
Jakarta WebSocket Specification
Jakarta WebSocket Team, https://projects.eclipse.org/projects/ee4j.websocket

2.3-M1, October 16, 2025: DRAFT



Table of Contents
Eclipse Foundation Specification License - v1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2

Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3

Jakarta WebSocket Specification, Version 2.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4

1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

1.1. Purpose of this document. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

1.2. Goals of the Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

1.3. Terminology used throughout the Specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5

1.4. Specification Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

1.5. Previous work in the JCP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6

2. Applications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

2.1. API Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

2.1.1. Endpoint Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

2.1.2. Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7

2.1.3. Receiving Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8

2.1.4. Sending Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

2.1.5. Closing Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9

2.1.6. Clients and Servers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

2.1.7. WebSocketContainers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

2.2. Endpoints using WebSocket Annotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

2.2.1. Annotated Endpoints. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10

2.2.2. WebSocket Lifecycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

2.2.3. Handling Messages. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

2.2.4. Handling Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

2.2.5. Pings and Pongs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

2.3. Jakarta WebSocket Client API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11

3. Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

3.1. Server Configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

3.1.1. URI Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13

3.1.2. Subprotocol Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

3.1.3. Extension Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

3.1.4. Origin Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

3.1.5. Handshake Modification. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15

3.1.6. Custom State or Processing Across Server Endpoint Instances. . . . . . . . . . . . . . . . . . . . . .  16

3.1.7. Customizing Endpoint Creation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

3.2. Client Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

3.2.1. Subprotocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

3.2.2. Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16

3.2.3. SSLContext . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16



3.2.4. Client Configuration Modification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17

4. Annotations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

4.1. @ServerEndpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

4.1.1. value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18

4.1.2. encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

4.1.3. decoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

4.1.4. subprotocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

4.1.5. configurator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  19

4.2. @ClientEndpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

4.2.1. encoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

4.2.2. decoders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

4.2.3. configurator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

4.2.4. subprotocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  20

4.3. @PathParam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  21

4.4. @OnOpen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

4.5. @OnClose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

4.6. @OnError. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  22

4.7. @OnMessage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

4.7.1. maxMessageSize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23

4.8. WebSockets and Inheritance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  24

5. Exception Handling and Threading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

5.1. Threading Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

5.2. Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

5.2.1. Deployment Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  25

5.2.2. Errors Originating in WebSocket Application Code. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  26

5.2.3. Errors Originating in the Container and/or Underlying Connection. . . . . . . . . . . . . . . . .  26

6. Packaging and Deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

6.1. Client Deployment on JRE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

6.2. Application Deployment on Web Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27

6.3. Application Deployment in Standalone WebSocket Server Containers . . . . . . . . . . . . . . . . . .  28

6.4. Programmatic Server Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28

6.5. WebSocket Server Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

6.6. Platform Versions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  29

7. Jakarta EE Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

7.1. Jakarta EE Environment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

7.1.1. WebSocket Endpoints and Dependency Injection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

7.2. Relationship with Http Session and Authenticated State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30

8. Server Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

8.1. Authentication of Websockets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

8.2. Authorization of Websockets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

8.3. Transport Guarantee. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32



8.4. Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32

Appendix A: Changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

A.1. Changes Between 2.3 and 2.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

A.2. Changes Between 2.2 and 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

A.3. Changes Between 2.1 and 2.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34

A.4. Changes Between 2.0 and JSR-356 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36



Specification: Jakarta WebSocket Specification

Version: 2.3-M1

Status: DRAFT

Release: October 16, 2025

Copyright (c) 2018, 2025 Eclipse Foundation.

1



Eclipse Foundation Specification
License - v1.1
By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked or incorporated by reference, you (the licensee) agree that you have read,
understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation AISBL [url to this license] "

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation AISBL. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document]."

2



Disclaimers
THIS DOCUMENT IS PROVIDED "AS IS," AND TO THE EXTENT PERMITTED BY APPLICABLE LAW
THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION AISBL MAKE NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT
THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

TO THE EXTENT PERMITTED BY APPLICABLE LAW THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION AISBL WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation AISBL may NOT be
used in advertising or publicity pertaining to this document or its contents without specific, written
prior permission. Title to copyright in this document will at all times remain with copyright
holders.

3



Jakarta WebSocket Specification, Version 2.3
Copyright (c) 2011, 2025 Oracle and/or its affiliates and others. All rights reserved.

Eclipse is a registered trademark of the Eclipse Foundation. Jakarta is a trademark of the Eclipse
Foundation. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

The Jakarta WebSocket Team - October 16, 2025

Comments to: websocket-dev@eclipse.org

4

mailto:websocket-dev@eclipse.org


Chapter 1. Introduction
This specification defines a set of Java APIs for the development of WebSocket applications. Readers
are assumed to be familiar with the WebSocket protocol. The WebSocket protocol, developed as
part of the collection of technologies that make up HTML5, promises to bring a new level of ease of
development and network efficiency to modern, interactive web applications. For more
information on the WebSocket protocol see:

• The WebSocket Protocol specification (Fette and Melnikov 2011)

• The WebSocket API for JavaScript (Hickson 2012)

1.1. Purpose of this document
This document, in combination with the API documentation for the Jakarta WebSocket API, is the
specification of the Jakarta WebSocket API. The specification defines the requirements that an
implementation must meet in order to be an implementation of the Jakarta WebSocket API. This
specification has been developed under the Eclipse Foundation Specification Process. Together with
the Test Compatibility Kit (TCK) which tests that a given implementation meets the requirements of
the specification, and Compatible Implementations (CIs) that implement this specification and
which pass the TCK, this specification defines the Jakarta standard for WebSocket application
development.

While there is much useful information in this document for developers using the Jakarta
WebSocket API, its purpose is not to be a developer’s guide. Similarly, while there is much useful
information in this document for developers who are creating an implementation of the Jakarta
WebSocket API, its purpose is not to be a 'How To' guide as to how to implement all the required
features.

1.2. Goals of the Specification
The goal of this specification is to define the requirements on containers that wish to support APIs
for WebSocket programming on the Jakarta and Java Platforms. While the document may be a
useful reference for developers who use the APIs defined by this specification, this document is not
a developer guide.

1.3. Terminology used throughout the Specification
endpoint

A WebSocket endpoint is a Java component that represents one side of a sequence of WebSocket
interactions between two connected peers.

connection

A WebSocket connection is the networking connection between the two endpoints which are
interacting using the WebSocket protocol.

5



peer

Used in the context of a WebSocket endpoint, the WebSocket peer is used to represent another
participant of the WebSocket interactions with the endpoint.

session

The term WebSocket session is used to represent a sequence of WebSocket interactions between
an endpoint and a single peer.

client endpoints and server endpoints

A client endpoint is one that initiates a connection to a peer but does not accept new ones. A
server endpoint is one that accepts WebSocket connections from peers but does not initiate
connections to peers.

1.4. Specification Conventions
The keywords 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT',
'RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in
RFC 2119 (Bradner 1997).

Additionally, requirements of the specification that can be tested using the conformance test suite
are marked with the figure WSC (WebSocket Compatibility) followed by a number which is used to
identify the requirement, for example 'WSC-12'.

Java code and sample data fragments are formatted as shown below:

package com.example.hello;

public class Hello {

    public static void main(String args[]) {
        System.out.println("Hello World");
    }
}

URIs of the general form 'http://example.org/…' and 'http://example.com/…' represent application or
context-dependent URIs.

All parts of this specification are normative, with the exception of examples, notes and sections
explicitly marked as 'Non-Normative'. Non-normative notes are formatted as shown below.

Note: This is a note.

1.5. Previous work in the JCP
Prior to version 2.0, this specification was developed in the Java Community Process as part of JSR
356.

6



Chapter 2. Applications
Jakarta WebSocket applications consist of WebSocket endpoints. A WebSocket endpoint is a Java
object that represents one end of a WebSocket connection between two peers.

There are two main means by which an endpoint can be created. The first means is to implement
certain of the API classes from the Jakarta WebSocket API with the required behavior to handle the
endpoint lifecycle, consume and send messages, publish itself, or connect to a peer. Often, this
specification will refer to this kind of endpoint as a programmatic endpoint. The second means is to
decorate a Plain Old Java Object (POJO) with certain of the annotations from the Jakarta WebSocket
API. The implementation then takes these annotated classes and creates the appropriate objects at
runtime to deploy the POJO as a WebSocket endpoint. Often, this specification will refer to this kind
of endpoint as an annotated endpoint. The specification will refer to an endpoint when it is talking
about either kind of endpoint: programmatic or annotated.

The endpoint participates in the opening handshake that establishes the WebSocket connection.
The endpoint will typically send and receive a variety of WebSocket messages. The endpoint’s
lifecycle comes to an end when the WebSocket connection is closed.

2.1. API Overview
This section gives a brief overview of the Jakarta WebSocket API in order to set the stage for the
detailed requirements that follow.

2.1.1. Endpoint Lifecycle

A logical WebSocket endpoint is represented in the Jakarta WebSocket API by instances of the
Endpoint class. Developers may subclass the Endpoint class with a public, concrete class in order
to intercept lifecycle events of the endpoint: those of a peer connecting, an open connection ending
and an error being raised during the lifetime of the endpoint.

Unless otherwise overridden by a developer provided configurator (see Section 3.1.7), the
WebSocket implementation must use one instance per application per VM of the Endpoint class to
represent the logical endpoint per connected peer [WSC 2.1.1-1]. Each instance of the Endpoint
class in this typical case only handles connections to the endpoint from one and only one peer.

2.1.2. Sessions

The Jakarta WebSocket API models the sequence of interactions between an endpoint and each of
its peers using an instance of the Session class. The interactions between a peer and an endpoint
begin with an open notification, followed by some number, possibly zero, of WebSocket messages
between the endpoint and peer, followed by a close notification or possibly a fatal error which
terminates the connection. For each peer that is interacting with an endpoint, there is one unique
Session instance that represents that interaction [WSC 2.1.2-1]. This Session instance
corresponding to the connection with that peer is passed to the endpoint instance representing the
logical endpoint at the key events in its lifecycle.

Developers may use the user property map accessible through the getUserProperties() call on the

7



Session object to associate application specific information with a particular session. The
WebSocket implementation must preserve this session data for later access until the completion of
the onClose() method on the endpoint instance [WSC 2.1.2-2]. After that time, the WebSocket
implementation is permitted to discard the developer data. A WebSocket implementation that
chooses to pool Session instances may at that point re-use the same Session instance to represent a
new connection provided it issues a new unique Session id [WSC 2.1.2-3].

WebSocket implementations that are part of a distributed container may need to migrate
WebSocket sessions from one node to another in the case of a failover. Implementations are
required to preserve developer data objects inserted into the WebSocket session if the data is
marked java.io.Serializable [WSC 2.1.2-4].

The user properties provided by the Session object are initially populated from the per Session
shallow copy of the user properties provided by EndpointConfig.getUserProperties() that was
passed to the modifyHandshake() method on the ServerEndpointConfig.Configurator including
any modifications made during the execution of that method.

2.1.3. Receiving Messages

The Jakarta WebSocket API presents a variety of means for an endpoint to receive messages from
its peers. Developers implement the subtype of the MessageHandler interface with the message
delivery style that best suits their needs, and register the interest in messages from a particular
peer by registering the handler on the Session instance corresponding to the peer.

The API limits the registration of MessageHandlers per Session to be one MessageHandler per
native WebSocket message type [WSC 2.1.3-1]. In other words, the developer can only register at
most one MessageHandler for incoming text messages, one MessageHandler for incoming binary
messages, and one MessageHandler for incoming pong messages. The WebSocket implementation
must generate an error if this restriction is violated [WSC 2.1.3-2].

Future versions of the specification may lift this restriction.

The registered MessageHandlers for a Session may be changed at runtime. To avoid any
ambiguity, once the container has identified a MessageHandler for a message, the
MessageHandler is used for the entirety of the message irrespective of any subsequent changes to
the MessageHandlers configured for the Session.

Method Session.addMessageHandler(MessageHandler) is not safe for use in all circumstances,
especially when using Lambda Expressions. The API forces implementations to get the
MessageHandler’s type parameter in runtime, which is not always possible. The only case where
you can safely use this method is when you are directly implementing MessageHandler.Whole or
MessageHandler.Partial as an anonymous class. This approach guarantees that generic type
information will be present in the generated class file and the runtime will be able to get it. For any
other case (Lambda Expressions included), one of following methods has to be used:
Session.addMessageHandler(Class<T>, MessageHandler.Partial<T>) or
Session.addMessageHandler(Class<T>, MessageHandler.Whole<T>).

8



2.1.4. Sending Messages

The Jakarta WebSocket API models each peer of a session with an endpoint as an instance of the
RemoteEndpoint interface. This interface and its two subtypes (RemoteEndpoint.Whole and
RemoteEndpoint.Partial) contain a variety of methods for sending WebSocket messages from the
endpoint to its peer.

Here is an example of a server endpoint that waits for incoming text messages, and responds
immediately when it gets one to the client that sent it. The example endpoint is shown, first using
only the API classes:

public class HelloServer extends Endpoint {
    @Override
    public void onOpen(Session session, EndpointConfig ec) {
        final RemoteEndpoint.Basic remote = session.getBasicRemote();
        session.addMessageHandler(String.class,
            new MessageHandler.Whole<String>() {
                public void onMessage(String text) {
                    try {
                        remote.sendText("Got your message (" + text + "). Thanks !");
                    } catch (IOException ioe) {
                        ioe.printStackTrace();
                    }
                }
        });
    }
}

and second using the annotations in the API:

@ServerEndpoint("/hello")
public class MyHelloServer {
    @OnMessage
    public String handleMessage(String message) {
        return "Got your message (" + message + "). Thanks !";
    }
}

Note: The examples are almost equivalent save for the annotated endpoint carries its own path
mapping.

2.1.5. Closing Connections

If an open connection to a WebSocket endpoint is to be closed for any reason, whether as a result of
receiving a WebSocket close event from the peer, or because the underlying implementation has
reason to close the connection, the WebSocket implementation must invoke the onClose() method
of the WebSocket endpoint [WSC 2.1.5-1].

9



If the close was initiated by the remote peer, the implementation must use the close code and
reason sent in the WebSocket protocol close frame. If the close was initiated by the local container,
for example if the local container determines the session has timed out, the local implementation
must use the WebSocket protocol close code 1006 (a code especially disallowed in close frames on
the wire), with a suitable close reason. That way the endpoint can determine whether the close was
initiated remotely or locally. If the session is closed locally, the implementation must attempt to
send the WebSocket close frame prior to calling the onClose() method of the WebSocket endpoint.

2.1.6. Clients and Servers

The WebSocket protocol is a two-way protocol. Once established, the WebSocket protocol is
symmetrical between the two parties in the conversation. The difference between a WebSocket
client and a WebSocket server lies only in the means by which the two parties are connected. In this
specification, we will say that a WebSocket client is a WebSocket endpoint that initiates a
connection to a peer. We will say that a WebSocket server is a WebSocket endpoint that is published
and awaits connections from peers. In most deployments, a WebSocket client will connect to only
one WebSocket server, and a WebSocket server will accept connections from several clients.

Accordingly, the WebSocket API only distinguishes endpoints that are WebSocket clients from
endpoints that are WebSocket servers in the configuration and setup phase.

2.1.7. WebSocketContainers

The WebSocket implementation is represented to applications by instances of the
WebSocketContainer class. Each WebSocketContainer instance carries a number of configuration
properties that apply to endpoints deployed within it. In server deployments of WebSocket
implementations, there is one unique WebSocketContainer instance per application per Java VM
[WSC 2.1.7-1]. In client deployments of WebSocket implementations, applications obtain instances
of the WebSocketContainer from the ContainerProvider class.

2.2. Endpoints using WebSocket Annotations
Java annotations have become widely used as a means to add deployment characteristics to Java
objects, particularly in the Jakarta EE platform. The Jakarta WebSocket specification defines a small
number of WebSocket annotations that allow developers to take Java classes and turn them into
WebSocket endpoints. This section gives a short overview to set the stage for more detailed
requirements later in this specification.

2.2.1. Annotated Endpoints

The class level @ServerEndpoint annotation indicates that a Java class is to become a WebSocket
endpoint at runtime. Developers may use the value attribute to specify a URI mapping for the
endpoint. The encoders and decoders attributes allow the developer to specify classes that encode
application objects into WebSocket messages, and decode WebSocket messages into application
objects.

10



2.2.2. WebSocket Lifecycle

The method level @OnOpen and @OnClose annotations allow the developers to decorate methods
on their @ServerEndpoint annotated Java class to specify that they must be called by the
implementation when the resulting endpoint receives a new connection from a peer or when a
connection from a peer is closed, respectively [WSC 2.2.2-1].

2.2.3. Handling Messages

In order that the annotated endpoint can process incoming messages, the method level
@OnMessage annotation allows the developer to indicate which methods the implementation must
call when a message is received [WSC 2.2.3-1].

2.2.4. Handling Errors

In order that an annotated endpoint can handle errors that arise from external events, for example
on decoding an incoming message, an annotated endpoint can use the @OnError annotation to
mark one of its methods that must be called by the implementation with information about the
error whenever such an error occurs [WSC 2.2.4-1].

2.2.5. Pings and Pongs

The ping/pong mechanism in the WebSocket protocol serves as a check that the connection is still
active. Following the requirements of the protocol, if a WebSocket implementation receives a ping
message from a peer, it must respond as soon as possible to that peer with a pong message
containing the same application data [WSC 2.2.5-1]. No notification mechanism is provided for
applications to receive notification of ping messages as responding with a pong message is an
implementation responsibility.

Developers who wish to send a ping message may do so using the RemoteEndpoint API.

Developers who wish to send an unsolicited pong message may do so using the RemoteEndpoint
API.

Developers wishing to listen for returning pong messages may either define a MessageHandler for
them, or annotate a method using the @OnMessage annotation where the method stipulates a
PongMessage as its message entity parameter. In either case, if the implementation receives a pong
message addressed to this endpoint, it must call that MessageHandler or that annotated method
[WSC 2.2.5-2].

Implementations may provide an implementation specific mechanism to configure the sending of
regular ping messages for a WebSocket connection. Alternatively, developers may opt to implement
their own ping/pong strategy.

2.3. Jakarta WebSocket Client API
This specification defines two configurations of the Jakarta WebSocket API. The Jakarta WebSocket
API is used to mean the full functionality defined in this specification. This API is intended to be
implemented either as a standalone WebSocket implementation, as part of a Jakarta Servlet

11



container, or as part of a full Jakarta EE platform implementation. The APIs that must be
implemented to conform to the Jakarta WebSocket API are all the Java APIs in the packages
jakarta.websocket.* and jakarta.websocket.server.*. Some of the non-API features of the Jakarta
WebSocket API are optional when the API is not implemented as part of the full Jakarta EE
platform, for example, the requirement that WebSocket endpoints be non-contextual managed
beans (see Chapter 7). Such Jakarta EE only features are clearly marked where they are described.

The Jakarta WebSocket API also contains a subset of its functionality intended for desktop, tablet or
smartphone devices. This subset does not contain the ability to deploy server endpoints. This subset
known as the Jakarta WebSocket Client API. The APIs that must be implemented to conform to the
Jakarta WebSocket Client API are all the Java APIs in the package jakarta.websocket.*.

12



Chapter 3. Configuration
WebSocket applications are configured with a number of key parameters: the path mapping that
identifies a WebSocket endpoint in the URI-space of the container, the subprotocols that the
endpoint supports, and the extensions that the application requires. Additionally, during the
opening handshake, the application may choose to perform other configuration tasks, such as
checking the hostname of the requesting client, or processing cookies. This section details the
requirements on the container to support these configuration tasks.

Both client and server endpoint configurations include a list of application provided encoder and
decoder classes that the implementation must use to translate between WebSocket messages and
application defined message objects [WSC-3-1].

3.1. Server Configurations
In order to deploy a programmatic endpoint into the URI space available for client connections, the
container requires a ServerEndpointConfig instance. This object holds configuration data and the
default implementation provided algorithms needed by the implementation to configure the
endpoint. The WebSocket API allow certain of these configuration operations to be overridden by
developers by providing a custom ServerEndpointConfig.Configurator implementation with the
ServerEndpointConfig [WSC-3.1-1].

These operations are laid out below.

3.1.1. URI Mapping

This section describes the the URI mapping policy for server endpoints.

All server endpoint paths must:

• be a URI-template (level-1) or a partial URI

• start with a leading '/'

• not contain the sequences /../, /./ or //

Additionally, URI-template server endpoint paths must:

• Only replace whole URI segments with variables

• Not use the same variable more than once in a path

For a definition of URI segments, see RFC 3986 (Berners-Lee et al. 2005). For a definition of URI-
templates, see RFC 6570 (Gregorio et al. 2012).

The WebSocket implementation must compare the normalized - see section 6 of RFC 3986 (Berners-
Lee et al. 2005) - incoming URI to the collection of all endpoint paths and determine the best match.
The incoming URI in an opening handshake request matches an endpoint path if either it is an
exact match in the case where the endpoint path is a relative URI, and if it is a valid expansion of
the endpoint path in the case where the endpoint path is a URI template [WSC-3.1.1-1].

13



An application that contains multiple endpoint paths that are the same relative URI is not a valid
application. An application that contains multiple endpoint paths that are equivalent URI-templates
is not a valid application [WSC-3.1.1-2].

However, it is possible for an incoming URI in an opening handshake request theoretically to match
more than one endpoint path. For example, consider the following case:

• incoming URI: "/a/b"

• endpoint A is mapped to "/a/b"

• endpoint B is mapped to /a/{customer-name}

The WebSocket implementation will attempt to match an incoming URI to an endpoint path (URI or
level 1 URI-template) in the application in a manner equivalent to the following: [WSC-3.1.1-3]

Since the endpoint paths are either relative URIs or URI templates level 1, the paths do not match if
they do not have the same number of segments, using '/' as the separator. So, the container will
traverse the segments of the endpoint paths with the same number of segments as the incoming
URI from left to right, comparing each segment with the corresponding segment of the incoming
URI. At each segment, the implementation will retain those endpoint paths that match exactly, or if
there are none, those that are a variable segment, before moving to check the next segment. If there
is an endpoint path at the end of this process there is a match.

Because of the requirement disallowing multiple endpoint paths and equivalent URI-templates, and
the preference for exact matches at each segment, there can only be at most one path, and it is the
best match.

Examples

i. suppose an endpoint has path /a/b/, the only incoming URI that matches this is /a/b/

ii. suppose an endpoint is mapped to /a/{var}

◦ incoming URIs that do match:

▪ /a/b (with var=b)

▪ /a/apple (with var=apple)

◦ URIs that do NOT match (because empty string and strings with reserved characters "/" are
not valid URI-template level 1 expansions):

▪ /a

▪ /a/b/

▪ /a/b/c

iii. suppose we have three endpoints and their paths:

◦ endpoint A: /a/{var}/c

◦ endpoint B: /a/b/c

◦ endpoint C: /a/{var1}/{var2}

◦ incoming URI: a/b/c matches B, not A or C, because an exact match is preferred.

14



◦ incoming URI: a/d/c matches A with variable var=d, because an exact matching segment is
preferred over a variable segment

◦ incoming URI: a/x/y/ matches C, with var1=x, var2=y

iv. suppose we have two endpoints

◦ endpoint A: /{var1}/d

◦ endpoint B: /b/{var2}

◦ incoming URI: /b/d matches B with var2=d, not A with var1=b because the matching process
works from left to right.

The implementation must not establish the connection unless there is a match [WSC-3.1.1-4].

3.1.2. Subprotocol Negotiation

The default server configuration must be provided a list of supported subprotocols in order of
preference at creation time. During subprotocol negotiation, this configuration examines the client-
supplied subprotocol list and selects the first subprotocol in the list it supports that is contained
within the list provided by the client, or none if there is no match [WSC-3.1.2-1].

3.1.3. Extension Modification

In the opening handshake, the client supplies a list of extensions that it would like to use. The
default server configuration selects from those extensions the ones it supports, and places them in
the same order as requested by the client [WSC-3.1.3-1].

3.1.4. Origin Check

The default server configuration makes a check of the hostname provided in the Origin header,
failing the handshake if the hostname cannot be verified [WSC-3.1.4-1].

3.1.5. Handshake Modification

The default server configuration makes no modification of the opening handshake process other
than that described above [WSC-3.1.5-1].

Developers may wish to customize the configuration and handshake negotiation policies laid out
above. In order to do so, they may provide their own implementations of
ServerEndpointConfig.Configurator.

For example, developers may wish to intervene more in the handshake process. They may wish to
use Http cookies to track clients, or insert application specific headers in the handshake response.
In order to do this, they may implement the modifyHandshake() method on the
ServerEndpointConfig.Configurator, wherein they have full access to the HandshakeRequest
and HandshakeResponse of the handshake.

The user properties exposed during the modifyHandshake() method must be a per WebSocket
connection (i.e. per Session) shallow copy of the user properties provided by
EndpointConfig.getUserProperties(). When the Session object is created these user properties,

15



including any modifications made during modifyHandshake(), must be used as the initial user
properties for the Session.

3.1.6. Custom State or Processing Across Server Endpoint Instances

The developer may also implement ServerEndpointConfig.Configurator in order to hold custom
application state or methods for other kinds of application specific processing that is accessible
from all Endpoint instances of the same logical endpoint via the EndpointConfig object.

3.1.7. Customizing Endpoint Creation

The developer may control the creation of endpoint instances by supplying a
ServerEndpointConfig.Configurator object that overrides the getEndpointInstance() call. The
implementation must call this method each time a new client connects to the logical endpoint
[WSC-3.1.7-1]. The platform default implementation of this method is to return a new instance of
the endpoint class each time it is called [WSC-3.1.7-2].

In this way, developers may deploy endpoints in such a way that only one instance of the endpoint
class is instantiated for all the client connections to the logical endpoints. In this case, developers
are cautioned that such a 'singleton' instance of the endpoint class will have to program with
concurrent calling threads in mind, for example, if two different clients send a message at the same
time.

3.2. Client Configuration
In order to connect a WebSocket client endpoint to its corresponding WebSocket server endpoint,
the implementation requires configuration information. Aside from the list of encoders and
decoders, the Jakarta WebSocket API needs the following attributes:

3.2.1. Subprotocols

The default client configuration uses the developer provided list of subprotocols, to send in order of
preference, the names of the subprotocols it would like to use in the opening handshake it
formulates [WSC-3.2.1-1].

3.2.2. Extensions

The default client configuration must use the developer provided list of extensions to send, in order
of preference, the extensions, including parameters, that it would like to use in the opening
handshake it formulates [WSC-3.2.2-1].

3.2.3. SSLContext

The default client configuration uses the developer provided SSLContext to establish a secure
WebSocket (wss) connection or an insecure WebSocket (ws) connection if the provided SSLContext is
null. If there is an existing connection to the server that uses the same SSLContext and that
connection supports multiplexing WebSocket connections then the container may choose to re-use
that connection rather than creating a new one. Containers may provide container specific

16



configuration to control this behaviour.

3.2.4. Client Configuration Modification

Some clients may wish to adapt the way in which the client side formulates the opening handshake
interaction with the server. Developers may provide their own implementations of
ClientEndpointConfig.Configurator which override the default behavior of the underlying
implementation in order to customize it to suit a particular application’s needs.

17



Chapter 4. Annotations
This section contains a full specification of the semantics of the annotations in the Jakarta
WebSocket API.

4.1. @ServerEndpoint
This class level annotation signifies that the Java class it decorates must be deployed by the
implementation as a WebSocket server endpoint and made available in the URI-space of the
WebSocket implementation [WSC-4.1-1]. The class must be public, concrete, and have a public no-
args constructor. The class may or may not be final, and may or may not have final methods.

4.1.1. value

The value attribute must be a Java string that is a partial URI or URI-template (level-1), with a
leading '/'. For a definition of URI-templates, see RFC 6570 (Gregorio et al. 2012). The
implementation uses the value attribute to deploy the endpoint to the URI space of the WebSocket
implementation. The implementation must treat the value as relative to the root URI of the
WebSocket implementation in determining a match against the request URI of an incoming opening
handshake request [WSC-4.1.1-2]. The semantics of matching for annotated endpoints is the same as
was defined in the previous chapter. The value attribute is mandatory; the implementation must
reject a missing or malformed path at deployment time [WSC-4.1.1-3].

For example,

@ServerEndpoint("/bookings/{guest-id}")
public class BookingServer {
    @OnMessage
    public void processBookingRequest(
        @PathParam("guest-id") String guestID,
        String message,
        Session session) {
        // process booking from the given guest here
    }
}

In this case, a client will be able to connect to this endpoint with any of the URIs

• /bookings/JohnSmith

• /bookings/SallyBrown

• /bookings/MadisonWatson

However, were the endpoint annotation to be @ServerEndpoint("/bookings/SallyBrown"), then
only a client request to /bookings/SallyBrown would be able to connect to this WebSocket
endpoint.

If URI-templates are used in the value attribute, the developer may retrieve the variable path

18



segments using the @PathParam annotation, as described below.

Applications that contain more than one annotated endpoint may inadvertently use the same
relative URI. The WebSocket implementation must reject such an application at deployment time
with an informative error message that there is a duplicate path that it cannot resolve [WSC-4.1.1-
4].

Applications may contain an endpoint mapped to a path that is an expanded form of a URI template
that is used by another endpoint in the same application. In this case, the application is valid. Please
refer to the previous chapter for a definition of how to resolve the best match in this type of
situation.

Future versions of the specification may allow higher levels of URI-templates.

4.1.2. encoders

The encoders attribute contains a (possibly empty) list of Java classes that are to act as encoder
components for this endpoint. These classes must implement some form of the Encoder interface,
have public no-arg constructors and be visible within the classpath of the application that this
WebSocket endpoint is part of. The implementation must create a new instance of each encoder per
connection per endpoint which guarantees no two threads are in the encoder at the same time.
When sending an application object using the RemoteEndpoint API that is of a type that matches
(same class or a sub-class) the parameterized type of the Encoder, the implementation must attempt
to encode the object using the matching Encoder [WSC-4.1.2-1].

4.1.3. decoders

The decoders attribute contains a (possibly empty) list of Java classes that are to act as decoder
components for this endpoint. These classes must implement some form of the Decoder interface,
have public no-arg constructors and be visible within the classpath of the application that this
WebSocket endpoint is part of. The implementation must create a new instance of each decoder per
connection per endpoint. The implementation must attempt to decode WebSocket messages using
the decoder in the list appropriate to the native WebSocket message type and pass the message in
decoded object form to the WebSocket endpoint [WSC-4.1.3-1]. On Decoder implementations that
have it, the implementation must use the willDecode() method on the decoder to determine if the
Decoder will match the incoming message [WSC-4.1.3-2].

4.1.4. subprotocols

The subprotocols parameter contains a (possibly empty) list of string names of the subprotocols
that this endpoint supports. The implementation must use this list in the opening handshake to
negotiate the desired subprotocol to use for the connection it establishes [WSC-4.1.4-1].

4.1.5. configurator

The optional configurator attribute allows the developer to indicate that they would like the
WebSocket implementation to use a developer provided implementation of
ServerEndpointConfig.Configurator. If one is supplied, the WebSocket implementation must use
this when configuring the endpoint [WSC-4.1.5-1]. The developer may use this technique to share

19



state across all instances of the endpoint in addition to customizing the opening handshake.

4.2. @ClientEndpoint
This class level annotation signifies that the Java class it decorates is to be deployed as a WebSocket
client endpoint that will connect to a WebSocket endpoint residing on a WebSocket server. The class
must have a public no-args constructor, and additionally may conform to one of the types listed in
Chapter 7.

4.2.1. encoders

The encoders parameter contains a (possibly empty) list of Java classes that are to act as encoder
components for this endpoint. These classes must implement some form of the Encoder interface,
have public no-arg constructors and be visible within the classpath of the application that this
WebSocket endpoint is part of. The implementation must create a new instance of each encoder per
connection per endpoint which guarantees no two threads are in the encoder at the same time.
When sending an application object using the RemoteEndpoint API that is of a type that matches
(same class or a sub-class) the parameterized type of the Encoder, the implementation must attempt
to encode the object using the matching Encoder[WSC-4.2.1-1].

4.2.2. decoders

The decoders parameter contains a (possibly empty) list of Java classes that are to act as decoder
components for this endpoint. These classes must implement some form of the Decoder interface,
have public no-arg constructors and be visible within the classpath of the application that this
WebSocket endpoint is part of. The implementation must create a new instance of each decoder per
connection per endpoint. The implementation must attempt to decode WebSocket messages using
the first appropriate decoder in the list and pass the message in decoded object form to the
WebSocket endpoint [WSC-4.2.2-1]. If the Decoder implementation has the method, the
implementation must use the willDecode() method on the decoder to determine if the Decoder
will match the incoming message [WSC-4.2.2-2].

4.2.3. configurator

The optional configurator attribute allows the developer to indicate that they would like the
WebSocket implementation to use a developer provided implementation of
ClientEndpointConfig.Configurator. If one is supplied, the WebSocket implementation must use
this when configuring the endpoint [4.2.3-1]. The developer may use this technique to share state
across all instances of the endpoint in addition to customizing the opening handshake.

4.2.4. subprotocols

The subprotocols parameter contains a (possibly empty) list of string names of the subprotocols
that this endpoint is willing to support. The implementation must use this list in the opening
handshake to negotiate the desired subprotocol to use for the connection it establishes [WSC-4.2.4-
1].

20



4.3. @PathParam
This annotation is used to annotate one or more parameters of methods on an annotated endpoint
class decorated with any of the annotations @OnMessage, @OnError, @OnOpen, @OnClose. The
allowed types for these parameters are String, any Java primitive type, or boxed version thereof.
Any other type annotated with this annotation is an error that the implementation must report at
deployment time [WSC-4.3-1]. The value attribute of this annotation must be present otherwise the
implementation must throw an error [WSC-4.3-2]. If the value attribute of this annotation matches
the variable name of an element of the URI-template used in the @ServerEndpoint annotation that
annotates this annotated endpoint, then the implementation must associate the value of the
parameter it annotates with the value of the path segment of the request URI to which the calling
WebSocket frame is connected when the method is called [WSC-4.3-3]. Otherwise, the value of the
String parameter annotated by this annotation must be set to null by the implementation. The
association must follow these rules:

• if the parameter is a String, the container must use the value of the path segment [WSC-4.3-4].

• if the parameter is a Java primitive type or boxed version thereof, the container must use the
path segment string to construct the type with the same result as if it had used the public one
argument String constructor to obtain the boxed type, and reduced to its primitive type if
necessary [WSC-4.3-5].

If the container cannot decode the path segment appropriately to the annotated path parameter,
then the container must raise an DecodeException to the error handling method of the WebSocket
containing the path segment [WSC-4.3-6].

For example,

@ServerEndpoint("/bookings/{guest-id}")
public class BookingServer {
    @OnMessage
    public void processBookingRequest(
        @PathParam("guest-id") String guestID,
        String message,
        Session session) {
        // process booking from the given guest here
    }
}

In this example, if a client connects to this endpoint with the URI /bookings/JohnSmith, then the
value of the guestID parameter will be "JohnSmith".

Here is an example where the path parameter is an Integer:

@ServerEndpoint("/rewards/{vip-level}")
public class RewardServer {
    @OnMessage
    public void processReward(
        @PathParam("vip-level") Integer vipLevel,

21



        String message, Session session) {
        // process reward here
    }
}

4.4. @OnOpen
This annotation may be used on certain methods of a Java class annotated with @ServerEndpoint
or @ClientEndpoint. The annotation defines that the decorated method be called whenever a new
client has connected to this endpoint. The container notifies the method after the connection has
been established [WSC-4.4-1]. The decorated method can only have an optional Session parameter,
an optional EndpointConfig parameter and zero to n parameters (of type String, any Java
primitive type, or boxed version thereof) annotated with a @PathParam annotation as parameters.
If the Session parameter is present, the implementation must pass in the newly created Session
corresponding to the new connection [WSC-4.4-2].

Any Java class using this annotation on a method that does not follow these rules, or that uses this
annotation on more than one method must not be deployed by the implementation and the error
must be reported to the deployer [WSC-4.4-3].

4.5. @OnClose
This annotation may be used on certain methods of a Java class annotated with @ServerEndpoint
or @ClientEndpoint. The annotation defines that the decorated method be called whenever a
remote peer is about to be disconnected from this endpoint, whether that process is initiated by the
remote peer, by the local container or by a call to session.close(). The container notifies the
method before the connection is brought down [WSC-4.5-1]. The decorated method can only have
optional Session parameter, optional CloseReason parameter and zero to n parameters (of type
String, any Java primitive type, or boxed version thereof) annotated with a @PathParam
annotation as parameters. If the Session parameter is present, the implementation must pass in the
about-to-be ended Session corresponding to the connection [WSC-4.5-2]. If the method itself throws
an error, the implementation must pass this error to the onError() method of the endpoint
together with the session [WSC-4.5-3].

Any Java class using this annotation on a method that does not follow these rules, or that uses this
annotation on more than one method must not be deployed by the implementation and the error
must be reported to the deployer [WSC-4.5-4].

4.6. @OnError
This annotation may be used on certain methods of a Java class annotated with @ServerEndpoint
or @ClientEndpoint. The annotation defines that the decorated method be called whenever an
error is generated on any of the connections to this endpoint. The decorated method can only have
optional Session parameter, mandatory Throwable parameter and zero to n parameters (of type
String, any Java primitive type, or boxed version thereof) annotated with a @PathParam
annotation as parameters. If the Session parameter is present, the implementation must pass in the
Session in which the error occurred to the connection [WSC-4.6-1]. The container must pass the

22



error as the Throwable parameter to this method [WSC-4.6-2].

Any Java class using this annotation on a method that does not follow these rules, or that uses this
annotation on more than one method must not be deployed by the implementation and the error
must be reported to the deployer [WSC-4.6-3].

4.7. @OnMessage
This annotation may be used on certain methods of a Java class annotated with @ServerEndpoint
or @ClientEndpoint. The annotation defines that the decorated method be called whenever an
incoming message is received. The method it decorates may have a number of forms for handling
text, binary or pong messages, and for sending a message back immediately that are defined in
detail in the API documentation for @OnMessage.

Any method annotated with @OnMessage that does not conform to the forms defied therein is
invalid. The WebSocket implementation must not deploy such an endpoint and must raise a
deployment error if an attempt is made to deploy such an annotated endpoint [WSC-4.7-1].

If the method uses a class equivalent of a Java primitive as a method parameter to handle whole
text messages, the implementation must use the single String parameter constructor to attempt
construct the object. If the method uses a Java primitive as a method parameter to handle whole
text messages, the implementation must attempt to construct its class equivalent as described
above, and then convert it to its primitive value [WSC-4.7-2].

If the method uses a Java primitive as a return value, the implementation must construct the text
message to send using the standard Java string representation of the Java primitive. If the method
uses a class equivalent of a Java primitive as a return value, the implementation must construct the
text message from the Java primitive equivalent as just described [WSC-4.7-3].

Each WebSocket endpoint may only have one message handling method for each of the native
WebSocket message formats: text, binary and pong. Any WebSocket endpoint that defines more
than one message handling method for any of the native WebSocket message formats is invalid. The
WebSocket implementation must not deploy such an endpoint and must raise a deployment error if
an attempt is made to deploy such an annotated endpoint [WSC-4.7-4].

4.7.1. maxMessageSize

The maxMessageSize attribute allows the developer to specify the maximum size of message in
bytes that the method it annotates will be able to process, or -1 to indicate that no maximum has
been configured. The default is -1.

Setting this attribute to a value larger than Integer.MAX_VALUE will trigger a DeploymentException
unless the JVM supports Strings (for text messages) or ByteBuffers (for binary messages) larger than
Integer.MAX_VALUE. Note that, as of Java 22, there are no plans for such support.

If an incoming message exceeds the maximum message size, the implementation must formally
close the connection with a close code of 1009 (Too Big) [WSC-4.7.1-1].

23



4.8. WebSockets and Inheritance
The WebSocket annotation behaviors defined by this specification are not passed down the Java
class inheritance hierarchy. They apply only to the Java class on which they are marked. For
example, a Java class that inherits from a Java class annotated with class level WebSocket
annotations does not itself become an annotated endpoint, unless it itself is annotated with a class
level WebSocket annotation. Similarly, subclasses of an annotated endpoint may not use method
level WebSocket annotations unless they themselves use a class level WebSocket annotation.
Subclasses that override methods annotated with WebSocket method annotations do not obtain
WebSocket callbacks unless those subclass methods themselves are marked with a method level
WebSocket annotation.

Implementations should not deploy Java classes that mistakenly mix Java inheritance with
WebSocket annotations in these ways [WSC-4.8.1].

Implementations that use archive scanning techniques to deploy endpoints on startup must filter
out subclasses of annotated endpoints, in addition to other errent endpoint definitions such as
annotated classes that are non-public when they build the list of annotated endpoints to deploy
[WSC-4.8.2].

24



Chapter 5. Exception Handling and
Threading

5.1. Threading Considerations
Implementations of the WebSocket API may employ a variety of threading strategies in order to
provide a scalable implementation. The specification aims to allow a range of strategies. However,
the implementation must fulfill certain threading requirements in order to provide the developer a
consistent threading environment for their applications.

Unless backed by a Jakarta EE component with a different lifecycle (See Chapter 7), the container
must use a unique instance of the endpoint per peer [WSC-5.1-1]. In all cases, the implementation
must not invoke an endpoint instance with more than one thread per peer at a time [WSC-5.1-2].
The implementation may not invoke the close method on an endpoint until after the open method
has completed [WSC-5.1-3].

This guarantees that a WebSocket endpoint instance is never called by more than one container
thread at a time per peer [WSC-5.1-4].

If the implementation decides to process an incoming message in parts, it must ensure that the
corresponding onMessage() calls are called sequentially, and do not interleave either with parts of
the same message or with other messages [WSC-5.1.5].

5.2. Error Handling
There are three categories of errors (checked and unchecked Java exceptions) that this specification
defines.

5.2.1. Deployment Errors

These are errors raised during the deployment of an application containing WebSocket endpoints.
Some of these errors arise as the result of a container malfunction during the deployment of the
application. For example, the container may not have sufficient computing resources to deploy the
application as specified. In this case, the container must provide an informative error message to
the developer during the deployment process [WSC-5.2.1-1]. Other errors arise as a result of a
malformed WebSocket application. Chapter 4 provides several examples of WebSocket endpoints
that are malformed. In such cases, the container must provide an informative error message to the
deployer during the deployment process [WSC-5.2.1-2].

In both cases, a deployment error raised during the deployment process must halt the deployment
of the application, any well formed endpoints deployed prior to the error being raised must be
removed from service and no more WebSocket endpoints from that application may be deployed by
the container, even if they are valid [WSC-5.2.1-3].

If the deployment error occurs under the programmatic control of the developer, for example,
when using the WebSocketContainer API to deploy a client endpoint, deployment errors must be
reported by the container to the developer by using an instance of the DeploymentException [WSC-

25



5.2.1-4]. Containers may choose the precise wording of the error message in such cases.

If the deployment error occurs while deployment is managed by the implementation, for example,
as a result of deploying a WAR file where the endpoints are deployed by the container as a result of
scanning the WAR file, the deployment error must be reported to the deployer by the
implementation as part of the container specific deployment process [WSC-5.2.1-5].

If the deployment error occurs while the web application is running (i.e. if the programmatic API is
used to add a server endpoint after the deployment phase has completed), the error must be
reported to the caller using an instance of the DeploymentException.

5.2.2. Errors Originating in WebSocket Application Code

All errors arising during the functioning of a WebSocket endpoint must be caught by the WebSocket
implementation [WSC-5.2.2-1]. Examples of these errors include checked exceptions generated by
Decoders used by the endpoint and runtime errors generated in the message handling code used
by the endpoint. If the WebSocket endpoint has provided an error handling method, either by
implementing the onError() method in the case of programmatic endpoints, or by using the
@OnError annotation in the case of annotated endpoints, the implementation must invoke the
error handling method with the error [WSC-5.2.2-2].

If the developer has not provided an error handling method on an endpoint that is generating
errors, this indicates to the implementation that the developer does not wish to handle such errors.
In these cases, the container must make this information available for later analysis, for example
by logging it [WSC-5.2.2-3].

If the error handling method of an endpoint itself is generating runtime errors, the container must
make this information available for later analysis [WSC-5.2.2-4].

5.2.3. Errors Originating in the Container and/or Underlying Connection

A wide variety of runtime errors may occur during the functioning of an endpoint. These may
including broken underlying connections, occasional communication errors handling incoming
and outgoing messages, or fatal errors communicating with a peer. Implementations or their
administrators judging such errors to be fatal to the correct functioning of the endpoint may close
the endpoint connection, making an attempt to informing both participants using the onClose()
method. Containers judging such errors to be non-fatal to the correct functioning of the endpoint
may allow the endpoint to continue functioning, but must report the error in message processing
either as a checked exception returned by one of the send operations, or by delivering a
SessionException to the endpoint’s error handling method, if present, or by logging the error for
later analysis [WSC-5.2.3-1].

26



Chapter 6. Packaging and Deployment
Jakarta WebSocket applications are packaged using the usual conventions of the Jakarta and Java
platforms.

6.1. Client Deployment on JRE
The class files for the WebSocket application and any application resources such as Jakarta
WebSocket client applications are packaged as JAR files, along with any resources such as text or
image files that it needs.

The client container is not required to automatically scan the JAR file for WebSocket client
endpoints and deploy them.

Obtaining a reference to the WebSocketContainer using the ContainerProvider class, the
developer deploys both programmatic endpoints and annotated endpoints using the
connectToServer() APIs on the WebSocketContainer.

6.2. Application Deployment on Web Containers
The class files for the endpoints and any resources they need such as text or image files are
packaged into the Jakarta EE-defined WAR file, either directly under WEB-INF/classes or packaged
as a JAR file and located under WEB-INF/lib.

Jakarta EE containers are not required to support deployment of WebSocket endpoints if they are
not packaged in a WAR file as described above.

The Jakarta WebSocket implementation must use the web container scanning mechanism defined
in Servlet 3.0 to find annotated and programmatic endpoints contained within the WAR file at
deployment time [WSC-6.2-1]. This is done by scanning for classes annotated with
@ServerEndpoint and classes that extend Endpoint. See also Section 4.8 for potential extra steps
needed after the scan for annotated endpoints. Further, the WebSocket implementation must use
the WebSocket scanning mechanism to find implementations of the ServerApplicationConfig
interface packaged within the WAR file (or in any of its sub-JAR files) [WSC-6.2-2].

If a scan of the WAR file locates one or more ServerApplicationConfig implementations, the
WebSocket implementation must instantiate each of the ServerApplicationConfig classes it found.
For each one, it must pass the results of the scan of the archive containing it (top level WAR or
contained JAR) to its methods [WSC-6.2-4]. The set that is the union of all the results obtained by
calling the getEndpointConfigs() and getAnnotatedEndpointClasses() on the
ServerApplicationConfig classes (that is to say, the annotated endpoint classes and configuration
objects for programmatic endpoints) is the set that the WebSocket implementation must deploy
[WSC-6.2-5].

If the WAR file contains no ServerApplicationConfig implementations, it must deploy all the
annotated endpoints it located as a result of the scan [WSC-6.2-3]. Because programmatic endpoints
cannot be deployed without a corresponding ServerEndpointConfig, if there are no
ServerApplicationConfig implementations to provide these configuration objects, no

27



programmatic endpoints can be deployed.

Note: This means developers can easily deploy all the annotated endpoints in a WAR file by simply
bundling the class files for them into the WAR. This also means that programmatic endpoints cannot
be deployed using this scanning mechanism unless a suitable ServerApplicationConfig is supplied.
This also means that the developer can have precise control over which endpoints are to be deployed
from a WAR file by providing one or more ServerApplicationConfig implementation classes. This
also allows the developer to limit a potentially lengthy scanning process by excluding certain JAR files
from the scan (see Servlet 3.0, section 8.2.1). This last case may be desirable in the case of a WAR file
containing many JAR files that the developer knows do not contain any WebSocket endpoints.

6.3. Application Deployment in Standalone WebSocket
Server Containers
This specification recommends standalone WebSocket server containers (i.e. those that do not
include a Servlet container) locate any WebSocket server endpoints and ServerApplicationConfig
classes in the application bundle and deploy the set of all the server endpoints returned by the
configuration classes. However, standalone WebSocket server containers may employ other
implementation techniques to deploy endpoints if they wish.

6.4. Programmatic Server Deployment
This specification also defines a mechanism for deployment of server endpoints that does not
depend on Servlet container scanning of the application. Developers may deploy server endpoints
programmatically by using one of the addEndpoint methods of the ServerContainer interface.

Versions of this specification before 2.1 restricted the programmatic deployment of server
endpoints to the application deployment phase of an application. As of version 2.1, this restriction
no longer applies.

When running on the web container, the addEndpoint methods may be called from a
jakarta.servlet.ServletContextListener provided by the developer and configured in the
deployment descriptor of the web application. The WebSocket implementation must make the
ServerContainer instance corresponding to this application available to the developer as a
ServletContext attribute registered under the name jakarta.websocket.server.ServerContainer.

When running on a standalone container, the developer will need to utilize whatever proprietary
hooks the particular container has to offer to make a ServerContainer instance available to the
developer.

It is recommended that developers use either the programmatic deployment API, or base their
application on the scanning and ServerApplicationConfig mechanism, but not mix both methods.
Developers can suppress a deployment by scan of the endpoints in the WAR file by providing a
ServerApplicationConfig that returns empty sets from its methods.

If however, the developer does mix both modes of deployment, it is possible in the case of
annotated endpoints, for the same annotated endpoint to be submitted twice for deployment, once
as a result of a scan of the WAR file, and once by means of the developer calling the programmatic

28



deployment API. In this case of an attempt to deploy the same annotated endpoint class more than
once, the WebSocket implementation must only deploy the annotated endpoint once, and ignore the
duplicate submission.

6.5. WebSocket Server Paths
WebSocket implementations that include server functionality must define a root or the URI space
for WebSockets. Called the the WebSocket root, it is the URI to which all the relative WebSocket
paths in the same application are relative. If the WebSocket server does not include the Servlet API,
the WebSocket server may choose WebSocket root itself. If the WebSocket server includes the
Jakarta Servlet API, the WebSocket root must be the same as the Servlet context root of the web
application [WSC-6.4-1].

6.6. Platform Versions
The minimum versions of the platforms are:

• Java SE version 8, for the Jakarta WebSocket Client API [WSC-6.5-1].

• Jakarta EE version 11, for the Jakarta WebSocket Server API [WSC-6.5-2].

29



Chapter 7. Jakarta EE Environment

7.1. Jakarta EE Environment
When supported on the Jakarta EE platform, there are some additional requirements to support
WebSocket applications.

7.1.1. WebSocket Endpoints and Dependency Injection

WebSocket endpoints running in the Jakarta EE platform must have full dependency injection
support as described in the Jakarta Contexts and Dependency Injection specification (Jakarta CDI
Team, 2020). WebSocket implementations part of the Jakarta EE platform are required to support
field, method, and constructor injection using the jakarta.inject.Inject annotation into all
WebSocket endpoint classes, as well as the use of interceptors for these classes [WSC-7.1.1-1]. The
details of this requirement are laid out in the Jakarta EE Platform Specification (Jakarta EE Platform
Team, 2020), section EE.5.2.5, and a useful guide for implementations to meet the requirement is
location in section EE.5.24.

7.2. Relationship with Http Session and Authenticated
State
It is often useful for developers who embed WebSocket server endpoints into a larger web
application to be able to share information on a per client basis between the web resources (JSPs,
JSFs, Servlets for example) and the WebSocket endpoints servicing that client. Because WebSocket
connections are initiated with an http request, there is an association between the HttpSession
under which a client is operating and any WebSockets that are established within that HttpSession.
The API allows access in the opening handshake to the unique HttpSession corresponding to that
same client [WSC-7.2-1].

Similarly, if the opening handshake request is already authenticated with the server, the opening
handshake API allows the developer to query the user Principal of the request. If the connection is
established with the requesting client, the WebSocket implementation considers the user Principal
for the associated WebSocket Session to be the user Principal that was present on the opening
handshake [WSC-7.2-2].

If a WebSocket endpoint has a requirement to interact with the HTTP session outside of the opening
handshake, then the developer may call HttpSession.getAccessor() during the opening handshake
and then use the provided Accessor instance to interact with the HttpSession until the session is
invalidated or the session’s ID is changed.

In the case where a WebSocket endpoint is a protected resource in the web application (see Chapter
8), that is to say, requires an authorized user to access it, then the WebSocket implementation must
ensure that the WebSocket endpoint does not remain connected to its peer after the underlying
implementation has decided the authenticated identity is no longer valid [WSC-7.2-3]. This may
happen, for example, if the user logs out of the containing web application, or if the authentication
times out or is invalidated for some other reason. In this situation, the WebSocket implementation

30



must immediately close the connection using the WebSocket close status code 1008 [WSC-7.2-3].

On the other hand, if the WebSocket endpoint is not a protected resource in the web application,
then the user identity under which an opening handshake established the connection may become
invalid or change during the operation of the WebSocket without the WebSocket implementation
needing to close the connection.

31



Chapter 8. Server Security
WebSocket endpoints are secured using the web container security model. The goal of this is to
make it easy for a WebSocket developer to declare whether access to a WebSocket server endpoint
needs to be authenticated, who can access it, and if it needs an encrypted connection or not. A
WebSocket which is mapped to a given ws:// URI (as described in Chapter 3 and Chapter 4) is
protected in the deployment descriptor with a listing to a http:// URI with same hostname, port and
path since this is the URL of its opening handshake. Accordingly, WebSocket developers may assign
an authentication scheme, user roles granted access and transport guarantee to their WebSocket
endpoints.

8.1. Authentication of Websockets
This specification does not define a mechanism by which WebSockets themselves can be
authenticated. Rather, by building on the Servlet defined security mechanism, a WebSocket that
requires authentication must rely on the opening handshake request that seeks to initiate a
connection to be previously authenticated. Typically, this will be performed by an HTTP
authentication (perhaps basic or form-based) in the web application containing the WebSocket
prior to the opening handshake to the WebSocket.

If a client sends an unauthenticated opening handshake request for a WebSocket that is protected
by the security mechanism, the WebSocket implementation must return a 401 (Unauthorized)
response to the opening handshake request and may not initiate a WebSocket connection [WSC-8.1-
1].

8.2. Authorization of Websockets
A WebSocket’s authorization may be set by adding a <security-constraint> element to the web.xml
of the web application in which it is packaged. The <url-pattern> used in the security constraint
must be used by the container to match the request URI of the opening handshake of the WebSocket
[WSC-8.2-1]. The implementation must interpret any http-method other than GET (or the default,
missing) as not applying to the WebSocket [WSC-8.2-2].

8.3. Transport Guarantee
A transport guarantee of NONE must be interpreted by the container as allowing unencrypted ws://
connections to the WebSocket [WSC-8.3-1]. A transport guarantee of CONFIDENTIAL must be
interpreted by the implementation as only allowing access to the WebSocket over an encrypted
(wss://) connection [WSC-8.3-2]. This may require a pre-authenticated request.

8.4. Example
This example snippet from a larger web.xml deployment descriptor shows a security constraint for
a WebSocket endpoint. In the example, the WebSocket endpoint which matches on an incoming
request URI of '/quotes/live' relative to the context root of the containing web application is
protected such that it may only be accessed using wss://, and is available only to authenticated

32



users who belong either to the GOLD_MEMBER or PLATINUM_MEMBER roles.

<security-constraint>
    <web-resource-collection>
        <web-resource-name>
            LiveQuoteWebSocket
        </web-resource-name>
        <description>
            Security constraint for
            live quote WebSocket endpoint
        </description>
        <url-pattern>/quotes/live</url-pattern>
    </web-resource-collection>
    <auth-constraint>
        <description>
            definition of which roles
            may access the quote endpoint
        </description>
        <role-name>GOLD_MEMBER</role-name>
        <role-name>PLATINUM_MEMBER</role-name>
    </auth-constraint>
    <user-data-constraint>
        <description>WSS required</description>
        <transport-guarantee>
            CONFIDENTIAL
        </transport-guarantee>
    </user-data-constraint>
</security-constraint>

33



Appendix A: Changes
This appendix lists the changes in the WebSocket specification. This appendix is non-normative.

A.1. Changes Between 2.3 and 2.2
• Issue 242 Add the X509Certificate[] getUserX509CertificateChain() method to HandshakeRequest

so the client certificate chain, if present, is available during the WebSocket handshake.

• Issue 417 Clarify that ClientEndPoint.Configurator.afterResponse(HandshakeResponse) is to be
called after both successful and unsuccessful WebSocket handshakes.

• Issue 517 Clarify that RemoteEndpoint.Async.setSendTimeout(long) applies per websocket
message

A.2. Changes Between 2.2 and 2.1
• Issue 176 Clarify the responsibilities for sending ping messages.

• Issue 185 Add the getSession() method to SendResult.

• Issue 274 Clarify the behaviour if @OnMessage.maxMessageSize it is set to a value larger than
Integer.MAX_VALUE.

A.3. Changes Between 2.1 and 2.0
• Issue 190 and Issue 192 Clarify that once the container has identified a MessageHandler for a

message, the MessageHandler is used for the entirety of the message irrespective of any
subsequent changes to the MessageHandlers configured for the Session.

• Issue 207 Add a getter for the default platform configurator.

• Issue 210 Provide an API for client-side TLS configuration.

• Issue 211 Remove the restriction that, in a Jakarta web container environment, endpoints can
only registered during the deployment of the web application. Also add a new method,
ServerContainer.upgradeHttpToWebSocket() that allows a web application to programmatically
dispatch a request to a WebSocket endpoint.

• Issue 228 Clarify the expected behaviour for Session.getRequestURI(). The full URI should be
returned.

• Issue 235 Clarify the expected handling of user properties.

• Issue 382 Clarify that a zero or negative value disables the session idle timeout and improve the
language used in the Javadoc for the other timeouts.

• Removed the copy of the jakarta.websocket.* classes from the jakarta.websocket-api jar and
replaced the copy with a dependency on the jakarta.websocket-client-api jar.

• Added JPMS module descriptors that define the client module name as jakarta.websocket.client
and the server module name as jakarta.websocket with the server module depending on the
client module.

34

https://github.com/jakartaee/websocket/issues/242
https://github.com/jakartaee/websocket/issues/417
https://github.com/jakartaee/websocket/issues/517
https://github.com/jakartaee/websocket/issues/176
https://github.com/jakartaee/websocket/issues/185
https://github.com/jakartaee/websocket/issues/274
https://github.com/eclipse-ee4j/websocket-api/issues/190
https://github.com/eclipse-ee4j/websocket-api/issues/192
https://github.com/eclipse-ee4j/websocket-api/issues/207
https://github.com/eclipse-ee4j/websocket-api/issues/210
https://github.com/eclipse-ee4j/websocket-api/issues/211
https://github.com/eclipse-ee4j/websocket-api/issues/228
https://github.com/eclipse-ee4j/websocket-api/issues/235
https://github.com/eclipse-ee4j/websocket-api/issues/382


A.4. Changes Between 2.0 and JSR-356
• Pull Request 312 Convert from javax.* to jakarta.*.

• Pull Request 315 Update specification document for move to Jakarta EE plus a large number of
smaller tweaks and editorial improvements.

35

https://github.com/eclipse-ee4j/websocket-api/pull/312
https://github.com/eclipse-ee4j/websocket-api/pull/315


Bibliography
[1] I. Fette and A. Melnikov. RFC 6455: The WebSocket Protocol. RFC, IETF, December 2011. See
http://www.ietf.org/rfc/rfc6455.txt.

[2] Ian Hickson. The WebSocket API. Note, W3C, December 2012. See http://dev.w3.org/html5/
websockets/.

[3] S. Bradner. RFC 2119: Keywords for use in RFCs to Indicate Requirement Levels. RFC, IETF,
March 1997. See http://www.ietf.org/rfc/rfc2119.txt.

[4] J. Gregorio, R. Fielding, M. Hadley, M. Nottingham, and D. Orchard. RFC 6570: URI Template. RFC,
IETF, March 2012. See http://www.ietf.org/rfc/rfc6570.txt.

[5] Jakarta CDI Team. Jakarta Contexts and Dependency Injection 3.0. Eclipse Foundation, 2020. See
https://jakarta.ee/specifications/cdi/3.0/.

[6] Jakarta EE Platform Team. Jakarta EE Platform Specification 9. Eclipse Foundation, 2020. See
https://jakarta.ee/specifications/platform/9/.

[7] T. Berners-Lee, R. Fielding and L. Masinter. RFC 3986: Uniform Resource Identifier (URI): Generic
Syntax, IETF, January 2005. See https://tools.ietf.org/rfc/rfc3986.txt

36

http://www.ietf.org/rfc/rfc6455.txt
http://dev.w3.org/html5/websockets/
http://dev.w3.org/html5/websockets/
http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc6570.txt
https://jakarta.ee/specifications/cdi/3.0/
https://jakarta.ee/specifications/platform/9/
https://tools.ietf.org/rfc/rfc3986.txt

	Jakarta WebSocket Specification
	Table of Contents
	Eclipse Foundation Specification License - v1.1
	Disclaimers
	Jakarta WebSocket Specification, Version 2.3
	Chapter 1. Introduction
	1.1. Purpose of this document
	1.2. Goals of the Specification
	1.3. Terminology used throughout the Specification
	1.4. Specification Conventions
	1.5. Previous work in the JCP

	Chapter 2. Applications
	2.1. API Overview
	2.1.1. Endpoint Lifecycle
	2.1.2. Sessions
	2.1.3. Receiving Messages
	2.1.4. Sending Messages
	2.1.5. Closing Connections
	2.1.6. Clients and Servers
	2.1.7. WebSocketContainers

	2.2. Endpoints using WebSocket Annotations
	2.2.1. Annotated Endpoints
	2.2.2. WebSocket Lifecycle
	2.2.3. Handling Messages
	2.2.4. Handling Errors
	2.2.5. Pings and Pongs

	2.3. Jakarta WebSocket Client API

	Chapter 3. Configuration
	3.1. Server Configurations
	3.1.1. URI Mapping
	3.1.2. Subprotocol Negotiation
	3.1.3. Extension Modification
	3.1.4. Origin Check
	3.1.5. Handshake Modification
	3.1.6. Custom State or Processing Across Server Endpoint Instances
	3.1.7. Customizing Endpoint Creation

	3.2. Client Configuration
	3.2.1. Subprotocols
	3.2.2. Extensions
	3.2.3. SSLContext
	3.2.4. Client Configuration Modification


	Chapter 4. Annotations
	4.1. @ServerEndpoint
	4.1.1. value
	4.1.2. encoders
	4.1.3. decoders
	4.1.4. subprotocols
	4.1.5. configurator

	4.2. @ClientEndpoint
	4.2.1. encoders
	4.2.2. decoders
	4.2.3. configurator
	4.2.4. subprotocols

	4.3. @PathParam
	4.4. @OnOpen
	4.5. @OnClose
	4.6. @OnError
	4.7. @OnMessage
	4.7.1. maxMessageSize

	4.8. WebSockets and Inheritance

	Chapter 5. Exception Handling and Threading
	5.1. Threading Considerations
	5.2. Error Handling
	5.2.1. Deployment Errors
	5.2.2. Errors Originating in WebSocket Application Code
	5.2.3. Errors Originating in the Container and/or Underlying Connection


	Chapter 6. Packaging and Deployment
	6.1. Client Deployment on JRE
	6.2. Application Deployment on Web Containers
	6.3. Application Deployment in Standalone WebSocket Server Containers
	6.4. Programmatic Server Deployment
	6.5. WebSocket Server Paths
	6.6. Platform Versions

	Chapter 7. Jakarta EE Environment
	7.1. Jakarta EE Environment
	7.1.1. WebSocket Endpoints and Dependency Injection

	7.2. Relationship with Http Session and Authenticated State

	Chapter 8. Server Security
	8.1. Authentication of Websockets
	8.2. Authorization of Websockets
	8.3. Transport Guarantee
	8.4. Example

	Appendix A: Changes
	A.1. Changes Between 2.3 and 2.2
	A.2. Changes Between 2.2 and 2.1
	A.3. Changes Between 2.1 and 2.0
	A.4. Changes Between 2.0 and JSR-356

	Bibliography


