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Chapter 1. Overview
JavaBeans™ is proving to be a popular technology. As more people embrace JavaBeans™ and the Java™
platform, some of the environment’s shortcomings are brought to light. JavaBeans™ was meant to
satisfy needs in builder and development environments but its capabilities fall short of those needed to
deploy stand alone components as content editing and creating entities.

Neither JavaBeans™ nor the Java™ platform define a consistent strategy for typing data, a method for
determining the supported data types of a software component, a method for binding typed data to a
component, or an architecture and implementation that supports these features.

Presumably with these pieces in place, a developer can write a JavaBeans™ based component that
provides helper application like functionality in a web browser, added functionality to an office suite,
or a content viewer in a Java™ application.

Chapter 1. Overview
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Chapter 2. Goals
This document describes Jakarta Activation. Jakarta Activation implements the following services:

• It determines the type of arbitrary data.

• It encapsulates access to data.

• It discovers the operations available on a particular type of data.

• It instantiates the software component that corresponds to the desired operation on a particular
piece of data.

Jakarta Activation is packaged as a Standard Extension to the Java™ platform.

Chapter 2. Goals
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Chapter 3. Architectural Overview
The Java™ platform (including JavaBeans™) already provides some support for a modest activation
framework. Jakarta Activation leverages as much of that existing technology as possible. Jakarta
Activation integrates these mechanisms.

This diagram shows the major elements comprising the Jakarta Activation architecture. Note that the
framework shown here is not bound to a particular application.

3.1. The DataHandler Class
The DataHandler class (shown in the diagram above) provides a consistent interface between
Activation-aware clients and other subsystems.

3.2. The DataSource Interface
The DataSource interface encapsulates an object that contains data, and that can return both a stream
providing data access, and a string defining the MIME type describing the data.

Classes can be implemented for common data sources (web, file system, IMAP, ftp, etc.). The
DataSource interface can also be extended to allow per data source user customizations. Once the
DataSource is set in the DataHandler, the client can determine the operations available on that data.

Jakarta Activation includes two DataSource class implementations for convenience:

• FileDataSource accesses data held in a file.

• URLDataSource accesses data held at a URL.

3.3. The CommandMap Interface
The CommandMap provides a service that allows consumers of its interfaces to determine the
‘commands’ available on a particular MIME type as well as an interface to retrieve an object that can
operate on an object of a particular MIME type (effectively a component registry). The Command Map
can generate and maintain a list of available capabilities on a particular data type by a mechanism
defined by the implementation of the particular instance of the CommandMap.

3.1. The DataHandler Class
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The JavaBeans™ package provides the programming model for the software components that
implement the commands. Each JavaBeans™ component can use externalization, or can implement the
CommandObject interface to allow the typed data to be passed to it.

Jakarta Activation defines the CommandMap interface, which provides a flexible and extensible
framework for the CommandMap. The CommandMap interface allows developers to develop their
own solutions for discovering which commands are available on the system. A possible
implementation can access the ‘types registry’ on the platform or use a server-based solution. Jakarta
Activation provides a simple default solution based on RFC 1524 (.mailcap) like functionality. See
“Deliverables” below.

3.4. The Command Object Interface
Beans extend the CommandObject interface in order to interact with Activation services. Activation-
aware JavaBeans™ components can directly access their DataSource and DataHandler objects in order
to retrieve the data type and to act on the data.

3.4. The Command Object Interface
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Chapter 4. Using The Framework
We intend to make this infrastructure widely available for any Java™ Application that needs this
functionality. The ‘canonical’ consumer of this framework accesses it through the DataHandler
(although the major subsystems are designed to also operate independently). An underlying
DataSource object is associated with the DataHandler when the DataHandler class is constructed.

• The DataHandler retrieves the data typing information from the DataSource or gets the data type
directly from the constructor.

• Once this initialization step is complete, a list of commands that can be performed on the data item
can be accessed from the DataHandler.

When an application issues a request for this list, the DataHandler uses the MIME data type specifier
returned to request a list of available commands from the CommandMap object. The CommandMap
has knowledge of available commands (implemented as Beans) and their supported data types. The
CommandMap returns a subset of the full list of all commands based on the requested MIME type and
the semantics of the CommandMap implementation, to the DataHandler.

When the application wishes to apply a command to some data, it is accomplished through the
appropriate DataHandler interface, which uses the CommandMap to retrieve the appropriate Bean
that is used to operate on the data. The container (user of the framework) makes the association
between the data and the Bean.

Application must use Jakarta Activation implementation that provides MimeTypeRegistry,
MailcapRegistry, MailcapRegistryProvider and MimeTypeRegistryProvider implementations when the
application wishes to get access to the available MIME types and CommandMap whose configuration is
based on mailcap storage like mailcap files (RFC 1524).

Chapter 4. Using The Framework
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Chapter 5. Usage Scenarios
This scenario uses the example of a hypothetical file viewer application in order to illustrate the
normal flow of tasks involved when implementing Jakarta Activation. The file viewer is similar to the
Windows Explorer utility. When launched, it presents the user with a display of available files. It
includes a function like Explorer’s ‘right mouse’ menu, where all operations that can be performed on
a selected data item are listed in a popup menu for that item.

A typical user launches this application to view a directory of files. When the user specifies a file by
clicking on it, the application displays a popup menu that lists the available operations on that file. File
system viewer utilities normally include ‘edit,’ ‘view,’ and ‘print’ commands as available operations.
For instance selecting ‘view’ causes the utility to open the selected file in a viewer that can display data
of the data type held in that file.

5.1. Scenario Architecture
Description of tasks performed by the application is broken down into three discrete steps, for clarity:

• Initialization: The application constructs a view of the file system.

• Getting the Command List: The application presents the command list for a selected data item.

• Performing the Command: The application performs a command on the selected data object.

5.2. Initialization
One of the interfaces mentioned below is the ‘DataSource’ object. Recall that the DataSource object
encapsulates the underlying data object in a class that abstracts the underlying data storage
mechanism, and presents its consumers with a common data access and typing interface. The file
viewer application queries the file system for its contents.

The viewer instantiates a DataSource object for each file in the directory. Then it instantiates a a
DataHandler with the DataSource as its constructor argument. The DataHandler object provides the
client application with access to the CommandMap, which provides a service that enables access to
commands that can operate on the data. The application maintains a list of the DataHandler objects,
queries them for their names to generate its display.

// for each file in the directory:
File file = new File(file_name);
DataSource ds = new FileDataSource(file);
DataHandler dh = new DataHandler(ds);

5.1. Scenario Architecture
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5.3. Getting the Command List
Once the application has been initialized and has presented a list of files to the user, the user can select
a file on the list. When the user selects a file, the application displays a popup menu that lists the
available operations on that file.

The application implements this functionality by requesting the list of available commands from the
DataHandler object associated with a file. The DataHandler retrieves the MIME type of the data from
the DataSource object and queries the CommandMap for operations that are available on that type.
The application interprets the list and presents it to the user on a popup menu. The user then selects
one of the operations from that list.

Application can use CommandMap implementation that is provided by the Jakarta Activation
implementation or use the implementation that is included in Jakarta Activation
(MailcapCommandMap). When the second option is used MimeTypeRegistry, MailcapRegistry,
MailcapRegistryProvider and MimeTypeRegistryProvider must be implemented by the Jakarta
Activation implementation.

// get the command list for an object
CommandInfo cmdInfo[] = dh.getPreferredCommands();

PopupMenu popup = new PopupMenu(“Item Menu”);

// populate the popup with available commands
for (i = 0; i < cmdInfo.length; i++)
    popup.add(cmdInfo[i].getCommandName());

// add and show popup
add(popup);
popup.show(x_pos, y_pos);

5.4. Performing a Command
After the user has selected a command from the popup menu, the application uses the appropriate
CommandInfo class to retrieve the Bean that corresponds to the selected command, and associates the
data with that Bean using the appropriate mechanism (DataHandler, Externalization etc.). Some
CommandObjects (viewers for instance) are subclassed from java.awt.Component and require that
they are given a parent container. Others (like a default print Command) might not present a user
interface. This allows them to be flexible enough to function as stand alone viewer/editors, or perhaps
as components in a compound document system. The ‘application’ is responsible for providing the
proper environment (containment, life cycle, etc.) for the CommandObject to execute in. We expect
that the requirements will be lightweight (not much beyond JavaBeans™ containers and AWT
containment for visible components).

5.3. Getting the Command List
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// get the command object
Object cmdBean = cmdInfo[cmd_id].getCommandObject(dh,
                this.getClassLoader());

  ...  // use serialization/externalization where appropriate

my_awt_container.add((Component)cmdBean);

5.5. An Alternative Scenario
The first scenario was the ‘canonical’ case. There are also circumstances where the application has
already created objects to represent its data. In this case creating an in-memory instance of a
DataSource that converted an existing object into an InputStream is an inefficient use of system
resources and can result in a loss of data fidelity.

In these cases, the application can instantiate a DataHandler, using the DataHandler(Object obj, String
mimeType) constructor. DataHandler implements the Transferable interface, so the consuming Bean
can request representations other than InputStreams. The DataHandler also constructs a DataSource
for consumers that request it. The DataContentHandler mechanism is extended to also allow
conversion from Objects to InputStreams.

The following code is an example of a database front end using Jakarta Activation, which provides
query results in terms of objects.

 /**
  * Get the viewer to view my query results:
  */
 Component getQueryViewer(QueryObject qo) throws Exception {
 String mime_type = qo.getType();
 Object q_result = qo.getResultObject();
 DataHandler my_dh = new DataHandler(q_result, mime_type);

 return (Component)my_dh.getCommand(“view”).
            getCommandObject(my_dh, null));
 }

5.5. An Alternative Scenario
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Chapter 6. Primary Framework Interfaces
This section describes interfaces required to implement the Jakarta Activation architecture introduced
in Section Three.

6.1. The DataSource Interface
The DataSource interface is used by the DataHandler (and possibly other classes elsewhere) to access
the underlying data. The DataSource object encapsulates the underlying data object in a class that
abstracts the underlying data storage and typing mechanism, and presents its consumers with a
common data access interface.

Jakarta Activation provides DataSource implementations that support file systems and URLs.
Application system vendors can use the DataSource interface to implement their own specialized
DataSource classes to support IMAP servers, object databases, or other sources.

There is a one-to-one correspondence between underlying data items (files for instance) and
DataSource objects. Also note that the class that implements the DataSource interface is responsible for
typing the data. To manage a file system, a DataSource can use a simple mechanism such as a file
extension to type data, while a DataSource that supports incoming web-based data can actually
examine the data stream to determine its type.

6.2. The DataHandler Class
The DataHandler class encapsulates a Data object, and provides methods which act on that data.

DataHandler encapsulates the type-to-command object binding service of the CommandMap interface
for applications. It provides a handle to the operations and data available on a data element.

DataHandler also implements the Transferable interface. This allows applications and applets to
retrieve alternative representations of the underlying data, in the form of objects. The DataHandler
encapsulates the interface to the component repository and data source.

Let’s examine these groups of features in more detail:

6.2.1. Data Encapsulation

A DataHandler object can only be instantiated with data. The data can be in the form of an object
implementing the DataSource interface (the preferred way) or as an object with an associated content
type.

Once instantiated, the DataHandler tries to provide its data in a flexible way. The DataHandler
implements the Transferable interface which allows an object to provide alternative representations of
the data. The Transferable interface’s functionality can be extended via objects implementing the
DataContentHandler interface, and then made available to the DataHandler either by a

6.1. The DataSource Interface
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DataContentHandlerFactory object, or via a CommandMap.

6.2.2. Command Binding

The DataHandler provides wrappers around commonly used functions for command discovery.
DataHandler has methods that call into the current CommandMap associated with the DataHandler. By
default the DataHandler calls CommandMap’s getDefaultCommandMap method if no CommandMap
was explicitly set. As a convenience, DataHandler uses the content type of its data when calls are made
to the CommandMap.

6.3. The DataContentHandler Interface
The DataContentHandler interface is implemented by classes that are used by the DataHandler to
convert InputStreams into objects and vice versa. In effect, the DataHandler object uses a
DataContentHandler object to implement the Transferable interface. DataContentHandlers are
discovered via the current CommandMap. A DataContentHandler uses DataFlavors to represent the
data types it can access.

The DataContentHandler also converts data from objects into InputStreams. For instance, if an
application needs to access a .gif file, it passes the file to the image/gif DataContentHandler. The
image/gif DataContentHandler converts the image object into a gif-formatted byte stream.

Applications will typically need to provide DataContentHandlers for all the MIME types they intend to
support. (Note that the Jakarta Mail implementation provides DataContentHandlers for many of the
MIME types used in mail messages.)

6.4. The CommandMap Interface
Once the DataHandler has a MIME type describing the content, it can query the CommandMap for the
operations, or commands that are available for that data type. The application requests commands
available through the DataHandler and specifies a command on that list. The DataHandler uses the
CommandMap to retrieve the Bean associated with that command. Some or all of the command map is
stored in some ‘common’ place, like a .mailcap (RFC 1524) file. Other more complex implementations
can be distributed, or can provide licensing or authentication features.

6.5. The CommandInfo Class
The CommandInfo class is used to represent commands in an underlying registry. From a
CommandInfo object, an application can instantiate the Bean or request the verb (command) it
describes.

6.6. The CommandObject Interface
Beans designed specifically for use with Jakarta Activation should implement the CommandObject

6.3. The DataContentHandler Interface
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interface. This interface provides direct access to DataHandler methods and notifies an Activation-
aware Bean which verb was used to call it. Upon instantiation, the Bean takes a string specifying a
user-selected command verb, and the DataHandler object managing the target data. The DataHandler
takes a DataSource object, which provides an input stream linked to that data, and a string specifying
the data type.

6.7. The DataContentHandlerFactory
Like the ContentHandler factory in the java.net package, the DataContentHandlerFactory is an
interface that allows developers to write objects that map MIME types to DataContentHandlers. The
interface is extremely simple, in order to allow developers as much design and implementation
freedom as possible.

6.7. The DataContentHandlerFactory
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Chapter 7. Writing Beans for the Framework

7.1. Overview
This section describes the specification of well-behaved Activation-aware Bean viewers. Note that this
proposal assumes the reader is comfortable with the JavaBeans™ Specification. Developers intending
to implement viewer Beans for Jakarta Activation should be familiar with JavaBeans™ concepts and
architecture.

7.2. Viewer Goals
1. Make the implementation of viewers and editors as simple as implementing Beans. That is, require

low cost of entry to be a good citizen.

2. Allow developers to have a certain amount of flexibility in their implementations.

7.3. General
We are attempting to limit the amount of extra baggage that needs to be implemented beyond ‘generic’
Beans. In many cases, JavaBeans™ components that weren’t developed with knowledge of the
framework can be used. Jakarta Activation exploits the existing features of JavaBeans™ and the JDK™,
and defines as few additional interfaces and policies as possible.

We expect that viewers/editors will be bound to data via a simple registry mechanism similar in
function to a .mailcap file. In addition, mailcap format files may be bundled with components, allowing
additional packages to be added at runtime.

Our viewers/editors and related classes and files are encapsulated into JAR files, as is the preferred
method for JavaBeans™. Jakarta Activation does not restrict the choice of classes used to implement
Activaiton-aware ‘viewer’ Beans, beyond those expected of well-behaved Beans.

7.4. Interfaces
A viewer Bean that communicates directly with a Jakarta Activation DataHandler should implement
the CommandObject interface. This interface is small and easy to implement. However, Beans can still
use standard Serialization and Externalization methods available in the JDK.

7.5. Storage
Jakarta Activation expects applications and viewer Beans to implement storage tasks via the
DataSource object. However; it is possible to use Externalization. An Activation-aware application can
implement the following storage mechanism:

7.1. Overview
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ObjectOutputStream oos = new ObjectOutputStream(
            data_handler.getOutputStream());
my_externalizable_bean.writeExternal(oos);

7.6. Packaging
The basic format for packaging of the Viewer/Editors is the JAR file as described in the JavaBeans™
Specification. This format allows the convenient packaging of collections of files that are related to a
particular Bean or applet. For more information concerning integration points, see Section 8.

7.7. Container Support
Jakarta Activation is designed to be flexible enough to support the needs of a variety of applications.
Jakarta Activation expects these applications to provide the appropriate containers and life cycle
support for these Beans. Beans written for the framework should be compatible with the guidelines in
the JavaBeans™ documentation and should be tested against the BDK BeanBox (and the JDK
Appletviewer if they are subclassed from Applet).

7.8. Lifecycle
In general Jakarta Activation expects that its viewer bean life cycle semantics are the same as those for
all Beans. In the case of Beans that implement the CommandObject interface we encourage application
developers to not parent Beans subclassed from java.awt.Component to an AWT container until after
they have called the jakarta.activation.CommandObject.setCommandContext method.

7.9. Command Verbs
The MailcapCommandMap implementation provides a mechanism that allows for an extensible set of
command verbs. Applications using Jakarta Activation can query the system for commands available
for a particular MIME type, and retrieve the Bean associated with that MIME type.

7.6. Packaging
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Chapter 8. Framework Integration Points
This section presents several examples that clarify how JavaBeans™ developers can write Beans that
are integrated with Jakarta Activation.

First, let’s review the pluggable components of the Jakarta Activation framework:

• A mechanism that accesses target data where it is stored: DataSource

• A mechanism to convert data objects to and from an external byte stream format:
DataContentHandler

• A mechanism to locate visual components that operate on data objects: CommandMap

• The visual components that operate on data objects: Activation-aware Beans

As a JavaBeans™ developer, you may build visual Beans. You can also develop DataContentHandlers to
supply data to those Beans. You might also need to develop a new DataSource or CommandMap class to
access data and specify a data type.

8.1. Bean
Suppose you’re building a new Wombat Editor product, with its corresponding Wombat file format.
You’ve built the Wombat Editor as one big Bean. Your WombatBean can do anything and everything
that you might want to do with a Wombat. It can edit, it can print, it can view, it can save Wombats to
files, and it can read Wombats in from files. You’ve defined a language-independent Wombat file
format. You consider the Wombat data and file formats to be proprietary so you have no need to offer
programmatic interfaces to Wombats beyond what your WombatBean supports.

You’ve chosen the MIME type “application/x-wombat” to describe your Wombat file format, and you’ve
chosen the filename extension “.wom” to be used by files containing Wombats.

To integrate with the framework, you’ll need some simple wrappers for your WombatBean for each
command you want to implement. For example, for a Print command wrapper you can write the
following code:

public class WombatPrintBean extends WombatBean {
    public WombatPrintBean() {
        super();
        initPrinting();
    }
}

You will need to create a mailcap file that lists the MIME type “application/x-wombat” and user visible
commands that are supported by your WombatBean. Your WombatBean wrappers will be listed as the
objects supporting each of these commands.

8.1. Bean

16    Jakarta Activation 2.1



application/x-wombat; ; x-java-view=com.foo.WombatViewBean; \
    x-java-edit=com.foo.WombatEditBean; \
    x-java-print=com.foo.WombatPrintBean

You’ll also need to create a mime.types file with an entry:

type=application/x-wombat desc=”Wombat” exts=wom

All of these components are packaged in a JAR file:

META-INF/mailcap
META-INF/mime.types
com/foo/WombatBean.class
com/foo/WombatEditBean.class
com/foo/WombatViewBean.class

Because everything is built into one Bean, and because no third party programmatic access to your
Wombat objects is required, there’s no need for a DataContentHandler. Your WombatBean can
therefore implement the Externalizable interface instead; and use its methods to read and write your
Wombat files. The DataHandler can call the Externalizable methods when appropriate.

8.2. Beans
Your Wombat Editor product has really taken off, and you’re now adding significant new functionality
and flexibility to your Wombat Editor. It’s no longer feasible to put everything into one giant Bean.
Instead, you’ve broken the product into a number of Beans and other components:

• A WombatViewer Bean that can be used to quickly view a Wombat in read-only mode.

• A WombatEditor Bean that is heavier than the WombatViewer, but also allows editing.

• A WombatPrinter Bean that simply prints a Wombat.

• A component that reads and writes Wombat files.

• A Wombat class that encapsulates the Wombat data and is used by your other Beans and
components.

In addition, customers have demanded to be able to programmatically manipulate Wombats,
independently from the visual viewer or editor Beans. You’ll need to create a DataContentHandler that
can convert a byte stream to and from a Wombat object. When reading, the
WombatDataContentHandler reads a byte stream and returns a new Wombat object. When writing, the
WombatDataContentHandler takes a Wombat object and produces a corresponding byte stream. You’ll
need to publish the API to the Wombat class.

8.2. Beans
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The WombatDataContentHandler is delivered as a class and is designated as a DataContentHandler
that can operate on Wombats in the mailcap file included in your JAR file.

Your mailcap file changes to list the appropriate Wombat Beans, which implement user commands:

application/x-wombat; ; x-java-View=com.foo.WombatViewBean; \
    x-java-edit=com.foo.WombatEditBean; \
    x-java-print=com.foo.WombatPrintBean; \
    x-java-content-handler=com.foo.WombatDataContentHandler

Your Wombat Beans can continue to implement the Externalizable interface, and thus read and write
Wombat byte streams. They are more likely to simply operate on Wombat objects directly. To find the
Wombat object they’re being invoked to operate on, they implement the CommandObject interface.
The setCommandContext method refers them to the corresponding DataHandler, from which they can
invoke the getContent method, which will return a Wombat object (produced by the
WombatDataContentHandler).

All components are packaged in a JAR file.

8.3. Viewer Only
The Wombat product has been wildly successful. The ViewAll Company has decided that it can produce
a Wombat viewer that’s much faster than the WombatViewer Bean. Since they don’t want to depend on
the presence of any Wombat components, their viewer must parse the Wombat file format, which they
reverse engineered.

The ViewAll WombatViewerBean implements the Externalizable interface to read the Wombat data
format.

ViewAll delivers an appropriate mailcap file:

application/x-wombat; ; x-java-view=com.viewall.WombatViewer

and mime.types file:

type=application/x-wombat desc=”Wombat” exts=wom

All components are packaged in a JAR file.

8.4. ContentHandler Bean Only
Now that everyone is using Wombats, you’ve decided that it would be nice if you could notify people

8.3. Viewer Only
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by email when new Wombats are created. You have designed a new WombatNotification class and a
corresponding data format to be sent by email using the MIME type “application/x-wombat-
notification”. Your server detects the presence of new Wombats, constructs a WombatNotification
object, and constructs and sends an email message with the Wombat notification data as an
attachment. Your customers run a program that scans their email INBOX for messages with Wombat
notification attachments and use the WombatNotification class to notify their users of the new
Wombats.

In addition to the server application and user application described, you’ll need a DataContentHandler
to plug into the DataHandler infrastructure and construct the WombatNotification objects. The
WombatNotification DataContentHandler is delivered as a class named
WombatNotificationDataContentHandler and is delivered in a JAR file with the following mailcap file:

application/x-wombat-notification; \
    WombatNotificationDataContentHandler

The server application creates DataHandlers for its WombatNotification objects. The email system uses
the DataHandler to fetch a byte stream corresponding to the WombatNotification object. (The
DataHandler uses the DataContentHandler to do this.)

The client application retrieves a DataHandler for the email attachment and uses the getContent
method to get the corresponding WombatNotification object, which will then notify the user.

8.4. ContentHandler Bean Only
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Chapter 9. Framework Deliverables

9.1. Packaging Details
Jakarta Activation is implemented as a Standard Extension to the Java™ Platform. The following are
some more details about the package:

• The package name is jakarta.activation.

• The Jakarta Activation implementation does not include DataContentHandlers for any MIME data
types; applications must include the DataContentHandlers they need. Note that the Jakarta Mail
implementation includes DataContentHandlers for some basic data types used in mail messages.

• The Jakarta Activation does not include the implementation for the following interfaces :
MimeTypeRegistry, MailcapRegistry, MailcapRegistryProvider and MimeTypeRegistryProvider.

9.2. Framework Core Classes
interface DataSource: The DataSource interface provides Jakarta Activation with an abstraction of
some arbitrary collection of data. It provides a type for that data as well as access to it in the form of
InputStreams and OutputStreams where appropriate.

class DataHandler: The DataHandler class provides a consistent interface to data available in many
different sources and formats. It manages simple stream to string conversions and related operations
using DataContentHandlers. It provides access to commands that can operate on the data. The
commands are found using a CommandMap.

interface DataContentHandler: The DataContentHandler interface is implemented by objects that
can be used to extend the capabilities of the DataHandler’s implementation of the Transferable
interface. Through DataContentHandlers the framework can be extended to convert streams in to
objects, and to write objects to streams.

interface DataContentHandlerFactory: This interface defines a factory for DataContentHandlers. An
implementation of this interface should map a MIME type into an instance of DataContentHandler. The
design pattern for classes implementing this interface is the same as for the ContentHandler
mechanism used in java.net.URL.

class CommandMap: The CommandMap class provides an interface to the registry of viewer, editor,
print, etc. objects available in the system. Developers are expected to either use the CommandMap
implementation included with this package (MailcapCommandMap) or develop their own. Note that
some of the methods in this class are abstract.

interface CommandObject: Beans that are Activation aware implement this interface to find out
which command verb they’re being asked to perform, and to obtain the DataHandler representing the
data they should operate on. Beans that don’t implement this interface may be used as well. Such
commands may obtain the data using the Externalizable interface, or using an application-specific

9.1. Packaging Details
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method.

class CommandInfo: The CommandInfo class is used by CommandMap implementations to describe
the results of command requests. It provides the requestor with both the verb requested, as well as an
instance of the bean. There is also a method that will return the name of the class that implements the
command but it is not guaranteed to return a valid value. The reason for this is to allow CommandMap
implementations that subclass CommandInfo to provide special behavior. For example a
CommandMap could dynamically generate Beans. In this case, it might not be possible to create an
object with all the correct state information solely from the class name.

9.3. Framework Auxiliary Classes
class FileDataSource: The FileDataSource class implements a simple DataSource object that
encapsulates a file. It provides data typing services via a FileTypeMap object.

class FileTypeMap: The FileTypeMap is an abstract class that provides a data typing interface for files.
Implementations of this class will implement the getContentType methods which will derive a content
type from a file name or a File object. FileTypeMaps could use any scheme to determine the data type,
from examining the file extension of a file (like the MimetypesFileTypeMap) to opening the file and
trying to derive its type from the contents of the file. The FileDataSource class uses the default
FileTypeMap (a MimetypesFileTypeMap unless changed) to determine the content type of files.

class MimetypesFileTypeMap: This class extends FileTypeMap and provides data typing of files via
their file extension. It uses the .mime.types format.

class URLDataSource: The URLDataSource class provides an object that wraps a URL object in a
DataSource interface. URLDataSource simplifies the handling of data described by URLs within Jakarta
Activation because this class can be used to create new DataHandlers.

class MailcapCommandMap: MailcapCommandMap extends the CommandMap abstract class. It
implements a CommandMap whose configuration is based on mailcap files (RFC 1524). The
MailcapCommandMap can be configured both programmatically and via configuration files.

class ActivationDataFlavor: The ActivationDataFlavor is a special subclass of
java.awt.datatransfer.DataFlavor. It allows Jakarta Activation to set all three values stored by the
DataFlavor class via a new constructor as well as improved MIME parsing in the equals method.
Except for the improved parsing, its semantics are identical to that of the JDK’s DataFlavor class.

class UnsupportedDataTypeException: Signals that requested operation does not support the
requested data type.

class MimeType: A Multipurpose Internet Extension (MIME) type, as defined in RFC 2045 and 2046.

9.3. Framework Auxiliary Classes
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Chapter 10. Provider Requirements
Jakarta Activation provider has to implement following interfaces :

interface MailcapRegistry: The MailcapRegistry is used to store and retrieve MailcapEntries. Provider
must implement MailcapRegistryProvider to create new instances of the MailcapRegistry.
Implementation of the MailcapRegistry can store MailcapEntries in different ways and that storage
must be accessible through the methods of the MailcapRegistryProvider. Implementation of the
MailcapRegistry must contain in-memory storage for MailcapEntries.

interface MailcapRegistryProvider: This interface defines a factory for MailcapRegistry. Jakarta
Activation uses Service Provider Interface and ServiceLoader to obtain an instance of the
implementation of the MailcapRegistryProvider.

interface MimeTypeRegistry: The MimeTypeRegistry interface is used to store and retrieve
MimeTypeEntries. Provider must implement MimeTypeRegistryProvider to create new instances of the
MimeTypeRegistry. Implementation of the MimeTypeRegistry can store MimeTypeEntries in different
ways and that storage must be accessible through the methods of the MimeTypeRegistryProvider.
Implementation of the MimeTypeRegistry must contain in-memory storage for MimeTypeEntries.

interface MimeTypeRegistryProvider: This interface defines a factory for MimeTypeRegistry. Jakarta
Activation uses Service Provider Interface and ServiceLoader to obtain an instance of the
implementation of the MimeTypeRegistryProvider.

Chapter 10. Provider Requirements
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Chapter 11. Document Change History

11.1. Changes in version 2.1
• Jul 09, 2021: Jakarta Activation is splitted into the API module and the implementation of the API

module.

11.2. Changes in version 2.0
• Apr 15, 2020: Jakarta EE 9 version. Package namespace changed to jakarta.*.

11.3. Changes in version 1.2
• Oct 21, 2019: First complete Jakarta EE version.

11.1. Changes in version 2.1
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