a valid XATerminator instance when
called through the getXATerminator method of the BootstrapContext instance.

• A resource adapter may optionally choose to use the transaction inflow contract. But, a resource
adapter that uses the transaction inflow contract to import an EIS transaction and do transactional
work must implement the prescribed transaction inflow contract.

16.4. Transaction Inflow Model

Jakarta Connectors 245

• The XATerminator instance provided by the application server must be thread-safe and re-entrant.
The resource adapter may use an XATerminator instance across different transactions
concurrently.

• When the application server is unable to recreate the transaction context, if any, specified for a
Work instance, it must throw a WorkCompletedException set to the error code
WorkException.TX_RECREATE_FAILED.

• For a particular imported transaction, at any given time, there must be at most one Work instance
associated with the transaction. The associated Work instance may be in any state, that is, waiting
for execution to begin or already executing. However, it must be possible for several Work
instances to do work on a transaction as long as there is at most one Work instance associated with
the transaction at any time. It must also be possible for different resource adapters to participate in
the same transaction. The application server must disallow Work submissions with a
WorkCompletedException set to the error code
WorkException.TX_CONCURRENT_WORK_DISALLOWED, if there is already a Work instance
associated with the transaction, irrespective of which resource adapter is involved in the Work
submission. This must be done using the getGlobalTransactionId method of the Xid object present
in the execution context of the submitted Work instance. The Xid’s branch identifier must be
ignored. The application server must not try to serialize Work processing based on transaction
information.

• The application server must reject Work submissions for a transaction whose completion is in-
progress, with a WorkCompletedException set to the error code
WorkException.TX_CONCURRENT_WORK_DISALLOWED.

• The application server must reject transaction completion or crash recovery calls for a specific
transaction with a javax.transaction.xa.XAException, when a Work instance associated with the
transaction is present. The application server must not block or serialize transaction completion or
crash recovery calls waiting for a Work instance associated with the transaction to complete.

• The application server must reject multiple transaction completion or crash recovery calls for the
same transaction with a javax.transaction.xa.XAException.

• The application server must reject transaction completion or crash recovery calls with a
javax.transaction.xa.XAException upon any errors.

• The application server should recover the state of all in-doubt transactions upon failure recovery.

16.4.5. Non-Requirements

• The application server is not responsible for ensuring transaction IDs of the imported transactions
from different EISs are unique. Each EIS is expected to use unique transaction IDs.

• It is possible that a rogue resource adapter or EIS may provide non-unique Xids, or attempt to
complete transactions that it does not own. The application server is not required to detect the
above cases. It is also not required to detect transactional, transaction completion, or crash
recovery calls from a rogue EIS.

16.4. Transaction Inflow Model

246 Jakarta Connectors

16.4.6. Recommendations

The resource adapter should keep a list of active transactions and abort them upon detecting EIS
failure.

16.5. Transaction Inflow in a Non-Managed Environment
Though the transaction inflow contract is primarily intended for a managed environment, it may be
used in a non-managed environment provided the application that bootstraps a resource adapter
instance is capable of functioning as a resource manager.

In a non-managed environment, support for the transaction inflow contract is not required. That is, the
getXATerminator method of the BootstrapContext instance may return a null instance.

16.5. Transaction Inflow in a Non-Managed Environment

Jakarta Connectors 247

Chapter 17. Security Inflow
This chapter specifies a standard, generic security contract between the EIS/resource adapter and the
application server that enables a resource adapter to establish security information while submiting a
Work instance for execution to a WorkManager and while delivering messages to message endpoints
residing in the application server.

17.1. Overview
It is critical, in EIS integration scenarios, that all interactions between an application server and
resource adapter are secure and unauthorized access to application components deployed in an
application server be prevented. The security architecture for integration of EISs into the application
server is detailed in Security Architecture and the security contract related to connection
establishment with the EIS is discussed in this chapter

Resource adapters, typically employ transport and message level security for connecting to, and
receiving messages from an EIS. To achieve end-to-end application security, it is important that all
activities that a Work instance performs, including delivering messages to a MessageEndpoint happens
in the context of an established identity.

This chapter references the following chapters and documents:

• Security Architecture specified in Security Architecture

• Security scenarios based on the connector architecture (Refer to Appendix D Security Scenarios)

• Jakarta™ Authentication Specification, Version 3.0 (JSR-196)

Security Inflow Contract

Message
Endpoint

Resource
Adapter

EIS
Security inflowOther

Components
contract

Domain
Resource
Principal

Caller
Principal

17.2. Goals
The Security Inflow contract is designed to meet the following goals:

• Enable an end-to-end security model for Jakarta EE applications, to support integration with EIS
based on the Connector architecture

• Support the execution of a Work instance in the context of an established identity

• Support the propagation of user information/ Principal information from an EIS to a

17.1. Overview

248 Jakarta Connectors

MessageEndpoint during Message Inflow

• Ensure that the security inflow contract is transparent to an application component provider

• Enable a WorkManager to make authorization checks based on the security context information
that is provided with the submitted Work instance

• Enable an application component container to authorize and control access during Message Inflow
to message endpoints residing in the application component container

• Allow MessageEndpoint s to be portable across multiple EISs that use different security
mechanisms

• Map security identities in foreign domains into corresponding identities in the receiving container
or context

• Ensure backward compatibility with the existing "Security Management contract", defined in
Chapter-17 of Jakarta™ Enterprise Beans Specification, Version 4.0 Core Contracts and
Requirements specification, for security context inflow to MessageEndpoint s realized as message-
driven beans

17.3. Security Inflow Model
This chapter uses the terminology described in Terminology and does not dictate any specific security
policy or technology. The resource adapter performs EIS sign-on and secure association with the EIS in
an EIS specific manner. No specific scheme or configuration to perform sign-on and establish such
secure associations is mandated by this security inflow model. For more details on EIS sign-on, see
Authentication Mechanism and for details on secure association with the EIS, see Secure Association.

The security inflow contract between the resource adapter and the application server leverages the
Generic Work Context mechanism (described in Generic Work Context) by describing a standard
WorkContext , SecurityContext that may be provided by the resource adapter while submitting a Work
for execution.

Submitting a Work instance without specifying the security contextual information, in which the Work
has to be executed in, has the following drawbacks related to application security:

• When a Work instance is submitted by a resource adapter to a WorkManager for execution:

◦ The Work instance is always executed in an unknown security context, or a default security
context set by the application server’s WorkManager

◦ In the absence of inflow of security identities during Work submission, the container cannot
ensure the task has been granted fine-grained permissions/access-control based on
authenticated user identities but is limited to making access decisions based on code-based
identity information.

• When a message is delivered asynchronously to MessageEndpoint s residing in the application
server, the resource adapter cannot establish the security identity of the caller of the
MessageEndpoint , that is, the value returned when EJBContext.getCallerPrincipal() is called is

17.3. Security Inflow Model

Jakarta Connectors 249

unknown. (when the MessageEndpoint is realized as a message-driven bean).

The SecurityContext provides a portable mechanism for the resource adapter to pass security context
information to the application server. This work context enables an EIS/resource adapter to flow-in
security context information while submitting a Work to a WorkManager for execution. All activities
that happen as part of the Work instance, including message deliveries to MessageEndpoint s then
occurs in the context of an established identity. This avoids the drawbacks listed above and extends the
end-to-end security model for Jakarta EE applications to include the Work execution and Message
Inflow aspects.

A resource adapter submits a Work instance, that implements WorkContextProvider to a WorkManager
. The resource adapter includes a concrete implementation of SecurityContext as one of the work
contexts it requires to be established as the execution context of the Work instance.

When one of the free threads from the application server’s thread pool picks up the Work instance for
execution, as described in the Generic Work Context Model (see Generic Work Context Model), the
application server establishes the security context information described in the SecurityContext ,
before executing the Work instance.

When a message is delivered to a MessageEndpoint instance by the resource adapter in the context of a
Work instance, the security context that is set up for that message delivery is inherited from the
security context set in the Work instance. In other words, as in Transaction Inflow (see Transaction
Inflow), all message deliveries that are delivered to endpoints within a single Work instance are
processed under the same security identity.

Security Inflow Context (Object Diagram)

17.3. Security Inflow Model

250 Jakarta Connectors

BootstrapContext

CallbackHandler

Application Server

CallerPrincipalCallback

endpointActivation()

setupSecurityContext()

Resource Adapter

Message object

endpointDeactivation()

WorkManager
createEndpoint(XAResource)

isDeliveryTransacted()

message delivery calls

workAccepted(), workStarted()
XAResource

GroupPrincipalCallback

Security Context

handle()

Resource Adapter

17.3. Security Inflow Model

Jakarta Connectors 251

SecurityContext

 package jakarta.resource.spi.work;

 import javax.security.auth.Subject;
 import javax.security.auth.callback.CallbackHandler;

 public abstract class SecurityContext implements WorkContext {

 public String getDescription() {
 return "Security Context";
 }

 public String getName() {
 return "SecurityContext";
 }

 public abstract void setupSecurityContext(CallbackHandler handler,
 Subject executionSubject,
 Subject serviceSubject);
}

When a resource adapter flows-in an identity to be used by the application server, the identity may or
may not belong to the EIS security domain and the caller principal to be established for a message-
driven bean (or a MessageEndpoint) is required to be an identity of the application server’s security
domain. Therefore the EIS integration scenario has two choices related to establishing the Caller
identity:

• Case 1: Resource adapter flows-in an identity in the application server’s security policy
domain. In this case, the application server may just use the initiating principal, flown-in from the
resource adapter, as the caller principal in the security context the Work instance executes as.

• Case 2: Resource adapter flows-in an identity belonging to the EIS’ security domain. The
resource adapter establishes a connection to the EIS and requires to execute a Work instance in the
context of an EIS identity. In this case, the initiating or caller principal does not exist in the
application server’s security domain. A translation from one domain to the other is required to be
performed.

For more information on these two cases, see Case 1: Identity in the Container Security Domain and
Case 2: Identity Translated Between Security Domains.

The WorkManager may enforce any security policies, as per its configuration, while establishing the
security context for the Work instance. The application server may also enforce additional security
policies, based on the configuration of the MessageEndpoint s, during message delivery. See Message
Delivery.

17.3. Security Inflow Model

252 Jakarta Connectors

17.4. SecurityContext Class
The SecurityContext is one of the standard WorkContext s defined in this specification. It enables a
Work instance to propagate security related context information from an EIS to the application server.
It is modelled as an abstract class that implements the WorkContext interface.

The resource adapter provides a custom concrete implementation of the SecurityContext abstract class
and provides an implementation for the method setupSecurityContext to set up security context for the
Work instance being submitted. A resource adapter indicates to the WorkManager , that a Work
instance is required to be run in a specified security execution context by submitting a Work instance
that implements WorkContextProvider interface and ensuring that the List of WorkContext s for that
Work instance contains an instance of SecurityContext.

Security Context Establishment During Work Submission(Sequence Diagram)

Work Manager
(from app server)

1. create an instance

Resource Adapter
(from adapter)

Work
(from adapter)

SecurityContext
(from adapter)

2. scheduleWork() [startWork() or doWork() may be used as well]

[if Work implements WorkContextProvider]

6. after establishing the execution context, call run()

5. call setupSecurityContext()

3. when Work is accepted, dispatch a free
thread and establish execution context

opt

4. getWorkContexts() from Work

loop

[if WorkContext is of type SecurityContext]

17.4. SecurityContext Class

Jakarta Connectors 253

17.4.1. Establishing the Security Context

While setting the execution context of a Work instance, the WorkManager establishes the security
context for the Work instance when it encounters a WorkContext instance implementing
SecurityContext .

 For setting the security context of a _Work_
instance, the application server calls the _setupSecurityContext_ method
of the _SecurityContext_ implementation provided by the resource
adapter. The following conditions are applicable to the application
server provider while calling the _setupSecurityContext_ method:

• The handler argument must not be null, and the CallbackHandler implementation passed as the
argument handler to setupSecurityContext must support the following Callback s defined in
Jakarta™ Authentication Specification, Version 3.0:

◦ CallerPrincipalCallback

◦ GroupPrincipalCallback

◦ PasswordValidationCallback The following Callback s are recommended to be supported by the
CallbackHandler implementation:

◦ CertStoreCallback

◦ PrivateKeyCallback

◦ SecretKeyCallback

◦ TrustStoreCallback

• The executionSubject argument must be non-null and it must not be read-only. It is expected that
the resource adapter Work implementation will populate this executionSubject with Principal and
credentials that would be flown into the application server.

• The serviceSubject argument may be null. If it is not null, it must not be read-only. It represents the
application server’s credentials and it may be used by the Work implementation to retrieve
Principals and credentials necessary to establish a connection to the EIS (in the cause of mutual-
auth like scenarios). The serviceSubject may contain the credentials of the application server or the
SecurityContext implementation may collect the service credentials, as necessary, by using the
CallbackHandler passed to it.

When the setupSecurityContext method is called by the application server container, the resource
adapter may perform the following steps to establish caller identity information for a Work instance:

1. Identify the security context that is required to be flown-in to the application server to serve as the
execution context of the Work instance.

2. Populate the executionSubject with the EIS Principal and Credentials that should serve as the
security context for the Work instance to be executed in.

17.4. SecurityContext Class

254 Jakarta Connectors

3. Add instances of the necessary Callback s (Callbacks for Information from the Application Server
describes when a particular Callback is required to be employed by the resource adapter), usually a
subset of the ones listed above, to an array and invokes the handle() method in the container’s
CallbackHandler implementation by passing the array of Callback instances.

4. On sucessful return from the CallbackHandler.handle() method the setupSecurityContext() returns.

On successful return of setupSecurityContext , the container must use the "modified" executionSubject
(modified as a result of handling the various Callback s) to establish the caller identity of the Work
instance

On successful return from setupSecurityContext , the WorkManager must ensure that the Work is set up
to be executed with the established security identity. Any subsequent MessageEndpoint deliveries in
that Work instance (to message-driven beans for instance) should have the security context established
appropriately. When message-driven beans are the MessageEndpoint s,
MessageDrivenContext.getCallerPrincipal() must return the principal corresponding to the established
security identity, and MessageDrivenContext.isCallerInRole() must return the result of testing the
established security identity for role membership.

As detailed in WorkContextProvider and WorkContext Interface, a Connector WorkManager must
support nested Work submissions. One or more Work instances in such a nested Work submission may
include a SecurityContext . The Connector WorkManager must restrict the security context, established
by way of the SecurityContext of a Work instance, to that Work instance alone. When a nested Work
instance is submitted without a SecurityContext, the Connector WorkManager must not inherit the
Security Context information of the parent Work instance. It must establish the equivalent of an
unauthenticated caller principal for the nested Work instance.

Establish the Security Context (Sequence Diagram)

17.4. SecurityContext Class

Jakarta Connectors 255

SecurityInfCtxt
(from adapter)

1. Incoming message with an EIS-specific security context

2. construct a SecurityContext

Resource
AdapterEIS

4. create a work instance

Work
(from adapter)

Work Manager
(from app server)

Callback Handler
(from app server)

3. create a Work instance with SecurityContext as a Context

5. When Work is accepted, dispatch a free thread
and setup execution context for that Work instance

5.2. add relevant CallerId and call handler()
to establish Caller Identity or get information from runtime

5.1. call setupSecurityContext()

6. Call run() to execute the Work instance

17.4.2. Callbacks for Information from the Application Server

As part of step 3 described in the section above, the following Callback s may be employed by a
resource adapter. The descriptions of the Callback s below have been taken from the Jakarta™
Authentication Specification, Version 3.0. For detailed information, refer to the Jakarta™
Authentication Specification, Version 3.0 and the Java API documentation of the Callback s defined in
the jakarta.security.auth.message.callback package of that specification:

• A resource adapter may use the CallerPrincipalCallback to set the container’s representation of the
caller principal. The CallbackHandler must establish the caller principal associated with the
invocation being processed by the container. When the argument Principal is null, the handler will
establish the container’s representation of the unauthenticated caller principal.

17.4. SecurityContext Class

256 Jakarta Connectors

• A resource adapter might use the GroupPrincipalCallback to establish the container’s
representation of the corresponding group principals within the Subject. When a null value is
passed to the groups argument, the handler will establish the container’s representation of no
group principals within the Subject. Otherwise, the handler’s processing of this callback is additive,
yielding the union (without duplicates) of the principals existing within the Subject , and those
created with the names occuring within the argument array. The CallbackHandler will define the
type of the created principals.

• A resource adapter might use the PasswordValidationCallback to employ the password validation
facilities of its containing runtime. Since a resource adapter employing the
PasswordValidationCallback makes an assumption of access to the password validation facilities
(and thereby access to the security domain), it can be deployed in Case #1 scenarios only
(For more information on Case #1 scenario, see Case 1: Identity in the Container Security Domain).
The resource adapter must pass this information to th e deployer through an out-of-band
mechanism.

17.4.3. Case 1: Identity in the Container Security Domain

As explained in Security Inflow Model, the EIS integration scenario may result in the resource adapter
reusing the application server security policy domain. In such cases, when the resource adapter flows-
in an identity through the security context inflow model described in Establishing the Security Context,
the identity belongs to the application server’s security domain already. Therefore, the application
server may use the Principal s used in CallerPrincipalCallback and GroupPrincipalCallback without any
translation to the application server security policy domain.

Case 1: Identity in Container’s Security Domain (Sequence Diagram)

17.4. SecurityContext Class

Jakarta Connectors 257

SecurityInfCtxt
(from adapter)

1. Incoming message with an EIS-specific security context

2. construct a SecurityContext

Resource
AdapterEIS

4. create a work instance for execution

Work
(from RA)

Work Manager
(from app server)

Callback Handler
(from app server)

CallerPrincipal
Callback

3. create a Work instance with SecurityContext as a Context

5. When Work is accepted, dispatch a free thread
and setup execution context for that Work instance

5.2. create an instance with the resource principal

5.3. add the Callback created in 5.2 and call handle()

5.1. call setupSecurityContext()

5.3.2 establish Caller Principal

6. Call run() to execute the Work instance

17.4.4. Case 2: Identity Translated Between Security Domains

When the resource adapter, on the other hand, connects to an EIS that uses a different security policy
domain, it requires that the Work instance be executed in the context of the container identity mapped
from the EIS identity . To handle such a case, these Principal s and groups, available in the resource
adapter, would need to be mapped to Principal s and groups as relevant in the MessageEndpoint
container’s security policy domain.

17.4. SecurityContext Class

258 Jakarta Connectors

During the inflow of the EIS Subject , the mapping of one or more principals on the path may be
required before delivering to the MessageEndpoint /message-driven bean. These translations from the
identity of initiating/caller resource principal to an application server principal could be one of the
following types (see Resource Principal)

• Configured Identity

• Principal Mapping

• Caller Impersonation

• Credentials Mapping

For example, in the case of Principal Mapping, an employee may be identified by a userid and
password (basic authentication) in an EIS. The resource principal may need to be mapped to a
Kerberos principal, that is relevant in the application server security domain, before delivering the
method invocation to the message-driven bean. In the case of MessageEndpoint s realized as message-
driven beans MessageDrivenContext.getCallerPrincipal method then, returns the principal that is the
result of the mapping and not the original EIS principal. In this example, getCallerPrincipal would
return the Kerberos principal.

The management of the security infrastructure, to enable principal mapping or other schemes listed
above, is performed by the System Administrator role and the mechanism through which a container
enables this mapping is beyond the scope of the Connector specification.

The application server must provide tools to set up Caller Identity information for a Work/Message
Endpoint container. This includes support for mapping of EIS/resource principals to Caller Principals
in the application server security domain.

To handle Principal Mapping scenarios described above, the application server must provide a
CallbackHandler that can be configured to perform Principal Mapping during its handling of the
CallerPrincipalCallback and GroupPrincipalCallback s. This specification does not define interfaces for
Principal Mapping service and CallbackHandler configuration. The deployer must use application
server specific tools and techniques to enable this mapping.

Case 2: Identity Translated Between Security Domains (Sequence Diagram)

17.4. SecurityContext Class

Jakarta Connectors 259

SecurityInfCtxt
(from adapter)

1. Incoming message with an EIS-specific security context

2. construct a SecurityContext

Resource
AdapterEIS

4. submit the Work instance for execution

Work
(from RA)

Work Manager
(from app server)

Callback Handler
(from app server)

CallerPrincipal
Callback

3. create a Work instance with SecurityContext as a Context

5. When Work is accepted, dispatch a free thread
and setup execution context for that Work instance

5.2. create an instance with the resource principal

5.3. add the Callback created in 5.2 and call handle()

5.1. call setupSecurityContext()

5.3.2 perform Principal Mapping

6. Call run() to execute the Work instance

5.3.3 establish Caller Principal

17.4.5. Establising a Principal as the Caller Identity

Prior to returning to the container, setupSecurityContext must use the container provided
CallbackHandler to handle a CallerPrincipalCallback , unless either of the following conditions are met
at the time the method returns to the container:

• Case A. The resource adapter intends to establish an authenticated caller identity, and the
principal Set of the executionSubject contains exactly the one Principal that would otherwise have

17.4. SecurityContext Class

260 Jakarta Connectors

been used to construct the CallerPrincipalCallback

• Case B. The resource adapter intends to establish the unauthenticated caller identity, and the
principal Set of the executionSubject is empty.

The resource adapter, in the two cases above, is not required to use the Callback s listed in Callbacks
for Information from the Application Server.

17.4.5.1. Case A: Establishing a Single Principal as the Caller Identity

The resource adapter can add the one Principal it requires to be set as the Caller identity in the
Principal Set of the executionSubject . See Case A: Establishing a Single Principal as the Caller Identity
(Seq. Diagram) for a sequence diagram depicting this case. Note that the resource adapter must be
configured to have the necessary security permissions to add a Principal to the executionSubject.

On return from setupSecurityContext , the container must determine whether or not it handled the
CallerPrincipalCallback . If it determines that it did not handle the Callback , the container must
transform the contents of the executionSubject and of any related authentication state to be equivalent
to that which would have resulted had it handled the Callback on behalf of the resource adapter. This
transformation also includes all security identity translation requirements detailed in Case 2: Identity
Translated Between Security Domains.

17.4.5.2. Case B: Establishing an Unauthenticated Security Context

If a resource adapter requires to establish an unauthenticated security context (which may or may not
have an associated Principal) for the Work instance, the resource adapter may perform either of the
following operations when setupSecurityContext is called:

• It may use the CallbackHandler to handle a CallerPrincipalCallback with a null Principal or name

• Or, if it uses the simplification described in Establishing a Principal as the Caller Identity, it may
return an empty executionSubject .

The WorkManager must detect that the handler was not called and establish the container’s
representation of the unauthenticated identity for that Work instance.

Case A: Establishing a Single Principal as the Caller Identity (Seq. Diagram)

17.4. SecurityContext Class

Jakarta Connectors 261

SecurityInfCtxt
(from adapter)

1. Incoming message with an EIS-specific security context

2. construct a SecurityContext

Resource
AdapterEIS

4. submit the Work instance for execution

Work
(from adapter)

Work Manager
(from app server)

execution
Subject

3. create a Work instance with SecurityContext as a Context

5. When Work is accepted, dispatch a free thread
and setup execution context for that Work instance

5.2. Add a single Principal to the Principal Set

5.1. call setupSecurityContext()

6. Call run() to execute the Work instance

5.3.2 establish Caller Principal

5.3.1 get Principal

17.4.6. Security Configuration Responsibilities

The system administrator, deployer and application component (MessageEndpoint provider) have
particular responsiblities in the assignment of security roles, security domain and realm assignment.

When MessageEndpoint s are realized as message-driven beans, the Jakarta Enterprise Beans Core
Contracts and Requirements of Jakarta™ Enterprise Beans Specification, Version 4.0, states the
following responsibilities:

• Deployer: (section 17.4.2) : The Deployer assigns principals and/or groups of principals (such as
individual users or user groups) used for managing security in the operational environment to the
security roles defined by means of the DeclareRoles and RolesAllowed metadata annotations and/or
security-role elements of the deployment descriptor. … the process of assigning the logical security
roles defined in the application’s deployment descriptor to the operational environment’s security

17.4. SecurityContext Class

262 Jakarta Connectors

concepts is specific to that operational environment. Typically, the deployment process consists of
assigning to each security role one or more user groups (or individual users) defined in the
operational environment.

• Jakarta Enterprise Beans container provider (Section 17.6.7): Principal Mapping If the application
requires that its clients are deployed in a different security domain, or if multiple applications
deployed across multiple security domains need to interoperate, the Jakarta Enterprise Beans
Container Provider is responsible for the mechanism and tools that allow mapping of principals.
The tools are used by the System Administrator to configure the security for the application?s
environment.

• System Administrator (Section 17.7.2): Principal Mapping : If the client is in a different security
domain than the target enterprise bean, the System Administrator is responsible for mapping the
principals used by the client to the principals defined for the enterprise bean. The result of the
mapping is available to the Deployer. The specification of principal mapping techniques is beyond
the scope of the Jakarta Enterprise Beans architecture.

17.5. Requirements
• The application server must support the SecurityContext interface. It must also satisfy all the

requirements stated in Establishing the Security Context

• The application server must support resource adapters that employ Case 1 or 2 style integration
mode. Cases 1 and 2 are detailed in Case 1: Identity in the Container Security Domain and Case 2:
Identity Translated Between Security Domains respectively.

• The application server must provide configuration tools to establish Caller Identity information for
a MessageEndpoint or Work instance as stated in Section Case 2: Identity Translated Between
Security Domains. In other words, the container must provide support for configuring principal
mapping. The application server must also support the simplifications detailed in Establishing a
Principal as the Caller Identity.

• The application server must support the security role assignments relevant to the MessageEndpoint
implementation as stated in Security Configuration Responsibilities

17.6. Illustrative Example

17.6.1. Case 1: Identity in the Container Security Domain

The Case #1 scenario enables resource adapters that work closely with the application server and
could authenticate the credentials with the application server’s security domain directly. For example,
consider an EIS that is tightly plugged in with the application server or container, like say, for
illustration purposes, an XMPP (Extensible Messaging and Presence Protocol) server.

In this case the XMPP resource adapter, could leverage the application server’s security domain
directly for managing and authenticating users instead of having its own security domain. In this
scenario, the XMPP resource adapter requires the delivery of an XMPP "exchange message" that was

17.5. Requirements

Jakarta Connectors 263

sent by a user JoeUser (JoeUser was authenticated in the AS security domain by the XMPP resource
adapter, through out-of-band implementation-specific schemes) to a MessageEndpoint . Since the
security identity is in the application server’s security domain, there isn’t a need to translate the
known identity to an identity in the application server’s security domain. The XMPP resource adapter
already has the user name JoeUser and the necessary authentication data and could use JoeUser
/authentication data to establish the security context of the Work instance.

In order to support the propagation of user information/ Principal information from the EIS (XMPP
server in this case) to a MessageEndpoint during message inflow, the XMPP resource adapter uses a
Work instance to deliver the XMPP exchange message and provides a SecurityContext as one of the
WorkContext s for the Work instance.

After the container successfully processes the security work context information, the application
server will ensure that the Work is set up to be executed with the established security identity. All
subsequent MessageEndpoint deliveries in that Work instance (to message-driven beans for instance)
will have the security context established appropriately. When message-driven beans are the
MessageEndpoint s, MessageDrivenContext.getCallerPrinicipal() must return the principal
corresponding to the established security identity, and MessageDrivenContext.isCallerInRole() must
return the result of testing the established security identity for role membership.

public class XMPPResourceAdapterImpl implements ResourceAdapter {

 ...

 public void start(BootstrapContext ctx) {
 bootstrapCtx = ctx;
 }
 ...

 {

 WorkManager workManager = myRA.bootstrapCtx.getWorkManager();
 workManager.scheduleWork(new XMPPMessageDeliveryWork());
 ...
 }

}

public class XMPPMessageDeliveryWork implements Work, WorkContextProvider {

 void release(){ ..}

 List<WorkContext> getWorkContexts() {
 List<WorkContext> l = new ArrayList<WorkContext>();
 SecurityContext scIn = new XMPPSecurityContext();
 l.add(scIn);

17.6. Illustrative Example

264 Jakarta Connectors

 return l;
 }

 void run(){
 // deliver "exchange message" from the user
 // to MessageEndpoint;
 }
}

public class XMPPSecurityContext extends SecurityContext {

 @Override
 public void setupSecurityContext(CallbackHandler handler,
 Subject executionSubject,
 Subject serviceSubject) {

 // Get username, password from client’s response
 // to XMPP register message
 // Note: PasswordValidationCallback usage is required
 // only if the RA requires authentication.
 PasswordValidationCallback pwdCallback = new PasswordValidationCallback(
executionSubject, username, pwd);
 CallerPrincipalCallback cpCallback = new CallerPrincipalCallback(executionSubject,
username);
 handler.handle(new Callback[] { pwdCallback, cpCallback });

 if (pwdCallback.getResult()) {
 return; // login success.
 } else {
 // login failure. Failure while setting Security Context
 }
 }
}

17.6.2. Case 2: Identity Translated Between Security Domains

The Case #2 scenario enables resource adapters that are aware of only the EIS Principal to execute
Work instances under a security context that is mapped to the application server’s security domain. As
an illustrative example, consider the case where integration with an EIS, an XMPP (Extensible
Messaging and Presence Protocol) server is established through the deployment of a third-party XMPP
resource adapter. The XMPP resource adapter is only aware of the identities/security domain of the
XMPP server(EIS) and is unaware of the details of the security domain where it gets deployed onto.

In this case the XMPP resource adapter, the deployer/system administrator uses application server
specific tools to effect a mapping fom the XMPP server security domain Principal to an equivalent
Principal in the application server’s security domain.

17.6. Illustrative Example

Jakarta Connectors 265

In this scenario, the XMPP resource adapter needs to flow in an XMPP exchange message that was sent
by a user JoeUser_EISPrincipal to a MessageEndpoint . JoeUser_EISPrincipal was authenticated in the
XMPP server’s security domain by the XMPP server runtime and the RA through out-of-band
implementation-specific schemes. The XMPP resource adapter is unaware about the security identities
or configuration of the application server’s security domain.

The deployer/system administrator, using application server configuration tools provides a mapping
between the XMPP security domain and the application server’s security domain. For example let’s
assume the JoeUser_EISPrincipal Principal is mapped to a JoeUser_ASPrincipal . When the XMPP
resource adapter executes the CallerPrincipalCallback with JoeUser_EISPrincipal , the CallbackHandler
implementation, aware of the configured mapping rules, maps the JoeUser_EISPrincipal to
JoeUser_ASPrincipal and establishes JoeUser_ASPrincipal as the Caller Principal.

The resource adapter implementation source code remains the same as in Case 1: Identity in the
Container Security Domain.

17.6. Illustrative Example

266 Jakarta Connectors

Chapter 18. Common Client Interface
This chapter specifies the Common Client Interface (CCI).

18.1. Overview
The CCI defines a standard client API for application components. The CCI enables application
components and Enterprise Application Integration (EAI) frameworks to drive interactions across
heterogeneous EISs using a common client API. The following figure shows a high-level view of the CCI
and its relationship to other application components.

Common Client Interface

Application Server Resource Adapter

Enterprise Information
System

Application Component

System Contracts

Common
Client Interface

EIS Specific

18.2. Goals
The CCI is designed with the following goals:

• It defines a remote function-call interface that focuses on executing functions on an EIS and
retrieving the results. The CCI can form a base level API for EIS access on which higher level
functionality can be built.

• It is targeted primarily towards application development tools and EAI frameworks.

• Although it is simple, it has sufficient functionality and an extensible application programming
model.

• It provides an API that both leverages and is consistent with various facilities defined by the Java
SE and Jakarta EE platforms.

• It is independent of a specific EIS. For example, it does not use data types specific to an EIS.
However, the CCI can be capable of being driven by EIS-specific metadata from a repository.

An important goal for the CCI is to complement existing standard JDBC API and not to replace this API.
The CCI defines a common client API that is parallel to the JDBC for EISs that are not relational
databases.

Since the CCI is targeted primarily towards application development tools and EAI vendors, it is not

18.1. Overview

Jakarta Connectors 267

intended to discourage the use of JDBC APIs by these vendors. For example, an EAI vendor will
typically combine JDBC with CCI by using the JDBC API to access relational databases and using CCI to
access other EISs.

18.3. Scenarios
The following scenarios illustrate the use of CCI by enterprise tools and Enterprise Application
Integration (EAI) vendors:

18.3.1. Enterprise Application Integration Framework

The EAI vendor uses the Common Client Interface as a standard way to plug-in resource adapters for
heterogeneous EISs. The vendor provides an application integration framework on top of the
functionality provided by the resource adapters. The framework uses the standard CCI interfaces to
drive interactions with the connected EISs.

The following figure also shows the use of JDBC by the EAI framework for connecting to and accessing
relational databases.

Scenario: EAI Framework

Enterprise Application Integration
Framework

JDBC Driver
Resource Adapter

Common
Client Interface

Metadata
Repository

18.3.2. Metadata Repository and API

An EAI or application development tool uses a metadata repository to drive CCI-based interactions
with heterogeneous EISs. See Scenario: EAI Framework and Scenario: Enterprise Application
Development Tool for illustrative examples. A repository may maintain meta information about
functions, with type mapping information and data structures for the invocation parameters, existing
on an EIS system.

The specification of a standard repository API and metadata format is outside the
scope of the current version of Jakarta Connectors.

18.3.3. Enterprise Application Development Tool

The CCI functions as a plug-in contract for an application development tool that develops additional

18.3. Scenarios

268 Jakarta Connectors

functionality around a resource adapter.

The application development tool generates Java classes based on the meta information accessed from
a metadata repository. These Java classes encapsulate CCI-based interactions and expose a simple
application programming model, typically based on the JavaBeans framework, to the application
developers. An application component uses the generated Java classes for EIS access.

An application development tool can also compose or generate an application component that uses the
generated Java classes for EIS access.

Scenario: Enterprise Application Development Tool

Enterprise Application Development Tool

JDBC Driver
Resource Adapter

Common
Client Interface

Metadata
Repository

Application Components or Java Classes

JDBC API

18.4. Common Client Interface
The CCI is divided in to the following parts:

• Connection-related interfaces that represent a connection factory and an application level
connection:

◦ jakarta.resource.cci.ConnectionFactory

◦ jakarta.resource.cci.Connection

◦ jakarta.resource.cci.ConnectionSpec

◦ jakarta.resource.cci.LocalTransaction

• Interaction-related interfaces that enable a component to drive an interaction, specified through an
InteractionSpec , with an EIS instance:

◦ jakarta.resource.cci.Interaction

◦ jakarta.resource.cci.InteractionSpec

• Service endpoint message listener interface:

◦ jakarta.resource.cci.MessageListener

• Data representation-related interfaces that are used to represent data structures involved in an
interaction with an EIS instance:

18.4. Common Client Interface

Jakarta Connectors 269

◦ jakarta.resource.cci.Record

◦ jakarta.resource.cci.MappedRecord

◦ jakarta.resource.cci.IndexedRecord

◦ jakarta.resource.cci.RecordFactory

◦ jakarta.resource.cci.Streamable

◦ jakarta.resource.cci.ResultSet

◦ java.sql.ResultSetMetaData

• Metadata related-interfaces that provide basic meta information about a resource adapter
implementation and an EIS connection:

◦ jakarta.resource.cci.ConnectionMetaData

◦ jakarta.resource.cci.ResourceAdapterMetaData

◦ jakarta.resource.cci.ResultSetInfo

• Additional classes:

◦ jakarta.resource.ResourceException

◦ jakarta.resource.cci.ResourceWarning

See Class Diagram: Common Client Interface for the class diagram for CCI.

18.4.1. Requirements

A resource adapter provider provides an implementation of the CCI interfaces as part of its resource
adapter implementation. Jakarta Connectors does not mandate that a resource adapter support the CCI
interfaces as its client API.

A resource adapter is allowed to support a client API specific to its underlying EIS. An
example of an EIS-specific client APIs is JDBC API for relational databases.

Jakarta Connectors also allows a third-party vendor to provide an implementation of CCI interfaces
above a resource adapter. For example, a base resource adapter supports the system contracts and
provides an EIS specific client API. A third-party tools vendor may provide the CCI implementation
above this base resource adapter.

Jakarta Connectors also allows a resource adapter implementation to support all interfaces except the
data representation-related interfaces. In this case, a third-party vendor provides both the
development-time and runtime aspects of data structures required to drive interactions wthird-
partyith an EIS instance. The section on the Record interface specification describes this case in more
detail.

Class Diagram: Common Client Interface

18.4. Common Client Interface

270 Jakarta Connectors

Record

uses

implements

inherits

inherits

association or use relationship

package: jakarta.resource.cci

<interface>

0-n

RecordFactory
<interface>

uses

0-n
Interaction

<interface>

uses

0-n

Connection
<interface> uses 0-1

InteractionSpec
<interface>

LocalTransaction
<interface>

0-1

ConnectionFactory
<interface>

creates

RecordFactory
<interface>

Streamable
<interface>

MappedRecord
<interface>

IndexedRecord
<interface>

ResultSet
<interface>

inheritsinheritsinherits

0-n

contains

0-n

contains

java.util.Map
<interface>

java.util.List
<interface>

java.sql.ResultSet
<interface>

inherits inherits inherits

18.5. Connection Interfaces
This section specifies interfaces for the connection factory and application level connection.

18.5.1. ConnectionFactory

The jakarta.resource.cci.ConnectionFactory provides an interface for getting a connection to an EIS
instance. A component looks up a ConnectionFactory instance from the JNDI namespace and then uses
it to get a connection to the EIS instance.

The following code extract shows the ConnectionFactory interface:

18.5. Connection Interfaces

Jakarta Connectors 271

public interface jakarta.resource.cci.ConnectionFactory
 extends java.io.Serializable, jakarta.resource.Referenceable {

 public RecordFactory getRecordFactory() throws ResourceException;

 public Connection getConnection() throws ResourceException;

 public Connection getConnection(jakarta.resource.cci.ConnectionSpec properties)
 throws ResourceException;

 public ResourceAdapterMetaData getMetaData() throws ResourceException;
}

The getConnection method gets a connection to an EIS instance. The getConnection variant with no
parameters is used when a component requires the container to manage EIS sign-on. In this case of the
container-managed sign-on, the component does not pass any security information.

A component may also use the getConnection variant with a jakarta.resource.cci.ConnectionSpec
parameter, if any resource adapter specific security information and connection parameters is
required to be passed. In the component-managed sign-on case, an application component passes
security information, such as username and password, through the ConnectionSpec instance.

It is important to note that the properties passed through the getConnection method should be client-
specific, such as username, password, and language, and not be related to the configuration of a target
EIS instance, such as port number or server name. The ManagedConnectionFactory instance is
configured with a complete set of properties required for the creation of a connection to an EIS
instance. Configured properties on a ManagedConnectionFactory can be overridden by client-specific
properties passed by an application component through the getConnection method. Refer to
ManagedConnectionFactory for configuration of a ManagedConnectionFactory .

Note that in a managed environment, the getConnection method with no parameters is the
recommended model for getting a connection. The container manages the EIS sign-on in this case.

The ConnectionFactory interface also provides a method to get a RecordFactory instance. The
ConnectionFactory implementation class may throw a jakarta.resource.NotSupportedException from
the method getRecordFactory .

18.5.2. Requirements

An implementation class for ConnectionFactory must implement the java.io.Serializable interface to
support JNDI registration. A ConnectionFactory implementation class is also required to implement
jakarta.resource.Referenceable . Note that the jakarta.resource.Referenceable interface extends the
javax.naming.Referenceable interface. Refer to JNDI Configuration and Lookup for more details on JNDI
based requirements for the ConnectionFactory implementation.

18.5. Connection Interfaces

272 Jakarta Connectors

An implementation class for ConnectionFactory must provide a default constructor.

18.6. ConnectionSpec
The interface jakarta.resource.cci.ConnectionSpec is used by an application component to pass
connection request-specific properties to the getConnection method.

The ConnectionSpec interface has been introduced to increase the toolability of the CCI. The
ConnectionSpec interface must be implemented as a JavaBean. Refer to JavaBean Requirements.

The following code extract shows the ConnectionSpec interface.

public interface jakarta.resource.cci.ConnectionSpec {

}

The CCI specification defines a set of standard properties for a ConnectionSpec . The properties are
defined either on a derived interface or an implementation class of an empty ConnectionSpec interface.
In addition, a resource adapter may define additional properties specific to its underlying EIS.

The following standard properties are defined by the CCI specification for ConnectionSpec :

Table 3. Table Standard Properties for ConnectionSpec

Property Description

UserName The name of the user establishing a connection to
an EIS instance.

Password The password for the user establishing a
connection.

An important point to note is about the relationship between ConnectionSpec and
ConnectionRequestInfo . The ConnectionSpec is used at the application level and is defined under the
scope of CCI while ConnectionRequestInfo is defined as part of the system contracts. Separate interfaces
have been defined to ensure the separation between CCI interfaces and system contracts.
ConnectionRequestInfo has no explicit dependency on CCI. Note that a resource adapter may not
implement CCI but it must implement system contracts. The specification of a standard repository API
and metadata format is outside the scope of the current version of Jakarta Connectors. The mapping
between CCI’s ConnectionSpec and ConnectionRequestInfo is achieved in an implementation-specific
manner by a resource adapter.

18.6.1. Connection

A jakarta.resource.cci.Connection represents an application level connection handle that is used by a
component to access an EIS instance. The actual physical connection associated with a Connection
instance is represented by a ManagedConnection .

18.6. ConnectionSpec

Jakarta Connectors 273

A component gets a Connection instance by using the getConnection method of a ConnectionFactory
instance. A Connection instance may be associated with zero or more Interaction instances.

The following code extract shows the Connection interface:

public interface jakarta.resource.cci.Connection {

 public Interaction createInteraction() throws ResourceException;

 public ConnectionMetaData getMetaData() throws ResourceException;

 public ResultSetInfo getResultSetInfo() throws ResourceException;

 public LocalTransaction getLocalTransaction() throws ResourceException;

 public void close() throws ResourceException;

}

The createInteraction method creates an Interaction instance associated with the Connection instance.
An Interaction enables a component to access EIS data and functions.

The getMetaData method returns information about the EIS instance associated with a Connection
instance. The EIS instance-specific information is represented by the ConnectionMetaData interface.

The getResultSetInfo method returns information on the result set functionality supported by the
connected EIS instance. If the CCI implementation does not support result set functionality, then the
method getResultSetInfo must throw a NotSupportedException .

The close method initiates a close of the connection. The OID in OID: Connection Pool Management
with Connection Matching describes the resulting behavior of such an application level connection
close.

The getLocalTransaction method returns a LocalTransaction instance that enables a component to
demarcate resource manager local transactions. If a resource adapter does not allow a component to
demarcate local transactions using the LocalTransaction interface, the getLocalTransaction method
must throw a NotSupportedException .

18.6.1.1. Auto Commit

When a Connection is in an auto-commit mode, an Interaction , associated with the Connection ,
automatically commits after it has been executed. The auto-commit mode must be turned off if
multiple interactions have to be grouped in a single transaction and committed or rolled back as a unit.

CCI does not provide explicit set / getAutoCommit methods in the Connection interface. This simplifies
the application programming model for the transaction management.

18.6. ConnectionSpec

274 Jakarta Connectors

A resource adapter must manage the auto-commit mode as follows:

• A transactional resource adapter either at the XATransaction or LocalTransaction level must set the
auto-commit mode of Connection instances participating in a transaction to off within the
transaction. This requirement holds for true both container-managed and bean-managed
transaction demarcation.

• A transactional resource adapter must set the auto-commit mode of Connection instances to on
when used outside a transaction.

These requirements are independent of whether a transaction is managed as a local or XA transaction.
A transactional resource adapter should implement this requirement in an implementation-specific
manner.

A non-transactional resource adapter at the NoTransaction level, is not required to support the auto-
commit mode for Connection .

18.7. Interaction Interfaces
This section specifies interfaces that enable a component to drive an interaction with an EIS instance
and to demarcate resource manager local transactions.

18.7.1. Interaction

The jakarta.resource.cci.Interaction enables a component to execute EIS functions. An Interaction
instance supports the following interactions with an EIS instance:

• An execute method that takes an input Record , output Record , and an InteractionSpec . This
method executes the EIS function represented by the InteractionSpec and updates the output
Record .

• An execute method that takes an input Record and an InteractionSpec . This method
implementation executes the EIS function represented by the InteractionSpec and produces the
output Record as a return value.

If an Interaction implementation does not support a variant of the execute method, the method must
throw a jakarta.resource.NotSupportedException .

Refer to Interaction and Record for details on how input and output records are created and used in
the above variants of the execute method.

An Interaction instance is created from a Connection and must maintain its association with the
Connection instance. The close method releases all resources maintained by the resource adapter for
the Interaction . The close of an Interaction instance should not close the associated Connection
instance.

The following code extract shows the Interaction interface:

18.7. Interaction Interfaces

Jakarta Connectors 275

public interface jakarta.resource.cci.Interaction {

 public Connection getConnection();

 public void close() throws ResourceException;

 public boolean execute(InteractionSpec ispec, Record input, Record output) throws
ResourceException;

 public Record execute(InteractionSpec ispec, Record input) throws ResourceException;
 ...
}

18.7.2. InteractionSpec

A jakarta.resource.cci.InteractionSpec holds properties for driving an Interaction with an EIS instance.
An InteractionSpec uses an Interaction to execute the specified function on an underlying EIS.

The CCI specification defines a set of standard properties for an InteractionSpec . The properties are
defined either on a derived interface or an implementation class of an empty InteractionSpec interface.
The following code extract shows the InteractionSpec interface.

public interface jakarta.resource.cci.InteractionSpec extends java.io.Serializable {

 // Standard Interaction Verbs
 public static final int SYNC_SEND = 0;
 public static final int SYNC_SEND_RECEIVE = 1;
 public static final int SYNC_RECEIVE = 2;
}

An InteractionSpec implementation is not required to support a standard property if that property does
not apply to its underlying EIS. The InteractionSpec implementation class must provide getter and
setter methods for each of its supported properties. The getter and setter methods convention should
be based on the JavaBeans design pattern.

18.7.2.1. Standard Properties

The standard properties are as follows:

• FunctionName . A string representing the name of an EIS function. Some examples are the name of
a transaction program in a CICS system or the name of a business object or function module in an
ERP system. The format of the name is specific to an EIS and is outside the scope of the CCI
specification.

• InteractionVerb . An integer representing the mode of interaction with an EIS instance as specified

18.7. Interaction Interfaces

276 Jakarta Connectors

by the InteractionSpec . The values of the interaction verb may be one of the following:

• SYNC_SEND. The execution of an Interaction does only a send to the target EIS instance. The input
record is sent to the EIS instance without any synchronous response in terms of an output Record
or ResultSet .

• SYNC_SEND_RECEIVE. The execution of an Interaction sends a request to the EIS instance and
receives a response synchronously. The input record is sent to the EIS instance with the output
received either as Record or a ResultSet .

• SYNC_RECEIVE. The execution of an Interaction results in a synchronous receive of an output
Record . For instance, a session bean gets a method invocation and it uses this SYNC_RECEIVE form
of interaction to retrieve messages that have been delivered to a message queue.

The default InteractionVerb property is SYNC_SEND_RECEIVE .

If the InteractionVerb property is not defined for an InteractionSpec , the default mode for an
interaction is SYNC_SEND_RECEIVE .

Other forms of interaction verbs are outside the scope of the CCI specification.

The CCI does not support asynchronous delivery of messages to the component instances. The message
inflow contract should be used for asynchronous delivery of messages.

• ExecutionTimeout . An integer representing the number of milliseconds an Interaction waits for an
EIS __ to execute the specified function.

18.7.2.2. ResultSet Properties

The following standard properties give hints to an Interaction instance about the ResultSet
requirements:

• FetchSize . An integer representing the number of rows that should be fetched from an EIS when
more rows are needed for a result set. If the value is zero, the hint is ignored. The default value is
zero.

• FetchDirection . An integer representing the direction in which the rows in a result set are
processed. The valid integer values are defined in the java.sql.ResultSet interface. The default value
is ResultSet . FETCH_FORWARD .

• MaxFieldSize . An integer representing the maximum number of bytes allowed for any value in a
column of a result set or a value in a Record .

• ResultSetType . An integer representing the type of the result set produced by an execution of the
InteractionSpec

1. The java.sql.ResultSet interface defines the result set types.

• ResultSetConcurrency . An integer representing the concurrency type of the result set produced by
the execution of the InteractionSpec . The java.sql.ResultSet interface defines the concurrency types
for a result set.

18.7. Interaction Interfaces

Jakarta Connectors 277

Note that if a CCI implementation cannot support the specified requirements for a result set, it should
choose an appropriate alternative and raise a SQLWarning from the ResultSet methods to indicate this
condition. Refer to ResultSet for more details.

A component can determine the actual scrolling ability and concurrency type of a result set by
invoking the getType and getConcurrencyType methods of the ResultSet interface.

18.7.2.3. Additional Properties

An InteractionSpec implementation may define additional properties besides the standard properties.
Note that the format and type of the additional properties is specific to an EIS and is outside the scope
of the CCI specification.

18.7.2.4. Implementation

The InteractionSpec interface must be implemented as a JavaBean to support tools. The properties on
the InteractionSpec implementation class must be defined through the getter and setter methods
design pattern.

The CCI implementation may, though is not required to, provide a BeanInfo class for the
InteractionSpec implementation. This class provides explicit information about the properties
supported by the InteractionSpec .

An implementation class for the InteractionSpec interface must implement the java.io.Serializable
interface.

The specified properties must be implemented as either bound or constrained properties. Refer to the
JavaBeans specification (refer to http://www.oracle.com/technetwork/java/javase/documentation/spec-
136004.html) for details on bound and constrained properties.

18.7.2.5. Administered Object

An InteractionSpec instance may be, though it is not required to be, registered as an administered
object in the JNDI namespace. This enables a component provider to access InteractionSpec instances
using logical names, called resource environment references. Resource environment references are
special entries in the component’s environment. The deployer binds a resource environment reference
to an InteractionSpec administered object in the operational environment.

The Jakarta Enterprise Beans specification (see Jakarta™ Enterprise Beans Specification, Version 4.0)
specifies resource environment references in more detail.

18.7.2.6. Illustrative Scenario

The development tool introspects the InteractionSpec implementation class and shows a property sheet
with all the configurable properties. The developer then configures the properties for an
InteractionSpec instance.

18.7. Interaction Interfaces

278 Jakarta Connectors

http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

At runtime, the configured InteractionSpec instance is used to specify properties for the execution of an
Interaction . The runtime environment may lookup an InteractionSpec instance using a logical name
from the JNDI namespace.

18.7.3. LocalTransaction

The jakarta.resource.cci.LocalTransaction defines a transaction demarcation interface for resource
manager local transactions. An application component uses the LocalTransaction interface to
demarcate local transactions. Refer to Transaction Management for more details on local transactions.

Note that this interface is used for local transaction demarcation at the application level, while the
jakarta.resource.spi.LocalTransaction interface is defined as part of the system contracts and is used by
a container for local transaction management.

The following code extract shows the LocalTransaction interface:

public interface jakarta.resource.cci.LocalTransaction {

 public void begin() throws ResourceException;

 public void commit() throws ResourceException;

 public void rollback() throws ResourceException;

}

18.7.3.1. Requirements

A CCI implementation may, though is not required to, implement the LocalTransaction interface.

If the LocalTransaction interface is supported by a CCI implementation, the
Connection.getLocalTransaction method must return a LocalTransaction instance. A component may
then use the returned LocalTransaction to demarcate a resource manager local transaction on the
underlying EIS instance.

A resource adapter is allowed to implement the jakarta.resource.spi.LocalTransaction interface
without implementing the application-level jakarta.resource.cci.LocalTransaction interface. In this
case, a container uses the system contract-level LocalTransaction interface for managing local
transactions. Refer to Local Transaction Management Contract for more details on local transaction
management.

18.8. Basic Metadata Interfaces
This section specifies the interfaces that provide basic meta information about a resource adapter
implementation and an EIS connection.

18.8. Basic Metadata Interfaces

Jakarta Connectors 279

18.8.1. ConnectionMetaData

The jakarta.resource.cci.ConnectionMetaData interface provides information about an EIS instance
connected through a Connection instance. A component calls the Connection.getMetaData method to
get a ConnectionMetaData instance.

The following code extract shows the ConnectionMetaData interface:

public interface jakarta.resource.cci.ConnectionMetaData {

 public String getEISProductName() throws ResourceException;

 public String getEISProductVersion() throws ResourceException;

 public String getUserName() throws ResourceException;

}

The getEISProductName and getEISProductVersion methods return information about the EIS instance.

The getUserName method returns the user name for an active connection as known to the underlying
EIS instance. The name corresponds the resource principal under whose security context a connection
to the EIS instance has been established.

18.8.1.1. Implementation

A CCI implementation must provide an implementation class for the ConnectionMetaData interface.

A resource adapter provider or third-party vendor may extend the ConnectionMetaData interface to
provide additional information. Note that the format and type of the additional information is specific
to an EIS and is outside the scope of the CCI specification.

18.8.2. ResourceAdapterMetaData

The jakarta.resource.cci.ResourceAdapterMetaData interface provides information about the
capabilities of a resource adapter implementation. Note that this interface does not provide
information about an EIS instance that is connected through a resource adapter.

A component uses the ConnectionFactory . getMetaData method to get metadata information about a
resource adapter. The getMetaData method does not require that an active connection to an EIS
instance be established.

The following code extract shows the ResourceAdapterMetaData interface:

18.8. Basic Metadata Interfaces

280 Jakarta Connectors

public interface jakarta.resource.cci.ResourceAdapterMetaData {

 public String getAdapterVersion();
 public String getAdapterVendorName();
 public String getAdapterName();
 public String getAdapterShortDescription();

 public String getSpecVersion();

 public String[] getInteractionSpecsSupported();

 public boolean supportsExecuteWithInputAndOutputRecord();

 public boolean supportsExecuteWithInputRecordOnly();

 public boolean supportsLocalTransactionDemarcation();

}

The getSpecVersion method returns a string representation of the version of the Jakarta Connectors
specification that is supported by the resource adapter.

The getInteractionSpecsSupported method returns an array of fully-qualified names of InteractionSpec
types supported by the CCI implementation for this resource adapter. Note that the fully-qualified class
name is for the implementation class of an InteractionSpec . This method may be used by tools vendors
to find information on the supported InteractionSpec types. The method should return an array of
length 0 if the CCI implementation does not define specific InteractionSpec types.

The supportsExecuteWithInputAndOutputRecord and supportsExecuteWithInputRecordOnly methods
are used by tools vendors to find information about the Interaction implementation. It is important to
note that the Interaction implementation must support at least one variant of the execute methods.

The supportsExecuteWithInputAndOutputRecord method returns true if the implementation class for
the Interaction interface implements the public boolean execute(InteractionSpec ispec, Record input,
Record output) method. If not, the method returns false .

The supportsExecuteWithInputRecordOnly method returns true if the implementation class for the
Interaction interface implements the public Record execute(InteractionSpec ispec, Record input) method.
If not, the method returns false .

The supportsLocalTransactionDemarcation method returns true if the resource adapter implements the
LocalTransaction interface and supports local transaction demarcation on the underlying EIS instance
through the LocalTransaction interface.

The ResourceAdapterMetaData interface may be extended to provide more information specific to a
resource adapter implementation.

18.8. Basic Metadata Interfaces

Jakarta Connectors 281

18.9. Service Endpoint Message Listener Interface
The MessageListener interface serves as a request-response message listener type that message
endpoints (refer to Message Inflow) may implement. This allows an EIS to communicate with an
endpoint using a request-response style.

[[source,java]

interface jakarta.resource.cci.MessageListener
{
 Record onMessage(Record inputData) throws ResourceException
}

18.10. Exception Interfaces
This section specifies ResourceException class defined by the CCI.

18.10.1. ResourceException

The jakarta.resource.ResourceException class is used as the root of the exception hierarchy for CCI. A
ResourceException provides the following information:

• A resource adapter-specific string describing the error. This string is a standard Java exception
message and is available through the getMessage method.

• A resource adapter-specific error code.

• A reference to another exception. A ResourceException is often the result of a lower level problem.
If appropriate, this lower level exception, a java.lang.Exception or its derived exception type, can be
linked to a ResourceException instance. Note, this has been deprecated in favor of the J2SE release
1.4 exception chaining facility.

A CCI implementation can extend the ResourceException interface to throw more specific exceptions. It
may also chain instances of java.lang.Exception or its subtypes to a ResourceException .

18.10.2. ResourceWarning

The jakarta.resource.cci.ResourceWarning class provides information on the warnings related to
interactions with EIS. A ResourceWarning is silently chained to an Interaction instance that has caused
the warning to be reported.

The Interaction.getWarnings method enables a component to access the first ResourceWarning in a
chain of warnings. Other ResourceWarning instances are chained to the first returned
ResourceWarning instance.

18.9. Service Endpoint Message Listener Interface

282 Jakarta Connectors

18.11. Record
A Record is the Java representation of a data structure used as input or output to an EIS function.

A Record has both development-time and runtime aspects. See the following figure for an illustration
of this. An implementation of a Record is either:

• A custom Record implementation that gets generated at the development time by a tool. The
generation of a custom implementation is based on the meta information accessed by the tool from
a metadata repository. The type mapping and data representatiothird-partyn is generated as part of
the custom Record implementation. So the custom Record implementation typically does not need
to access the metadata repository at runtime.

• A generic Record implementation that uses a metadata repository at runtime for meta information.
For example, a generic type of Record may access the type mapping information from the
repository at runtime.

The specification of a standard repository API and metadata format is outside the
scope of the current version of Jakarta Connectors.

Record at Development-time and Runtime

Resource Adapter

Generator

start

reject

reject

Component

Resource
Adapter-view
Contract

Component-view
Contract

Record
generates custom Record

Component Builder Tool

Metadata
Repository

generic Record driven by metadata

Development Time Run Time

The meta information used in a Record representation and type mapping may be available in a
metadata repository as:

• Meta information expressed in an EIS-specific format. For example, an ERP system has its own
descriptive format for its meta information.

• Formatted in structures based on the programming language that has been used for writing the
target EIS function, such as, COBOL structures used by CICS transaction programs.

• A standard representation of data structures as required for EIS functions. The standard
representation is typically aggregated in a metadata repository based on the meta information
extracted from multiple EISs.

18.11. Record

Jakarta Connectors 283

A resource adapter may provide an implementation of all CCI interfaces except the data
representation-related interfaces, namely, Record and RecordFactory . In this case, a third-party vendor
provides both development-time and runtime support for the Record and RecordFactory interfaces.
This requires that a Record implementation must support both component-view and resource adapter-
view contracts, as specified in the following subsections.

18.11.1. Component-View Contract

The component-view contract provides a standard contract for using a Record for components and
component building tools. A Record implementation must support the component-view contract.

The application programming model for a Record is as follows:

• A component creates an instance of a generated implementation class for a custom record. The
implementation class represents an EIS-specific data structure.

• A component uses the RecordFactory interface to create an instance of the generic Record
implementation class. The implementation class of a generic Record is independent of any EIS-
specific data structure.

A related CCI issue is the level of support in the CCI data representation interfaces (namely, Record ,
MappedRecord , and IndexedRecord) for the type mapping facility. The issue has to be addressed based
on the following parameters:

• There is no standardized mapping across various type systems. For example, the existing type
systems range from Java, CORBA, COM, COBOL and many more. It is difficult to standardize the
type specification and mappings across such a diverse set of type systems within the Jakarta
Connectors scope.

• Building a limited type mapping facility into the CCI data representation interfaces will constrain
the use of CCI data representation interfaces across different types of EISs. For example, it may be
difficult to support EISs that have complex structured types with a limited type mapping support.

• Building an extensive type mapping facility into the current version of CCI data representation
interfaces will limit the future extensibility of these interfaces. This applies specifically to the
support for standards that are emerging for XML-based data representation. An important goal for
CCI data representation interfaces is to support XML-based facilities. This goal is difficult to achieve
in the current scope of Jakarta Connectors.

This specification proposes that the type mapping support for the CCI be kept open for future versions.
A future version of this specification may standardize type mappings.

18.11.1.1. Type Mapping

Type mapping for EIS-specific types to Java types is not directly exposed to an application component.
For example in the case of a custom Record implementation, the getter and setter methods, defined in a
Record and exposed to an application component, return the correct Java types for the values extracted
from the Record . The custom Record implementation internally handles all the type mapping.

18.11. Record

284 Jakarta Connectors

In the case of a generic Record implementation, the type mapping is done in the generic Record by
means of the type mapping information obtained from the metadata repository. Since the component
uses generic methods on the Record interface, the component code does the required type casting.

The compatibility of Java types and EIS types should be based on a type mapping that is defined
specific to a class of EISs. For example, an ERP system from vendor X specifies a type mapping specific
to its own EIS. Another example is type mapping between Java and COBOL types. Note that the JDBC
specification specifies a standard mapping of SQL data types to Java types specific to relational
databases.

In cases of both custom and generic Records , the type mapping information is provided by a metadata
repository either at development-time or runtime.

18.11.1.2. Record Interface

The jakarta.resource.cci.Record interface is the base interface for the representation of a record. A
Record instance is used as an input or output to the execute methods defined in an Interaction .

Component-view Contract

<interface>
Record

package: jakarta.resource.cci

<interface>
MappedRecord

<interface>
java.sql.ResultSet

inherits

<interface>
IndexedRecord

inherits

<interface>
ResultSet

inherits

0-n

contains

0-n

contains

<interface>
java.util.List

<interface>
java.util.Map

The Record interface may be extended to form one of the following representations:

• jakarta.resource.cci.MappedRecord : A key-value pair based collection represents a record. This
interface is based on java.util.Map.

• jakarta.resource.cci.IndexedRecord : An ordered and indexed collection represents a record. This
interface is based on java.util.List.

• jakarta.resource.cci.ResultSet : This interface extends both java.sql.ResultSet and
jakarta.resource.cci.Record . A result set represents tabular data. ResultSet specifies the
requirements for the ResultSet interface in detail.

• A JavaBean based representation of an EIS data structure: An example is a custom record
generated to represent a purchase order in an ERP system or an invoice in a mainframe TP system.

Refer to Code Samples for code samples that illustrate the use of record.

18.11. Record

Jakarta Connectors 285

MappedRecord or IndexedRecord may contain another Record . This means that MappedRecord and
IndexedRecord can be used to create a hierarchical structure of any arbitrary depth.

MappedRecord and IndexedRecord can be used to represent either a generic or custom record.

A basic Java type is used as the leaf element of a hierarchical structure represented by a MappedRecord
or IndexedRecord .

A generated custom Record may also contain other records to form a hierarchical structure.

The following code extract shows the Record interface:

public interface jakarta.resource.cci.Record extends java.lang.Cloneable,
 java.io.Serializable {

 public String getRecordName();

 public void setRecordName(String name);

 public void setRecordShortDescription(String description);

 public String getRecordShortDescription();

 public boolean equals(Object other);

 public int hashCode();

 public Object clone() throws CloneNotSupportedException;

}

The Record interface defines the following set of standard properties:

• Name of a Record : Note that the CCI does not define a standard format for naming a Record . The
name format is specific to an EIS type.

• Description of a Record : This property is used primarily by tools to show a description of a Record
instance.

18.11.1.3. MappedRecord and IndexedRecord Interfaces

The jakarta.resource.cci.MappedRecord interface is used for representing a key-value map based
collection of record elements. The MappedRecord interface extends both the Record and java.util.Map
interface.

18.11. Record

286 Jakarta Connectors

public interface jakarta.resource.cci.MappedRecord
 extends Record, Map, Serializable {

}

The jakarta.resource.cci.IndexedRecord interface represents an ordered collection of record elements
based on the java.util.List interface. This interface allows a component to access record elements by
their integer index, position in the list, and search for elements in the list.

public interface jakarta.resource.cci.IndexedRecord extends Record, List, Serializable {

}

18.11.1.4. RecordFactory

The jakarta.resource.cci.RecordFactory interface is used for creating MappedRecord and IndexedRecord
instances. Note that the RecordFactory is only used for creating generic record instances. A CCI
implementation provides an implementation class for the RecordFactory interface.

The following code extract shows the RecordFactory interface:

public interface jakarta.resource.cci.RecordFactory {

 public MappedRecord createMappedRecord(String recordName) throws ResourceException;

 public IndexedRecord createIndexedRecord(String recordName) throws ResourceException;

}

The methods createMappedRecord and createIndexedRecord take the name of the record that is to be
created by the RecordFactory . The name of the record acts as a pointer to the meta information stored
in the metadata repository for a specific record type. The format of the name is outside the scope of the
CCI specification and specific to a CCI implementation and/or metadata repository.

A RecordFactory implementation should be capable of using the name of the desired Record and
accessing meta information for the creation of the Record .

18.11.2. Interaction and Record

Records should be used as follows for the two variants of the execute method of the Interaction
interface:

boolean execute(InteractionSpec, Record input, Record output)

18.11. Record

Jakarta Connectors 287

• A custom record instance is used as an input or output to the execute method. A custom record
implementation class is generated by an application development tool or EAI framework based on
the meta information.

• The RecordFactory interface is used to create a generic MappedRecord or IndexedRecord instance.
The generic record is used as input or output to the execute method.

Record execute(InteractionSpec, Record input)

• The input record can be either a custom or generic record.

• The returned record is a generic record instance created by the implementation of the execute
method. The generic record instance may represent a ResultSet or a hierarchical structure as
represented through the MappedRecord and IndexedRecord interfaces.

When the Interaction . execute method is called, a generic record instance may use the connection
associated with the Interaction instance to access the metadata from the underlying EIS. If there is a
separate metadata repository, then the generic record gets the metadata from the repository. The
generic record implementation may use the above illustrative mechanism to achieve the necessary
type mapping.

The generic record implementation encapsulates the above behavior and interacts with Interaction
implementation in the execute method to get the active connection, if so needed. The contract between
the generic record and Interaction implementation classes is specific to a CCI implementation.

18.11.3. Resource Adapter-view Contract

A resource adapter views the data represented by a Record either as:

• A stream of bytes through the Streamable interface, or,

• A format specific to a resource adapter. For example, a resource adapter may extract or set the data
for a Record using an interface defined specifically for the resource adapter.

A resource adapter-specific interface for viewing the Record representation is outside the scope of the
CCI specification. A resource adapter must describe the resource adapter-specific interface to the users,
typically tools vendors, of the resource adapter-view contract.

18.11.3.1. Streamable Interface

The jakarta.resource.cci.Streamable interface enables a resource adapter to extract data from an input
Record or set data into an output Record as a stream of bytes. See the following figure.

Streamable Interface

18.11. Record

288 Jakarta Connectors

<interface>
Record

Component View
<Impl Class>

Record

<interface>

Streamable
Implements

Resource Adapter View

<interface>
Mapped Record

<interface>
Indexed Record

<interface>

Resource Adapter specific

The Streamable interface provides a resource adapter’s view of the data set in a Record instance by a
component. A component uses Record or any derived interfaces to manage records.

A component does not directly use the Streamable interface. The interface is used by a resource
adapter implementation.

The following code extract shows the Streamable interface:

public interface jakarta.resource.cci.Streamable {

 public void read(InputStream istream) throws IOException;

 public void write(OutputStream ostream) throws IOException;

}

The read extracts method data from an InputStream and initializes fields of a Streamable object. The
write method writes fields of a Streamable object to an OutputStream . The implementations of both the
read and write methods for a Streamable object must call the read and write methods respectively on
the super class if there is one.

An implementation class of Record may choose to implement the Streamable interface or support a
resource adapter-specific interface to manage record data.

18.12. ResultSet
A result set represents tabular data that is retrieved from an EIS instance by the execution of an
interaction. The execute method on the Interaction interface can return a ResultSet instance.

The CCI ResultSet interface is based on the JDBC ResultSet interface. The ResultSet extends the
java.sql.ResultSet and jakarta.resource.cci.-Record interfaces.

The following code extract shows the ResultSet interface:

18.12. ResultSet

Jakarta Connectors 289

public interface jakarta.resource.cci.ResultSet extends Record, java.sql.ResultSet {

}

ResultSet Interface

<interface>
Record

package: jakarta.resource.cci

inherits

<interface>
ResultSet

<interface>

java.sql.ResultSet

inherits

The following section specifies the requirements for a CCI ResultSet implementation.

Refer to the JDBC (see JDBC API Specification, version 4.1) specification and Java docs for more details
on the java.sql.ResultSet interface. The following section specifies only a brief outline of the ResultSet
interface. It focuses on the differences between the implementation requirements set by the CCI and
JDBC. Note that the JDBC semantics for a ResultSet hold for the cases that are not explicitly mentioned
in the following section.

CCI uses the JDBC ResultSet interface because:

• JDBC ResultSet is a standard, established, and well-documented interface for accessing and
updating tabular data.

• JDBC ResultSet interface is defined in the core java.sql package . An introduction of an independent
CCI-specific ResultSet interface (that is, different from the JDBC ResultSet interface) may create
confusion in terms of differences in the programming model and functionality.

• The use of the JDBC ResultSet interface enables a tool or EAI vendor to leverage existing facilities
that have been for the JDBC ResultSet .

A CCI implementation is not required to support the jakarta.resource.cci.ResultSet
interface. If a CCI implementation does not support result set functionality, it should
not support interfaces and methods that are associated with the result set
functionality. An example is the java.sql.ResultSetMetaData interface.

18.12. ResultSet

290 Jakarta Connectors

18.12.1. ResultSet Interface

The ResultSet interface provides a set of getter methods for retrieving column values from the current
row. A column value can be retrieved using either the index number of the column or the name of the
column. The columns are numbered starting at one. For maximum portability, result set columns
within each row should be read left-to-right, and each column should be read only once.

The ResultSet interface also defines a set of update XXX methods for updating the column values of the
current row.

18.12.1.1. Type Mapping

A ResultSet implementation should attempt to convert the underlying EIS-specific data type to the Java
type as specified in the XXX part of the get XXX method and return a suitable Java value.

A ResultSet implementation must establish a type mapping between the EIS specific data types and
Java types. The type mapping is specific to an EIS.

The CCI specification does not specify standard type mappings specific to each type of EIS.

18.12.1.2. ResultSet Types

The CCI ResultSet , similar to the JDBC ResultSet , supports the following types of result set: forward-
only , scroll-insensitive , and scroll-sensitive .

A forward-only result set is non-scrollable; its cursor moves only forward, from top to bottom. The
view of data in the result set depends on whether the EIS instance materializes results incrementally.

A scroll-insensitive result set is scrollable; its cursor can move forward or backward and can be moved
to a particular row or to a row whose position is relative to the current row. This type of result set is
not sensitive to any changes made by another transaction or result sets in the same transaction that
are made while the result set is open. This type of result set provides a static view of the underlying
data with respect to changes made by other result sets. The order and values of rows are set at the time
of the creation of a scroll-insensitive result set.

A scroll-sensitive result set is scrollable. It is sensitive to changes that are made while the result set is
open. This type of result set provides a more dynamic view of the underlying data.

A component can use the ownUpdatesAreVisible , ownDeletesAreVisible , and ownInsertsAreVisible
methods of the ResultSetInfo interface to determine whether a result set can “see” its own changes
while the result set is open. For example, a result set’s own changes are visible if the updated column
values can be retrieved by calling the get XXX method after the corresponding update XXX method.
Refer to the JDBC (see JDBC API Specification, version 4.1) specification for more details on this feature.

18.12.1.3. Scrolling

The CCI ResultSet supports the same scrolling ability as the JDBC ResultSet .

18.12. ResultSet

Jakarta Connectors 291

If a resource adapter implements the cursor movement methods, its result sets are scrollable. A
scrollable result set created by executing an Interaction can move through its contents in both a
forward (first-to-last) or backward (last-to-first) direction. A scrollable result set also supports relative
and absolute positioning.

The CCI ResultSet , similar to the JDBC ResultSet , maintains a cursor that indicates the row in the result
set that is currently being accessed. The cursor maintained on a forward-only result set can only move
forward through the contents of the result set. The rows are accessed in a first-to-last order. A
scrollable result set can also be moved in a backward direction (last-to-first) and to a particular row.

Note that a CCI ResultSet implementation should only provide support for scrollable result sets if the
underlying EIS supports such a facility.

18.12.1.4. Concurrency Types

A component can set the concurrency type of a CCI ResultSet to be either read-only or updatable. These
types are consistent with the concurrency types defined by the JDBC ResultSet .

A result set that uses read-only concurrency does not allow updates of its content, while an updatable
result set allows updates to its contents. An updatable result set may hold a write lock on the
underlying data item and thus reduce concurrency.

Refer to the JDBC specification (see JDBC API Specification, version 4.1) for detailed information and
examples.

18.12.1.5. Updatability

A result set of concurrency type CONCUR_UPDATABLE supports the ability to update, insert, and delete
its rows. The CCI support for this type of result set is similar to the JDBC ResultSet .

The methods update XXX on the ResultSet interface are used to modify the values of an individual
column in the current row. These methods do not update the underlying EIS. The updateRow method
must be called to update data on the underlying EIS. A resource adapter may discard changes made by
a component if the component moves the cursor from the current row before calling the method
updateRow .

Refer to the JDBC specification (see JDBC API Specification, version 4.1) for more information.

18.12.1.6. Persistence of Java Objects

The ResultSet interface provides the getObject method to enable a component to retrieve column
values as Java objects. The type of the Java object returned from the getObject method is compatible
with the type mapping supported by a resource adapter-specific to its underlying EIS. The updateObject
method enables a component to update a column value using a Java object.

18.12. ResultSet

292 Jakarta Connectors

18.12.1.7. Support for SQL Types

It is optional for a CCI ResultSet to support the SQL type JAVA_OBJECT as defined in java.sql.Types .The
JDBC specification specifies the JDBC support for persistence of Java objects.

The support for the following SQL types as defined in java.sql.Types is optional for a CCI ResultSet
implementation:

• Binary large object (BLOB)

• Character large object (CLOB)

• SQL ARRAY type

• SQL REF type

• SQL DISTINCT type

• SQL STRUCT type

If an implementation of the CCI ResultSet interface does not support these types, it must throw a
java.sql.SQLException indicating that the method is not supported, or
java.lang.UnsupportedOperationException from the following methods:

• getBlob

• getClob

• getArray

• getRef

18.12.1.8. Support for Customized SQL Type Mapping

The CCI is not required to support customized mapping of SQL structured and distinct types to Java
classes. The JDBC API defines support for such customization mechanisms.

The CCI ResultSet should throw a java.sql.SQLException indicating that the method is not supported or
java.lang.UnsupportedOperationException from the getObject method that takes a java.util.Map
parameter.

18.12.2. ResultSetMetaData

The java.sql.ResultSetMetaData interface provides information about the columns in a ResultSet
instance. A component uses ResultSet . getMetaData method to get information about a ResultSet .

Refer to the JDBC API documentation for a detailed specification of the ResultSetMetaData interface.

18.12.3. ResultSetInfo

The jakarta.resource.cci.ResultSetInfo interface provides information on the support provided for
ResultSet functionality by a connected EIS instance. A component calls the Connection.getResultInfo

18.12. ResultSet

Jakarta Connectors 293

method to get the ResultSetInfo instance.

A CCI implementation is not required to support the jakarta.resource.cci.ResultSetInfo interface. The
implementation of this interface is provided only if the CCI supports the ResultSet facility.

The following code extract shows the ResultSetInfo interface:

public interface
jakarta.resource.cci.ResultSetInfo {

 public boolean updatesAreDetected(int type) throws ResourceException;

 public boolean insertsAreDetected(int type) throws ResourceException;

 public boolean deletesAreDetected(int type) throws ResourceException;

 public boolean supportsResultSetType(int type) throws ResourceException;

 public boolean supportsResultTypeConcurrency(int type, int concurrency) throws
ResourceException;

 public boolean ownUpdatesAreVisible(int type) throws ResourceException;

 public boolean ownInsertsAreVisible(int type) throws ResourceException;

 public boolean ownDeletesAreVisible(int type) throws ResourceException;

 public boolean othersUpdatesAreVisible(int type) throws ResourceException;

 public boolean othersInsertsAreVisible(int type) throws ResourceException;

 public boolean othersDeletesAreVisible(int type) throws ResourceException;

}

The type parameter to the above methods represents the type of the ResultSet, defined as TYPE_ XXX in
the ResultSet interface.

Note that these methods should throw a ResourceException in the following cases:

• A resource adapter and the connected EIS instance cannot provide any meaningful values for these
properties.

• The CCI implementation does not support the ResultSet functionality. In this case, a
NotSupportedException should be thrown from invocations on the above methods.

A component uses the rowUpdated , rowInserted , and rowDeleted methods of the ResultSet interface to

18.12. ResultSet

294 Jakarta Connectors

determine whether a row has been affected by a visible update, insert, or delete is the result set is
open. The updatesAreDetected , insertsAreDetected and deletesAreDetected methods enable a
component to find out whether or not changes to a ResultSet are detected.

A component uses the ownUpdatesAreVisible , ownDeletesAreVisible and ownInsertsAreVisible methods
to determine whether a ResultSet can “see” its own changes when the result set is open.

A component uses the supportsResultSetType method to check the ResultSet types supported by a
resource adapter and its underlying EIS instance.

The supportsResultSetTypeConcurency method provides information on the ResultSet concurrency
types supported by a resource adapter and its underlying EIS instance.

18.13. Code Samples
The following code extracts illustrate the application programming model based on the CCI.

An application development tool or EAI framework normally hides all the CCI-based programming
details from an application developer. For example, an application development tool generates a set of
Java classes that abstract the CCI-based application programming model and offers a simple
programming model to an application developer.

18.13.1. Connection

1. Get a Connection to an EIS instance after a lookup of a ConnectionFactory instance from the JNDI
namespace. In this case, the component allows the container to manage the EIS sign-on.

javax.naming.Context nc = new InitialContext();

jakarta.resource.cci.ConnectionFactory cf = (ConnectionFactory)nc.lookup(
"java:comp/env/eis/ConnectionFactory");

jakarta.resource.cci.Connection cx = cf.getConnection();

1. Create an Interaction instance:

jakarta.resource.cci.Interaction ix = cx.createInteraction();

18.13.2. InteractionSpec

• Create a new instance of the respective InteractionSpec class or look up a pre-configured
InteractionSpec in the runtime environment using JNDI.

18.13. Code Samples

Jakarta Connectors 295

com.wombat.cci.InteractionSpecImpl ixSpec = // ...

ixSpec.setFunctionName("<EIS_SPECIFIC_FUNCTION_NAME>");

ixSpec.setInteractionVerb(InteractionSpec.SYNC_SEND_RECEIVE);

...

18.13.3. Mapped Record

• Get a RecordFactory instance:

jakarta.resource.cci.RecordFactory rf = // …get a RecordFactory

• Create a generic MappedRecord using the RecordFactory instance. This record instance acts as an
input to the execution of an interaction. The name of the Record acts as a pointer to the meta
information, stored in the metadata repository, for a specific record type.

jakarta.resource.cci.MappedRecord input =
 rf.createMappedRecord(“<NAME_OF_RECORD>”);

• Populate the generic MappedRecord instance with input values. The component code adds the
values based on the meta information it has accessed from the metadata repository.

input.put(“<key: element1>", new String(“<VALUE>”));
input.put(“<key: element2>", ...);

...

• Create a generic IndexedRecord to hold the output values that are set by the execution of the
interaction.

jakarta.resource.cci.IndexedRecord output = rf.createIndexedRecord(“<NAME_OF_RECORD>”);

• Execute the Interaction :

boolean ret = ix.execute(ixSpec, input, output);

• Extract data from the output IndexedRecord. Note that the type mapping is done in the generic
IndexedRecord by means of the type mapping information in the metadata repository. Since the
component uses generic methods on the IndexedRecord , the component code does the required
type casting.

18.13. Code Samples

296 Jakarta Connectors

java.util.Iterator iterator = output.iterator();

while (iterator.hasNext()) {

 // Get a record element and extract value

}

18.13.4. ResultSet

• Set the requirements for the ResultSet returned by the execution of an Interaction . This step is
optional. Default values are used if the requirements are not explicitly set:

com.wombat.cci.InteractionSpecImpl ixSpec = .. // get an InteractionSpec;

ixSpec.setFetchSize(20);
ixSpec.setResultSetType(ResultSet.TYPE_SCROLL_INSENSITIVE);

• Execute an Interaction that returns a ResultSet :

jakarta.resource.cci.ResultSet rs = (jakarta.resource.cci.ResultSet) ix.execute(ixSpec,
input);

• Iterate over the ResultSet . The example here positions the cursor on the first row and then iterates
forward through the contents of the ResultSet . The get XXX methods are used to retrieve column
values:

rs.beforeFirst();

while (rs.next()) {

 // get the column values for the current row using getXXX
 // method

}

• The following example shows a backward iteration through the ResultSet :

18.13. Code Samples

Jakarta Connectors 297

rs.afterLast();

while (rs.previous()) {

 // get the column values for the current row using getXXX
 // method

}

18.13.5. Custom Record

• Extend the Record interface to represent an EIS-specific custom Record. The CustomerRecord
interface supports a simple getter-setter design pattern for its field values. A development tool
generates the implementation class of the CustomerRecord .

public interface CustomerRecord extends jakarta.resource.cci.Record, jakarta.resource.
cci.Streamable {

 public void setName(String name);
 public void setId(String custId);
 public void setAddress(String address);
 public String getName();
 public String getId();
 public String getAddress();
}

• Create an empty CustomerRecord instance to hold output from the execution of an Interaction .

CustomerRecord customer = … // create an instance

• Create a PurchaseOrderRecord instance as an input to the Interaction and set the properties on this
instance. The PurchaseOrderRecord is another example of a custom Record .

PurchaseOrderRecord purchaseOrder = ... // create an instance
purchaseOrder.setProductName(“...”);
purchaseOrder.setQuantity(“...”);
...

• Execute an Interaction that populates the output CustomerRecord instance.

18.13. Code Samples

298 Jakarta Connectors

// Execute the Interaction
boolean ret = ix.execute(ixSpec, purchaseOrder, customer);

// Check the CustomerRecord
System.out.println(customer.getName() + ":" +
 customer.getId() + ":" +
 customer.getAddress());

18.13. Code Samples

Jakarta Connectors 299

Chapter 19. Metadata Annotations
This chapter defines a simplified API for development of resource adapters. The goal of the API is to
simplify the development of resource adapter implementations for programmers who are just starting
with resource adapters, or developing resource adapters of small to medium complexity. The existing
Connector APIs remain available for use in resource adapters that require them and resource adapter
implementations written to those APIs may be used in conjunction with components written to the
new Connector 1.6 APIs.

19.1. Overview
The simplified API makes extensive use of Java language annotations, that was introduced in Java SE
5.0 (see A Metadata Facility for the Java Programming Language). The purpose of the API is to improve
the existing Jakarta Connectors by reducing its complexity from a resource adapter developer’s point
of view.

The use of annotations reduces or completely eliminates the need to deal with a deployment descriptor
in many cases. The use of annotations also reduces the need to keep the deployment descriptor
synchronized with changes to source code.

Other component specifications in the Jakarta EE platform, like Jakarta Enterprise Beans and Web
Services through the annotations defined in the Web Services Metadata specification have already
brought such ease of development simplifications to the developer.

19.2. Goals
The simplified API is designed with the following goals:

• Define Java language metadata annotations that can be used to annotate resource adapter artifacts.
These annotations may reduce the need for implementing certain interfaces and assist in reducing
the number of classes required to build a resource adapter implementation.

• Reduce the need to write redundant code by leveraging existing facilities in the Jakarta EE
platform.

• Limit and reduce the need for a deployment descriptor for common scenarios by defining related
metadata annotations

• Define “programmatic defaults” to reduce the need for a resource adapter developer to develop
code to represent common scenarios.

19.3. Deployment Descriptors and Annotations
Deployment descriptors are considered as an alternative to metadata annotations or as a mechanism
for the overriding of metadata annotations (for example to permit the further customization of an

19.1. Overview

300 Jakarta Connectors

application for a particular development environment at a later stage of the development or
application assembly etc).

For additional requirements on annotations discovery and processing by the application server, see
the Deployment Section of the “Application Assembly and Deployment” chapter of Jakarta™ EE
Platform Specification, Version 10.

Deployment descriptors may be “sparse”, unlike the full deployment descriptors required as part of the
J2EE Connector 1.5 specification.

The specification allows a resource adapter to be developed in mixed-mode form, that is the ability for
a resource adapter developer to utillize the metadata annotations defined in this chapter and the
deployment descriptors in their application. When such a combination is used, if the specification does
not define a particular behavior, the rules for the use of deployment descriptors as an overriding
mechanism apply.

19.3.1. metadata-complete Deployment Descriptor Element

A new attribute, metadata-complete , was introduced in the Connector 1.6 deployment descriptor (
ra.xml). The metadata-complete attribute defines whether the deployment descriptor for the resource
adapter module is complete, or whether the class files available to the module and packaged with the
resource adapter should be examined for annotations that specify deployment information.

If metadata-complete is set to "true", the deployment tool of the application server must ignore any
annotations that specify deployment information, which might be present in the class files of the
application. If metadata-complete is not specified or is set to "false", the deployment tool must examine
the class files of the application for annotations, as specified by this specification. If the deployment
descriptor is not included or is included but not marked metadata-complete , the deployment tool will
process annotations.

Application servers must assume that metadata-complete is true for resource adapter modules with
deployment descriptor version lower than 1.6. The following table describes the requirements for
determining when to process annotations on the classes in a resource adapter archive.

Table 4. Table Annotation Processing Requirements for a Resource Adapter Archive

Deployment Descriptor metadata-complete? process annotations

Connector 1.5 ra.xml or earlier Not applicable No

Connector 1.6 ra.xml True No

Connector 1.6 ra.xml False or Unspecified Yes

No ra.xml bundled with the RAR
module archive

Not Applicable Yes

19.3. Deployment Descriptors and Annotations

Jakarta Connectors 301

19.3.2. Merging Annotations and Deployment Descriptor

An application assembler or deployer may use the deployment descriptor to override the metadata
annotations specified by the resource adapter developer. See the chapter titled “Resources, Naming,
and Injection” in the Jakarta EE Platform specification (see Jakarta™ EE Platform Specification Version
10) for general rules on annotations and injection and override behavior. The rules below complement
the rules specified in that section.

An application assembler or deployer is recommended not to override certain information specified
through annotations, such as transaction support, authentication and security requirements of the
resource adapter module, using the deployment descriptor. The resource adapter developer specifies
this information considering the capabilities of the resource adapter, and altering these values using
the deployment descriptor may not be valid or appropriate. For instance, if a resource adapter
developer marks a resource adapter’s transaction support level as LocalTransaction through
annotations, since the resource adapter implementation only supports the LocalTransaction interface
and not the XATransaction interface, it is incorrect and prohibited to override the transaction support
level through the deployment descriptor to XATransaction .

When metadata-complete is specified as false or if the metadata-complete attribute is unspecified in the
deployment descriptor, the deployment tool must examine the classes of the resource adapter for
annotations. The deployment tool must follow the annotation discovery and processing requirements
specified in the “Deployment Section” of the “Application Assembly and Deployment” chapter of the
Jakarta EE Platform Specification (see Jakarta™ EE Platform Specification Version 10).

The information provided by the annotations must be merged with the deployment descriptor
packaged along with the resource adapter module. The general rule is that uniqueness constraints
specified in the deployment descriptor schema (see Resource Adapter XML Schema Definition) specify
what combinations of annotations and their corresponding deployment descriptor elements are
allowed.

While merging the information present in the annotations and the deployment descriptor, the
application server must satisfy the following requirements:

1. If a deployment descriptor element and one or more annotations specify information for the same
unique identity (as specified by the XML schema), the information provided in the deployment
descriptor overrides the value specified in the annotation.

2. If there is no match between the identity of the annotations and the deployment descriptor, and as
long as the XML schema allow the combination of these identities, the information provided in the
deployment descriptor must be considered in addition to the annotations.

3. It is an error, either by way of annotations alone or as a result of the combination of annotation
and deployment descriptor, to specify combinations of identities that do not satisfy the uniqueness
constraints in the deployment descriptor schema.

The application server must consider the following exceptions to the third rule above:

• If a resource adapter module specifies the fully qualified Java class name of the resource adapter

19.3. Deployment Descriptors and Annotations

302 Jakarta Connectors

class in the deployment descriptor through the resourceadapter-class element, the application
server must ignore any Connector annotations in the resource adapter module’s annotation
discovery scope.

• If the JavaBean class specified in the resourceadapter-class element is annotated with the Connector
annotation, the application server must use the information in the deployment descriptor to
override the values specified in the annotation.

19.3.3. Annotation Processing Requirements of Superclasses

The following JavaBeans are permitted to have superclasses that are themselves of the same type:

• ResourceAdapter

• ManagedConnectionFactory

• ActivationSpec

• Administered Object

For instance, a ResourceAdapter JavaBean is permitted to have a superclass that is itself a
ResourceAdapter JavaBean. See ResourceAdapter JavaBean and Bootstrapping a Resource Adapter
Instance for more information on ResourceAdapter JavaBean.

However there are no rules for processing of annotations or the deployment descriptor in these cases.
For the purposes of processing the particular JavaBean, all superclass processing is identical regardless
of whether the superclasses are themselves JavaBean types listed above.

In this regard, the use of JavaBean types as superclasses merely represents a convenient use of
implementation inheritance, but does not have component inheritance semantics. Therefore, if a class
is annotated with the Connector annotation, its subclass is not considered a ResourceAdapter JavaBean
unless the subclass is also annotated with the Connector annotation.

However, the application server is required to process ConfigProperty annotations placed on the
superclasses while processing the configuration properties of a JavaBean. As an example, if a subclass
MySubClass , is annotated with the Connector annotation, and the application server is processing
ConfigProperty annotations placed in the field or setter methods in the subclass, the container must
also process any ConfigProperty annotations placed on the fields or setter methods of all superclasses
of the subclass.

All the metadata annotations described in this chapter are in the jakarta.resource.spi package unless
otherwise specified. The following sections will describe the metadata annotations that are required to
be supported by the application server.

19.4. @Connector
The Connector annotation is a component-defining annotation and it can be used by the resource
adapter developer to specify that the JavaBean is a resource adapter JavaBean. The Connector

19.4. @Connector

Jakarta Connectors 303

annotation is applied to the JavaBean class and the JavaBean class must implement the
ResourceAdapter interface. It is recommended that the resource adapter developer annotate at most
one JavaBean with the Connector annotation within the valid annotation discovery scope as defined in
Deployment Descriptors and Annotations.

If more than one JavaBean is annotated with the Connector annotation, the application server must use
the JavaBean class specified in the deployment descriptor through the resourceadapter-class element.
It is an error to provide a resource adapter module with more than one JavaBean class annotated with
the Connector annotation and not providing a deployment descriptor.

Connector Annotation

 package jakarta.resource.spi;

 @Documented
 @Retention(RUNTIME)
 @Target(TYPE)
 public @interface Connector {

 String[] description() default {};
 String[] displayName() default {};
 String[] smallIcon() default {};
 String[] largeIcon() default {};
 String vendorName() default "";
 String eisType() default "";
 String version() default "";
 String[] licenseDescription() default {};
 boolean licenseRequired() default false;
 AuthenticationMechanism[] authMechanisms() default {};
 boolean reauthenticationSupport() default false;
 SecurityPermission[] securityPermissions() default {};
 TransactionSupport.TransactionSupportLevel transactionSupport()
 default TransactionSupport.TransactionSupportLevel.NoTransaction;

 Class<? extends WorkContext>[] requiredWorkContexts() default {};

 }

The smallIcon and largeIcon annotation elements specifies file names for small and a large GIF or JPEG
icon images that are used to represent the resource adapter in a GUI tool. Each smallIcon must be
associated with a largeIcon element and the application server must use the ordinal value in their
respective arrays to find the related pairs of icons.

The vendorName annotation element specifies the name of the resource adapter provider vendor. The
eisType annotation element contains information about the type of EIS. For example, the type of an EIS
can be product name of EIS independent of any version info. This helps in identifying EIS instances

19.4. @Connector

304 Jakarta Connectors

that can be used with this resource adapter.

The licenseDescription and licenseRequired annotation elements specify licensing requirements for the
resource adapter module. This type specifies whether a license is required to deploy and use this
resource adapter, and an optional description of the licensing terms.

The authMechanisms element specifies the authentication mechanisms supported by the resource
adapter. See @AuthenticationMechanism for more information on the AuthenticationMechanism
annotation. The annotation element reauthenticationSupport specifies whether the resource adapter
implementation supports re-authentication of existing ManagedConnection instance. Note that this
information is for the resource adapter implementation and not for theunderlying EIS instance.

The securityPermissions annotation element specifies the extended security permissions required to be
provided for the operation of the resource adapter module. See @SecurityPermission for more
information on the SecurityPermission annotation.

 The _transactionSupport_ annotation element
specifies the level of transaction support provided by the resource
adapter.

The requiredWorkContexts annotation element specifies a list of fully qualified classes that implements
the WorkContext interface that a resource adapter requires the application server to support.

19.4.1. Implementing the ResourceAdapter Interface

It is optional for a resource adapter implementation to bundle a JavaBean class implementing the
jakarta.resource.spi.ResourceAdapter interface (see ResourceAdapter JavaBean and Bootstrapping a
Resource Adapter Instance). In particular, a resource adapter implementation that only performs
outbound communication to the EIS might not provide a JavaBean that implements the
ResourceAdapter interface or a JavaBean annotated with the Connector annotation.

However, if a resource adapter requires to perform tasks that uses the facilities provided by the
application server through the ResourceAdapter interface (for example obtain a reference to the
BootstrapContext , get lifecycle callbacks, or perform inbound message delivery), the resource adapter
implementation must provide a JavaBean that implements the ResourceAdapter interface. The
resource adapter developer may, in this case, use the Connector annotation or the deployment
descriptor (see Resource Adapter Provider) to specify the resource adapter JavaBean. A JavaBean that
is annotated with the Connector annotation must implement the ResourceAdapter interface and must
satisfy the requirements listed in ResourceAdapter JavaBean and Bootstrapping a Resource Adapter
Instance.

19.4.2. Example

A simple resource adapter JavaBean, that does not support transactions, could be defined as follows by
the resource adapter provider.

19.4. @Connector

Jakarta Connectors 305

Connector Annotation Usage Example

 @Connector()
 public class MyResourceAdapter implements ResourceAdapter{

 // Define common configuration properties.
 ...
 }

19.4.3. @AuthenticationMechanism

The AuthenticationMechanism annotation can be used by the developer, as part of the Connector
annotation, to specify the authentication mechanism supported by the resource adapter (see
Authentication Mechanism).

AuthenticationMechanism Annotation

 package jakarta.resource.spi;

 @Documented
 @Retention(RUNTIME)
 @Target(\{})

 public @interface AuthenticationMechanism {

 public enum CredentialInterface {
 PasswordCredential,
 GSSCredential,
 GenericCredential
 }

 String authMechanism() default "BasicPassword";
 String[] description() default {};
 CredentialInterface credentialInterface() default CredentialInterface.
PasswordCredential;
 }

The authMechanism annotation element specifies an authentication mechanism supported by the
resource adapter. Note that this authentication support is for the resource adapter and not for the
underlying EIS instance. The CredentialInterface enumeration is used to represent the various
credential interfaces that can be used by the resource adaper to support the representation of
credentials and the credentialInterface annotation element is used to specify the credential interface
supported by the resource adapter.

19.4. @Connector

306 Jakarta Connectors

19.4.4. @SecurityPermission

The SecurityPermission annotation can be used by the developer, as part of the Connector annotation,
to specify the extended security permissions required by the resource adapter (see Resource Adapter
Provider).

SecurityPermission annotation

 package jakarta.resource.spi;

 @Documented
 @Retention(RUNTIME)
 @Target({})
 public @interface SecurityPermission {
 String[] description() default {};
 String permissionSpec() default "";

 }

The description element is used to provide an optional description to mention any specific reason that
a resource requires a given security permission.

The permissionSpec element specifies a security permission based on the Security policy file syntax.
These security permissions are different from those required by the default permission set as specified
in Security Permissions.

19.5. @ConfigProperty
The ConfigProperty annotation can be used by the developer on JavaBeans listed below to indicate to
the application server, that a specific JavaBean property is a configuration property for that JavaBean.
A configuration property may be used by the deployer and resource adapter provider to provide
additional configuration information. The ConfigProperty annotation may be placed on a property
mutator method (the setter method) or the field corresponding to the JavaBean property.

19.5. @ConfigProperty

Jakarta Connectors 307

ConfigProperty Annotation

 package jakarta.resource.spi;

 @Documented
 @Retention(RUNTIME)
 @Target({FIELD, METHOD})
 public @interface ConfigProperty {

 Class type() default Object.class;
 String[] description() default {};
 String defaultValue() default "";
 boolean ignore() default false;
 boolean supportsDynamicUpdates() default false;
 boolean confidential() default false;
 }

The type element defines the Java type of the configuration property and the defaultValue element
specifies the default value for the property.

When the ConfigProperty annotation is applied on a field, the default value of the type element is the
type of the field. When applied on a method, the default value is the type of the JavaBean property.

For field based annotation, if the type element is not specified by the developer, the application server
must infer its value by looking at the field declaration itself. If the defaultValue annotation element is
not specified, the application server must use the value assigned to the field, if any, as the default value
of the configuration property. It is an error if the value of the type annotation element specified by the
developer in the ConfigProperty annotation, and the type of the field are not equal.

For setter method based annotations, if the type annotation element is not specified by the developer,
the application server must infer its value by inspecting the method declartion. The property setter
methods must follow the standard JavaBeans convention (as defined by the JavaBeans Introspector
class). It is an error if the type specified by the developer in the ConfigProperty annotation and the type
of the setter method’s parameter are not equal.

The valid values of the type element, whether inferred or explicitly specified, must be limited to the
values detailed in the documentation of the config-property-typeType element in the resource adapter
XML Schema (see Resource Adapter XML Schema Definition).

The ignore annotation element is used to indicate that the configuration tools must ignore considering
the configuration property during auto-discovery of Configuration properties. (see Discovery of
Configuration Properties).

The supportsDynamicUpdates and the confidential annotation elements provide additional metadata
about the configuration property to the application server. See Configuration Property Attributes for
more information on these configuration property attributes.

19.5. @ConfigProperty

308 Jakarta Connectors

The application server is required to process ConfigProperty annotations specified in the field or setter
method declaration of the following JavaBeans:

• ResourceAdapter . A JavaBean implementing the ResourceAdapter interface or a JavaBean
annotated with the Connector annotation

• ManagedConnectionFactory . A JavaBean implementing the ManagedConnectionFactory interface or
a JavaBean annotated with the ConnectionDefinition annotation

• AdministeredObject . A JavaBean annotated with the AdministeredObject annotation or a JavaBean
specified as an administered object’s implementation class using the deployment descriptor

• ActivationSpec . A JavaBean implementing the ActivationSpec interface or a JavaBean annotated
with the Activation annotation.

These JavaBeans are still required to satisfy the JavaBean requirements listed in JavaBean
Requirements. The application server is required to process ConfigProperty annotations in the
JavaBeans listed above irrespective of whether the JavaBeans are specified by way of deployment
descriptor elements or metadata annotations.

19.5.1. Discovery of Configuration Properties

Configuration tools provided by the container must introspect the JavaBeans listed in @ConfigProperty
above for Connector 1.6 resource adapters to automatically discover the configuration properties of a
JavaBean through JavaBeans introspection.

The resource adapter developer is, therefore, not required to annotate every property of the JavaBean
with the ConfigProperty annotation. The resource adapter developer may only annotate specific
properties of a JavaBean with the ConfigProperty annotation to specify non-default values. For
example, when a property is required to be hidden from a configuration tool, the resource adapter
provider need only annotate that property in the JavaBean with the ConfigProperty annotation and
specifying the ignore annotation element as true.

19.6. @ConnectionDefinition and
@ConnectionDefinitions
The ConnectionDefinition and ConnectionDefinitions annotations are applied to the JavaBean class and
are restricted to be applied only on JavaBean classes that implement the ManagedConnectionFactory
interface (see ManagedConnectionFactory JavaBean and Outbound Communication).

The ConnectionDefinition annotation defines a set of connection interfaces and classes pertaining to a
particular connection type (identical to the role played by the connection-definition element in the
deployment descriptor). The ConnectionDefinition annotation is repetable and can be used with or
without the _ConnectionDefinitions annotation described below.

The ConnectionDefinitions annotation can be used by the developer to specify a set of connection
definitions that a ManagedConnectionFactory JavaBean is a part of. (see Resource Adapter Provider and

19.6. @ConnectionDefinition and @ConnectionDefinitions

Jakarta Connectors 309

Resource Adapter XML Schema Definition for a discussion on connection-definition).

If a ManagedConnectionFactory JavaBean is part of only one connection-definition, the developer may
annotate that JavaBean with a ConnectionDefinition annotation. The ConnectionDefinitions annotation
is intended for ManagedConnectionFactory JavaBeans that are part of more than one connection-
definitions. It is an error to annotate a JavaBean that does not implement the
ManagedConnectionFactory interface with either ot these two annotations.

ConnectionDefinitions Annotation

 package jakarta.resource.spi;

 @Documented
 @Retention(RUNTIME)
 @Target(TYPE)
 public @interface ConnectionDefinitions {
 ConnectionDefinition[] value();
 }

ConnectionDefinition Annotation

 package jakarta.resource.spi;

 @Documented
 @Retention(RUNTIME)
 @Target(TYPE)
 public @interface ConnectionDefinition {
 Class connectionFactory();
 Class connectionFactoryImpl();
 Class connection();
 Class connectionImpl();
 }

The connectionFactory and connectionFactoryImpl annotation elements are used by the developer to
specify the fully qualified Java interface and implementation class for the connection factory that is
supported by the resource adapter as part of the connectionDefinition.

The connection and connectionImpl annotation elements are used by the developer to specify the fully
qualified Java interface and implementation class for the connection that is supported by the resource
adapter as part of the connectionDefinition.

19.6.1. Example

A simple ManagedConnectionFactory implementation that is part of a connection definition, could be
defined as follows

19.6. @ConnectionDefinition and @ConnectionDefinitions

310 Jakarta Connectors

ConnectionDefinition Annotation Usage Example

 @ConnectionDefinition(
 connectionFactory=com.wombat.ra.CF.class,
 connectionFactoryImpl= com.wombat.ra.CFImpl.class,
 connection=com.wombat.ra.Conn.class,
 connectionImpl=com.wombat.ra.ConnImpl.class)
 public class ManagedConnectionFactoryImpl implements ManagedConnectionFactory {
 ...
 }

19.7. @Activation
The ActivationSpec JavaBean contains the configuration information pertaining to inbound
connectivity from an EIS instance. A resource adapter capable of message delivery to message
endpoints must provide a JavaBean class that implements the jakarta.resource.spi.ActivationSpec
interface (see ActivationSpec JavaBean and Inbound Communication) or annotate a JavaBean with the
Activation annotation for each supported endpoint message listener type.

The Activation annotation can be used by a resource adapter provider to designate a JavaBean as an
ActivationSpec JavaBean (see ActivationSpec JavaBean and Inbound Communication). The Activation
annotation is applied to the JavaBean class. The resource adapter provider may annotate one or more
JavaBeans with the Activation annotation. The JavaBean is required to implement the
jakarta.resource.spi.ActivationSpec interface even if the JavaBean is annotated with the Activation
annotation.

Activation Annotation

 package jakarta.resource.spi;

 @Documented
 @Retention(RUNTIME)
 @Target(TYPE)
 public @interface Activation {
 Class [] messageListeners();
 }

The messageListeners annotation element indicates the message listener type(s) supported with the
ActivationSpec JavaBean. Together with the messageListeners annotation element, this annotation
specifies information about the specific message listener types supported by the messaging resource
adapter.

19.7.1. Example

An ActivationSpec JavaBean that is associated with the MyMessageListener message listener type, uses

19.7. @Activation

Jakarta Connectors 311

Bean Validation annotations and the validate method to validate the state of the JavaBean could be
defined as follows by the resource adapter provider.

Activation Annotation Usage Example

 @Activation(messageListeners = {com.wombat.ra.MyMessageListener.class})
 public class MyActivationSpec implements ActivationSpec{

 //Use of Bean Validation annotations to express
 //validation requirements
 @Size(min=5, max=5)
 private int length;

 //... other methods
 //Use of validate() method is also allowed
 public void validate() throws InvalidPropertyException {
 //custom validation logic
 }
 }

19.8. @AdministeredObject
The AdministeredObject annotation can be used by the resource adapter provider to designate a
JavaBean as an administered object (see Administered Objects). Administered objects are specific to a
messaging style or message provider.

The AdministeredObject annotation is applied to the JavaBean class. A resource adapter
implementation that supports inbound communication may annotate one or more JavaBeans with the
AdministeredObject annotation.

AdministeredObject Annotation

 package jakarta.resource.spi;

 @Documented
 @Retention(RUNTIME)
 @Target(TYPE)
 public @interface AdministeredObject {
 Class[] adminObjectInterfaces() default {};
 }

The adminObjectInterfaces annotation element specifies the Java type of the interface implemented by
the administered object. This annotation element is optional and when this value is not provided by
the resource adapter provider, the application server must use the following rules to determine the
Java interfaces of the administered object:

19.8. @AdministeredObject

312 Jakarta Connectors

• The following interfaces must be excluded while determining the Java interfaces of the
administered object:

◦ java.io.Serializable

◦ java.io.Externalizable

◦ jakarta.resource.spi.ResourceAdapterAssociation

• If the JavaBean implements only one interface, that interface is chosen as the Java Interface
implemented by the administered object

• If the JavaBean class implements more than one Java interface, the resource adapter provider must
explicitly state the interfaces supported by the administered object either through the
adminObjectInterfaces annotation element or through the deployment descriptor. It is an error if
the resource adapter provider does not use either of the two schemes to specify the Java types of
the interfaces supported by the administered object.

19.9. Resource Definition Annotations
Resource definition annotations allow an application to be deployed into a Jakarta EE environment
with less administrative configuration. Refer to the section titled “Resource Definition and
Configuration” in the “Resources, Naming and Injection” chapter of the Jakarta EE Platform
Specification (see Jakarta™ EE Platform Specification Version 10) for an overview of resource
definition annotations.

The ConnectionFactoryDefinition and AdministeredObjectDefinition annotations described below are
repeatable resource definition annotations that aid the application developer in defining and
configuring resource adapter related resources needed for the operational environment.

These resource definition annotations refer to a resource adapter by name, from which the resources
needs to be created. The name of a resource adapter is decided as per the rules defined in the sections
titled “Deploying a Stand-Alone Jakarta EE Module” and “Deploying a Jakarta EE Application” in the
“Application Assembly and Deployment” chapter of the Jakarta EE Platform Specification.

When a resource adapter RAR packaged within a Jakarta EE application EAR needs to be referenced,
the resource adapter name may be prefixed with a “ # ” character to portably refer to the embedded
resource adapter within the EAR. As an example, a Servlet bundled in an enterprise archive EAR, may
access the embedded resource adapter foo.rar in the EAR, by using the name “#foo”.

These resource definition annotations must only be defined in modules that have access to the
resource adapter as per the rules defined in Requirements.

These resource definition annotations must be supported in all products that support the deployment
process as defined by the Jakarta EE Platform Specification, and that support Jakarta Connectors. For
example, a product that includes support for both Jakarta Connectors and the Servlet API must support
the use of these resource definition annotations in web applications.

It is not required to support the placement of these resource definitions in classes packaged in

19.9. Resource Definition Annotations

Jakarta Connectors 313

resource adapter modules.

19.9.1. @ConnectionFactoryDefinition

The ConnectionFactoryDefinition annotation is a repeatable resource definition annotation that is used
to define a connector connection factory and have it registered in JNDI. See the section titled
“Connection Factory Definition” in the “Resources, Naming, and Injection” chapter of the Jakarta EE
Platform Specification for more details on the connection factory resource definition annotation.

The section titled “Annotations and Deployment Descriptors” of the “Resources, Naming, and Injection”
chapter of the Jakarta EE Platform Specification describes how environment entries created by these
annotations may be specified or overridden using deployment descriptor elements. The deployment
descriptor element connection-factory that may be used to define or override the values defined in the
ConnectionFactoryDefinition annotation is described in the section titled “Common Jakarta EE XML
Schema definitions” of the Jakarta EE Platform Specification.

ConnectionFactoryDefinition Annotation

 package jakarta.resource;

 import java.lang.annotation.Target;
 import java.lang.annotation.Retention;
 import java.lang.annotation.ElementType;
 import java.lang.annotation.RetentionPolicy;

 @Documented
 @Target({ElementType.TYPE})
 @Retention(RetentionPolicy.RUNTIME)
 @Repeatable(ConnectionFactoryDefinitions.class)
 public @interface ConnectionFactoryDefinition {
 String name();
 String description() default "";
 String resourceAdapter();
 String interfaceName();
 TransactionSupport.TransactionSupportLevel transactionSupport() default
TransactionSupport.TransactionSupportLevel.NoTransaction;

 int maxPoolSize() default -1;
 int minPoolSize() default -1;
 String[] properties() default \{};
 }

The connection factory will be registered in JNDI under the name specified in the mandatory name
annotation element. It may be defined to be in any valid Jakarta EE namespace, and the namespace
will determine the accessibility of the connection factory from other components. The optional
description element specifies a description of the connection factory.

19.9. Resource Definition Annotations

314 Jakarta Connectors

The name of the resource adapter that the connection factory must be created from must be indicated
by the resourceAdapter element. The resource adapter must be available at runtime prior to any
attempt to access the connection factory.

The mandatory interfaceName specifies the fully qualified name of the connection factory interface
class. The interfaceName annotation element is used by the container to choose the appropriate
connection definition included in the resource adapter, and identify the ManagedConnectionFactory
that is used to create this connection factory.

The transactionSupport annotation element specifies the level of transaction support the connection
factory needs to support. If a transaction support level is specified, it must be a level of transaction
support whose ordinal value in the TransactionSupport.TransactionSupportLevel enum is equal to or
lesser than the resource adapter’s transaction support classification.

The minPoolSize annotation element specifies the minimum number of connections that should be
allocated for a connection pool that backs this connection factory resource. The maxPoolSize
annotation element specifies the maximum number of connections that should be allocated for a
connection pool that backs this connection factory resource. The defaults for these attributes are
vendor specific (See the section titled “Resource Definition and Configuration” in the “Resources,
Naming, and Injection” of the Jakarta EE Platform Specification for more details on these default
values).

The connection factory may be configured by setting the annotation elements for the commonly used
connection factory properties as indicated above. Additional properties required by the
ManagedConnectionFactory , that is associated with the connection factory being defined, are specified
through the properties element. Properties, if specified, that do not match configuration property
names of the ManagedConnectionFactory or cannot be mapped to vendor-specific properties may be
ignored.

19.9.1.1. Example

A XA-capable connection factory resource may be defined in a Servlet as follows:

ConnectionFactoryDefinition Annotation Definition Example

@ConnectionFactoryDefinition(name="java:comp/eis/MyEISCF",
 interfaceName="com.eis.ConnectionFactory",
 resourceAdapter="MyEISRA",
 transactionSupport= TransactionSupport.TransactionSupportLevel.XATransaction)

Once defined, a connector connection factory resource may be referenced by a component, that has
the standalone MyEISRA resource adapter visible to it as per the rules defined in Requirements, using
the resource-ref deployment descriptor element or the Resource annotation. For example, the above
connection factory could be referenced as follows in a Stateless Session Bean in the same enterprise
application archive.

19.9. Resource Definition Annotations

Jakarta Connectors 315

ConnectionFactoryDefinition Annotation Usage Example

 @Stateless public class MySessionBean {

 @Resource(lookup = "java:comp/eis/MyEISCF") com.eis.ConnectionFactory myCF;

 ...

 }

19.9.2. @ConnectionFactoryDefinitions

The ConnectionFactoryDefinition annotation is a resource definition annotation that is used to define a
connector connection factory and have it registered in JNDI. The ConnectionFactoryDefinitions
annotation acts as a container for multiple connector connection factory definitions. As the
ConnectionFactoryDefinition annotation is Repeatable use of the ConnectionFactoryDefinitions
annotation is optional.

ConnectionFactoryDefinitions Annotation

 package jakarta.resource;

 import java.lang.annotation.Target;
 import java.lang.annotation.Retention;
 import java.lang.annotation.ElementType;
 import java.lang.annotation.RetentionPolicy;

 @Documented
 @Target({ElementType.TYPE})
 @Retention(RetentionPolicy.RUNTIME)
 public @interface ConnectionFactoryDefinitions {
 ConnectionFactoryDefinition[] value();
 }

The value annotation element contains the multiple connector connection factory definitions.

19.9.2.1. Example

Multiple connector connection factory definitions may be declared in a Servlet as follows:

19.9. Resource Definition Annotations

316 Jakarta Connectors

ConnectionFactoryDefinitions Annotation Definition Example

 @ConnectionFactoryDefinitions({

 @ConnectionFactoryDefinition(name="java:comp/eis/MyXACF",
 interfaceName="com.eis.FooConnectionFactory",
 resourceAdapter="MyEISRA1",
 transactionSupport=XATransaction),

 @ConnectionFactoryDefinition(name="java:comp/eis/MyNoTXCF",
 interfaceName="com.eis.BarConnectionFactory",
 resourceAdapter="MyEISRA2",
 transactionSupport=NoTransaction)
 })

Once defined, the connector connection factory resources may be referenced by a component, that has
the standalone MyEISRA1 and MyEISRA2 resource adapters visible to it as per the rules defined in
Requirements, using the resource-ref deployment descriptor element or the Resource annotation. For
example, the above connection factories could be referenced as follows in a Stateless Session Bean in
the same enterprise application archive.

ConnectionFactoryDefinitions Annotation Usage Example

 @Stateless public class MySessionBean {

 @Resource(lookup = "java:comp/eis/MyXACF")
 com.eis.FooConnectionFactory xacf;

 ...

 @Resource(lookup = "java:comp/eis/MyNoTXCF")
 com.eis.BarConnectionFactory notxcf;
 ...
 }

19.9.3. @AdministeredObjectDefinition

The AdministeredObjectDefinition annotation is a repeatable resource definition annotation that is used
to define an administered object and have it registered in JNDI. See the section titled “Connector
Administered Object Definition” in the “Resources, Naming, and Injection” chapter of the Jakarta EE
Platform for more details on the administered object definition annotation.

The section titled “Annotations and Deployment Descriptors” of the “Resources, Naming, and Injection”
chapter of the Jakarta EE Platform Specification describes how environment entries created by these
annotations may be specified or overridden using deployment descriptor elements. The deployment
descriptor element administered-object that may be used to define or override the values defined in the

19.9. Resource Definition Annotations

Jakarta Connectors 317

AdministeredObjectDefinition annotation, is described in the section titled “Common Jakarta EE XML
Schema definitions” of the Jakarta EE Platform Specification.

AdministeredObjectDefinition Annotation

 package jakarta.resource;

 import java.lang.annotation.Target;
 import java.lang.annotation.Retention;
 import java.lang.annotation.ElementType;
 import java.lang.annotation.RetentionPolicy;

 @Documented
 @Target({ElementType.TYPE})
 @Retention(RetentionPolicy.RUNTIME)
 @Repeatable(AdministeredObjectDefinitions.class)
 public @interface AdministeredObjectDefinition {

 String name();
 String description() default "";
 String resourceAdapter();
 String className();
 String interfaceName() default “”;
 String[] properties() default {};
 }

The administered object will be registered in JNDI under the name specified in the mandatory name
annotation element. It may be defined to be in any valid Jakarta EE namespace, and the namespace
will determine the accessibility of the administered object from other components. The optional
description element specifies a description of the administered object.

The name of the resource adapter that the administered object must be created from must be indicated
by the resourceAdapter element. The resource adapter must be available at runtime prior to any
attempt to access the administered object.

The mandatory fully qualified name of the administered object’s class must be indicated by the
className element. The fully qualified name of the administered object’s interface must be indicated
by the interfaceName element, only if the class indicated in the className element implements more
than one interface and the application server cannot determine the unique Java interface of the
administered object according the rules defined in @AdministeredObject.

Additional properties required to be configured in the administered object are specified through the
properties element. Properties, if specified, that do not match configuration property names of the
AdministeredObject JavaBean or cannot be mapped to vendor-specific properties may be ignored.

19.9. Resource Definition Annotations

318 Jakarta Connectors

19.9.3.1. Example

A Queue Administered Object resource of an embedded JMS resource adapter may be defined in a
Servlet as follows:

AdministeredObjectDefinition Annotation Definition Example

 @AdministeredObjectDefinition (name="java:comp/eis/MyQueue",
 className="com.wombat.connector.jms.QueueImpl",
 resourceAdapter="#MyJMSRA")

Once defined, the Queue resource may be referenced by a component, that has the embedded
MyJMSRA resource adapter visible to it as per the rules defined in Requirements, using the resource-ref
deployment descriptor element or the Resource annotation. For example, the above administered
object definition could be referenced as follows in a Stateless Session Bean in the same enterprise
application EAR archive.

AdministeredObjectDefinition Annotation Usage Example

 @Stateless public class MySessionBean {

 @Resource(lookup = "java:comp/eis/MyQueue") jakarta.jms.Queue myQ;
 ...
 }

19.9.4. @AdministeredObjectDefinitions

The AdministeredObjectDefinition annotation is a resource definition annotation that is used to define
an administered object and have it registered in JNDI. The AdministeredObjectDefinitions annotation
acts as a container for multiple administered object definitions. Use of the
AdministeredObjectDefinitions annotation is optional as the AdministeredObjectDefinition annotation is
marked as Repeatable_

19.9. Resource Definition Annotations

Jakarta Connectors 319

AdministeredObjectDefinitions Annotation

 package jakarta.resource;

 import java.lang.annotation.Target;
 import java.lang.annotation.Retention;
 import java.lang.annotation.ElementType;
 import java.lang.annotation.RetentionPolicy;

 @Documented
 @Target({ElementType.TYPE})
 @Retention(RetentionPolicy.RUNTIME)
 public @interface AdministeredObjectDefinitions {

 AdministeredObjectDefinition[] value();

 }

The value annotation element contains the multiple administered object definitions.

19.9.4.1. Example

Multiple administered object definitions, for instance a Queue and a Topic administered object, may be
declared together in a Servlet as follows:

AdministeredObjectDefinitions Annotation Definition Example

 @AdministeredObjectDefinitions({
 @AdministeredObjectDefinition(name="java:comp/eis/MyQueue",
 className="com.wombat.connector.jms.QueueImpl",
 resourceAdapter="MyJMSRA"),

 @AdministeredObjectDefinition (name="java:comp/eis/MyTopic",
 className="com.wombat.connector.jms.TopicImpl",
 resourceAdapter="MyJMSRA")
 })

Once defined, the Queue and Topic administered resources may be referenced by a component, that
has the standalone MyJMSRA resource adapter visible to it as per the rules defined in Requirements,
using the resource-ref deployment descriptor element or the Resource annotation. For example, the
above administered objects could be referenced as follows in a Stateless Session Bean in the same
enterprise application archive.

19.9. Resource Definition Annotations

320 Jakarta Connectors

AdministeredObjectDefinitions Annotation Usage Example

 @Stateless
 public class MySessionBean {

 @Resource(lookup = "java:comp/eis/MyQueue")
 jakarta.jms.Queue myQ;

 ...

 @Resource(lookup = "java:comp/eis/MyTopic")
 jakarta.jms.Queue myT;

 ...
 }

19.9. Resource Definition Annotations

Jakarta Connectors 321

Chapter 20. API Requirements
This chapter specifies the API requirements for the resource adapter and application server
implementations.

20.1. Requirements of the Application Server
• The application server must support the deployment of a resource adapter in Jakarta Enterprise

Beans and Web containers.

• The application server must support all the Jakarta Connectors requirements in Jakarta Enterprise
Beans and Web containers.

• A single resource adapter instance may be shared by both a Web container and an Jakarta
Enterprise Beans container.

• The application server must support all versions of the resource adapter DTDs (Document Type
Definitions) and the resource adapter XML Schema Definition. This ensures that resource adapters
written to previous versions of this specification can be deployed on products supporting the
current version of this specification.

20.2. Requirements of the Resource adapter
The following matrix specifies the required (+) and optional (?) API requirements on a resource
adapter.

LM - Lifecycle management contract

WM - Work management contract

MI - Message Inflow contract

TI - Transaction Inflow contract

CM - Connection management contract

TM- Transaction management contract

SM - Security management contract

CCI - Common Client Interface

Table 5. Table Resource Adapter API Requirements

LM WM MI TI CM TM SM CCI

Outbound ? ? + + + ?

Inbound + ? + ?

20.1. Requirements of the Application Server

322 Jakarta Connectors

Bi-
directiona
l

+ ? + ? + + + ?

 The message inflow contract must be supported by an inbound resource adapter.

20.3. JavaBean Requirements
The various JavaBean implementations provided by a resource adapter must adhere to the following
rules:

• A JavaBean implementation must contain a null constructor.

• A JavaBean implementation must provide getter and setter methods, to access and modify the
public properties of the JavaBean instance.

Note, for JavaBean serialization, implementing the java.io.Serializable interface is not necessary. The
XML long-term persistence mechanism introduced in J2SE 1.4 can save the state of a JavaBean in an
XML format that is resilient to version changes in the implementation of that JavaBean. Refer to Java
SE (see Java Platform, Standard Edition 7API Specification) classes java.beans.XMLEncoder ,
java.beans.XMLEncoder , and java.beans.PersistenceDelegate .

For details, refer to JavaBeans specification (see JavaBeans Specification 1.01 Final Release).

20.4. Equality Constraints
This section specifies the equality constraints on object implementations of the various types defined
by this specification.

20.4.1. Equality based on Java Object Identity

The candidate objects are implementations of MessageEndpointFactory, ActivationSpec,
ManagedConnection types.

These objects, in general, should not override the default equals and hashCode methods. However, if
these methods are overridden, they must preserve the equality constraints based on Java object
identity; that is, no two objects are considered equal.

20.4.2. Equality Based on Config Properties and Class Information

The candidate objects are implementations of ResourceAdapter, ManagedConnectionFactory ,
ConnectionRequestInfo , java.security.Principal, org.ietf.jgss.GSSCredential, GenericCredential,
PasswordCredential , and Record types.

These objects must override the default equals and hashCode methods, and provide an equality
behavior based on the configuration properties and class information. That is, any two objects can be

20.3. JavaBean Requirements

Jakarta Connectors 323

equal only if their configuration properties match and they have the same class implementation.

20.4. Equality Constraints

324 Jakarta Connectors

Chapter 21. Packaging Requirements
This chapter specifies requirements for packaging and deploying a resource adapter. These
requirements support a modular, portable deployment of a resource adapter into a Jakarta EE
compliant application server.

21.1. Overview
A resource adapter provider develops a set of Java interfaces and classes as part of its implementation
of a resource adapter. These Java classes implement Jakarta Connectors-specified contracts and EIS-
specific functionality provided by the resource adapter. The development of a resource adapter may
also require the use of native libraries specific to the underlying EIS.

The Java interfaces and classes are packaged together (with required native libraries, help files,
documentation, and other resources) with a deployment descriptor to create a resource adapter
module. A deployment descriptor defines the contract between a resource adapter provider and a
deployer for the deployment of a resource adapter. With the introduction of a simplified API through
the use of Java language annotations described in Metadata Annotations, it is optional for a resource
adapter provider and a deployer to provide a deployment descriptor along with a resource adapter
module.

Packaging and Deployment Lifecycle of a Resource adapter

Application
Server

Resource
Adapter

deploy
Processed by
Deployers

Resource Adapter
created by
Resource Adapter
Provider

Resource
Adapter
Module

Deployment

A resource adapter module corresponds to a Jakarta EE module in terms of the Jakarta EE composition
hierarchy. Refer to the Jakarta EE Platform specification (see Jakarta™ EE Platform Specification
Version 10) for more details on the deployment of Jakarta EE modules and applications. A Jakarta EE
module represents the basic unit of composition of a Jakarta EE application. Examples of Jakarta EE
modules include Jakarta Enterprise Beans modules, application client modules, and web client
modules.

A resource adapter module must be deployed either:

• Directly into an application server as a stand-alone unit or,

• Deployed with a Jakarta EE application that consists of one or more Jakarta EE modules in addition
to a resource adapter module. The Jakarta EE specification specifies requirements for the assembly

21.1. Overview

Jakarta Connectors 325

and packaging of Jakarta EE applications.

The following figure shows the composition model of a resource adapter module with other Jakarta EE
modules.

Deployment of a Resource Adapter Module

Resource
Adapter
module

DD

Deployment
Tool1

DD

DD

DD

2

3

4

DD

1

DD

2

DD

3

DD

4

App
DD

DD
1

DD
2

DD 3

DD 4

add/delete modules

deploy stand-alone modules

Jakarta EE ApplicationComponents Jakarta EE Modules

JEB
module

Web client
module

Application
client module

JEB

JEB

JEB

WEB

WEB

The stand-alone deployment of a resource adapter module into an application server is typically done
to support scenarios in which multiple Jakarta EE applications share a single resource adapter module.
However, in certain scenarios, a resource adapter module is required only by components within a
single Jakarta EE application. The deployment option of a resource adapter module bundled with a
Jakarta EE application supports the latter scenario.

At deployment time, a resource adapter deployer deploys a resource adapter module to an application
server.

21.2. Packaging
The file format for a packaged resource adapter module defines the contract between a resource
adapter provider and deployer.

A packaged resource adapter includes the following elements:

21.2. Packaging

326 Jakarta Connectors

• Java classes and interfaces that are required for the implementation of both the Jakarta Connectors
contracts and the functionality of the resource adapter.

• Utility Java classes for the resource adapter.

• Platform-dependent native libraries required by the resource adapter.

• Help files and documentation.

• Descriptive meta information that ties the above elements together.

21.2.1. Resource Adapter Archive

A resource adapter must be packaged using the Java Archive (JAR) format in to an RAR (r esource
adapter ar chive). For example, a resource adapter for EIS A can be packaged as an archive with a
filename eisA.rar .

The RAR file may contain a deployment descriptor based on the format specified in Requirements. If a
resource adapter module chooses to bundle a deployment descriptor, the deployment descriptor must
be stored with the name META-INF/ra.xml in the RAR file.

The Java interfaces, implementation, and utility classes required by the resource adapter must be
packaged as one or more JAR files as part of the resource adapter module. A JAR file must use the .jar
file extension.

The resource adapter may also use the library support mechanisms described in the Jakarta EE
Platform Specification to specify library dependencies. See the Jakarta™ EE Platform Specification
Version 10 for more information on the Jakarta EE Platform’s support for libraries.

The platform-specific libraries required by the resource adapter must be packaged with the resource
adapter module.

21.2.2. RAR Contents

The following table describes the contents of a RAR file, where each element is located within the RAR
file and whether they are required.

Table 6. Table Description of RAR File Contents

Contents of RAR file Requirements Relative Location Within RAR
File

Deployment Descriptor Optional META-INF/ra.xml

howto.html, image files, locale
files, etc.

Optional Arbitrary (that is, could be at
root level or at a sub-level).

JAR files Optional Arbitrary

Platform-specific native libraries Optional Arbitrary

21.2. Packaging

Jakarta Connectors 327

21.2.3. Sample Directory Structure

The following lists the files in a sample resource adapter module:

META-INF/ra.xml

howto.html

images/icon.jpg

ra.jar

cci.jar

win.dll

solaris.so

In the above example, ra.xml is the deployment descriptor. ra.jar and cci.jar contain Java interfaces
and implementation classes for the resource adapter. win.dll and solaris.so are examples of native
libraries.

Note that a resource adapter module can be structured such that various elements are partitioned
using subdirectories.

21.2.4. Requirements

• When a standalone resource adapter RAR is deployed, the resource adapter may be made available
to all Jakarta EE applications in the application server. The application server, however, must make
the standalone resource adapter RAR available to applications that meet the requirements listed in
Class Loading Requirements.

• When a resource adapter RAR packaged within a Jakarta EE application EAR (also referred to as an
“embedded RAR”) is deployed, the resource adapter must be made available only to the Jakarta EE
application with which it is packaged.

• A resource adapter must not implement or require a mixture of Jakarta and Java EE packages. If a
resource adapter provider wishes to implement both specifications, it must do so by providing
multiple RAR files.

21.2. Packaging

328 Jakarta Connectors

21.3. Class Loading Requirements
This specification does not define the exact arrangement or hierarchy of classloaders that must be used
by a container. This section of the specification defines the requirements in terms of what applications
must have visibility to a resource adapter RAR.

A resource adapter RAR packaged within a Jakarta EE application EAR, as specified in Requirements
above, must be made available only to the Jakarta EE application with which it is packaged.

The requirements below specify the applications that must have visibility to a standalone resource
adapter RAR.

• If an application references a resource using a deployment descriptor entry or a corresponding
annotation, and that resource is supplied by a standalone resource adapter, that standalone
resource adapter must be made available to the application.

• If an application references an extension using the Extension Mechanism Architecture (see the
section titled “Library Support” in the “Application Assembly and Deployment” chapter of the
Jakarta™ EE Platform Specification Version 10 and a jar file within a standalone resource adapter
supplies that extension, the standalone resource adapter must be made available to the application.

• If a standalone resource adapter is configured to deliver messages to a message-driven bean in an
application, the standalone resource adapter must be made available to the application.

• Even lacking such a reference, it must be possible for the Deployer to configure an application so
that any particular standalone resource adapter is available to the application.

An application that satisfy the requirements can portably assume the visibility of the corresponding
standalone resource adapter RAR. An application server may choose to make all deployed standalone
resource adapter RARs available to all applications.

21.4. Deployment
A deployment descriptor defines the contract between a resource adapter provider and a deployer. It
captures the declarative information that is intended for the deployer to enable deployment of a
resource adapter in a target operational environment. Deployment information may also provided by
the metadata annotations described in Metadata Annotations. The container is required to follow the
rules defined in Deployment Descriptors and Annotations to derive the final deployment information.

A resource adapter module must be deployed based on the deployment requirements specified by the
resource adapter provider in the deployment descriptor and through metadata annotations. Resource
Adapter XML Schema Definition specifies the XML Schema for the deployment descriptor for a
resource adapter module. See Metadata Annotations for more information on the metadata
annotations that can be employed.

The J2EE Deployment API Specification (J2EE Deployment API Specification) describes the general
deployment procedure in detail.

21.3. Class Loading Requirements

Jakarta Connectors 329

21.4.1. Resource Adapter Provider

The resource adapter provider is responsible for specifying the deployment descriptor for a resource
adapter.

The resource adapter provider may specify the following information in the deployment descriptor or
through metadata-annotations:

• General information: The resource adapter provider should specify the following general
information:

◦ Name of the resource adapter.

◦ Description of the resource adapter.

◦ URI of a UI icon for the resource adapter.

◦ Name of the vendor who provides the resource adapter.

◦ Licensing requirement and description. Note that the management of licensing is outside the
scope of Jakarta Connectors.

◦ Type of the EIS system supported. For example, the name of a specific database, ERP system, or
mainframe TP system without any versioning information.

◦ Version of the Jakarta Connectors specification, represented as a string, supported by the
resource adapter.

◦ Version of the resource adapter represented as a string

◦ Required WorkContext classes: A resource adapter may optionally provide a list of required-
work-context elements representing a list of WorkContext classes that a resource adapter
requires the application server to support. . The resource adapter provider must specify the
name of a Java Class that implements the jakarta.resource.spi.work.WorkContext interface.

• ResourceAdapter class: The resource adapter provider must specify, if available, the name of a Java
class that implements the jakarta.resource.spi.ResourceAdapter interface. The implementation of
this class must be a JavaBean. A ResourceAdapter JavaBean is configured by the resource adapter
deployer during deployment. The application server must instantiate exactly one ResourceAdapter
JavaBean per functional resource adapter instance. The application server must create at least one
functional resource adapter instance per resource adapter deployment. The configuration
properties are specific to a resource adapter.

• ResourceAdapter class configuration properties: The resource adapter provider may optionally
provide a set of configuration properties for the ResourceAdapter instance, which may be used by
the resource adapter deployer to configure a ResourceAdapter JavaBean instance.

• Outbound resource adapter information:

◦ ManagedConnectionFactory class: The resource adapter provider must specify the name of the
Java class that implements the jakarta.resource.spi.ManagedConnectionFactory_ interface. The
implementation must be a JavaBean. Typically, a ManagedConnectionFactory class is used to
produce ConnectionFactory and Connection objects of a particular type. In order to produce

21.4. Deployment

330 Jakarta Connectors

objects of different types, a separate ManagedConnectionFactory class can be used for each
supported type. The deployment descriptor element connection-definition can be used to
specify different ManagedConnectionFactory classes, each pertaining to a particular type.

◦ ConnectionFactory interface and implementation class: The resource adapter provider must
specify the fully-qualified name of the Java interface and implementation class for each
connection factory supported by the resource adapter.

◦ Connection interface and implementation class: The resource adapter provider must specify the
fully-qualified name of the Java interface and implementation class for each connection
supported by the resource adapter.

◦ Transactional support: The resource adapter provider must specify the level of transaction
support provided by the resource adapter implementation. The level of transaction support
must be any one of the following: NoTransaction , LocalTransaction , or XATransaction . Note
that this support is specified for a resource adapter and not for the underlying EIS instance.
NoTransaction : The resource adapter does not support either the resource manager local or
Jakarta Transaction’s transactions. It does not implement either XAResource or
LocalTransaction interfaces.
LocalTransaction : The resource adapter supports resource manager local transactions by
implementing the LocalTransaction interface. The local transaction management contract is
specified in Local Transaction Management Contract.
XATransaction : The resource adapter supports both resource manager local and Jakarta
Transaction’s transactions by implementing the LocalTransaction and XAResource interfaces
respectively. The requirements for supporting the XAResource based contract are specified in
XAResource-based Transaction Contract.

◦ Configurable properties per ManagedConnectionFactory instance: The resource adapter
provider specifies the name, type, description, and an optional default value for the properties
that have to be configured on a per ManagedConnectionFactory instance. Each
ManagedConnectionFactory instance creates connections to a specific EIS instance based on the
properties configured on the ManagedConnectionFactory instance. The configurable properties
are specified only once in the deployment descriptor, even though a resource adapter can be
used to configure multiple ManagedConnnectionFactory instances that create connections to
different instances of the same underlying EIS type.

◦ Authentication mechanism: The resource adapter provider must specify all authentication
mechanisms supported by the resource adapter. This includes the support provided by the
resource adapter implementation but not by the underlying EIS instance. The standard values
are: BasicPassword and Kerbv5 . A resource adapter may support one or more of these
authentication mechanisms.

▪ === BasicPassword: user-password based authentication mechanism that is specific to an
EIS.

▪ === Kerbv5: Kerberos version 5 based authentication mechanism. If no authentication
mechanism is specified as part of the deployment descriptor, the resource adapter supports
no standard security authentication mechanism as part of the security contract.

21.4. Deployment

Jakarta Connectors 331

◦ Reauthentication support: The resource adapter provider must specify whether a resource
adapter supports re-authentication of an existing physical connection.

◦ Extended security permissions: The security permissions listed in the deployment descriptor
are different from those required by the default permission set. Refer to Runtime Environment
for more details on security permissions.

• Inbound resource adapter information

◦ Message listener type: The resource adapter provider must specify one or more message
listener types supported by a messaging resource adapter. The message listener type is the
name of the Java type of a message listener interface.

◦ ActivationSpec class: The resource adapter provider must specify the Java class name of the
activation specification class. The implementation of this class must be a JavaBean. An
ActivationSpec specifies an activation specification per message listener type. The
ActivationSpec is configured by a message endpoint deployer during application deployment.

◦ Required ActivationSpec properties: The resource adapter provider may optionally specify a set
of required properties for an ActivationSpec. This is useful in validating the ActivationSpec
during endpoint application deployment.

◦ ActivationSpec class configuration properties: The resource adapter provider may optionally
provide a set of configuration properties for the ActivationSpec instance, which may be used by
the resource adapter deployer to configure a ActivationSpec JavaBean instance

• Administered objects: The resource adapter provider must specify the name of the Java type of the
interface implemented by an administered object, which must be a JavaBean, and its Java class
name. Administered objects are specific to a messaging style or message provider. There may be
zero to more administered objects specified. There must be no more than one administered object
definition with the same interface and Class name combination in a resource adapter.

The deployment descriptor specified by the resource adapter provider for its resource adapter must be
consistent with the XML Schema specified in Resource Adapter XML Schema Definition. Metadata
annotations are detailed in Metadata Annotations.

Jakarta Connectors does not specify standard deployment properties for the
configuration of non-Java parts, such as native libraries, of a resource adapter. This
applies only to the properties of the non-Java part not exposed through the Java part
of the resource adapter. The non-Java part of a resource adapter should be configured
using mechanisms specific to a resource adapter.

21.4.2. Deployer

During resource adapter deployment, the deployer is responsible for configuring a resource adapter.
The configuration of a resource adapter is based on the properties defined in the deployment
descriptor and metadata annotations (see Deployment Descriptors and Annotations) as part of the
resource adapter module.

21.4. Deployment

332 Jakarta Connectors

21.4.2.1. Standalone Resource Adapter Module

During deployment, the deployer configures and deploys a resource adapter based on the deployment
descriptor information. The deployer may choose to override the information in the deployment
descriptor.

21.4.2.2. Resource Adapter Module with Jakarta EE Application

Refer to the Jakarta EE platform specification (see Jakarta™ EE Platform Specification Version 10) for
the requirements specified for the deployment of a Jakarta EE application.

21.4.2.3. Configuration

To configure a resource adapter, the deployer must configure a ResourceAdapter JavaBean instance.
The configuration properties are specific to a resource adapter. In the case of outbound resource
adapters, the deployer must do the following tasks:

• Configure one or more property sets (one property set per ManagedConnectionFactory instance) for
creating connections to various underlying EIS instances. The deployer creates a property set to set
valid values for various configurable fields. The configuration of each field is based on the name,
type and description of the field specified in the deployment descriptor or metadata annotations
described in Metadata Annotations.

• Each property set represents a specific configuration to be set on a Managed-ConnectionFactory
instance for creating connections to a specific EIS instance. Since a resource adapter may be used
to create connections to multiple instances of the same EIS, there can be multiple property sets for
a single resource adapter, one for each configured ManagedConnectionFactory instance.

• Configure application server mechanisms for transaction management based on the level of
transaction support specified by the resource adapter.

• Configure security in the target operational environment based on the security requirements
specified by the resource adapter in its deployment descriptor or annotations discussed in
@SecurityPermission.

21.4.2.4. Security Configuration

The security configuration is based on:

• Whether the resource adapter supports a specific authentication mechanism and credentials
interface. The deployment descriptor includes an element authentication-mechanism that specifies
a supported authentication mechanism and the corresponding credentials interface.

• Whether the application server is configured to support a specific mechanism type. For example, if
the application server is not configured for the Kerberos mechanism, it is not capable of passing
Kerberos credentials to the resource adapter as part of the security contract.

During the deployment, the deployer may, though is not required to, check whether or not an
underlying EIS supports the same capabilities, such as transaction support and authentication

21.4. Deployment

Jakarta Connectors 333

mechanisms, as the corresponding resource adapter.

For example, if a resource adapter provides implementation support for Kerberos based
authentication but the underlying EIS instance does not support Kerberos, the deployer may decide not
to configure Kerberos for authentication to this EIS instance. However if the deployer does not perform
such checks during deployment, any invalid configurations should lead to runtime exceptions.

21.5. Interfaces/Classes
This section specifies the Java classes and interfaces related to the configuration of a resource adapter
in an operational environment.

21.5.1. ResourceAdapter

The Java class which implements the interface jakarta.resource.spi.ResourceAdapter must be a
JavaBean. The ResourceAdapter JavaBean may also be specified through the Connector annotation
(@Connector).

A ResourceAdapter JavaBean represents exactly one functional resource adapter unit or instance. The
application server must instantiate exactly one ResourceAdapter JavaBean per functional resource
adapter instance. The application server must create at least one functional resource adapter instance
per resource adapter deployment. A ResourceAdapter JavaBean instance is configured by the resource
adapter deployer during deployment. The configuration properties are specific to a resource adapter.

The resource adapter provider may optionally provide a set of configuration properties, specified in
the resource adapter deployment descriptor, for the ResourceAdapter instance, which is used by the
resource adapter deployer to configure the ResourceAdapter JavaBean instance during deployment.
The deployer may override the configuration information in the deployment descriptor while
configuring the ResourceAdapter JavaBean instance.

21.5.1.1. Requirements

The ResourceAdapter implementation must be a JavaBean.

21.5.2. ManagedConnectionFactory

The class that implements the ManagedConnectionFactory interface supports a set of properties. These
properties provide information required by the ManagedConnectionFactory for the creation of physical
connections to the underlying EIS.

A resource adapter must implement the ManagedConnectionFactory interface as a JavaBean. As a
JavaBean implementor, the resource adapter can also provide a BeanInfo class that implements the
java.beans.BeanInfo interface and provides explicit information about the methods and properties
supported by the ManagedConnectionFactory implementation class.

The implementation of ManagedConnectionFactory as a JavaBean improves the ability of tools that are

21.5. Interfaces/Classes

334 Jakarta Connectors

based on the JavaBeans framework to manage the configuration of ManagedConnectionFactory
instances.

21.5.2.1. Requirements

The ManagedConnectionFactory implementation must be a JavaBean. The ManagedConnectionFactory
implementation may also be annotated with the ConnectionDefinition annotation (see
@ConnectionDefinition and @ConnectionDefinitions). Any specified ManagedConnectionFactory
property in the deployment descriptor which does not have a matching property in the
ManagedConnectionFactory JavaBean should be treated as an error.

21.5.3. Properties Conventions

The ManagedConnectionFactory implementation class must provide getter and setter methods for each
of its supported properties. The supported properties must be consistent with the specification of
configurable properties specified in the deployment descriptor. With the introduction of metadata
annotations for specifying configuration properties, the resource adapter provider is not required to
specify the configuration properties through the deployment descriptor and may use the
ConfigProperty annotation (see @ConfigProperty) instead. The container is also required to discover
configuration properties of a JavaBean. See Discovery of Configuration Properties for more
information.

The getter and setter methods convention must be based on the JavaBeans design pattern. These
methods are defined in the implementation class and not in the ManagedConnectionFactory interface.
This requirement keeps the ManagedConnectionFactory interface independent of any resource adapter
or EIS-specific properties.

21.5.4. Standard Properties

Jakarta Connectors identifies a standard set of properties common across various types of resource
adapters and EISs. A resource adapter is not required to support a standard property if that property
does not apply to its configuration.

These standard properties are defined as follows:

Table 7. Table Standard Properties of Jakarta Connectors

Property Description

ServerName Name of the server for the EIS instance.

PortNumber Port number for establishing a connection to an
EIS instance.

UserName Name of the user establishing a connection to an
EIS instance.

Password Password for the user establishing a connection.

ConnectionURL URL for the EIS instance to which it connects.

21.5. Interfaces/Classes

Jakarta Connectors 335

In addition to these standard properties, a ManagedConnectionFactory implementation class may
support properties specific to a resource adapter and its underlying EIS.

All properties are administered by the deployer and are not visible to an application component
provider.

The specified properties are required to be implemented as either bound or constrained properties.
Refer to the JavaBeans specification (http://www.oracle.com/technetwork/java/javase/documentation/
spec-136004.html) for details on bound and constrained properties.

In the XML deployment descriptor, any bounds or well-defined values of properties should be
described in the description element. With the support for Bean Validation (JavaBean Validation), the
resource adapter provider is not required to describe the bounds and constraints of properties and
may use the Bean Validation annotations to describe bounds and constraints.

21.6. JNDI Configuration and Lookup
This section specifies requirements for the configuration of the JNDI environment for a resource
adapter.

In both managed and non-managed application scenarios, an application component or application
client must look up a connection factory instance in the component’s environment using the JNDI
interface. The application component then uses the connection factory instance to get a connection to
the underlying EIS. Application Programming Model specifies the application programming model in
more detail.

The following code extract shows the JNDI lookup of a jakarta.resource.cci.ConnectionFactory instance.

// Application Component/Client Code obtain the initial JNDI context
Context initctx = new InitialContext();

// perform JNDI lookup to obtain connection factory
jakarta.resource.cci.ConnectionFactory cxf =
 (jakarta.resource.cci.ConnectionFactory)initctx.lookup(“java:comp/env/eis/MyEIS”);

jakarta.resource.cci.Connection cx = cxf.getConnection();

21.6.1. Responsibilities

In both managed and non-managed environments, registration of a connection factory instance in the
JNDI namespace must use either the JNDI Reference or Serializable mechanism.

The choice between the two JNDI mechanisms depends on:

• Whether the JNDI provider being used supports a specific mechanism.

21.6. JNDI Configuration and Lookup

336 Jakarta Connectors

http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html
http://www.oracle.com/technetwork/java/javase/documentation/spec-136004.html

• Whether the application server and resource adapter provide the necessary support, specified in
the respective requirements.

• Constraints on the size of serialized objects that can be stored in the JNDI namespace. The
reference mechanism allows only a reference to the actual object to be stored in the JNDI
namespace. This is preferable to the serializable mechanism, which stores the whole serialized
object in the namespace.

This section specifies the responsibilities of the roles involved in the JNDI configuration of a resource
adapter.

21.6.1.1. Deployer

The deployer is responsible for configuring connection factory instances in the JNDI environment. The
deployer should manage the JNDI namespace such that the same programming model, as shown in
JNDI Configuration and Lookup, for the JNDI-based connection factory lookup is supported in both
managed and non-managed environments.

21.6.1.2. Resource Adapter

The implementation class for a connection factory interface must implement both the
java.io.Serializable and jakarta.resource.Referenceable interfaces to support JNDI registration.

The following code extract shows the jakarta.resource.Referenceable interface:

public interface jakarta.resource.Referenceable extends javax.naming.Referenceable {

 public void setReference(Reference ref);

}

The ManagedConnectionFactory implementation class must implement the java.io.Serializable
interface.

To support the Reference mechanism in a non-managed environment, a resource adapter or a helper
class must provide an implementation of the javax.naming.spi.ObjectFactory interface.

21.6.1.3. Application Server

The implementation class for jakarta.resource.spi.ConnectionManager must implement the
java.io.Serializable interface.

An application server must provide an implementation class for the javax.naming.spi.ObjectFactory
interface to support JNDI Reference mechanism-based connection factory lookup. The implementation
of this interface is application server-specific.

Scenario:Referenceable specifies more details on Reference mechanism-based JNDI configuration in a

21.6. JNDI Configuration and Lookup

Jakarta Connectors 337

managed environment.

21.6.2. Scenario: Serializable

The implementation classes for both the jakarta.resource.cci.ConnectionFactory and
jakarta.resource.spi.ManagedConnectionFactory interfaces implement the java.io.Serializable interface.

The deployment code retrieves the configuration properties from the XML deployment descriptor or
the metadata annotations (see @ConfigProperty) for the resource adapter. The deployment code then
creates an instance of the ManagedConnectionFactory implementation class and configures the
properties of the instance.

// Deployment Code
// Create an instance of the ManagedConnectionFactory class
com.myeis.ManagedConnectionFactoryImpl mcf = new com.myeis.ManagedConnectionFactoryImpl(
);

// Set the properties of theManagedConnectionFactory instance
// Note: Properties are defined in theimplementation class and
// not in the
// jakarta.resource.spi.ManagedConnectionFactory interface

mcf.setServerName(“...”);
mcf.setPortNumber(“...”);
...

Note that in a non-managed environment, an application developer writes the deployment code. In a
managed environment, the deployment tool typically hides the deployment code.

The deployment code uses the ManagedConnectionFactory instance to create a connection factory
instance. The code then registers the connection factory instance in the JNDI namespace.

21.6. JNDI Configuration and Lookup

338 Jakarta Connectors

// Deployment Code
// In a managed environment, create a ConnectionManager specific to
// the application server. Note that in a non-managed environment,
// ConnectionManager will be specific to the resource adapter.

com.wombatserver.ConnectionManager cm = new com.wombatserver.ConnectionManager(...);

// Create an instance of a connection factory
Object cxf = mcf.createConnectionFactory(cm);

// Get the JNDI context
javax.naming.Context ctx = new javax.naming.InitialContext(env);

// Bind to the JNDI namespace specifying a factory name
ctx.bind("...", cxf);

When an application component does a JNDI lookup of a connection factory instance, the returned
connection factory instance should get associated with a configured ManagedConnectionFactory
instance and a ConnectionManager instance. The implementation class for connection factory should
achieve the association between these instances in an implementation-specific manner.

The following section illustrates JNDI configuration in a managed environment based on the Reference
mechanism. This section uses the CCI interfaces jakarta.resource.cci.ConnectionFactory and
jakarta.resource.cci.Connection as the connection factory and connection interfaces respectively.

21.6.3. Scenario: Referenceable

The implementation class for the ConnectionFactory interface implements
jakarta.resource.Referenceable shown in the following code extract. Refer to the JNDI specification for
more details on the Referenceable interface.

21.6. JNDI Configuration and Lookup

Jakarta Connectors 339

public class com.myeis.ConnectionFactoryImpl implements
 jakarta.resource.Referenceable,
 java.io.Serializable,
 jakarta.resource.cci.ConnectionFactory {

 // Reference to this ConnectionFactory
 javax.naming.Reference reference;

 // setReference is called by the deployment code
 public void setReference(Reference ref) {
 reference = ref;
 }

 // getReference is called by the JNDI provider during
 // Context.bind

 public Reference getReference() throws NamingException {
 return reference;
 }
 ...
}

The getReference method on the ConnectionFactory implementation class must return a non-null value
or throw javax.naming.NamingException.

21.6.3.1. ObjectFactory Implementation

An application server provides a class (in an application server-specific implementation) that
implements the javax.naming.spi.ObjectFactory interface. Refer to the JNDI specification for more
details on the ObjectFactory interface.

In the ObjectFactory.getObjectInstance method, the information carried by the Reference parameter (set
in the ConnectionFactoryImpl.setReference method) is used to lookup the property set to be configured
on the target ManagedConnectionFactory instance.

The mapping from a Reference instance to multiple configured property sets enables an application
server to configure multiple ManagedConnectionFactory instances with respective property sets. An
application server maintains the property set configuration in an implementation-specific way based
on the deployment descriptor specification and metadata annotations.

The implementation and structure of Reference is specific to an application server. The following code
extract is an illustrative example. It illustrates an implementation of the
ObjectFactory.getObjectInstance method:

21.6. JNDI Configuration and Lookup

340 Jakarta Connectors

public class com.wombatserver.ApplicationServerJNDIHandler
 implements javax.naming.spi.ObjectFactory {

 // ...

 public Object getObjectInstance(Object obj, Name name, Context ctx, Hashtable env)
throws Exception {

 javax.naming.Reference ref = (javax.naming.Reference)obj;

 // Using the information carried by the Reference
 // instance,
 // (<referenceName, logicalName> in this example) lookup
 // a configured property set and then configure a
 // ManagedConnectionFactory instance with specified
 // properties.
{empty} ... // [implementation specific]
 //
 // For example, instantiation of the
 // ManagedConnectionFactory
 // class and invocation of its setter method
 // can be done using the Java Reflection
mechanism.

 jakarta.resource.spi.ManagedConnectionFactory mcf = ...

 // Create a Connection Manager instance specific to the
 // application server

 com.wombatserver.ConnectionManager cxManager = ...

 // Create a connection factory instance.
 // The ConnectionManager instance providedby the
 // application
 // server gets associated with the created
 // connection factory instance

 return mcf.createConnectionFactory(cxManager);
 }
 ...
}

21.6.3.2. Deployment

The following deployment code shows the registration of a reference to a connection factory instance
in the JNDI namespace:

21.6. JNDI Configuration and Lookup

Jakarta Connectors 341

// Deployment Code

javax.naming.Context ctx = new javax.naming.InitialContext(env);

// Create an instance of the connectionfactory
com.myeis.ConnectionFactoryImpl cf = new com.myeis.ConnectionFactoryImpl();

// Create a reference for the ConnectionFactory instance

javax.naming.Reference ref = new javax.naming.Reference(
 ConnectionFactoryImpl.class.getName(),
 new javax.naming.StringRefAddr(“<referenceName>”, “<logicalName>”),
 ApplicationServerJNDIHandler.class.getName(),
 null);

cf.setReference(ref);

// Bind to the JNDI namespace specifying aname for the connection
// factory
ctx.bind("...", cf);

Note that the deployment code should be designed as generic, though the above example does not
show it that way. The code should dynamically create an instance of a connection factory, create a
Reference instance, and then set the reference.

The Context.bind method registers a Reference to the connection factory instance in the JNDI
namespace.

21.6.3.3. Scenario: Connection Factory Lookup

The following steps occur when an application component calls the method JNDI Context.lookup to
lookup a connection factory instance:

1. JNDI passes control to the application server. The ObjectFactory-.getObjectInstance method
implemented by the application server is called.

2. The application server creates a new instance of the ManagedConnectionFactory implementation
class provided by the resource adapter. The application server must follow the requirements in
ManagedConnectionFactory JavaBean and Outbound Communication and
ManagedConnectionFactory JavaBean Instance Configuration while configuring a
ManagedConnectionFactory JavaBean instance. The application server may use an existing instance
of the ManagedConnectionFactory implementation class, if available.

3. The application server calls setter methods on the ManagedConnectionFactory instance to set
various configuration properties of this instance. These properties provide information required by
the ManagedConnectionFactory instance to create physical connections to the underlying EIS. The
application server uses an existing property set configured during the deployment of a resource

21.6. JNDI Configuration and Lookup

342 Jakarta Connectors

adapter to set the required properties of the ManagedConnectionFactory instance.

4. After the newly created ManagedConnectionFactory instance has been configured with its
properties set, the application server creates a new ConnectionManager instance.

5. The application server calls the createConnectionFactory method of the ManagedConnectionFactory
instance, passing in the ConnectionManager instance from the previous step, to get a
ConnectionFactory instance.

6. The application server returns the connection factory instance to the JNDI provider, so that this
instance can be returned as a result of the JNDI lookup. The application component gets the
ConnectionFactory instance as a result of the JNDI lookup.

OID:Lookup of a ConnectionFactory Instance from JNDI

21.6. JNDI Configuration and Lookup

Jakarta Connectors 343

ManagedConnectionFactory
Implementation class

Initial configuration of the resource adapter, followed by the application
deployment.

createConnectionFactory(ConnectionManager)

JNDI Naming
Context

Application
Component

create a new instance or use an existing instance

return ConnectionFactory

Connection
Manager

Application
Server

The application server maintains the configuration properties of the
ManagedConnectionFactory instance in an implementation-specific
way based on the XML deployment descriptor annotation.

JNDI passes control to the
application server

lookup

The Application server returns
the connection factory instance.
This instance is the one
returned from JNDI lookup.

ManagedConnectionFactory
creates a ConnectionFactory
instance and returns it to the
application server

set properties by calling setter methods

creates a new instance

Resource Adapter

21.6.4. Requirements

The default configuration values for the various JavaBean classes specified in the resource adapter
deployment descriptor by way of the config-property element or through the ConfigProperty
annotation, override and take precedence over the defaults specified for the same classes by the
resource adapter developer through the JavaBean mechanism. Note, a deployer may finally override
such default configuration information while configuring the various JavaBean instances.

21.6. JNDI Configuration and Lookup

344 Jakarta Connectors

21.7. Resource Adapter XML Schema Definition
This section specifies the XML Schema Definition (XSD) for the deployment descriptor for a resource
adapter. Some of the types used in this XSD are defined in the Jakarta EE platform specification
(Jakarta™ EE Platform Specification Version 10). The comments in the XSD specify additional
requirements for syntax and semantics that cannot be specified by using the XML Schema language.
Note, the description-group element defined in javaee_7.xsd allows multiple descriptions, in order to
allow specifying the same description for different locales.

Schema Definition for the Deployment Descriptor for a Resource Adapter

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns="http://www.w3.org/2001/XMLSchema"
 targetNamespace="https://jakarta.ee/xml/ns/jakartaee"
 xmlns:jakartaee="https://jakarta.ee/xml/ns/jakartaee"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified"
 attributeFormDefault="unqualified"
 version="2.0">
 <xsd:annotation>
 <xsd:documentation>

 Copyright (c) 2009, 2020 Oracle and/or its affiliates. All rights reserved.

 This program and the accompanying materials are made available under the
 terms of the Eclipse Public License v. 2.0, which is available at
 http://www.eclipse.org/legal/epl-2.0.

 This Source Code may also be made available under the following Secondary
 Licenses when the conditions for such availability set forth in the
 Eclipse Public License v. 2.0 are satisfied: GNU General Public License,
 version 2 with the GNU Classpath Exception, which is available at
 https://www.gnu.org/software/classpath/license.html.

 SPDX-License-Identifier: EPL-2.0 OR GPL-2.0 WITH Classpath-exception-2.0

 </xsd:documentation>
 </xsd:annotation>

 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 This is the XML Schema for the Connectors 2.0 deployment
 descriptor. The deployment descriptor must be named
 "META-INF/ra.xml" in the connector's rar file. All connector
 deployment descriptors must indicate the connector resource
 adapter schema by using the Jakarta EE namespace:

21.7. Resource Adapter XML Schema Definition

Jakarta Connectors 345

 https://jakarta.ee/xml/ns/jakartaee

 and by indicating the version of the schema by
 using the version element as shown below:

 <connector xmlns="https://jakarta.ee/xml/ns/jakartaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://jakarta.ee/xml/ns/jakartaee
 https://jakarta.ee/xml/ns/jakartaee/connector_2_0.xsd"
 version="2.0">
 ...
 </connector>

 The instance documents may indicate the published version of
 the schema using the xsi:schemaLocation attribute for Jakarta EE
 namespace with the following location:

 https://jakarta.ee/xml/ns/jakartaee/connector_2_0.xsd

]]>
 </xsd:documentation>
 </xsd:annotation>

 <xsd:annotation>
 <xsd:documentation>

 The following conventions apply to all Jakarta EE
 deployment descriptor elements unless indicated otherwise.

 - In elements that specify a pathname to a file within the
 same JAR file, relative filenames (i.e., those not
 starting with "/") are considered relative to the root of
 the JAR file's namespace. Absolute filenames (i.e., those
 starting with "/") also specify names in the root of the
 JAR file's namespace. In general, relative names are
 preferred. The exception is .war files where absolute
 names are preferred for consistency with the Servlet API.

 </xsd:documentation>
 </xsd:annotation>

 <xsd:include schemaLocation="jakartaee_9.xsd"/>

<!-- ** -->

 <xsd:element name="connector"

21.7. Resource Adapter XML Schema Definition

346 Jakarta Connectors

 type="jakartaee:connectorType">
 <xsd:annotation>
 <xsd:documentation>

 The connector element is the root element of the deployment
 descriptor for the resource adapter. This element includes
 general information - vendor name, resource adapter version,
 icon - about the resource adapter module. It also includes
 information specific to the implementation of the resource
 adapter library as specified through the element
 resourceadapter.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>

<!-- ** -->

 <xsd:complexType name="activationspecType">
 <xsd:annotation>
 <xsd:documentation>

 The activationspecType specifies an activation
 specification. The information includes fully qualified
 Java class name of an activation specification and a set of
 required configuration property names.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="activationspec-class"
 type="jakartaee:fully-qualified-classType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The element activationspec-class specifies the fully
 qualified Java class name of the activation
 specification class. This class must implement the
 jakarta.resource.spi.ActivationSpec interface. The
 implementation of this class is required to be a
 JavaBean.

 Example:
 <activationspec-class>com.wombat.ActivationSpecImpl
 </activationspec-class>

]]>

21.7. Resource Adapter XML Schema Definition

Jakarta Connectors 347

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="required-config-property"
 type="jakartaee:required-config-propertyType"
 minOccurs="0"
 maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>

 The required-config-property element is deprecated since
 Connectors 1.6 specification. The resource adapter
 implementation is recommended to use the @NotNull
 Bean Validation annotation or its XML validation
 descriptor equivalent to indicate that a configuration
 property is required to be specified by the deployer.
 See the Jakarta Connectors specification for more information.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="config-property"
 type="jakartaee:config-propertyType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="adminobjectType">
 <xsd:annotation>
 <xsd:documentation>

 The adminobjectType specifies information about an
 administered object. Administered objects are specific to a
 messaging style or message provider. This contains
 information on the Java type of the interface implemented by
 an administered object, its Java class name and its
 configuration properties.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="adminobject-interface"

21.7. Resource Adapter XML Schema Definition

348 Jakarta Connectors

 type="jakartaee:fully-qualified-classType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The element adminobject-interface specifies the
 fully qualified name of the Java type of the
 interface implemented by an administered object.

 Example:
 <adminobject-interface>jakarta.jms.Destination
 </adminobject-interface>

]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="adminobject-class"
 type="jakartaee:fully-qualified-classType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The element adminobject-class specifies the fully
 qualified Java class name of an administered object.

 Example:
 <adminobject-class>com.wombat.DestinationImpl
 </adminobject-class>

]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="config-property"
 type="jakartaee:config-propertyType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="authentication-mechanismType">
 <xsd:annotation>
 <xsd:documentation>

21.7. Resource Adapter XML Schema Definition

Jakarta Connectors 349

 The authentication-mechanismType specifies an authentication
 mechanism supported by the resource adapter. Note that this
 support is for the resource adapter and not for the
 underlying EIS instance. The optional description specifies
 any resource adapter specific requirement for the support of
 security contract and authentication mechanism.

 Note that BasicPassword mechanism type should support the
 jakarta.resource.spi.security.PasswordCredential interface.
 The Kerbv5 mechanism type should support the
 org.ietf.jgss.GSSCredential interface or the deprecated
 jakarta.resource.spi.security.GenericCredential interface.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="authentication-mechanism-type"
 type="jakartaee:xsdStringType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The element authentication-mechanism-type specifies
 type of an authentication mechanism.

 The example values are:

 <authentication-mechanism-type>BasicPassword
 </authentication-mechanism-type>

 <authentication-mechanism-type>Kerbv5
 </authentication-mechanism-type>

 Any additional security mechanisms are outside the
 scope of the Jakarta Connectors architecture specification.

]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="credential-interface"
 type="jakartaee:credential-interfaceType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>

21.7. Resource Adapter XML Schema Definition

350 Jakarta Connectors

 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="config-property-nameType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The config-property-nameType contains the name of a
 configuration property.

 The connector architecture defines a set of well-defined
 properties all of type java.lang.String. These are as
 follows.

 ServerName
 PortNumber
 UserName
 Password
 ConnectionURL

 A resource adapter provider can extend this property set to
 include properties specific to the resource adapter and its
 underlying EIS.

 Possible values include
 ServerName
 PortNumber
 UserName
 Password
 ConnectionURL

 Example: <config-property-name>ServerName</config-property-name>

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:xsdStringType"/>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="config-property-typeType">
 <xsd:annotation>

21.7. Resource Adapter XML Schema Definition

Jakarta Connectors 351

 <xsd:documentation>
 <![CDATA[
 The config-property-typeType contains the fully
 qualified Java type of a configuration property.

 The following are the legal values:
 java.lang.Boolean, java.lang.String, java.lang.Integer,
 java.lang.Double, java.lang.Byte, java.lang.Short,
 java.lang.Long, java.lang.Float, java.lang.Character

 Used in: config-property

 Example:
 <config-property-type>java.lang.String</config-property-type>

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:string">
 <xsd:enumeration value="java.lang.Boolean"/>
 <xsd:enumeration value="java.lang.String"/>
 <xsd:enumeration value="java.lang.Integer"/>
 <xsd:enumeration value="java.lang.Double"/>
 <xsd:enumeration value="java.lang.Byte"/>
 <xsd:enumeration value="java.lang.Short"/>
 <xsd:enumeration value="java.lang.Long"/>
 <xsd:enumeration value="java.lang.Float"/>
 <xsd:enumeration value="java.lang.Character"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="config-propertyType">
 <xsd:annotation>
 <xsd:documentation>

 The config-propertyType contains a declaration of a single
 configuration property that may be used for providing
 configuration information.

 The declaration consists of an optional description, name,
 type and an optional value of the configuration property. If
 the resource adapter provider does not specify a value than
 the deployer is responsible for providing a valid value for

21.7. Resource Adapter XML Schema Definition

352 Jakarta Connectors

 a configuration property.

 Any bounds or well-defined values of properties should be
 described in the description element.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="config-property-name"
 type="jakartaee:config-property-nameType"/>
 <xsd:element name="config-property-type"
 type="jakartaee:config-property-typeType"/>
 <xsd:element name="config-property-value"
 type="jakartaee:xsdStringType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The element config-property-value contains the value
 of a configuration entry. Note, it is possible for a
 resource adapter deployer to override this
 configuration information during deployment.

 Example:
 <config-property-value>WombatServer</config-property-value>

]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="config-property-ignore"
 type="jakartaee:true-falseType"
 minOccurs="0"
 maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation>

 The element config-property-ignore is used to specify
 whether the configuration tools must ignore considering the
 configuration property during auto-discovery of
 Configuration properties. See the Jakarta Connectors specification for
 more details. If unspecified, the container must not ignore
 the configuration property during auto-discovery.
 This element must be one of the following, "true" or "false".

21.7. Resource Adapter XML Schema Definition

Jakarta Connectors 353

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="config-property-supports-dynamic-updates"
 type="jakartaee:true-falseType"
 minOccurs="0"
 maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation>

 The element config-property-supports-dynamic-updates is used to specify
 whether the configuration property allows its value to be updated, by
 application server's configuration tools, during the lifetime of
 the JavaBean instance. See the Jakarta Connectors specification for
 more details. If unspecified, the container must not dynamically
 reconfigure the property.
 This element must be one of the following, "true" or "false".

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="config-property-confidential"
 type="jakartaee:true-falseType"
 minOccurs="0"
 maxOccurs="1">
 <xsd:annotation>
 <xsd:documentation>

 The element config-property-confidential is used to specify
 whether the configuration property is confidential and
 recommends application server's configuration tools to use special
 visual aids for editing them. See the Jakarta Connectors specification for
 more details. If unspecified, the container must not treat the
 property as confidential.
 This element must be one of the following, "true" or "false".

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

21.7. Resource Adapter XML Schema Definition

354 Jakarta Connectors

 <xsd:complexType name="connection-definitionType">
 <xsd:annotation>
 <xsd:documentation>

 The connection-definitionType defines a set of connection
 interfaces and classes pertaining to a particular connection
 type. This also includes configurable properties for
 ManagedConnectionFactory instances that may be produced out
 of this set.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="managedconnectionfactory-class"
 type="jakartaee:fully-qualified-classType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The element managedconnectionfactory-class specifies
 the fully qualified name of the Java class that
 implements the
 jakarta.resource.spi.ManagedConnectionFactory interface.
 This Java class is provided as part of resource
 adapter's implementation of connector architecture
 specified contracts. The implementation of this
 class is required to be a JavaBean.

 Example:
 <managedconnectionfactory-class>
 com.wombat.ManagedConnectionFactoryImpl
 </managedconnectionfactory-class>

]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="config-property"
 type="jakartaee:config-propertyType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="connectionfactory-interface"
 type="jakartaee:fully-qualified-classType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The element connectionfactory-interface specifies
 the fully qualified name of the ConnectionFactory
 interface supported by the resource adapter.

21.7. Resource Adapter XML Schema Definition

Jakarta Connectors 355

 Example:
 <connectionfactory-interface>com.wombat.ConnectionFactory
 </connectionfactory-interface>

 OR

 <connectionfactory-interface>jakarta.resource.cci.ConnectionFactory
 </connectionfactory-interface>

]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="connectionfactory-impl-class"
 type="jakartaee:fully-qualified-classType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The element connectionfactory-impl-class specifies
 the fully qualified name of the ConnectionFactory
 class that implements resource adapter
 specific ConnectionFactory interface.

 Example:

 <connectionfactory-impl-class>com.wombat.ConnectionFactoryImpl
 </connectionfactory-impl-class>

]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="connection-interface"
 type="jakartaee:fully-qualified-classType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The connection-interface element specifies the fully
 qualified name of the Connection interface supported
 by the resource adapter.

 Example:

 <connection-interface>jakarta.resource.cci.Connection
 </connection-interface>

]]>

21.7. Resource Adapter XML Schema Definition

356 Jakarta Connectors

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="connection-impl-class"
 type="jakartaee:fully-qualified-classType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The connection-impl-classType specifies the fully
 qualified name of the Connection class that
 implements resource adapter specific Connection
 interface. It is used by the connection-impl-class
 elements.

 Example:

 <connection-impl-class>com.wombat.ConnectionImpl
 </connection-impl-class>

]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="connectorType">
 <xsd:annotation>
 <xsd:documentation>

 The connectorType defines a resource adapter.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="module-name"
 type="jakartaee:string"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The element module-name specifies the name of the
 resource adapter.

21.7. Resource Adapter XML Schema Definition

Jakarta Connectors 357

 If there is no module-name specified, the module-name
 is determined as defined in Section EE.8.1.1 and EE.8.1.2
 of the Java Platform, Enterprise Edition (Jakarta EE)
 Specification, version 6.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:group ref="jakartaee:descriptionGroup"/>
 <xsd:element name="vendor-name"
 type="jakartaee:xsdStringType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The element vendor-name specifies the name of
 resource adapter provider vendor.

 If there is no vendor-name specified, the application
 server must consider the default "" (empty string) as
 the name of the resource adapter provider vendor.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="eis-type"
 type="jakartaee:xsdStringType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The element eis-type contains information about the
 type of the EIS. For example, the type of an EIS can
 be product name of EIS independent of any version
 info.

 This helps in identifying EIS instances that can be
 used with this resource adapter.

 If there is no eis-type specified, the application
 server must consider the default "" (empty string) as
 the type of the EIS.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="resourceadapter-version"

21.7. Resource Adapter XML Schema Definition

358 Jakarta Connectors

 type="jakartaee:xsdStringType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The element resourceadapter-version specifies a string-based version
 of the resource adapter from the resource adapter
 provider.

 If there is no resourceadapter-version specified, the application
 server must consider the default "" (empty string) as
 the version of the resource adapter.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="license"
 type="jakartaee:licenseType"
 minOccurs="0"/>
 <xsd:element name="resourceadapter"
 type="jakartaee:resourceadapterType"/>
 <xsd:element name="required-work-context"
 type="jakartaee:fully-qualified-classType"
 minOccurs="0"
 maxOccurs="unbounded">
 <xsd:annotation>
 <xsd:documentation>

 The element required-work-context specifies a fully qualified class
 name that implements WorkContext interface, that the resource adapter
 requires the application server to support.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="version"
 type="jakartaee:dewey-versionType"
 fixed="2.0"
 use="required">
 <xsd:annotation>
 <xsd:documentation>

 The version indicates the version of the schema to be used by the
 deployment tool. This element doesn't have a default, and the resource adapter
 developer/deployer is required to specify it. The element allows the deployment
 tool to choose which schema to validate the descriptor against.

21.7. Resource Adapter XML Schema Definition

Jakarta Connectors 359

 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="metadata-complete"
 type="xsd:boolean">
 <xsd:annotation>
 <xsd:documentation>

 The metadata-complete attribute defines whether the deployment
 descriptor for the resource adapter module is complete, or whether
 the class files available to the module and packaged with the resource
 adapter should be examined for annotations that specify deployment
 information.

 If metadata-complete is set to "true", the deployment tool of the
 application server must ignore any annotations that specify deployment
 information, which might be present in the class files of the
 application.If metadata-complete is not specified or is set to "false",
 the deployment tool must examine the class files of the application for
 annotations, as specified by this specification. If the
 deployment descriptor is not included or is included but not marked
 metadata-complete, the deployment tool will process annotations.

 Application servers must assume that metadata-complete is true for
 resource adapter modules with deployment descriptor version
 lower than 1.6.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:attribute>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="credential-interfaceType">
 <xsd:annotation>
 <xsd:documentation>

 The credential-interfaceType specifies the
 interface that the resource adapter implementation
 supports for the representation of the
 credentials. This element(s) that use this type,
 i.e. credential-interface, should be used by

21.7. Resource Adapter XML Schema Definition

360 Jakarta Connectors

 application server to find out the Credential
 interface it should use as part of the security
 contract.

 The possible values are:

 jakarta.resource.spi.security.PasswordCredential
 org.ietf.jgss.GSSCredential
 jakarta.resource.spi.security.GenericCredential

 </xsd:documentation>
 </xsd:annotation>
 <xsd:simpleContent>
 <xsd:restriction base="jakartaee:fully-qualified-classType">
 <xsd:enumeration value="jakarta.resource.spi.security.PasswordCredential"/>
 <xsd:enumeration value="org.ietf.jgss.GSSCredential"/>
 <xsd:enumeration value="jakarta.resource.spi.security.GenericCredential"/>
 </xsd:restriction>
 </xsd:simpleContent>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="inbound-resourceadapterType">
 <xsd:annotation>
 <xsd:documentation>

 The inbound-resourceadapterType specifies information
 about an inbound resource adapter. This contains information
 specific to the implementation of the resource adapter
 library as specified through the messageadapter element.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="messageadapter"
 type="jakartaee:messageadapterType"
 minOccurs="0">
 <xsd:unique name="messagelistener-type-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The messagelistener-type element content must be
 unique in the messageadapter. Several messagelisteners
 can not use the same messagelistener-type.

 </xsd:documentation>

21.7. Resource Adapter XML Schema Definition

Jakarta Connectors 361

 </xsd:annotation>
 <xsd:selector xpath="jakartaee:messagelistener"/>
 <xsd:field xpath="jakartaee:messagelistener-type"/>
 </xsd:unique>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="licenseType">
 <xsd:annotation>
 <xsd:documentation>

 The licenseType specifies licensing requirements for the
 resource adapter module. This type specifies whether a
 license is required to deploy and use this resource adapter,
 and an optional description of the licensing terms
 (examples: duration of license, number of connection
 restrictions). It is used by the license element.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="license-required"
 type="jakartaee:true-falseType">
 <xsd:annotation>
 <xsd:documentation>

 The element license-required specifies whether a
 license is required to deploy and use the
 resource adapter. This element must be one of
 the following, "true" or "false".

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

21.7. Resource Adapter XML Schema Definition

362 Jakarta Connectors

<!-- ** -->

 <xsd:complexType name="messageadapterType">
 <xsd:annotation>
 <xsd:documentation>

 The messageadapterType specifies information about the
 messaging capabilities of the resource adapter. This
 contains information specific to the implementation of the
 resource adapter library as specified through the
 messagelistener element.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="messagelistener"
 type="jakartaee:messagelistenerType"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="messagelistenerType">
 <xsd:annotation>
 <xsd:documentation>

 The messagelistenerType specifies information about a
 specific message listener supported by the messaging
 resource adapter. It contains information on the Java type
 of the message listener interface and an activation
 specification.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="messagelistener-type"
 type="jakartaee:fully-qualified-classType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The element messagelistener-type specifies the fully
 qualified name of the Java type of a message

21.7. Resource Adapter XML Schema Definition

Jakarta Connectors 363

 listener interface.

 Example:

 <messagelistener-type>jakarta.jms.MessageListener
 </messagelistener-type>

]]>
 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="activationspec"
 type="jakartaee:activationspecType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="outbound-resourceadapterType">
 <xsd:annotation>
 <xsd:documentation>

 The outbound-resourceadapterType specifies information about
 an outbound resource adapter. The information includes fully
 qualified names of classes/interfaces required as part of
 the connector architecture specified contracts for
 connection management, level of transaction support
 provided, one or more authentication mechanisms supported
 and additional required security permissions.

 If any of the outbound resource adapter elements (transaction-support,
 authentication-mechanism, reauthentication-support) is specified through
 this element or metadata annotations, and no connection-definition is
 specified as part of this element or through annotations, the
 application server must consider this an error and fail deployment.

 If there is no authentication-mechanism specified as part of
 this element or metadata annotations, then the resource adapter does
 not support any standard security authentication mechanisms as
 part of security contract. The application server ignores the security
 part of the system contracts in this case.

 If there is no transaction-support specified as part of this element
 or metadata annotation, then the application server must consider that
 the resource adapter does not support either the resource manager local

21.7. Resource Adapter XML Schema Definition

364 Jakarta Connectors

 or Jakarta Transactions transactions and must consider the transaction support as
 NoTransaction. Note that resource adapters may specify the level of
 transaction support to be used at runtime for a ManagedConnectionFactory
 through the TransactionSupport interface.

 If there is no reauthentication-support specified as part of
 this element or metadata annotation, then the application server must consider
 that the resource adapter does not support re-authentication of
 ManagedConnections.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="connection-definition"
 type="jakartaee:connection-definitionType"
 maxOccurs="unbounded"
 minOccurs="0"/>
 <xsd:element name="transaction-support"
 type="jakartaee:transaction-supportType"
 minOccurs="0"/>
 <xsd:element name="authentication-mechanism"
 type="jakartaee:authentication-mechanismType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="reauthentication-support"
 type="jakartaee:true-falseType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The element reauthentication-support specifies
 whether the resource adapter implementation supports
 re-authentication of existing Managed- Connection
 instance. Note that this information is for the
 resource adapter implementation and not for the
 underlying EIS instance. This element must have
 either a "true" or "false" value.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

21.7. Resource Adapter XML Schema Definition

Jakarta Connectors 365

<!-- ** -->

 <xsd:complexType name="required-config-propertyType">
 <xsd:annotation>
 <xsd:documentation>
 <![CDATA[
 The required-config-propertyType contains a declaration
 of a single configuration property used for specifying a
 required configuration property name. It is used
 by required-config-property elements.

 Usage of this type is deprecated from Connectors 1.6 specification.
 Refer to required-config-property element for more information.

 Example:

 <required-config-property>
 <config-property-name>Destination</config-property-name>
 </required-config-property>

]]>
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"
 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="config-property-name"
 type="jakartaee:config-property-nameType"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="resourceadapterType">
 <xsd:annotation>
 <xsd:documentation>

 The resourceadapterType specifies information about the
 resource adapter. The information includes fully qualified
 resource adapter Java class name, configuration properties,
 information specific to the implementation of the resource
 adapter library as specified through the
 outbound-resourceadapter and inbound-resourceadapter

21.7. Resource Adapter XML Schema Definition

366 Jakarta Connectors

 elements, and an optional set of administered objects.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="resourceadapter-class"
 type="jakartaee:fully-qualified-classType"
 minOccurs="0">
 <xsd:annotation>
 <xsd:documentation>

 The element resourceadapter-class specifies the
 fully qualified name of a Java class that implements
 the jakarta.resource.spi.ResourceAdapter
 interface. This Java class is provided as part of
 resource adapter's implementation of connector
 architecture specified contracts. The implementation
 of this class is required to be a JavaBean.

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 <xsd:element name="config-property"
 type="jakartaee:config-propertyType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="outbound-resourceadapter"
 type="jakartaee:outbound-resourceadapterType"
 minOccurs="0">
 <xsd:unique name="connectionfactory-interface-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The connectionfactory-interface element content
 must be unique in the outbound-resourceadapter.
 Multiple connection-definitions can not use the
 same connectionfactory-type.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:connection-definition"/>
 <xsd:field xpath="jakartaee:connectionfactory-interface"/>
 </xsd:unique>
 </xsd:element>
 <xsd:element name="inbound-resourceadapter"
 type="jakartaee:inbound-resourceadapterType"
 minOccurs="0"/>
 <xsd:element name="adminobject"

21.7. Resource Adapter XML Schema Definition

Jakarta Connectors 367

 type="jakartaee:adminobjectType"
 minOccurs="0"
 maxOccurs="unbounded">
 <xsd:unique name="adminobject-type-uniqueness">
 <xsd:annotation>
 <xsd:documentation>

 The adminobject-interface and adminobject-class element content must be
 unique in the resourceadapterType. Several admin objects
 can not use the same adminobject-interface and adminobject-class.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:selector xpath="jakartaee:adminobject"/>
 <xsd:field xpath="jakartaee:adminobject-interface"/>
 <xsd:field xpath="jakartaee:adminobject-class"/>
 </xsd:unique>
 </xsd:element>
 <xsd:element name="security-permission"
 type="jakartaee:security-permissionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

<!-- ** -->

 <xsd:complexType name="security-permissionType">
 <xsd:annotation>
 <xsd:documentation>

 The security-permissionType specifies a security
 permission that is required by the resource adapter code.

 The security permission listed in the deployment descriptor
 are ones that are different from those required by the
 default permission set as specified in the connector
 specification. The optional description can mention specific
 reason that resource adapter requires a given security
 permission.

 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:element name="description"

21.7. Resource Adapter XML Schema Definition

368 Jakarta Connectors

 type="jakartaee:descriptionType"
 minOccurs="0"
 maxOccurs="unbounded"/>
 <xsd:element name="security-permission-spec"
 type="jakartaee:xsdStringType">
 <xsd:annotation>
 <xsd:documentation>

 The element security-permission-spec specifies a security
 permission based on the Security policy file
 syntax. Refer to the following URL for Sun's
 implementation of the security permission
 specification:

http://docs.oracle.com/javase/6/docs/technotes/guides/security/PolicyFiles.html

 </xsd:documentation>
 </xsd:annotation>
 </xsd:element>
 </xsd:sequence>
 <xsd:attribute name="id"
 type="xsd:ID"/>
 </xsd:complexType>

</xsd:schema>

21.7. Resource Adapter XML Schema Definition

Jakarta Connectors 369

Chapter 22. Runtime Environment
This chapter focuses on the Java portion of a resource adapter that executes within a Java compatible
runtime environment. A Java runtime environment is provided by an application server and its
containers.

The chapter specifies the Java APIs that a Jakarta EE-compliant application server and its containers
must make available to a resource adapter at runtime. A portable resource adapter can rely on these
APIs to be available on all Jakarta EE-compliant application servers.

The chapter also specifies programming restrictions imposed on a resource adapter. These restrictions
enable an application server to enforce security and manage a runtime environment with multiple
configured resource adapters.

22.1. Programming APIs
A resource adapter provider relies on a Jakarta EE compliant application server to provide the
following APIs:

• Java SDK, Standard Edition, version 11.0 or above that includes the following as part of either the
core platform or standard extensions: JNDI Standard Extension. (see Java Platform, Standard
Edition 11 APISpecification)

• Required APIs for Jakarta TM Platform, Enterprise Edition, Version 10 as specified in the Jakarta EE
platform specification (see Jakarta™ EE Platform Specification Version 10).

• Java Authentication and Authorization Service (JAAS) 1.0 that requires at least Java 2 SDK, Standard
Edition, version 1.3 or the Java 2 Runtime Environment version 1.3.

22.2. Security Permissions
An application server must provide a set of security permissions for executing a resource adapter in a
managed runtime environment. A resource adapter must be granted explicit permissions to access
system resources.

Since the exact set of required security permissions for a resource adapter depends on the overall
security policy for an operational environment and the implementation requirements of a resource
adapter, Jakarta Connectors does not define a fixed set of permissions.

The following permission set represents the default set of security permissions that a resource adapter
should expect from an application server.

Table 8. Table Default Security Permission Set

Security Permission Default Policy Notes

22.1. Programming APIs

370 Jakarta Connectors

java.security.AllPermission deny Extreme care should be taken
before granting this permission
to a resource adapter. This
permission should only be
granted if the resource adapter
code is completely trusted and
when it is prohibitively
cumbersome to add necessary
permissions to the security
policy.

java.awt.AWTPermission deny * A resource adapter must not use
AWT code to interact with
display or input devices.

java.io.FilePermission grant read and write
<pathname> deny rest

A java.io.FilePermission
represents access to a file or
directory. A FilePermission
consists of a pathname and a set
of actions valid for that
pathname.

A resource adapter is granted
permission to read/write files as
specified by the pathname ,
which is specific to a configured
operational environment.

It is important to consider the
implications of granting Write
permission for [ALL FILES]
because this grants the resource
adapter permissions to write to
the entire file system. This can
allow a malicious resource
adapter to mangle system
binaries for the JVM
environment.

java.net.NetPermission deny *

java.util.PropertyPermission grant read (allows
System.getProperty to be called)
deny rest

Granting code permission to
access certain system properties
(java.home) can potentially give
malevolent code sensitive
information about the system
environment, such as the Java
installation directory.

java.lang.reflect.ReflectPermissio
n

deny *

22.2. Security Permissions

Jakarta Connectors 371

java.lang.RuntimePermission deny * By default, RuntimePermission is
denied to the resource adapter
code. A resource adapter should
explicitly request
LoadLibrary.{libraryName} to
link a dynamic library. The
libraryName represents a
specific library. A resource
adapter that manages threads
must explicitly request
permission to modifyThread
through its deployment
descriptor.

A resource adapter should never
be granted exitVM permission in
a managed application server
environment.

java.security.SecurityPermission deny *

java.net.SocketPermission grant connect * deny rest This represents permission to
access a network by way of
sockets. A SocketPermission
consists of a host specification
and a set of actions specifying
ways to connect to that host.

A resource adapter is granted
permission to connect to any
host as indicated by the wildcard
*.

A resource adapter may be
granted permission to accept
connections from other hosts by
way of a “grant accept *”. This
may be necessary for resource
adapters that support inbound
communication.

java.security.SerializablePermissi
on

deny * This ensures that a resource
adapter cannot subclass
ObjectOutputStream or
ObjectInputStream to override
the default serialization or
deserialization of objects or to
substitute one object for another
during serialization or
deserialization.

22.2. Security Permissions

372 Jakarta Connectors

22.3. Requirements
A resource adapter provider must ensure that resource adapter code does not conflict with the default
security permission set. By ensuring this, a resource adapter can be deployed and run in any
application server without execution or manageability problems.

If a resource adapter requires security permissions other than those specified in the default set, it must
describe such requirements in the XML deployment descriptor using the security-permission element
or through the SecurityPermission annotation described in @SecurityPermission.

A deployment descriptor-based specification of an extended permission set for a resource adapter
allows the deployer to analyze the security implications of the extended permission set and make a
deployment decision accordingly. An application server must be capable of deploying a resource
adapter with the default permission set.

22.3.1. Example

The resource adapter implementation creates a java.net.Socket and retrieves the hostname using the
getHostName method in java.net.InetAddress .

Table 9. Table Methods and Security Permissions Required

Method Security Manager Method Called Permission

java.net.Socket Socket(…) checkConnect(host, port) java.net.SocketPermission
"host:port ", "connect"

java.net.InetAddress public String
getHostName()

checkConnect(host, -1) java.net.SocketPermission " host
", " resolve "

The default SocketPermission , as specified in Default Security Permission Set, is grant connect and deny
rest . This means that if resource adapter uses the default permission set, the first method Socket(…)
will be allowed while the second method InetAddress . getHostName is disallowed.

The resource adapter is required to explicitly request security permission for the InetAddress .
getHostName method in the security-permission-spec element of its XML deployment descriptor or
through the SecurityPermission annotation described in @SecurityPermission. The following is an
example of allowing additional security permissions:

<security-permission-spec>

 grant {
 permission java.net.SocketPermission *, "resolve";
 };
</security-permission-spec>

22.3. Requirements

Jakarta Connectors 373

22.4. Privileged Code
A resource adapter runs in its own protection domain as identified by its code source and security
permission set. For the resource adapter to be allowed to perform a secured action, such as writing a
file, it must have been granted permission for that particular action.

Resource adapter code is considered system code which may require more security permissions than
the calling application component code. For example, when an application component calls a resource
adapter method to execute a function call on the underlying EIS instance, the resource adapter code
may need more security permissions than allowed to the calling component, such as the ability to
create a thread.

The Java security architecture requires that whenever a system resource access or any secured action
is attempted, all code traversed by the current execution thread up to that point must have the
necessary permissions for the system resource access, unless some code on the thread has been
marked as privileged. Refer to http://docs.oracle.com/javase/6/docs/technotes/guides/security/
doprivileged.html.

To support such scenarios, the resource adapter code should use the privileged code feature in the Java
security architecture. This enables the resource adapter code to temporarily perform more secured
actions than are available directly to the application code calling the resource adapter.

22.4.1. Example

A resource adapter from Wombat Systems packaged in the wombat.rar file contains the following
permission specification:

<security-permission>
 <security-permission-spec>

 grant {

 permission java.io.FilePermission
"${user.home}${file.separator}trace{file.separator}-",
 "read,write,delete";
 };

 </security-permission-spec>

</security-permission>

During resource adapter deployment, the application server processes this security-permission-spec
and grants the necessary permissions to the wombat.rar code base. This is an implementation-specific
mechanism and not prescribed by the specification. As an example, the application server may append
these permissions to the java.policy file or some implementation-specific policy file, and this may

22.4. Privileged Code

374 Jakarta Connectors

http://docs.oracle.com/javase/6/docs/technotes/guides/security/doprivileged.html
http://docs.oracle.com/javase/6/docs/technotes/guides/security/doprivileged.html

involve manual intervention.

// application code

...

WombatConnectionFactory wcf = (WombatConnectionFactory) jndi.lookup(
"WombatConnectionFactory");
WombatConnection wc = wcf.getConnection(..);
doWork(wc); // calls into resource adapter code

// resource adapter implementation of WombatConnection

...

AccessController.doPrivileged(new
PrivilegedAction() {

 public Object run() {

 // privileged code goes here, for example:

 File file = File.createNewFile();

 writeTraceInfoToFile(file);

 return null; // nothing to return

 }

});

In addition to specifying these required permissions, the resource adapter must also use doPrivileged
blocks at strategic locations in its code to prevent the permission checking from reaching the
application code or the application server code. The doPrivileged block allows the AccessController to
temporarily grant the necessary permissions to the resource adapter code and to stop checking the rest
of the call stack. This allows the resource adapter code to be unaffected by the calling application
code’s security permission restrictions.

22.5. Dependency Injection
A resource adapter archive can be a bean archive (see Chapter 12 of Jakarta™ Contexts and
Dependency Injection Specification, Version 4.0). The section titled “Support for Dependency Injection”
in the “Resources, Naming and Injection” chapter of the Jakarta EE Platform Specification (see
Jakarta™ EE Platform Specification Version 10) provides more details on the dependency injection

22.5. Dependency Injection

Jakarta Connectors 375

requirements of an application server.

The following JavaBeans of a resource adapter archive have their lifecycle managed by the application
server (see Lifecycle Management):

• ResourceAdapter

• ManagedConnectionFactory

• ActivationSpec

• Administered Objects

These JavaBeans may be used as CDI managed beans if they are annotated with a CDI bean-defining
annotation or contained in a bean archive for which CDI is enabled. However, if they are used as CDI
managed beans, it must be noted that the instances that are managed by CDI may not be the instances
that are managed by the application server. For example:

• If a ResourceAdapter class is injected into other component classes like Servlets, the injected
ResourceAdapter instance may not be the ResourceAdapter instance managed by the application
server

• If an ActivationSpec declares an injection point whose bean type is a ResourceAdapter class, the
injected ResourceAdapter instance may not be the ResourceAdapter instance managed by the
application server or the one associated with the ActivationSpec

Since these JavaBeans may not be portably supported as CDI managed beans, it is recommended to not
use these JavaBeans as CDI managed beans. A future version of this specification would address
supporting these JavaBeans as CDI managed beans.

22.5. Dependency Injection

376 Jakarta Connectors

Chapter 23. Exceptions
This chapter specifies standard exceptions that identify error conditions which may occur as part of
Jakarta Connectors.

Jakarta Connectors defines two classes of exceptions:

• System Exceptions - Indicate an unexpected error condition that occurs as part of an invocation of
a method defined in the system contracts. For example, system exceptions are used to indicate
transaction management-related errors. A system exception is targeted for handling by an
application server or resource adapter, depending on who threw the exception, and may not be
reported in its original form directly to an application component.

• Application Exceptions - Thrown when an application component accesses an EIS resource. For
example, an application exception may indicate an error in the execution of a function on a target
EIS. These exceptions are meant to be handled directly by an application component.

Jakarta Connectors defines the jakarta.resource.ResourceException class as the root of the system
exception hierarchy. The ResourceException class extends the java.lang.Exception class and is a checked
exception.

The jakarta.resource.ResourceException is also the root of the application exception hierarchy for CCI.
Application level exceptions are specified in more detail in the API documentation for CCI.

Note, an extended implementation of an exception type provided by a resource adapter may override
the getLocalizedMessage method to provide a localized message.

23.1. ResourceException
A ResourceException provides the following information:

• A resource adapter-specific string describing the error. This string is a standard Java exception
message and is available through the getMessage method.

• A resource adapter-specific error code that identifies the error condition represented by the
ResourceException .

• A reference to another exception. Often a ResourceException results from a lower-level problem. If
appropriate, a lower-level exception, such as java.lang.Exception or any derived exception type,
may be linked to a ResourceException instance.

23.2. System Exceptions
Jakarta Connectors requires that methods, as part of a system contract implementation, use the
checked ResourceException and other standard exceptions derived from it to indicate system-level
error conditions. Using checked exceptions leads to a strict enforcement of the contract for throwing
and catching system exceptions and dealing with error conditions.

23.1. ResourceException

Jakarta Connectors 377

In addition, a method implementation may use java.lang.RuntimeException or any derived exception to
indicate runtime error conditions of varying severity levels. Using unchecked exceptions to indicate
important system-level error conditions is not recommended for an implementation of system
contracts.

The method should use java.lang.Error to indicate a serious error condition that it does not require the
caller to catch. A method is not required to declare in its throws clause any subclasses of Error that
may be thrown but not caught during the execution of the method, since these errors are abnormal
conditions that should never occur.

23.2.1. Exception Hierarchy

The ResourceException represents a generic form of exception. A derived exception represents a
specific class of error conditions. This design enables the method invocation code to catch a class of
error conditions based on the exception type and to handle error conditions appropriately.

The following exceptions are derived from ResourceException to indicate more specific classes of
system error conditions:

• jakarta.resource.spi.SecurityException_ . A SecurityException indicates error conditions related to
the security contract between an application server and resource adapter. The common error
conditions represented by this exception are:

◦ Invalid security information, represented by a Subject instance, passed across the security
contract. For example, credentials may have expired or be in an invalid format.

◦ Lack of support for a specific security mechanism in an EIS or resource adapter.

◦ Failure to create a connection to an EIS because of failed authentication or authorization.

◦ Failure to authenticate a resource principal to an EIS or failure to establish a secure association
with an underlying EIS instance.

◦ Access control exception indicating that a requested access to an EIS resource or a request to
create a new connection has been denied.

• jakarta.resource.spi.LocalTransactionException . A LocalTransaction-Exception represents various
error conditions related to the local transaction management contract. The Jakarta Transaction
specification specifies the javax.transaction-.xa.XAException class for exceptions related to an
XAResource -based transaction management contract. The LocalTransactionException is used for
the local transaction management contract to indicate the following types of error conditions:

◦ Invalid transaction context when a transaction operation is executed. For example, calling the
LocalTransaction.commit method without an active local transaction is an error condition.

◦ Transaction is rolled back instead of being committed in the LocalTransaction.commit method.

◦ Attempt to start a local transaction from the same thread on a ManagedConnection instance that
is already associated with an active local transaction.

◦ All resource adapter or resource manager-specific error conditions related to local transaction

23.2. System Exceptions

378 Jakarta Connectors

management. Examples are violation of integrity constraints, deadlock detection,
communication failure during transaction completion, or any retry requirement.

• jakarta.resource.spi.ResourceAdapterInternalException . This exception indicates all system-level
error conditions related to a resource adapter. The common error conditions indicated by this
exception type are:

◦ Invalid configuration of the ManagedConnectionFactory for creating a new physical connection.
An example is an invalid server name for a target EIS instance.

◦ Failure to create a physical connection to an EIS instance due to a communication protocol
error or a resource adapter implementation-specific error.

◦ Error conditions internal to a resource adapter implementation.

• jakarta.resource.spi.EISSystemException . An EISSystemException is used to indicate any EIS-specific
system-level error conditions. Examples of common error conditions are failure or inactivity of an
EIS instance, communication failure, and an EIS-specific error during the creation of a physical
connection.

• jakarta.resource.spi.ApplicationServerInternalException . This exception is thrown by an application
server to indicate error conditions specific to an application server. Example error conditions are:
errors related to an application server configuration or implementation of mechanisms internal to
an application server, such as connection pooling and thread management.

• jakarta.resource.spi.ResourceAllocationException . This exception is thrown by an application
server or resource adapter to indicate a failure to allocate system resources, such as threads and
physical connections. An example is an error condition that results when an upper bound is
reached for the maximum number of physical connections that can be managed by an application
server-specific connection pool.

• jakarta.resource.spi.IllegalStateException . This exception is thrown from a method if the invoked
code, either the resource adapter or the application server for system contracts, is in an illegal or
inappropriate state for the method invocation.

• jakarta.resource.NotSupportedException . This exception is thrown to indicate that invoked code,
either the resource adapter or the application server for system contracts, cannot execute an
operation because the operation is not a supported feature. For example, if the transaction support
level for a resource adapter is NoTransaction , an invocation of the
ManagedConnection.getXAResource method throws a NotSupportedException exception.

• jakarta.resource.spi.CommException . This exception indicates errors related to failed or
interrupted communication with an EIS instance. Examples of common error conditions
represented by this exception type include communication protocol errors and invalidated
connections due to server failure.

• jakarta.resource.spi.InvalidPropertyException. This exception is thrown to indicate invalid
configuration property settings.

• jakarta.resource.spi.UnavailableException. This exception is thrown to indicate that a service is
unavailable.

23.2. System Exceptions

Jakarta Connectors 379

23.3. Work Exceptions
These exceptions are thrown by an application server to report error conditions related to the work
management contract.

• jakarta.resource.spi.work.WorkException. A common base class for all Work processing related
exceptions.

• jakarta.resource.spi.work.WorkRejectedException. This exception is thrown to indicate that a
submitted Work instance has been rejected. The rejection may be due to internal factors or start
timeout expiration.

• jakarta.resource.spi.work.WorkCompletedException. This exception is thrown to indicate that a
submitted Work instance has completed with an exception.

23.4. Additional Exceptions
The Jakarta Transaction specification (see Jakarta™ Transaction Specification, Version 2.0) specifies the
javax.transaction.xa.XAException class for exceptions related to the XAResource-based transaction
management contract.

23.3. Work Exceptions

380 Jakarta Connectors

Chapter 24. Compatibility and Migration
This chapter summarizes compatibility and migration issues for the Jakarta EE Connectors
specification. For a detailed description on Compatibility and Migration and how they relate to the
Jakarta EE Platform in general, refer the chapter on “Compatibility and Migration” in the Jakarta EE
platform specification (see Jakarta™ EE Platform Specification Version 10).

24.1. Compatibility
Jakarta EE application servers are compatible with the Jakarta EE Connector Architecture specification
if they implement the APIs and behavior required by this specification. Resource adapter modules are
compatible with a release of the Jakarta EE Connector Architecture specification if they only depend on
APIs and behavior defined by that release of the specification.

Jakarta Connectors is not backwards compatible to previous the previous Java Connectors
Specification as all apis have changed to the jakarta namespace.

24.1. Compatibility

Jakarta Connectors 381

Chapter 25. Caching Manager
This chapter describes how the connector architecture supports caching.

This section serves as a brief introduction to the caching support in the connector architecture. A
future version of the connector architecture will address this issue in detail.

25.1. Overview
The connector architecture provides a standard way of extending an application manager for plugging
in caching managers. A caching manager may be provided by a third-party vendor or a resource
adapter provider.

A caching manager manages cached state for application components while they access EISs across
transactions.

A caching manager is provided above a resource adapter. An application component may access a
resource manager either through a caching manager (thereby maintaining a cached state across
application requests) or directly through the resource adapter with no caching involved.

The XAResource based transaction management contract enables an external transaction manager to
control and coordinate transactions across multiple resource managers. A caching manager (provided
above the resource adapter) requires to be synchronized relative to the transaction coordination flow
(defined by the JTA XAResource interface) on the underlying resource manager. This leads to a
requirement for a synchronization contract between the application server and caching manager.

The connector architecture defines a standard synchronization contract between the application
server and caching manager. The caching manager uses the synchronization notifications to manage
its cached state and to flush it to the resource adapter. The resource adapter then takes the
responsibility of managing its recoverable units of work and participates in the transaction
coordination protocol from the transaction manager.

Synchronization Contract between Caching Manager and Application Server

25.1. Overview

382 Jakarta Connectors

Application Server

Enterprise Information
System

Transaction Manager

Synchronization Contract

Transaction Management
System Contract

Caching
Manager Resource Adapter

Application
Contract

The above diagram shows a caching manager layered above a resource adapter. The contract between
caching manager and resource adapter is specific to a resource adapter.

25.1. Overview

Jakarta Connectors 383

Chapter 26. Synchronization Contract

To support a caching manager as a standard extension to the application server,
additional contracts between the application server and the caching manager are
required. This version of the specification introduces only the synchronization
contract.

This section specifies the synchronization contract between the application server and the caching
manager.

26.1. Interface

Each caching manager implements the jakarta.transaction.Synchronization interface. A caching
manager registers its Synchronization instance with the application server when it is configured with
the application server.

The caching manager receives synchronization notifications only for transactions managed by an
external transaction manager. In the case of transactions managed internally by a resource manager,
the resource adapter and caching manager define their own implementation-specific mechanisms for
synchronizing caches.

The Synchronization.beforeCompletion method is called prior to the start of the two-phase commit
transaction completion process. This call executes in the same transaction context of the caller who
initiated the transaction completion. The caching manager uses this notification to flush its cached
state to the resource adapter.

The Synchronization.afterCompletion method is called after the transaction has completed. The status
of transaction completion is passed in as a parameter. The caching manager uses this notification to do
any cache cleanups if a rollback has occurred.

26.2. Implementation

The caching manager must support the jakarta.transaction.Synchronization interface. If the caching
manager implements the Synchronization interface and registers it with the application server, then
the application server must invoke the beforeCompletion and afterCompletion notifications.

The application server is responsible for ensuring that synchronization notifications are delivered first
to the application components (that have expressed interest in receiving synchronization notification
through their respective application component and container-specific mechanisms) and then to the
caching managers that implement the Synchronization interface.

Chapter 26. Synchronization Contract

384 Jakarta Connectors

Chapter 27. Security Scenarios
This chapter describes various scenarios for EIS integration. These scenarios focus on security aspects
of the connector architecture.

Note that these scenarios establish the requirements to be addressed by the connector architecture.
Security Architecture and Security Contract specify the requirements that are supported in this version
of the specification.

A Jakarta EE application is a multi-tier, web-enabled application that accesses EISs. It consists of one or
more application components—Jakarta Enterprise Beans, Jakarta Server Pages, servlets—which are
deployed on containers. These containers can be one of the following:

• Web containers that host Jakarta Server Pages, servlets, and static HTML pages

• Jakarta Enterprise Beans containers that host Jakarta Enterprise Beans components

• Application client containers that host standalone application clients

In the following scenarios, the description of the architecture and security environments are
illustrative in scope.

27.1. eStore Application
Company A has an eStore application based on the Jakarta EE platform. The eStore application is
composed of Jakarta Enterprise Beans and servlets; together they collaborate to provide the overall
functionality of the application. The application also utilizes an eStore database to store data related to
product catalog, shopping carts, customer registration and profiles, transaction status and records, and
order status.

The architecture of this application is illustrated in the following diagram.

Illustrative Architecture of an eStore Application

JSP / Servlet JEB

Estore Application

Application Server

Company A

Application Security Domain EIS Security Domain

eStore Database

Internet

Web Browser

HTTP/S

27.1. eStore Application

Jakarta Connectors 385

27.1.1. Scenario

A customer, using a web browser, initiates an e-commerce transaction with the eStore application. The
e-commerce transaction consists of a series of customer actions. The customer performs the following
actions to place an order.

1. Browses the catalog

2. Makes a selection of products

3. Puts the selected products into a shopping cart

4. Enters her user name and password to initiate a secure transaction

5. Fills in order-related information

6. Places an order

In this scenario, the eStore application stores all persistent information about customers and their
transactions in a database.

27.1.2. Security Environment

To support the above interaction scenario, the system administrator configures a unique security
domain (with specific security technology and security policies) for the eStore application. A firewall
protects this security domain from unauthorized Internet access.

The security domain configuration for the eStore application includes secure web access to the eStore
application. Secure web access is set up based on the requirements specified in the Jakarta EE
specification. Note that the focus of this section is security related to EIS integration, not on web access
security. As a result, this description ignores web access security.

The system administrator sets up a database to manage persistent data for the eStore application. In
terms of security, the database system is configured with an independent security domain. This
domain has its own set of user accounts, plus its own security policies and mechanisms for
authentication and authorization.

The system administrator (or database administrator DBA) creates a unique database account (called
EStoreUser) to handle database transactions; the database transactions correspond to different
customer-driven interactions with the eStore application. He also sets up an additional database
account (called EStoreAdministrator) to manage the database on behalf of the eStore administrator.
This administrative account has a higher level of access privileges.

To facilitate better scaling of the eStore application, the system administrator may choose to set the
load balancing of database operations across multiple databases. He may also partition persistent data
and transactions across multiple database accounts, based on various performance optimization
criteria. These areas are out of the scope for this document.

This scenario deals only with the simple case of a single database and a single user account to handle
all database transactions.

27.1. eStore Application

386 Jakarta Connectors

27.1.3. Deployment

This document does not address how principal delegation happens between the web
and Jakarta Enterprise Bean containers. When an Jakarta Enterprise Bean instance
acquires an EIS connection, a caller principal is associated with the Jakarta Enterprise
Bean instance. This document does not address determining which caller principal is
associated with the Jakarta Enterprise Bean instance.

During the deployment of the eStore application, the deployer sets up access control for all
authenticated customer accounts—the customer accounts that are driving e-commerce transactions
over the web—based on a single role eStoreUserRole .

The deployer configures the resource adapter with the security information that is required for the
creation of database connections. This security information is the database account EStoreUser and its
password.

The deployer sets up the resource principal for accessing the database system as illustrated in the
figure below.

Resource Principal for eStore Application Scenario

Initiating Principal: Customer

Application Security domain

Resource Principal: Database Account EStoreUser

EIS Security domain

The deployment configuration ensures that all database access is always performed under the security
context of the database account EStoreUser .

All authenticated customers (referred to as Initiating Principal) map to a single EStoreUser database
account. The eStore application uses an implementation-specific mechanism to tie database
transactions (performed under a single database account) to the unique identity (social security
number or eStore account ID) of the initiating principal. To ensure that database access has been
properly authorized, the eStore application also performs access control based on the role of the
initiating principal. Because all initiating principals map to a single role, this is in effect a simple case.

This scenario describes an n-to-1 mapping. However, depending on the requirements of an application,
the deployer can set the principal mapping to be different from an n-to-1 mapping. For example, the
deployer can map each role to a single resource principal, where a role corresponds to an initiating
principal. This results in a [m principals and n roles] to [p resource principals] mapping. When doing
such principal mapping, the deployer has to ensure not to compromise the access rights of the mapped
principals. An illustrative example is:

• User is in administrator role: Principal EISadmin

• User is in manager role: Principal EISmanager

• User is in employee role: Principal EISemployee

27.1. eStore Application

Jakarta Connectors 387

27.2. Employee Self-Service Application
Company B has developed and deployed an employee self-service (ESS) application based on the
Jakarta EE platform. This application supports a web interface to the existing Human Resources (HR)
applications, which are supported by the ERP system from Vendor X. The ESS application also provides
additional business processes customized to the requirements of Company B.

The application tier is composed of Jakarta Enterprise Beans and Jakarta Server Pages that provide the
customization of the business processes and support a company-standardized web interface. The ESS
application enables an employee (under the roles of Manager, HR manager, and Employee) to perform
various HR functions, including personal information management, payroll management,
compensation management, benefits administration, travel management, and HR cost planning.

27.2.1. Architecture

The IS department of Company B has deployed its HR ESS application and ERP system in a secure
environment on a single physical location. Any access to the HR application is permitted Only legal
employees of the organization are permitted access to the HR application. Access is based on the
employee’s roles and access privileges. In addition, access to the application can only be from within
the organization-wide intranet. See Illustrative Architecture of an Employee Self-service Application.

27.2.2. Security Environment

To support the various interaction scenarios related to the ESS application, the system administrator
sets up an end-to-end Kerberos-based security domain for this application environment.

The Security policies and mechanisms that are required to achieve this single security
domain are technology dependent. Refer to the Kerberos V5 specification for more
details.

The system administrator configures the security environment to support single sign-on; the user logs
on only once and can then access all the services provided by the ESS application and its underlying
ERP system. Single sign-on is achieved through the security mechanism and policies specific to the
underlying security technology, which in this case is Kerberos.

The ERP system administrator configures all legal employees as valid user accounts in the ERP system.
He also must set up various roles (Manager, HRManager, and Employee), default passwords, and
access privileges. This security information is kept synchronized with the enterprise-wide directory
service, which is used by Kerberos to perform the initial authentication of end-users.

Illustrative Architecture of an Employee Self-service Application

27.2. Employee Self-Service Application

388 Jakarta Connectors

JSP / Servlet JEB

Application Server

Company B

Kerberos based Integrated Security Domain

ERP Systems X

HR Application

Web Browser

HTTP/S

Web Browser
Web-enabled Application

27.2.3. Deployment

During deployment of the ESS application, the deployer sets a default delegation policy of client
impersonation for EIS sign-on. In this case, the application server and ERP system detect that it is the
initiating principal accessing their respective services and they perform access control based on this
knowledge.

Principal Mapping

Initiating Principal = Resource Principal

Application Security domain ERP System Security domain

In this scenario, both the initiating principal and the resource principal refer to the same principal.
This common principal is authenticated using Kerberos and its Kerberos credentials are valid in the
security domains of both the application and the ERP system.

The deployer sets up access control for all authenticated employees (initiating principal) based on the
configured roles—Manager, HR Manager, and Employee.

If the ERP system does not support Kerberos, then an alternate scenario is utilized. The deployer or
application server administrator sets up an automatic mapping of Kerberos credentials (for the
initiating principal) to valid credentials (for the same principal) in the security domain of the ERP
system. Note that when the ERP system does support Kerberos, the application server performs no
credentials mapping.

27.2.4. Scenario

An employee initiates an initial login to his client desktop. He enters his username and password. As
part of this initial login, the employee (called initiating principal C) gets authenticated with Kerberos
KDC. Refer to the details for Kerberos KDC authentication in the Kerberos v5 specification.

After a successful login, the employee starts using his desktop environment. He directs his web
browser to the URL for the ESS application deployed on the application server. At this point, the

27.2. Employee Self-Service Application

Jakarta Connectors 389

initiating principal C authenticates itself to the application server and establishes a session key with
the application server.

The ESS application is set up to impersonate initiating principal C when accessing the ERP system,
which is running on another server. Though the application server directly connects to the ERP system,
access to the ERP system is requested on behalf of the initiating principal. For this to work, principal C
is required to delegate its identity and Kerberos credential to the application server and allow the
application server to make requests to the ERP system on C’s behalf.

27.3. Integrated Purchasing Application
Company C has an integrated purchasing application that enables an employee to use a web-based
interface to perform multiple purchasing transactions. An employee can manage the entire
procurement process, from creating a purchase requisition through invoice approval. The purchasing
application also integrates with the enterprise’s existing financial applications so that the accounting
and financial aspects of the procurement business processes can be tracked.

27.3.1. Architecture

The following figure illustrates an architecture for this purchasing application. The application has
been developed and deployed based on the Jakarta EE platform and is composed of Jakarta Enterprise
Beans and Jakarta Server Pages. The Jakarta Enterprise Bean components provide the integration
across the different applications—the logistics application from a separate vendor (this application
provides integrated purchasing and inventory management functions) and the financial accounting
applications (the applications supported by the legacy system from vendor Y).

Company B is a huge decentralized enterprise; its business units and departments are geographically
distributed. In this scenario, different IS departments manage ERP system X and legacy system Y. In
addition, ERP system X and legacy system Y have been deployed at secured data centers in different
geographic locations. Lastly, the integrated purchasing application has been deployed at a geographic
location different from both ERP system X and legacy system Y.

Illustrative Architecture of an Integrated Purchasing Application

27.3. Integrated Purchasing Application

390 Jakarta Connectors

JSP / Servlet JEB

Application Server

Company C

Application Security Domain

ERP System X

Logistics Application

Web Browser

Purchase Requisition
Integrated Application

Legacy System Y

Financial Application

27.3.2. Security Environment

ERP system X and legacy system Y are also in different security domains; they use different security
technologies and have their own specific security policies and mechanisms. The integrated purchasing
application is deployed in a security domain that is different from both that of ERP system X and legacy
system Y.

To support the various interaction scenarios for this integrated purchasing application, the ERP system
administrator creates a unique account LogisticsAppUser in the ERP system. He sets up the password
and specific access rights for this account. This user account is allowed access only to the logistics
business processes that are used by the integrated purchasing application.

Likewise, the system administrator for the legacy system creates a unique account FinancialAppUser .
He also sets up the password and specific access rights for this account.

The application server administrator, as part of the operational environment of the application server,
configures the access to an organization-wide directory. This directory contains security information
(name, password, role, and access rights) for all the employees in the organization. It is used for
authentication and authorization of employees accessing the purchasing application.

Due to their physical separation in this scenario, EISs X and Y are accessed over either a secure private
network or over the Internet. This requires that a secure association be established between the
application server and the EISs. A secure association allows a component on the application server to
communicate securely with an EIS.

27.3.3. Deployment

During the deployment of this application, the deployer configures the security information (that is,
the user account LogisticsAppUser and its password) required to create connections to the ERP system.
This configuration is done using the resource adapter for ERP system X. The deployer also configures
the security information (that is, user account FinancialAppUser and its password) required to create
connections to the legacy system Y.

27.3. Integrated Purchasing Application

Jakarta Connectors 391

The deployer configures security information in the application server to achieve the principal
mapping shown in the following figure.

Principal Mapping

Initiating Principal: Employee

Application Security domain

Resource Principal: ERP System Account
LogisticsAppUser

ERP System Security domain

Resource Principal: Legacy System Account
FinancialAppUser

Legacy System Security domain

This principal mapping ensures that all connections to the ERP system are established under the
security context of LogisticsAppUser , the resource principal for the ERP system security domain.
Similarly, all connections to legacy system Y are established under the security context of the
FinancialAppUser .

The application server does this principal mapping for all authenticated initiating principals (that is,
employees accessing the integrated purchasing application) when the application connects to either
the ERP system or the legacy system.

27.3. Integrated Purchasing Application

392 Jakarta Connectors

Chapter 28. JAAS Based Security Architecture
This chapter extends the security architecture specified in Security Architecture and Security Contract
to include support for JAAS-based pluggable authentication. The chapter refers to the following
documents:

White Paper on User Authentication and Authorization in Java platform: http://java.sun.com/security/
jaas/doc/jaas.html

JAAS 1.0 documentation

28.1. Java Authentication and Authorization Service
(JAAS)
JAAS provides a standard Java framework and programming interface that enables applications to
authenticate and enforce access controls upon users. JAAS is divided into two parts based on the
security services that it provides:

• Pluggable Authentication. This part of the JAAS framework allows a system administrator to plug in
the appropriate authentication services to meet the security requirements of an application
environment. There is no need to modify or recompile an existing application to support new or
different authentication services.

• Authorization. Once authentication has successfully completed, JAAS provides the ability to enforce
access controls based upon the principals associated with an authenticated subject. The JAAS
principal-based access controls (access controls based on who runs code) supplement the existing
Java 2 code source-based access controls (access controls based on where code came from and who
signed it).

28.2. Requirements
The connector security architecture uses JAAS in two ways:

• Security Contract. The connector security architecture uses the JAAS Subject class as part of the
security contract between an application server and a resource adapter. Use of JAAS interfaces
enables the security contract to remain independent of specific security technologies or
mechanisms. The security contract has been specified in Requirements.

• JAAS Pluggable Authentication framework. This framework lets an application server and its
underlying authentication services remain independent from each other. When additional EISs
and new authentication services are required (or are upgraded), they can be plugged in an
application server without requiring modifications to the application server.

The connector architecture requires that the application server and the resource adapter must support
the JAAS Subject class as part of the security contract. However, it recommends (but does not mandate)

28.1. Java Authentication and Authorization Service (JAAS)

Jakarta Connectors 393

http://java.sun.com/security/jaas/doc/jaas.html
http://java.sun.com/security/jaas/doc/jaas.html

that an application server use the JAAS pluggable authentication framework.

The connector architecture does not require support for the authorization portion of the JAAS
framework.

28.3. Security Architecture
The following section specifies the JAAS based security architecture. The security architecture
addresses how JAAS may be used by an application server to support authentication requirements of
heterogeneous EISs.

• Security Architecture.*

Enterprise Information System (EIS)

Architected Contract

Implementation Specific

Resource Adapter

Application Server

Security Service
Manager

ConnectionManager

ManagedConnectionFactory

Application Component

ConnectionFactory

Security
Configuration

java Authentication And Authorization Service (JAAS)

JAAS Module JAAS Module
EIS ???

JAAS Module

28.3.1. JAAS Modules

The connector architecture recommends (but does not mandate) that an application server support

28.3. Security Architecture

394 Jakarta Connectors

platform-wide JAAS modules (also called authentication modules) for authentication mechanisms that
are common across multiple EISs. The implementation of these JAAS modules is typically specific to an
application server. However, these modules may be developed to be reusable across application
servers.

A resource adapter provider can provide a resource adapter-specific custom implementation of a JAAS
module. The connector architecture recommends that a resource adapter provider provide a custom
JAAS module when the underlying EIS supports an authentication mechanism that is EIS specific and is
not supported by an application server.

A custom JAAS module can be packaged together with a resource adapter and can be pluggable into an
application server using the JAAS architecture.

The JAAS specification (Java Authentication and Authorization Service Specification, version 1.0)
specifies requirements for developing and configuring JAAS modules.

28.3.2. Illustrative Examples: JAAS Module

The connector architecture is not intended to specify a standard architecture for JAAS modules. The
following are illustrative examples of JAAS modules used typically in the JAAS-based security
architecture:

28.3.2.1. Principal Mapping Module

The application server invokes the principal mapping module passing in the Subject instance
corresponding to the caller/initiating principal. The JAAS specification specifies the interfaces/classes
and mechanisms involved in the invocation of a JAAS module.

The principal mapping module maps a caller/initiating principal to a valid resource principal and
returns the mapped resource principal as part of a Subject instance. The authentication data (example,
password) for the mapped resource principal is added to the Subject ’s credentials. The authentication
data is used later to authenticate the resource principal to the underlying EIS.

A special case of the principal mapping module takes a null Subject as an input parameter and forms a
Subject instance with a valid resource principal and authentication data. This is the case of default
principal mapping.

The principal mapping module achieves its mapping functionality by using security information
configured in the application server or an enterprise directory.

The principal mapping module does not authenticate a resource principal and is configured to perform
only principal mapping. The authentication of a mapped resource principal is performed separately by
an authentication mechanism-specific JAAS module.

28.3.2.2. Credential Mapping Module

The credential mapping module automatically maps credentials from one authentication domain to

28.3. Security Architecture

Jakarta Connectors 395

those in a different target authentication domain. For example, an application server can provide a
module that maps the public key certificate-based credential associated with a principal to a Kerberos
credential.

The credentials mapping module can use the JAAS callback mechanism to get authentication data from
the application server. Note that this operation involves no user-inteface based interaction. The
authentication data is used to authenticate the principal to the target authentication domain during
the credentials mapping. This module can also use an enterprise directory to get security information
or pre-configured mapped credentials.

28.3.2.3. Kerberos Module

This type of JAAS module supports Kerberos-based authentication for a principal. A sample Kerberos
module supports:

• Getting a TGT (ticket granting ticket) to the Kerberos server in the local domain. The TGT is created
by the KDC. The TGT is placed on the credentials structure for a principal.

• Delegation of authentication based on either a forwardable or proxy mechanism as specified in the
Kerberos specification.

Generic Security Service API: GSS-API

The GSS-API is a standard API that provides security services to caller applications in a generic fashion.
These security services include authentication, authorization, principal delegation, secure association
establishment, per-message confidentiality, and integrity. These services can be supported by a wide
range of security mechanisms and technologies. However, an application using GSS-API accesses these
services in a generic mechanism-independent fashion and achieves source-level portability.

In the context of the connector architecture, a resource adapter uses GSS-API to establish a secure
association with the underlying EIS. The use of the GSS mechanism by a resource adapter is typical in
the following scenarios:

• The EIS supports Kerberos as a third-party authentication service and uses GSS-API as a generic API
for accessing security services.

• The resource adapter and EIS need data integrity and confidentiality services during their
communication over insecure links.

The GSS-API has been implemented over a range of security mechanisms, including Kerberos V5. See
Java Specification Request: Generic Security Service API (GSS-API), Java bindings for a Java binding of
GSS-API.

 The Jakarta Connectors does not require a resource adapter to use GSS-API.

28.3. Security Architecture

396 Jakarta Connectors

28.4. Security Configuration
During deployment of a resource adapter, the deployer is responsible for configuring JAAS modules in
the operational environment. The configuration of JAAS modules is based on the security requirements
specified by a resource adapter in its deployment descriptor or through metadata annotations
discussed in Metadata Annotations. Refer to Requirements.

The element authentication-mechanism in the deployment descriptor specifies an authentication
mechanism supported by a resource adapter. The standard types of authentication mechanisms are:
BasicPassword and Kerbv5 . For example, if a resource adapter specifies support for Kerbv5
authentication mechanism, the deployer configures a Kerberos JAAS module in the operational
environment.

28.4.1. JAAS Configuration

The deployer sets up the configuration of JAAS modules based on the JAAS-specified mechanism. Refer
to javax.security.auth.login.Configuration specification for more details. The JAAS configuration
includes the following information on a per resource adapter basis:

• One or more authentication modules used to authenticate a resource principal.

• The order in which authentication modules need to invoked during a stacked authentication.

• The flag value controlling authentication semantics if stacked modules are invoked.

The format for the above configuration is specific to an application server implementation.

28.5. Scenarios
The following section illustrates security scenarios for JAAS based security architecture.

28.5.1. Scenario: Resource Adapter Managed Authentication

This scenario enables the connector architecture to support EIS specific username and pasword-based
authentication. It involves the following steps:

1. The application component invokes connection request method on the resource adapter without
passing in any security arguments. The resource adapter passes the connection request to the
application server.

2. During the deployment of the resource adapter, the application server is configured to use a
principal mapping module. This principal mapping module takes a Subject instance with the caller
principal and returns a Subject instance with a valid resource principal and PasswordCredential
instance. The PasswordCredential has the password for authentication of the resource principal.

3. The application server calls LoginContext.login method. On a successful return from the principal
mapping module, the application server gets a Subject instance that has the mapped resource
principal with a valid PasswordCredential .

28.4. Security Configuration

Jakarta Connectors 397

Resource Adapter-Managed Authentication

Application Server Resource Adapter

EIS B

Security
Configuration

Security
Contract

JAAS Framework

JAAS Module
Principal Mapping

[caller
principal]

[resource
principal]

• The application server invokes the method ManagedConnectionFactory . create-ManagedConnection
passing in a non-null Subject instance. The Subject instance carries the resource principal and its
corresponding PasswordCredential, which holds the user name and password.

• The resource adapter extracts the user name and password from the Password-Credential instance.
The resource adapter uses the getter methods (getPrivateCredentials method) defined on the
Subject interface to extract the PasswordCredential instance.

• The resource adapter uses username and password information (extracted from the
PasswordCredential instance) to authenticate the resource principal to the EIS. The authentication
happens during the creation of the connection through an authentication mechanism specific to
the underlying EIS.

28.5.2. Scenario: Kerberos and Principal Delegation

The scenario in the following figure involves the following steps:

Kerberos Authentication with Principal Delegation

Application Server Resource Adapter

EIS B

Security
Configuration

Security
Contract

GSS GSS

GSS-API

GSS-Provider
<Kerberos>

1. The initiating principal has already authenticated itself to the application server using Kerberos.
The initiating principal has a service ticket for the application server and a TGT (ticket granting
ticket issued by the KDC) as part of its Kerberos based credentials.

2. In this scenario, the application server is configured to impersonate the initiating principal when
connecting to the EIS instance. So even though application server is directly connecting to the EIS,

28.5. Scenarios

398 Jakarta Connectors

access to the EIS is being requested on behalf of the initiating principal. The initiating principal is
required to pass its identity to the application server and allow the application server to make
requests to the EIS on behalf of the initiating principal. The above is achieved through delegation of
authentication.

3. The application server calls the method ManagedConnectionFactory . createManagedConnection by
passing in a Subject instance with the initiating principal and its Kerberos credentials. The
credentials contain a Kerberos TGT and are represented through the GSSCredential interface.

4. The resource adapter extracts the resource principal and its Kerberos credentials from the Subject
instance.

5. The resource adapter creates a new physical connection to the EIS.

6. If the resource adapter and EIS support GSS-API for establishing a secure association, the resource
adapter uses the Kerberos credentials based on the GSS mechanism as follows. For details, see GSS-
API specification:

a. The resource adapter calls GSS_Acquire_cred method to acquire cred_handle in order to
reference the credentials for establishing the shared security context.

b. The resource adapter calls the GSS_Init_sec_context method. The method GSS_Init_sec_context
yields a service ticket to the requested EIS service with the corresponding session key.

c. After success, GSS_Init_sec_context builds a specific Kerberos-formatted message and returns it
as an output token. The resource adapter sends the output token to the EIS instance.

d. The EIS service passes the received token to the GSS_Accept_sec_context method.

e. The resource adapter and EIS now hold the shared security context (so have established a
secure association) in the form of a session key associated with the service ticket. They can now
use the session key in the subsequent per-message methods: GSS-GetMIC , GSS_VerifyMIC ,
GSS_Wrap , GSS_Unwrap .

The mechanism and representation through which Kerberos credentials are shared across the
underlying JAAS module and GSS provider is beyond the scope of the connector architecture.

1. If the resource adapter and EIS fail to establish a secure association, the resource adapter cannot
use the physical connection as a valid connection to the EIS instance. The resource adapter returns
a security exception on the createManagedConnection method.

28.5.3. Scenario: GSS-API

If an EIS supports the GSS mechanism, a resource adapter may (but is not required to) use GSS-API to
set up a secure association with the EIS instance. The section Generic Security Service API: GSS-API
gives a brief overview of GSS-API.

GSS-API use by Resource Adapter

28.5. Scenarios

Jakarta Connectors 399

Resource Adapter

EIS B

Security Contract

GSS GSS

GSS-API

GSS-Provider
<Kerberos>

Resource Principal

A formal specification of the use of GSS-API by a resource adapter is beyond the scope of the connector
architecture. However, GSS-API has been mentioned as a possible implementation option for a
resource adapter that has the GSS mechanism supported by its underlying EIS.

28.5.4. Scenario: Kerberos Authentication After Principal Mapping

The scenario depicted in the following figure involves the following steps:

Kerberos Authentication After Principal Mapping

Application Server Resource Adapter

EIS B

Security
Configuration

Security
Contract

JAAS Framework

JAAS Module
<Kerberos>

GSS GSS

GSS-Provider
<Kerberos>

GSS-API

GSS-Provider
<Kerberos>

1. The application server is configured to use the principal mapping module and Kerberos module.
The two authentication modules are stacked together with the principal mapping module first.

2. The application server creates a LoginContext instance by passing in the Subject instance for the
caller principal and a CallbackHandler instance. Next, the application server calls the login method
on the LoginContext instance.

3. The principal mapping module takes a Subject instance with caller principal and returns a Subject
instance with a valid resource principal and Kerberos- based authentication data. The principal
mapping module does not authenticate the resource principal; it does only principal mapping to
find the mapped resource principal and its authentication data.

4. The Kerberos module (called after the principal mapping module) uses the resource principal and
its authentication data to authenticate the resource principal. The Kerberos module leads to a valid
TGT for the Kerberos domain supported by the EIS. The TGT is contained in the Kerberos
credentials represented through the GSSCredential interface.

28.5. Scenarios

400 Jakarta Connectors

5. The application server calls the method ManagedConnectionFactory . create-ManagedConnection
passing in a Subject instance with the resource principal and its Kerberos credentials.

6. The remaining steps are the same as in the previous scenario, Scenario:Kerberos and Principal
Delegation

28.5.5. Scenario: EIS-Specific Authentication

Authentication Through EIS-Specific JAAS Module

Application Server Resource Adapter

EIS A

Security
Configuration

Security
Contract

JAAS Framework

JAAS Module
<EIS A>

EIS specific
Authentication
protocol

The scenario in the preceding figure involves the following steps:

1. During the configuration of a resource adapter, the application server is configured to use an EIS-
specific JAAS module for authentication to the underlying EIS.

2. The configured JAAS module supports an authentication mechanism specific to the EIS. The
application server is responsibility for managing the authentication data and JAAS configuration.

3. The application server gets a request from the application component to create a new physical
connection to the EIS. Creating a new physical connection requires the resource principal to
authenticate itself to the underlying EIS instance.

4. The application server initiates the authentication of the resource principal. It creates a
LoginContext instance by passing in the Subject instance and a CallbackHandler instance. Next, the
application server calls the login method on the LoginContext instance.

5. The JAAS module authenticates the resource principal to the underlying EIS. It uses the callback
handler provided by the application server to get the authentication data.

6. The application server invokes the method ManagedConnectionFactory . createManagedConnection
passing in the Subject instance with the authenticated resource principal and its credential.

7. The resource adapter extracts the credential (associated with the Subject instance) for the resource
principal using the getter methods defined on the Subject interface. The resource adapter uses this
credential to create a connection to the underlying EIS.

In this scenario, authenticating a resource principal (initiated by the application server and performed
by the JAAS module) is separate from creating a connection to the EIS. The resource adapter uses the
credential of the resource principal to create a connection to the EIS. This connection creation can

28.5. Scenarios

Jakarta Connectors 401

involve further authentication.

After successfully creating a connection to the EIS, the resource adapter returns the newly created
connection from the method ManagedConnectionFactory . createManagedConnection .

28.5. Scenarios

402 Jakarta Connectors

	Jakarta Connectors
	Table of Contents
	Eclipse Foundation Specification License
	Disclaimers

	Chapter 1. Jakarta Connectors, Version 2.1
	Chapter 2. Introduction
	2.1. Overview
	2.2. Scope
	2.3. Target Audience
	2.4. JDBC and Jakarta Connectors
	2.5. Relationship With Other Integration Technologies (JBI and SCA)
	2.6. Organization
	2.7. Document Conventions

	Chapter 3. Overview
	3.1. Definitions
	3.1.1. Enterprise Information System (EIS)
	3.1.2. Connector Architecture
	3.1.3. EIS Resource
	3.1.4. Resource Manager (RM)
	3.1.5. Managed Environment
	3.1.6. Non-Managed Environment
	3.1.7. Connection
	3.1.8. Application Component
	3.1.9. Container

	3.2. Rationale
	3.2.1. System Contracts
	3.2.2. Common Client Interface

	3.3. Goals

	Chapter 4. Architecture of Jakarta Connectors
	4.1. System Contracts
	4.2. Client API
	4.3. Requirements
	4.4. Non-Managed Environment
	4.5. Standalone Container Environment

	Chapter 5. Roles and Scenarios
	5.1. Roles
	5.1.1. Resource Adapter Provider
	5.1.2. Application Server Vendor
	5.1.3. Container Provider
	5.1.4. Application Component Provider
	5.1.5. Enterprise Tools Vendors
	5.1.6. Application Assembler
	5.1.7. Deployer
	5.1.8. System Administrator

	5.2. Scenario: Integrated Purchase Order System
	5.2.1. Illustration of a Scenario Based on the Connector Architecture

	5.3. Scenario: Business Integration
	5.3.1. Connector Architecture Usage in Business Integration Scenario

	Chapter 6. �Lifecycle Management
	6.1. Overview
	6.2. Goals
	6.3. Lifecycle Management Model
	6.3.1. ResourceAdapter JavaBean and Bootstrapping a Resource Adapter Instance
	6.3.2. ManagedConnectionFactory JavaBean and Outbound Communication
	6.3.3. ActivationSpec JavaBean and Inbound Communication
	6.3.4. Resource Adapter Shutdown Procedure
	6.3.4.1. Phase One
	6.3.4.2. Phase Two

	6.3.5. Requirements
	6.3.6. Resource Adapter Implementation Guidelines
	6.3.7. JavaBean Configuration and Deployment
	6.3.7.1. ResourceAdapter JavaBean Instance Configuration
	6.3.7.2. Resource Adapter Deployment
	6.3.7.3. ManagedConnectionFactory JavaBean Instance Configuration
	6.3.7.4. ActivationSpec JavaBean Instance Configuration
	6.3.7.5. JavaBean Validation
	6.3.7.6. Configuration Property Attributes
	6.3.7.7. Resource Adapter Implementation Guidelines

	6.3.8. Lifecycle Management in a Non-Managed Environment
	6.3.9. A Sample Resource Adapter Implementation

	Chapter 7. �Connection Management
	7.1. Overview
	7.2. Goals
	7.3. Architecture: Connection Management
	7.3.1. Overview: Managed Application Scenario

	7.4. �Application Programming Model
	7.4.1. Managed Application Scenario
	7.4.2. Non-Managed Application Scenario
	7.4.3. Guidelines

	7.5. Interface/Class Specification
	7.5.1. ConnectionFactory and Connection [3]
	7.5.1.1. Requirements
	7.5.1.2. ConnectionRequestInfo
	7.5.1.3. Additional Requirements

	7.5.2. ConnectionManager
	7.5.2.1. Interface
	7.5.2.2. Requirements

	7.5.3. ManagedConnectionFactory
	7.5.3.1. Interface
	7.5.3.2. Requirements
	7.5.3.3. Connection Pool Implementation
	7.5.3.4. Detecting Invalid Connections
	7.5.3.5. Requirement for XA Recovery

	7.5.4. ManagedConnection
	7.5.4.1. Interface
	7.5.4.2. Connection Sharing and Multiple Connection Handles
	7.5.4.3. Connection Matching Contract
	7.5.4.4. Cleanup of ManagedConnection
	7.5.4.5. Requirements

	7.5.5. ManagedConnectionMetaData
	7.5.5.1. Interface
	7.5.5.2. Requirements

	7.5.6. ConnectionEventListener
	7.5.6.1. Interface

	7.5.7. ConnectionEvent

	7.6. Error Logging and Tracing
	7.6.1. ManagedConnectionFactory
	7.6.2. ManagedConnection

	7.7. Object Diagram
	7.8. Illustrative Scenarios
	7.8.1. Scenario: Connection Pool Management
	7.8.2. Scenario: Connection Matching
	7.8.3. Scenario: Connection Event Notifications and Connection Close
	7.8.3.1. Connection Cleanup
	7.8.3.2. Connection Destroy

	7.9. Architecture: Non-Managed Environment
	7.9.1. Scenario: Programmatic Access to ConnectionFactory
	7.9.2. Scenario: Connection Creation in Non-Managed Application Scenario

	7.10. Requirements
	7.10.1. Resource Adapter
	7.10.2. Application Server

	Chapter 8. �Transaction Management
	8.1. Overview
	8.2. Transaction Management Scenarios
	8.2.1. Transactions Across Multiple Resource Managers
	8.2.2. Local Transaction Management

	8.3. Transaction Management Contract
	8.3.1. Interface: ManagedConnection
	8.3.2. Interface: XAResource
	8.3.2.1. Implementation

	8.3.3. �Interface: LocalTransaction

	8.4. Relationship to Jakarta Transaction and JTS
	8.4.1. Jakarta Transaction Interfaces

	8.5. Object Diagram
	8.6. �XAResource-based Transaction Contract
	8.6.1. �Scenarios Supported
	8.6.2. Resource Adapter Requirements
	8.6.2.1. General
	8.6.2.2. One-phase Commit
	8.6.2.3. Two-phase Commit
	8.6.2.4. Transaction Association and Calling Protocol
	8.6.2.5. Unilateral Roll-back
	8.6.2.6. Read-Only Optimization
	8.6.2.7. XID Support
	8.6.2.8. Support for Failure Recovery

	8.6.3. �Transaction Manager Requirements
	8.6.3.1. Interfaces
	8.6.3.2. XID Requirements
	8.6.3.3. One-phase Commit Optimization
	8.6.3.4. Implementation Options

	8.6.4. Scenario: Transactional Setup for a ManagedConnection
	8.6.5. Scenario: Connection Close and Jakarta Transaction Transactional Cleanup
	8.6.6. OID: Transaction Completion

	8.7. �Local Transaction Management Contract
	8.7.1. �Interface: LocalTransaction
	8.7.2. Interface: ConnectionEventListener
	8.7.2.1. Requirements

	8.8. �Scenarios: Local Transaction Management
	8.8.1. Local Transaction Cleanup
	8.8.2. Component Termination
	8.8.3. Transaction Interleaving
	8.8.4. Scenario

	8.9. �Connection Sharing
	8.9.1. Sharing Violation Detection
	8.9.1.1. Scenario 1
	8.9.1.2. Scenario 2

	8.10. �Transaction Scenarios
	8.10.1. Requirements
	8.10.2. Illustrative Scenarios
	8.10.3. �Scenario: Local Transaction

	8.11. �Connection Association
	8.11.1. Scenario
	8.11.2. �Connection Association
	8.11.3. Requirements

	8.12. Local Transaction Optimization
	8.12.1. Requirements

	8.13. �Runtime Transaction Support Level Specification
	8.14. Interface: TransactionSynchronizationRegistry
	8.15. Requirements
	8.15.1. �Resource Adapter
	8.15.1.1. Auto Commit

	8.15.2. Application Server

	8.16. Connection Optimizations
	8.16.1. �Lazy Connection Association Optimization
	8.16.1.1. API Additions

	8.16.2. Lazy Transaction Enlistment Optimization
	8.16.3. API Additions

	Chapter 9. �Security Architecture
	9.1. Overview
	9.2. Goals
	9.3. �Terminology
	9.4. Application Security Model
	9.4.1. Scenario: Container-Managed Sign-on
	9.4.2. Scenario: Component-Managed Sign-on

	9.5. EIS Sign-on
	9.5.1. �Authentication Mechanism
	9.5.2. �Resource Principal
	9.5.3. Authorization Model
	9.5.4. �Secure Association

	9.6. Roles and Responsibilities
	9.6.1. �Application Component Provider
	9.6.2. Deployer
	9.6.3. Application Server
	9.6.4. EIS Vendor
	9.6.5. Resource Adapter Provider
	9.6.6. System Administrator

	Chapter 10. �Security Contract
	10.1. Security Contract
	10.1.1. Interfaces and Classes
	10.1.2. Subject
	10.1.3. Resource Principal
	10.1.4. GenericCredential
	10.1.4.1. Interface
	10.1.4.2. Implementation

	10.1.5. GSSCredential
	10.1.5.1. Implementation

	10.1.6. PasswordCredential
	10.1.7. ConnectionManager
	10.1.8. ManagedConnectionFactory
	10.1.8.1. Contract for the Application Server
	10.1.8.2. Contract for Resource Adapter

	10.1.9. ManagedConnection

	10.2. Requirements
	10.2.1. Resource Adapter
	10.2.2. Application Server

	Chapter 11. �Work Management
	11.1. Overview
	11.2. Goals
	11.3. �Work Management Model
	11.3.1. Requirements
	11.3.2. Work Interface
	11.3.3. �WorkManager Interface
	11.3.3.1. Work Submit
	11.3.3.2. Work Accepted
	11.3.3.3. Work Rejected
	11.3.3.4. �Work Started
	11.3.3.5. Work Completed
	11.3.3.6. Requirements

	11.3.4. �WorkListener Interface and WorkEvent Class
	11.3.4.1. Requirements

	11.3.5. �ExecutionContext Class
	11.3.6. Resource Adapter Thread Usage Recommendations

	11.4. Periodic Execution of Work Instances
	11.4.1. Illustration: Using a Work Instance to Listen on Multiple Network Endpoints
	11.4.2. Work Management in a Non-Managed Environment
	11.4.3. �Resource Adapter association
	11.4.4. �Distributed Work processing
	11.4.4.1. DistributableWork Interface
	11.4.4.2. DistributableWorkManager Interface
	11.4.4.3. DistributableWork Submission and Processing

	Chapter 12. �Generic Work Context
	12.1. Overview
	12.2. Goals
	12.3. �Generic Work Context Model
	12.3.1. �Standard and Custom Work Contexts
	12.3.2. Requirements

	12.4. �WorkContextProvider and WorkContext Interface
	12.4.1. �Indicating Support for a WorkContext Type
	12.4.2. �Checking Support for a WorkContext Type
	12.4.3. Handling Errors During Context Assignment

	12.5. �TransactionContext Class
	12.6. HintsContext Interface
	12.6.1. �Standard Hints
	12.6.1.1. Work Name Hint
	12.6.1.2. Long-running Work instance Hint

	12.7. WorkContextLifecycleListener Interface
	12.8. Illustrative Example

	Chapter 13. Inbound Communicaton
	13.1. Overview
	13.2. An Illustrative Use Case

	Chapter 14. �Message Inflow
	14.1. Overview
	14.2. Goals
	14.3. �Message Inflow Model
	14.4. Endpoint Deployment
	14.4.1. Message Endpoint
	14.4.2. Resource Adapter
	14.4.2.1. List of Supported Message Listener Types
	14.4.2.2. �ActivationSpec JavaBean
	14.4.2.3. �Administered Objects
	14.4.2.4. Configuring Administered Objects

	14.4.3. Endpoint Deployer
	14.4.4. �Application Server
	14.4.5. Message Provider
	14.4.6. Endpoint Deployment Steps
	14.4.7. Requirements
	14.4.8. Structure of a Message Listener Interface
	14.4.9. Multiple Endpoint Activations With Similar Activation Configuration
	14.4.9.1. Requirements

	14.5. �Message Delivery
	14.5.1. Sample Resource Adapter Code To Illustrate Message Delivery
	14.5.1.1. Requirements

	14.5.2. Message Redelivery Upon Crash Recovery
	14.5.3. Durable Message Delivery Setup
	14.5.4. Concurrent Delivery of Messages
	14.5.4.1. Requirements

	14.5.5. Delivery Semantics and Acknowledgement
	14.5.6. Transacted Delivery (Using Container-Managed Transaction)
	14.5.7. Non-Transacted Delivery
	14.5.8. Transacted Delivery Using an Imported Transaction
	14.5.9. Requirements

	14.6. Endpoint Undeployment
	14.7. Jakarta Messaging Use Case
	14.7.1. Message-Driven Bean Asynchronously Receiving Messages
	14.7.1.1. Message-Driven Bean Deployment
	14.7.1.2. Message Delivery
	14.7.1.3. Message-Driven Bean Undeployment

	14.7.2. Jakarta Enterprise Beans Using Jakarta Messaging API to Send and Synchronously Receive Messages Via a Jakarta Messaging Resource Adapter
	14.7.2.1. Using Jakarta Messaging API to Send Messages
	14.7.2.2. Jakarta EE Component Using Jakarta Messaging API to Synchronously Receive Messages

	14.8. A Non-Jakarta Messaging Use Case
	14.9. Resource Adapter Deployment Descriptor
	14.9.1. Resource Adapter Deployment
	14.9.2. Message-Driven Bean Asynchronously Receiving Notifications From an EIS
	14.9.2.1. The Message-Driven Bean Deployment Descriptor

	14.9.3. Message-Driven Bean and Resource Adapter Activation
	14.9.4. Message Delivery

	Chapter 15. �Jakarta Enterprise Beans Invocation
	15.1. Overview
	15.2. Jakarta Enterprise Beans Invocation Model
	15.3. An Illustrative Use Case
	15.3.1. Message-Driven Bean Dispatcher Pattern

	Chapter 16. �Transaction Inflow
	16.1. Overview
	16.2. Goals
	16.3. �Use Case Scenario
	16.4. Transaction Inflow Model
	16.4.1. �Processing of Transactional Calls
	16.4.2. Transaction Completion Processing
	16.4.3. Crash Recovery Processing
	16.4.4. Requirements
	16.4.5. Non-Requirements
	16.4.6. Recommendations

	16.5. Transaction Inflow in a Non-Managed Environment

	Chapter 17. �Security Inflow
	17.1. Overview
	17.2. Goals
	17.3. �Security Inflow Model
	17.4. �SecurityContext Class
	17.4.1. �Establishing the Security Context
	17.4.2. �Callbacks for Information from the Application Server
	17.4.3. �Case 1: Identity in the Container Security Domain
	17.4.4. �Case 2: Identity Translated Between Security Domains
	17.4.5. �Establising a Principal as the Caller Identity
	17.4.5.1. Case A: Establishing a Single Principal as the Caller Identity
	17.4.5.2. Case B: Establishing an Unauthenticated Security Context

	17.4.6. �Security Configuration Responsibilities

	17.5. Requirements
	17.6. Illustrative Example
	17.6.1. �Case 1: Identity in the Container Security Domain
	17.6.2. Case 2: Identity Translated Between Security Domains

	Chapter 18. �Common Client Interface
	18.1. Overview
	18.2. Goals
	18.3. Scenarios
	18.3.1. Enterprise Application Integration Framework
	18.3.2. Metadata Repository and API
	18.3.3. Enterprise Application Development Tool

	18.4. Common Client Interface
	18.4.1. Requirements

	18.5. �Connection Interfaces
	18.5.1. ConnectionFactory
	18.5.2. Requirements

	18.6. ConnectionSpec
	18.6.1. Connection
	18.6.1.1. Auto Commit

	18.7. Interaction Interfaces
	18.7.1. Interaction
	18.7.2. InteractionSpec
	18.7.2.1. Standard Properties
	18.7.2.2. ResultSet Properties
	18.7.2.3. Additional Properties
	18.7.2.4. Implementation
	18.7.2.5. Administered Object
	18.7.2.6. Illustrative Scenario

	18.7.3. LocalTransaction
	18.7.3.1. Requirements

	18.8. Basic Metadata Interfaces
	18.8.1. ConnectionMetaData
	18.8.1.1. Implementation

	18.8.2. ResourceAdapterMetaData

	18.9. Service Endpoint Message Listener Interface
	18.10. Exception Interfaces
	18.10.1. ResourceException
	18.10.2. ResourceWarning

	18.11. Record
	18.11.1. Component-View Contract
	18.11.1.1. Type Mapping
	18.11.1.2. Record Interface
	18.11.1.3. MappedRecord and IndexedRecord Interfaces
	18.11.1.4. RecordFactory

	18.11.2. �Interaction and Record
	18.11.3. Resource Adapter-view Contract
	18.11.3.1. Streamable Interface

	18.12. �ResultSet
	18.12.1. ResultSet Interface
	18.12.1.1. Type Mapping
	18.12.1.2. ResultSet Types
	18.12.1.3. Scrolling
	18.12.1.4. Concurrency Types
	18.12.1.5. Updatability
	18.12.1.6. Persistence of Java Objects
	18.12.1.7. Support for SQL Types
	18.12.1.8. Support for Customized SQL Type Mapping

	18.12.2. ResultSetMetaData
	18.12.3. ResultSetInfo

	18.13. �Code Samples
	18.13.1. Connection
	18.13.2. InteractionSpec
	18.13.3. Mapped Record
	18.13.4. ResultSet
	18.13.5. Custom Record

	Chapter 19. �Metadata Annotations
	19.1. Overview
	19.2. Goals
	19.3. �Deployment Descriptors and Annotations
	19.3.1. metadata-complete Deployment Descriptor Element
	19.3.2. Merging Annotations and Deployment Descriptor
	19.3.3. Annotation Processing Requirements of Superclasses

	19.4. �@Connector
	19.4.1. Implementing the ResourceAdapter Interface
	19.4.2. Example
	19.4.3. �@AuthenticationMechanism
	19.4.4. �@SecurityPermission

	19.5. �@ConfigProperty
	19.5.1. �Discovery of Configuration Properties

	19.6. �@ConnectionDefinition and @ConnectionDefinitions
	19.6.1. Example

	19.7. �@Activation
	19.7.1. Example

	19.8. �@AdministeredObject
	19.9. �Resource Definition Annotations
	19.9.1. @ConnectionFactoryDefinition
	19.9.1.1. Example

	19.9.2. @ConnectionFactoryDefinitions
	19.9.2.1. Example

	19.9.3. @AdministeredObjectDefinition
	19.9.3.1. Example

	19.9.4. @AdministeredObjectDefinitions
	19.9.4.1. Example

	Chapter 20. �API Requirements
	20.1. Requirements of the Application Server
	20.2. Requirements of the Resource adapter
	20.3. �JavaBean Requirements
	20.4. �Equality Constraints
	20.4.1. Equality based on Java Object Identity
	20.4.2. Equality Based on Config Properties and Class Information

	Chapter 21. �Packaging Requirements
	21.1. Overview
	21.2. Packaging
	21.2.1. Resource Adapter Archive
	21.2.2. RAR Contents
	21.2.3. Sample Directory Structure
	21.2.4. �Requirements

	21.3. �Class Loading Requirements
	21.4. �Deployment
	21.4.1. �Resource Adapter Provider
	21.4.2. Deployer
	21.4.2.1. Standalone Resource Adapter Module
	21.4.2.2. Resource Adapter Module with Jakarta EE Application
	21.4.2.3. Configuration
	21.4.2.4. Security Configuration

	21.5. Interfaces/Classes
	21.5.1. �ResourceAdapter
	21.5.1.1. Requirements

	21.5.2. �ManagedConnectionFactory
	21.5.2.1. Requirements

	21.5.3. Properties Conventions
	21.5.4. �Standard Properties

	21.6. �JNDI Configuration and Lookup
	21.6.1. Responsibilities
	21.6.1.1. Deployer
	21.6.1.2. Resource Adapter
	21.6.1.3. Application Server

	21.6.2. Scenario: Serializable
	21.6.3. �Scenario: Referenceable
	21.6.3.1. ObjectFactory Implementation
	21.6.3.2. Deployment
	21.6.3.3. Scenario: Connection Factory Lookup

	21.6.4. �Requirements

	21.7. �Resource Adapter XML Schema Definition

	Chapter 22. �Runtime Environment
	22.1. Programming APIs
	22.2. �Security Permissions
	22.3. Requirements
	22.3.1. Example

	22.4. Privileged Code
	22.4.1. Example

	22.5. �Dependency Injection

	Chapter 23. �Exceptions
	23.1. ResourceException
	23.2. �System Exceptions
	23.2.1. Exception Hierarchy

	23.3. Work Exceptions
	23.4. Additional Exceptions

	Chapter 24. Compatibility and Migration
	24.1. Compatibility

	Chapter 25. Caching Manager
	25.1. Overview

	Chapter 26. Synchronization Contract
	26.1. Interface
	26.2. Implementation

	Chapter 27. �Security Scenarios
	27.1. �eStore Application
	27.1.1. Scenario
	27.1.2. Security Environment
	27.1.3. Deployment

	27.2. �Employee Self-Service Application
	27.2.1. Architecture
	27.2.2. Security Environment
	27.2.3. Deployment
	27.2.4. Scenario

	27.3. Integrated Purchasing Application
	27.3.1. Architecture
	27.3.2. Security Environment
	27.3.3. Deployment

	Chapter 28. �JAAS Based Security Architecture
	28.1. Java Authentication and Authorization Service (JAAS)
	28.2. Requirements
	28.3. Security Architecture
	28.3.1. JAAS Modules
	28.3.2. Illustrative Examples: JAAS Module
	28.3.2.1. Principal Mapping Module
	28.3.2.2. Credential Mapping Module
	28.3.2.3. Kerberos Module

	28.4. Security Configuration
	28.4.1. JAAS Configuration

	28.5. Scenarios
	28.5.1. Scenario: Resource Adapter Managed Authentication
	28.5.2. �Scenario: Kerberos and Principal Delegation
	28.5.3. Scenario: GSS-API
	28.5.4. Scenario: Kerberos Authentication After Principal Mapping
	28.5.5. Scenario: EIS-Specific Authentication

