\
JAKARTA EE

Jakarta Standard Tag Library

Jakarta Standard Tag Library Team, https://projects.eclipse.org/projects/eedj.jstl

2.0, October 19, 2020: Final

Table of Contents

Copyright
Eclipse Foundation Specification License
Disclaimers
Preface
Related Documentation
Typographical Conventions
Acknowledgments
Comments
1. Introduction
1.1. Goals
1.2. Multiple Tag Libraries
1.3. Container Requirement
2. Conventions
2.1. How Actions are Documented
2.1.1. Attributes
2.1.2. Syntax Notation
2.2. Scoped Variables
2.2.1. var and scope
2.2.2. Visibility
2.3. Static vs Dynamic Attribute Values
2.4. White Spaces
2.5. Body Content
2.6. Naming
2.7. Errors and Exceptions
2.8. Configuration Data
2.9. Default Values
3. Expression Language Overview
3.1. Expressions and Attribute Values

3.2. Accessing Application Data

3.3. Nested Properties and Accessing Collections

3.4. Operators
3.5. Automatic Type Conversion
3.6. Default Values
4. General-Purpose Actions: core tag library
4.1. Overview

4.2. <c:out>

5 M OO R

10
40
41
41
12
42
43
43
43
43
14
14
45
45
15
45
47
48
49
49
49
20
21
21
22
23
23
26

4.3. <c:set>
4.4, <ciremove>
4.5. <c:catch>
. Conditional Actions: core tag library
5.1. Overview
5.2. Custom Logic Actions
5.3. <c:if>
5.4. <c:choose>
5.5. <c:when>
5.6. <c:otherwise>
. Iterator Actions: core tag library
6.1. Overview
6.1.1. Collections of Objects to Iterate Over
6.1.2. Map
6.1.3. Iteration Status
6.1.4. Range Attributes
6.1.5. Tag Collaboration
6.1.6. Deferred Values
6.2. <c:forEach>
6.3. <c:forTokens>
. URL Related Actions: core tag library
7.1. Hypertext Links
7.2. Importing Resources
7.2.1. URL
7.2.2. Exporting an object: String or Reader
7.2.3. URL Encoding
7.2.4. Networking Properties
7.3. HTTP Redirect
7.4. <c:import>
7.5. <c:url>
7.6. <c:redirect>
7.7. <c:param>
. Internationalization (i18n) Actions: 118n-capable formatting tag library
8.1. Overview
8.1.1. <fmt:message>
8.2. 118n Localization Context
8.2.1. Preferred Locales

8.3. Determinining the Resource Bundle for an i18n Localization Context

28
31
32
33
33
34
36
37
38
39
40
40
41
Al
4l
A2
42
43
44
48
50
50
51
51
52
52
52
53
54
59
61
63
65
65
66
67
68
69

8.3.1. Resource Bundle Lookup 69

8.3.2. Resource Bundle Determination Algorithm 70
8.3.3. Examples 70
8.4. Response Encoding 72
8.5. <fmt:setLocale> 74
8.6. <fmt:bundle> 76
8.7. <fmt:setBundle> 78
8.8. <fmt:message> 80
8.9. <fmt:param> 83
8.10. <fmt:requestEncoding> 84
8.11. Configuration Settings 84
8.11.1. Locale 85
8.11.2. Fallback Locale 85
8.11.3. 118n Localization Context 85
9. Formatting Actions: 118n-capable formatting tag library 87
9.1. Overview 87
9.1.1. Formatting Numbers, Currencies, and Percentages 87
9.1.2. Formatting Dates and Times 88
9.2. Formatting Locale 89
9.3. Establishing a Formatting Locale 90
9.3.1. Locales Available for Formatting Actions 90
9.3.2. Locale Lookup 90
9.3.3. Formatting Locale Lookup Algorithm 91
9.4. Time Zone 91
9.5. <fmt:timeZone> 92
9.6. <fmt:setTimeZone> 92
9.7. <fmt:formatNumber> 94
9.8. <fmt:parseNumber> 98
9.9. <fmt:formatDate> 101
9.10. <fmt:parseDate> 104
9.11. Configuration Settings 107
9.11.1. TimeZone 107
10. SQL Actions: sql tag library 108
10.1. Overview 108
10.1.1. Data Source 108
10.1.2. Querying a Database 109
10.1.3. Updating a Database 110

10.1.4. SQL Statement Parameters A11

10.2.
10.3.
10.4.
10.5.
10.6.
10.7.
10.8.
10.9.

Database Access
<sql:query>
<sql:update>
<sql:transaction>
<sql:setDataSource>
<sql:param>
<sql.dateParam>

Configuration Settings

10.9.1. DataSource
10.9.2. MaxRows

11. XML Core Actions: xml tag library

11.1.

Overview

11.1.1. XPath Context
11.1.2. XPath Variable Bindings
11.1.3. Java to XPath Type Mappings

11.1.4. XPath to Java Type Mappings
11.1.5. The select Attribute
11.1.6. Default Context Node

11.1.7. Resources Access
11.1.8. Core Actions

11.2.
11.3.
11.4.

12. XML Flow Control Actions: xml tag library

12.1.
12.2.
12.3.
12.4.
12.5.
12.6.

<X:parse>
<x:.out>

<x:.set>

Overview
<x:if>
<x.choose>
<x:when>
<x:.otherwise>

<x:forEach>

13. XML Transform Actions: xml tag library

13.1.
13.2.
13.3.
14. Tag
14.1.

Overview
<x:transform>
<X:param>
Library Validators

Overview

15. Functions: function tag library

15.1.

Overview

111
113
116
118
120
121
123
124
124
124
425
125
125
125
126
127
127
128
128
128
130
132
134
135
135
137
139
140
141
142
144
144
145
148
150
150
153
153

15.1.1. The length Function
15.1.2. String Manipulation Functions

15.2. fn:contains

15.3. fn:containsignoreCase
15.4. fn:endsWith

15.5. fn:escapeXml
15.6. fn:indexOf
15.7. fn:join

15.8. fn:length
15.9. fn:replace

15.10.
15.11.
15.12.
15.13.
15.14.
15.15.
15.16.
15.17.

fn:split
fn:startsWith
fn:substring
fn:substringAfter
fn:substringBefore
fn:toLowerCase
fn:toUpperCase

fn:trim

Appendix A: Compatibility & Migration

A.l. Java EE Backwards Compatibility

Appendix B: Changes

B.1. Changed between Jakarta Standard Tag Library 2.0 and JSR-52

153
153
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
172
173
173

Preface

Specification: Jakarta Standard Tag Library
Version: 2.0
Status: Final

Release: October 19, 2020

Final Jakarta Standard Tag LibraryEEE1

Eclipse Foundation Specification License
Copyright

Copyright (c) 2018, 2020 Eclipse Foundation.

Eclipse Foundation Specification License

By using and/or copying this document, or the Eclipse Foundation document from which this statement
is linked, you (the licensee) agree that you have read, understood, and will comply with the following
terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or portions
thereof, that you use:

¥ link or URL to the original Eclipse Foundation document.

¥ All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse Foundation,
Inc. <<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be
provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to
this license, except anyone may prepare and distribute derivative works and portions of this document
in software that implements the specification, in supporting materials accompanying such software,
and in documentation of such software, PROVIDED that all such works include the notice below.
HOWEVER, the publication of derivative works of this document for use as a technical specification is
expressly prohibited.

The notice is:

"Copyright (c) 2018 Eclipse Foundation. This software or document includes material copied from or
derived from [title and URI of the Eclipse Foundation specification document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS 1S, AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD

2 EEEJakarta Standard Tag Library Final

Eclipse Foundation Specification License

PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

Final Jakarta Standard Tag LibraryEEE3

Preface

Preface

This is the Jakarta Standard Tag Library 2.0 specification, developed by the Jakarta Standard Tag
Library Team, https://projects.eclipse.org/projects/eedj.jstl

4 EEEJakarta Standard Tag Library Final

https://projects.eclipse.org/projects/ee4j.jstl

Related Documentation

Related Documentation

Implementors of Jakarta Standard Tag Lbrary and authors of Jakarta Server Pages may find the
following documents worth consulting for additional information:.

Jakarta Server Pages Jakarta Server Pages Project
Jakarta Server Pages Specification

Jakarta Servlet Jakarta Servlet Project
Jakarta Servlet Specification

Java?, Standard Edition, Version 8.0 API https://docs.oracle.com/javase/8/docs/api
Specification

Jakarta EE https://jakarta.ee

JavaBeans https://docs.oracle.com/javase/8/docs/technotes/

guides/beans

JDBC https://docs.oracle.com/javase/8/docs/technotes/
guides/jdbc

Java Technology and XML https://docs.oracle.com/javase/8/docs/technotes/
guides/xmi

XPath specification http://www.w3.0rg/TR/xpath

XML home page at W3C http://www.w3.org/XML

HTML home page at W3C http://www.w3.org/MarkUp

XML.org home page http://www.xml.org

Final Jakarta Standard Tag LibraryEEES

https://projects.eclipse.org/projects/ee4j.jsp
https://jakarta.ee/specifications/pages/
https://projects.eclipse.org/projects/ee4j.servlet
https://jakarta.ee/specifications/servlet/
https://docs.oracle.com/javase/8/docs/api
https://jakarta.ee
https://docs.oracle.com/javase/8/docs/technotes/guides/beans
https://docs.oracle.com/javase/8/docs/technotes/guides/beans
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc
https://docs.oracle.com/javase/8/docs/technotes/guides/xml
https://docs.oracle.com/javase/8/docs/technotes/guides/xml
http://www.w3.org/TR/xpath
http://www.w3.org/XML
http://www.w3.org/MarkUp
http://www.xml.org

Typographical Conventions

Typographical Conventions

Font Style Uses
Italic Emphasis, definition of term.
Monospace Syntax, code examples, attribute names, Java

language types, API, enumerated attribute values.

6 EEEJakarta Standard Tag Library Final

Acknowledgments

Acknowledgments

The Jakarta Standard Tag Library specification is the result of collaborative work involving many
individuals, all driven by a common goal of designing the best libraries possible for the Jakarta Server
Pages author community.

The current members of the Jakarta Standard Tag Library project in the Eclipse Foundation can be
found at the following location: https://projects.eclipse.org/projects/ee4;.jstl/who

We would like to thank all members of the JSR-52 expert group under the Java Community Process:
Nathan Abramson, Shawn Bayern, Hans Bergsten, Paul Bonfanti, Vince Bonfanti, David Brown, Larry
Cable, Tim Dawson, Morgan Delagrange, Bob Foster, David Geary, Scott Hasse, Hal Hildebrand, Jason
Hunter, Serge Knystautas, Mark Kolb, Wellington Lacerda, Jan Luehe, Geir Magnusson Jr., Dan Malks,
Craig McClanahan, Richard Morgan, Glenn Nielsen, Rickard Oberg, Joseph B. Ottinger, Eduardo Pelegri-
Llopart, Sam Pullara, Tom Reilly, Brian Robinson, Russ Ryan, Pasi Salminen, Steven Sargent, Allan
Scott, Virgil Sealy, Magnus Stenman, Gael Stevens, James Strachan, Christine Tomlinson, Norbert von
Truchsess, Keyton Weissinger, Clement Wong, Alex Yiu.

This specification was first initiated by Eduardo Pelegri-Llopart. EduardoOs leadership in making the
Java platform the best technology available for the web layer has been key in shaping the vision
behind the standard tag library.

Shawn Bayern and Hans Bergsten deserve special credit for being actively involved in all design issues
of this specification. Their vast expertise and commitment to excellence has had a profound impact in
every single aspect of this specification. Mille mercis Shawn et Hans! DonOt know how we would have
done it without you two.

Many thanks to Jan Luehe for taking ownership of the internationalization and formatting chapters of
this specification on short notice, and doing an incredible job.

Special mention to Nathan Abramson for being a driving force behind the expression language
introduced in JSTL, to James Strachan for leading the group in our understanding of XML for page
authors, and to Craig McClanahan for his help on servlet and J2EE platform related issues.

This specification has drawn a lot of its design ideas from pioneers in the field of tag libraries. We are
grateful to the Jakarta project at Apache, as well as other efforts in the industry, where projects led by
Craig McClanahan (Struts), James Strachan (XTags), Morgan Delagrange (DBTags), Tim Dawson (I18N),
Glenn Nielsen (many utility taglibs), Scott Hasse (JPath), Dmitri Plotnikov (JXPath), Pasi Salminen (O&D
Struts), have greatly influenced the design of the JSTL libraries.

The RI team composed of Shawn Bayern (lead), Nathan Abramson, Justyna Horwat, and Jan Luehe has
done a wonderful job at turning code faster than the specification could be written.

Quality has been in the capable hands of Ryan Lubke, lead of the TCK team under the Java Community
Process that also includes Lance Andersen. David GearyOs help in doing thorough reviews of the
specification was also greatly appreciated.

Final Jakarta Standard Tag LibraryEEE7

https://projects.eclipse.org/projects/ee4j.jstl/who

Acknowledgments

We are also grateful to the product team at Sun Microsystems who helped us sail efficiently through
this specification: Jim Driscoll, Karen Schaffer, George Grigoryev, Stephanie Bodoff, Vanitha
Venkatraman, Prasad Subramanian, and Xiaotan He.

Finally, weOd like to thank the community at large for their ever increasing interest in this technology.
We sure hope youQll enjoy the Jakarta Standard Tag Library.

8 EEEJakarta Standard Tag Library Final

Comments

Comments

We are interested in improving this specification and welcome your comments and suggestions. You
can email your comments to us at:

jstl-dev@eclipse.org

Final Jakarta Standard Tag LibraryEEEQ

1.1. Goals

Chapter 1. Introduction

The Jakarta Standard Tag Library provides a specification document, APl and TCK that extends the
Jakarta Server Pages specification by adding a tag library of Jakarta Server Pages tags for common

tasks, such as XML data processing, conditional execution, database access, loops and

internationalization.

1.1. Goals

The ultimate goal of the Jakarta Standard Tag Library is to help simplify Jakarta Server Pages authors'
lives.

A page author is someone who is responsible for the design of a web applicationOs presentation layer
using Jakarta Server Pages. Many page authors are not fluent in any programming language.

One of the main difficulties a page author is faced with is the need to use a scripting language (the
default being the Java programming language) to manipulate the dynamic data within a Jakarta Server
Pages page. Unfortunately, page authors often see scripting languages as complex and not very well
adapted to their needs.

The Jakarta Standard Tag Library offers the following capabilities:

¥ General-purpose actions
These actions complement the expression language by allowing a page author to easily display
expressions in the expression language, set and remove the value of Jakarta Server Pages scoped
attributes, as well as catch exceptions.

¥ Control flow actions
Tag-based control flow structures (conditionals, iterators), which are more natural to page authors.

¥ Tag library validators (TLVs)
TLVs allow projects to only allow specific tag libraries, as well as enforce Jakarta Server Pages
coding styles that are free of scripting elements.

The other key aspect of the Jakarta Standard Tag Library is that it provides standard actions and
standard Expression Language functions for functionality most often needed by page authors. These
cover the following topics:

¥ Accessing URL-based resources

¥ Internationalization (i18n) and text formatting

¥ Relational database access (SQL)

¥ XML processing

¥ String manipulation

10 EEEJakarta Standard Tag Library

Final

1.2. Multiple Tag Libraries

1.2. Multiple Tag Libraries

A tag library is a collection of actions that encapsulates functionality to be used from within a Jakarta
Server Pages page. The Jakarta Standard Tag Library includes a wide variety of actions that naturally
fit into discrete functional areas. This is why the Jakarta Standard Tag Library, although referred to as
the standard tag library (singular), is exposed via multiple tag libraries to clearly identify the
functional areas it covers, as well as to give each area its own namespace. The tables below lists these
functional areas along with the URIs used to reference the libraries. The tables also show the prefixes
used in this specification (although page authors are free to use any prefix they want).

Jakarta Standard Tag Library Tag Libraries

Functional Area URI Prefix

core http://java.sun.com/jspl/jstl/core C

XML processing http://java.sun.com/jsp/jstl/xml X

118N capable formatting http://java.sun.com/jspl/jstl/fmt fmt

relational db access (SQL) http://java.sun.com/jspl/jstl/sql sql

Functions http://java.sun.com/jsp/jstl/ fn
functions

1.3. Container Requirement

Jakarta Standard Tag Library requires a Jakarta Server Pages 3.0 web container. Please note that the
expression language is an individual specification: Jakarta Expression Language 4.0.

Final Jakarta Standard Tag LibraryEEE11

http://java.sun.com/jsp/jstl/core
http://java.sun.com/jsp/jstl/xml
http://java.sun.com/jsp/jstl/fmt
http://java.sun.com/jsp/jstl/sql
http://java.sun.com/jsp/jstl/functions
http://java.sun.com/jsp/jstl/functions

2.1. How Actions are Documented

Chapter 2. Conventions

This chapter describes the conventions used in this specification.

2.1.

How Actions are Documented

The Jakarta Standard Tag Library actions are grouped according to their functionality. These
functional groups of actions are documented in their own chapter using the following structure:

¥ Motivation
Describes the motivation for standardizing the actions.

¥ Overview
Provides an overview of the capabilities provided by the actions. Sample code featuring these
actions in their most common use cases is also provided.

¥ One section per action, with the following structure:

12 EEE

Name
Tag library prefixes are used in this specification for all references to Jakarta Standard Tag
Library actions (e.g.: <c:if> instead of <if>).

Short Description

Syntax
The syntax notation is described in ~ Syntax Notation .

Body Content

This section specifies which type of body content is supported by the action. As defined by the
Jakarta Server Pages specification, the body content type can be one of empty, JSR or
tagdependent. The section also specifies if the body content is processed by the action or is
simply ignored by the action and just written to the current JspWriter . If the body content is
processed, information is given on whether or not the body content is trimmed before the

action begins processing it.

Attributes
Details in Attributes below.

Constraints
List of additional constraints enforced by the action.

Null & Error Handling
Details on how null and empty values are processed, as well as on exceptions thrown by the
action.

Description
This section provides more details on the action.

Other sections
Other sections related to the group of actions described in the chapter may exist. These include
sections on interfaces and classes exposed by these actions.

Jakarta Standard Tag Library Final

2.2. Scoped Variables

2.1.1. Attributes

For each attribute, the following information is given: name, dynamic behavior, type, and description.

The rtexprvalue element defined in a TLD is covered in this specification with the column titled
"Dynamic" that captures the dynamic behavior of an attribute. The value can be either true or false. A

false value in the dynamic column means that only a static string value can be specified for the
attribute. A true value means that a request-time attribute value can be specified. As defined in the
Jakarta Server Pages specification, a "request-time attribute value" can be either a Java expression, an
Expression Language expression, or a value setby a <jsp:attribute>

2.1.2. Syntax Notation

[E] What is inside the square brackets is optional
{option1|option2|option3|E} Only one of the given options can be selected
value The default value

For example, in the syntax below:
<c:set var="varName" [scope="{ pagdrequest|session|application}"] value="value"/>

the attribute scope is optional. If it is specified, its value must be one of page, request, session, or
application . The default value is page.

2.2. Scoped Variables
Actions usually collaborate with their environment in implicit or explicit ways, or both.

Implicit collaboration is often done via a well defined interface that allows nested tags to work
seamlessly with the ancestor tag exposing that interface. The Jakarta Standard Tag Library iterator tags
support this mode of collaboration.

Explicit collaboration happens when a tag explicitly exposes information to its environment.
Traditionally, this has been done by exposing a scripting variable with a value assigned from a Jakarta
Server Pages scoped attribute (which was saved by the tag handler). Because of the expression
language, the need for scripting variables is significantly reduced. This is why all the Jakarta Standard
Tag Library tags expose information only as Jakarta Server Pages scoped attributes (no scripting
variable exposed). These exported Jakarta Server Pages scoped attributes are referred to as scoped
variables in this specification; this helps in preventing too much overloading of the term "attribute".

2.2.1. var and scope

The convention is to use the name var for attributes that export information. For example, the
<c:forEach> action exposes the current item of the customer collection it is iterating over in the

Final Jakarta Standard Tag LibraryEEE13

2.3. Static vs Dynamic Attribute Values

following way:

<c:forEach var="customer" items="${customers}"'>
E Current customer is <c:out value="${customer}"/>
</c:forEach>

It is important to note that a name different than id was selected to stress the fact that only a scoped
variable (Jakarta Server Pages scoped attribute) is exposed, without any scripting variable.

If the scoped variable has at-end visibility (see Visibility), the convention also establishes the attribute
scope to set the scope of the scoped variable.

The scope attribute has the semantics defined in the Jakarta Server Pages specification, and takes the
same values as the ones allowed in the <jsp:useBean>action; i.e. page, request, session, application . If no
value is specified for scope, page scope is the default unless otherwise specified.

It is also important to note, as per the Jakarta Server Pages specification, that specifying "session" scope
is only allowed if the page has sessions enabled.

If an action exposes more than one scoped variable, the main one uses attribute names var and scope,
while secondary ones have a suffix added for unique identification. For example, in the <c:forEach>
action, the var attribute exposes the current item of the iteration (main variable exposed by the
action), while the varStatus attribute exposes the current status of the iteration (secondary variable).

2.2.2. Visibility

Scoped variables exported by Jakarta Standard Tag Library actions are categorized as either nested or
at-end.

Nested scoped variables are only visible within the body of the action and are stored in "page" scope o,

The action must create the variable according to the semantics of
PageContext.setAttribute(varName,PAGE_SCOPE), and it must remove it at the end of the action
according to the semantics of PageContext.removeAttribute(varName, PAGE_SCOPE) 7

At-end scoped variables are only visible at the end of the action. Their lifecycle is the one associated
with their associated scope.

In this specification, scoped variables exposed by actions are considered at-end by default. If a scoped
variable is nested, it will be explicitly stated.

2.3. Static vs Dynamic Attribute Values

Except for the two exceptions described below, attribute values of Jakarta Standard Tag Library actions
can always be specified dynamically (see Attributes).

14 EEEJakarta Standard Tag Library Final

2.4. White Spaces

The first exception to this convention is for the select attribute of XML actions. This attribute is
reserved in the Jakarta Standard Tag Library to specify a String literal that represents an expression in
the XPath language.

The second exception is for attributes that define the name and scope of scoped variables (as
introduced in Attributes) exported by Jakarta Standard Tag Library actions.

Restricting these attributes to static values should benefit development tools, without any impediment
to page authors.

2.4. White Spaces

Following the Jakarta Server Pages specification (as well as the XML and XSLT specifications),
whitespace characters are #x20, #x9, #xD, or #xA.

2.5. Body Content

If an action accepts a body content, an empty body is always valid, unless explicitly stated otherwise.

If the body content is used to set the value of an attribute, then an empty body content sets the
attribute value to an empty string.

If a body content is trimmed prior to being processed by the action, it is trimmed as defined in method
trim() of the class java.lang.String .

2.6. Naming

The Jakarta Standard Tag Library adopts capitalization conventions of Java variables for compound
words in action and attribute names. Recommended tag prefixes are kept lowercase. Thus, we have
<sqgl:transaction> and <c:forEach>, as well as attributes such as docSystemld and varDom .

In some cases, attribute names for Jakarta Standard Tag Library actions carry conventional meanings.
For instance, var and scope discussed the var and scope attibutes. The select Attribute discusses the
select attribute used in Jakarta Standard Tag LibraryOs XML-processing tag library.

2.7. Errors and Exceptions

All syntax errors (as defined in the syntax section of each action, as well as the syntax of EL
expressions as defined in See) must be reported at translation time.

Constraints, as defined in the constraints section of each action, must also be reported at translation
time unless they operate on a dynamic attribute value, in which case errors are reported at runtime.

The conversion from a String value to the expected type of an attribute is handled according to the
rules defined in the Jakarta Server Pages specification.

Final Jakarta Standard Tag LibraryEEE15

EL-152.html#UNKNOWN

2.7. Errors and Exceptions

Since it is hard for a page author to deal with exceptions, the Jakarta Standard Tag Library tries to
avoid as many exception cases as possible, without causing other problems.

For instance, if <c:forEach> were to throw an exception when given a null value for the attribute items,
it would be impossible to easily loop over a possibly missing string array that represents check-box
selection in an HTML form (retrieved with an EL expression like ${paramValues.selections}). A better
choice is to do nothing in this case.

The conventions used in the Jakarta Standard Tag Library with respect to errors and exceptions are as
follows:
¥ scope
I Invalid value B translation time validation error
¥ var
I Empty D translation time validation error
¥ Dynamic attributes with a fixed set of valid String values:

!I' null B use the default value
A null value can therefore be used to dynamically (e.g. by request parameter), turn on or off
special features without too much work.

! Invalid value B throw an exception
If a value is provided but is not valid, itOs likely a typo or another mistake.

¥ Dynamic attributes without a fixed set of valid values:
The rules below assume that if the type of the value does not match the expected type, the EL will
have applied coercion rules to try to accomodate the input value. Moreover, if the expected type is
one of the types handled by the EL coercion rules, the EL will in most cases coerce null to an
approriate value. For instance, if the expected type is a Number , the EL will coerce a null value to 0,
if tOsBoolean it will be coerced to false.

! null B behavior specific to the action
If this rule is applied, itOs because the EL could not coerce the null into an appropriate default
value. It is therefore up to the action to deal with the null value and is documented in the "Null
& Error Handling" section of the action.

! Invalid type D throw an exception
! Invalid value B throw an exception

¥ Exceptions caused by the body content:
Always propagate, possibly after handling them (e.g. <sql:transaction>).

¥ Exceptions caused by the action itself:
Always propagate, possibly after handling them.

¥ Exceptions caused by the EL:
Always propagate.

¥ Exceptions caused by XPath:

16 EEEJakarta Standard Tag Library Final

2.8. Configuration Data

Always propagate.

Page authors may catch an exception using <c:catch>, which exposes the exception through its var
attribute. var is removed if no exception has occurred.

When this specification requires an action to throw an exception, this exception must be an instance of
jakarta.servlet.jsp.JspException or a subclass. If an action catches any exceptions that occur in its body,
its tag handler must provide the caught exception as the root cause of the JspException it re-throws.

Also, by default, Jakarta Standard Tag Library actions do not catch or otherwise handle exceptions that
occur during evaluation of their body content. If they do, it is documented in their "Null & Error
Handling" or "Description” section.

2.8. Configuration Data

Context initialization parameters (see Servlet specification) are useful to configure the behavior of
actions. For example, it is possible in the Jakarta Standard Tag Library to define the resource bundle
used by 118N actions via the deployment descriptor (web.xml) as follows:

<web-app>

<context-param>
<param-name>jakarta.servlet.jsp.jstl.fmt.localizationContext</param-name>
<param-value>com.acme.MyResources</param-value>

</context-param>

[T > T T :

</web-app>

In many cases, it is also useful to allow configuration data to be overridden dynamically for a
particular Jakarta Server Pages scope (page, request, session, application) via a scoped variable. The
Jakarta Standard Tag Library refers to scoped variables used for that purpose as configuration
variables.

According to the Jakarta Server Pages specification (Jakarta Server Pages.2.8.2), a scoped variable name
should refer to a unique object at all points in the execution. This means that all the different scopes
(page, request, session, and application) that exist within a PageContext really should behave as a
single name space; setting a scoped variable in any one scope overrides it in any of the other scopes.

Given this constraint imposed by the Jakarta Server Pages specification, and in order to allow a
configuration variable to be set for a particular scope without affecting its settings in any of the other

scopes, the Jakarta Standard Tag Library provides the jakarta.servlet.jsp.jstl.core.Config class. The
Config class transparently manipulates the name of configuration variables so they behave as if scopes

had their own private name space. Details on the name manipulations involved are voluntarily left
unspecified and are handled transparently by the Config class. This ensures flexibility should the
"scope name space" issue be addressed in the future by the Jakarta Server Pages specification.

Final Jakarta Standard Tag LibraryEEE17

2.9. Default Values

When setting configuration data via the deployment descriptor, the name associated with the context
initialization parameter (e.g. jakarta.servlet.jsp.jstl.fmt.localizationContext) must be used and only
String values may be specified. Configuration data that can be set both through a context initialization
parameter and configuration variables is referred to as a configuration setting in this specification.

As mentioned above, application developers may access configuration data through class
jakarta.servlet.jsp.jstl.core.Config . As a convenience, constant String values have been defined in the
Config class for each configuration setting supported by the Jakarta Standard Tag Library. The values of
these constants are the names of the context intialization parameters.

Each configuration variable clearly specifies the Java data type(s) it supports. If the type of the object
used as the value of a configuration variable does not match one of those supported by the
configuration variable, conversion is performed according to the conversion rules defined in the
expression language. Setting a configuration variable is therefore exactly the same as setting an
attribute value of an action using the EL. A failure of these conversion rules to determine an
appropriate type coersion leads to a JspException at runtime.

2.9. Default Values

It is often desirable to display a default value if the output of an action yields a null value. This can be
done in a generic way in the Jakarta Standard Tag Library by exporting the output of an action via
attribute var, and then displaying the value of that scoped variable with action <c:out>.

For example:

<fmt:formatDate var="formattedDate" value="${reservationDate}"/>
Date: <c:out value="${formattedDate}" default="not specified"/>

[1] Since nested scoped variables are always saved in page scope, no scope attribute is associated with them.

[2] It is important to note that the Jakarta Server Pages specification says that "A name should refer to a unique object at
all points in the execution, that is all the different scopes really should behave as a single name space." The Jakarta
Server Pages specification also says that "A Jakarta Server Pages container implementation may or may not enforce this
rule explicitly due to performance reasons". Because of this, if a scoped variable with the same name as a nested
variable already exists in a scope other than 'page’, exactly what happens to that scoped variable depends on how the
Jakarta Server Pages container has been implemented. To comply with the Jakarta Server Pages specification, and to
avoid non-portable behavior, page authors should therefore avoid using the same name in different scopes.

18 EEEJakarta Standard Tag Library Final

3.1. Expressions and Attribute Values

Chapter 3. Expression Language Overview

Jakarta Standard Tag Library makes use of the Jakarta Expression Language.

This chapter provides a simple overview of the key features of the expression language, it is therefore
non-normative. Please refer to the Jakarta Expression Language specification for the formal definition
of the Expression Language.

3.1. Expressions and Attribute Values

The Expression Language is invoked exclusively via the construct ${expr} . In the sample code below,
an EL expression is used to set the value of attribute test, while a second one is used to display the title
of a book.

<c:if test="${book.price <= user.preferences.spendingLimit}">
E The book ${book.title} fits your budget!
<[c:if>

It is also possible for an attribute to contain more than one Expression Language expression, mixed
with static text. For example, the following would display "Price of productName is productPrice" for a
list of products.

<c:forEach var="product" items="${products}">
E <c:out value="Price of ${product.name} is ${product.price}"/>
</c:forEach>

3.2. Accessing Application Data

An identifier in the Expression Language refers to the Jakarta Server Pages scoped variable returned
by a call to PageContext.findAttribute(identifier) . This variable can therefore reside in any of the four
Jakarta Server Pages scopes: page, request, session, or application. A null value is returned if the
variable does not exist in any of the scopes.

The Expression Language also defines implicit objects to support easy access to application data that is

of interest to a page author. Implicit objects pageScope requestScope, session Scope, and
applicationScope provide access to the scoped variables in each one of these Jakarta Server Pages
scopes. It is also possible to access HTTP request parameters via the implicit objects param and
paramValues . The implicit object param is a Map object where param[‘foo"] returns the first string
value associated with request parameter foo, while paramValues[‘foo"] returns an array of all string
values associated with that request parameter.

The code below displays all request parameters along with all their associated values.

Final Jakarta Standard Tag LibraryEEE19

3.3. Nested Properties and Accessing Collections

<c:forEach var="aParam"items="${paramValues}">

param: ${aParam.key}

values:

<c:forEach var="aValue" items="${aParam.value}">
${aValue}

</c:forEach>

</c:forEach>

m> ™ e e mp e

Request headers are also accessible in a similar fashion via implicit objects header and headerValues.
initParam gives access to context initialization parameters, while cookie exposes cookies received in
the request.

Implicit object pageContext is also provided for advanced usage, giving access to all properties
associated with the PageContext of a Jakarta Server Pages page such as the HttpServietRequest,
ServletContext , and HttpSession objects and their properties.

3.3. Nested Properties and Accessing Collections

The application data that a page author manipulates in a Jakarta Server Pages page usually consists of
objects that comply with the JavaBeans specification, or that represent collections such as lists, maps,
or arrays.

The Expression Language recognizes the importance of these data structures and provides two
operators, "." and "[]", to make it easy to access the data encapsulated in these objects.

The "." operator can be used as a convenient shorthand for property access when the property name
follows the conventions of Java identifiers. For example:

Dear ${user.firstName}
from ${user.address.city},
thanks for visiting our website!

The "[]" operator allows for more generalized access, as shown below:

<%-- "productDir" is a Map object containing the description of

products, "preferences" is a Map object containing the preferences of a user --%>
product:

${productDir[product.custld]}

shipping preference:

${user.preferences["shipping"]}

20 EEEJakarta Standard Tag Library Final

3.4. Operators

3.4. Operators

The operators supported in the Expression Language handle the most common data manipulations.
The standard relational, arithmetic, and logical operators are provided in the Expression Language. A
very useful "empty" operator is also provided.

The six standard relational operators are supported: == (or eq), != (or ne), < (or It), > (or gt),! (or le),>=
(or ge). The second versions of the last 4 operators are made available to avoid having to use entity
references in XML syntax.

Arithmetic operators consist of addition (+), subtraction (-), multiplication (*), division (/ or div), and
remainder/modulo (% or mod).

Logical operators consist of && (or and), || (or or), and ! (or not).

The empty operator is a prefix operator that can used to determine if a value is null or empty. For
example:

<c:if test="${empty param.name}">
E Please specify your name.
</c:if>

3.5. Automatic Type Conversion

The application data a page author has access to may not always exactly match the type expected by
the attribute of an action or the type expected for an Expression Language operator. The Expression
Language supports an exhaustive set of rules to coerce the type of the resulting value to the expected

type.

For example, if request attributes beginValue and endValue are Integer objects, they will automatically
be coerced to ints when used with the <c:forEach> action.

<c:forEach begin="${requestScope.beginValue}"
E end="${requestScope.endValue}">

E ..
</c:forEach>

In the example below, the parameter String value param.start is coerced to a number and is then
added to 10 to yield an int value for attribute begin.

Final Jakarta Standard Tag LibraryEEE21

3.6. Default Values

<c:forEach items="${products}" begin="${param.start + 10}">
E ..
</c:foreach>

3.6. Default Values

Jakarta Server Pages are mostly used in presentation. Experience suggests that it is important to be
able to provide as good a presentation as possible, even when simple errors occur in the page. To
satisfy this requirement, the Expression Language provides default values rather than errors when
failure to evaluate an expression is deemed "recoverable". Default values are type-correct values that
allow a page to easily recover from these error conditions.

In the following example, the expression "${user.address.city}" evaluates to null rather than throwing a
NullPointerException if there is no address associated with the user object. This way, a sensible default
value can be displayed without having to worry about exceptions being thrown by the Jakarta Server
Pages page.

City: <c:out value="${user.address.city}" default="N/A"/>

In the following example, the addition operator considers the value of param.start to be O if it is not
defined, therefore evaluating the expression to 10.

<c:forEach items="${products}" begin="${param.start + 10}">

E ..
</c:forEach>

22 EEEJakarta Standard Tag Library Final

4.1. Overview

Chapter 4. General-Purpose Actions: core tag
library

This chapter introduces general purpose actions to support the manipulation of scoped variables as
well as to handle error conditions.

4.1. Overview

The <c:out> action provides a capability similar to Jakarta Server Pages expressions such as <%=
scripting-language-expression %> or ${el-expression}. For example:

You have <c:out value="${sessionScope.user.itemCount}"/> items.

By default, <c:out> converts the characters <, >, ', ", & to their corresponding character entity codes (e.qg.
< is converted to <). If these characters are not converted, the page may not be rendered properly by
the browser, and it could also open the door for cross-site scripting attacks (e.g. someone could post
JavaScript code for closing the window to an online discussion forum). The conversion may be
bypassed by specifying false to the escapeXml attribute.

The <c:out> action also supports the notion of default values for cases where the value of an
Expression Language expression is null. In the example below, the value "unknown" will be displayed
if the property city is not accessible.

<c:out value="${customer.address.city}" default="unknown"/>
The action <c:set> is used to set the value of a Jakarta Server Pages scoped attribute as follows:
<c:set var="foo" value="value"/>

It is also possible to set the value of a scoped variable (Jakarta Server Pages scoped attribute) from the
body of the <c:set> action. This solves the problem associated with not being able to set an attribute
value from another action. In the past, a tag developer would often implement extra "attributes as
tags" so the value of these attributes could be set from other actions.

For example, the action <acme:attl> was created only to support setting the value of attl of the parent
tag <acme:atag>from other actions .

Final Jakarta Standard Tag LibraryEEE23

4.1. Overview

<acme:atag>

E<acme:att1>
E<acme:foo>mumbojumbo</acme:foo>
E</acme:att1>

</acme:atag>

With the <c:set> tag, this can be handled without requiring the extra <acme:attl> tag.

<c:set var="att1">
E<acme:foo>mumbojumbo</acme:foo>
</c:set>

<acme:atag att1="%${att1}"/>

In the preceding example, the <c:set> action sets the value of the attl scoped variable to the output of
the <acme:foo> action. <c:set> b like all Jakarta Standard Tag Library actions that create scoped
attributes D creates scoped attributes in "page" scope by default.

<c:set> may also be used to set the property of a JavaBeans object, or add or set a specific element in a
java.util.Map object. For example:.

<!-- set property in JavaBeans object -->
<c:set target="${cust.address}" property="city" value="${city}"/>

<I-- set/add element in Map object -->
<c:set target="${preferences}" property="color" value="${param.color}"'/>

Finally, <c:set> may also be used to set a deferred-value that can later be evaluated by a tag handler. In
this case, no scope can be specified. For example:

<l-- set deferred value -->
<c:set var="d" value="#{handler.everythingDisabled}"/>

<h:inputText id="i1" disabled="#\{d}"/>
<h:inputText id="i2" disabled="#\{d}"/>

24 EEEJakarta Standard Tag Library Final

4.1. Overview

Action <c:remove> is the natural companion to <c:set>, allowing the explicit removal of scoped
variables. For example:

<c:remove var="cachedResult" scope="application"/>

Finally, the <c:catch> action provides a complement to the Jakarta Server Pages error page mechanism.
It is meant to allow page authors to recover gracefully from error conditions that they can control. For
example:

<c:catch var="exception">
<!l-- Execution we can recover from if exception occurs -->

</c:catch>

<c:if test="${exception != null}">

Sorry. Processing could not be performed because...
</c:if>

Final Jakarta Standard Tag LibraryEEE25

4.2. <c:out>

4.2. <c:out>

Evaluates an expression and outputs the result of the evaluation to the current

Syntax
Without a body

<c:out value="value" [escapeXml|="{ true |false}"]
E [default="defaultValue"] />

With a body

<c:out value="value" [escapeXmI="{ true |false}"]>
E default value
</c:out>

Body Content

JspWriter object.

Jakarta Server Pages content. The Jakarta Server Pages container processes the body content, then the

action trims it and processes it further.

Attributes
Name Dyn Type
value true Object
escapeXml true boolean
default true Object

Null & Error Handling

Description

Expression to be
evaluated.

Determines whether
characters <,>,&,"," in the
resulting string should

be converted to their
corresponding character
entity codes. Default

value is true.

Default value if the
resulting value is null.

If value is null, the default value takes over. If no default value is specified, it itself defaults to an empty

string.

Description

The expression to be evaluated is specified via the value attribute.

26 EEEJakarta Standard Tag Library

Final

4.2. <c:.out>

If the result of the evaluation is not a java.io.Reader object, then it is coerced to a String and is
subsequently emitted into the current JspWriter object.

If the result of the evaluation is a java.io.Reader object, data is first read from the Reader object and
then written into the current JspWriter object. This special processing associated with Reader objects
should help improve performance when large amount of data must be read and then displayed to the

page.

If escapeXml is true, the following character conversions are applied:

Character Character Entity Code
< <

> &at;

& &

' '

" "

The default value can be specified either via the default attribute (using the syntax without a body), or
within the body of the tag (using the syntax with a body). It defaults to an empty string.

Final Jakarta Standard Tag LibraryEEE27

4.3. <c:set>

4.3. <c:set>

Sets the value of a scoped variable or a property of a target object.

Syntax

Syntax 1: Set the value of a scoped variable using attribute value

<c:set value="value"
E var="varName" [scope="{ pagdrequest|session|application}"]/>

Syntax 2: Set the value of a scoped variable using body content

<c:set var="varName" [scope="{ pagdrequest|session|application}"]>
E body content
</c:set>

Syntax 3: Set a property of a target object using attribute value

<c:set value="value"
E target="target" property="propertyName"/>

Syntax 4: Set a property of a target object using body content

<c:set target="target" property="propertyName">
E body content
</c:set>

Syntax 5: Set a deferred value

<c:set var="varName" value="deferred-value"/>

Body Content

Jakarta Server Pages content. The Jakarta Server Pages container processes the body content, then the
action trims it and processes it further.

Attributes
Name Dyn Type Description
value true Object Expression to be

evaluated.

28 EEEJakarta Standard Tag Library Final

4.3. <c:set>

Name Dyn Type Description

var false String Name of the exported
scoped variable to hold
the value specified in
the action. The type of
the scoped variable is
whatever type the value
expression evaluates to.

scope false String Scope for var.

target true Object Target object whose
property will be set.
Must evaluate to a
JavaBeans object with
setter property property ,
or to a java.util.Map
object.

property true String Name of the property to
be set in the target
object.

Null & Error Handling

¥ Syntax 3 and 4: Throw an exception under any of the following conditions:
I target evaluates to null

I target is not a java.uti.Map object and is not a JavaBeans object that supports setting property
property .
¥ If value is null

! Syntax 1: the scoped variable defined by var and scope is removed.

" If attribute scope is specified, the scoped variable is removed according to the semantics of
PageContext.removeAttribute(varName, scope)

" Otherwise, there is no way to differentiate between syntax 1 and syntax 5. The scoped
variable is removed according to the semantics of PageContext.removeAttribute(varName)
and the variable is removed from the VariableMapper as well.

I Syntax 3:
" if target is a Map, remove the entry with the key identified by property .
" if target is a JavaBean component, set the property to null.

I Syntax 5:

" There is no way to differentiate between syntax 1 (where scope is not specified) and syntax
5. The scoped \variable is removed according to the semantics of

Final Jakarta Standard Tag LibraryEEE29

4.3. <c:set>

PageContext.removeAttribute(varName) , and the variable is removed from the
VariableMapper as well.

Description

Syntax 1 and 2 set the value of a the scoped variable identified by var and scope.
Syntax 3 and 4:

¥ If the target expression evaluates to a java.util.Map object, set the value of the element associated
with the key identified by property . If the element does not exist, add it to the Map object.

¥ Otherwise, set the value of the property property of the JavaBeans object target. If the type of the
value to be set does not match the type of the bean property, conversion is performed according to
the conversion rules defined in the expression language (see See Type Conversion). With the
exception of a null value, setting a bean property with <c:set> is therefore exactly the same as
setting an attribute value of an action using the Expression Language. A failure of these conversion
rules to determine an appropriate type coersion leads to a JspException at runtime.

Syntax 5:

¥ Map the deferred-value specified to the "var

VariableMapper.

attribute into the Expression Language

¥ Some implementation notes illustrating how the <c:set> tag handler may process a deferred-value
specified for the "value" attribute.

doStartTag()

E

Il 'value' is a deferred-value

/I Get the current Expression Language VariableMapper
VariableMapper vm = jspContext.getELContext().getVariableMapper();
/I Assign the expression to the variable specified

//'in the 'var' attribute, so any reference to that

I/ variable will be replaced by the expression is

/I subsequent Expression Language evaluations.
vm.setVariable(getVar(), (ValueExpression)getValue());

E

30 EEEJakarta Standard Tag Library Final

EL-152.html#UNKNOWN

4.4. <c:remove>

Removes a scoped variable.

Syntax

<c:remove var="varName"

E [scope="{page|request|session|application}"]/>
Attributes
Name Dynamic Type
var false String
scope false String
Description

The <c:remove>action removes a scoped variable.

4.4. <c:remove>

Description

Name of the scoped
variable to be removed.

Scope for var.

If attribute scope is not specified, the scoped variable is removed according to the semantics of
PageContext.removeAttribute(varName) . If attribute scope is specified, the scoped variable is removed

according to the semantics of PageContext.removeAttribute(varName, scope)

Final

Jakarta Standard Tag LibraryEEE31

4.5. <c:catch>

4.5. <c:catch>
Catches ajava.lang.Throwable thrown by any of its nested actions.

Syntax

<c:catch [var="varName"]>
E nested actions
</c:catch>

Body Content

Jakarta Server Pages content. The body content is processed by the Jakarta Server Pages container and
the result is written to the current JspWriter .

Attributes

Name Dynamic Type Description

var false String Name of the exported
scoped variable for the
exception thrown from
a nested action. The type
of the scoped variable is
the type of the exception
thrown.

Description

The <c:catch> action allows page authors to handle errors from any action in a uniform fashion, and
allows for error handling for multiple actions at once.

<c:catch> provides page authors with granular error handling: Actions that are of central importance

to a page should not be encapsulated in a <c:catch>, so their exceptions will propagate to an error
page, whereas actions with secondary importance to the page should be wrapped in a <c:catch>, so
they never cause the error page mechanism to be invoked.

The exception thrown is stored in the scoped variable identified by var, which always has page scope.
If no exception occurred, the scoped variable identified by var is removed if it existed.

If var is missing, the exception is simply caught and not saved.

32 EEEJakarta Standard Tag Library Final

5.1. Overview

Chapter 5. Conditional Actions: core tag
library

The output of a Jakarta Server Pages page is often conditional on the value of dynamic application
data. A simple scriptlet with an if statement can be used in such situations, but this forces a page
author to use a scripting language whose syntax may be troublesome (e.g. one may forget the curly
braces).

The Jakarta Standard Tag Library conditional actions make it easy to do conditional processing in a
Jakarta Server Pages page.

5.1. Overview

The Jakarta Standard Tag Library conditional actions are designed to support the two most common
usage patterns associated with conditional processing: simple conditional execution and mutually
exclusive conditional execution.

A simple conditional execution action evaluates its body content only if the test condition associated
with it is true. In the following example, a special greeting is displayed only if this is a userOs first visit
to the site:

<c:if test="${user.visitCount == 1}">
E This is your first visit. Welcome to the site!
</c:if>

With mutually exclusive conditional execution, only one among a number of possible alternative
actions gets its body content evaluated.

For example, the following sample code shows how the text rendered depends on a userOs membership
category.

Final Jakarta Standard Tag LibraryEEE33

5.2. Custom Logic Actions

<c:choose>
<c:when test="${user.category == "trial’}">
</c:when>
<c:when test="${user.category == 'member'}">
</c:when>
<c:when test="${user.category == 'vip'}">
</c:when>
<c:otherwise>

[T [T [T [T [T [T T Tp e M T mp

</c:otherwise>
</c:choose>

An if/then/else statement can be easily achieved as follows:

<c:choose>
<c:when test="${count == 0}">

No records matched your selection.
</c:when>
<c:otherwise>

${count} records matched your selection.
</c.otherwise>
</c:choose>

[T T [e T mp

5.2. Custom Logic Actions

It is important to note that the <c:if> and <c:when>actions have different semantics. A <c:if> action
will always process its body content if its test condition evaluates to true. A <c:when>action will process
its body content if it is the first one in a series of <c:when>actions whose test condition evaluates to
true.

These semantic differences are enforced by the fact that only <c:when>actions can be used within the
context of a mutually exclusive conditional execution (<c:choose> action). This clean separation of
behavior also impacts the way custom logic actions (i.e. actions who render their bodies depending on

the result of a test condition) should be designed. Ideally, the result associated with the evaluation of a
custom logic action should be usable both in the context of a simple conditional execution, as well as in

a mutually exclusive conditional execution.

The proper way to enable this is by simply having the custom logic action export the result of the test
condition as a scoped variable. This boolean result can then be used as the test condition of a <c:when>
action.

34 EEEJakarta Standard Tag Library Final

5.2. Custom Logic Actions

In the example below, the fictitious custom action <acme:fullMoon> tells whether or not a page is
accessed during a full moon. The behavior of an if/fthen/else statement is made possible by having the

result of the <acme:fullMoon>action exposed as a boolean scoped variable that is then used as the test
condition in the <c:when>action.

<acme:fullMoon var="isFullMoon"/>
<c:choose>
<c:when test="${isFullMoon}">

</c:when>
<c:otherwise>

T T T mp me me

</c:otherwise>
</c:choose>

To facilitate the implementation of conditional actions where the boolean result is exposed as a Jakarta

Server Pages scoped variable, class jakarta.servlet.jsp.jstl.core.ConditionalTagSupport has been defined
in this specification.

Final Jakarta Standard Tag LibraryEEE35

5.3. <c:if>

5.3. <c:if>

Evaluates its body content if the expression specified with the test attribute is true.

Syntax
Syntax 1: Without body content

<c:if test="testCondition"
E var="varName" [scope="{ pagdrequest|session|application}"]/>

Syntax 2: With body content

<c:if test="testCondition"

E [var="varName"] [scope="{ paggrequest|session|application}"]>
E body content

</c:if>

Body Content

Jakarta Server Pages content. If the test condition evaluates to true, the Jakarta Server Pages container

processes the body content and then writes it to the current JspWriter .
Attributes
Name Dyn Type Description
test true boolean The test condition that
determines whether or
not the body content
should be processed.
var false String Name of the exported
scoped variable for the
resulting value of the
test condition. The type
of the scoped variable is
Boolean.
scope false String Scope for var.

Constraints

¥ If scopeis specified, var must also be specified.

Description

If the test condition evaluates to true, the body content is evaluated by the Jakarta Server Pages
container and the result is output to the current JspWriter .

36 EEEJakarta Standard Tag Library Final

5.4. <c:choose>

5.4. <c:choose>

Provides the context for mutually exclusive conditional execution.

Syntax

<c:choose>
E body content (<when> and <otherwise> subtags)
</c:choose>

Body Content

Jakarta Server Pages content. The body content is processed by the Jakarta Server Pages container (at
most one of the nested actions will be processed) and written to the current JspWriter .

Attributes

None.

Constraints

¥ The body of the <c:choose>action can only contain:

I White spaces
May appear anywhere around the <c:when>and <c:otherwise> subtags.

I 1 or more <c:when>actions
Must all appear before <c:otherwise>

I 0or 1l <c:otherwise> action
Must be the last action nested within <c:choose>

Description

The <c:choose> action processes the body of the first <c:when>action whose test condition evaluates to
true. If none of the test conditions of nested <c:when>actions evaluates to true, then the body of an
<c:otherwise> action is processed, if present.

Final Jakarta Standard Tag LibraryEEE37

5.5. <c:when>

5.5. <c:when>
Represents an alternative withina <c:choose>action.

Syntax

<c:when test="testCondition">
E body content
</c:when>

Body Content

Jakarta Server Pages content. If this is the first <c:when> action to evaluate to true within <c:choose>,
the Jakarta Server Pages container processes the body content and then writes it to the current
JspWriter .

Attributes
Name Dynamic Type Description
test true boolean The test condition that

determines whether or
not the body content
should be processed.

Constraints

¥ Must have <c:choose>as an immediate parent.

¥ Must appear before an <c:otherwise> action that has the same parent.

Description

Within a <c:choose>action, the body content of the first ~ <c:when>action whose test condition evaluates
to true is evaluated by the Jakarta Server Pages container, and the result is output to the current

JspWriter .

38 EEEJakarta Standard Tag Library Final

5.6. <c:otherwise>

5.6. <c:otherwise>

Represents the last alternative withina <c:choose>action.

Syntax

<c:otherwise>
E conditional block
</c:otherwise>

Body Content

Jakarta Server Pages content. If no <c:when>action nested within <c:choose> evaluates to true, the
Jakarta Server Pages container processes the body content and then writes it to the current JspWriter .
Attributes

None.

Constraints

¥ Must have <c:choose>as an immediate parent.

¥ Must be the last nested action within <c:choose>,

Description

Within a <c:choose> action, if none of the nested <c:when>test conditions evaluates to true, then the
body content of the <c:otherwise> action is evaluated by the Jakarta Server Pages container, and the
result is output to the current JspWriter .

Final Jakarta Standard Tag LibraryEEE39

6.1. Overview

Chapter 6. Iterator Actions: core tag library

Iterating over a collection of objects is a common occurrence in a Jakarta Server Pages page. Just as
with conditional processing, a simple scriptlet can be used in such situations. However, this once again
forces a page author to be knowledgeable in many aspects of the Java programming language (how to
iterate on various collection types, having to cast the returned object into the proper type, proper use

of the curly braces, etc.).

The Jakarta Standard Tag Library iterator actions simplify iterating over a wide variety of collections
of objects.

6.1. Overview

The <c:forEach> action repeats its nested body content over the collection of objects specified by the
items attribute. For example, the Jakarta Server Pages code below creates an HTML table with one
column that shows the default display value of each item in the collection.

<table>

E <c:forEach var="customer" items="${customers}">
E <tr><td>${customer}</td></tr>

E </c:forEach>

</table>

The <c:forEach> action has the following features:

¥ Supports all standard Java SE? platform collection types.
A page author therefore does not have to worry about the specific type of the collection of objects
to iterate over (Collections of Objects to Iterate Over).

¥ Exports an object that holds the current item of the iteration.
Normally, each object exposed by <c:forEach> is an item of the underlying collection being iterated
over. There are two exceptions to this to facilitate access to the information contained in arrays of
primitive types, as well asin Map objects (see Map).

¥ Exports an object that holds information about the status of the iteration (see Iteration Status).
¥ Supports range attributes to iterate over a subset of the original collection (see Range Attributes).

¥ Exposes an interface as well as a base implementation class.
Developers can easily implement collaborating subtags as well as their own iteration tags (see Tag
Collaboration).

<c:forEach> is the base iteration action in the Jakarta Standard Tag Library. It handles the most
common iteration cases conveniently. Other iteration actions are also provided in the tag library to
support specific, specialized functionality not handled by <c:foreach> (e.g. <c:forTokens>
(<c:forTokens>) and <x:forEach> (<x:forEach>). Developers can also easily extend the behavior of this

40 EEEJakarta Standard Tag Library Final

6.1. Overview

base iteration action to customize it according to an applicationOs specific needs.

6.1.1. Collections of Objects to Iterate Over

A large number of collection types are supported by <c:forEach>, including all implementations of
java.util.Collection (includes List, LinkedList , ArrayList , Vector, Stack, Set), and java.util.Map (includes
HashMap , Hashtable , Properties , Provider , Attributes).

Arrays of objects as well as arrays of primitive types (e.g. int) are also supported. For arrays of
primitive types, the current item for the iteration is automatically wrapped with its standard wrapper
class (e.g. Integer for int, Float for float, etc.).

Implementations of java.util.lterator and java.uti.LEnumeration are supported as well but these must be
used with caution. Iterator and Enumeration objects are not resettable so they should not be used
within more than one iteration tag.

Deprecated : Finally, java.lang.String objects can be iterated over if the string represents a list of
comma separated values (e.g. "Monday, Tuesday,Wednesday, Thursday,Friday"). el

Absent from the list of supported types is java.sqgl.ResultSet (which includes javax.sql.RowSet). The
reason for this is that the SQL actions described in Overview use the jakarta.servlet.jsp.jstl.sgl.Result
interface to access the data returned from an SQL query. Class jakarta.servlet.jsp.jstl.sql.ResultSupport
allows business logic developers to easily convert a ResultSet object into a
jakarta.servlet.jsp.jstl.sql.Result object, making life much easier for a page author that needs to
manipulate the data returned from a SQL query.

6.1.2. Map

If the items attribute is of type java.util.Map , then the current item will be of type java.util.Map.Entry
which has the following two properties:

¥ key - the key under which this item is stored in the underlying Map

¥ value - the value that corresponds to this key

The following example uses <c:forEach> to iterate over the values of a Hashtable :

<c:forEach var="entry" items="${myHashtable}">
E Next element is ${entry.value}/>
</c:forEach>

6.1.3. Iteration Status

<c:forEach> also exposes information relative to the iteration taking place. The example below creates
an HTML table with the first column containing the position of the item in the collection, and the
second containing the name of the product.

Final Jakarta Standard Tag LibraryEEE41

6.1. Overview

<table>
<c:forEach var="product" items="${products}"
varStatus="status">
<tr>
<td>${status.count}</td>
<td>${product.name}</td>
</tr>
</c:forEach>
</table>

[T T [e m> e

See the Javadoc for details on the jakarta.servlet.jsp.jstl.core.LoopTagStatus interface exposed by the
varStatus attribute.

6.1.4. Range Attributes

A set of range attributes is available to iterate over a subset of the collection of items. The begin and
end indices can be specified, along with a step. If the items attribute is not specified, then the value of
the current item is set to the integer value of the current index. In this example, i would take values
from 100 to 110 (inclusive).

<c:forEach var="i" begin="100" end="110">
E ${i}
</c:forEach>

6.1.5. Tag Collaboration

Custom actions give developers the power to provide added functionality to a Jakarta Server Pages
application without requiring the page author to use Java code. In this example, an item of the
iteration is processed differently depending upon whether it is an odd or even element.

<c:forEach var="product" items="${products}" varStatus="status">
<c:.choose>
<c:when test="${status.count % 2 == 0}">
even item
</c:when>
<c:otherwise>
odd item
</c:otherwise>
</c.choose>
</c:forEach>

[T [T [T Ty mp e mp mp

If this type of processing is common, it could be worth providing custom actions that yield simpler
code, as shown below.

42 EEEJakarta Standard Tag Library Final

6.1. Overview

<c:forEach var="product" items="${products}">
<acme:even>
even item
</acme:even>
<acme:odd>
odd item
</acme:odd>
</c:foreach>

m> ™ e e mp e

In order to make this possible, custom actions like <acme:odd>and <acme:even>everage the fact that
<c:forEach> supports implicit collaboration via the interface jakarta.servlet.jsp.jstl.core.LoopTag

The fact that <c:forEach> exposes an interface also means that other actions with iterative behavior
can be developed using the same interface and will collaborate in the same manner with nested tags.
Classjakarta.servlet.jsp.jstl.core.LoopTagSupport provides a solid base for doing this.

6.1.6. Deferred Values

The unified Expression Language supports the concept of deferred expressions (using the #{} syntax),
i.e. expressions whose evaluation is deferred to application code (as opposed to immediate evaluation
(using the ${} syntax) where the expression is evaluated immediately by the container). Deferred

expressions are used mostly with Jakarta Server Faces, a component-based Ul framework for the
webtier.

In order for Jakarta Standard Tag Library iteration tags to support nested actions that access the
iteration variable as a deferred-value, the items attribute must be specified as a deferred-value as well.

For example:

<c:forEach var="child" items="#{customer.children}">
E <h:inputText value="#{child.name}"/>
</c:forEach>

Because a deferred-value is specified for items, the iteration tag has access to the original expression

and can make the iteration variable available as a deferred-value with the proper index into the items
collection. This deferred value can then be evaluated properly by the code associated with the
<h:inputText> component.

Final Jakarta Standard Tag LibraryEEE43

6.2. <c:forEach>

6.2. <c:forEach>
Repeats its nested body content over a collection of objects, or repeats it a fixed number of times.

Syntax

Syntax 1: Iterate over a collection of objects

<c:forEach [var="varName"] items="collection"

[varStatus="varStatusName"]
[begin="begin"] [end="end"] [step="step"]>

E body content

</c:forEach>

m m»

Syntax 2: Iterate a fixed number of times

<c:forEach [var="varName"]

[varStatus="varStatusName"]
begin="begin" end="end" [step="step"]>

E body content

</c:forEach>

m [T

Body Content

Jakarta Server Pages content. As long as there are items to iterate over, the body content is processed

by the Jakarta Server Pages container and written to the current JspWriter .
Attributes
Name Dyn Type Description
var false String Name of the exported
scoped variable for the
current item of the
iteration. This scoped
variable has nested
visibility. Its type
depends on the object of
the underlying
collection.
items true Any of the supported Collection of items to
types described in iterate over.
Section "Description”
below.

44 EEEJakarta Standard Tag Library Final

6.2. <c:forEach>

Name Dyn Type Description

varStatus false String Name of the exported
scoped variable for the
status of the iteration.
Object exported is of
type
jakarta.servlet.jsp.jstl.co
re.LoopTagStatus . This
scoped variable has
nested visibility.

begin true int If items specified:

Iteration begins at the
item located at the
specified index. First
item of the collection
has index 0.

If items not specified:

Iteration begins with
index set at the value
specified.

end true int If items specified:

Iteration ends at the
item located at the
specified index
(inclusive).

If items not specified:

Iteration ends when
index reaches the value
specified.

step true int Iteration will only
process every step items
of the collection, starting
with the first one.

Constraints

¥ If specified, begin must be >= 0.

Final Jakarta Standard Tag LibraryEEE45

6.2. <c:forEach>

¥ If end is specified and it is less than begin, the loop is simply not executed.

¥ If specified, step mustbe >=1

Null & Error Handling

¥ If items is null, it is treated as an empty collection, i.e., no iteration is performed.

Description

If begin is greater than or equal to the size of items, no iteration is performed.
Collections Supported & Current ltem

The data types listed below must be supported for items. With syntax 1, each object exposed via the var
attribute is of the type of the object in the underlying collection, except for arrays of primitive types
and maps (see below). With syntax 2, the object exported is of type Integer .

¥ Arrays
This includes arrays of objects as well as arrays of primitive types. For arrays of primitive types, the
current item for the iteration is automatically wrapped with its standard wrapper class (e.g. Integer
for int, Float for float, etc.)
Elements are processed in their indexing order.

¥ Implementation of java.util.Collection .
An lIterator object is obtained from the collection via the iterator() method, and the items of the
collection are processed in the order returned by that Iterator object.

¥ Implementation of java.util.lterator
Items of the collection are processed in the order returned by the Iterator object.

¥ Implementation of java.util.Enumeration
Items of the collection are processed in the order returned by the Enumeration object.

¥ Implementation of java.util.Map .
The object exposed via the var attribute is of type Map.Entry .
A Set view of the mappings is obtained from the Map via the entrySet() method, from which an
Iterator object is obtained via the iterator() method. The items of the collection are processed in the
order returned by that Iterator object.

¥ String
The string represents a list of comma separated values, where the comma character is the token
delimiter. Tokens are processed in their sequential order in the string.

Deferred Values

When a deferred-value is specified for the items attribute, the tag handler now adds at each iteration a
mapping for the var attribute into the Expression Language VariableMapper .

Below are some implementation notes illustrating how an iteration tag handler may process a
deferred-value specified for the items attribute.

46 EEEJakarta Standard Tag Library Final

doStartTag() +

[T e e [T [T [T T [T [T [T [T [T T [T e m

/['items' is a deferred-value +
Il Get the current Expression Language VariableMapper
VariableMapper vm =
jspContext.getELContext().getVariableMapper();
/I Create an expression to be assigned to the variable
Il specified in the 'var' attribute.
/['index' is an iteration counter kept by the tag handler.
myimpl.IndexedExpression expr =
new myimpl.IndexExpression(getltems(), index);
/I Assign the expression to the variable specified in
/l the 'var' attribute, so any reference to that variable
/I will be replaced by the expression in subsequent
/I Expression Language evaluations.
oldMapping = vm.setVariable(getVar(), expr);

doEndTag()

™ > [Tp Ty mp

The number of items referred to by the

/Il restore the original state of the VariableMapper

jspContext.getELContext().getVariableMapper().setVariable(

getVar(), oldMapping);

6.2. <c:forEach>

items attribute must be the same when Jakarta Server Faces

creates the component tree and when Jakarta Server Pages executes the iteration tag. Undefined
behavior will result if this is not the case.

Final

Jakarta Standard Tag LibraryEEE47

6.3. <c:forTokens>

6.3. <c:forTokens>

Iterates over tokens, separated by the supplied delimiters.

Syntax
<c:forTokens items="stringOfTokens" delims="delimiters"
[var="varName"]
[varStatus="varStatusName"]
[begin="begin"] [end="end"] [step="step"]>
body content
</c:forTokens>

m [T [T [mp

Body Content

Jakarta Server Pages content. As long as there are items to iterate over, the body content is processed

by the Jakarta Server Pages container and written to the current JspWriter .

Attributes

Name Dynamic Type Description

var false String Name of the exported
scoped variable for the
current item of the
iteration. This scoped
variable has nested
visibility.

items true String String of tokens to
iterate over.

delims true String The set of delimiters
(the characters that
separate the tokens in
the string).

varStatus false String Name of the exported

scoped variable for the
status of the iteration.
Object exported is of
type
jakarta.servlet.jsp.jstl.co
re.LoopTagStatus . This
scoped variable has
nested visibility.

48 EEEJakarta Standard Tag Library Final

6.3. <c:forTokens>

Name Dynamic Type Description

begin true int Iteration begins at the
token located at the
specified index. First
token has index O.

end true int Iteration ends at the
token located at the
specified index
(inclusive).

step true int Iteration will only
process every step
tokens of the string,
starting with the first
one.

Constraints
¥ If specified, begin must be >= 0.
¥ If end is specified and it is less than begin, the loop is simply not executed.

¥ If specified, step musthbe >=1

Null & Error Handling

¥ If items is null, it is treated as an empty collection, i.e., no iteration is performed.

¥ If delims is null, items is treated as a single monolithic token. Thus, when delims is null,
<c:forTokens> iterates exactly zero (if items is also null) or one time.

Description

The tokens of the string are retrieved using an instance of java.util.StringTokenizer ~ with arguments
items (the string to be tokenized) and delims (the delimiters).

Delimiter characters separate tokens. A token is a maximal sequence of consecutive characters that are
not delimiters.

Deferred Values

See Section "Deferred Values" for <c:forEach>. Same comments apply here.

[3] The proper way to process strings of tokens is via <c:forTokens> or via functions split and join.

Final Jakarta Standard Tag LibraryEEE49

7.1. Hypertext Links

Chapter 7. URL Related Actions: core tag
library

Linking, importing, and redirecting to URL resources are features often needed in Jakarta Server
Pages. Since dealing with URLs can often be tricky, the Jakarta Standard Tag Library offers a
comprehensive suite of URL-related actions to simplify these tasks.

7.1. Hypertext Links

By using the HTML <A> element, a page author can set a hypertext link as follows:
Register

If the link refers to a local resource and session tracking is enabled, it is necessary to rewrite the URL
so session tracking can be used as a fallback, should cookies be disabled at the client.

Morevoer, if query string parameters are added to the URL, it is important that they be properly URL
encoded. URL encoding refers to the process of encoding special characters in a string, according to the
rules defined in RFC 2396. For example, a space must be encoded in a URL string as a '+":

http://acme.com/app/choose?country=Dominican+Republic

As shown in the following example, the combination of the <c:url> and <c:param>actions takes care of
all issues related to URL rewriting and encoding: <c:url> rewrites a URL if necessary, and <c:param>
transparently encodes query string parameters (both name and value).

<c:url value="http://acme.com/exec/register" var="myUrl">
E <c:param name="name" value="${param.name}"/>

E <c:param name="country" value="${param.country}"/>
</c:url>

<a href='<c:out value="${myUrl}"/>'>Register

Another important feature of <c:url> is that it transparently prepends the context path to context-
relative URLs. Assuming a context path of "/foo", the following example

<c:url value="/ads/logo.html"/>

yields the URL /foo/ads/logo.html .

50 EEEJakarta Standard Tag Library Final

7.2. Importing Resources

7.2. Importing Resources

There is a wide variety of resources that a page author might be interested in including and/or
processing within a Jakarta Server Pages page. For instance, the example below shows how the content
of the README file at the FTP site of acme.com could be included within the page.

<c:import url="ftp://ftp.acme.com/README"/>

In the Jakarta Server Pages specification, a <jsp:include> action provides for the inclusion of static and
dynamic resources located in the same context as the current page. This is a very convenient feature
that is widely used by page authors.

However, <jsp:include> falls short in flexibility when page authors need to get access to resources that
reside outside of the web application. In many situations, page authors have the need to import the
content of Internet resources specified via an absolute URL. Moreover, as sites grow in size, they may
have to be implemented as a set of web applications where importing resources across web
applications is a requirement.

<jsp:include> also falls short in efficiency when the content of the imported resource is used as the
source for a companion process/transformation action, because unnecessary buffering occurs. In the
example below, the <acme:transform>action uses the content of the included resource as the input of its
transformation. <jsp:include> reads the content of the response, writes it to the body content of the
enclosing <acme:transform>, which then re-reads the exact same content. It would be more efficient if
<acme:transform> could access the input source directly and avoid the buffering involved in the body
content of <acme:transform>.

<acme:transform>
E <jsp:include page="/exec/employeesList"/>
</acme:transform>

The main motivation behind <c:import> is to address these shortcomings by providing a simple,
straightforward mechanism to access resources that can be specified via a URL. If accessing a resource
requires specifying more arguments, then a protocol specific action (e.g. an <http> action) should be
used for that purpose. The Jakarta Standard Tag Library does not currently address these protocol-
specific elements but may do so in future releases.

7.2.1. URL

The url attribute is used to specify the URL of the resource to import. It can either be an absolute URL
(i.e. one that starts with a protocol followed by a colon), a relative URL used to access a resource within
the same context, or a relative URL used to access a resource within a foreign context. The three
different types of URL are shown in the sample code below.

Final Jakarta Standard Tag LibraryEEE51

7.2. Importing Resources

<%-- import a resource with an absolute URL --%>
<c:import url="http://acme.com/exec/customers?country=Japan"/>

<%-- import a resource with a relative URL - same context --%>
<c:import url="/copyright.html"/>

<%-- import a resource with a relative URL - foreign context --%>
<c:import url="/logo.html" context="/master"/>

7.2.2. Exporting an object: String or Reader
By default, the content of an imported resource is included inline into the Jakarta Server Pages page.

It is also possible to make the content of the resource available in two different ways: as a String object
(attribute var), or as a Reader object (attribute varReader). Process or Transform tags can then access
the resourceOs content through that exported object as shown in the following example.

<%-- Export the content of the URL resource as a String --%>
<c:import url="http://acme.com/exec/customers?country=USA"
E var="customers"/>

<acme:notify in="${customers}"/>

<%-- Export the content of the URL resource as a Reader --%>

<c:import url="http://acme.com/exec/customers?country=USA"

E varReader="customers">
E <acme:notify in="${customers}"/>
</c:import>

Exporting the resource as a String object caches its content and makes it reusable.

If the imported content is large, some performance benefits may be achieved by exporting it as a
Reader object since the content can be accessed directly without any buffering. However, the
performance benefits are not guaranteed since the readerOs support is implementation dependent. It is
also important to note that the varReader scoped variable has nested visibility; it can only be accessed
within the body content of <c:import> .

7.2.3. URL Encoding

Just as with <c:url> , <c:param>can be nested within <c:import> to encode query string parameters.

7.2.4. Networking Properties

If the web container executes behind a firewall, some absolute URL resources may be inaccessible

52 EEEJakarta Standard Tag Library Final

7.3. HTTP Redirect
when using <c:import> . To provide access to these resources, the JVM of the container should be started

with the proper networking properties (e.qg. proxyHost , proxyPort). More details can be found in the
Java 2 SDK, Standard Edition Documentation (Networking Features N Networking Properties).

7.3. HTTP Redirect

<c:redirect> completes the arsenal of URL related actions to support an HTTP redirect to a specific
URL. For example:

<c:redirect url="http://acme.com/register"/>

Final Jakarta Standard Tag LibraryEEE53

7.4. <c:import>

7.4. <c:iimport>
Imports the content of a URL-based resource.

Syntax

Syntax 1: Resource content inlined or exported as a String object

<c:import url="url" [context="context"]
E [var="varName"] [scope="{ paggrequest|session|application}"]

E [charEncoding="charEncoding"]>

E optional body content for <c:param> subtags
</c:import>

Syntax 2: Resource content exported as a Reader object

<c:import url="url" [context="context"]
E varReader="varReaderName"

E [charEncoding="charEncoding"]>

E body content where varReader is consumed by another action
</c:import>

Body Content

Jakarta Server Pages content. The body content is processed by the Jakarta Server Pages container and
the result is written to the current JspWriter .

Attributes
Name Dynamic Type Description

url true String The URL of the resource
to import.

context true String Name of the context
when accessing a
relative URL resource
that belongs to a foreign
context.

var false String Name of the exported
scoped variable for the
resourceOs content. The
type of the scoped
variable is String .

scope false String Scope for var.

54 EEEJakarta Standard Tag Library Final

7.4. <c:import>

Name Dynamic Type Description

charEncoding true String Character encoding of
the content at the input
resource.

varReader false String Name of the exported

scoped variable for the
resourceOs content. The
type of the scoped
variable is Reader.

Null & Error Handling
¥ If url is null, empty, or invalid, a JspException is thrown.
¥ If charEncoding is null or empty, it is considered missing.
¥ For internal resources:

1. If a RequestDispatcher cannot be found for the resource, throw a JspException with the resource
path included in the message.

2. Otherwise, if the RequestDispatcher.include() method throws an IOException or
RuntimeException , throw a JspException with the caught exception as the root cause.

3. Otherwise, if the RequestDispatcher.include() method throws a ServletException , look for a root
cause.

a. If thereOs a root cause, throw a JspException with the root cause message included in the
message and the original root cause as the JspException root cause.

b. Otherwise, same as 2).

4, Otherwise, if the resource invoked through RequestDispatcher.include() method sets a response
status code other than 2xx (i.e. 200-299, the range of success codes in the HTTP response codes),
throw a JspException with the path and status code in the message.

¥ For external resources

! If the URLConnection class throws an IOException or a RuntimeException , throw a JspException
with the message from the original exception included in the message and the original
exception as the root cause.

! For an HttpURLConnection , if the response status code is other than 2xx (i.e. 200-299, the range
of success codes in the HTTP response codes), throw a JspException with the path and status
code in the message.

Description

Using syntax 1, the content of the resource is by default written to the current JspWriter . If var is
specified, the content of the resource is instead exposed asa String object.

Using syntax 2, the content of the resource is exported as a Reader object. The use of the varReader

Final Jakarta Standard Tag LibraryEEE55

7.4. <c:import>

attribute comes with some restrictions.

It is the responsibility of the <c:import> tag handler to ensure that if it exports a Reader, this Reader is
properly closed by the time the end of the page is reached). Because of this requirement, the Jakarta
Standard Tag Library defines the exported Reader as having nested visibility: it may not currently be
accessed after the end-tag for the <c:iimport> action . Implementations that use the tag-extension API
will likely need to implement TryCatchFinally with their <c:import> tag handlers and close the exported
Reader in doFinally() .

It is also illegal to use nested <c:param>tags with syntax 2. Since the exposed Reader must be
immediately available to the actionOs body, the connection to the resource must be established within

the start element of the action. It is therefore impossible for nested <c:param>actions to modify the URL
of the resource to be accessed, thus their illegality with syntax 2. In such a situation, <c:url> may be
used to build a URL with query string parameters ! <c:import> will remove any session id information

if necessary (see <c:url>).

Character Encoding

<c:import> exposes a String or Reader object, both of which are sequences of text characters. It is
possible to specify the character encoding of the input resource via the charEncoding attribute. The
values supported for charEncoding are the same as the ones supported by the constructor of the Java
class InputStreamReader .

If the character encoding is not specified, the following rules apply:

¥ If URLConnection.getContentType() has a non-null result, the character set is retrieved from
URLConnection.getContentType() by parsing this methodOs result according to RFC 2045 (section 5.1).

¥ If this methodOs result does not include a character set, or if the character set causes
InputStreamReader(InputStream in, String charsetName) to throw an
UnsupportedEncodingException , then use 1SO-8859-1 (which is the default value of charset for the
contentType attribute of the Jakarta Server Pages page directive).

Note that the charEncoding attribute should normally only be required when accessing absolute URL
resources where the protocol is not HTTP, and where the encoding is not ISO-8859-1.

Also, when dealing with relative URLs and the HTTP protocol, if the target resource declares a content
encoding but proceeds to write a character invalid in that encoding, the treatment of that character is
undefined.

Relative and Absolute URLs

The exact semantics of the <c:import> tag depends on what type of URL is being accessed.
Relative URL B same context

This is processed in the exact same way as the include action of the Jakarta Server Pages specification
(<jsp:include>). The resource belongs to the same web application as the including page and it is
specified as a relative URL.

56 EEEJakarta Standard Tag Library Final

7.4. <c:import>

As specified in the Jakarta Server Pages specification, a relative URL may either be a context-relative
path, or a page-relative path. A context-relative path is a path that starts with a "/*. It is to be
interpreted as relative to the application to which the Jakarta Server Pages page belongs. A page-
relative path is a path that does not start with a "/". It is to be interpreted as relative to the current
Jakarta Server Pages page, as defined by the rules of inclusion of the <jsp:include> action in the Jakarta
Server Pages specification.

The semantics of importing a resource specified with a relative URL in the same context are the same

as an include performed by a RequestDispatcher as defined in the Servlet specification. This means that
the whole environment of the importing page is available to the target resource (including request and
session attributes, as well as request parameters of the importing page).

Relative URL D foreign context

The resource belongs to a foreign context (web application) hosted under the same container as the
importing page. The context name for the resource is specified via attribute context .

The relative URL must be context-relative (i.e. must start with a "/*) since the including page does not
belong to the same context. Similarly, the context name must also start with a "/".

The semantics of importing a resource specified with a relative URL in a foreign context are the same

as an include performed by a RequestDispatcher on a foreign context as defined in the Servlet
specification. This means that only the request environment of the importing page is available to the
target resource.

It is important to note that importing resources in foreign contexts may not work in all containers. A
security conscious environment may not allow access to foreign contexts. As a workaround, a foreign
context resource can also be accessed using an absolute URL. However, it is more efficient to use a
relative URL because the resource is then accessed using RequestDispatcher defined by the Servlet API.

Relative URL D query parameter aggregation rules

The query parameter aggregation rules work the same way they do with <jsp:include> ; the original
parameters are augmented with the new parameters, with new values taking precedence over existing
values when applicable. The scope of the new parameters is the import call; the new parameters (and
values) will not apply after the import. The behavior is therefore the same as the one defined for the
include() method of RequestDispatcher in the Servlet specification.

Absolute URL

Absolute URLs are retrieved as defined by the java.net.URL and java.net.URLConnection classes. The
<c:import> action therefore supports at a minimum the protocols offered in the Java SE 1.2 platform for
absolute URLs. More protocols can be available to a web application, but this will depend on the the

class libraries made available to the web application by the platform the container runs on.

When using an absolute URL to import a resource, none of the current execution environment (e.g.
request and session attributes) is made available to the target resource, even if that absolute URL

Final Jakarta Standard Tag LibraryEEE57

7.4. <c:import>

resolves to the same host and context path. Therefore, the request parameters of the importing page
are not propagated to the target absolute URL.

When importing an external resource using the HTTP protocol, <c:import> behaves according to the
semantics of a GET request sent via the java.net.HttpURLConnection class, with setFollowRedirects set

to true.

58 EEEJakarta Standard Tag Library Final

7.5. <c:url>

7.5. <c:url>

Builds a URL with the proper rewriting rules applied.

Syntax
Syntax 1: Without body content

<c:url value="value" [context="context"]
E [var="varName"] [scope="{ paggrequest|session|application}"]/>

Syntax 2: With body content to specify query string parameters

<c:url value="value" [context="context"]

E [var="varName"] [scope="{ paggrequest|session|application}"]>
E <c:param> subtags

<[c:url>

Body Content

Jakarta Server Pages content. The Jakarta Server Pages container processes the body content, then the
action trims it and processes it further.

Attributes

Name Dynamic Type Description

value true String URL to be processed.

context true String Name of the context
when specifying a
relative URL resource
that belongs to a foreign
context.

var false String Name of the exported
scoped variable for the
processed url. The type
of the scoped variable is
String .

scope false String Scope for var.

Description

<c:url> processes a URL and rewrites it if necessary. Only relative URLs are rewritten. Absolute URLs
are not rewritten to prevent situations where an external URL could be rewritten and expose the
session ID. A consequence is that if a page author wants session tracking, only relative URLs must be
used with <c:url> to link to local resources.

Final Jakarta Standard Tag LibraryEEE59

7.5. <c:url>

The rewriting must be performed by calling method encodeURL() of the Servlet API.

If the URL contains characters that should be encoded (e.g. space), it is the userOs responsibility to
encode them.

The URL must be either an absolute URL starting with a scheme (e.g. "http://server/context/page.jsp") or

a relative URL as defined by Jakarta Server Pages in JSP.2.2.1 "Relative URL Specification". As a
consequence, an implementation must prepend the context path to a URL that starts with a slash (e.qg.
"Ipage2.jsp") so that such URLSs can be properly interpreted by a client browser.

Specifying a URL in a foreign context is possible through the context attribute. The URL specified must
must start with a / (since this is a context-relative URL). The context name must also start with a / (since
this is a standard way to identify a context).

Because the URL built by this action may include session information as a path parameter, it may fail if

used with RequestDispatcher of the Servlet API. The consumer of the rewritten URL should therefore
remove the session ID information prior to calling RequestDispatcher. This situation is properly
handled in <c:import> .

By default, the result of the URL processing is written to the current JspWriter . It is also possible to
export the result as a Jakarta Server Pages scoped variable defined via the var and scope attributes.

<c:param>subtags can also be specified within the body of <c:url> for adding to the URL query string
parameters, which will be properly encoded if necessary.

60 EEEJakarta Standard Tag Library Final

7.6. <c:redirect>

7.6. <c:redirect>
Sends an HTTP redirect to the client.
Syntax
Syntax 1: Without body content
<c:redirect url="value" [context="context"]/>

Syntax 2: With body content to specify query string parameters

<c:redirect url="value" [context="context"]>
E <c:param> subtags
</c:redirect>

Body Content
Jakarta Server Pages content. The Jakarta Server Pages container processes the body content, then the
action trims it and processes it further.

Attributes
Name Dyn Type Description
url true String The URL of the resource
to redirect to.
context true String Name of the context
when redirecting to a
relative URL resource
that belongs to a foreign
context.
Description

This action sends an HTTP redirect response to the client and aborts the processing of the page by
returning SKIP_PAGEfrom doEndTag().

The URL must be either an absolute URL starting with a scheme (e.g. "http://server/context/page.jsp") or
a relative URL as defined by Jakarta Server Pages in JSP.2.2.1 "Relative URL Specification”. As a
consequence, an implementation must prepend the context path to a URL that starts with a slash (e.qg.
"Ipage2.jsp") if the behavior is implemented using the HttpServletResponse.sendRedirect() method.

Redirecting to a resource in a foreign context is possible through the context attribute. The URL
specified must must start with a "/* (since this is a context-relative URL). The context name must also
start with a "/" (since this is a standard way to identify a context).

Final Jakarta Standard Tag LibraryEEE61

7.6. <c:redirect>

<c:redirect> follows the same rewriting rules as defined for <c:url> .

62 EEEJakarta Standard Tag Library Final

7.7. <c:param>

7.7. <c:param>
Adds request parameters to a URL. Nested action of <c:import> , <c:url> , <c:redirect>

Syntax
Syntax 1: Parameter value specified in attribute "value"
<c:param name="name" value="value"/>

Syntax 2: Parameter value specified in the body content

<c:param name="name">
E parameter value
</c:param>

Body Content

Jakarta Server Pages content. The Jakarta Server Pages container processes the body content, then the
action trims it and processes it further.

Attributes
Name Dynamic Type Description
name true String Name of the query
string parameter.
value true String Value of the parameter.

Null & Error Handling

¥ If name is null or empty, no action is performed. It is not an error.

¥ If value is null, it is processed as an empty value.

Description

Nested action of <c:import>, <c:url> , <c:redirect> to add request parameters to a URL. <c:param>also
URL encodes both name and value.

One might argue that this is redundant given that a URL can be constructed to directly specify the
query string parameters. For example:

<c:import url="/exec/dolt">
E <c:param name="action" value="register"/>
</c:import>

is the same as:

Final Jakarta Standard Tag LibraryEEE63

7.7. <c:param>

<c:import url="/exec/dolt?action=register"/>

It is indeed redundant, but is consistent with <jsp:include> , which supports nested <jsp:param> sub-
elements. Moreover, it has been designed such that the attributes name and value are automatically
URL encoded.

[4] If the responsibility was left to the consumer tag, this could lead to resource leaks (e.g. connection left open, memory

space for buffers) until garbage collection is activated. This is because a consumer tag might not close the Reader, or
because the page author might remove the consumer tag while leaving inadvertantly the <c:import> tag in the page.

[5] This restriction could eventually be lifted when the Jakarta Server Pages spec supports the notion of page events that

actions could register to. On a pageExit event, an <c:import> tag would then simply release its resources if it had not
already been done, removing the requirement for nested visibility.

[6] It is however important to note that using the output of <c:url> as the url attribute value of <c:import> wonOt work
for context relative URLs (URLs that start with a '/"). ThatOs because in those cases <c:url> prepends the context path to

the URL value.

64 EEEJakarta Standard Tag Library Final

8.1. Overview

Chapter 8. Internationalization (i18n) Actions:
|118n-capable formatting tag library

With the explosion of application development based on web technologies, and the deployment of such
applications on the Internet, applications must be able to adapt to the languages and formatting
conventions of their clients. This means that page authors must be able to tailor page content
according to the clientOs language and cultural formatting conventions. For example, the number
345987.246 should be formatted as 345 987,246 for France, 345.987,246 for Germany, and 345,987.246
for the U.S.

The process of designing an application (or page content) so that it can be adapted to various languages
and regions without requiring any engineering changes is known as internationalization, or i18n for
short. Once a web application has been internationalized, it can be adapted for a number of regions or
languages by adding locale-specific components and text. This process is known as localization.

There are two approaches to internationalizing a web application:

¥ Provide a version of the Jakarta Server Pages in each of the target locales and have a controller
servlet dispatch the request to the appropriate page (depending on the requested locale). This
approach is useful if large amounts of data on a page or an entire web application need to be
internationalized.

¥ |solate any locale-sensitive data on a page (such as error messages, string literals, or button labels)
into resource bundles, and access the data via i18n actions, so that the corresponding translated
message is fetched automatically and inserted into the page.

The Jakarta Standard Tag Library i18n-capable formatting actions support either approach: They assist
page authors with creating internationalized page content that can be localized into any locale
available in the Jakarta Server Pages container (this addresses the second approach), and allow
various data elements such as numbers, currencies, dates and times to be formatted and parsed in a
locale-sensitive or customized manner (this may be used in either approach).

The Jakarta Standard Tag LibraryOs i18n actions are covered in this chapter. The formatting actions are
covered in Formatting Actions: 118n-capable formatting tag library

8.1. Overview

There are three key concepts associated with internationalization: locale, resource bundle, and
basename.

A locale represents a specific geographical, political, or cultural region. A locale is identified by a

language code, along with an optional country code .

¥ Language code
The language code is the lower-case two-letter code as defined by ISO-639 (e.g. "ca" for Catalan, "zh"

Final Jakarta Standard Tag LibraryEEE65

8.1. Overview

for Chinese). The full list of these codes can be found at a number of sites, such as:
http://www.ics.uci.edu/publ/ietf/http/related/is0639.txt

¥ Country code
The country code is the upper-case two-letter code as defined by 1SO-3166 (e.g. "IT" for Italy, "CR"
for Costa Rica). The full list of these codes can be found at a number of sites, such as:
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Note that the semantics of locales in the Jakarta Standard Tag Library are the same as the ones defined

by the class java.util.Locale . A consequence of this is that, as of Java SE 1.4, new language codes defined
in 1ISO 639 (e.g. he, vyi, id) will be returned as the old codes (e.g. iw, ji, in). See the documentation of the
java.util.Locale class for more detalils.

A resource bundle contains locale-specific objects. Each message in a resource bundle is associated
with a key. Since the set of messages contained in a resource bundle can be localized for many locales,
the resource bundles that translate the same set of messages are identified by the same basename. A
specific resource bundle is therefore uniquely identified by combining its basename with a locale.

For instance, a web application could define the registration resource bundles with basename
Registration to contain the messages associated with the registration portion of the application.
Assuming that French and English are the only languages supported by the application, there will be

two resource bundles: Registration_fr (French language) and Registration_en (English language).
Depending on the locale associated with the client request, the key "greeting" could be mapped to the
message "Bonjour" (French) or "Hello" (English).

8.1.1. <fmt:message>

It is possible to internationalize the Jakarta Server Pages of a web application simply by using the
<fmt:message>action as shown below:

<fmt:message key="greeting"/>

In this case, <fmt:message>leverages the default i18n localization context, making it extremely simple
for a page author to internationalize Jakarta Server Pages.

<fmt:message>also supports compound messages, i.e. messages that contain one or more variables.
Parameter values for these variables may be supplied via one or more <fmt:param> subtags (one for
each parameter value). This procedure is referred to as parametric replacement.

<fmt:message key="athletesRegistered">

E <fmt:param>

E <fmt:formatNumber value="${athletesCount}"/>
E </fmt:param>

</fmt:message>

66 EEEJakarta Standard Tag Library Final

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

8.2.118n Localization Context

Depending on the locale, this example could print the following messages:

Efrench: Il y a 10 582 athletes enregistres.
english: There are 10,582 athletes registered.

8.2. 118n Localization Context

18n actions use an i18n localization context to localize their data. An i18n localization context
contains two pieces of information: a resource bundle and the locale for which the resource bundle
was found.

An i18n action determine its i18n localization context in one of several ways, which are described in
order of precedence:

¥ <fmt:message>bundle attribute
If attribute bundle is specified in <fmt:message> the i18n localization context associated with it is
used for localization.

¥ <fmt:bundle> action
If <fmt:message>actions are nested inside a <fmt:bundle> action, the i18n localization context of the
enclosing <fmt:bundle> action is used for localization. The <fmt:bundle> action determines the
resource bundle of its i18n localization context according to the resource bundle determination
algorithm in Determinining the Resource Bundle for an i18n Localization Context , using the
basename attribute as the resource bundle basename.

¥ 118n default localization context
The i18n localization context whose resource bundle is to be used for localization is specified via
the jakarta.servlet.jsp.jstl.fmt.localizationContext configuration setting (see [18n Localization
Context). If the configuration setting is of type jakarta.servlet.jsp.jstl.fmt.LocalizationContext its
resource bundle component is used for localization. Otherwise, the configuration setting is of type
String, and the action establishes its own i18n localization context whose resource bundle
component is determined according to the resource bundle determination algorithm in
Determinining the Resource Bundle for an i18n Localization Context , using the configuration
setting as the resource bundle basename.

The example below shows how the various localization contexts can be established to define the
resource bundle used for localization.

Final Jakarta Standard Tag LibraryEEE67

8.2. 118n Localization Context

<%-- Use configuration setting --%>
<fmt:message key="Welcome" />

<fmt:setBundle basename="Errors" var="errorBundle" />
<fmt:bundle basename="Greetings">
<%-- Localization context established by

parent <fmt:bundle> tag --%>
<fmt:message key="Welcome" />
<%-- Localization context established by attribute bundle --%>
<fmt:message key="WrongPassword" bundle="${errorBundle}" />
</fmt:bundle>

T [T [T [Ty [T

8.2.1. Preferred Locales

If the resource bundle of an i18n localization context needs to be determined, it is retrieved from the
web applicationOs resources according to the algorithm described in section Section 8.3. This algorithm
requires two pieces of information: the basename of the resource bundle (as described in the previous
section) and the preferred locales.

The method for setting the preferred locales is characterized as either application-based or browser-
based.

Application-based locale setting has priority over browser-based locale setting. In this mode, the locale

is set via the jakarta.servlet.jsp.jstl.fmt.locale configuration setting (see Locale). Setting the locale this
way is useful in situations where an application lets its users pick their preferred locale and then sets

the scoped variable accordingly. This may also be useful in the case where a clientOs preferred locale is
retrieved from a database and installed for the page using the <fmt:setLocale> action.

The <fmt:setLocale> action may be used to set the jakarta.servlet.jsp.jstl.fmt.locale configuration
variable as follows:

<fmt:setLocale value="en_US" />

In the browser-based locale setting, the client determines via its browser settings which locale(s)
should be used by the web application. The action retrieves the clientOs locale preferences by calling
ServletRequest.getLocales() on the incoming request. This returns a list of the locales (in order of
preference) that the client wants to use.

Whether application- or browser-based locale setting is used, an ordered list of preferred locales is fed
into the algorithm described in section Determinining the Resource Bundle for an i18n Localization
Context to determine the resource bundle for an i18n localization context.

68 EEEJakarta Standard Tag Library Final

8.3. Determinining the Resource Bundle for an i18n Localization Context

8.3. Determinining the Resource Bundle for an i18n
Localization Context

Given a basename and an ordered set of preferred locales, the resource bundle for an i18n localization
context is determined according to the algorithm described in this section.

Tthis algorithm is also exposed as a general convenience method in the
jakarta.servlet.jsp.jstl.fmt.LocaleSupport class so that it may be used by any tag handler implementation
that needs to produce localized messages. For example, this is useful for exception messages that are
intended directly for user consumption on an error page.

8.3.1. Resource Bundle Lookup

Localization in the Jakarta Standard Tag Library is based on the same mechanisms offered in the Java
SE platform. Resource bundles contain locale-specific objects, and when an i18n action requires a
locale-specific resource, it simply loads it from the appropriate resource bundle.

The algorithm of Resource Bundle Determination Algorithm describes how the proper resource bundle
is determined. This algorithm calls for a resource bundle lookup, where an attempt is made at fetching
a resource bundle associated with a specific basename and locale.

The Jakarta Standard Tag Library leverages the semantics of the java.util.ResourceBundle method
getBundle(String basename, java.util.Locale locale)

for resource bundle lookup, with one important modification.

As stated in the documentation for ~ ResourceBundle, a resource bundle lookup searches for classes and
properties files with various suffixes on the basis of:

1. The specified locale
2. The current default locale as returned by Locale.getDefault()

3. The root resource bundle (basename)

In the Jakarta Standard Tag Library, the search is limited to the first level; i.e. the specified locale. Steps

2 and 3 are removed so that other locales may be considered before applying the Jakarta Standard Tag
Library fallback mechanism described in Resource Bundle Determination Algorithm . Only if no
fallback mechanism exists, or the fallback mechanism fails to determine a resource bundle, is the root
resource bundle considered.

Resource bundles are therefore searched in the following order:

basename + + variant

basename +

+ language +
+ language +

+ country +
+ country

Final Jakarta Standard Tag LibraryEEE69

