
Jakarta Servlet Specification
Jakarta Servlet Team, https://projects.eclipse.org/projects/ee4j.servlet

6.2-M1, October 16, 2025: DRAFT

Table of Contents
Copyright . 3

Eclipse Foundation Specification License . 3

Disclaimers . 3

Jakarta Servlet Specification, Version 6.2-M1 . 5

Preface . 5

Additional Sources . 5

Who Should Read This Specification. 5

API Reference . 6

Other Jakarta Platform Specifications. 6

Other Important References . 6

Providing Feedback . 7

1. Overview . 9

1.1. What is a Servlet? . 9

1.2. What is a Servlet Container? . 9

1.3. An Example . 9

1.4. Comparing Servlets with Other Technologies . 10

2. The Servlet Interface . 11

2.1. Request Handling Methods . 11

2.1.1. HTTP Specific Request Handling Methods . 11

2.1.2. HEAD Method . 11

2.1.3. Additional Methods . 12

2.1.4. Sensitive headers . 12

2.1.5. Conditional GET Support. 12

2.2. Number of Instances . 12

2.3. Servlet Life Cycle . 12

2.3.1. Loading and Instantiation . 13

2.3.2. Initialization. 13

2.3.2.1. Error Conditions on Initialization. 13

2.3.2.2. Tool Considerations . 13

2.3.3. Request Handling . 14

2.3.3.1. Multithreading Issues. 14

2.3.3.2. Exceptions During Request Handling. 14

2.3.3.3. Asynchronous processing . 14

2.3.3.4. Thread Safety . 23

2.3.3.5. Upgrade Processing . 24

2.3.4. End of Service . 24

3. The Request . 27

3.1. HTTP Protocol Parameters . 27

3.1.1. When Parameters Are Available . 27

3.2. File Upload . 28

3.3. Attributes . 28

3.4. Headers . 29

3.5. Request URI Path Processing . 29

3.5.1. Obtaining the URI Path . 29

3.5.2. URI Path Canonicalization . 30

3.5.3. Example URIs . 32

3.6. Request Path Elements . 35

3.7. Path Translation Methods . 36

3.8. Non-Blocking IO . 36

3.9. HTTP/2 Server Push . 37

3.10. Cookies . 38

3.11. SSL Attributes . 38

3.12. Internationalization. 39

3.13. Request Data Encoding . 39

3.14. Lifetime of the Request Object . 40

4. Servlet Context . 41

4.1. Introduction to the ServletContext Interface. 41

4.2. Scope of a ServletContext Interface . 41

4.3. Initialization Parameters . 41

4.4. Configuration Methods . 41

4.4.1. Programmatically Adding and Configuring Servlets . 42

4.4.1.1. addServlet(String servletName, String className) . 42

4.4.1.2. addServlet(String servletName, Servlet servlet) . 42

4.4.1.3. addServlet(String servletName, Class <? extends Servlet> servletClass) 42

4.4.1.4. addJspFile(String servletName, String jspfile) . 42

4.4.1.5. <T extends Servlet> T createServlet(Class<T> clazz) . 42

4.4.1.6. ServletRegistration getServletRegistration(String servletName). 42

4.4.1.7. Map<String, ? extends ServletRegistration> getServletRegistrations() 42

4.4.2. Programmatically Adding and Configuring Filters. 43

4.4.2.1. addFilter(String filterName, String className). 43

4.4.2.2. addFilter(String filterName, Filter filter) . 43

4.4.2.3. addFilter(String filterName, Class <? extends Filter> filterClass) 43

4.4.2.4. <T extends Filter> T createFilter(Class<T> clazz) . 43

4.4.2.5. FilterRegistration getFilterRegistration(String filterName) . 43

4.4.2.6. Map<String, ? extends FilterRegistration> getFilterRegistrations() 43

4.4.3. Programmatically Adding and Configuring Listeners . 44

4.4.3.1. void addListener(String className). 44

4.4.3.2. <T extends EventListener> void addListener(T t) . 44

4.4.3.3. void addListener(Class <? extends EventListener> listenerClass). 45

4.4.3.4. <T extends EventListener> void createListener(Class<T> clazz) 45

4.4.3.5. Annotation processing requirements for programmatically added Servlets, Filters

and Listeners . 45

4.4.4. Programmatically Configuring Session Time Out. 46

4.4.5. Programmatically Configuring Character Encoding . 46

4.5. Context Attributes . 46

4.5.1. Context Attributes in a Distributed Container . 47

4.6. Resources . 47

4.7. Multiple Hosts and Servlet Contexts . 47

4.8. Reloading Considerations . 48

4.8.1. Temporary Working Directories . 48

5. The Response. 49

5.1. Buffering. 49

5.2. Headers . 50

5.3. HTTP Trailers. 50

5.4. Non-Blocking IO . 51

5.5. Convenience Methods . 52

5.6. Internationalization. 52

5.7. Closure of the Response Object . 53

5.8. Lifetime of the Response Object . 53

6. Filtering . 55

6.1. What is a Filter? . 55

6.1.1. Examples of Filtering Components. 56

6.2. Main Concepts . 56

6.2.1. Filter Lifecycle . 56

6.2.2. Wrapping Requests and Responses . 57

6.2.3. Filter Environment . 58

6.2.4. Configuration of Filters in a Web Application . 58

6.2.5. Filters and the RequestDispatcher . 60

7. Sessions. 63

7.1. Session Tracking Mechanisms. 63

7.1.1. Cookies. 63

7.1.2. SSL Sessions . 63

7.1.3. URL Rewriting . 63

7.1.4. Session Integrity . 64

7.2. Creating a Session. 64

7.3. Session Scope. 64

7.4. Binding Attributes into a Session . 65

7.5. Session Timeouts . 65

7.6. Last Accessed Times. 65

7.7. Important Session Semantics. 66

7.7.1. Threading Issues . 66

7.7.2. Distributed Environments . 66

7.7.3. Client Semantics . 67

8. Annotations and Pluggability . 69

8.1. Annotations and Pluggability . 69

8.1.1. @WebServlet . 71

8.1.2. @WebFilter. 72

8.1.3. @WebInitParam . 72

8.1.4. @WebListener . 72

8.1.5. @MultipartConfig . 73

8.1.6. Other Annotations / Conventions . 73

8.2. Pluggability . 74

8.2.1. Modularity of web.xml . 74

8.2.2. Ordering of web.xml and web-fragment.xml . 75

8.2.3. Assembling the Descriptor from web.xml, web-fragment.xml and Annotations 80

8.2.4. Shared Libraries / Runtimes Pluggability . 89

8.3. JSP Container Pluggability . 91

8.4. Processing Annotations and Fragments . 91

9. Dispatching Requests . 93

9.1. Obtaining a RequestDispatcher. 93

9.1.1. Query Strings in Request Dispatcher Paths . 93

9.2. Using a Request Dispatcher . 94

9.3. The Include Method . 94

9.3.1. Included Request Parameters . 94

9.4. The Forward Method . 95

9.4.1. Forwarded Query String . 95

9.4.2. Forwarded Request Parameters . 96

9.5. Error Handling . 96

9.6. Obtaining an AsyncContext . 96

9.7. The Dispatch Method. 96

9.7.1. Query String . 97

9.7.2. Dispatched Request Parameters . 97

10. Web Applications . 99

10.1. Web Applications Within Web Servers . 99

10.2. Relationship to ServletContext . 99

10.3. Elements of a Web Application . 99

10.4. Deployment Hierarchies. 99

10.5. Directory Structure . 100

10.5.1. Example of Application Directory Structure . 101

10.6. Web Application Archive File . 101

10.7. Web Application Deployment Descriptor. 101

10.7.1. Common Dependencies. 101

10.7.2. Web Application Class Loader. 102

10.8. Replacing a Web Application. 102

10.9. Error Handling . 102

10.9.1. Request Attributes . 102

10.9.2. Error Pages. 103

10.9.3. Error Filters . 104

10.10. Welcome Files . 104

10.11. Web Application Environment . 106

10.12. Web Application Deployment . 106

10.13. Inclusion of a web.xml Deployment Descriptor . 106

11. Application Lifecycle Events . 107

11.1. Introduction. 107

11.2. Event Listeners . 107

11.2.1. Event Types and Listener Interfaces . 107

11.2.2. An Example of Listener Use . 108

11.3. Listener Class Configuration . 108

11.3.1. Provision of Listener Classes . 108

11.3.2. Deployment Declarations . 109

11.3.3. Listener Registration . 109

11.3.4. Notifications At Shutdown . 109

11.4. Deployment Descriptor Example . 109

11.5. Listener Instances and Threading . 110

11.6. Listener Exceptions . 110

11.7. Distributed Containers . 110

11.8. Session Events. 111

12. Mapping Requests to Servlets . 113

12.1. Use of URL Paths. 113

12.2. Specification of Mappings . 113

12.2.1. Implicit Mappings. 114

12.2.2. Example Mapping Set . 114

12.3. Runtime Discovery of Mappings. 115

12.3.1. Runtime Discovery of Servlet Mappings. 115

13. Security. 117

13.1. Introduction. 117

13.2. Declarative Security. 117

13.3. Programmatic Security . 118

13.4. Programmatic Security Policy Configuration . 119

13.4.1. @ServletSecurity Annotation . 119

13.4.1.1. Examples. 122

13.4.1.2. Mapping @ServletSecurity to security-constraint . 123

13.4.1.3. Mapping @HttpConstraint and @HttpMethodConstraint to XML. 125

13.4.2. setServletSecurity of ServletRegistration.Dynamic . 126

13.5. Roles . 127

13.6. Authentication . 127

13.6.1. HTTP Basic Authentication. 128

13.6.2. HTTP Digest Authentication. 128

13.6.3. Form Based Authentication . 128

13.6.3.1. Login Form Notes . 129

13.6.4. HTTPS Client Authentication . 130

13.6.5. Additional Container Authentication Mechanisms . 130

13.7. Server Tracking of Authentication Information. 130

13.8. Specifying Security Constraints . 131

13.8.1. Combining Constraints . 131

13.8.2. Example . 132

13.8.3. Processing Requests . 134

13.8.4. Uncovered HTTP Protocol Methods . 134

13.8.4.1. Rules for Security Constraint Configuration . 136

13.8.4.2. Handling Uncovered HTTP Methods . 136

13.9. Default Policies . 137

13.10. Login and Logout . 137

14. Deployment Descriptor. 139

14.1. Deployment Descriptor Elements. 139

14.2. Rules for Processing the Deployment Descriptor . 139

14.3. Deployment Descriptor. 140

14.4. Examples . 140

14.4.1. A Basic Example . 140

14.4.2. An Example of Security. 141

15. Requirements related to other Specifications. 143

15.1. Sessions. 143

15.2. Web Applications . 143

15.2.1. Web Application Class Loader. 143

15.2.2. Web Application Environment . 143

15.3. Security. 144

15.3.1. Propagation of Security Identity in Jakarta Enterprise Bean Calls 144

15.3.2. Container Authorization Requirements . 145

15.3.3. Container Authentication Requirements . 145

15.4. Deployment . 145

15.4.1. Deployment Descriptor Elements. 145

15.4.2. Packaging and Deployment of Jakarta XML Web Services Components 145

15.4.3. Rules for Processing the Deployment Descriptor . 146

15.5. Annotations and Resource Injection . 147

15.5.1. Handling of metadata-complete . 147

15.5.2. @DeclareRoles. 148

15.5.3. @EJB Annotation . 149

15.5.4. @EJBs Annotation. 149

15.5.5. @Resource Annotation . 150

15.5.6. @PersistenceContext Annotation . 150

15.5.7. @PersistenceContexts Annotation . 151

15.5.8. @PersistenceUnit Annotation . 151

15.5.9. @PersistenceUnits Annotation . 151

15.5.10. @PostConstruct Annotation. 151

15.5.11. @PreDestroy Annotation . 152

15.5.12. @Resources Annotation . 152

15.5.13. @RunAs Annotation . 153

15.5.14. @WebServiceRef Annotation . 153

15.5.15. @WebServiceRefs Annotation. 154

15.5.16. Contexts and Dependency Injection for Jakarta EE Platform Requirements 154

Appendix A: Change Log. 155

A.1. Changes Since Jakarta Servlet 6.1 . 155

A.2. Changes Since Jakarta Servlet 6.0 . 156

A.3. Changes Since Jakarta Servlet 5.0 . 158

A.4. Compatibility with Jakarta Servlet Specification Version 4.0 . 159

A.5. Changes Since Jakarta Servlet 4.0 . 159

Glossary . 161

Specification: Jakarta Servlet Specification

Version: 6.2-M1

Status: DRAFT

Release: October 16, 2025

1

2

Copyright
Copyright (c) 2019, 2025 Eclipse Foundation.

Eclipse Foundation Specification License
By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked, you (the licensee) agree that you have read, understood, and will comply with
the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright © [$date-of-document] Eclipse
Foundation, Inc. <<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright © 2018, 2024 Eclipse Foundation. This software or document includes material copied
from or derived from Jakarta ® Servlet https://jakarta.ee/specifications/servlet/6.0/"

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE
SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY
DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE
DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

3

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

4

Jakarta Servlet Specification, Version 6.2-M1
Copyright (c) 2025 Contributors to the Eclipse Foundation.

Eclipse is a registered trademark of the Eclipse Foundation. Jakarta is a trademark of the Eclipse
Foundation. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

The Jakarta Servlet Team

Comments to: servlet-dev@eclipse.org

Preface
This document is the Jakarta Servlet Specification, version 6.2-M1. The standard for the Jakarta
Servlet API is described herein.

Additional Sources
The specification is intended to be a complete and clear explanation of the Jakarta Servlet API, but
if questions remain, the following sources may be consulted:

• A compatible implementation (CI) has been made available which provides a behavioral
benchmark for this specification. Where the specification leaves implementation of a particular
feature open to interpretation, implementors may use the reference implementation as a model
of how to carry out the intention of the specification.

• The Jakarta EE Platform TCK has been provided for assessing whether implementations meet
the compatibility requirements of the Jakarta Servlet API standard. The test results have
normative value for resolving questions about whether an implementation is standard.

• If further clarification is required, the working group for the Jakarta Servlet API under the
Jakarta EE Working Group should be consulted, and is the final arbiter of such issues.

Comments and feedback are welcome, and will be used to improve future versions.

Who Should Read This Specification
The intended audience for this specification includes the following groups:

• Web server and application server vendors that want to provide servlet engines that conform to
this standard.

• Authoring tool developers that want to support web applications that conform to this
specification.

• Experienced servlet authors who want to understand the underlying mechanisms of servlet
technology.

We emphasize that this specification is not a user’s guide for servlet developers and is not intended

5

mailto:servlet-dev@eclipse.org

to be used as such.

API Reference
The full specifications of classes, interfaces, and method signatures that define the Jakarta Servlet
API, as well as their accompanying Javadoc™ documentation, is available online at
https://jakarta.ee/specifications/servlet.

Other Jakarta Platform Specifications
The following Jakarta API specifications are referenced throughout this specification:

• Jakarta EE Platform, version 11

• Jakarta Server Pages™ (JSP), version 4.0

• Java Naming and Directory Interface™ (JNDI).

• Jakarta Context and Dependency Injection for the Jakarta EE Platform

These specifications may be found at the Jakarta EE Platform, web site: https://jakarta.ee/
specifications/.

References to other specifications that are part of the Jakarta EE platform exclude the versions of
those specifications that target Jakarta EE 8 due to the different name-space used.

Other Important References
The following Internet specifications provide information relevant to the development and
implementation of the Jakarta Servlet API and standard servlet engines:

• RFC 1630 Uniform Resource Identifiers (URI)

• RFC 1738 Uniform Resource Locators (URL)

• RFC 3986 Uniform Resource Identifiers (URI): Generic Syntax

• RFC 1945 Hypertext Transfer Protocol (HTTP/1.0)

• RFC 2045 MIME Part One: Format of Internet Message Bodies

• RFC 2046 MIME Part Two: Media Types

• RFC 2047 MIME Part Three: Message Header Extensions for non-ASCII text

• RFC 2048 MIME Part Four: Registration Procedures

• RFC 2049 MIME Part Five: Conformance Criteria and Examples

• RFC 6265 HTTP State Management Mechanism

• RFC 7258 Pervasive Monitoring Is an Attack

• RFC 7541 HPACK: Header Compression for HTTP/2 (HPACK)

• RFC 7301 Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension
(ALPN)

6

https://jakarta.ee/specifications/servlet
https://jakarta.ee/specifications/
https://jakarta.ee/specifications/

• RFC 7168 The Hyper Text Coffee Pot Control Protocol for Tea Ef (HTCPCP-TEA)[1]

• RFC 2119 Key words for use in RFCs to Indicate Requirement Levels

• RFC 7616 HTTP Digest Access Authentication

• RFC 7617 The 'Basic' HTTP Authentication Scheme

• RFC 8297 An HTTP Status Code for Indicating Hints

• RFC 9110 HTTP Semantics

• RFC 9111 HTTP Caching

• RFC 9112 HTTP/1.1

• RFC 9113 HTTP/2

• RFC 9114 HTTP/3

Online versions of these RFCs are at http://www.ietf.org/rfc/.

The World Wide Web Consortium (http://www.w3.org/) is a definitive source of HTTP related
information affecting this specification and its implementations.

The eXtensible Markup Language (XML) is used for the specification of the Deployment Descriptors
described in Chapter 13 of this specification.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in RFC2119.

Providing Feedback
We welcome any and all feedback about this specification. Please e-mail your comments to servlet-
dev@eclipse.org.

[1] This reference is mostly tongue-in-cheek although most of the concepts described in the HTCPCP -TEA RFC are relevant to all
well-designed web servers.

7

http://www.ietf.org/rfc/
http://www.w3.org/

8

Chapter 1. Overview

1.1. What is a Servlet?
A servlet is a Jakarta technology-based web component, managed by a container, that generates
dynamic content. Like other Jakarta technology-based components, servlets are platform-
independent Java classes that are compiled to platform-neutral byte code that can be loaded
dynamically into and run by a Jakarta technology-enabled web server. Containers, sometimes
called servlet engines, are web server extensions that provide servlet functionality. Servlets interact
with web clients via a request/response paradigm implemented by the servlet container.

1.2. What is a Servlet Container?
The servlet container is a part of a web server or application server that provides the network
services over which requests and responses are sent, decodes MIME-based requests, and formats
MIME-based responses. A servlet container also contains and manages servlets through their
lifecycle.

A servlet container can be built into a host web server, or installed as an add-on component to a
web server via that server’s native extension API. Servlet containers can also be built into or
possibly installed into web-enabled application servers.

All servlet containers must support HTTP and HTTPS as protocols for requests and responses, but
additional request/response-based protocols may be supported. The required versions of the HTTP
specification that a container must implement are HTTP/1.1 and HTTP/2. When supporting HTTP/2,
servlet containers must support the “h2” and “h2c” protocol identifiers (as specified in section 3.1 of
the HTTP/2 RFC). This implies all servlet containers must support ALPN. Because the container may
have a caching mechanism described in RFC 9111 (HTTP Caching), it may modify requests from the
clients before delivering them to the servlet, may modify responses produced by servlets before
sending them to the clients, or may respond to requests without delivering them to the servlet
under the compliance with RFC 9111.

A servlet container may place security restrictions on the environment in which a servlet executes.

Java SE 17 is the minimum version of the underlying Java platform with which servlet containers
must be built.

1.3. An Example
The following is a typical sequence of events:

1. A client (e.g., a web browser) accesses a web server and makes an HTTP request.

2. The request is received by the web server and handed off to the servlet container. The servlet
container can be running in the same process as the host web server, in a different process on
the same host, or on a different host from the web server for which it processes requests.

3. The servlet container determines which servlet to invoke based on the configuration of its

9

servlets, and calls it with objects representing the request and response.

4. The servlet uses the request object to find out who the remote user is, what HTTP POST
parameters may have been sent as part of this request, and other relevant data. The servlet
performs whatever logic it was programmed with, and generates data to send back to the client.
It sends this data back to the client via the response object.

5. Once the servlet has finished processing the request, the servlet container ensures that the
response is properly flushed, and returns control back to the host web server.

1.4. Comparing Servlets with Other Technologies
In functionality, servlets provide a higher level abstraction than Common Gateway Interface (CGI)
programs but a lower level of abstraction than that provided by web frameworks such as Jakarta
Server Faces.

Servlets have the following advantages over other server extension mechanisms:

• They are generally much faster than CGI scripts because a different process model is used.

• They use a standard API that is supported by many web servers.

• They have all the advantages of the Java programming language, including ease of development
and platform independence.

• They can access the large set of APIs available for the Java platform.

10

Chapter 2. The Servlet Interface
The Servlet interface is the central abstraction of the Jakarta Servlet API. All servlets implement
this interface either directly, or more commonly, by extending a class that implements the interface.
The two classes in the Jakarta Servlet API that implement the Servlet interface are GenericServlet
and HttpServlet. For most purposes, Developers will extend HttpServlet to implement their servlets.

2.1. Request Handling Methods
The basic Servlet interface defines a service method for handling client requests. This method is
called for each request that the servlet container routes to an instance of a servlet.

The handling of concurrent requests to a web application requires that the web developer design
servlets that can deal with multiple threads executing within the service method at a particular
time.

2.1.1. HTTP Specific Request Handling Methods

The HttpServlet abstract subclass adds additional methods beyond the basic Servlet interface that
are automatically called by the service method in the HttpServlet class to aid in processing HTTP-
based requests. These methods are:

• doGet for handling HTTP GET requests

• doPost for handling HTTP POST requests

• doPut for handling HTTP PUT requests

• doDelete for handling HTTP DELETE requests

• doHead for handling HTTP HEAD requests

• doOptions for handling HTTP OPTIONS requests

• doTrace for handling HTTP TRACE requests

Typically when developing HTTP-based servlets, an Application Developer is concerned with the
doGet and doPost methods. The other methods are considered to be methods for use by
programmers very familiar with HTTP programming.

2.1.2. HEAD Method

The doHead method in HttpServlet, by default, directly calls the doGet method and relies on the
container to implement HEAD behaviour of the HTTP protocol. However, if the
"jakarta.servlet.http.legacyDoHead" ServletConfig init parameter is set to "TRUE" then the doGet
method is called with the ServletResponse wrapped to provide only the headers produced by the
doGet method. The legacy mode is deprecated as it may not be accurate in producing the same
heads as GET method would have returned and may be removed in a future release.

11

2.1.3. Additional Methods

The doPut and doDelete methods allow Servlet Developers to support HTTP/1.1 clients that employ
these features. The doOptions method responds with which HTTP methods are supported by the
servlet. The doTrace method generates a response containing all instances of the headers sent in the
TRACE request.

The CONNECT method applies to proxies whereas the Jakarta Servlet API is targeted at endpoints so,
by default, Containers must reject such requests with an SC_NOT_IMPLEMENTED (501) response and not
pass the request to a Filter or Servlet. Containers may provide container specific functionality to
handle CONNECT requests. If that functionality includes passing CONNECT requests to a Filter or Servlet,
then the container should define the expected behaviour of the Servlet API for such requests in that
container.

2.1.4. Sensitive headers

The HttpServlet class defines the isSensitiveHeader method which identifies headers that will be
excluded from a response generated by the default doTrace implementation as recommended by
RFC 9110. The default implementation identifies the following headers as sensitive: - Authorization -
Cookie - X-Forwarded - Forwarded - Proxy-Authorization The handling of sensitive headers may be
customized by over-riding the isSensitiveHeader and/or doTrace methods.

2.1.5. Conditional GET Support

The HttpServlet class defines the getLastModified method to support conditional GET operations. A
conditional GET operation requests a resource be sent only if it has been modified since a specified
time. In appropriate situations, implementation of this method may aid efficient utilization of
network resources.

2.2. Number of Instances
The servlet declaration which is either via the annotation as described in Chapter 8, Annotations
and Pluggability or part of the deployment descriptor of the web application containing the servlet,
as described in Chapter 14, Deployment Descriptor, controls how the servlet container provides
instances of the servlet.

For a servlet not hosted in a distributed environment (the default), the servlet container must use
only one instance per servlet declaration.

In the case where a servlet was deployed as part of an application marked in the deployment
descriptor as distributable, a container may have only one instance per servlet declaration per Java
Virtual Machine (JVM™).

2.3. Servlet Life Cycle
A servlet is managed through a well defined life cycle that defines how it is loaded and instantiated,
is initialized, handles requests from clients, and is taken out of service. This life cycle is expressed
in the API by the init, service, and destroy methods of the jakarta.servlet.Servlet interface that all

12

servlets must implement directly or indirectly through the GenericServlet or HttpServlet abstract
classes.

2.3.1. Loading and Instantiation

The servlet container is responsible for loading and instantiating servlets. The loading and
instantiation can occur when the container is started, or delayed until the container determines the
servlet is needed to service a request.

When the servlet engine is started, needed servlet classes must be located by the servlet container.
The servlet container loads the servlet class using normal Java class loading facilities. The loading
may be from a local file system, a remote file system, or other network services.

After loading the Servlet class, the container instantiates it for use.

2.3.2. Initialization

After the servlet object is instantiated, the container must initialize the servlet before it can handle
requests from clients. Initialization is provided so that a servlet can read persistent configuration
data, initialize costly resources (such as JDBC™ API-based connections), and perform other one-time
activities. The container initializes the servlet instance by calling the init method of the Servlet
interface with a unique (per servlet declaration) object implementing the ServletConfig interface.
This configuration object allows the servlet to access name-value initialization parameters from the
web application’s configuration information. The configuration object also gives the servlet access
to an object (implementing the ServletContext interface) that describes the servlet’s runtime
environment. See Chapter 4, Servlet Context for more information about the ServletContext
interface.

2.3.2.1. Error Conditions on Initialization

During initialization, the servlet instance can throw an UnavailableException or a ServletException.
In this case, the servlet must not be placed into active service and must be released by the servlet
container. The destroy method is not called as it is considered unsuccessful initialization.

A new instance may be instantiated and initialized by the container after a failed initialization. The
exception to this rule is when an UnavailableException indicates a minimum time of unavailability,
and the container must wait for the period to pass before creating and initializing a new servlet
instance.

2.3.2.2. Tool Considerations

The triggering of static initialization methods when a tool loads and introspects a web application is
to be distinguished from the calling of the init method. Developers should not assume a servlet is
in an active container runtime until the init method of the Servlet interface is called. For example,
a servlet should not try to establish connections to databases or Jakarta Enterprise Beans
containers when only static (class) initialization methods have been invoked.

13

2.3.3. Request Handling

After a servlet is properly initialized, the servlet container may use it to handle client requests.
Requests are represented by request objects of type ServletRequest. The servlet fills out responses to
requests by calling methods of a provided object of type ServletResponse. These objects are passed
as parameters to the service method of the Servlet interface.

In the case of an HTTP request, the objects provided by the container are of types
HttpServletRequest and HttpServletResponse.

Note that a servlet instance placed into service by a servlet container may handle no requests
during its lifetime.

2.3.3.1. Multithreading Issues

A servlet container may send concurrent requests through the service method of the servlet. To
handle the requests, the Application Developer must make adequate provisions for concurrent
processing with multiple threads in the service method.

It is strongly recommended that Developers not synchronize the service method (or methods
dispatched to it) because of the detrimental effects on performance.

2.3.3.2. Exceptions During Request Handling

A servlet may throw either a ServletException or an UnavailableException during the service of a
request. A ServletException signals that some error occurred during the processing of the request
and that the container should take appropriate measures to clean up the request.

An UnavailableException signals that the servlet is unable to handle requests either temporarily or
permanently.

If a permanent unavailability is indicated by the UnavailableException, the servlet container must
remove the servlet from service, call its destroy method, and release the servlet instance. Any
requests refused by the container by that cause must be returned with a SC_NOT_FOUND (404)
response.

If temporary unavailability is indicated by the UnavailableException, the container may choose to
not route any requests through the servlet during the time period of the temporary unavailability.
Any requests refused by the container during this period must be returned with a
SC_SERVICE_UNAVAILABLE (503) response status along with a Retry-After header indicating when the
unavailability will terminate.

The container may choose to ignore the distinction between a permanent and temporary
unavailability and treat all UnavailableExceptions as permanent, thereby removing a servlet that
throws any UnavailableException from service.

2.3.3.3. Asynchronous processing

Sometimes a filter and/or servlet is unable to complete the processing of a request without waiting
for a resource or event before generating a response. For example, a servlet may need to wait for

14

an available JDBC connection, for a response from a remote web service, for a JMS message, or for
an application event, before proceeding to generate a response. Waiting within the servlet is an
inefficient operation as it is a blocking operation that consumes a thread and other limited
resources. Frequently a slow resource such as a database may have many threads blocked waiting
for access and can cause thread starvation and poor quality of service for an entire web container.

The asynchronous processing of requests is introduced to allow the thread to return to the
container and perform other tasks. When asynchronous processing begins on the request, another
thread or callback may either generate the response and call complete or dispatch the request so
that it may run in the context of the container using the AsyncContext.dispatch method. A typical
sequence of events for asynchronous processing is:

1. The request is received and passed via normal filters for authentication etc. to the servlet.

2. The servlet processes the request parameters and/or content to determine the nature of the
request.

3. The servlet issues requests for resources or data, for example, sends a remote web service
request or joins a queue waiting for a JDBC connection.

4. The servlet returns without generating a response.

5. After some time, the requested resource becomes available, the thread handling that event
continues processing either in the same thread or by dispatching to a resource in the container
using the AsyncContext.

Jakarta EE features such as Section 15.2.2, “Web Application Environment” and Section 15.3.1,
“Propagation of Security Identity in Jakarta Enterprise Bean Calls” are available only to threads
executing the initial request or when the request is dispatched to the container via the
AsyncContext.dispatch method. Jakarta EE features may be available to other threads operating
directly on the response object via the AsyncContext.start(Runnable) method.

The @WebServlet and @WebFilter annotations described in Chapter 8 have an attribute
asyncSupported that is a boolean with a default value of false. When asyncSupported is set to true the
application can start asynchronous processing in a separate thread by calling startAsync (see
below), passing it a reference to the request and response objects, and then exit from the container
on the original thread. This means that the response will traverse (in reverse order) the same filters
(or filter chain) that were traversed on the way in. The response isn’t committed till complete (see
below) is called on the AsyncContext. The application is responsible for handling concurrent access
to the request and response objects if the async task is executing before the container-initiated
dispatch that called startAsync has returned to the container.

Dispatching from a servlet that has asyncSupported=true to one where asyncSupported is set to false
is allowed. In this case, the response will be committed when the service method of the servlet that
does not support async is exited, and it is the container’s responsibility to call complete on the
AsyncContext so that any interested AsyncListener instances will be notified. The
AsyncListener.onComplete notification should also be used by filters as a mechanism to clear up
resources that they have been holding on to for the async task to complete.

Dispatching from a synchronous servlet to an asynchronous servlet would be illegal. However the
decision of throwing an IllegalStateException is deferred to the point when the application calls

15

startAsync. This would allow a servlet to either function as a synchronous or an asynchronous
servlet.

The async task that the application is waiting for could write directly to the response, on a different
thread than the one that was used for the initial request. This thread knows nothing about any
filters. If a filter wanted to manipulate the response in the new thread, it would have to wrap the
response when it was processing the initial request "on the way in", and passed the wrapped
response to the next filter in the chain, and eventually to the servlet. So if the response was
wrapped (possibly multiple times, once per filter), and the application processes the request and
writes directly to the response, it is really writing to the response wrapper(s), i.e., any output added
to the response will still be processed by the response wrapper(s). When an application reads from
a request in a separate thread, and adds output to the response, it really reads from the request
wrapper(s), and writes to the response wrapper(s), so any input and/or output manipulation
intended by the wrapper(s) will continue to occur.

Alternately if the application chooses to do so it can use the AsyncContext to dispatch the request
from the new thread to a resource in the container. This would enable using content generation
technologies like Jakarta Server Pages within the scope of the container.

In addition to the annotation attributes, the following methods / classes are provided:

ServletRequest

public AsyncContext startAsync(ServletRequest req, ServletResponse res)

This method puts the request into asynchronous mode and initializes its AsyncContext with the
given request and response objects and the time out returned by getAsyncTimeout. The
ServletRequest and ServletResponse parameters MUST be either the same objects as were passed
to the calling servlet’s service, or the filter’s doFilter method, or be subclasses of
ServletRequestWrapper or ServletResponseWrapper classes that wrap them. A call to this method
ensures that the response isn’t committed when the application exits out of the service method.
It is committed when AsyncContext.complete is called on the returned AsyncContext or the
AsyncContext times out and there are no listeners associated to handle the time out. The timer for
async time outs will not start until the request and its associated response have returned from
the container. The AsyncContext could be used to write to the response from the async thread. It
can also be used to just notify that the response is not closed and committed.

It is illegal to call startAsync if the request is within the scope of a servlet or filter that does not
support asynchronous operations, or if the response has been committed and closed, or is called
again during the same dispatch. The AsyncContext returned from a call to startAsync can then be
used for further asynchronous processing. Calling the
AsyncContext.hasOriginalRequestResponse() on the returned AsyncContext will return false,
unless the passed ServletRequest and ServletResponse arguments are the original ones and do
not carry application provided wrappers. Any filters invoked in the outbound direction after this
request was put into asynchronous mode MAY use this as an indication that some of the request
and / or response wrappers that they added during their inbound invocation MAY need to stay in
place for the duration of the asynchronous operation, and their associated resources MAY not be
released. A ServletRequestWrapper applied during the inbound invocation of a filter MAY be
released by the outbound invocation of the filter only if the given ServletRequest which is used
to initialize the AsyncContext and will be returned by a call to AsyncContext.getRequest(), does

16

not contain the said ServletRequestWrapper. The same holds true for ServletResponseWrapper
instances.

public AsyncContext startAsync()

This method is provided as a convenience that uses the original request and response objects for
the async processing. Please note users of this method SHOULD flush the response if they are
wrapped before calling this method if you wish, to ensure that any data written to the wrapped
response isn’t lost.

public AsyncContext getAsyncContext()

Returns the AsyncContext that was created or re initialized by the invocation of startAsync. It is
illegal to call getAsyncContext if the request has not been put in asynchronous mode.

public boolean isAsyncSupported()

Returns true if the request supports async processing, and false otherwise. Async support will
be disabled as soon as the request has passed a filter or servlet that does not support async
processing (either via the designated annotation or declaratively).

public boolean isAsyncStarted()

Returns true if async processing has started on this request, and false otherwise. If this request
has been dispatched using one of the AsyncContext.dispatch methods since it was put in
asynchronous mode, or a call to AsynContext.complete is made, this method returns false.

public DispatcherType getDispatcherType()

Returns the dispatcher type of a request. The dispatcher type of a request is used by the
container to select the filters that need to be applied to the request. Only filters with the
matching dispatcher type and url patterns will be applied. Allowing a filter that has been
configured for multiple dispatcher types to query a request for its dispatcher type allows the
filter to process the request differently depending on its dispatcher type. The initial dispatcher
type of a request is defined as DispatcherType.REQUEST. The dispatcher type of a request
dispatched via RequestDispatcher.forward(ServletRequest, ServletResponse) or
RequestDispatcher.include(ServletRequest, ServletResponse) is given as DispatcherType.FORWARD
or DispatcherType.INCLUDE respectively, while a dispatcher type of an asynchronous request
dispatched via one of the AsyncContext.dispatch methods is given as DispatcherType.ASYNC.
Finally the dispatcher type of a request dispatched to an error page by the container’s error
handling mechanism is given as DispatcherType.ERROR.

AsyncContext

This class represents the execution context for the asynchronous operation that was started on the
ServletRequest. An AsyncContext is created and initialized by a call to ServletRequest.startAsync as
described above. The following methods are in the AsyncContext:

public ServletRequest getRequest()

Returns the request that was used to initialize the AsyncContext by calling one of the startAsync
methods. Calling getRequest when complete or any of the dispatch methods has been previously
called in the asynchronous cycle will result in an IllegalStateException.

17

public ServletResponse getResponse()

Returns the response that was used to initialize the AsyncContext by calling one of the startAsync
methods. Calling getResponse when complete or any of the dispatch methods has been previously
called in the asynchronous cycle will result in an IllegalStateException.

public void setTimeout(long timeoutMilliseconds)

Sets the time out for the asynchronous processing in milliseconds. A call to this method
overrides the time out set by the container. If the time out is not specified via the call to
setTimeout, 30000 is used as the default. A value of 0 or less indicates that the asynchronous
operation will never time out. The time out applies to the AsyncContext once the container-
initiated dispatch, during which one of the ServletRequest.startAsync methods was called, has
returned to the container. It is illegal to call this method after the container-initiated dispatch on
which the asynchronous cycle was started has returned to the container and will result in an
IllegalStateException.

public long getTimeout()

Gets the time out, in milliseconds, associated with the AsyncContext. This method returns the
container’s default time out, or the time out value set via the most recent invocation of
setTimeout method.

public void addListener(AsyncListener listener, ServletRequest req, ServletResponse res)

Registers the given listener for notifications of onTimeout, onError, onComplete or onStartAsync.
The first three are associated with the most recent asynchronous cycle started by calling one of
the ServletRequest.startAsync methods. The onStartAsync is associated to a new asynchronous
cycle via one of the ServletRequest.startAsync methods. Async listeners will be notified in the
order in which they were added to the request. The request and response objects passed in to
the method are the exact same ones that are available from the AsyncEvent.getSuppliedRequest()
and AsyncEvent.getSuppliedResponse() when the AsyncListener is notified. These objects should
not be read from or written to, because additional wrapping may have occurred since the given
AsyncListener was registered, but may be used in order to release any resources associated with
them. It is illegal to call this method after the container-initiated dispatch on which the
asynchronous cycle was started has returned to the container and before a new asynchronous
cycle was started and will result in an IllegalStateException.

public <T extends AsyncListener> createListener(Class<T> clazz)

Instantiates the given AsyncListener class. The returned AsyncListener instance may be further
customized before it is registered with the AsyncContext via a call to one of the addListener
methods specified below. The given AsyncListener class MUST define a zero argument
constructor, which is used to instantiate it. This method supports any annotations applicable to
the AsyncListener.

public void addListener(AsyncListener)

Registers the given listener for notifications of onTimeout, onError, onComplete or onStartAsync.
The first three are associated with the most recent asynchronous cycle started by calling one of
the ServletRequest.startAsync methods. The onStartAsync is associated to a new asynchronous
cycle via one of the ServletRequest.startAsync methods. If startAsync(req, res) or startAsync()
is called on the request, the exact same request and response objects are available from the
AsyncEvent when the AsyncListener is notified. The request and response may or may not be

18

wrapped. Async listeners will be notified in the order in which they were added to the request. It
is illegal to call this method after the container-initiated dispatch on which the asynchronous
cycle was started has returned to the container and before a new asynchronous cycle was
started and will result in an IllegalStateException.

public void dispatch(String path)

Dispatches the request and response that were used to initialize the AsyncContext to the resource
with the given path. The given path is interpreted as relative to the ServletContext that
initialized the AsyncContext. All path related query methods of the request MUST reflect the
dispatch target, while the original request URI, context path, path info and query string may be
obtained from the request attributes as defined in Section 9.7.2, “Dispatched Request
Parameters”. These attributes MUST always reflect the original path elements, even after
multiple dispatches.

public void dispatch()

Provided as a convenience to dispatch the request and response used to initialize the
AsyncContext as follows. If the AsyncContext was initialized via the startAsync(ServletRequest,
ServletResponse) and the request passed is an instance of HttpServletRequest, then the dispatch
is to the URI returned by HttpServletRequest.getRequestURI(). Otherwise the dispatch is to the
URI of the request when it was last dispatched by the container. The examples CODE EXAMPLE
2-1, CODE EXAMPLE 2-2 and CODE EXAMPLE 2-3 shown below demonstrate what the target URI
of dispatch would be in the different cases.

CODE EXAMPLE 2-1

// REQUEST to /url/A
AsyncContext ac = request.startAsync();
...
ac.dispatch(); // ASYNC dispatch to /url/A

CODE EXAMPLE 2-2

// REQUEST to /url/A

// FORWARD to /url/B

request.getRequestDispatcher("/url/B").forward(request, response);

// Start async operation from within the target of the FORWARD

AsyncContext ac = request.startAsync();

ac.dispatch(); // ASYNC dispatch to /url/A

CODE EXAMPLE 2-3

// REQUEST to /url/A

// FORWARD to /url/B

19

request.getRequestDispatcher("/url/B").forward(request, response);

// Start async operation from within the target of the FORWARD

AsyncContext ac = request.startAsync(request, response);

ac.dispatch(); // ASYNC dispatch to /url/B

public void dispatch(ServletContext context, String path)

Dispatches the request and response used to initialize the AsyncContext to the resource with the
given path in the given ServletContext.

For all the 3 variations of the dispatch methods defined above, calls to the methods returns
immediately after passing the request and response objects to a container managed thread, on
which the dispatch operation will be performed. The dispatcher type of the request is set to
ASYNC. Unlike RequestDispatcher.forward(ServletRequest, ServletResponse) dispatches, the
response buffer and headers will not be reset, and it is legal to dispatch even if the response has
already been committed. Control over the request and response is delegated to the dispatch
target, and the response will be closed when the dispatch target has completed execution, unless
ServletRequest.startAsync() or ServletRequest.startAsync(ServletRequest, ServletResponse) is
called. If any of the dispatch methods are called before the container-initiated dispatch that
called startAsync has returned to the container, the following conditions must hold during that
time between the invocation of dispatch and the return of control to the container:

i. any dispatch invocations invoked during that time will not take effect until after the
container-initiated dispatch has returned to the container.

ii. any AsyncListener.onComplete(AsyncEvent), AsyncListener.onTimeout(AsyncEvent) and
AsyncListener.onError(AsyncEvent) invocations will also be delayed until after the container-
initiated dispatch has returned to the container.

iii. any calls to request.isAsyncStarted() must return true until after the container-initiated
dispatch has returned to the container.

There can be at most one asynchronous dispatch operation per asynchronous cycle, which is
started by a call to one of the ServletRequest.startAsync methods. Any attempt to perform
additional asynchronous dispatch operations within the same asynchronous cycle is illegal and
will result in an IllegalStateException. If startAsync is subsequently called on the dispatched
request, then any of the dispatch methods may be called with the same restriction as above.

Any errors or exceptions that may occur during the execution of the dispatch methods MUST be
caught and handled by the container as follows:

i. invoke the AsyncListener.onError(AsyncEvent) method for all instances of the AsyncListener
registered with the ServletRequest for which the AsyncContext was created and make the
Throwable available via the AsyncEvent.getThrowable().

ii. If none of the listeners called AsyncContext.complete or any of the AsyncContext.dispatch
methods, then perform an error dispatch with a status code equal to

20

HttpServletResponse.SC_INTERNAL_SERVER_ERROR and make the Throwable available as the value
of the RequestDispatcher.ERROR_EXCEPTION request attribute.

iii. If no matching error page is found, or the error page does not call AsyncContext.complete() or
any of the AsyncContext.dispatch methods, then the container MUST call
AsyncContext.complete.

public boolean hasOriginalRequestAndResponse()

This method checks if the AsyncContext was initialized with the original request and response
objects by calling ServletRequest.startAsync() or if it was initialized by calling
ServletRequest.startAsync(ServletRequest, ServletResponse) and neither the ServletRequest nor
the ServletResponse argument carried any application provided wrappers, in which case it
returns true. If the AsyncContext was initialized with wrapped request and/or response objects
using ServletRequest.startAsync(ServletRequest, ServletResponse), it returns false. This
information may be used by filters invoked in the outbound direction, after a request was put
into asynchronous mode, to determine whether any request and/or response wrappers that they
added during their inbound invocation need to be preserved for the duration of the
asynchronous operation or may be released.

public void start(Runnable r)

This method causes the container to dispatch a thread, possibly from a managed thread pool, to
run the specified Runnable. The container may propagate appropriate contextual information to
the Runnable.

public void complete()

If request.startAsync is called then this method MUST be called to complete the async processing
and commit and close the response. The complete method can be invoked by the container if the
request is dispatched to a servlet that does not support async processing, or the target servlet
called by AsyncContext.dispatch does not do a subsequent call to startAsync. In this case, it is the
container’s responsibility to call complete() as soon as that servlet’s service method is exited. An
IllegalStateException MUST be thrown if startAsync was not called. It is legal to call this method
anytime after a call to ServletRequest.startAsync() or
ServletRequest.startAsync(ServletRequest, ServletResponse) and before a call to one of the
dispatch methods. If this method is called before the container-initiated dispatch that called
startAsync has returned to the container, the following conditions must hold during that time
between the invocation of complete and the return of control to the container:

i. the behavior specified for complete will not take effect until after the container-initiated
dispatch has returned to the container.

ii. any AsyncListener.onComplete(AsyncEvent) invocations will also be delayed until after the
container-initiated dispatch has returned to the container.

iii. any calls to request.isAsyncStarted() must return true until after the container-initiated
dispatch has returned to the container.

ServletRequestWrapper

public boolean isWrapperFor(ServletRequest req)

Checks recursively if this wrapper wraps the given ServletRequest and returns true if it does,
else it returns false.

21

ServletResponseWrapper

public boolean isWrapperFor(ServletResponse res)

Checks recursively if this wrapper wraps the given ServletResponse and returns true if it does,
else it returns false.

AsyncListener

public void onComplete(AsyncEvent event)

Is used to notify the listener of completion of the asynchronous operation started on the
ServletRequest.

public void onTimeout(AsyncEvent event)

Is used to notify the listener of a time out of the asynchronous operation started on the
ServletRequest.

public void onError(AsyncEvent event)

Is used to notify the listener that the asynchronous operation has failed to complete.

public void onStartAsync(AsyncEvent event)

Is used to notify the listener that a new asynchronous cycle is being initiated via a call to one of
the ServletRequest.startAsync methods. The AsyncContext corresponding to the asynchronous
operation that is being reinitialized may be obtained by calling AsyncEvent.getAsyncContext on
the given event.

In the event that an asynchronous operation times out, the container must run through the
following steps:

• Invoke the AsyncListener.onTimeout method on all the AsyncListener instances registered with
the ServletRequest on which the asynchronous operation was initiated.

• If none of the listeners called AsyncContext.complete() or any of the AsyncContext.dispatch
methods, perform an error dispatch with a status code equal to
HttpServletResponse.SC_INTERNAL_SERVER_ERROR.

• If no matching error page was found, or the error page did not call AsyncContext.complete() or
any of the AsyncContext.dispatch methods, the container MUST call AsyncContext.complete().

• If an exception is thrown while invoking methods in an AsyncListener, it is logged and will not
affect the invocation of any other AsyncListeners.

• Async processing in JSP would not be supported by default as it is used for content generation
and async processing would have to be done before the content generation. It is up to the
container how to handle this case. Once all the async activities are done, a dispatch to the JSP
page using the AsyncContext.dispatch can be used for generating content.

• Figure 2-1 shown below is a diagram depicting the state transitions for various asynchronous
operations.

22

Figure 2-1 State transition diagram for asynchronous operations

2.3.3.4. Thread Safety

Other than the startAsync and complete methods, implementations of the request and response
objects are not guaranteed to be thread safe. This means that they should either only be used
within the scope of the request handling thread or the application must ensure that access to the
request and response objects are thread safe.

If a thread created by the application uses the container-managed objects, such as the request or
response object, those objects must be accessed only within the object’s life cycle as defined in
sections Section 3.14, “Lifetime of the Request Object” and Section 5.8, “Lifetime of the Response
Object” respectively. Be aware that other than the startAsync, and complete methods, the request
and response objects are not thread safe. If those objects were accessed in the multiple threads, the
access should be synchronized or be done through a wrapper to add the thread safety, for instance,

23

synchronizing the call of the methods to access the request attribute, or using a local output stream
for the response object within a thread.

2.3.3.5. Upgrade Processing

In HTTP/1.1, the Upgrade header allows the client to specify the additional communication
protocols that it supports and would like to use. If the server finds it appropriate to switch
protocols, then new protocols will be used in subsequent communication.

The servlet container provides an HTTP upgrade mechanism. However the servlet container itself
does not have knowledge about the upgraded protocol. The protocol processing is encapsulated in
the HttpUpgradeHandler. Data reading or writing between the servlet container and the
HttpUpgradeHandler is in byte streams.

When an upgrade request is received, the servlet can invoke the HttpServletRequest.upgrade
method, which starts the upgrade process. This method instantiates the given HttpUpgradeHandler
class. The returned HttpUpgradeHandler instance may be further customized. The application
prepares and sends an appropriate response to the client. After exiting the service method of the
servlet, the servlet container completes the processing of all filters and marks the connection to be
handled by the HttpUpgradeHandler. It then calls the HttpUpgradeHandler's init method, passing a
WebConnection to allow the protocol handler access to the data streams.

The servlet filters only process the initial HTTP request and response. They are not involved in
subsequent communications. In other words, they are not invoked once the request has been
upgraded.

The HttpUpgradeHandler may use non-blocking IO to consume and produce messages.

The Application Developer has the responsibility for thread safe access to the ServletInputStream
and ServletOutputStream while processing HTTP upgrade.

When the upgrade processing is done, HttpUpgradeHandler.destroy will be invoked.

2.3.4. End of Service

The servlet container is not required to keep a servlet loaded for any particular period of time. A
servlet instance may be kept active in a servlet container for a period of milliseconds, for the
lifetime of the servlet container (which could be a number of days, months, or years), or any
amount of time in between.

When the servlet container determines that a servlet should be removed from service, it calls the
destroy method of the Servlet interface to allow the servlet to release any resources it is using and
save any persistent state. For example, the container may do this when it wants to conserve
memory resources, or when it is being shut down.

Before the servlet container calls the destroy method, it must allow any threads that are currently
running in the service method of the servlet to complete execution, or exceed a server-defined time
limit.

Once the destroy method is called on a servlet instance, the container may not route other requests

24

to that instance of the servlet. If the container needs to enable the servlet again, it must do so with a
new instance of the servlet’s class.

After the destroy method completes, the servlet container must release the servlet instance so that
it is eligible for garbage collection.

25

26

Chapter 3. The Request
The request object encapsulates all information from the client request. In the HTTP protocol, this
information is transmitted from the client to the server in the HTTP headers and the message body
of the request.

3.1. HTTP Protocol Parameters
Request parameters for the servlet are the strings sent by the client to a servlet container as part of
its request. When the request is an HttpServletRequest object, and the conditions set out in Section
3.1.1, “When Parameters Are Available” are met, the container populates the parameters from the
URI query string and POST-ed data.

The parameters are stored as a set of name-value pairs. Multiple parameter values can exist for any
given parameter name. The following methods of the ServletRequest interface are available to
access parameters:

• getParameter

• getParameterNames

• getParameterValues

• getParameterMap

The getParameterValues method returns an array of String objects containing all the parameter
values associated with a parameter name. The value returned from the getParameter method must
be the first value in the array of String objects returned by getParameterValues. The getParameterMap
method returns a java.util.Map of the parameter of the request, which contains names as keys and
parameter values as map values.

Data from the query string and the post body are aggregated into the request parameter set. Query
string data is presented before post body data. For example, if a request is made with a query string
of a=hello and a post body of a=goodbye&a=world, the resulting parameter set would be ordered
a=(hello, goodbye, world).

Path parameters that are part of a GET request (as defined by HTTP/1.1) are not exposed by these
APIs. They must be parsed from the String values returned by the getRequestURI method or the
getPathInfo method.

3.1.1. When Parameters Are Available

The following are the conditions that must be met before form data will be populated to the
parameter set:

1. The request is an HTTP or HTTPS request.

2. The HTTP method is POST.

3. The content type is application/x-www-form-urlencoded.

4. The servlet has made an initial call of any of the getParameter family of methods on the request

27

object.

If the conditions are not met and the form data is not included in the parameter set, the form data
must still be available to the servlet via the request object’s input stream. If the conditions are met,
form data will no longer be available for reading directly from the request object’s input stream.

3.2. File Upload
Servlet container allows files to be uploaded when data is sent as multipart/form-data.

The servlet container provides multipart/form-data processing if any one of the following
conditions is met.

• The servlet handling the request is annotated with the @MultipartConfig as defined in Section
8.1.5, “@MultipartConfig”.

• Deployment descriptors contain a multipart-config element for the servlet handling the request.

How data in a request of type multipart/form-data is made available depends on whether the
servlet container provides multipart/form-data processing:

• If the servlet container provides multipart/form-data processing, the data is made available
through the following methods in HttpServletRequest:

◦ public Collection<Part> getParts()

◦ public Part getPart(String name)

Each part provides access to the headers, content type related with it and the content via the
Part.getInputStream method.

For parts with form-data as the Content-Disposition, but without a filename, the string value of
the part will also be available through the getParameter and getParameterValues methods on
HttpServletRequest, using the name of the part.

• If the servlet container does not provide the multi-part/form-data processing, the data will be
available through HttpServletRequest.getInputStream.

3.3. Attributes
Attributes are objects associated with a request. Attributes may be set by the container to express
information that otherwise could not be expressed via the API, or may be set by a servlet to
communicate information to another servlet (via the RequestDispatcher). Attributes are accessed
with the following methods of the ServletRequest interface:

• getAttribute

• getAttributeNames

• setAttribute

Only one attribute value may be associated with an attribute name.

28

Attribute names beginning with the prefix of jakarta. are reserved for definition by this
specification. It is suggested that all attributes placed in the attribute set be named in accordance
with the reverse domain name convention suggested by the Java Programming Language
Specification [1] for package naming.

3.4. Headers
A servlet can access the headers of an HTTP request through the following methods of the
HttpServletRequest interface:

• getHeader

• getHeaders

• getHeaderNames

The getHeader method returns a header value given the name of the header. There can be multiple
headers with the same name, e.g. Cache-Control headers, in an HTTP request. If there are multiple
headers with the same name, the getHeader method returns the value of first header in the request.
The getHeaders method allows access to all the header values associated with a particular header
name, returning an Enumeration of String objects.

Headers may contain String representations of int or Date data. The following convenience
methods of the HttpServletRequest interface provide access to header data in a one of these
formats:

• getIntHeader

• getDateHeader

If the getIntHeader method cannot translate the header value to an int, a NumberFormatException is
thrown. If the getDateHeader method cannot translate the header to a Date object, an
IllegalArgumentException is thrown.

3.5. Request URI Path Processing
The path portion of the URI of an HTTP identifies the resource to be processed. As URI paths may
have various non-canonical forms, it is important that all containers process URI paths in the same
way so that matching to security constraints and resources is identical.

The process described here adapts and extends the URI canonicalization process described in [RFC
3986](https://datatracker.ietf.org/doc/html/rfc3986) to create a standard Servlet URI path
canonicalization process that ensures that URIs can be mapped to Servlets, Filters and security
constraints in an unambiguous manner. It is also intended to provide information to reverse proxy
implementations so they are aware of how requests they pass to servlet containers will be
processed.

3.5.1. Obtaining the URI Path

29

https://datatracker.ietf.org/doc/html/rfc3986

HTTP/1.0

The URI path is extracted from the Request-URI in the Request-Line as defined by [RFC
1945](https://datatracker.ietf.org/doc/html/rfc1945#section-5.1). URIs in abs_path form are the
URI path. URIs in absoluteURI have the protocol and authority removed to convert them to
origin-form and thus obtain the URI path.

HTTP/1.1

The URI path is extracted from the request-target as defined by [RFC 9112](https://www.rfc-
editor.org/rfc/rfc9112.html#name-request-target). URIs in origin-form are the URI path. URIs in
absolute-form have the protocol and authority removed to convert them to origin-form and thus
obtain the URI path. URIs in authority-form or asterisk-form are outside of the scope of this
specification.

HTTP/2

The URI path is the :path pseudo header as defined by [RFC 9113](https://www.rfc-editor.org/rfc/
rfc9113.html#name-request-pseudo-header-field) and is passed unchanged to stage 2.

HTTP/3

The URI path is the :path pseudo header as currently defined by the [RFC 9114](https://www.rfc-
editor.org/rfc/rfc9114.html#name-request-pseudo-header-field).

Other protocols

Containers may support other protocols. Containers should extract an appropriate URI path for
the request from the protocol and pass it to stage 2.

3.5.2. URI Path Canonicalization

Servlet containers may implement the standard Servlet URI path canonicalization in any manner
they see fit as long as the end result is identical to the end result of the process described here.
Servlet containers may provide container specific configuration options to vary the standard
canonicalization process. Any such variations may have security implications and both Servlet
container implementors and users are advised to be sure that they understand the implications of
any such container specific canonicalization options.

1. Discard fragment.

The path is split by the first occurrence of any "#" character. The "#" and following fragment are
discarded and the path is replaced with the character sequence preceding the "#" character.

2. Separation of path and query.

The URI is split by the first occurrence of any "?" character to path and query. The query is
preserved for later handling and the following steps applied to the path.

3. Split path into segments.

The path is split into segments using the "/" character as a prefix to each segment. The
separating "/" does not form part of the resulting segments. For example, the path "/foo/bar/"
is split into 3 segments: "foo", "bar" and "". The prefix "/" for the fist segment is optional, but

30

https://datatracker.ietf.org/doc/html/rfc1945#section-5.1
https://www.rfc-editor.org/rfc/rfc9112.html#name-request-target
https://www.rfc-editor.org/rfc/rfc9112.html#name-request-target
https://www.rfc-editor.org/rfc/rfc9113.html#name-request-pseudo-header-field
https://www.rfc-editor.org/rfc/rfc9113.html#name-request-pseudo-header-field
https://www.rfc-editor.org/rfc/rfc9114.html#name-request-pseudo-header-field
https://www.rfc-editor.org/rfc/rfc9114.html#name-request-pseudo-header-field

URIs without a leading "/" should be rejected below.

4. Remove path parameters.

Any segment containing the ";" character is split at the first occurrence of ";". The segment is
replaced by the character sequence preceding the ";". The characters following the ";" are
considered path parameters and may be preserved by the container for later decoding and/or
processing (eg jsessionid).

5. Decode.

Octets that are encoded in %nn form are decoded in each segment. The resulting octet sequence
is treated as UTF-8 and converted to a character sequence that replaces the segment.

6. Remove Empty Segments.

Empty segments, other than the last segment, are removed. Containers may be configured to
retain all empty segments.

7. Remove dot-segments.

All segments that are exactly "." are removed from the segment series. Segments that are
exactly ".." and that are preceded by a non ".." segment are removed together with the
preceding segment. This normalization differs from RFC3986 in that segments with parameters
may be treated as dot segments.

8. Concatenate segments.

The segments are concatenated into a single path string with each segment preceded by the "/"
character. If there are no segments remaining, the resulting path is "/". If the container is
configured not to reject URIs containing an encoded "/" then all instances of "/" and "%" in the
individual segments must be %nn encoded before concatenating them.

9. Mapping URI to context and resource.

The decoded path is used to map the request to a context and resource within the context. This
form of the URI path is used for all subsequent mapping (web applications, servlet, filters and
security constraints).

10. Rejecting Suspicious Sequences.

If suspicious sequences are discovered during the prior processing steps, the request must be
rejected with a 400 bad request rather than dispatched to the target servlet. If a context is
matched then the error handling of the context may be used to generate the 400 response. By
default, the set of suspicious sequences is defined below, but may be configured differently by a
container:

◦ The presence of a fragment in the URI

◦ Any path not starting with the "/" character (e.g. path/info)

◦ Any path starting with an initial segment of ".." (e.g. /../path/info)

31

◦ The encoded "/" character (e.g. /path%2Finfo)

◦ Any "." or ".." segment that had a path parameter (e.g. /path/..;/info)

◦ Any "." or ".." segment with any encoded characters (e.g. /path/%2e%2e/info)

◦ If empty segments are not removed, then ".." segment preceded by an empty segment (e.g.
/path//../info)

◦ Any empty segment other than the last segment, with parameters (e.g. /path/;param/info)

◦ The "\" character encoded or not. (e.g. /path\info)

◦ Any control characters either encoded or not. (e.g. /path%00/info)

◦ Any illegal hex sequences following a % character

◦ Any illegal UTF-8 code sequences.

3.5.3. Example URIs

Encoded URI path Decoded Path Rejected

foo/bar /foo/bar 400 must start with /

/foo/bar /foo/bar

/foo/bar;jsessionid=1234 /foo/bar

/foo/bar/ /foo/bar/

/foo/bar/;jsessionid=1234 /foo/bar/

/foo;/bar; /foo/bar

/foo;/bar;/; /foo/bar/

/foo%00/bar/ /foo[NUL]/bar/ 400 control character

/foo%7Fbar /foo[DEL]bar 400 control character

/foo%2Fbar /foo%2Fbar 400 encoded /

/foo%2Fb%25r /foo%2Fb%25r 400 encoded /

/foo/b%25r /foo/b%r

/foo\bar /foo\bar 400 backslash character

/foo%5Cbar /foo\bar 400 backslash character

/foo;%2F/bar /foo/bar 400 encoded /

/foo/./bar /foo/bar

/foo/././bar /foo/bar

/./foo/bar /foo/bar

/foo/%2e/bar /foo/bar 400 encoded dot segment

/foo/.;/bar /foo/bar 400 dot segment with
parameter

/foo/%2e;/bar /foo/bar 400 encoded dot segment

/foo/.%2Fbar /foo/.%2Fbar 400 encoded /

32

Encoded URI path Decoded Path Rejected

/foo/.%5Cbar /foo/.\bar 400 backslash character

/foo/bar/. /foo/bar

/foo/bar/./ /foo/bar/

/foo/bar/.; /foo/bar 400 dot segment with
parameter

/foo/bar/./; /foo/bar/

/foo/.bar /foo/.bar

/foo/../bar /bar

/foo/../../bar /../bar 400 leading dot-dot-segment

/../foo/bar /../foo/bar 400 leading dot-dot-segment

/foo/%2e%2E/bar /bar 400 encoded dot segment

/foo/%2e%2e/%2E%2E/bar /../bar 400 leading dot-dot-segment &
encoded dot segment

/foo/./../bar /bar

/foo/..;/bar /bar 400 dot segment with
parameter

/foo/%2e%2E;/bar /bar 400 encoded dot segment

/foo/..%2Fbar /foo/..%2Fbar 400 encoded /

/foo/..%5Cbar /foo/..\bar 400 backslash character

/foo/bar/.. /foo

/foo/bar/../ /foo/

/foo/bar/..; /foo 400 dot segment with
parameter

/foo/bar/../; /foo/

/foo/..bar /foo/..bar

/foo/.../bar /foo/.../bar

/foo//bar /foo/bar

//foo//bar// /foo/bar/

/;/foo;/;/bar/;/; /foo/bar/ 400 empty segment with
parameters

/foo//../bar /bar

/foo/;/../bar /bar 400 empty segment with
parameters

/foo%E2%82%ACbar /foo€bar

/foo%20bar /foo bar

/foo%E2%82 /foo%E2%82 400 decode error

/foo%E2%82bar /foo%E2%82bar 400 decode error

33

Encoded URI path Decoded Path Rejected

/foo%-1/bar /foo%-1/bar 400 decode error

/foo%XX/bar /foo%XX/bar 400 decode error

/foo%/bar /foo%/bar 400 decode error

/foo/bar%0 /foo/bar%0 400 decode error

/good%20/bad%/%20mix% /good /bad%/%20mix% 400 decode error

/foo/bar?q /foo/bar

/foo/bar#f /foo/bar 400 fragment

/foo/bar?q#f /foo/bar 400 fragment

/foo/bar/?q /foo/bar/

/foo/bar/#f /foo/bar/ 400 fragment

/foo/bar/?q#f /foo/bar/ 400 fragment

/foo/bar;?q /foo/bar

/foo/bar;#f /foo/bar 400 fragment

/foo/bar;?q#f /foo/bar 400 fragment

/ /

// /

/;/ / 400 empty segment with
parameters

/. /

/.. /.. 400 leading dot-dot-segment

/./ /

/../ /../ 400 leading dot-dot-segment

foo/bar/ /foo/bar/ 400 must start with /

./foo/bar/ /foo/bar/ 400 must start with /

%2e/foo/bar/ /foo/bar/ 400 must start with / & encoded
dot segment

../foo/bar/ /../foo/bar/ 400 must start with / & leading
dot-dot-segment

.%2e/foo/bar/ /../foo/bar/ 400 must start with / & leading
dot-dot-segment & encoded dot
segment

;/foo/bar/ /foo/bar/ 400 must start with / & empty
segment with parameters

/#f / 400 fragment

#f / 400 fragment & must start with
/

34

Encoded URI path Decoded Path Rejected

/?q /

?q / 400 must start with /

3.6. Request Path Elements
The request path that leads to a servlet servicing a request is composed of many important sections.
The following elements are obtained from the request URI path and exposed via the request object:

• Context Path: The path prefix associated with the ServletContext that this servlet is a part of. If
this context is the “default” context rooted at the base of the web server’s URL name space, this
path will be an empty string. Otherwise, if the context is not rooted at the root of the server’s
name space, the path starts with a "/" character but does not end with a "/" character.

• Servlet Path: The path section that directly corresponds to the mapping which activated this
request. This path starts with a "/" character except in the case where the request is matched
with the "/*" or "" pattern, in which case it is an empty string.

• PathInfo: The part of the request path that is not part of the Context Path or the Servlet Path. It
is either null if there is no extra path, or is a string with a leading "/".

The following methods exist in the HttpServletRequest interface to access this information:

• getContextPath

• getServletPath

• getPathInfo

It is important to note that, except for URL encoding differences between the request URI and the
path parts, the following equation is always true:

requestURI = contextPath + servletPath + pathInfo

To give a few examples to clarify the above points, consider the following:

Table 3-1 Example Context Configuration

Context Path /catalog

Servlet Mapping Pattern: /lawn/*
Servlet: LawnServlet

Servlet Mapping Pattern: /garden/*
Servlet: GardenServlet

Servlet Mapping Pattern: *.jsp
Servlet: JSPServlet

The following behavior is observed:

35

Table 3-2 Observed Path Element Behavior

Request Path Path Elements

/catalog/lawn/index.html ContextPath: /catalog
ServletPath: /lawn
PathInfo: /index.html

/catalog/garden/implements/ ContextPath: /catalog
ServletPath: /garden
PathInfo: /implements/

/catalog/help/feedback.jsp ContextPath: /catalog
ServletPath: /help/feedback.jsp
PathInfo: null

3.7. Path Translation Methods
There are two convenience methods in the API which allow the Application Developer to obtain the
file system path equivalent to a particular path. These methods are:

• ServletContext.getRealPath

• HttpServletRequest.getPathTranslated

The getRealPath method takes a String argument and returns a String representation of a file on
the local file system to which a path corresponds. The getPathTranslated method computes the real
path of the pathInfo of the request.

In situations where the servlet container cannot determine a valid file path for these methods, such
as when the web application is executed from an archive, on a remote file system not accessible
locally, or in a database, these methods must return null. Resources inside the META-INF/resources
directory of JAR file must be considered only if the container has unpacked them from their
containing JAR file when a call to getRealPath() is made, and in this case MUST return the unpacked
location.

3.8. Non-Blocking IO
Non-blocking request processing in the web container helps improve the ever increasing demand
for improved web container scalability, increase the number of connections that can
simultaneously be handled by the web container. Non-blocking IO in the servlet container allows
developers to read data as it becomes available or write data when possible to do so. Non-blocking
IO only works with async request processing in servlets and filters (as defined in Section 2.3.3.3,
“Asynchronous processing”), and upgrade processing (as defined in Section 2.3.3.5, “Upgrade
Processing”). Otherwise, an IllegalStateException must be thrown when
ServletInputStream.setReadListener or ServletOutputStream.setWriteListener is invoked.

The ReadListener provides the following callback methods for non-blocking IO:

ReadListener

36

onDataAvailable()

The onDataAvailable method is invoked on the ReadListener when data is available to read from
the incoming request stream. The container will invoke the method the first time when data is
available to read. The container will subsequently invoke the onDataAvailable method if and
only if the isReady method on ServletInputStream, described below, has been called and returned
a value of false and data has subsequently become available to read.

onAllDataRead()

The onAllDataRead method is invoked when all the data for the ServletRequest for which the
listener was registered has been read.

onError(Throwable t)

The onError method is invoked if there is any error or exception that occurs while processing the
request.

The servlet container must access methods in ReadListener in a thread safe manner.

In addition to the ReadListener defined above, the following methods have been added to
ServletInputStream class:

ServletInputStream

boolean isFinished()

The isFinished method returns true when all the data for the request associated with the
ServletInputStream has been read. Otherwise it returns false.

boolean isReady()

The isReady method returns true if data can be read without blocking. If no data can be read
without blocking it returns false. If isReady returns false it is illegal to call the read method and
an IllegalStateException MUST be thrown.

void setReadListener(ReadListener listener)

Sets the ReadListener defined above to be invoked to read data in a non-blocking fashion. Once a
listener is associated with the ServletInputStream, the container invokes the methods on the
ReadListener when data is available to read, all the data has been read or if there was an error
processing the request. Registering a ReadListener will start non-blocking IO. It is illegal to switch
to the traditional blocking IO at that point and an IllegalStateException MUST be thrown. A
subsequent call to setReadListener in the scope of the current request is illegal and an
IllegalStateException MUST be thrown.

3.9. HTTP/2 Server Push
Server push was intended to improve the perceived performance of the web browsing experience.
The basis for this was the idea that servers are in a much better position than clients to know what
additional assets (such as images, stylesheets and scripts) go along with initial requests. For
example, it is possible for servers to know that whenever a browser requests index.html, it will
shortly require header.gif, footer.gif and style.css. Since servers know this, they can
preemptively start sending the bytes of these assets along side the bytes of the index.html.

37

Server push has not been widely adopted and the leading browsers have removed support for
server push. This is because the server does not have visibility into either the client cache or any
intermediate caches that may be present and, as such, is unable to identify which resources need to
be pushed and which the client already has. Server push has essentially been replaced by RFC 8297
(Early Hints).

Server push support was added in version 4 of this specification. As of version 6.1 of this
specification, containers are not required to support server push and may always return null from
jakarta.servlet.http.HttpServletRequest.newPushBuilder()

To use server push, obtain a reference to a PushBuilder from an HttpServletRequest, mutate the
builder as desired, then call push(). Please see the javadoc for method
jakarta.servlet.http.HttpServletRequest.newPushBuilder() and class
jakarta.servlet.http.PushBuilder for the normative specification. The remainder of this section
calls out implementation requirements with respect to the section titled “Server Push” in the
HTTP/2 specification version referenced in Other Important References.

Servlet 6.2-M1 containers may support server push as specified in the HTTP/2 specification section
“Server Push”. Containers may enable server push if the client is capable of speaking HTTP/2,
unless the client has explicitly disabled server push by sending a SETTINGS_ENABLE_PUSH setting value
of 0 (zero) for the current connection. In that case, for that connection only, server push must not
be enabled.

In addition to allowing clients to disable server push with the SETTINGS_ENABLE_PUSH setting, servlet
containers must honor a client’s request to not receive a pushed response on a finer grained basis
by heeding the CANCEL or REFUSED_STREAM code that references the pushed stream’s stream identifier.
One common use of this interaction is when a browser already has the resource in its cache.

3.10. Cookies
The HttpServletRequest interface provides the getCookies method to obtain an array of cookies that
are present in the request. These cookies are data sent from the client to the server on every
request that the client makes. The only information that the client sends back as part of a cookie is
the cookie name and the cookie value. The specification also allows for the cookies to be HttpOnly
cookies. HttpOnly cookies indicate to the client that they should not be exposed to client-side
scripting code (it’s not filtered out unless the client knows to look for this attribute). The use of
HttpOnly cookies helps mitigate certain kinds of cross-site scripting attacks.

3.11. SSL Attributes
If a request has been transmitted over a secure protocol, such as HTTPS, this information must be
exposed via the isSecure method of the ServletRequest interface. The web container must expose
the following attributes to the servlet programmer:

Table 3-3 Protocol Attributes

Attribute Attribute Name Java Type

protocol e.g. TLSv1.3 jakarta.servlet.request.secure_protocol String

38

Attribute Attribute Name Java Type

cipher suite jakarta.servlet.request.cipher_suite String

bit size of the algorithm jakarta.servlet.request.key_size Integer

SSL session id jakarta.servlet.request.ssl_session_id String

If there is an SSL certificate associated with the request, it must be exposed by the servlet container
to the servlet programmer as an array of objects of type java.security.cert.X509Certificate and
accessible via a ServletRequest attribute of jakarta.servlet.request.X509Certificate.

The order of this array is defined as being in ascending order of trust. The first certificate in the
chain is the one set by the client, the next is the one used to authenticate the first, and so on.

3.12. Internationalization
Clients may optionally indicate to a web server what language they would prefer the response be
given in. This information can be communicated from the client using the Accept-Language header
along with other mechanisms described in the HTTP/1.1 specification. The following methods are
provided in the ServletRequest interface to determine the preferred locale of the sender:

• getLocale

• getLocales

The getLocale method will return the preferred locale for which the client wants to accept content.
See section 12.5.4 of RFC 9110 (HTTP Semantics) for more information about how the Accept-
Language header must be interpreted to determine the preferred language of the client.

The getLocales method will return an Enumeration of Locale objects indicating, in decreasing order
starting with the preferred locale, the locales that are acceptable to the client.

If no preferred locale is specified by the client, the locale returned by the getLocale method must be
the default locale for the servlet container and the getLocales method must contain an enumeration
of a single Locale element of the default locale.

3.13. Request Data Encoding
Currently, many browsers do not send a char encoding qualifier with the Content-Type header,
leaving open the determination of the character encoding for reading HTTP requests. In the
absence of a char encoding qualifier, if the Content-Type is application/x-www-form-urlencoded, the
default encoding the container uses to create the request reader and parse POST data must be US-
ASCII. Any %nn encoded values must be decoded to ISO-8859-1. For any other Content-Type, if none
has been specified by the client request, web application or container vendor specific configuration
(for all web applications in the container), the default encoding of a request the container uses to
create the request reader and parse POST data must be ISO-8859-1. However, in order to indicate to
the developer the absence of a char encoding qualifier, the container must return null from the
getCharacterEncoding() method.

If the client hasn’t set character encoding and the request data is encoded with a different encoding

39

than the default as described above, breakage can occur. To remedy this situation,
setRequestCharacterEncoding(String enc) is available on ServletContext, the <request-character-
encoding> element is available in the web.xml and setCharacterEncoding(String enc) is available on
the ServletRequest interface. Developers can override the character encoding supplied by the
container by calling this method. It must be called prior to parsing any post data or reading any
input from the request. Calling this method once data has been read will not affect the encoding.

3.14. Lifetime of the Request Object
Each request object is valid only within the scope of a servlet’s service method, or within the scope
of a filter’s doFilter method, unless the asynchronous processing is enabled for the component and
the startAsync method is invoked on the request object. In the case where asynchronous processing
occurs, the request object remains valid until complete is invoked on the AsyncContext. Containers
commonly recycle request objects in order to avoid the performance overhead of request object
creation. The developer must be aware that maintaining references to request objects for which
startAsync has not been called outside the scope described above is not recommended as it may
have indeterminate results.

In case of upgrade, the above is still true.

[1] The Java Programming Language Specification is available at http://docs.oracle.com/javase/specs/

40

http://docs.oracle.com/javase/specs/

Chapter 4. Servlet Context

4.1. Introduction to the ServletContext Interface
The ServletContext interface defines a servlet’s view of the web application within which the
servlet is running. The Container Provider is responsible for providing an implementation of the
ServletContext interface in the servlet container. Using the ServletContext object, a servlet can log
events, obtain URL references to resources, and set and store attributes that other servlets in the
context can access.

A ServletContext is rooted at a known path within a web server. For example, a servlet context
could be located at http://example.com/catalog. All requests that begin with the /catalog request
path, known as the context path, are routed to the web application associated with the
ServletContext.

4.2. Scope of a ServletContext Interface
There is one instance object of the ServletContext interface associated with each web application
deployed into a container. In cases where the container is distributed over many virtual machines,
a web application will have an instance of the ServletContext for each JVM.

4.3. Initialization Parameters
The following methods of the ServletContext interface allow the servlet access to context
initialization parameters associated with a web application as specified by the Application
Developer in the deployment descriptor:

• getInitParameter

• getInitParameterNames

Initialization parameters are used by an Application Developer to convey setup information.
Typical examples are a webmaster’s e-mail address, or the name of a system that holds critical data.

4.4. Configuration Methods
The following methods are provided on the ServletContext interface to enable programmatic
definition of servlets, filters and the url pattern(s) that they map to. These methods can only be
called during the initialization of the application either from the contexInitialized method of a
ServletContextListener implementation or from the onStartup method of a
ServletContainerInitializer implementation. In addition to adding servlets and filters, one can also
look up an instance of a Registration object corresponding to a servlet or filter or a map of all the
Registration objects for the servlets or filters. If a ServletContext is passed to the
ServletContextListener’s contextInitialized method where the ServletContextListener was neither
declared in web.xml or web-fragment.xml nor annotated with @WebListener then an
UnsupportedOperationException MUST be thrown for all the methods defined in ServletContext for
programmatic configuration of servlets, filters and listeners.

41

4.4.1. Programmatically Adding and Configuring Servlets

The ability to programmatically add a servlet to a context is useful for framework developers. For
example a framework could declare a controller servlet using this method. The return value of this
method is a ServletRegistration or a ServletRegistration.Dynamic object which further allows the
setup of the other parameters of the servlet like init-param, url-mappings etc. There are three
overloaded versions of the method as described below.

4.4.1.1. addServlet(String servletName, String className)

This method allows the application to declare a servlet programmatically. It adds a servlet with the
given name, and class name to the servlet context.

4.4.1.2. addServlet(String servletName, Servlet servlet)

This method allows the application to declare a servlet programmatically. It adds a servlet with the
given name, and servlet instance to the servlet context.

4.4.1.3. addServlet(String servletName, Class <? extends Servlet> servletClass)

This method allows the application to declare a servlet programmatically. It adds a servlet with the
given name, and an instance of the servlet class to the servlet context.

4.4.1.4. addJspFile(String servletName, String jspfile)

This method allows the application to declare a jsp programmatically. It adds the jsp with the given
name, and an instance of the servlet class corresponding to the jsp file to the servlet context.

4.4.1.5. <T extends Servlet> T createServlet(Class<T> clazz)

This method instantiates the given Servlet class. The method must support all the annotations
applicable to servlets except @WebServlet. The returned Servlet instance may be further customized
before it is registered with the ServletContext via a call to addServlet(String, Servlet) as defined
above. The given Servlet class must define a zero argument constructor, which is used to
instantiate it.

4.4.1.6. ServletRegistration getServletRegistration(String servletName)

This method returns the ServletRegistration corresponding to the servlet with the given name, or
null if no ServletRegistration exists under that name. An UnsupportedOperationException is thrown if
the ServletContext was passed to the contextInitialized method of a ServletContextListener that
was neither declared in the web.xml or web-fragment.xml, nor annotated with
jakarta.servlet.annotation.WebListener.

4.4.1.7. Map<String, ? extends ServletRegistration> getServletRegistrations()

This method returns a map of ServletRegistration objects, keyed by name corresponding to all
servlets registered with the ServletContext. If there are no servlets registered with the
ServletContext an empty map is returned. The returned Map includes the ServletRegistration
objects corresponding to all declared and annotated servlets, as well as the ServletRegistration

42

objects corresponding to all servlets that have been added via one of the addServlet and addJspFile
methods. Any changes to the returned Map MUST not affect the ServletContext. An
UnsupportedOperationException is thrown if the ServletContext was passed to the contextInitialized
method of a ServletContextListener that was neither declared in the web.xml or web-fragment.xml,
nor annotated with jakarta.servlet.annotation.WebListener.

4.4.2. Programmatically Adding and Configuring Filters

4.4.2.1. addFilter(String filterName, String className)

This method allows the application to declare a filter programmatically. It adds a filter with the
given name, and class name to the web application.

4.4.2.2. addFilter(String filterName, Filter filter)

This method allows the application to declare a filter programmatically. It adds a filter with the
given name, and filter instance to the web application.

4.4.2.3. addFilter(String filterName, Class <? extends Filter> filterClass)

This method allows the application to declare a filter programmatically. It adds a filter with the
given name, and an instance of the filter class to the web application.

4.4.2.4. <T extends Filter> T createFilter(Class<T> clazz)

This method instantiates the given Filter class. The method must support all the annotations
applicable to filters. The returned Filter instance may be further customized before it is registered
with the ServletContext via a call to addFilter(String, Filter) as defined above. The given Filter
class must define a zero argument constructor, which is used to instantiate it.

4.4.2.5. FilterRegistration getFilterRegistration(String filterName)

This method returns the FilterRegistration corresponding to the filter with the given name, or null
if no FilterRegistration exists under that name. An UnsupportedOperationException is thrown if the
ServletContext was passed to the contextInitialized method of a ServletContextListener that was
neither declared in the web.xml or web-fragment.xml, nor annotated with
jakarta.servlet.annotation.WebListener.

4.4.2.6. Map<String, ? extends FilterRegistration> getFilterRegistrations()

This method returns a map of FilterRegistration objects, keyed by name corresponding to all
filters registered with the ServletContext. If there are no filters registered with the ServletContext
an empty Map is returned. The returned Map includes the FilterRegistration objects corresponding
to all declared and annotated filters, as well as the FilterRegistration objects corresponding to all
filters that have been added via one of the addFilter methods. Any changes to the returned Map
MUST not affect the ServletContext. An UnsupportedOperationException is thrown if the
ServletContext was passed to the contextInitialized method of a ServletContextListener that was
neither declared in the web.xml or web-fragment.xml, nor annotated with
jakarta.servlet.annotation.WebListener.

43

4.4.3. Programmatically Adding and Configuring Listeners

4.4.3.1. void addListener(String className)

Add the listener with the given class name to the ServletContext. The class with the given name will
be loaded using the classloader associated with the application represented by the ServletContext,
and MUST implement one or more of the following interfaces:

• jakarta.servlet.ServletContextAttributeListener

• jakarta.servlet.ServletRequestListener

• jakarta.servlet.ServletRequestAttributeListener

• jakarta.servlet.http.HttpSessionListener

• jakarta.servlet.http.HttpSessionAttributeListener

• jakarta.servlet.http.HttpSessionIdListener

If the ServletContext was passed to the ServletContainerInitializer’s onStartup method, then the
class with the given name MAY also implement jakarta.servlet.ServletContextListener in addition
to the interfaces listed above. As part of this method call, the container MUST load the class with the
specified class name to ensure that it implements one of the required interfaces. If the class with
the given name implements a listener interface whose invocation order corresponds to the
declaration order, that is, if it implements jakarta.servlet.ServletRequestListener,
jakarta.servlet.ServletContextListener or jakarta.servlet.http.HttpSessionListener then the new
listener will be added to the end of the ordered list of listeners of that interface.

4.4.3.2. <T extends EventListener> void addListener(T t)

Add the given listener to the ServletContext. The given listener MUST be an instance of one or more
of the following interfaces:

• jakarta.servlet.ServletContextAttributeListener

• jakarta.servlet.ServletRequestListener

• jakarta.servlet.ServletRequestAttributeListener

• jakarta.servlet.http.HttpSessionListener

• jakarta.servlet.http.HttpSessionAttributeListener

• jakarta.servlet.http.HttpSessionIdListener

If the ServletContext was passed to the ServletContainerInitializer’s onStartup method, then the
given listener MAY also be an instance of jakarta.servlet.ServletContextListener in addition to the
interfaces listed above. If the given listener is an instance of a listener interface whose invocation
order corresponds to the declaration order, that is, if it implements
jakarta.servlet.ServletRequestListener, jakarta.servlet.ServletContextListener or
jakarta.servlet.http.HttpSessionListener, then the new listener will be added to the end of the
ordered list of listeners of that interface.

44

4.4.3.3. void addListener(Class <? extends EventListener> listenerClass)

Add the listener of the given class type to the ServletContext. The given listener class MUST
implement one or more of the following interfaces:

• jakarta.servlet.ServletContextAttributeListener

• jakarta.servlet.ServletRequestListener

• jakarta.servlet.ServletRequestAttributeListener

• jakarta.servlet.http.HttpSessionListener

• jakarta.servlet.http.HttpSessionAttributeListener

• jakarta.servlet.http.HttpSessionIdListener

If the ServletContext was passed to the ServletContainerInitializer’s onStartup method, then the
given listener class MAY also implement jakarta.servlet.ServletContextListener in addition to the
interfaces listed above. If the given listener class implements a listener interface whose invocation
order corresponds to the declaration order, that is, if it implements
jakarta.servlet.ServletRequestListener, jakarta.servlet.ServletContextListener or
jakarta.servlet.http.HttpSessionListener, then the new listener will be added to the end of the
ordered list of listeners of that interface.

4.4.3.4. <T extends EventListener> void createListener(Class<T> clazz)

This method instantiates the given EventListener class. The specified EventListener class MUST
implement at least one of the following interfaces:

• jakarta.servlet.ServletContextAttributeListener

• jakarta.servlet.ServletRequestListener

• jakarta.servlet.ServletRequestAttributeListener

• jakarta.servlet.http.HttpSessionListener

• jakarta.servlet.http.HttpSessionAttributeListener

• jakarta.servlet.http.HttpSessionIdListener

This method MUST support all annotations applicable to the above listener interfaces as defined by
this specification. The returned EventListener instance may be further customized before it is
registered with the ServletContext via a call to addListener(T t). The given EventListener class MUST
define a zero argument constructor, which is used to instantiate it.

4.4.3.5. Annotation processing requirements for programmatically added Servlets, Filters and
Listeners

When using the programmatic API to add a servlet or create a servlet, apart from the addServlet
that takes an instance, the following annotations must be introspected in the class in question and
the metadata defined in it MUST be used unless it is overridden by calls to the API in the
ServletRegistration.Dynamic / ServletRegistration.

@ServletSecurity, @RunAs, @DeclareRoles, @MultipartConfig.

45

For filters and listeners no annotations need to be introspected.

Resource injection on all components (servlets, filters and listeners) added programmatically or
created programmatically, other than the ones added via the methods that takes an instance, will
only be supported when the component is a CDI Managed Bean. For details please refer to Section
15.5.16, “Contexts and Dependency Injection for Jakarta EE Platform Requirements”.

4.4.4. Programmatically Configuring Session Time Out

The following methods of the ServletContext interface allow the web application to access and
configure the default session timeout interval for all sessions created in the given web application.
The specified timeout in setSessionTimeout is in minutes. If the timeout is 0 or less the container
ensures the default behavior of sessions is never to time out.

• getSessionTimeout()

• setSessionTimeout(int timeout)

4.4.5. Programmatically Configuring Character Encoding

The following methods of the ServletContext interface allow the web application to access and
configure request and response character encoding.

• getRequestCharacterEncoding()

• setRequestCharacterEncoding(String encoding)

• getResponseCharacterEncoding()

• setResponseCharacterEncoding(String encoding)

If no request character encoding is specified in deployment descriptor or container specific
configuration (for all web applications in the container), getRequestCharacterEncoding() returns
null. If no response character encoding is specified in deployment descriptor or container specific
configuration (for all web applications in the container), getResponseCharacterEncoding() returns
null.

4.5. Context Attributes
A servlet can bind an object attribute into the context by name. Any attribute bound into a context
is available to any other servlet that is part of the same web application. The following methods of
ServletContext interface allow access to this functionality:

• setAttribute

• getAttribute

• getAttributeNames

• removeAttribute

46

4.5.1. Context Attributes in a Distributed Container

Context attributes are local to the JVM in which they were created. This prevents ServletContext
attributes from being a shared memory store in a distributed container. When information needs
to be shared between servlets running in a distributed environment, the information should be
placed into a session (See Chapter 7, Sessions), stored in a database, or set in an Jakarta Enterprise
Beans component.

4.6. Resources
The ServletContext interface provides direct access only to the hierarchy of static content
documents that are part of the web application, including HTML, GIF, and JPEG files, via the
following methods of the ServletContext interface:

• getResource

• getResourceAsStream

The getResource and getResourceAsStream methods take a String with a leading "/" as an argument
that gives the path of the resource relative to the root of the context or relative to the META-
INF/resources directory of a JAR file inside the web application’s WEB-INF/lib directory. If there is a
WEB-INF entry inside the META-INF/resources entry of a JAR file in WEB-INF/lib, then it and all child
entries are available only as static resources. No classes or jars will be placed on the context
classpath from such a WEB-INF entry, and no servlet specific descriptors will be processed. These
methods will first search the root of the web application context for the requested resource before
looking at any of the JAR files in the WEB-INF/lib directory. The order in which the JAR files in the
WEB-INF/lib directory are scanned is undefined. This hierarchy of documents may exist in the
server’s file system, in a web application archive file, on a remote server, or at some other location.

These methods are not used to obtain dynamic content. For example, in a container supporting the
Jakarta Server Pages specification [1], a method call of the form getResource("/index.jsp") would
return the JSP source code and not the processed output. See Chapter 9, Dispatching Requests for
more information about accessing dynamic content.

The full listing of the resources in the web application can be accessed using the
getResourcePaths(String path) method. The full details on the semantics of this method may be
found in the API documentation in this specification.

4.7. Multiple Hosts and Servlet Contexts
Web servers may support multiple logical hosts sharing one IP address on a server. This capability
is sometimes referred to as "virtual hosting". In this case, each logical host must have its own
servlet context or set of servlet contexts. Servlet contexts can not be shared across virtual hosts.

The getVirtualServerName method of ServletContext interface allows access to the configuration
name of the logical host on which the ServletContext is deployed. Servlet containers may support
multiple logical hosts. This method must return the same name for all the servlet contexts deployed
on a logical host, and the name returned by this method must be distinct, stable per logical host,
and suitable for use in associating server configuration information with the logical host.

47

4.8. Reloading Considerations
Although a Container Provider implementation of a class reloading scheme for ease of development
is not required, any such implementation must ensure that all servlets, and classes that they may
use [2], are loaded in the scope of a single class loader. This requirement is needed to guarantee that
the application will behave as expected by the Application Developer. As a development aid, the full
semantics of notification to session binding listeners should be supported by containers for use in
the monitoring of session termination upon class reloading.

Previous generations of containers created new class loaders to load a servlet, distinct from class
loaders used to load other servlets or classes used in the servlet context. This could cause object
references within a servlet context to point at unexpected classes or objects, and cause unexpected
behavior. The requirement is needed to prevent problems caused by demand generation of new
class loaders.

4.8.1. Temporary Working Directories

A temporary storage directory is required for each servlet context. Servlet containers must provide
a private temporary directory for each servlet context, and make it available via the
jakarta.servlet.context.tempdir context attribute. The objects associated with the attribute must be
of type java.io.File.

The requirement recognizes a common convenience provided in many servlet engine
implementations. The container is not required to maintain the contents of the temporary directory
when the servlet container restarts, but is required to ensure that the contents of the temporary
directory of one servlet context is not visible to the servlet contexts of other web applications
running on the servlet container.

[1] The Jakarta Server Pages specification can be found at https://jakarta.ee/specifications/pages

[2] An exception is system classes that the servlet may use in a different class loader.

48

https://jakarta.ee/specifications/pages

Chapter 5. The Response
The response object encapsulates all information to be returned from the server to the client. In the
HTTP protocol, this information is transmitted from the server to the client either by HTTP headers
or the message body of the response.

5.1. Buffering
A servlet container is allowed, but not required, to buffer output going to the client for efficiency
purposes. Typically servers that do buffering make it the default, but allow servlets to specify
buffering parameters.

The following methods in the ServletResponse interface allow a servlet to access and set buffering
information:

• getBufferSize

• setBufferSize

• isCommitted

• reset

• resetBuffer

• flushBuffer

These methods are provided on the ServletResponse interface to allow buffering operations to be
performed whether the servlet is using a ServletOutputStream or a Writer.

The getBufferSize method returns the size of the underlying buffer being used. If no buffering is
being used, this method must return the int value of 0 (zero).

The servlet can request a preferred buffer size by using the setBufferSize method. The buffer
assigned is not required to be the size requested by the servlet, but must be at least as large as the
size requested. This allows the container to reuse a set of fixed size buffers, providing a larger
buffer than requested if appropriate. The method must be called before any content is written
using a ServletOutputStream or Writer. If any content has been written or the response object has
been committed, this method must throw an IllegalStateException.

The isCommitted method returns a boolean value indicating whether any response bytes have been
returned to the client. The flushBuffer method forces content in the buffer to be written to the
client.

The reset method clears data in the buffer when the response is not committed. Headers, status
codes and the state of calling getWriter or getOutputStream set by the servlet prior to the reset call
must be cleared as well. The resetBuffer method clears content in the buffer if the response is not
committed without clearing the headers and status code.

If the response is committed and the reset or resetBuffer method is called, an
IllegalStateException must be thrown. The response and its associated buffer will be unchanged.

49

When using a buffer, the container must immediately flush the contents of a filled buffer to the
client. If this is the first data that is sent to the client, the response is considered to be committed.

5.2. Headers
A servlet can set headers of an HTTP response via the following methods of the HttpServletResponse
interface:

• setHeader

• addHeader

The setHeader method sets a header with a given name and value. A previous header is replaced by
the new header. Where a set of header values exist for the name, the values are cleared and
replaced with the new value.

The addHeader method adds a header value to the set with a given name. If there are no headers
already associated with the name, a new set is created.

Headers may contain data that represents an int or a Date object. The following convenience
methods of the HttpServletResponse interface allow a servlet to set a header using the correct
formatting for the appropriate data type:

• setIntHeader

• setDateHeader

• addIntHeader

• addDateHeader

To be successfully transmitted back to the client, headers (other than those in a trailer) must be set
before the response is committed. Headers (other than those in a trailer) set after the response is
committed will be ignored by the servlet container. If an HTTP trailer, as specified in RFC 9110, is to
be sent in the response, the fields must be provided using the setTrailerFields() method on
HttpServletResponse. This method must have been called before the last chunk in the chunked
response has been written.

Servlet programmers are responsible for ensuring that the Content-Type header is appropriately set
in the response object for the content the servlet is generating. The HTTP/1.1 specification does not
require that this header be set in an HTTP response. Servlet containers must not set a default
content type when the servlet programmer does not set the type.

5.3. HTTP Trailers
An HTTP trailer is a collection of HTTP headers that comes after the response body. It is specified in
RFC 9110. It is useful in the context of chunked transfer encoding and also in the implementation of
additional communication protocols. Servlet containers provide support for trailers.

If trailer headers are ready for reading, isTrailerFieldsReady() will return true. Then a servlet can
read trailer headers of the HTTP request via the getTrailerFields() method of the

50

HttpServletRequest interface.

A servlet can write trailer headers to the response by providing a Supplier to the setTrailerFields
method of the HttpServletResponse interface. The Supplier of the trailer headers can be obtained by
accessing the getTrailerFields() method of the HttpServletResponse interface.

Please see the javadoc for these two methods for the normative specification.

5.4. Non-Blocking IO
Non-blocking IO only works with async request processing in servlets and filters (as defined in
Section 2.3.3.3, “Asynchronous processing”), and upgrade processing (as defined in Section 2.3.3.5,
“Upgrade Processing”). Otherwise, an IllegalStateException must be thrown when
ServletInputStream.setReadListener or ServletOutputStream.setWriteListener is invoked. To support
non-blocking writes in the web container, in addition to the changes made in the ServletRequest as
described in Section 3.8, “Non-Blocking IO”, the following changes have been made to handle
response related classes / interfaces.

The WriteListener provides the following callback methods which the container invokes
appropriately.

WriteListener

void onWritePossible()

When a WriteListener is registered with the ServletOutputStream, this method will be invoked by
the container the first time when it is possible to write data. The container will subsequently
invoke the onWritePossible method if and only if the isReady method on ServletOutputStream,
described below, returns a value of false and a write operation has subsequently become
possible.

void onError(Throwable t)

Invoked when an error occurs processing the response.

Along with the WriteListener, the following methods have been added to ServletOutputStream class
to allow the developer to check with the runtime whether or not it is possible to write the data to be
sent to the client.

ServletOutputStream

boolean isReady()

This method returns true if a write to the ServletOutputStream will succeed, otherwise it will
return false. If this method returns true, a write operation can be performed on the
ServletOutputStream. If no further data can be written to the ServletOutputStream then this
method will return false till the underlying data is flushed at which point the container will
invoke the onWritePossible method of the WriteListener. A subsequent call to this method will
return true.

void setWriteListener(WriteListener listener)

Associates the WriteListener with this ServletOutputStream for the container to invoke the
callback methods on the WriteListener when it is possible to write data. Registering a

51

WriteListener will start non-blocking IO. It is illegal to switch to the traditional blocking IO at
that point. The use of IO related method calls after this illegal switch to traditional blocking IO
produces unspecified behavior.

The servlet container must access methods in WriteListener in a thread safe manner.

5.5. Convenience Methods
The following convenience methods exist in the HttpServletResponse interface:

• sendRedirect

• sendError

The sendRedirect methods will set the appropriate headers and content body to redirect the client
to a different URL. It is legal to call these methods with a relative URL path. The underlying
container may provide an option to use the relative URL path as provided but if no such option is
provided it must translate the relative path to a fully qualified URL for transmission back to the
client. If a partial URL is given and, for whatever reason, cannot be converted into a valid URL, then
these methods must throw an IllegalArgumentException.

The sendError method will set the appropriate headers and content body for an error message to
return to the client. An optional String argument can be provided to the sendError method which
can be used in the content body of the error.

These methods will have the side effect of committing the response, if it has not already been
committed, and terminating it. No further output to the client should be made by the servlet after
these methods are called. If data is written to the response after these methods are called, the data
is ignored.

If data has been written to the response buffer, but not returned to the client (i.e. the response is
not committed), the data in the response buffer must be cleared and replaced with the data set by
these methods. If the response is committed, these methods must throw an IllegalStateException.

5.6. Internationalization
Servlets should set the locale and the character encoding of a response. The locale is set using the
ServletResponse.setLocale method. The method can be called repeatedly; but calls made after the
response is committed have no effect. If the servlet does not set the locale before the page is
committed, the container’s default locale is used to determine the response’s locale, but no
specification is made for the communication with a client, such as Content-Language header in the
case of HTTP.

<locale-encoding-mapping-list>
 <locale-encoding-mapping>
 <locale>ja</locale>
 <encoding>Shift_JIS</encoding>
 </locale-encoding-mapping>

52

</locale-encoding-mapping-list>

The <response-character-encoding> element can be used to explicitly set the default encoding for
all responses in a given web application.

<response-character-encoding>UTF-8</response-character-encoding>

If neither element exists or does not provide a mapping, setLocale uses a container dependent
mapping. The setCharacterEncoding, setContentType, and setLocale methods can be called
repeatedly to change the character encoding. Calls made after the servlet response’s getWriter
method has been called or after the response is committed have no effect on the character
encoding. Calls to setContentType set the character encoding only if the given content type string
provides a value for the charset attribute. Calls to setLocale set the character encoding only if
neither setCharacterEncoding nor setContentType has set the character encoding before.

If the servlet does not specify a character encoding before the getWriter method of the
ServletResponse interface is called or the response is committed, the default ISO-8859-1 is used.

Containers must communicate the locale and the character encoding used for the servlet response’s
writer to the client if the protocol in use provides a way for doing so. In the case of HTTP, the locale
is communicated via the Content-Language header, the character encoding as part of the Content-
Type header for text media types. Note that the character encoding cannot be communicated via
HTTP headers if the servlet does not specify a content type; however, it is still used to encode text
written via the servlet response’s writer.

5.7. Closure of the Response Object
When a response is closed, the container must immediately flush all remaining content in the
response buffer to the client. The following events indicate that the servlet has satisfied the request
and that the response object is to be closed:

• The termination of the service method of the servlet.

• The amount of content specified in the setContentLength or setContentLengthLong method of the
response has been greater than zero and has been written to the response.

• The sendError method is called.

• The sendRedirect method is called.

• The complete method on AsyncContext is called.

5.8. Lifetime of the Response Object
Each response object is valid only within the scope of a servlet’s service method, or within the
scope of a filter’s doFilter method, unless the associated request object has asynchronous
processing enabled for the component. If asynchronous processing on the associated request is
started, then the response object remains valid until complete method on AsyncContext is called.
Containers commonly recycle response objects in order to avoid the performance overhead of

53

response object creation. The developer must be aware that maintaining references to response
objects for which startAsync on the corresponding request has not been called, outside the scope
described above may lead to non-deterministic behavior.

54

Chapter 6. Filtering
Filters are Java components that allow on the fly transformations of payload and header
information in both the request into a resource and the response from a resource.

The Jakarta Servlet API provides a lightweight framework for filtering active and static content. It
describes how filters are configured in a web application, and conventions and semantics for their
implementation.

API documentation for servlet filters is provided online. The configuration syntax for filters is given
by the deployment descriptor schema described in Chapter 14, Deployment Descriptor. The reader
should use these sources as references when reading this chapter.

6.1. What is a Filter?
A filter is a reusable piece of code that can transform the content of HTTP requests, responses, and
header information. Filters do not generally create a response or respond to a request as servlets
do, rather they modify or adapt the requests for a resource, and modify or adapt responses from a
resource.

Filters can act on dynamic or static content. For the purposes of this chapter, dynamic and static
content are referred to as web resources.

Among the types of functionality available to the developer needing to use filters are the following:

• The accessing of a resource before a request to it is invoked.

• The processing of the request for a resource before it is invoked.

• The modification of request headers and data by wrapping the request in customized versions
of the request object.

• The modification of response headers and response data by providing customized versions of
the response object.

• The interception of an invocation of a resource after its call.

• Actions on a servlet, on groups of servlets, or static content by zero, one, or more filters in a
specifiable order.

Be aware that any filter that modifies the ServletResponse can potentially break a subsequent filter
or the servlet in the FilterChain. For example, if the servlet supports range requests or sets a
content length, a filter that modifies the response body is likely to break the servlet. It is the
responsibility of the filter developer to clearly describe what it does with the ServletResponse so a
user of the filter is aware of what happens when they add the filter.

Filters that modify the response body generated by a servlet should take steps to ensure that they
minimise the risk of breaking a subsequent filter or the servlet in the FilterChain. As as minimum,
filters that modify the response body generated by a servlet where the Content-Length header is set
by point the servlet’s service() method exits, must ensure that the response has an appropriate
Content-Length header either by ensuring that the correct value is set for the Content-Length header

55

set or by ensuring that the Content-Length is not set.

6.1.1. Examples of Filtering Components

• Authentication filters

• Logging and auditing filters

• Image conversion filters

• Data compression filters

• Encryption filters

• Tokenizing filters

• Filters that trigger resource access events

• XSL/T filters that transform XML content

• MIME-type chain filters

• Caching filters

6.2. Main Concepts
The main concepts of this filtering model are described in this section.

The application developer creates a filter by implementing the jakarta.servlet.Filter interface
and providing a public constructor taking no arguments. The class is packaged in the web archive
along with the static content and servlets that make up the web application. A filter is declared
using the <filter> element in the deployment descriptor. A filter or collection of filters can be
configured for invocation by defining <filter-mapping> elements in the deployment descriptor. This
is done by mapping filters to a particular servlet by the servlet’s logical name, or mapping to a
group of servlets and static content resources by mapping a filter to a URL pattern.

6.2.1. Filter Lifecycle

After deployment of the web application, and before a request causes the container to access a web
resource, the container must locate the list of filters that must be applied to the web resource as
described below. The container must ensure that it has instantiated a filter of the appropriate class
for each filter in the list, and called its init(FilterConfig config) method. The filter may throw an
exception to indicate that it cannot function properly. If the exception is of type
UnavailableException, the container may examine the isPermanent attribute of the exception and
may choose to retry the filter at some later time.

Only one instance per <filter> declaration in the deployment descriptor is instantiated per JVM of
the container. The container provides the filter config as declared in the filter’s deployment
descriptor, the reference to the ServletContext for the web application, and the set of initialization
parameters.

When the container receives an incoming request, it takes the first filter instance in the list and
calls its doFilter method, passing in the ServletRequest and ServletResponse , and a reference to the
FilterChain object it will use.

56

The doFilter method of a filter will typically be implemented following this or some subset of the
following pattern:

1. The method examines the request’s headers.

2. The method may wrap the request object with a customized implementation of ServletRequest
or HttpServletRequest in order to modify request headers or data.

3. The method may wrap the response object passed in to its doFilter method with a customized
implementation of ServletResponse or HttpServletResponse to modify response headers or data.

4. The filter may invoke the next entity in the filter chain. The next entity may be another filter, or
if the filter making the invocation is the last filter configured in the deployment descriptor for
this chain, the next entity is the target web resource. The invocation of the next entity is effected
by calling the doFilter method on the FilterChain object, and passing in the request and
response with which it was called or passing in wrapped versions it may have created.

The filter chain’s implementation of the doFilter method, provided by the container, must
locate the next entity in the filter chain and invoke its doFilter method, passing in the
appropriate request and response objects.

Alternatively, the filter chain can block the request by not making the call to invoke the next
entity, leaving the filter responsible for filling out the response object.

The service method is required to run in the same thread as all filters that apply to the servlet.

5. After invocation of the next filter in the chain, the filter may examine response headers.

6. Alternatively, the filter may have thrown an exception to indicate an error in processing. If the
filter throws an UnavailableException during its doFilter processing, the container must not
attempt continued processing down the filter chain. It may choose to retry the whole chain at a
later time if the exception is not marked permanent.

7. When the last filter in the chain has been invoked, the next entity accessed is the target servlet
or resource at the end of the chain.

8. Before a filter instance can be removed from service by the container, the container must first
call the destroy method on the filter to enable the filter to release any resources and perform
other cleanup operations.

6.2.2. Wrapping Requests and Responses

Central to the notion of filtering is the concept of wrapping a request or response in order that it
can override behavior to perform a filtering task. In this model, the developer not only has the
ability to override existing methods on the request and response objects, but to provide new API
suited to a particular filtering task to a filter or target web resource down the chain. For example,
the developer may wish to extend the response object with higher level output objects than the
output stream or the writer, such as API that allows DOM objects to be written back to the client.

In order to support this style of filter the container must support the following requirements:

• When a filter invokes the doFilter method on the container’s filter chain implementation, the
container must ensure that the request and response objects that it passes to the next entity in

57

the filter chain, or to the target web resource if the filter was the last in the chain, is the same
object that was passed into the doFilter method by the calling filter.

• When a filter or servlet calls RequestDispatcher.forward or RequestDispatcher.include, then the
request and response objects seen by the called filter(s) and/or servlet must either: be the same
wrapper objects that were passed; or wrappers of the objects that were passed.

• When startAsync(ServletRequest, ServletResponse) is used to commence an asynchronous
cycle then the request and response objects seen by any filter(s) and/or servlet subsequent to an
AsyncContext.dispatch() (or overloaded variant) must either: be the same wrapper objects that
were passed; or wrappers of the objects that were passed.

6.2.3. Filter Environment

A set of initialization parameters can be associated with a filter using the <init-param> element in
the deployment descriptor. The names and values of these parameters are available to the filter at
runtime via the getInitParameter and getInitParameterNames methods on the filter’s FilterConfig
object. Additionally, the FilterConfig affords access to the ServletContext of the web application for
the loading of resources, for logging functionality, and for storage of state in the ServletContext’s
attribute list. A filter and the target servlet or resource at the end of the filter chain must execute in
the same invocation thread.

6.2.4. Configuration of Filters in a Web Application

A filter is defined either via the @WebFilter annotation as defined in Section 8.1.2, “@WebFilter” of
the specification or in the deployment descriptor using the <filter> element. In this element, the
programmer declares the following:

• filter-name: used to map the filter to a servlet or URL

• filter-class: used by the container to identify the filter type

• init-param: initialization parameters for a filter

Optionally, the programmer can specify icons, a textual description, and a display name for tool
manipulation. The container must instantiate exactly one instance of the Java class defining the
filter per filter declaration in the deployment descriptor. Hence, two instances of the same filter
class will be instantiated by the container if the developer makes two filter declarations for the
same filter class.

Here is an example of a filter declaration:

<filter>
 <filter-name>Image Filter</filter-name>
 <filter-class>com.example.ImageServlet</filter-class>
</filter>

Once a filter has been declared in the deployment descriptor, the assembler uses the <filter-
mapping> element to define servlets and static resources in the web application to which the filter is
to be applied. Filters can be associated with a servlet using the <servlet-name> element. For

58

example, the following code example maps the Image Filter filter to the ImageServlet servlet:

<filter-mapping>
 <filter-name>Image Filter</filter-name>
 <servlet-name>ImageServlet</servlet-name>
</filter-mapping>

Filters can be associated with groups of servlets and static content using the <url-pattern> style of
filter mapping:

<filter-mapping>
 <filter-name>Logging Filter</filter-name>
 <url-pattern>/*</url-pattern>
</filter-mapping>

Here the Logging Filter is applied to all the servlets and static content pages in the web application,
because every request URI matches the /* URL pattern.

When processing a <filter-mapping> element using the <url-pattern> style, the container must
determine whether the <url-pattern> matches the request URI using the path mapping rules
defined in Chapter 12, Mapping Requests to Servlets.

The order the container uses in building the chain of filters to be applied for a particular request
URI is as follows:

1. First, the <url-pattern> matching filter mappings in the same order that these elements appear
in the deployment descriptor.

2. Next, the <servlet-name> matching filter mappings in the same order that these elements appear
in the deployment descriptor.

If a filter mapping contains both <servlet-name> and <url-pattern>, the container must expand the
filter mapping into multiple filter mappings (one for each <servlet-name> and <url-pattern>),
preserving the order of the <servlet-name> and <url-pattern> elements. For example, the following
filter mapping:

<filter-mapping>
 <filter-name>Multiple Mappings Filter</filter-name>
 <url-pattern>/foo/*</url-pattern>
 <servlet-name>Servlet1</servlet-name>
 <servlet-name>Servlet2</servlet-name>
 <url-pattern>/bar/*</url-pattern>
</filter-mapping>

is equivalent to:

<filter-mapping>

59

 <filter-name>Multipe Mappings Filter</filter-name>
 <url-pattern>/foo/*</url-pattern>
</filter-mapping>

<filter-mapping>
 <filter-name>Multipe Mappings Filter</filter-name>
 <servlet-name>Servlet1</servlet-name>
</filter-mapping>

<filter-mapping>
 <filter-name>Multipe Mappings Filter</filter-name>
 <servlet-name>Servlet2</servlet-name>
</filter-mapping>

<filter-mapping>
 <filter-name>Multipe Mappings Filter</filter-name>
 <url-pattern>/bar/*</url-pattern>
</filter-mapping>

The requirement about the order of the filter chain means that the container, when receiving an
incoming request, processes the request as follows:

• Identifies the target web resource according to the rules of Section 12.2, “Specification of
Mappings”.

• If there are filters matched by servlet name and the web resource has a <servlet-name>, the
container builds the chain of filters matching in the order declared in the deployment
descriptor. The last filter in this chain corresponds to the last <servlet-name> matching filter and
is the filter that invokes the target web resource.

• If there are filters using <url-pattern> matching and the <url-pattern> matches the request URI
according to the rules of Section 12.2, “Specification of Mappings”, the container builds the
chain of <url-pattern> matched filters in the same order as declared in the deployment
descriptor. The last filter in this chain is the last <url-pattern> matching filter in the deployment
descriptor for this request URI. The last filter in this chain is the filter that invokes the first filter
in the <servlet-name> matching chain, or invokes the target web resource if there are none.

It is expected that high performance web containers will cache filter chains so that they do not
need to compute them on a per-request basis.

6.2.5. Filters and the RequestDispatcher

The servlet specification provides the ability to configure filters to be invoked under request
dispatcher forward() and include() calls.

By using the <dispatcher> element in the deployment descriptor, the developer can indicate for a
filter-mapping whether the filter should be applied to requests when:

1. The request comes directly from the client.

This is indicated by a <dispatcher> element with value REQUEST, or by the absence of any

60

<dispatcher> elements.

2. The request is being processed under a request dispatcher representing the web component
matching the <url-pattern> or <servlet-name> using a forward() call.

This is indicated by a <dispatcher> element with value FORWARD.

3. The request is being processed under a request dispatcher representing the web component
matching the <url-pattern> or <servlet-name> using an include() call.

This is indicated by a <dispatcher> element with value INCLUDE.

4. The request is being processed with the error page mechanism specified in Section 9.5, “Error
Handling” to an error resource matching the <url-pattern>.

This is indicated by a <dispatcher> element with the value ERROR.

5. The request is being processed with the async context dispatch mechanism specified in Section
2.3.3.3, “Asynchronous processing” to a web component using a dispatch call.

This is indicated by a <dispatcher> element with the value ASYNC.

6. Or any combination of 1, 2, 3, 4 or 5 above.

For example:

<filter-mapping>
 <filter-name>Logging Filter</filter-name>
 <url-pattern>/products/*</url-pattern>
</filter-mapping>

would result in the Logging Filter being invoked by client requests starting /products/… but not
underneath a request dispatcher call where the request dispatcher has path commencing
/products/…. The following code:

<filter-mapping>
 <filter-name>Logging Filter</filter-name>
 <servlet-name>ProductServlet</servlet-name>
 <dispatcher>INCLUDE</dispatcher>
</filter-mapping>

would result in the Logging Filter not being invoked by client requests to the ProductServlet, nor
underneath a request dispatcher forward() call to the ProductServlet, but would be invoked
underneath a request dispatcher include() call where the request dispatcher has a name
commencing ProductServlet. The following code:

<filter-mapping>
 <filter-name>Logging Filter</filter-name>

61

 <url-pattern>/products/*</url-pattern>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

would result in the Logging Filter being invoked by client requests starting /products/… and
underneath a request dispatcher forward() call where the request dispatcher has path commencing
/products/….

Finally, the following code uses the special servlet name *:

<filter-mapping>
 <filter-name>All Dispatch Filter</filter-name>
 <servlet-name>*</servlet-name>
 <dispatcher>FORWARD</dispatcher>
</filter-mapping>

This code would result in the All Dispatch Filter being invoked on request dispatcher forward()
calls for all request dispatchers obtained by name or by path.

62

Chapter 7. Sessions
The Hypertext Transfer Protocol (HTTP) is by design a stateless protocol. To build effective web
applications, it is imperative that requests from a particular client be associated with each other.
Many strategies for session tracking have evolved over time, but all are difficult or troublesome for
the programmer to use directly.

This specification defines a simple HttpSession interface that allows a servlet container to use any
of several approaches to track a user’s session without involving the Application Developer in the
nuances of any one approach.

7.1. Session Tracking Mechanisms
The following sections describe approaches to tracking a user’s sessions

7.1.1. Cookies

Session tracking through HTTP cookies is the most used session tracking mechanism and is
required to be supported by all servlet containers.

The container sends a cookie to the client. The client will then return the cookie on each subsequent
request to the server, unambiguously associating the request with a session. The standard name of
the session tracking cookie must be JSESSIONID. Containers may allow the name of the session
tracking cookie to be customized through container specific configuration.

All servlet containers MUST provide an ability to configure whether or not the container marks the
session tracking cookie as HttpOnly. The established configuration must apply to all contexts for
which a context specific configuration has not been established (see SessionCookieConfig javadoc
for more details).

If a web application configures a custom name for its session tracking cookies, the same custom
name will also be used as the name of the URI parameter if the session id is encoded in the URL
(provided that URL rewriting has been enabled).

7.1.2. SSL Sessions

Secure Sockets Layer, the encryption technology used in the HTTPS protocol, has a built-in
mechanism allowing multiple requests from a client to be unambiguously identified as being part
of a session. A servlet container can easily use this data to define a session.

7.1.3. URL Rewriting

URL rewriting is the lowest common denominator of session tracking. When a client will not accept
a cookie, URL rewriting may be used by the server as the basis for session tracking. URL rewriting
involves adding data, a session ID, to the URL path that is interpreted by the container to associate
the request with a session.

The session ID must be encoded as a path parameter in the URL string. The name of the parameter

63

must be jsessionid. Here is an example of a URL containing encoded path information:

http://www.example.com/catalog/index.html;jsessionid=1234

URL rewriting exposes session identifiers in logs, bookmarks, referer headers, cached HTML, and
the URL bar. URL rewriting should not be used as a session tracking mechanism where cookies or
SSL sessions are supported and suitable.

7.1.4. Session Integrity

Web containers must be able to support the HTTP session while servicing HTTP requests from
clients that do not support the use of cookies. To fulfill this requirement, web containers commonly
support the URL rewriting mechanism.

7.2. Creating a Session
A session is considered “new” when it is only a prospective session and has not been established.
Because HTTP is a request-response based protocol, an HTTP session is considered to be new until a
client “joins” it. A client joins a session when session tracking information has been returned to the
server indicating that a session has been established. Until the client joins a session, it cannot be
assumed that the next request from the client will be recognized as part of a session.

The session is considered to be “new” if either of the following is true:

• The client does not yet know about the session

• The client chooses not to join a session.

These conditions define the situation where the servlet container has no mechanism by which to
associate a request with a previous request.

An Application Developer must design the application to handle a situation where a client has not,
can not, or will not join a session.

Associated with each session, there is a string containing a unique identifier, which is referred to as
the session id. The value of the session id can be obtained by calling
jakarta.servlet.http.HttpSession.getId() and can be changed after creation by invoking
jakarta.servlet.http.HttpServletRequest.changeSessionId().

7.3. Session Scope
HttpSession objects must be scoped at the application (or servlet context) level. The underlying
mechanism, such as the cookie used to establish the session, can be the same for different contexts,
but the object referenced, including the attributes in that object, must never be shared between
contexts by the container.

To illustrate this requirement with an example: if a servlet uses the RequestDispatcher to call a
servlet in another web application, any sessions created for and visible to the servlet being called

64

must be different from those visible to the calling servlet.

Additionally, sessions of a context must be resumable by requests into that context regardless of
whether their associated context was being accessed directly or as the target of a request dispatch
at the time the sessions were created.

HttpSession objects obtained from HttpServletRequest must not be used outside the scope of the
request from which there are obtained. If it is necessary to access the HttpSession outside of this
scope, the HttpSession.getAccessor() method must be used.

7.4. Binding Attributes into a Session
A servlet can bind an object attribute into an HttpSession implementation by name. Any object
bound into a session is available to any other servlet that belongs to the same ServletContext and
handles a request identified as being a part of the same session.

Some objects may require notification when they are placed into, or removed from, a session. This
information can be obtained by having the object implement the HttpSessionBindingListener
interface. This interface defines the following methods that will signal an object being bound into,
or being unbound from, a session.

• valueBound

• valueUnbound

The valueBound method must be called before the object is made available via the getAttribute
method of the HttpSession interface. The valueUnbound method must be called after the object is no
longer available via the getAttribute method of the HttpSession interface.

7.5. Session Timeouts
In the HTTP protocol, there is no explicit termination signal when a client is no longer active. This
means that the only mechanism that can be used to indicate when a client is no longer active is a
time out period.

The default time out period for sessions is defined by the servlet container and can be obtained via
the getSessionTimeout method of the ServletContext interface or the getMaxInactiveInterval method
of the HttpSession interface. This time out can be changed by the Application Developer using the
setSessionTimeout method of the ServletContext interface or the setMaxInactiveInterval method of
the HttpSession interface. The time out periods used by session timeout methods are defined in
minutes. The time out periods used by max active interval methods are defined in seconds. See the
javadoc for setSessionTimeout for additional normative requirements. By definition, if the time out
period for a session is set to 0 or lesser value , the session will never expire. The session invalidation
will not take effect until all servlets using that session have exited the service method. Once the
session invalidation is initiated, a new request must not be able to see that session.

7.6. Last Accessed Times
The getLastAccessedTime method of the HttpSession interface allows a servlet to determine the last

65

time the session was accessed before the current request. The session is considered to be accessed
when a request that is part of the session is first handled by the servlet container.

7.7. Important Session Semantics

7.7.1. Threading Issues

Multiple servlets executing request threads may have active access to the same session object at the
same time. The container must ensure that manipulation of internal data structures representing
the session attributes is performed in a thread safe manner. The Application Developer has the
responsibility for thread safe access to the attribute objects themselves. This will protect the
attribute collection inside the HttpSession object from concurrent access, eliminating the
opportunity for an application to cause that collection to become corrupted. Unless explicitly stated
elsewhere in the specification, objects vended from the request or response must be assumed to be
non thread safe. This includes, but is not limited to the PrintWriter returned from
ServletResponse.getWriter() and the OutputStream returned from
ServletResponse.getOutputStream().

7.7.2. Distributed Environments

Within an application marked as distributable, all requests that are part of a session must be
handled by one JVM at a time. The container must be able to handle all objects placed into instances
of the HttpSession class using the setAttribute or putValue methods appropriately. The following
restrictions are imposed to meet these conditions:

• The container must accept objects that implement the Serializable interface.

• The container may choose to support storage of other designated objects in the HttpSession,
such as references to Jakarta Enterprise Beans components and transactions.

• Migration of sessions will be handled by container-specific facilities.

The distributed servlet container must throw an IllegalArgumentException for objects where the
container cannot support the mechanism necessary for migration of the session storing them.

The distributed servlet container must support the mechanism necessary for migrating objects that
implement Serializable.

These restrictions mean that the Application Developer is ensured that there are no additional
concurrency issues beyond those encountered in a non-distributed container.

The Container Provider can ensure scalability and quality of service features like load-balancing
and failover by having the ability to move a session object, and its contents, from any active node of
the distributed system to a different node of the system.

If distributed containers persist or migrate sessions to provide quality of service features, they are
not restricted to using the native JVM Serialization mechanism for serializing HttpSessions and
their attributes. Developers are not guaranteed that containers will call readObject and writeObject
methods on session attributes if they implement them, but are guaranteed that the Serializable
closure of their attributes will be preserved.

66

Containers must notify any session attributes implementing the HttpSessionActivationListener
during migration of a session. They must notify listeners of passivation prior to serialization of a
session, and of activation after deserialization of a session.

Application Developers writing distributed applications should be aware that since the container
may run in more than one Java virtual machine, the developer cannot depend on static variables
for storing an application state. They should store such states using an enterprise bean or a
database.

7.7.3. Client Semantics

Due to the fact that cookies or SSL certificates are typically controlled by the web browser process
and are not associated with any particular window of the browser, requests from all windows of a
client application to a servlet container might be part of the same session. For maximum
portability, the Application Developer should always assume that all windows of a client are
participating in the same session.

67

68

Chapter 8. Annotations and Pluggability
This chapter describes the use of annotations and other enhancements to enable pluggability of
frameworks and libraries for use within a web application.

8.1. Annotations and Pluggability
In a web application, classes using annotations will have their annotations processed only if they
are located in the WEB-INF/classes directory, or if they are packaged in a jar file located in WEB-
INF/lib within the application.

The web application deployment descriptor contains a metadata-complete attribute on the web-app
element. This attribute defines whether this deployment descriptor and associated web fragments,
if any, are complete, or whether the class files available to this module and packaged with this
application should be examined for annotations that specify deployment information. Deployment
information, in this sense, refers to any information that could have been specified by the
deployment descriptor or fragments, but instead is specified as annotations on classes.

If the value of the metadata-complete attribute is specified as true, the deployment tool must ignore
any annotations that specify such deployment information in the class files packaged in the web
application. Please see Section 8.2.3, “Assembling the Descriptor from web.xml, web-fragment.xml
and Annotations”, Section 8.4, “Processing Annotations and Fragments” and Section 15.5.1,
“Handling of metadata-complete” for additional details on the handling of metadata-complete.

If the metadata-complete attribute is not specified, or its value is false, the deployment tool must
examine the class files of the application for such annotations. Note that a true value for metadata-
complete does not preempt the processing of all annotations, only those listed below.

Annotations that do not have equivalents in the deployment XSD include
jakarta.servlet.annotation.HandlesTypes and all of the CDI-related annotations. These annotations
must be processed during annotation scanning, regardless of the value of metadata-complete.

When Jakarta Enterprise Beans are packaged in a .war file, and the .war file contains an ejb-jar.xml
file, the metadata-complete attribute of the ejb-jar.xml file determines the processing of the
annotations for enterprise beans. If there is no ejb-jar.xml file, and the web.xml specifies the
metadata-complete attribute as true, these annotations are processed as though there were an ejb-
jar.xml file whose metadata-complete attribute was specified as true. See the Jakarta Enterprise
Beans specification for requirements pertaining to annotations for Jakarta Enterprise Beans.

The following are the annotations in jakarta.servlet. All of these have corresponding deployment
descriptor metadata covered by the web xsd.

From jakarta.servlet.annotation:

• HttpConstraint

• HttpMethodConstraint

• MultipartConfig

69

• ServletSecurity

• WebFilter

• WebInitParam

• WebListener

• WebServlet

The following annotations from related packages are also covered by the web.xml and associated
fragments.

From jakarta.annotation:

• PostConstruct

• PreDestroy

• Resource

• Resources

From jakarta.annotation.security:

• DeclareRoles

• RunAs

From jakarta.annotation.sql:

• DataSourceDefinition

• DataSourceDefinitions

From jakarta.ejb:

• EJB

• EJBs

From jakarta.jms:

• JMSConnectionFactoryDefinition

• JMSConnectionFactoryDefinitions

• JMSDestinationDefinition

• JMSDestinationDefinitions

From jakarta.mail:

• MailSessionDefinition

• MailSessionDefinitions

From jakarta.persistence:

• PersistenceContext

70

• PersistenceContexts

• PersistenceUnit

• PersistenceUnits

From jakarta.resource:

• AdministeredObjectDefinition

• AdministeredObjectDefinitions

• ConnectionFactoryDefinition

• ConnectionFactoryDefinitions

All annotations in the following packages:

• jakarta.jws

• jakarta.jws.soap

• jakarta.xml.ws

• jakarta.xml.ws.soap

• jakarta.xml.ws.spi

Following are the annotations that MUST be supported by a servlet compliant web container.

8.1.1. @WebServlet

This annotation is used to define a Servlet component in a web application. This annotation is
specified on a class and contains metadata about the Servlet being declared. The urlPatterns or the
value attribute on the annotation MUST be present. All other attributes are optional with default
settings (see javadocs for more details). It is recommended to use value when the only attribute on
the annotation is the url pattern and to use the urlPatterns attribute when the other attributes are
also used. It is illegal to have both value and urlPatterns attribute used together on the same
annotation. The default name of the Servlet if not specified is the fully qualified class name. The
annotated servlet MUST specify at least one url pattern to be deployed. If the same servlet class is
declared in the deployment descriptor under a different name, a new instance of the servlet MUST
be instantiated. If the same servlet class is added with a different name to the ServletContext via
the programmatic API defined in Section 4.4.1, “Programmatically Adding and Configuring
Servlets”, the attribute values declared via the @WebServlet annotation MUST be ignored and a new
instance of the servlet with the name specified MUST be created.

Classes annotated with @WebServlet class MUST extend the jakarta.servlet.http.HttpServlet class.

Following is an example of how this annotation would be used.

@WebServlet Annotation Example

@WebServlet("/foo")
public class CalculatorServlet extends HttpServlet{
 ...

71

}

Following is an example of how this annotation would be used with some more of the attributes
specified.

@WebServlet annotation example using other annotation attributes specified

@WebServlet(name="MyServlet", urlPatterns={"/foo", "/bar"})
public class SampleUsingAnnotationAttributes extends HttpServlet{

 public void doGet(HttpServletRequest req, HttpServletResponse res) {
 ...
 }
}

8.1.2. @WebFilter

This annotation is used to define a Filter in a web application. This annotation is specified on a
class and contains metadata about the filter being declared. The default name of the Filter if not
specified is the fully qualified class name. The urlPatterns attribute, servletNames attribute or the
value attribute of the annotation MUST be specified. All other attributes are optional with default
settings (see javadocs for more details). It is recommended to use value when the only attribute on
the annotation is the url pattern and to use the urlPatterns attribute when the other attributes are
also used. It is illegal to have both value and urlPatterns attribute used together on the same
annotation.

Classes annotated with @WebFilter MUST implement jakarta.servlet.Filter.

Following is an example of how this annotation would be used.

@WebFilter annotation example

@WebFilter("/foo")
public class MyFilter implements Filter {

 public void doFilter(HttpServletRequest req, HttpServletResponse res) {
 ...
 }
}

8.1.3. @WebInitParam

This annotation is used to specify any init parameters that must be passed to the Servlet or the
Filter. It is an attribute of the WebServlet and WebFilter annotation.

8.1.4. @WebListener

The WebListener annotation is used to annotate a listener to get events for various operations on the

72

particular web application context. Classes annotated with @WebListener MUST implement one of
the following interfaces:

• jakarta.servlet.ServletContextListener

• jakarta.servlet.ServletContextAttributeListener

• jakarta.servlet.ServletRequestListener

• jakarta.servlet.ServletRequestAttributeListener

• jakarta.servlet.http.HttpSessionListener

• jakarta.servlet.http.HttpSessionAttributeListener

• jakarta.servlet.http.HttpSessionIdListener

An example:

@WebListener
public class MyListener implements ServletContextListener{

 public void contextInitialized(ServletContextEvent sce) {
 ServletContext sc = sce.getServletContext();
 sc.addServlet("myServlet", "Sample servlet", "foo.bar.MyServlet", null, -1);
 sc.addServletMapping("myServlet", new String[] { "/urlpattern/*" });
 }
}

8.1.5. @MultipartConfig

This annotation, when specified on a Servlet, indicates that the request it expects is of type
multipart/form-data. The HttpServletRequest object of the corresponding servlet MUST make
available the mime attachments via the getParts and getPart methods to iterate over the various
mime attachments. The location attribute of the jakarta.servlet.annotation.MultipartConfig and
the <location> element of the <multipart-config> is interpreted as an absolute path and defaults to
the value of the jakarta.servlet.context.tempdir. If a relative path is specified, it will be relative to
the tempdir location. The test for absolute path vs relative path MUST be done via
java.io.File.isAbsolute.

8.1.6. Other Annotations / Conventions

In addition to these annotations all the annotations defined in Section 15.5, “Annotations and
Resource Injection” will continue to work in the context of these new annotations.

By default all applications will have index.htm[l] and index.jsp in the welcome-file-list. The
descriptor may to be used to override these default settings.

The order in which the listeners, servlets are loaded from the various framework jars / classes in
the WEB-INF/classes or WEB-INF/lib is unspecified when using annotations. If ordering is important
then look at the section for modularity of web.xml and ordering of web.xml and web-fragment.xml
below. The order can be specified in the deployment descriptor only.

73

8.2. Pluggability

8.2.1. Modularity of web.xml

Using the annotations defined above makes the use of web.xml optional. However for overriding
either the default values or the values set via annotations, the deployment descriptor is used. As
before, if the metadata-complete element is set to true in the web.xml descriptor, annotations that
specify deployment information present in the class files and web-fragments bundled in jars will
not be processed. It implies that all the metadata for the application is specified via the web.xml
descriptor.

For better pluggability and less configuration for developers, we introduce the notion of web
module deployment descriptor fragments (web fragment). A web fragment is a part or all of the
web.xml that can be specified and included in a library or framework jar’s META-INF directory. A
plain old jar file in the WEB-INF/lib directory with no web-fragment.xml is also considered a
fragment. Any annotations specified in it will be processed according to the rules defined in 8.2.3.
The container will pick up and use the configuration as per the rules defined below.

A web fragment is a logical partitioning of the web application in such a way that the frameworks
being used within the web application can define all the artifacts without asking developers to edit
or add information in the web.xml. It can include almost all the same elements that the web.xml
descriptor uses. However the top level element for the descriptor MUST be web-fragment and the
corresponding descriptor file MUST be called web-fragment.xml. The ordering related elements
also differ between the web-fragment.xml and web.xml See the corresponding schema for web-
fragments in the deployment descriptor section in Chapter 14.

If a framework is packaged as a jar file and has metadata information in the form of deployment
descriptor then the web-fragment.xml descriptor must be in the META-INF/ directory of the jar file.

If a framework wants its META-INF/web-fragment.xml honored in such a way that it augments a web
application’s web.xml, the framework must be bundled within the web application’s WEB-INF/lib
directory. In order for any other types of resources (e.g., class files) of the framework to be made
available to a web application, it is sufficient for the framework to be present anywhere in the
classloader delegation chain of the web application. In other words, only JAR files bundled in a web
application’s WEB-INF/lib directory, but not those higher up in the class loading delegation chain,
need to be scanned for web-fragment.xml.

During deployment the container is responsible for scanning the location specified above and
discovering the web-fragment.xml files and processing them. The requirements about name
uniqueness that exist currently for a single web.xml also apply to the union of a web.xml and all
applicable web-fragment.xml files.

An example of what a library or framework can include is shown below

<web-fragment>

 <servlet>
 <servlet-name>welcome</servlet-name>
 <servlet-class>com.example.WelcomeServlet</servlet-class>

74

 </servlet>

 <listener>
 <listener-class>com.example.RequestListener</listener-class>
 </listener>

</web-fragment>

The above web-fragment.xml would be included in the META-INF/ directory of the framework’s jar
file. The order in which configuration from web-fragment.xml and annotations should be applied is
undefined. If ordering is an important aspect for a particular application please see rules defined
below on how to achieve the order desired.

8.2.2. Ordering of web.xml and web-fragment.xml

Since the specification allows the application configuration resources to be composed of multiple
configuration files (web.xml and web-fragment.xml), discovered and loaded from several different
places in the application, the question of ordering must be addressed. This section specifies how
configuration resource authors may declare the ordering requirements of their artifacts.

A web-fragment.xml may have a top level <name> element of type jakartaee:java-identifierType.
There can only be one <name> element in a web-fragment.xml. If a <name> element is present, it must
be considered for the ordering of artifacts (unless the duplicate name exception applies, as
described below).

Two cases must be considered to allow application configuration resources to express their
ordering preferences.

1. Absolute ordering: an <absolute-ordering> element in the web.xml. There can only be one
<absolute-ordering> element in a web.xml.

a. In this case, ordering preferences that would have been handled by case 2 below must be
ignored.

b. The web.xml and WEB-INF/classes MUST be processed before any of the web-fragments listed
in the absolute-ordering element.

c. Any <name> element direct children of the <absolute-ordering> MUST be interpreted as
indicating the absolute ordering in which those named web-fragments, which may or may
not be present, must be processed.

d. The <absolute-ordering> element may contain zero or one <others/> element. The required
action for this element is described below. If the <absolute-ordering> element does not
contain an <others/> element, any web-fragment not specifically mentioned within <name/>
elements MUST be ignored. Excluded jars are not scanned for annotated servlets, filters or
listeners. However, if a servlet, filter or listener from an excluded jar is listed in web.xml or a
non-excluded web-fragment.xml, then it’s annotations will apply unless otherwise excluded
by metadata-complete. ServletContextListeners discovered in TLD files of excluded jars are
not able to configure filters and servlets using the programmatic APIs. Any attempt to do so
will result in an IllegalStateException. If a discovered ServletContainerInitializer is loaded
from an excluded jar, it will be ignored. Irrespective of the setting of metadata-complete, jars

75

excluded by <absolute-ordering> elements are not scanned for classes to be handled by any
ServletContainerInitializer.

e. Duplicate name exception: if, when traversing the children of <absolute-ordering>, multiple
children with the same <name> element are encountered, only the first such occurrence must
be considered.

2. Relative ordering: an <ordering> element within the web-fragment.xml. There can only be one
<ordering> element in a web-fragment.xml.

a. A web-fragment.xml may have an <ordering> element. If so, this element must contain zero or
one <before> element and zero or one <after> element. The meaning of these elements is
explained below.

b. The web.xml and WEB-INF/classes MUST be processed before any of the web-fragments listed
in the ordering element.

c. Duplicate name exception: if, when traversing the web-fragments, multiple members with
the same <name> element are encountered, the application must log an informative error
message including information to help fix the problem, and must fail to deploy. For example,
one way to fix this problem is for the user to use absolute ordering, in which case relative
ordering is ignored.

d. Consider this abbreviated but illustrative example. 3 web-fragments: MyFragment1,
MyFragment2 and MyFragment3 are part of the application that also includes a web.xml

web-fragment.xml

<web-fragment>
 <name>MyFragment1</name>
 <ordering>
 <after>
 <name>MyFragment2</name>
 </after>
 </ordering>
 ...
</web-fragment>

web-fragment.xml

<web-fragment>
 <name>MyFragment2</name>
 ...
</web-fragment>

web-fragment.xml

<web-fragment>
 <name>MyFragment3</name>
 <ordering>
 <before>
 <others/>

76

 </before>
 </ordering>
 ...
</web-fragment>

web.xml

<web-app>
 ...
</web-app>

In this example the processing order will be:

1. web.xml

2. MyFragment3

3. MyFragment2

4. MyFragment1

The preceding example illustrates some, but not all, of the following principles.

• <before> means the document must be ordered before the document with the name matching
what is specified within the nested <name> element.

• <after> means the document must be ordered after the document with the name matching what
is specified within the nested <name> element.

• There is a special element <others/> which may be included zero or one time within the
<before> or <after> element, or zero or one time directly within the <absolute-ordering>
element. The <others/> element must be handled as follows.

◦ If the <before> element contains a nested <others/>, the document will be moved to the
beginning of the list of sorted documents. If there are multiple documents stating
<before><others/>, they will all be at the beginning of the list of sorted documents, but the
ordering within the group of such documents is unspecified.

◦ If the <after> element contains a nested <others/>, the document will be moved to the end of
the list of sorted documents. If there are multiple documents requiring <after><others/>,
they will all be at the end of the list of sorted documents, but the ordering within the group
of such documents is unspecified.

◦ Within a <before> or <after> element, if an <others/> element is present, but is not the only
<name> element within its parent element, the other elements within that parent must be
considered in the ordering process.

◦ If the <others/> element appears directly within the <absolute-ordering> element, the
runtime must ensure that any web-fragments not explicitly named in the <absolute-
ordering> section are included at that point in the processing order.

• If a web-fragment.xml file does not have an <ordering> or the web.xml does not have an <absolute-
ordering> element the artifacts are assumed to not have any ordering dependency.

• If the runtime discovers circular references, an informative message must be logged, and the

77

application must fail to deploy. Again, one course of action the user may take is to use absolute
ordering in the web.xml.

• The previous example can be extended to illustrate the case when the web.xml contains an
ordering section.

web.xml

<web-app>
 <absolute-ordering>
 <name>MyFragment3</name>
 <name>MyFragment2</name>
 </absolute-ordering>
 ...
</web-app>

In this example, the ordering for the various elements will be:

1. web.xml

2. MyFragment3

3. MyFragment2

Some additional example scenarios are included below. All of these apply to relative ordering and
not absolute ordering.

Example 1

Document A:

<after>
 <others/>
 <name>C</name>
</after>

Document B:

<before>
 <others/>
</before>

Document C:

<after>
 <others/>
</after>

Document D:

no ordering

78

Document E:

no ordering

Document F:

<before>
 <others/>
 <name>B</name>
</before>

Resulting parse order:

web.xml, F, B, D, E, C, A.

Example 2

Document <no id>:

<after>
 <others/>
</after>
<before>
 <name>C</name>
</before>

Document B:

<before>
 <others/>
</before>

Document C:

no ordering

Document D:

<after>
 <others/>
</after>

Document E:

<before>
 <others/>
</before>

Document F:

79

no ordering

Resulting parse order can be one of the following:

• B, E, F, <no id>, C, D

• B, E, F, <no id>, D, C

• E, B, F, <no id>, C, D

• E, B, F, <no id>, D, C

• E, B, F, D, <no id>, C

• B, E, F, D, <no id>, C

Example 3

Document A:

<after>
 <name>B</name>
</after>

Document B:

no ordering

Document C:

<before>
 <others/>
</before>

Document D:

no ordering

Resulting parse order can be one of the following:

• C, B, D, A

• C, D, B, A

• C, B, A, D

8.2.3. Assembling the Descriptor from web.xml, web-fragment.xml and
Annotations

If the order in which the listeners, servlets, filters are invoked is important to an application then a
deployment descriptor must be used. Also, if necessary, the ordering element defined above can be
used. As described above, when using annotations to define the listeners, servlets and filters, the
order in which they are invoked is unspecified. Below are a set of rules that apply for assembling
the final deployment descriptor for the application:

1. The order for listeners, servlets, filters if relevant must be specified in either the web-

80

fragment.xml or the web.xml.

2. The ordering will be based on the order in which they are defined in the descriptor and on the
absolute-ordering element in the web.xml or an ordering element in the web-fragment.xml, if
present.

a. Filters that match a request are chained in the order in which they are declared in the
web.xml.

b. Servlets are initialized either lazily at request processing time or eagerly during
deployment. In the latter case, they are initialized in the order indicated by their load-on-
startup elements.

c. The listeners are invoked in the order in which they are declared in the web.xml as specified
below:

i. Implementations of jakarta.servlet.ServletContextListener are invoked at their
contextInitialized method in the order in which they have been declared, and at their
contextDestroyed method in reverse order.

ii. Implementations of jakarta.servlet.ServletRequestListener are invoked at their
requestInitialized method in the order in which they have been declared, and at their
requestDestroyed method in reverse order.

iii. Implementations of jakarta.servlet.http.HttpSessionListener are invoked at their
sessionCreated method in the order in which they have been declared, and at their
sessionDestroyed method in reverse order.

iv. The methods of implementation of jakarta.servlet.ServletContextAttributeListener,
jakarta.servlet.ServletRequestAttributeListener and
jakarta.servlet.HttpSessionAttributeListener are invoked in the order in which they
are declared when corresponding events are fired.

3. If a servlet is disabled using the enabled element introduced in the web.xml then the servlet will
not be available at the url-pattern specified for the servlet.

4. The web.xml of the web application has the highest precedence when resolving conflicts between
the web.xml, web-fragment.xml and annotations.

5. If metadata-complete is not specified in the descriptors, or is set to false in the deployment
descriptor, then the effective metadata for the application is derived by combining the metadata
present in the annotations and the descriptors. The rules for merging are specified below:

a. Configuration settings in web fragments are used to augment those specified in the main
web.xml in such a way as if they had been specified in the same web.xml.

b. The order in which configuration settings of web fragments are added to those in the main
web.xml is as specified above in Section 8.2.2, “Ordering of web.xml and web-fragment.xml”

c. The metadata-complete attribute when set to true in the main web.xml, is considered complete
and scanning of annotations and fragments will not occur at deployment time. The
absolute-ordering and ordering elements will be ignored if present. When set to true on a
fragment, the metadata-complete attribute applies only to scanning of annotations in that
particular jar.

d. Web fragments are merged into the main web.xml unless the metadata-complete is set to true.
The merging takes place after annotation processing on the corresponding fragment.

81

e. The following are considered configuration conflicts when augmenting a web.xml with web
fragments:

i. Multiple <init-param> elements with the same <param-name> but different <param-value>

ii. Multiple <mime-mapping> elements with the same <extension> but different <mime-type>

f. The above configuration conflicts are resolved as follows:

i. Configuration conflicts between the main web.xml and a web fragment are resolved such
that the configuration in the web.xml takes precedence.

ii. Configuration conflicts between two web fragments, where the element at the center of
the conflict is not present in the main web.xml, will result in an error. An informative
message must be logged, and the application must fail to deploy.

g. After the above conflicts have been resolved, these additional rules are applied

i. Elements that may be declared any number of times are additive across the web-
fragments in the resulting web.xml. For example, <context-param> elements with different
<param-name> are additive.

ii. Elements that may be declared any number of times, if specified in the web.xml overrides
the values specified in the web-fragments with the same name.

iii. If an element with a minimum occurrence of zero, and a maximum occurrence of one, is
present in a web fragment, and missing in the main web.xml, the main web.xml inherits
the setting from the web fragment. If the element is present in both the main web.xml and
the web fragment, the configuration setting in the main web.xml takes precedence. For
example, if both the main web.xml and a web fragment declare the same servlet, and the
servlet declaration in the web fragment specifies a <load-on-startup> element, whereas
the one in the main web.xml does not, then the <load-on-startup> element from the web
fragment will be used in the merged web.xml.

iv. It is considered an error if an element with a minimum occurrence of zero, and a
maximum occurrence of one, is specified differently in two web fragments, while absent
from the main web.xml. For example, if two web fragments declare the same servlet, but
with different <load-on-startup> elements, and the same servlet is also declared in the
main web.xml, but without any <load-on-startup>, then an error must be reported.

v. <welcome-file> declarations are additive.

vi. <servlet-mapping> elements with the same <servlet-name> are additive across web-
fragments. <servlet-mapping> specified in the web.xml overrides values specified in the
web-fragments with the same <servlet-name>.

vii. <filter-mapping> elements with the same <filter-name> are additive across web-
fragments. <filter-mapping> specified in the web.xml overrides values specified in the web-
fragments with the same <filter-name>.

viii. Multiple <listener> elements with the same <listener-class> are treated as a single
<listener> declaration

ix. The web.xml resulting from the merge is considered <distributable> only if the web.xml
and all the web fragments are marked as <distributable>.

x. The top-level <icon> and its children elements, <display-name>, and <description>

82

elements of a web fragment are ignored.

xi. jsp-property-group is additive. It is recommended that jsp-config element use the url-
pattern as opposed to extension mappings when bundling static resources in the META-
INF/resources directory of a jar file. Further more JSP resources for a fragment should be
in a sub-directory same as the fragment name, if there exists one. This helps prevent a
web-fragment’s jsp-property-group from affecting the JSPs in the main docroot of the
application and the jsp-property-group from affecting the JSPs in a fragment’s META-
INF/resources directory.

h. For all the resource reference elements (env-entry, ejb-ref, ejb-local-ref, service-ref,
resource-ref, resource-env-ref, message-destination-ref, persistence-context-ref and
persistence-unit-ref) the following rules apply:

i. If any resource reference element is present in a web fragment, and is missing in the
main web.xml, the main web.xml inherits the value from the web fragment. If the element
is present in both the main web.xml and the web fragment, with the same name, the
web.xml takes precedence. None of the child elements from the fragment are merged into
the main web.xml except for the injection-target as specified below. For example, if both
the main web.xml and a web fragment declare a <resource-ref> with the same <resource-
ref-name>, the <resource-ref> from the web.xml will be used without any child elements
being merged from the fragment except <injection-target> as described below.

ii. If a resource reference element is specified in two fragments, while absent from the
main web.xml, and all the attributes and child elements of the resource reference element
are identical, the resource reference will be merged into the main web.xml. It is
considered an error if a resource reference element has the same name specified in two
fragments, while absent from the main web.xml and the attributes and child elements are
not identical in the two fragments. An error must be reported and the application MUST
fail to deploy. For example, if two web fragments declare a <resource-ref> with the same
<resource-ref-name> element but the type in one is specified as javax.sql.DataSource
while the type in the other is that of a Jakarta Mail resource, it is an error and the
application will fail to deploy.

iii. For resource reference element with the same name <injection-target> elements from
the fragments will be merged into the main web.xml.

i. In addition to the merging rules for web-fragment.xml defined above, the following rules
apply when using the resource reference annotations (@Resource, @Resources, @EJB, @EJBs,
@WebServiceRef, @WebServiceRefs, @PersistenceContext, @PersistenceContexts,@PersistenceUnit,
and @PersistenceUnits).

If a resource reference annotation is applied on a class, it is equivalent to defining a
resource, however it is not equivalent to defining an injection-target. The rules above
apply for injection-target element in this case.

If a resource reference annotation is used on a field it is equivalent to defining the
injection-target element in the web.xml. However if there is no injection-target element in
the descriptor then the injection-target from the fragments will still be merged into the
web.xml as defined above.

If, on the other hand, there is an injection-target in the main web.xml and there is a

83

resource reference annotation with the same resource name, then it is considered an
override for the resource reference annotation. In this case since there is an injection-
target specified in the descriptor, the rules defined above would apply in addition to
overriding the value for the resource reference annotation.

j. If a data-source element is specified in two fragments, while absent from the main web.xml,
and all the attributes and child elements of the data-source element are identical, the data-
source will be merged into the main web.xml. It is considered an error if a data-source
element has the same name specified in two fragments, while absent from the main web.xml
and the attributes and child elements are not identical in the two fragments. In such a case
an error must be reported and the application MUST fail to deploy.

Below are some examples that show the outcome in the different cases.

Example 1

web.xml

no resource-ref definition

Fragment 1 - web-fragment.xml

<resource-ref>
 <resource-ref-name="foo">
 ...
 <injection-target>
 <injection-target-class>com.example.Bar</injection-target-class>
 <injection-target-name>baz</injection-target-name>
 </injection-target>
</resource-ref>

The effective metadata would be:

<resource-ref>
 <resource-ref-name="foo">
 ...
 <injection-target>
 <injection-target-class>com.example.Bar</injection-target-class>
 <injection-target-name>baz</injection-target-name>
 </injection-target>
</resource-ref>

Example 2

web.xml

<resource-ref>
 <resource-ref-name="foo">
 ...
</resource-ref>

84

Fragment 1 - web-fragment.xml

<resource-ref>
 <resource-ref-name="foo">
 ...
 <injection-target>
 <injection-target-class>com.example.Bar</injection-target-class>
 <injection-target-name>baz</injection-target-name>
 </injection-target>
</resource-ref>

Fragment 2 - web-fragment.xml

<resource-ref>
 <resource-ref-name="foo">
 ...
 <injection-target>
 <injection-target-class>com.example.Bar2</injection-target-class>
 <injection-target-name>baz2</injection-target-name>
 </injection-target>
</resource-ref>

The effective metadata would be:

<resource-ref>
 <resource-ref-name="foo">
 ...
 <injection-target>
 <injection-target-class>com.example.Bar</injection-target-class>
 <injection-target-name>baz</injection-target-name>
 </injection-target>
 <injection-target>
 <injection-target-class>com.example.Bar2</injection-target-class>
 <injection-target-name>baz2</injection-target-name>
 </injection-target>
</resource-ref>

Example 3

web.xml

<resource-ref>
 <resource-ref-name="foo">
 ...
 <injection-target>
 <injection-target-class>com.example.Bar3</injection-target-class>
 <injection-target-name>baz3</injection-target-name>
 </injection-target>
</resource-ref>

85

Fragment 1 - web-fragment.xml

<resource-ref>
 <resource-ref-name="foo">
 ...
 <injection-target>
 <injection-target-class>com.example.Bar</injection-target-class>
 <injection-target-name>baz</injection-target-name>
 </injection-target>
</resource-ref>

Fragment 2 - web-fragment.xml

<resource-ref>
 <resource-ref-name="foo">
 ...
 <injection-target>
 <injection-target-class>com.example.Bar2</injection-target-class>
 <injection-target-name>baz2</injection-target-name>
 </injection-target>
</resource-ref>

The effective metadata would be:

<resource-ref>
 <resource-ref-name="foo">
 ...
 <injection-target>
 <injection-target-class>com.example.Bar3</injection-target-class>
 <injection-target-name>baz3</injection-target-name>
 <injection-target-class>com.example.Bar</injection-target-class>
 <injection-target-name>baz</injection-target-name>
 <injection-target-class>com.example.Bar2</injection-target-class>
 <injection-target-name>baz2</injection-target-name>
 </injection-target>
</resource-ref>

The <injection-target> from fragment 1 and 2 will be merged into the main web.xml.

k. If the main web.xml does not have any <post-construct> element specified and web-
fragments have specified <post-construct> then the <post-construct> elements from the
fragments will be merged into the main web.xml. However if in the main web.xml at least one
<post-construct> element is specified then the <post-construct> elements from the fragment
will not be merged. It is the responsibility of the author of the web.xml to make sure that the
<post-construct> list is complete.

l. If the main web.xml does not have any <pre-destroy> element specified and web-fragments
have specified <pre-destroy> then the <pre-destroy> elements from the fragments will be
merged into the main web.xml. However if in the main web.xml at least one <pre-destroy>

86

element is specified then the <pre-destroy> elements from the fragment will not be merged.
It is the responsibility of the author of the web.xml to make sure that the <pre-destroy> list is
complete.

m. After processing the web-fragment.xml, annotations from the corresponding fragment are
processed to complete the effective metadata for the fragment before processing the next
fragment. The following rules are used for processing annotations:

i. Any metadata specified via an annotation that isn’t already present in the descriptor will
be used to augment the effective descriptor.

ii. Configuration specified in the main web.xml or a web fragment takes precedence over the
configuration specified via annotations.

iii. For a servlet defined via the @WebServlet annotation, to override values via the
descriptor, the name of the servlet in the descriptor MUST match the name of the servlet
specified via the annotation (explicitly specified or the default name, if one is not
specified via the annotation).

iv. Init params for servlets and filters defined via annotations, will be overridden in the
descriptor if the name of the init param exactly matches the name specified via the
annotation. Init params are additive between the annotations and descriptors.

v. url-patterns, when specified in a descriptor for a given servlet name overrides the url
patterns specified via the annotation.

vi. For a filter defined via the @WebFilter annotation, to override values via the descriptor,
the name of the filter in the descriptor MUST match the name of the filter specified via
the annotation (explicitly specified or the default name, if one is not specified via the
annotation).

vii. url-patterns to which a filter is applied, when specified in a descriptor for a given filter
name overrides the url patterns specified via the annotation.

viii. DispatcherTypes to which a filter applies, when specified in a descriptor for a given filter
name overrides the DispatcherTypes specified via the annotation.

ix. The following examples demonstrates some of the above rules:

A servlet declared via an annotation and packaged with the corresponding web.xml in the
descriptor:

@WebServlet(urlPatterns="/MyPattern",
 initParams={@WebInitParam(name="ccc", value="333")})
public class com.example.Foo extends HttpServlet {
 ...
}

web.xml

<servlet>
 <servlet-class>com.example.Foo</servlet-class>
 <servlet-name>Foo</servlet-name>
 <init-param>

87

 <param-name>aaa</param-name>
 <param-value>111</param-value>
 </init-param>
</servlet>
<servlet>
 <servlet-class>com.example.Foo</servlet-class>
 <servlet-name>Fum</servlet-name>
 <init-param>
 <param-name>bbb</param-name>
 <param-value>222</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>Foo</servlet-name>
 <url-pattern>/foo/*</url-pattern>
</servlet-mapping>
<servlet-mapping>
 <servlet-name>Fum</servlet-name>
 <url-pattern>/fum/*</url-pattern>
</servlet-mapping>

Since the name of the servlet declared via the annotation does not match the name of the
servlet declared in the web.xml, the annotation specifies a new servlet declaration in
addition to the other declarations in web.xml and is equivalent to:

web.xml

<servlet>
 <servlet-class>com.example.Foo</servlet-class>
 <servlet-name>com.example.Foo</servlet-name>
 <init-param>
 <param-name>ccc</param-name>
 <param-value>333</param-name>
 </init-param>
</servlet>

If the above web.xml were replaced with the following:

web.xml

<servlet>
 <servlet-class>com.example.Foo</servlet-class>
 <servlet-name>com.example.Foo</servlet-name>
 <init-param>
 <param-name>aaa</param-name>
 <param-value>111</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>com.example.Foo</servlet-name>

88

 <url-pattern>/foo/*</url-pattern>
</servlet-mapping>

Then the effective descriptor would be equivalent to:

web.xml

<servlet>
 <servlet-class>com.example.Foo</servlet-class>
 <servlet-name>com.example.Foo</servlet-name>
 <init-param>
 <param-name>aaa</param-name>
 <param-value>111</param-value>
 </init-param>
 <init-param>
 <param-name>ccc</param-name>
 <param-value>333</param-value>
 </init-param>
</servlet>
<servlet-mapping>
 <servlet-name>com.example.Foo</servlet-name>
 <url-pattern>/foo/*</url-pattern>
</servlet-mapping>

8.2.4. Shared Libraries / Runtimes Pluggability

In addition to supporting fragments and use of annotations, one of the requirements is that not
only we be able to plug-in things that are bundled in the WEB-INF/lib but also plugin shared copies
of frameworks - including being able to plug-in to the web container things like Jakarta XML Web
Services, Jakarta Restful Web Services and Jakarta Server Faces that build on top of the web
container. The ServletContainerInitializer allows handling such a use case as described below.

The ServletContainerInitializer class is looked up via the jar services API. For each application, an
instance of the ServletContainerInitializer is created by the container at application startup time.
The framework providing an implementation of the ServletContainerInitializer MUST bundle in
the META-INF/services directory of the jar file a file called
jakarta.servlet.ServletContainerInitializer, as per the jar services API, that points to the
implementation class of the ServletContainerInitializer.

In addition to the ServletContainerInitializer we also have an annotation - HandlesTypes. The
HandlesTypes annotation on the implementation of the ServletContainerInitializer is used to
express interest in classes that may have annotations (type, method or field level annotations)
specified in the value of the HandlesTypes or if it extends / implements one those classes anywhere
in the class’s super types. The HandlesTypes annotation is applied irrespective of the setting of
metadata-complete.

When examining the classes of an application to see if they match any of the criteria specified by
the HandlesTypes annotation of a ServletContainerInitializer, the container may run into class
loading problems if one or more of the application’s optional JAR files are missing. Since the

89

container is not in a position to decide whether these types of class loading failures will prevent the
application from working correctly, it must ignore them, while at the same time providing a
configuration option that would log them.

If an implementation of ServletContainerInitializer does not have the @HandlesTypes annotation,
or if there are no matches to any of the HandlesType specified, then it will get invoked once for every
application with null as the value of the Set. This will allow for the initializer to determine based on
the resources available in the application whether it needs to initialize a servlet / filter or not.

The onStartup method of the ServletContainerInitializer will be invoked when the application is
coming up before any of the servlet listener events are fired.

The onStartup method of the ServletContainerInitializer is called with a Set of Classes that either
extend / implement the classes that the initializer expressed interest in or if it is annotated with any
of the classes specified via the @HandlesTypes annotation.

A concrete example below showcases how this would work.

Let’s take the Jakarta XML Web Services web services runtime.

The implementation of Jakarta XML Web Services runtime isn’t typically bundled in each and every
war file. The implementation would bundle an implementation of the ServletContainerInitializer
(shown below) and the container would look that up using the services API (the jar file will bundle
in it’s META-INF/services directory a file called jakarta.servlet.ServletContainerInitializer that
will point to the JAXWSServletContainerInitializer (shown below).

JAXWSServletContainerInitializer.java

@HandlesTypes(WebService.class)
JAXWSServletContainerInitializer implements ServletContainerInitializer {

 public void onStartup(Set<Class<?>> c, ServletContext ctx) throws ServletException
{
 // Jakarta XML Web Services specific code here to initialize the runtime
 // and setup the mapping etc.
 ServletRegistration reg = ctx.addServlet("JAXWSServlet",
 "com.sun.webservice.JAXWSServlet");
 reg.addServletMapping("/foo");
 }

The framework jar file can also be bundled in WEB-INF/lib directory of the war file. If the
ServletContainerInitializer is bundled in a JAR file inside the WEB-INF/lib directory of an
application, its onStartup method will be invoked only once during the startup of the bundling
application. If, on the other hand, the ServletContainerInitializer is bundled in a JAR file outside of
the WEB-INF/lib directory, but still discoverable by the runtime’s service provider lookup
mechanism, its onStartup method will be invoked every time an application is started.

Implementations of the ServletContainerInitializer interface will be discovered by the runtime’s
service lookup mechanism or a container specific mechanism that is semantically equivalent to it.
In either case, ServletContainerInitializer services from web fragment JAR files that are excluded

90

from an absolute ordering MUST be ignored, and the order in which these services are discovered
MUST follow the application’s class loading delegation model.

8.3. JSP Container Pluggability
The ServletContainerInitializer and programmatic registration features make it possible to
provide a clear separation of responsibilities between the servlet and JSP containers, by making the
servlet container responsible for parsing only web.xml and web-fragment.xml resources, and
delegating the parsing of Tag Library Descriptor (TLD) resources to the JSP container.

Previously, a web container had to scan TLD resources for any listener declarations. With Servlet
3.0 and later versions, this responsibility may be delegated to the JSP container. A JSP container that
is embedded in a servlet container may provide its own ServletContainerInitializer
implementation, search the ServletContext passed to its onStartup method for any TLD resources,
scan those resources for listener declarations, and register the corresponding listeners with the
ServletContext.

In addition, prior to Servlet 3.0, a JSP container used to have to scan an application’s deployment
descriptor for any jsp-config related configuration. With Servlet 3.0 and later versions, the servlet
container must make available, via the ServletContext.getJspConfigDescriptor method, any jsp-
config related configuration from the application’s web.xml and web-fragment.xml deployment
descriptors.

Any ServletContextListeners that were discovered in a TLD and registered programmatically are
limited in the functionality they provide. Any attempt to call a ServletContext API methods on them
that was added since Servlet 3.0 will result in an UnsupportedOperationException.

In addition, a servlet container compliant with Servlet 3.0 or later versions must provide a
ServletContext attribute with name jakarta.servlet.context.orderedLibs, whose value (of type
java.util.List<java.lang.String>) contains the list of names of JAR files in the WEB-INF/lib
directory of the application represented by the ServletContext, ordered by their web fragment
names (with possible exclusions if fragment JAR files have been excluded from absolute-ordering),
or null if the application does not specify any absolute or relative ordering.

8.4. Processing Annotations and Fragments
Web applications can include both annotations and the web.xml / web-fragment.xml deployment
descriptors. The version of the descriptor MUST not affect which annotations the container scans
for in a web application. An implementation of a particular version of the specification MUST scan
for all annotations supported in that configuration, unless metadata-complete is specified. If there is
no deployment descriptor, or there is one but does not have the metadata-complete set to true,
web.xml, web-fragment.xml and annotations, if used, in the application must be processed. The
following table describes whether or not to process annotations and web.xml fragments.

91

Table 8-1 Annotations and web fragment processing requirements

Deployment descriptor metadata-complete process annotations and web
fragments

web.xml 2.5 yes no

web.xml 2.5 no yes

web.xml 3.0 or later yes no

web.xml 3.0 or later no yes

92

Chapter 9. Dispatching Requests
When building a web application, it is often useful to forward processing of a request to another
servlet, or to include the output of another servlet in the response. The RequestDispatcher interface
provides a mechanism to accomplish this.

When asynchronous processing is enabled on the request, the AsyncContext allows a user to
dispatch the request back to the servlet container.

9.1. Obtaining a RequestDispatcher
An object implementing the RequestDispatcher interface may be obtained from the ServletContext
via the following methods:

• getRequestDispatcher

• getNamedDispatcher

The getRequestDispatcher method takes a String argument describing a path within the scope of the
ServletContext. This path must be relative to the root of the ServletContext and begin with a "/", or
be empty. The method uses the path to look up a servlet, using the servlet path matching rules in
Chapter 12, Mapping Requests to Servlets, associates it with a RequestDispatcher object, and returns
the resulting object. If no servlet can be resolved based on the given path, a RequestDispatcher is
provided that returns the content for that path.

The getNamedDispatcher method takes a String argument indicating the name of a servlet known to
the ServletContext. If a servlet is found, it is associated with a RequestDispatcher object and the
object is returned. If no servlet is associated with the given name, the method must return null.

To allow RequestDispatcher objects to be obtained using relative paths that are relative to the path
of the current request (not relative to the root of the ServletContext), the getRequestDispatcher
method is provided in the ServletRequest interface.

The behavior of this method is similar to the method of the same name in the ServletContext. The
servlet container uses information in the request object to transform the given relative path against
the current servlet to a complete path. For example, in a context rooted at "/" and a request to
/garden/tools.html, a request dispatcher obtained via
ServletRequest.getRequestDispatcher("header.html") will behave exactly like a call to
ServletContext.getRequestDispatcher("/garden/header.html").

9.1.1. Query Strings in Request Dispatcher Paths

The ServletContext and ServletRequest methods that create RequestDispatcher objects using path
information allow the optional attachment of query string information to the path. For example, an
Application Developer may obtain a RequestDispatcher by using the following code:

String path = "/raisins.jsp?orderno=5";
RequestDispatcher rd = context.getRequestDispatcher(path);

93

rd.include(request, response);

Parameters specified in the query string used to create the RequestDispatcher take precedence over
other parameters of the same name passed to the included servlet. The parameters associated with
a RequestDispatcher are scoped to apply only for the duration of the include or forward call.

9.2. Using a Request Dispatcher
To use a request dispatcher, a servlet calls either the include method or forward method of the
RequestDispatcher interface. The parameters to these methods can be either the request and
response arguments that were passed in via the service method of the jakarta.servlet.Servlet
interface, or instances of subclasses of the request and response wrapper classes that were
introduced for version 2.3 of the specification. In the latter case, the wrapper instances must wrap
the request or response objects that the container passed into the service method.

The Container Provider should ensure that the dispatch of the request to a target servlet occurs in
the same thread of the same JVM as the original request.

9.3. The Include Method
The include method of the RequestDispatcher interface may be called at any time. The target servlet
of the include method has access to all aspects of the request object, but its use of the response
object is more limited.

It can only write information to the ServletOutputStream or Writer of the response object and
commit a response by writing content past the end of the response buffer, or by explicitly calling
the flushBuffer method of the ServletResponse interface. It cannot set headers or call any method
that affects the headers of the response, with the exception of the HttpServletRequest.getSession()
and HttpServletRequest.getSession(boolean) methods. Any attempt to set the headers must be
ignored, and any call to HttpServletRequest.getSession() or HttpServletRequest.getSession(boolean)
that would require adding a Cookie response header must throw an IllegalStateException if the
response has been committed.

If the default servlet is the target of a RequestDispatch.include() and the requested resource does
not exist, then the default servlet MUST throw FileNotFoundException. If the exception isn’t caught
and handled, and the response hasn’t been committed, the status code MUST be set to 500.

Any references to the request or response objects taken by filter(s) and/or servlets invoked by the
include call must continue to act as the included request/response even after the dispatch has
returned. Specifically any references to the request or response held by asynchronous processing
commenced by the included resource will continue to act as the included request or response, even
after the dispatch to the include has returned.

9.3.1. Included Request Parameters

Except for servlets obtained by using the getNamedDispatcher method, a servlet that has been
invoked by another servlet using the include method of RequestDispatcher has access to the path by
which it was invoked.

94

The following request attributes must be set:

jakarta.servlet.include.request_uri
jakarta.servlet.include.context_path
jakarta.servlet.include.servlet_path
jakarta.servlet.include.mapping
jakarta.servlet.include.path_info
jakarta.servlet.include.query_string

These attributes are accessible from the included servlet via the getAttribute method on the
request object and their values must be equal to the request URI, context path, servlet path,
mapping, path info, and query string of the included servlet, respectively. If the request is
subsequently included, these attributes are replaced for that include.

If the included servlet was obtained by using the getNamedDispatcher method, these attributes must
not be set.

9.4. The Forward Method
The forward method of the RequestDispatcher interface may be called by the calling servlet only
when no output has been committed to the client. If output data exists in the response buffer that
has not been committed, the content must be cleared before the target servlet’s service method is
called. If the response has been committed, an IllegalStateException must be thrown.

The path elements of the request object exposed to the target servlet must reflect the path used to
obtain the RequestDispatcher.

The only exception to this is if the RequestDispatcher was obtained via the getNamedDispatcher
method. In this case, the path elements of the request object must reflect those of the original
request.

Before the forward method of the RequestDispatcher interface returns without exception, the
response content must be sent and committed, and closed by the servlet container, unless the
request was put into the asynchronous mode. If an error occurs in the target of the
RequestDispatcher.forward() the exception may be propagated back through all the calling filters
and servlets and eventually back to the container

Any references to the request or response objects taken by filter(s) and/or servlets invoked by the
forward call must continue to act as the forwarded request/response even after the dispatch has
returned. Specifically any references to the request or response held by asynchronous processing
commenced by the forwarded resource will continue to act as the forwarded request or response,
even after the dispatch to the include has returned.

9.4.1. Forwarded Query String

The request dispatching mechanism is responsible for aggregating query string parameters when
forwarding or including requests.

95

9.4.2. Forwarded Request Parameters

Except for servlets obtained by using the getNamedDispatcher method, a servlet that has been
invoked by another servlet using the forward method of RequestDispatcher has access to the path of
the original request.

The following request attributes must be set:

jakarta.servlet.forward.mapping
jakarta.servlet.forward.request_uri
jakarta.servlet.forward.context_path
jakarta.servlet.forward.servlet_path
jakarta.servlet.forward.path_info
jakarta.servlet.forward.query_string

The values of these attributes must be equal to the return values of the HttpServletRequest methods
getHttpServletMapping, getRequestURI, getContextPath, getServletPath, getPathInfo, getQueryString
respectively, invoked on the request object passed to the first servlet object in the call chain that
received the request from the client.

These attributes are accessible from the forwarded servlet via the getAttribute method on the
request object. Note that these attributes must always reflect the information in the original request
even under the situation that multiple forwards and subsequent includes are called.

If the forwarded servlet was obtained by using the getNamedDispatcher method, these attributes
must not be set.

9.5. Error Handling
If the servlet that is the target of a request dispatcher throws a runtime exception or a checked
exception of type ServletException or IOException, it should be propagated to the calling servlet. All
other exceptions should be wrapped as ServletExceptions and the root cause of the exception set to
the original exception, as it should not be propagated.

9.6. Obtaining an AsyncContext
An object implementing the AsyncContext interface may be obtained from the ServletRequest via
one of startAsync methods. Once you have an AsyncContext, you can use it to either complete the
processing of the request via the complete() method or use one of the dispatch methods described
below.

9.7. The Dispatch Method
The following methods can be used to dispatch requests from the AsyncContext:

dispatch(path)

The dispatch method takes a String argument describing a path within the scope of the

96

ServletContext. This path must be relative to the root of the ServletContext and begin with a "/".

dispatch(servletContext, path)

The dispatch method takes a String argument describing a path within the scope of the
ServletContext specified. This path must be relative to the root of the ServletContext specified
and begin with a "/".

dispatch()

The dispatch method takes no argument. It uses the original URI as the path. If the AsyncContext
was initialized via the startAsync(ServletRequest, ServletResponse) and the request passed is an
instance of HttpServletRequest, then the dispatch is to the URI returned by
HttpServletRequest.getRequestURI(). Otherwise the dispatch is to the URI of the request when it
was last dispatched by the container.

One of the dispatch methods of the AsyncContext interface may be called by the application waiting
for the asynchronous event to happen. If complete() has been called on the AsyncContext, an
IllegalStateException must be thrown. All the variations of the dispatch methods returns
immediately and do not commit the response.

The path elements of the request object exposed to the target servlet must reflect the path specified
in the AsyncContext.dispatch.

9.7.1. Query String

The request dispatching mechanism is responsible for aggregating query string parameters when
dispatching requests.

9.7.2. Dispatched Request Parameters

A servlet that has been invoked by using the dispatch method of AsyncContext has access to the path
of the original request.

The following request attributes must be set:

jakarta.servlet.async.mapping
jakarta.servlet.async.request_uri
jakarta.servlet.async.context_path
jakarta.servlet.async.servlet_path
jakarta.servlet.async.path_info
jakarta.servlet.async.query_string

The values of these attributes must be equal to the return values of the HttpServletRequest methods
getHttpServletMapping, getRequestURI, getContextPath, getServletPath, getPathInfo, getQueryString
respectively, invoked on the request object passed to the first servlet object in the call chain that
received the request from the client.

These attributes are accessible from the dispatched servlet via the getAttribute method on the
request object. Note that these attributes must always reflect the information in the original request

97

even under the situation that multiple dispatches are called.

98

Chapter 10. Web Applications
A web application is a collection of servlets, HTML pages, classes, and other resources that make up
a complete application on a web server. The web application can be bundled and run on multiple
containers from multiple vendors.

10.1. Web Applications Within Web Servers
A web application is rooted at a specific path within a web server. For example, a catalog
application could be located at http://www.example.com/catalog. All requests that start with this
prefix will be routed to the ServletContext which represents the catalog application.

A servlet container can establish rules for automatic generation of web applications. For example a
/~user/ mapping could be used to map to a web application based at /home/user/public_html/.

By default, an instance of a web application must run on one JVM at any one time. This behavior
can be overridden if the application is marked as “distributable” via its deployment descriptor. An
application marked as distributable must obey a more restrictive set of rules than is required of a
normal web application. These rules are set out throughout this specification.

10.2. Relationship to ServletContext
The servlet container must enforce a one to one correspondence between a web application and a
ServletContext. A ServletContext object provides a servlet with its view of the application.

10.3. Elements of a Web Application
A web application may consist of the following items:

• Servlets

• JSP Pages [1]

• Utility Classes

• Static documents (HTML, images, sounds, etc.)

• Client side Java applets, beans, and classes

• Descriptive meta information that ties all of the above elements together

10.4. Deployment Hierarchies
This specification defines a hierarchical structure used for deployment and packaging purposes
that can exist in an open file system, in an archive file, or in some other form. It is recommended,
but not required, that servlet containers support this structure as a runtime representation.

99

10.5. Directory Structure
A web application exists as a structured hierarchy of directories. The root of this hierarchy serves
as the document root for files that are part of the application. For example, for a web application
with the context path /catalog in a web container, the index.html file at the base of the web
application hierarchy or in a JAR file inside WEB-INF/lib that includes the index.html under META-
INF/resources directory can be served to satisfy a request from /catalog/index.html. If an index.html
is present both in the root context and in the META-INF/resources directory of a JAR file in the WEB-
INF/lib directory of the application, then the file that is available in the root context MUST be used.
The rules for matching URLs to context path are laid out in Chapter 12, Mapping Requests to
Servlets. Since the context path of an application determines the URL namespace of the contents of
the web application, web containers must reject web applications defining a context path that could
cause potential conflicts in this URL namespace. This may occur, for example, by attempting to
deploy a second web application with the same context path. Since requests are matched to
resources in a case-sensitive manner, this determination of potential conflict must be performed in
a case-sensitive manner as well.

A special directory exists within the application hierarchy named WEB-INF. This directory contains
all things related to the application that aren’t in the document root of the application. Most of the
WEB-INF node is not part of the public document tree of the application. Except for static resources
and JSPs packaged in the META-INF/resources of a JAR file that resides in the WEB-INF/lib directory,
no other files contained in the WEB-INF directory may be served directly to a client by the container.
However, the contents of the WEB-INF directory are visible to servlet code using the getResource and
getResourceAsStream method calls on the ServletContext, and may be exposed using the
RequestDispatcher calls. Hence, if the Application Developer needs access, from servlet code, to
application specific configuration information that should not be exposed directly to the web client,
it may be placed under this directory. Since requests are matched to resource mappings in a case-
sensitive manner, client requests for /WEB-INF/foo, /WEb-iNf/foo, for example, should not result in
contents of the web application located under /WEB-INF being returned, nor any form of directory
listing thereof.

The contents of the WEB-INF directory are:

• The /WEB-INF/web.xml deployment descriptor.

• The /WEB-INF/classes/ directory for servlet and utility classes. The classes in this directory must
be available to the application class loader.

• The /WEB-INF/lib/*.jar area for Java ARchive files. These files contain servlets, beans, static
resources and JSPs packaged in a JAR file and other utility classes useful to the web application.
The web application class loader must be able to load classes from any of these archive files.

The web application class loader must load classes from the WEB-INF/classes directory first, and
then from library JARs in the WEB-INF/lib directory. Also, except for the case where static resources
are packaged in JAR files, any requests from the client to access the resources in WEB-INF/ directory
must be returned with a SC_NOT_FOUND (404) response.

100

10.5.1. Example of Application Directory Structure

The following is a listing of all the files in a sample web application:

/index.html
/howto.jsp
/feedback.jsp
/images/banner.gif
/images/jumping.gif
/WEB-INF/web.xml
/WEB-INF/lib/jspbean.jar
/WEB-INF/lib/catalog.jar!/META-INF/resources/catalog/moreOffers/books.html
/WEB-INF/classes/com/mycorp/servlets/MyServlet.class
/WEB-INF/classes/com/mycorp/util/MyUtils.class

10.6. Web Application Archive File
Web applications can be packaged and signed into a Web ARchive format (WAR) file using the
standard Java archive tools. For example, an application for issue tracking might be distributed in
an archive file called issuetrack.war.

When packaged into such a form, a META-INF directory will be present which contains information
useful to Java archive tools. This directory must not be directly served as content by the container
in response to a web client’s request, though its contents are visible to servlet code via the
getResource and getResourceAsStream calls on the ServletContext. Also, any requests to access the
resources in META-INF directory must be returned with a SC_NOT_FOUND (404) response.

10.7. Web Application Deployment Descriptor
The web application deployment descriptor (see Chapter 14, Deployment Descriptor) includes the
following types of configuration and deployment information:

• ServletContext Init Parameters

• Session Configuration

• Servlet/JSP Definitions

• Servlet/JSP Mappings

• MIME Type Mappings

• Welcome File list

• Error Pages

• Security

10.7.1. Common Dependencies

When a number of applications make use of the same code or resources, they will typically be
installed as library files in the container. These files are often common or standard APIs that can be

101

used without sacrificing portability. Files used only by one or a few applications will be made
available for access as part of the web application. The container must provide a directory for these
libraries. The files placed within this directory must be available across all web applications. The
location of this directory is container-specific. The class loader the servlet container uses for
loading these library files must be the same for all web applications within the same JVM. This class
loader instance must be somewhere in the chain of parent class loaders of the web application class
loader.

10.7.2. Web Application Class Loader

The class loader that a container uses to load a servlet in a WAR must allow the developer to load
any resources contained in library JARs within the WAR following normal Java SE semantics using
getResource. Servlet containers that are not part of a Jakarta EE product should not allow the
application to override Jakarta EE platform classes, such as those in the jakarta.* namespaces, that
Jakarta EE does not allow to be modified. The container should not allow applications to override
or access the container’s implementation classes. It is recommended also that the application class
loader be implemented so that classes and resources packaged within the WAR are loaded in
preference to classes and resources residing in container-wide library JARs. An implementation
MUST also guarantee that for every web application deployed in a container, a call to
Thread.currentThread.getContextClassLoader() MUST return a ClassLoader instance that implements
the contract specified in this section. Furthermore, the ClassLoader instance MUST be a separate
instance for each deployed web application. The container is required to set the thread context
ClassLoader as described above before making any callbacks (including listener callbacks) into the
web application, and set it back to the original ClassLoader, once the callback returns.

10.8. Replacing a Web Application
A server should be able to replace an application with a new version without restarting the
container. When an application is replaced, the container should provide a robust method for
preserving session data within that application.

10.9. Error Handling

10.9.1. Request Attributes

A web application must be able to specify that when errors occur, other resources in the
application are used to provide the content body of the error response. The specification of these
resources is done in the deployment descriptor.

If the location of the error handler is a servlet or a JSP page:

• The original unwrapped request and response objects created by the container are passed to the
servlet or JSP page.

• The request path and attributes are set as if a RequestDispatcher.forward to the error resource
had been performed.

• The request attributes in Table 10-1 , “Request Attributes and their types” must be set.

102

Table 10-1 Request Attributes and their types

Request Attributes Type

jakarta.servlet.error.exception java.lang.Throwable

jakarta.servlet.error.exception_type java.lang.Class

jakarta.servlet.error.message java.lang.String

jakarta.servlet.error.method java.lang.String

jakarta.servlet.error.query_string java.lang.String

jakarta.servlet.error.request_uri java.lang.String

jakarta.servlet.error.servlet_name java.lang.String

jakarta.servlet.error.status_code java.lang.Integer

These attributes allow the servlet to generate specialized content depending on the status code, the
exception type, the error message, the exception object propagated, the URI of the request
processed by the servlet in which the error occurred (as determined by the getRequestURI call), the
query string of the request processed by the servlet in which the error occurred (as determined by
the getQueryString call) and the logical name of the servlet in which the error occurred.

With the introduction of the exception object to the attributes list for version 2.3 of this
specification, the exception type and error message attributes are redundant. They are retained for
backwards compatibility with earlier versions of the API.

10.9.2. Error Pages

To allow developers to customize the appearance of content returned to a web client when a servlet
generates an error, the deployment descriptor defines a list of error page descriptions. The syntax
allows the configuration of resources to be returned by the container either when a servlet or filter
calls sendError on the response for specific status codes, or if the servlet generates an exception or
error that propagates to the container.

If the sendError method is called on the response, the container consults the list of error page
declarations for the web application that use the error-code syntax and attempts a match. If there is
a match, the container returns the resource as indicated by the location entry.

A servlet or filter may throw the following exceptions during processing of a request:

• runtime exceptions or errors

• ServletExceptions or subclasses thereof

• IOExceptions or subclasses thereof

The web application may have declared error pages using the exception-type element. In this case
the container matches the exception type by comparing the exception thrown with the list of error-
page definitions that use the exception-type element. A match results in the container returning the
resource indicated in the location entry. The closest match in the class hierarchy wins.

If no error-page declaration containing an exception-type fits using the class-hierarchy match, and
the exception thrown is a ServletException or subclass thereof, the container extracts the wrapped

103

exception, as defined by the ServletException.getRootCause method. A second pass is made over the
error page declarations, again attempting the match against the error page declarations, but using
the wrapped exception instead.

Error-page declarations using the exception-type element in the deployment descriptor must be
unique up to the class name of the exception-type. Similarly, error-page declarations using the
error-code element must be unique in the deployment descriptor up to the status code.

If an error-page element in the deployment descriptor does not contain an exception-type or an
error-code element, the error page is a default error page.

The error page mechanism described does not intervene when errors occur when invoked using
the RequestDispatcher or filter.doFilter method. In this way, a filter or servlet using the
RequestDispatcher has the opportunity to handle errors generated.

If a servlet generates an error that is not handled by the error page mechanism as described above,
the container must ensure to send a response with status 500.

The default servlet and container will use the sendError method to send 4xx and 5xx status
responses, so that the error mechanism may be invoked. The default servlet and container will use
the setStatus method for 2xx and 3xx responses and will not invoke the error page mechanism.

If the application is using asynchronous operations as described in Section 2.3.3.3, “Asynchronous
processing”, it is the application’s responsibility to handle all errors in application created threads.
The container MAY take care of the errors from the thread issued via AsyncContext.start. For
handling errors that occur during AsyncContext.dispatch see dispatch error handling.

To avoid unexpected behaviour, the container must dispatch all error dispatches to error pages as
HTTP GET requests. The original HTTP method must be provided to the dispatched request via the
request attribute 'RequestDispatcher.ERROR_METHOD'. The original HTTP method is the value
returned from 'HttpServletRequest.getMethod()' immediately before the error dispatch.

10.9.3. Error Filters

The error page mechanism operates on the original unwrapped/unfiltered request and response
objects created by the container. The mechanism described in Section 6.2.5, “Filters and the
RequestDispatcher” may be used to specify filters that are applied before an error response is
generated.

10.10. Welcome Files
Application Developers can define an ordered list of partial URIs called welcome files in the web
application deployment descriptor. The deployment descriptor syntax for the list is described in the
web application deployment descriptor schema.

The purpose of this mechanism is to allow the deployer to specify an ordered list of partial URIs for
the container to use for appending to URIs when there is a request for a URI that corresponds to a
directory entry in the WAR not mapped to a web component. This kind of request is known as a
valid partial request.

104

The use for this facility is made clear by the following common example: A welcome file of
index.html can be defined so that a request to a URL like host:port/webapp/directory/, where
directory is an entry in the WAR that is not mapped to a servlet or JSP page, is returned to the client
as host:port/webapp/directory/index.html.

If a web container receives a valid partial request, the web container must examine the welcome
file list defined in the deployment descriptor. The welcome file list is an ordered list of partial URLs
with no trailing or leading "/". The web server must append each welcome file in the order
specified in the deployment descriptor to the partial request and check whether a static resource in
the WAR is mapped to that request URI. If no match is found, the web server MUST again append
each welcome file in the order specified in the deployment descriptor to the partial request and
check if a servlet is mapped to that request URI. The web container must send the request to the
first resource in the WAR that matches.

If a matching welcome file is found in the manner described, the container may send the request to
the welcome resource with a forward, a redirect, or a container specific mechanism that is
indistinguishable from a direct request. In later case, the request information (e.g. getRequestURI())
presented to the filter chain and the servlet will include the welcome file since filter mapping
occurs after welcome file mapping.

If no matching welcome file is found in the manner described, the container may handle the
request in a manner it finds suitable. For some configurations this may mean returning a directory
listing or for others returning a 404 response.

Consider a web application where:

• The deployment descriptor lists the following welcome files.

<welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>default.jsp</welcome-file>
</welcome-file-list>

• The static content in the WAR is as follows

/foo/index.html
/foo/default.jsp
/foo/orderform.html
/foo/home.gif
/catalog/default.jsp
/catalog/products/shop.jsp
/catalog/products/register.jsp

• A request URI of /foo will be redirected to a URI of /foo/.

• A request URI of /foo/ will be returned as /foo/index.html.

• A request URI of /catalog will be redirected to a URI of /catalog/.

• A request URI of /catalog/ will be returned as /catalog/default.jsp.

105

• A request URI of /catalog/index.html will cause a 404 not found

• A request URI of /catalog/products will be redirected to a URI of /catalog/products/.

• A request URI of /catalog/products/ will be passed to the “default” servlet, if any. If no “default”
servlet is mapped, the request may cause a 404 not found, may cause a directory listing
including shop.jsp and register.jsp, or may cause other behavior defined by the container. See
Section 12.2, “Specification of Mappings” for the definition of “default” servlet.

• All of the above static content can also be packaged in a JAR file with the content listed above
packaged in the META-INF/resources directory of the jar file. The JAR file can then be included in
the WEB-INF/lib directory of the web application.

10.11. Web Application Environment
Servlet containers that are not part of a Jakarta EE technology-compliant implementation are
encouraged, but not required, to implement the application environment functionality described in
Section 15.2.2, “Web Application Environment” and the Jakarta EE specification. If they do not
implement the facilities required to support this environment, upon deploying an application that
relies on them, the container should provide a warning.

10.12. Web Application Deployment
When a web application is deployed into a container, the following steps must be performed, in this
order, before the web application begins processing client requests.

• Instantiate an instance of each event listener identified by a <listener> element in the
deployment descriptor.

• For instantiated listener instances that implement ServletContextListener, call the
contextInitialized() method.

• Instantiate an instance of each filter identified by a <filter> element in the deployment
descriptor and call each filter instance’s init() method.

• Instantiate an instance of each servlet identified by a <servlet> element that includes a <load-
on-startup> element in the order defined by the load-on-startup element values, and call each
servlet instance’s init() method.

10.13. Inclusion of a web.xml Deployment Descriptor
A web application is NOT required to contain a web.xml if it does NOT contain any servlet, filter, or
listener components or is using annotations to declare the same. In other words an application
containing only static files or JSP pages does not require a web.xml to be present.

[1] See the Jakarta Server Pages specification available from https://jakarta.ee/specifications/pages/.

106

https://jakarta.ee/specifications/pages/

Chapter 11. Application Lifecycle Events

11.1. Introduction
The application events facility gives the Application Developer greater control over the lifecycle of
the ServletContext and HttpSession and ServletRequest, allows for better code factorization, and
increases efficiency in managing the resources that the web application uses.

11.2. Event Listeners
Application event listeners are classes that implement one or more of the servlet event listener
interfaces. They are instantiated and registered in the web container at the time of the deployment
of the web application. They are provided by the Application Developer in the WAR.

Servlet event listeners support event notifications for state changes in the ServletContext,
HttpSession and ServletRequest objects. Servlet context listeners are used to manage resources or
state held at a JVM level for the application. HTTP session listeners are used to manage state or
resources associated with a series of requests made into a web application from the same client or
user. Servlet request listeners are used to manage state across the lifecycle of servlet requests.
Async listeners are used to manage async events such as time outs and completion of async
processing.

There may be multiple listener classes listening to each event type, and the Application Developer
may specify the order in which the container invokes the listener beans for each event type.

11.2.1. Event Types and Listener Interfaces

Events types and the listener interfaces used to monitor them are shown in the following tables:

Table 11-1 Servlet Context Events

Event Type Description Listener Interface

Lifecycle The servlet context has just been
created and is available to service
its first request, or the servlet
context is about to be shut down.

jakarta.servlet.ServletContextListene
r

Changes to attributes Attributes on the servlet context
have been added, removed, or
replaced.

jakarta.servlet.
ServletContextAttributeListener

Table 11-2 HTTP Session Events

Event Type Description Listener Interface

Lifecycle An HttpSession has been created,
invalidated, or timed out.

jakarta.servlet.http.
HttpSessionListener

107

Event Type Description Listener Interface

Changes to attributes Attributes have been added,
removed, or replaced on an
HttpSession.

jakarta.servlet.http.
HttpSessionAttributeListener

Changes to id The id of HttpSession has been
changed.

jakarta.servlet.http.
HttpSessionIdListener

Session migration HttpSession has been activated or
passivated.

jakarta.servlet.http.
HttpSessionActivationListener

Object binding Object has been bound to or
unbound from HttpSession

jakarta.servlet.http.
HttpSessionBindingListener

Table 11-3 Table 11-3 Servlet Request Events

Event Type Description Listener Interface

Lifecycle A servlet request has started
being processed by web
components.

jakarta.servlet.ServletRequestListene
r

Changes to attributes Attributes have been added,
removed, or replaced on a
ServletRequest.

jakarta.servlet.
ServletRequestAttributeListener

Async events A timeout, connection
termination or completion of
async processing

jakarta.servlet.AsyncListener

For details of the API, refer to the API reference.

11.2.2. An Example of Listener Use

To illustrate a use of the event scheme, consider a simple web application containing a number of
servlets that make use of a database. The Application Developer has provided a servlet context
listener class for management of the database connection.

1. When the application starts up, the listener class is notified. The application logs on to the
database, and stores the connection in the servlet context.

2. Servlets in the application access the connection as needed during activity in the web
application.

3. When the web server is shut down, or the application is removed from the web server, the
listener class is notified and the database connection is closed.

11.3. Listener Class Configuration

11.3.1. Provision of Listener Classes

The Application Developer of the web application provides listener classes implementing one or
more of the listener interfaces in the jakarta.servlet API. Each listener class must have a public

108

constructor taking no arguments. The listener classes are packaged into the WAR, either under the
WEB-INF/classes archive entry, or inside a JAR in the WEB-INF/lib directory.

11.3.2. Deployment Declarations

Listener classes are declared in the web application deployment descriptor using the listener
element. They are listed by class name in the order in which they are to be invoked. Unlike other
listeners, listeners of type AsyncListener may only be registered (with a ServletRequest)
programmatically.

11.3.3. Listener Registration

The web container creates an instance of each listener class and registers it for event notifications
prior to the processing of the first request by the application. The web container registers the
listener instances according to the interfaces they implement and the order in which they appear in
the deployment descriptor. During web application execution, listeners for the given events are
mostly invoked in their registration orders, but there are some exceptions. For instance,
HttpSessionListener.destroy are invoked in reverse order. See Section 8.2.3, “Assembling the
Descriptor from web.xml, web-fragment.xml and Annotations” for details.

11.3.4. Notifications At Shutdown

On application shutdown, listeners are notified in reverse order to their declarations with
notifications to session listeners preceding notifications to context listeners. Session listeners must
be notified of session invalidations prior to context listeners being notified of application
shutdown.

11.4. Deployment Descriptor Example
The following example is the deployment grammar for registering two servlet context lifecycle
listeners and an HttpSession listener.

Suppose that com.example.MyConnectionManager and com.example.MyLoggingModule both implement
jakarta.servlet.ServletContextListener, and that com.example.MyLoggingModule additionally
implements jakarta.servlet.http.HttpSessionListener. Also, the Application Developer wants
com.example.MyConnectionManager to be notified of servlet context lifecycle events before
com.example.MyLoggingModule. Here is the deployment descriptor for this application:

web.xml

<web-app>
 <display-name>MyListeningApplication</display-name>
 <listener>
 <listener-class>com.example.MyConnectionManager</listener-class>
 </listener>

 <listener>
 <listener-class>com.example.MyLoggingModule</listener-class>
 </listener>

109

 <servlet>
 <display-name>RegistrationServlet</display-name>
 ...
 </servlet>
</web-app>

11.5. Listener Instances and Threading
The container is required to complete instantiation of the listener classes in a web application prior
to the start of execution of the first request into the application. The container must maintain a
reference to each listener instance until the last request is serviced for the web application.

Attribute changes to ServletContext and HttpSession objects may occur concurrently. The container
is not required to synchronize the resulting notifications to attribute listener classes. Listener
classes that maintain state are responsible for the integrity of the data and should handle this case
explicitly.

11.6. Listener Exceptions
Application code inside a listener may throw an exception during operation. Some listener
notifications occur under the call tree of another component in the application. An example of this
is a servlet that sets a session attribute, where the session listener throws an unhandled exception.
The container must allow unhandled exceptions to be handled by the error page mechanism
described in Section 10.9, “Error Handling”. If there is no error page specified for those exceptions,
the container must ensure to send a response back with status 500. In this case no more listeners
under that event are called.

Some exceptions do not occur under the call stack of another component in the application. An
example of this is a SessionListener that receives a notification that a session has timed out and
throws an unhandled exception, or of a ServletContextListener that throws an unhandled
exception during a notification of servlet context initialization, or of a ServletRequestListener that
throws an unhandled exception during a notification of the initialization or the destruction of the
request object. In this case, the Application Developer has no opportunity to handle the exception.
The container may respond to all subsequent requests to the web application with an HTTP status
code 500 to indicate an application error.

Developers wishing normal processing to occur after a listener generates an exception must handle
their own exceptions within the notification methods.

11.7. Distributed Containers
In distributed web containers, HttpSession instances are scoped to the particular JVM servicing
session requests, and the ServletContext object is scoped to the web container’s JVM. Distributed
containers are not required to propagate either servlet context events or HttpSession events to
other JVMs. Listener class instances are scoped to one per deployment descriptor declaration per
JVM.

110

11.8. Session Events
Listener classes provide the Application Developer with a way of tracking sessions within a web
application. It is often useful in tracking sessions to know whether a session became invalid
because the container timed out the session, or because a web component within the application
called the invalidate method. The distinction may be determined indirectly using listeners and the
HttpSession API methods.

111

112

Chapter 12. Mapping Requests to Servlets
The mapping techniques described in this chapter are required for web containers mapping client
requests to servlets.

12.1. Use of URL Paths
Upon receipt of a client request, the web container determines the web application to which to
forward it. The web application selected must have the longest context path that matches the start
of the request URL. The matched part of the URL is the context path when mapping to servlets. The
request URL is decoded as a UTF-8 encoded string. Implementations may provide container vendor
specific configuration to change this encoding or enable more fine-grained encoding such as using a
different encoding for the path and query string portions of the URL. Note that the encoding used to
process the remainder of the request, after the URL, can be configured as specified in Section 3.13,
“Request Data Encoding”.

The web container next must locate the servlet to process the request using the path mapping
procedure described below.

The path used for mapping to a servlet is the request URL from the request object minus the context
path and the path parameters. The URL path mapping rules below are used in order. The first
successful match is used with no further matches attempted:

1. The container will try to find an exact match of the path of the request to the path of the servlet.
A successful match selects the servlet.

2. The container will recursively try to match the longest path-prefix. This is done by stepping
down the path tree a directory at a time, using the "/" character as a path separator. The longest
match determines the servlet selected.

3. If the last segment in the URL path contains an extension (e.g. .jsp), the servlet container will
try to match a servlet that handles requests for the extension. An extension is defined as the
part of the last segment after the last "." character.

4. If neither of the previous three rules result in a servlet match, the container will attempt to
serve content appropriate for the resource requested. If a "default" servlet is defined for the
application, it will be used. Many containers provide an implicit default servlet for serving
content.

The container must use case-sensitive string comparisons for matching.

12.2. Specification of Mappings
In the web application deployment descriptor, the following syntax is used to define mappings:

• A string beginning with a "/" character and ending with a "/*" suffix is used for path mapping.

• A string beginning with a "*." prefix is used as an extension mapping.

• The empty string ("") is a special URL pattern that exactly maps to the application’s context root,
i.e., requests of the form http://host:port/<context-root> or http://host:port/<context-root>/.

113

In this case the path info is "/" and the servlet path is empty string ("").

• A string containing only the "/" character indicates the "default" servlet of the application. In
this case the servlet path is the request URI minus the context path and the path info is null.

• All other strings are used for exact matches only.

If the effective web.xml (after merging information from fragments and annotations) contains any
url-patterns that are mapped to multiple servlets then the deployment must fail.

12.2.1. Implicit Mappings

If the container has an internal JSP container, the *.jsp extension is mapped to it, allowing JSP
pages to be executed on demand. This mapping is termed an implicit mapping. If a *.jsp mapping is
defined by the web application, its mapping takes precedence over the implicit mapping.

A servlet container is allowed to make other implicit mappings as long as explicit mappings take
precedence. For example, an implicit mapping of *.shtml could be mapped to include functionality
on the server.

12.2.2. Example Mapping Set

Consider the following set of mappings:

Table 12-1 Example Set of Maps

Path Pattern Servlet

/foo/bar/* servlet1

/baz/* servlet2

/catalog servlet3

*.bop servlet4

The following behavior would result:

Table 12-2 Incoming Paths Applied to Example Maps

Incoming Path Servlet Handling Request

/foo/bar/index.html servlet1

/foo/bar/index.bop servlet1

/baz servlet2

/baz/index.html servlet2

/catalog servlet3

/catalog/index.html "default" servlet

/catalog/racecar.bop servlet4

/index.bop servlet4

Note that in the case of /catalog/index.html and /catalog/racecar.bop, the servlet mapped to
/catalog is not used because the match is not exact.

114

12.3. Runtime Discovery of Mappings
Every mapping that causes a servlet to be activated, regardless of whether or not servlet filters are
involved, is discoverable at runtime via the servlet mapping API.

12.3.1. Runtime Discovery of Servlet Mappings

The method getHttpServletMapping() on HttpServletRequest returns an HttpServletMapping
implementation that provides information for the mapping that caused the current Servlet to be
invoked. Please see the javadocs for the normative specification. Please see sections Section 9.3.1,
“Included Request Parameters”, Section 9.4.2, “Forwarded Request Parameters” and Section 9.7.2,
“Dispatched Request Parameters” for relevant request attributes. As with the included and
forwarded request parameters, the HttpServletMapping is not available for servlets that have been
obtained with a call to ServletContext.getNamedDispatcher().

115

116

Chapter 13. Security
Web applications are created by Application Developers who give, sell, or otherwise transfer the
application to a Deployer for installation into a runtime environment. Application Developers
communicate the security requirements to the Deployers and the deployment system. This
information may be conveyed declaratively via the application’s deployment descriptor, by using
annotations within the application code, or programmatically via the setServletSecurity method of
the ServletRegistration.Dynamic interface.

This chapter describes the servlet container security mechanisms and interfaces and the
deployment descriptor, annotation, and programmatic mechanisms for conveying the security
requirements of applications.

13.1. Introduction
A web application contains resources that can be accessed by many users. These resources often
traverse unprotected, open networks such as the Internet. In such an environment, a substantial
number of web applications will have security requirements.

Although the quality assurances and implementation details may vary, servlet containers have
mechanisms and infrastructure for meeting these requirements that share some of the following
characteristics:

Authentication

The means by which communicating entities prove to one another that they are acting on behalf
of specific identities that are authorized for access.

Access control for resources

The means by which interactions with resources are limited to collections of users or programs
for the purpose of enforcing integrity, confidentiality, or availability constraints.

Data Integrity

The means used to prove that information has not been modified by a third party while in
transit.

Confidentiality or Data Privacy

The means used to ensure that information is made available only to users who are authorized
to access it.

13.2. Declarative Security
Declarative security refers to the means of expressing an application’s security model or
requirements, including roles, access control, and authentication requirements in a form external
to the application. The deployment descriptor is the primary vehicle for declarative security in web
applications.

The Deployer maps the application’s logical security requirements to a representation of the

117

security policy that is specific to the runtime environment. At runtime, the servlet container uses
the security policy representation to enforce authentication and authorization.

The security model applies to the static content part of the web application and to servlets and
filters within the application that are requested by the client. The security model does not apply
when a servlet uses the RequestDispatcher to invoke a static resource or servlet using a forward or
an include.

13.3. Programmatic Security
Programmatic security is used by security aware applications when declarative security alone is
not sufficient to express the security model of the application. Programmatic security consists of the
following methods of the HttpServletRequest interface:

• authenticate

• login

• logout

• getRemoteUser

• isUserInRole

• getUserPrincipal

The login method allows an application to perform username and password collection (as an
alternative to Form-Based Login).

The authenticate methods allow an application to instigate authentication of the request caller by
the container from within an unconstrained request context.

The logout method is provided to allow an application to reset the caller identity of a request.

The getRemoteUser method returns the name of the remote user (that is, the caller) associated, by the
container, with the request.

The isUserInRole method determines if the remote user (that is, the caller) associated with the
request is in a specified security role.

The getUserPrincipal method determines the principal name of the remote user (that is, the caller)
and returns a java.security.Principal object corresponding to the remote user. Calling the getName
method on the Principal returned by getUserPrincipal returns the name of the remote user. These
APIs allow servlets to make business logic decisions based on the information obtained.

If no user has been authenticated, the getRemoteUser method returns null, the isUserInRole method
always returns false, and the getUserPrincipal method returns null.

The isUserInRole method takes a String argument that references an application role. For each
distinct role reference used in a call to isUserInRole, A security-role-ref element with role-name
corresponding to the role reference should be declared in the deployment descriptor. Each security-
role-ref should contain a role-link sub-element whose value is the name of the application security
role to which the application embedded role reference is linked. The container uses the security-

118

role-ref with role-name equal to the role reference to determine which security-role to test the user
for membership in.

For example, to map the security role reference "FOO" to the security role with role-name
"manager" the syntax would be:

<security-role-ref>
 <role-name>FOO</role-name>
 <role-link>manager</role-link>
</security-role-ref>

In this case, if a servlet called by a user belonging to the "manager" security role were to call
isUserInRole("FOO") the result would be true.

If no matching security-role-ref exists for a role reference used in a call to isUserInRole, the
container must default to testing the user for membership in the security-role with role-name equal
to the role reference used in the call.

The role name "*" should never be used as an argument in calling isUserInRole. Any call to
isUserInRole with "*" must return false. If the role-name of the security-role to be tested is "**", and
the application has NOT declared an application security-role with role-name "**", isUserInRole
must only return true if the user has been authenticated; that is, only when getRemoteUser and
getUserPrincipal would both return a non-null value. Otherwise, the container must check the user
for membership in the application role.

The declaration of security-role-ref elements informs the deployer of the role references used by
the application and for which mappings must be defined.

13.4. Programmatic Security Policy Configuration
This section defines the annotations and APIs provided to configure the security constraints
enforced by the servlet container.

13.4.1. @ServletSecurity Annotation

The @ServletSecurity annotation provides an alternative mechanism for defining access control
constraints equivalent to those that could otherwise have been expressed declaratively via
security-constraint elements in the portable deployment descriptor or programmatically via the
setServletSecurity method of the ServletRegistration interface. Servlet containers MUST support
the use of the @ServletSecurity annotation on classes (and subclasses thereof) that implement the
jakarta.servlet.Servlet interface.

package jakarta.servlet.annotation;

@Inherited
@Documented
@Target(value=TYPE)
@Retention(value=RUNTIME)

119

public @interface ServletSecurity {
 HttpConstraint value();
 HttpMethodConstraint[] httpMethodConstraints();
}

Table 13-1 The ServletSecurity Interface

Element Description Default

value the HttpConstraint that defines the protection to
be applied to all HTTP methods that are NOT
represented in the array returned by
httpMethodConstraints.

@HttpConstraint

httpMethodConstraints the array of HTTP method specific constraints. {}

@HttpConstraint

The @HttpConstraint annotation is used within the @ServletSecurity annotation to represent the
security constraint to be applied to all HTTP protocol methods for which a corresponding
@HttpMethodConstraint does NOT occur within the @ServletSecurity annotation.

For the special case where an @HttpConstraint that returns all default values [1] occurs in
combination with at least one @HttpMethodConstraint that returns other than all default values, the
@HttpConstraint represents that no security constraint is to be applied to any of the HTTP protocol
methods to which a security constraint would otherwise apply. This exception is made to ensure
that such potentially non-specific uses of @HttpConstraint do not yield constraints that will explicitly
establish unprotected access for such methods; given that they would not otherwise be covered by
a constraint.

package jakarta.servlet.annotation;

@Documented
@Retention(value=RUNTIME)
public @interface HttpConstraint {
 ServletSecurity.EmptyRoleSemantic value();
 java.lang.String[] rolesAllowed();
 ServletSecurity.TransportGuarantee transportGuarantee();
}

Table 13-2 The HttpConstraint Interface

Element Description Default

value The default authorization semantic that applies
(only) when rolesAllowed returns an-empty
array.

PERMIT

rolesAllowed An array containing the names of the authorized
roles

{}

120

Element Description Default

transportGuarantee The data protection requirements that must be
satisfied by the connections on which requests
arrive.

NONE

@HttpMethodConstraint

The @HttpMethodConstraint annotation is used within the @ServletSecurity annotation to represent
security constraints on specific HTTP protocol messages.

package jakarta.servlet.annotation;

@Documented
@Retention(value=RUNTIME)
public @interface HttpMethodConstraint {
 ServletSecurity.EmptyRoleSemantic value();
 java.lang.String[] rolesAllowed();
 ServletSecurity.TransportGuarantee transportGuarantee();
}

Table 13-3 The HttpMethodConstraint Interface

Element Description Default

value The HTTP protocol method name

emptyRoleSemantic The default authorization semantic that applies
(only) when rolesAllowed returns an empty
array.

PERMIT

rolesAllowed An array containing the names of the authorized
roles

{}

transportGuarantee The data protection requirements that must be
satisfied by the connections on which requests
arrive.

NONE

The @ServletSecurity annotation may be specified on (that is, targeted to) a Servlet implementation
class, and its value is inherited by subclasses according to the rules defined for the @Inherited meta-
annotation. At most one instance of the @ServletSecurity annotation may occur on a servlet
implementation class, and the @ServletSecurity annotation MUST NOT be specified on (that is,
targeted to) a Java method.

When one or more @HttpMethodConstraint annotations are defined within a @ServletSecurity
annotation, each @HttpMethodConstraint defines the security-constraint that applies to the HTTP
protocol method identified within the @HttpMethodConstraint. Except for the case where its
@HttpConstraint returns all default values, and where it contains at least one @HttpMethodConstraint
that returns other than all default values, the @ServletSecurity annotation defines another
security-constraint that applies to all HTTP protocol methods for which a corresponding
@HttpMethodConstraint has not been defined.

121

The security-constraint elements defined in the portable deployment descriptors are authoritative
for all the url-patterns occurring within the constraints.

When a security-constraint in the portable deployment descriptor includes a url-pattern that is an
exact match for a pattern mapped to a class annotated with @ServletSecurity, the annotation must
have no effect on the constraints enforced by the servlet container on the pattern.

When metadata-complete=true is defined for a portable deployment descriptor, the @ServletSecurity
annotation does not apply to any of the url-patterns mapped to (any servlet mapped to) the
annotated class in the deployment descriptor.

The @ServletSecurity annotation is not applied to the url-patterns of a ServletRegistration created
using the addServlet(String, Servlet) method of the ServletContext interface, unless the Servlet
was constructed by the createServlet method of the ServletContext interface.

With the exceptions listed above, when a servlet class is annotated with @ServletSecurity, the
annotation defines the security constraints that apply to all the url-patterns mapped to all the
servlets mapped to the class.

When a class has not been annotated with the @ServletSecurity annotation, the access policy that is
applied to a servlet mapped from that class is established by the applicable security-constraint
elements, if any, in the corresponding portable deployment descriptor, or barring any such
elements, by the constraints, if any, established programmatically for the target servlet via the
setServletSecurity method of the ServletRegistration interface.

13.4.1.1. Examples

The following examples demonstrate the use of the ServletSecurity annotation.

for all HTTP methods, no constraints

@ServletSecurity
public class Example1 extends HttpServlet {

}

for all HTTP methods, no auth-constraint, confidential transport required

@ServletSecurity(@HttpConstraint(transportGuarantee = TransportGuarantee.CONFIDENTIAL
))
public class Example2 extends HttpServlet {

}

for all HTTP methods, all access denied

@ServletSecurity(@HttpConstraint(EmptyRoleSemantic.DENY))
public class Example3 extends HttpServlet {

122

}

for all HTTP methods, auth-constraint requiring membership in Role R1

@ServletSecurity(@HttpConstraint(rolesAllowed = "R1"))
public class Example4 extends HttpServlet {

}

for All HTTP methods except GET and POST, no constraints; for methods GET and POST, auth-constraint
requiring membership in Role R1; for POST, confidential transport required

@ServletSecurity((httpMethodConstraints = {
 @HttpMethodConstraint(value = "GET", rolesAllowed = "R1"),
 @HttpMethodConstraint(value = "POST", rolesAllowed = "R1",
 transportGuarantee = TransportGuarantee.CONFIDENTIAL)
})
public class Example5 extends HttpServlet {

}

for all HTTP methods except GET auth-constraint requiring membership in Role R1; for GET, no constraints

@ServletSecurity(value = @HttpConstraint(rolesAllowed = "R1"),
 httpMethodConstraints = @HttpMethodConstraint("GET"))
public class Example6 extends HttpServlet {

}

for all HTTP methods except TRACE,

auth-constraint requiring membership in Role R1; for TRACE, all access denied

@ServletSecurity(value = @HttpConstraint(rolesAllowed = "R1"),
 httpMethodConstraints = @HttpMethodConstraint(value="TRACE",
 emptyRoleSemantic = EmptyRoleSemantic.DENY))
public class Example7 extends HttpServlet {

}

13.4.1.2. Mapping @ServletSecurity to security-constraint

This section describes the mapping of the @ServletSecurity annotation to its equivalent
representation as security-constraint elements. It is provided to facilitate enforcement using the
existing security-constraint enforcement mechanism of the container. The enforcement by servlet
containers, of the @ServletSecurity annotation must be equivalent in effect to enforcement, by the
container, of the security-constraint elements resulting from the mapping defined in this section.

123

The @ServletSecurity annotation is used to define one method-independent @HttpConstraint
followed by a list of zero or more @HttpMethodConstraint specifications. The method-independent
constraint is applied to all HTTP methods for which no HTTP method-specific constraint has been
defined.

When no @HttpMethodConstraint elements are included, a @ServletSecurity annotation corresponds
to a single security-constraint element containing a web-resource-collection that contains no http-
method elements, and thus pertains to all HTTP methods.

The following example depicts the representation of a @ServletSecurity annotation with no
contained @HttpMethodConstraint annotations as a single security-constraint element. The url-
pattern elements defined by the corresponding servlet (registration) would be included in the web-
resource-collection, and the presence and value of any contained auth-constraint and user-data-
constraint elements would be determined by the mapping of the @HttpConstraint value as defined
in Section 13.4.1.3, “Mapping @HttpConstraint and @HttpMethodConstraint to XML.”

mapping @ServletSecurity with no contained @HttpMethodConstraint

@ServletSecurity(@HttpConstraint(rolesAllowed = "Role1"))

<security-constraint>
 <web-resource-collection>
 <url-pattern>...</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Role1</role-name>
 </auth-constraint>
</security-constraint>

When one or more @HttpMethodConstraint elements are specified, the method-independent
constraint corresponds to a single security-constraint containing a web-resource-collection that
contains on http-method-omission for each of the HTTP methods named in the @HttpMethodConstraint
elements. The security-constraint containing http-method-omission elements must NOT be created
if the method-independent constraint returns all default values and at least one
@HttpMethodConstraint does not. Each @HttpMethodConstraint corresponds to another security-
constraint containing a web-resource-collection containing an http-method element naming the
corresponding HTTP method.

The following example depicts the mapping of a @ServletSecurity annotation with a single
contained @HttpMethodConstraint to two security-constraint elements. The url-pattern elements
defined by the corresponding servlet (registration) would be included in the web-resource-
collection of both constraints, and the presence and value of any contained auth-constraint and
user-data-constraint elements would be determined by the mapping of the associated
@HttpConstraint and @HttpMethodConstraint values as defined in Section 13.4.1.3, “Mapping
@HttpConstraint and @HttpMethodConstraint to XML.”

124

mapping @ServletSecurity with contained @HttpMethodConstraint

@ServletSecurity(value=@HttpConstraint(rolesAllowed = "Role1"),
 httpMethodConstraints = @HttpMethodConstraint(value = "TRACE",
 emptyRoleSemantic = EmptyRoleSemantic.DENY))

<security-constraint>
 <web-resource-collection>
 <url-pattern>...</url-pattern>
 <http-method-omission>TRACE</http-method-omission>
 </web-resource-collection>
 <auth-constraint>
 <role-name>Role1</role-name>
 </auth-constraint>
</security-constraint>
<security-constraint>
 <web-resource-collection>
 <url-pattern>...</url-pattern>
 <http-method>TRACE</http-method>
 </web-resource-collection>
 <auth-constraint/>
</security-constraint>

13.4.1.3. Mapping @HttpConstraint and @HttpMethodConstraint to XML.

This section describes the mapping of the @HttpConstraint and @HttpMethodConstraint annotation
values (defined for use within @ServletSecurity) to their corresponding auth-constraint and user-
data-constraint representations, These annotations share a common model for expressing the
equivalent of the auth-constraint and user-data-constraint elements used within the portable
deployment descriptor. That model is composed of the following 3 elements:

emptyRoleSemantic

The authorization semantic, either PERMIT or DENY, that applies when no roles are named in
rolesAllowed. The default value for this element is PERMIT, and DENY is not supported in
combination with a non-empty rolesAllowed list.

rolesAllowed

A list containing the names of the authorized roles. When this list is empty, its meaning depends
on the value of the emptyRoleSemantic. The role name * has no special meaning when included in
the list of allowed roles. When the special role name ** appears in rolesAllowed, it indicates that
user authentication, independent of role, is required and sufficient. The default value for this
element is an empty list.

transportGuarantee

The data protection requirements, either NONE or CONFIDENTIAL, that must be satisfied by the
connections on which requests arrive. This element is equivalent in meaning to a user-data-
constraint containing a transport-guarantee with the corresponding value. The default value for
this element is NONE.

125

The following examples depict the correspondence between the @HttpConstraint model described
above and auth-constraint and user-data-constraint elements in web.xml.

emptyRoleSemantic=PERMIT, rolesAllowed={}, transportGuarantee=NONE

<!-- no constraints -->

emptyRoleSemantic=PERMIT, rolesAllowed={}, transportGuarantee=CONFIDENTIAL

<user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

emptyRoleSemantic=PERMIT,rolesAllowed={Role1}, transportGuarantee=NONE

<auth-constraint>
 <security-role-name>Role1</security-role-name>
</auth-constraint>

emptyRoleSemantic=PERMIT,rolesAllowed={Role1}, transportGuarantee=CONFIDENTIAL

<auth-constraint>
 <security-role-name>Role1</security-role-name>
</auth-constraint>
<user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

emptyRoleSemantic=DENY, rolesAllowed={}, transportGuarantee=NONE

<auth-constraint/>

emptyRoleSemantic=DENY, rolesAllowed={}, transportGuarantee=CONFIDENTIAL

<auth-constraint/>
<user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
</user-data-constraint>

13.4.2. setServletSecurity of ServletRegistration.Dynamic

The setServletSecurity method may be used within a ServletContextListener to define the security
constraints to be applied to the mappings defined for a ServletRegistration.

Collection<String> setServletSecurity(ServletSecurityElement arg);

126

The jakarta.servlet.ServletSecurityElement argument to setServletSecurity is analogous in
structure and model to the ServletSecurity interface of the @ServletSecurity annotation. As such,
the mappings defined in Section 13.4.1.2, “Mapping @ServletSecurity to security-constraint”, apply
analogously to the mapping of a ServletSecurityElement with contained HttpConstraintElement and
HttpMethodConstraintElement values, to its equivalent security-constraint representation.

The setServletSecurity method returns the (possibly empty) Set of URL patterns that are already
the exact target of a security-constraint element in the portable deployment descriptor (and thus
were unaffected by the call).

This method throws an IllegalStateException if the ServletContext from which the
ServletRegistration was obtained has already been initialized.

When a security-constraint in the portable deployment descriptor includes a url-pattern that is an
exact match for a pattern mapped by a ServletRegistration, calls to setServletSecurity on the
ServletRegistration must have no effect on the constraints enforced by the servlet container on the
pattern.

With the exceptions listed above and including when the servlet class is annotated with
@ServletSecurity, when setServletSecurity is called on a ServletRegistration it establishes the
security constraints that apply to the url-patterns of the registration.

13.5. Roles
A security role is a logical grouping of users defined by the Application Developer or Assembler.
When the application is deployed, roles are mapped by a Deployer to principals or groups in the
runtime environment.

A servlet container enforces declarative or programmatic security for the principal associated with
an incoming request based on the security attributes of the principal. This may happen in either of
the following ways:

1. A deployer has mapped a security role to a user group in the operational environment. The user
groups to which the calling principal belongs are retrieved from its security attributes. The
principal is in the security role only if the principal belongs to the user group to which the
security role has been mapped by the deployer.

2. A deployer has mapped a security role to a principal name in a security policy domain. In this
case, the principal name of the calling principal is retrieved from its security attributes. The
principal is in the security role only if the principal name is the same as a principal name to
which the security role was mapped.

13.6. Authentication
A web client can authenticate a user to a web server using one of the following mechanisms:

• HTTP Basic Authentication

• HTTP Digest Authentication

127

• HTTPS Client Authentication

• Form Based Authentication

13.6.1. HTTP Basic Authentication

HTTP Basic Authentication, which is based on a username and password, is the authentication
mechanism defined in RFC 7617. A web server requests a web client to authenticate the user. As
part of the request, the web server passes the realm (a string) in which the user is to be
authenticated. The web client obtains the username and the password from the user and transmits
them to the web server. The web server then authenticates the user in the specified realm.

Basic Authentication is not a secure authentication protocol. User passwords are sent in simple
base64 encoding, and the target server is not authenticated. Additional protection can alleviate
some of these concerns: a secure transport mechanism (HTTPS), or security at the network level
(such as the IPSEC protocol or VPN strategies) is applied in some deployment scenarios.

13.6.2. HTTP Digest Authentication

Like HTTP Basic Authentication, HTTP Digest Authentication authenticates a user based on a
username and a password. However, unlike HTTP Basic Authentication, HTTP Digest
Authentication does not send user passwords over the network. In HTTP Digest authentication the
client sends a one-way cryptographic hash of the password (and additional data). Although
passwords are not sent on the wire, HTTP Digest authentication requires that clear text password
equivalents [2] be avaialble to the authenticating container so that it can validate received
authenticators by calculating the expected digest. Servlet containers SHOULD support
HTTP_DIGEST authentication.

13.6.3. Form Based Authentication

The look and feel of the “login screen” cannot be varied using the web browser’s built-in
authentication mechanisms. This specification introduces a required form based authentication
mechanism which allows an Application Developer to control the look and feel of the login screens.

The web application deployment descriptor contains entries for a login form and error page. The
login form must contain fields for entering a username and a password. These fields must be
named j_username and j_password, respectively.

When a user attempts to access a protected web resource, the container checks the user’s
authentication. If the user is authenticated and possesses authority to access the resource, the
requested web resource is activated and a reference to it is returned. If the user is not
authenticated, all of the following steps occur:

1. The login form associated with the security constraint is sent to the client and the URL path and
HTTP protocol method triggering the authentication is stored by the container.

2. The user is asked to fill out the form, including the username and password fields.

3. The client posts the form back to the server.

4. The container attempts to authenticate the user using the information from the form.

128

5. If authentication fails, the error page is returned using either a forward or a redirect, and the
status code of the response is set to 200. The error page contains information about the failure.

6. If authentication succeeds, the client is redirected to the resource using the store URL path.

7. When the redirected and authenticated request arrives at the container, the container restores
the request and HTTP protocol method, and the authenticated user’s principal is checked to see
if it is in an authorized role for accessing the resource.

8. If the user is authorized, the request is accepted for processing by the container.

The HTTP protocol method of the redirected request that arrives in step 7, may differ from the
HTTP method of the request that triggered the authentication. As such, following the redirection of
step 6, the form authenticator must process the redirected request even if authentication is not
required for the HTTP method with which the request arrives. To improve the predictability of the
HTTP method of the redirected request, containers should redirect (in step 6) using the 303
(SC_SEE_OTHER) status code, except where interoperability with HTTP/1.0 user agents is required; in
which cases the 302 status code should be used.

When conducted over an unprotected transport, Form Based Authentication is subject to some of
the same vulnerabilities as Basic Authentication.

When the request that is triggering authentication arrives over a secure transport, or the login page
is subject to a user-data-constraint of CONFIDENTIAL, the login page must be returned to the user, and
submitted to the container over a secure transport.

The login page should be subject to a user-data-constraint of CONFIDENTIAL, and a user-data-
constraint of CONFIDENTIAL should be included in every security-constraint that contains a
requirement for authentication.

The login method of the HttpServletRequest interface provides an alternative means for an
application to control the look and feel of its login screens.

13.6.3.1. Login Form Notes

Form based login and URL based session tracking can be problematic to implement. Form based
login should be used only when sessions are being maintained by cookies or by SSL session
information.

In order for the authentication to proceed appropriately, the action of the login form must always
be j_security_check. This restriction is made so that the login form will work no matter which
resource it is for, and to avoid requiring the server to specify the action field of the outbound form.
The login form should specify autocomplete="off" on the password form field.

Here is an example showing how the form should be coded into the HTML page:

<form method="POST" action="j_security_check">
 <input type="text" name="j_username">
 <input type="password" name="j_password" autocomplete="off">
</form>

129

If the form based login is invoked because of an HTTP request, the original request parameters
must be preserved by the container for use if, on successful authentication, it redirects the call to
the requested resource.

If the user is authenticated using form login and has created an HTTP session, the timeout or
invalidation of that session leads to the user being logged out in the sense that subsequent requests
must cause the user to be re-authenticated. The scope of the logout is the same as that of the
authentication: for example, if the container supports single signon, such as Jakarta EE technology
compliant web containers, the user would need to reauthenticate with any of the web applications
hosted on the web container.

13.6.4. HTTPS Client Authentication

End user authentication using HTTPS (HTTP over SSL) is a strong authentication mechanism. This
mechanism requires the client to possess a Public Key Certificate (PKC). Currently, PKCs are useful
in e-commerce applications and also for a single-signon from within the browser.

13.6.5. Additional Container Authentication Mechanisms

Servlet containers should provide public interfaces that may be used to integrate and configure
additional HTTP message layer authentication mechanisms for use by the container on behalf of
deployed applications. These interfaces should be offered for use by parties other than the
container vendor (including application developers, system administrators, and system
integrators).

To facilitate portable implementation and integration of additional container authentication
mechanisms, it is recommended that all servlet containers implement the Servlet Container Profile
of The Jakarta Authentication Specification. The specification is available for download at:
https://jakarta.ee/specifications/authentication/

13.7. Server Tracking of Authentication Information
As the underlying security identities (such as users and groups) to which roles are mapped in a
runtime environment are environment specific rather than application specific, it is desirable to:

1. Make login mechanisms and policies a property of the environment the web application is
deployed in.

2. Be able to use the same authentication information to represent a principal to all applications
deployed in the same container, and

3. Require re-authentication of users only when a security policy domain boundary has been
crossed.

Therefore, a servlet container is required to track authentication information at the container level
(rather than at the web application level). This allows users authenticated for one web application
to access other resources managed by the container permitted to the same security identity.

130

https://jakarta.ee/specifications/authentication/

13.8. Specifying Security Constraints
Security constraints are a declarative way of defining the protection of web content. A security
constraint associates authorization and/or user data constraints with HTTP operations on web
resources. A security constraint, represented as a security-constraint in a deployment descriptor,
consists of the following elements:

• web resource collection (web-resource-collection in deployment descriptor)

• authorization constraint (auth-constraint in deployment descriptor)

• user data constraint (user-data-constraint in deployment descriptor)

The HTTP operations and web resources to which a security constraint applies (i.e. the constrained
requests) are identified by one or more web resource collections. A web resource collection consists
of the following elements:

• URL patterns (url-pattern in deployment descriptor)

• HTTP methods (http-method or http-method-omission elements in the deployment descriptor)

An authorization constraint establishes a requirement for authentication and names the
authorization roles permitted to perform the constrained requests. A user must be a member of at
least one of the named roles to be permitted to perform the constrained requests. The special role
name "*" is a shorthand for all role names defined in the deployment descriptor. The special role
name "**" is a shorthand for any authenticated user independent of role. When the special role
name "**" appears in an authorization constraint, it indicates that any authenticated user,
independent of role, is authorized to perform the constrained requests. An authorization constraint
that names no roles indicates that access to the constrained requests must not be permitted under
any circumstances. An authorization constraint consists of the following element:

• role name (role-name in deployment descriptor)

A user data constraint establishes a requirement that the constrained requests be received over a
protected transport layer connection. The strength of the required protection is defined by the
value of the transport guarantee. A transport guarantee of INTEGRAL is used to establish a
requirement for content integrity and a transport guarantee of CONFIDENTIAL is used to establish a
requirement for confidentiality. The transport guarantee of NONE indicates that the container must
accept the constrained requests when received on any connection including an unprotected one.
Containers may impose a confidential transport guarantee in response to the INTEGRAL value. A user
data constraint consists of the following element:

• transport guarantee (transport-guarantee in deployment descriptor)

If no authorization constraint applies to a request, the container must accept the request without
requiring user authentication. If no user data constraint applies to a request, the container must
accept the request when received over any connection including an unprotected one.

13.8.1. Combining Constraints

For the purpose of combining constraints, an HTTP method is said to occur within a web-resource-

131

collection when no HTTP methods are named in the collection, or the collection specifically names
the HTTP method in a contained http-method element, or the collection contains one or more http-
method-omission elements, none of which names the HTTP method.

When a url-pattern and HTTP method pair occurs in combination(i.e, within a web-resource-
collection) in multiple security constraints, the constraints (on the pattern and method) are
defined by combining the individual constraints. The rules for combining constraints in which the
same pattern and method occur are as follows:

The combination of authorization constraints that name roles or that imply roles via the name "*"
shall yield the union of the role names in the individual constraints as permitted roles. An
authorization constraint that names the role "**" shall combine with authorization constraints that
name or imply roles to permit any authenticated user independent of role. A security constraint
that does not contain an authorization constraint shall combine with authorization constraints that
name or imply roles to allow unauthenticated access. The special case of an authorization
constraint that names no roles shall combine with any other constraints to override their affects
and cause access to be precluded.

The combination of user-data-constraints that apply to a common url-pattern and http-method
shall yield the union of connection types accepted by the individual constraints as acceptable
connection types. A security constraint that does not contain a user-data-constraint shall combine
with other user-data-constraint to cause the unprotected connection type to be an accepted
connection type.

13.8.2. Example

The following example illustrates the combination of constraints and their translation into a table
of applicable constraints. Suppose that a deployment descriptor contained the following security
constraints.

<security-constraint>
 <web-resource-collection>
 <web-resource-name>precluded methods</web-resource-name>
 <url-pattern>/*</url-pattern>
 <url-pattern>/acme/wholesale/*</url-pattern>
 <url-pattern>/acme/retail/*</url-pattern>
 <http-method-omission>GET</http-method-omission>
 <http-method-omission>POST</http-method-omission>
 </web-resource-collection>
 <auth-constraint/>
</security-constraint>

<security-constraint>
 <web-resource-collection>
 <web-resource-name>wholesale</web-resource-name>
 <url-pattern>/acme/wholesale/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>PUT</http-method>
 </web-resource-collection>

132

 <auth-constraint>
 <role-name>SALESCLERK</role-name>
 </auth-constraint>
</security-constraint>

<security-constraint>
 <web-resource-collection>
 <web-resource-name>wholesale 2</web-resource-name>
 <url-pattern>/acme/wholesale/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>CONTRACTOR</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

<security-constraint>
 <web-resource-collection>
 <web-resource-name>retail</web-resource-name>
 <url-pattern>/acme/retail/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>

 <auth-constraint>
 <role-name>CONTRACTOR</role-name>
 <role-name>HOMEOWNER</role-name>
 </auth-constraint>
</security-constraint>

The translation of this hypothetical deployment descriptor would yield the constraints defined in
Table 13-4 , “Security Constraint Table”.

Table 13-4 Security Constraint Table

url-pattern http-method permitted roles supported connection
types

/* all methods except GET,
POST

access precluded not constrained

/acme/wholesale/* all methods except GET,
POST

access precluded not constrained

/acme/wholesale/* GET CONTRACTOR
SALESCLERK

not constrained

/acme/wholesale/* POST CONTRACTOR CONFIDENTIAL

133

url-pattern http-method permitted roles supported connection
types

/acme/retail/* all methods except GET,
POST

access precluded not constrained

/acme/retail/* GET CONTRACTOR
HOMEOWNER

not constrained

/acme/retail/* POST CONTRACTOR
HOMEOWNER

not constrained

13.8.3. Processing Requests

When a servlet container receives a request, it shall use the algorithm described in Section 12.1,
“Use of URL Paths” to select the constraints (if any) defined on the url-pattern that is the best match
to the request URI. If no constraints are selected, the container shall accept the request. Otherwise
the container shall determine if the HTTP method of the request is constrained at the selected
pattern. If it is not, the request shall be accepted. Otherwise, the request must satisfy the constraints
that apply to the HTTP method at the url-pattern. Both of the following rules must be satisfied for
the request to be accepted and dispatched to the associated servlet.

1. The characteristics of the connection on which the request was received must satisfy at least
one of the supported connection types defined by the constraints. If this rule is not satisfied, the
container shall reject the request and redirect it to the HTTPS port. [3]

2. The authentication characteristics of the request must satisfy any authentication and role
requirements defined by the constraints. If this rule is not satisfied because access has been
precluded (by an authorization constraint naming no roles), the request shall be rejected as
forbidden and a 403 (SC_FORBIDDEN) status code shall be returned to the user. If access is
restricted to permitted roles and the request has not been authenticated, the request shall be
rejected as unauthorized and a 401 (SC_UNAUTHORIZED) status code shall be returned to cause
authentication. If access is restricted to permitted roles and the authentication identity of the
request is not a member of any of these roles, the request shall be rejected as forbidden and a
403 (SC_FORBIDDEN) status code shall be returned to the user.

13.8.4. Uncovered HTTP Protocol Methods

The security-constraint schema provides the ability to enumerate the HTTP methods to which the
protection requirements defined in a security-constraint apply. When HTTP methods are
enumerated within a security-constraint, the protections defined by the constraint apply only to
the methods included in the enumeration. We refer to the HTTP methods that are not included in
the enumeration as "uncovered" HTTP methods because requests using those methods are NOT
subject to the security-constraint for all request URLs for which a url-pattern of the security-
constraint is a best match.

The HTTP methods for a security constraint may be enumerated directly using http-method
elements or may be enumerated by omission using http-method-omission elements. In the latter
case, the HTTP methods for a security constraint are all those methods NOT listed by the http-
method-omission elements.

134

When HTTP methods are not enumerated within a security-constraint, the protections defined by
the constraint apply to the complete set of HTTP (extension) methods. In that case, there are no
uncovered HTTP methods at all request URLs for which a url-pattern of the security-constraint is
a best match.

The examples that follow depict the three ways in which HTTP protocol methods may be left
uncovered. The determination of whether methods are uncovered for a url-pattern is made after
all the constraints that apply to that url-pattern have been combined as described in Section 13.8.1,
“Combining Constraints”.

1. A security-constraint names one or more HTTP methods in http-method elements. All HTTP
methods other than those named in the constraint are uncovered.

<security-constraint>
 <web-resource-collection>
 <web-resource-name>wholesale</web-resource-name>
 <url-pattern>/acme/wholesale/*</url-pattern>
 <http-method>GET</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>SALESCLERK</role-name>
 </auth-constraint>
</security-constraint>

All HTTP Methods except GET are uncovered.

2. A security-constraint names one or more HTTP methods in http-method-omission elements. All
HTTP methods named in the constraint are uncovered.

<security-constraint>
 <web-resource-collection>
 <web-resource-name>wholesale</web-resource-name>
 <url-pattern>/acme/wholesale/*</url-pattern>
 <http-method-omission>GET</http-method-omission>
 </web-resource-collection>
 <auth-constraint/>
</security-constraint>

GET is uncovered. All other methods are covered by the excluding auth-constraint.

3. A @ServletSecurity annotation includes an @HttpConstraint that returns all default values and it
also includes at least one @HttpMethodConstraint that returns other than all default values. All
HTTP methods other than those named in an @HTTPMethodConstraint are uncovered by the
annotation. This case is analogous to case 1, and equivalent use of the setServletSecurity
method of the ServletRegistration interface will also produce an analogous result.

@ServletSecurity((httpMethodConstraints = {
 @HttpMethodConstraint(value = "GET", rolesAllowed = "R1"),

135

 @HttpMethodConstraint(value = "POST", rolesAllowed = "R1",
 transportGuarantee = TransportGuarantee.CONFIDENTIAL)
 })
public class Example5 extends HttpServlet {

}

All HTTP Methods except GET and POST are uncovered.

13.8.4.1. Rules for Security Constraint Configuration

Objective: Make sure all HTTP methods at all constrained URL patterns have the intended security
protections (that is, are covered).

1. Do not name HTTP methods in constraints; in which case, the security protections defined for
the URL patterns will apply to all HTTP methods.

2. If you can’t follow rule #1, add the <deny-uncovered-http-methods> and declare (using the <http-
method> element, or equivalent annotation) all the HTTP methods (with security protections)
that are to be allowed at the constrained URL patterns.

3. If you can’t follow rule #2, declare constraints to cover all HTTP methods at each constrained
URL pattern. Use the <http-method-omission> element or the HttpMethodConstraint annotation to
represent the set of all HTTP methods other than those named by <http-method> or
HttpMethodConstraint. When using annotations, use the HttpConstraint annotation to define the
security semantic to be applied to all other HTTP methods and configure EmptyRoleSemantic=DENY
to cause all other HTTP methods to be denied.

13.8.4.2. Handling Uncovered HTTP Methods

During application deployment, the container must inform the deployer of any uncovered HTTP
methods present in the application security constraint configuration resulting from the
combination of the constraints defined for the application. The provided information must identify
the uncovered HTTP protocol methods, and the corresponding URL patterns at which the HTTP
methods are uncovered. The requirement to notify the deployer may be satisfied by logging the
required information.

When the deny-uncovered-http-methods flag is set in the web.xml of an application, the container
must deny any HTTP protocol method when it is used with a request URL for which the HTTP
method is uncovered at the combined security constraint that applies to the url-pattern that is the
best match for the request URL. The denied request shall be rejected as forbidden and a 403
(SC_FORBIDDEN) status code shall be returned.

To cause uncovered HTTP methods to be denied, the deployment system should establish additional
excluding auth-constraints, to cover these HTTP methods at the constrained url-patterns at which
the HTTP methods are uncovered.

When an application’s security configuration does not create any uncovered methods, the deny-
uncovered-http-methods flag must have no effect on the effective security configuration of the
application.

136

Applying the deny-uncovered-http-methods flag to an application whose security configuration
creates uncovered methods, may, in some cases, deny access to resources that must be accessible in
order for the application to function. In such cases, the security configuration of the application
should be completed such that all uncovered methods are covered by an appropriate constraint
configuration.

Application Developers should define security constraint configurations that leave no HTTP
methods uncovered, and they should set the deny-uncovered-http-methods flag to ensure that their
applications do not become dependent on being accessible via uncovered methods.

A servlet container may provide a configurable option to select whether the default behavior for
uncovered methods is ALLOW or DENY. This option may be configured on a per-application
granularity or larger. Note that setting this default to DENY may cause some applications to fail.

13.9. Default Policies
By default, authentication is not needed to access resources. Authentication is required when the
security constraints (if any) that contain the url-pattern that is the best match for the request URI
combine to impose an auth-constraint (naming roles) on the HTTP method of the request. Similarly,
a protected transport is not required unless the security constraints that apply to the request
combine to impose a user-data-constraint (with a protected transport-guarantee) on the HTTP
method of the request.

13.10. Login and Logout
The container establishes the caller identity of a request prior to dispatching the request to the
servlet engine. The caller identity remains unchanged throughout the processing of the request or
until the application sucessfully calls authenticate, login or logout on the request. For
asynchronous requests, the caller identity established at the initial dispatch remains unchanged
until the processing of the overall request completes, or the application successfully calls
authenticate, login or logout on the request.

Being logged into an application during the processing of a request, corresponds precisely to there
being a valid non-null caller identity associated with the request as may be determined by calling
getRemoteUser or getUserPrincipal on the request. A null return value from either of these methods
indicates that the caller is not logged into the application with respect to the processing of the
request.

Containers may create HTTP Session objects to track login state. If a developer creates a session
while a user is not authenticated, and the container then authenticates the user, the session visible
to developer code after login must be the same session object that was created prior to login
occurring so that there is no loss of session information.

[1] From methods value(), rolesAllowed(), and transportGuarantee().

[2] The password equivalents can be such that they can only be used to authenticate as the user at a specific realm.

[3] As an optimization, a container should reject the request as forbidden and return a 403 (SC_FORBIDDEN) status code if it knows
that access will ultimately be precluded (by an authorization constraint naming no roles).

137

138

Chapter 14. Deployment Descriptor
This chapter specifies the Jakarta Servlet Specification requirements for web container support of
deployment descriptors. The deployment descriptor conveys the elements and configuration
information of a web application between Application Developers, Application Assemblers, and
Deployers.

For Servlet 6.2-M1, the deployment descriptor is defined in terms of an XML schema document.

For backwards compatibility of applications written to previous versions of the API, any
deployment descriptors written to comply with earlier versions of the specification, must still be
supported such that applications continue to deploy. For the actual XSD files please visit
https://jakarta.ee/xml/ns/jakartaee/.

14.1. Deployment Descriptor Elements
The following types of configuration and deployment information are required to be supported in
the web application deployment descriptor for all servlet containers:

• ServletContext Init Parameters

• Session Configuration

• Servlet Declaration

• Servlet Mappings

• Application Lifecyle Listener classes

• Filter Definitions and Filter Mappings

• MIME Type Mappings

• Welcome File list

• Error Pages

• Locale and Encoding Mappings

• Security configuration, including login-config, security-constraint, deny-uncovered-http-
methods, security-role, security-role-ref and run-as

14.2. Rules for Processing the Deployment Descriptor
This section lists some general rules that web containers and developers must note concerning the
processing of the deployment descriptor for a web application.

• Web containers must remove all leading and trailing whitespace, which is defined as S(white
space) in XML 1.0 (http://www.w3.org/TR/2000/WD-xml-2e-20000814), for the element content of
the text nodes of a deployment descriptor.

• The deployment descriptor must be valid against the schema. Web containers and tools that
manipulate web applications have a wide range of options for checking the validity of a WAR.
This includes checking the validity of the deployment descriptor document held within.

139

https://jakarta.ee/xml/ns/jakartaee/
http://www.w3.org/TR/2000/WD-xml-2e-20000814

Additionally, it is recommended that web containers and tools that manipulate web applications
provide a level of semantic checking. For example, it should be checked that a role referenced in
a security constraint has the same name as one of the security roles defined in the deployment
descriptor.

In cases of non-conformant web applications, tools and containers should inform the developer
with descriptive error messages. High-end application server vendors are encouraged to supply
this kind of validity checking in the form of a tool separate from the container.

• The sub elements under web-app can be in an arbitrary order in this version of the specification.
Because of the restriction of XML Schema, The multiplicity of the elements distributable,
session-config, welcome-file-list, jsp-config, login-config, and locale-encoding-mapping-list
was changed from optional to 0 or more. The containers must inform the developer with a
descriptive error message when the deployment descriptor contains more than one element of
session-config, jsp-config, and login-config. The container must concatenate the items in
welcome-file-list and locale-encoding-mapping-list when there are multiple occurrences. The
multiple occurrence of distributable must be treated exactly in the same way as the single
occurrence of distributable.

• URI paths specified in the deployment descriptor are assumed to be in URL-decoded form. The
containers must inform the developer with a descriptive error message when URL contains
CR(#xD) or LF(#xA). The containers must preserve all other characters including whitespace in
URL.

• Containers must attempt to canonicalize paths in the deployment descriptor. For example, paths
of the form /a/../b must be interpreted as /b. Paths beginning or resolving to paths that begin
with ../ are not valid paths in the deployment descriptor.

• URI paths referring to a resource relative to the root of the WAR, or a path mapping relative to
the root of the WAR, unless otherwise specified, should begin with a leading "/".

• In elements whose value is an enumerated type, the value is case sensitive.

14.3. Deployment Descriptor
The deployment descriptor for this revision of the specification is available at https://jakarta.ee/
xml/ns/jakartaee/web-app_6_2.xsd

14.4. Examples
The following examples illustrate the usage of the definitions listed in the deployment descriptor
schema.

14.4.1. A Basic Example

Basic Deployment Descriptor Example

<?xml version="1.0" encoding="UTF-8"?>
<web-app xmlns="https://jakarta.ee/xml/ns/jakartaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://jakarta.ee/xml/ns/jakartaee

140

https://jakarta.ee/xml/ns/jakartaee/web-app_6_2.xsd
https://jakarta.ee/xml/ns/jakartaee/web-app_6_2.xsd

 web-app_6_2.xsd"
 version="6.2-M1">

 <display-name>A Simple Application</display-name>

 <context-param>
 <param-name>Webmaster</param-name>
 <param-value>webmaster@example.com</param-value>
 </context-param>

 <servlet>
 <servlet-name>catalog</servlet-name>
 <servlet-class>com.example.CatalogServlet</servlet-class>
 <init-param>
 <param-name>catalog</param-name>
 <param-value>Spring</param-value>
 </init-param>
 </servlet>

 <servlet-mapping>
 <servlet-name>catalog</servlet-name>
 <url-pattern>/catalog/*</url-pattern>
 </servlet-mapping>

 <session-config>
 <session-timeout>30</session-timeout>
 </session-config>

 <mime-mapping>
 <extension>pdf</extension>
 <mime-type>application/pdf</mime-type>
 </mime-mapping>

 <welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.html</welcome-file>
 </welcome-file-list>

 <error-page>
 <error-code>404</error-code>
 <location>/404.html</location>
 </error-page>

</web-app>

14.4.2. An Example of Security

141

Deployment Descriptor Example Using Security

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="https://jakarta.ee/xml/ns/jakartaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://jakarta.ee/xml/ns/jakartaee
 web-app_6_2.xsd"
 version="6.2-M1">

 <display-name>A Secure Application</display-name>

 <servlet>
 <servlet-name>catalog</servlet-name>
 <servlet-class>com.example.CatalogServlet</servlet-class>
 <init-param>
 <param-name>catalog</param-name>
 <param-value>Spring</param-value>
 </init-param>
 <security-role-ref>
 <role-name>MGR</role-name>
 <!-- role name used in code -->
 <role-link>manager</role-link>
 </security-role-ref>
 </servlet>

 <security-role>
 <role-name>manager</role-name>
 </security-role>

 <servlet-mapping>
 <servlet-name>catalog</servlet-name>
 <url-pattern>/catalog/*</url-pattern>
 </servlet-mapping>

 <security-constraint>
 <web-resource-collection>
 <web-resource-name>SalesInfo</web-resource-name>
 <url-pattern>/salesinfo/*</url-pattern>
 <http-method>GET</http-method>
 <http-method>POST</http-method>
 </web-resource-collection>
 <auth-constraint>
 <role-name>manager</role-name>
 </auth-constraint>
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
 </security-constraint>
</web-app>

142

Chapter 15. Requirements related to other
Specifications
This chapter lists the requirements for web containers that are included in products that also
include other Jakarta technologies.

In the following sections any reference to Jakarta applies to not only the full Jakarta EE profile but
also any profile that includes support for servlet, like the Jakarta Web Profile. For more information
on profiles please refer to the Jakarta EE Platform Specification.

15.1. Sessions
Distributed servlet containers that are part of a Jakarta EE Platform implementation must support
the mechanism necessary for migrating other Jakarta objects from one JVM to another.

15.2. Web Applications

15.2.1. Web Application Class Loader

Servlet containers that are part of a Jakarta EE Platform product should not allow the application to
override Java SE or Jakarta EE platform classes, such as those in java.*, javax.*, and jakarta.*
namespaces, that either Java SE or Jakarta EE do not allow to be modified.

15.2.2. Web Application Environment

The Jakarta EE Platform defines a naming environment that allows applications to easily access
resources and external information without explicit knowledge of how the external information is
named or organized.

As servlets are an integral component type of Jakarta technology, provision has been made in the
web application deployment descriptor for specifying information allowing a servlet to obtain
references to resources and enterprise beans. The deployment elements that contain this
information are:

• env-entry

• ejb-ref

• ejb-local-ref

• resource-ref

• resource-env-ref

• service-ref

• message-destination-ref

• persistence-context-ref

• persistence-unit-ref

143

The developer uses these elements to describe certain objects that the web application requires to
be registered in the JNDI namespace in the web container at runtime.

The requirements of the Jakarta environment with regard to setting up the environment are
described in Chapter 5 of the Jakarta EE Platform Specification.

Servlet containers that are part of a Jakarta technology-compliant implementation are required to
support this syntax. Consult the Jakarta EE Platform Specification for more details. This type of
servlet container must support lookups of such objects and calls made to those objects when
performed on a thread managed by the servlet container. This type of servlet container should
support this behavior when performed on threads created by the developer, but are not currently
required to do so. Such a requirement may be added to a future version of this specification.
Developers are cautioned that depending on this capability for application-created threads is not
recommended, as it is non-portable.

15.3. Security
This section details the additional security requirements for web containers when included in a
product that also contains Jakarta Enterprise Beans, Jakarta Authorisation and/or Jakarta
Authentication. The following sections call out the requirements

15.3.1. Propagation of Security Identity in Jakarta Enterprise Bean Calls

A security identity, or principal, must always be provided for use in a call to an enterprise bean.
The default mode in calls to enterprise beans from web applications is for the security identity of a
web user to be propagated to the Jakarta Enterprise Bea container.

In other scenarios, web containers are required to allow web users that are not known to the web
container or to the Jakarta Enterprise Bean container to make calls:

• Web containers are required to support access to web resources by clients that have not
authenticated themselves to the container. This is the common mode of access to web resources
on the Internet.

• Application code may be the sole processor of signon and customization of data based on caller
identity.

In these scenarios, a web application deployment descriptor may specify a run-as element. When a
run-as role is specified for a servlet, the servlet container must propagate a principal mapped to the
role as the security identity in any call from the servlet to an Jakarta Enterprise Beans, including
calls originating from the servlet’s init and destroy methods. The security role name must be one of
the security role names defined for the web application.

For web containers running as part of a Jakarta EE platform, the use of run-as elements must be
supported both for calls to Jakarta Enterprise Bean components within the same Jakarta
application, and for calls to Jakarta Enterprise Bean components deployed in other Jakarta
applications.

144

15.3.2. Container Authorization Requirements

In a Jakarta product or in a product that includes support for Jakarta Authorization, all servlet
containers MUST implement support for Jakarta Authorization. The Jakarta Authorization
Specification is available for download at https://jakarta.ee/specifications/authorization/

15.3.3. Container Authentication Requirements

In a Jakarta product, or a product that includes support for Jakarta Authentication, all servlet
containers MUST implement the Servlet Container Profile of the Jakarta Authentication
specification. The Jakarta Authentication specification is available for download at
https://jakarta.ee/specifications/authentication/

15.4. Deployment
This section details the deployment descriptor, packaging and deployment descriptor processing
requirements of a Jakarta EE Platform technology compliant container and products that include
support for JSP and or web services.

15.4.1. Deployment Descriptor Elements

The following additional elements exist in the web application deployment descriptor to meet the
requirements of web containers that are JSP pages enabled or part of a Jakarta application server.
They are not required to be supported by containers wishing to support only the servlet
specification:

• jsp-config

• Syntax for declaring resource references (env-entry, ejb-ref, ejb-local-ref, resource-ref,
resource-env-ref)

• Syntax for specifying the message destination(message-destination, message-destination-ref)

• Reference to a web service (service-ref)

• Reference to a Persistence context (persistence-context-ref)

• Reference to a Persistence Unit (persistence-unit-ref)

The syntax for these elements is now held in the Jakarta Server Pages specification version 3.0, and
the Jakarta EE Platform specification.

15.4.2. Packaging and Deployment of Jakarta XML Web Services
Components

Web containers may choose to support running components written to implement a web service
endpoint as defined by the Jakarta XML Web Services specifications. Web containers embedded in a
Jakarta conformant implementation are required to support Jakarta XML Web Services web service
components. This section describes the packaging and deployment model for web containers when
included in a product which also supports Jakarta XML Web Services.

Jakarta XML Web Services specification https://jakarta.ee/specifications/enterprise-ws/ defines

145

https://jakarta.ee/specifications/authorization/
https://jakarta.ee/specifications/authentication/
https://jakarta.ee/specifications/enterprise-ws/

the model for packaging a web service interface with its associated WSDL description and
associated classes. It defines a mechanism for Jakarta XML Web Services enabled web containers to
link to a component that implements this web service. A Jakarta XML Web Services implementation
component uses the APIs defined by the Jakarta XML Web Services specification, which defines its
contract with the Jakarta XML Web Services enabled web containers. It is packaged into the WAR
file. The web service developer makes a declaration of this component using the usual <servlet>
declaration.

Jakarta XML Web Services enabled web containers must support the developer in using the web
deployment descriptor to define the following information for the endpoint implementation
component, using the same syntax as for HTTP servlet components using the servlet element. The
child elements are used to specify endpoint information in the following way:

• the servlet-name element defines a logical name which may be used to locate this endpoint
description among the other web components in the WAR

• the servlet-class element provides the fully qualified Java class name of this endpoint
implementation

• the description element(s) may be used to describe the component and may be displayed in a
tool

• the load-on-startup element specifies the order in which the component is initialized relative to
other web components in the web container

• the security-role-ref element may be used to test whether the authenticated user is in a logical
security role

• the run-as element may be used to override the identity propagated to Jakarta Enterprise Beans
called by this component

Any servlet initialization parameters defined by the developer for this web component may be
ignored by the container. Additionally, the Jakarta XML Web Services enabled web component
inherits the traditional web component mechanisms for defining the following information:

• mapping of the component to the web container’s URL namespace using the servlet mapping
technique

• authorization constraints on web components using security constraints

• the ability to use servlet filters to provide low-level byte stream support for manipulating
Jakarta XML Web Services messages using the filter mapping technique

• the time out characteristics of any HTTP sessions that are associated with the component

• links to Jakarta objects stored in the JNDI namespace

All of the above requirements can be met using the pluggability mechanism defined in Section 8.2,
“Pluggability”.

15.4.3. Rules for Processing the Deployment Descriptor

The containers and tools that are part of Jakarta EE Platform technology-compliant implementation
are required to validate the deployment descriptor against the XML schema for structural

146

correctness. The validation is recommended, but not required for the web containers and tools that
are not part of a Jakarta EE Platform technology compliant implementation.

15.5. Annotations and Resource Injection
The Java Metadata specification (JSR-175), which is part of J2SE 5.0 and later versions, provides a
means of specifying configuration data in Java code. Metadata in Java code is also referred to as
annotations. In the Jakarta EE Platform, annotations are used to declare dependencies on external
resources and configuration data in Java code without the need to define that data in a
configuration file.

This section describes the behavior of annotations and resource injection in Jakarta technology
compliant servlet containers. This section expands on the Jakarta EE Platform specification section
5 titled “Resources, Naming, and Injection”.

Annotations must be supported on container managed classes that implement the following
interfaces and are declared in the web application deployment descriptor or using the annotations
defined in Section 8.1, “Annotations and Pluggability” or added programmatically.

Table 15-1 Components and Interfaces supporting Annotations and Resource Injection

Component Type Classes implementing the following interfaces

Servlets jakarta.servlet.Servlet

Filters jakarta.servlet.Filter

Listeners jakarta.servlet.ServletContextListener
jakarta.servlet.ServletContextAttributeListener
jakarta.servlet.ServletRequestListener
jakarta.servlet.ServletRequestAttributeListener
jakarta.servlet.http.HttpSessionListener
jakarta.servlet.http.HttpSessionAttributeListener
jakarta.servlet.http.HttpSessionIdListener
jakarta.servlet.AsyncListener

Handlers jakarta.servlet.http.HttpUgradeHandler

Web containers are not required to perform resource injection for annotations occurring in classes
other than those listed above in TABLE 15-1.

References must be injected prior to any lifecycle methods being called and the component
instance being made available the application.

In a web application, classes using resource injection will have their annotations processed only if
they are located in the WEB-INF/classes directory, or if they are packaged in a jar file located in WEB-
INF/lib. Containers may optionally process resource injection annotations for classes found
elsewhere in the application’s classpath.

15.5.1. Handling of metadata-complete

The web application deployment descriptor contains a metadata-complete attribute on the web-app

147

element. The metadata-complete attribute defines whether the web.xml descriptor is complete, or
whether other sources of metadata used by the deployment process should be considered.
Metadata may come from the web.xml file, web-fragment.xml files, annotations on class files in WEB-
INF/classes, and annotations on classes in jar files in the WEB-INF/lib directory. If metadata-complete
is set to true, the deployment tool only examines the web.xml file and must ignore annotations such
as @WebServlet, @WebFilter, and @WebListener present in the class files of the application, and must
also ignore any web-fragment.xml descriptor packaged in a jar file in WEB-INF/lib. If the metadata-
complete attribute is not specified or is set to false, the deployment tool must examine the class files
and web-fragment.xml files for metadata, as previously specified.

The web-fragment.xml also contains the metadata-complete attribute on the web-fragment element. The
attribute defines whether the web-fragment.xml descriptor is complete for the given fragment, or
whether the deployment tool should scan for annotations in the classes in the associated jar file. If
metadata-complete is set to true the deployment tool only examines the web-fragment.xml and must
ignore annotations such as @WebServlet, @WebFilter and @WebListener present in the class files of the
fragment. If metadata-complete is not specified or is set to false the deployment tool must examine
the class files for metadata.

Following are the annotations that are required by a Jakarta technology compliant web container.

15.5.2. @DeclareRoles

This annotation is used to define the security roles that comprise the security model of the
application. This annotation is specified on a class, and it is used to define roles that could be tested
(i.e., by calling isUserInRole) from within the methods of the annotated class. Roles that are
implicitly declared as a result of their use in a @RolesAllowed need not be explicitly declared using
the @DeclareRoles annotaion. The @DeclareRoles annotation may only be defined in classes
implementing the jakarta.servlet.Servlet interface or a subclass thereof.

Following is an example of how this annotation would be used.

@DeclareRoles Annotation Example

@DeclareRoles("BusinessAdmin")
public class CalculatorServlet extends HttpServlet {
 ...
}

Declaring @DeclareRoles ("BusinessAdmin") is equivalent to defining the following in the web.xml.

@DeclareRoles web.xml

<web-app>
 <security-role>
 <role-name>BusinessAdmin</role-name>
 </security-role>
</web-app>

This annotation is not used to relink application roles to other roles. When such linking is

148

necessary, it is accomplished by defining an appropriate security-role-ref in the associated
deployment descriptor.

When a call is made to isUserInRole from the annotated class, the caller identity associated with the
invocation of the class is tested for membership in the role with the same name as the argument to
isCallerInRole. If a security-role-ref has been defined for the argument role-name the caller is
tested for membership in the role mapped to the role-name.

For further details on the @DeclareRoles annotation refer to the Jakarta Annotations for the Jakarta
EE Platform specification section 2.12.

15.5.3. @EJB Annotation

Jakarta Enterprise Beans 4.0 components may be referenced from a web component using the @EJB
annotation. The @EJB annotation provides the equivalent functionality of declaring the ejb-ref or
ejb-local-ref elements in the deployment descriptor. Fields that have a corresponding @EJB
annotation are injected with the a reference to the corresponding Jakarta Enterprise Bean
component.

An example:

@EJB private ShoppingCart myCart;

In the case above a reference to the Jakarta Enterprise Bean component myCart is injected as the
value of the private field myCart prior to the classs declaring the injection being made available.

The behavior the @EJB annotation is further detailed in section 11.5.1 of the Jakarta Enterprise Bean
4.0 specification.

15.5.4. @EJBs Annotation

The @EJBs annotation allows more than one @EJB annotations to be declared on a single resource.

An example:

@EJBs Annotation Example

@EJBs({@EJB(Calculator),@EJB(ShoppingCart)})
public class ShoppingCartServlet extends HttpServlet {
 ...
}

The example above the Jakarta Enterprise Bean components ShoppingCart and Calculator are made
available to ShoppingCartServlet. The ShoppingCartServlet must still look up the references using
JNDI but the Jakarta Enterprise Beans do not need to declared in the web.xml file.

149

15.5.5. @Resource Annotation

The @Resource annotation is used to declare a reference to a resource such as a data source, Jakarta
Messaging (JMS) destination, or environment entry. This annotation is equivalent to declaring a
resource-ref, message-destination-ref or env-ref, or resource-env-ref element in the deployment
descriptor.

The @Resource annotation is specified on a class, method or field. The container is responsible
injecting references to resources declared by the @Resource annotation and mapping it to the proper
JNDI resources. See the Jakarta EE Platform Specification Chapter 5 for further details.

An example of a @Resource annotation follows:

@Resource Example

@Resource
private javax.sql.DataSource catalogDS;

public getProductsByCategory() {

 // get a connection and execute the query
 Connection conn = catalogDS.getConnection();
 ...
}

In the example code above, a servlet, filter, or listener declares a field catalogDS of type
javax.sql.DataSource for which the reference to the data source is injected by the container prior to
the component being made available to the application. The data source JNDI mapping is inferred
from the field name catalogDS and type (javax.sql.DataSource). Moreover, the catalogDS resource no
longer needs to be defined in the deployment descriptor.

The semantics of the @Resource annotation are further detailed in the Jakarta Annotations for the
Jakarta EE Platform specification Section 5.2.5.

15.5.6. @PersistenceContext Annotation

This annotation specifies the container managed entity manager for referenced persistence units.

An example:

@PersistenceContext Example

@PersistenceContext(type=EXTENDED)
EntityManager em;

The behavior the @PersistenceContext annotation is further detailed in section 10.5.1 of the Jakarta
Persistence API, Version 3.0.

150

15.5.7. @PersistenceContexts Annotation

The PersistenceContexts annotation allows more than one @PersistenceContext to be declared on a
resource. The behavior the @PersistenceContexts annotation is further detailed in section 10.5.1 of
the Jakarta Persistence API, version 3.0.

15.5.8. @PersistenceUnit Annotation

The @PersistenceUnit annotation provides Jakarta Enterprise Beans components declared in a
servlet a reference to a entity manager factory. The entity manager factory is bound to a separate
persistence.xml configuration file as described in section 11.10 of the Jakarta Enterprise Bean 4.0
specification.

An example:

@PersistenceUnit Example

@PersistenceUnit
EntityManagerFactory emf;

The behavior the @PersistenceUnit annotation is further detailed in section 10.5.2 of the Jakarta
Persistence API, version 3.0.

15.5.9. @PersistenceUnits Annotation

This annotation allows for more than one @PersistentUnit annotations to be declared on a resource.
The behavior the @PersistenceUnits annotation is further detailed in section 10.5.2 of the Jakarta
Persistence API, version 3.0.

15.5.10. @PostConstruct Annotation

The @PostConstruct annotation is declared on a method that does not take any arguments, and must
not throw any checked exceptions. The return value must be void. The method MUST be called after
the resources injections have been completed and before any lifecycle methods on the component
are called.

An example:

@PostConstruct Example

@PostConstruct
public void postConstruct() {
 ...
}

The example above shows a method using the @PostConstruct annotation.

The @PostConstruct annotation MUST be supported by all classes that support dependency injection
and called even if the class does not request any resources to be injected. If the method throws an

151

unchecked exception the class MUST not be put into service and no method on that instance can be
called.

Refer to the Jakarta EE Platform specification section 2.5 and the Jakarta Annotations specification
section 2.5 for more details.

15.5.11. @PreDestroy Annotation

The @PreDestroy annotation is declared on a method of a container managed component. The
method is called prior to component being removed by the container.

An example:

@PreDestroy Example

@PreDestroy
public void cleanup() {
 // clean up any open resources
 ...
}

The method annotated with @PreDestroy must return void and must not throw a checked exception.
The method may be public, protected, package private or private. The method must not be static
however it may be final.

Refer to the Jakarta Annotations specification section 2.6 for more details.

15.5.12. @Resources Annotation

The @Resources annotation acts as a container for multiple @Resource annotations because the
Jakarta MetaData specification does not allow for multiple annotations with the same name on the
same annotation target.

An example:

@Resources Example

@Resources ({
 @Resource(name="myDB" type=javax.sql.DataSource),
 @Resource(name="myMQ" type=jakarta.jms.ConnectionFactory)
})
public class CalculatorServlet extends HttpServlet {
 ...
}

In the example above a JMS connection factory and a data source are made available to the
CalculatorServlet by means of an @Resources annotation.

The semantics of the @Resources annotation are further detailed in the Jakarta Annotations
specification specification section 2.0

152

15.5.13. @RunAs Annotation

The @RunAs annotation is equivalent to the run-as element in the deployment descriptor. The @RunAs
annotation may only be defined in classes implementing the jakarta.servlet.Servlet interface or a
subclass thereof.

An example:

@RunAs Example

@RunAs("Admin")
public class CalculatorServlet extends HttpServlet {

 @EJB private ShoppingCart myCart;

 public void doGet(HttpServletRequest, req, HttpServletResponse res) {
 ...
 myCart.getTotal();
 ...
 }

 ...
}

The @RunAs("Admin") statement would be equivalent to defining the following in the web.xml.

@RunAs web.xml Example

<servlet>
 <servlet-name>CalculatorServlet</servlet-name>
 <run-as>Admin</run-as>
</servlet>

The example above shows how a servlet uses the @RunAs annotation to propagate the security
identity Admin to an Jakarta Enterprise Bean component when the myCart.getTotal() method is
called. For further details on propagating identities see Section 15.3.1, “Propagation of Security
Identity in Jakarta Enterprise Bean Calls”.

For further details on the @RunAs annotation refer to the Jakarta Annotations specification section
2.7.

15.5.14. @WebServiceRef Annotation

The @WebServiceRef annotation provides a reference to a web service in a web component in
same way as a resource-ref element would in the deployment descriptor.

An example:

@WebServiceRef

153

private MyService service;

In this example a reference to the web service MyService will be injected to the class declaring the
annotation.

This annotation and behavior are further detailed in the Jakarta XML Web Services Specification
section 7.

15.5.15. @WebServiceRefs Annotation

This annotation allows for more than one @WebServiceRef annotations to be declared on a single
resource. The behavior of this annotation is further detailed in the Jakarta XML Web Services
Specification.

15.5.16. Contexts and Dependency Injection for Jakarta EE Platform
Requirements

In a product that supports Contexts and Dependency Injection (CDI) for Jakarta EE Platform and in
which CDI is enabled, implementations MUST support the use of CDI managed beans. Servlets,
filters, listeners and HttpUpgradeHandlers MUST support CDI injection and the use of interceptors
as described in Section 5.24, "Support for Dependency Injection" of the Jakarta EE Platform 11
specification.

154

Appendix A: Change Log
This document is the final release of the Jakarta Servlet 6.2-M1 specification developed under the
Jakarta EE Working Group.

A.1. Changes Since Jakarta Servlet 6.1
Issue 7 [https://github.com/jakartaee/servlet/issues/7]

Clarify that welcome files are processed before filter mapping occurs.

Issue 11 [https://github.com/jakartaee/servlet/issues/11]

Clarify the behaviour of ServletContext.getRealPath() when the virtual path can be mapped to a
physical path but the physical path does not exist.

Issue 18 [https://github.com/jakartaee/servlet/issues/18]

Clarify the behaviour of HttpServletRequest.getContextPath().

Issue 25 [https://github.com/jakartaee/servlet/issues/25]

Document the risks created by a filter modifying the ServletResponse. Add a recommendation
that filters that modify the ServletResponse should endeavour to minimise the risk of any
breakage and require a minimum level of action by such filters to mitigate the biggest risk.

Issue 542 [https://github.com/jakartaee/servlet/issues/542]

Add support for RFC 8297 (Early Hints) via a new method sendEarlyHints() on the
HttpServletResponse.

Clarify the description of when and how segments are re-encoded as part of URI Path
Canonicalization.

Issue 661 [https://github.com/jakartaee/servlet/issues/661]

Limit the requirement on PushBuilder to remove cookies to those Cookie instances where
Cookie.getMaxAge() returns zero. This allows Cookie instances where Cookie.getMaxAge() returns
a negative value to be retained which is consistent with (per RFC 6265) such cookies being
retained until "the current session is over" as defined by the user agent.

Issue 859 [https://github.com/jakartaee/servlet/issues/859]

Correct the Javadoc for HttpServletRequest.getRequestURI().

Issue 863 [https://github.com/jakartaee/servlet/issues/863]

Remove section 15.2.3 "JNDI Name for Web Module Context Root URL" as it was poorly specified,
untested by the TCK, rarely implemented and rarely used.

Issue 867 [https://github.com/jakartaee/servlet/issues/867]

When processing the If-Modified-Since header in HttpServerlet.service(), invalid header
values must be ignored as per RFC 9110.

155

https://github.com/jakartaee/servlet/issues/7
https://github.com/jakartaee/servlet/issues/11
https://github.com/jakartaee/servlet/issues/18
https://github.com/jakartaee/servlet/issues/25
https://github.com/jakartaee/servlet/issues/542
https://github.com/jakartaee/servlet/issues/661
https://github.com/jakartaee/servlet/issues/859
https://github.com/jakartaee/servlet/issues/863
https://github.com/jakartaee/servlet/issues/867

A.2. Changes Since Jakarta Servlet 6.0
Issue 59 [https://github.com/eclipse-ee4j/servlet-api/issues/59]

A new attribute, jakarta.servlet.error.query_string, has been added to the attributes that must
be set on the request as part of an error dispatch.

Issue 74 [https://github.com/eclipse-ee4j/servlet-api/issues/74]

Add additional methods to HttpServletResponse to allow the status code used with the redirect to
be chosen and/or the response body used for the redirect to be controlled.

Issue 95 [https://github.com/eclipse-ee4j/servlet-api/issues/95]

Clarify that Servlet containers are required to support HTTPS.

Issue 130 [https://github.com/eclipse-ee4j/servlet-api/issues/130]

Add the jakarta.servlet.request.secure_protocol attribute to the list of request attributes that
servlet containers are required to populate if the request has been transmitted over a secure
protocol.

Issue 159 [https://github.com/eclipse-ee4j/servlet-api/issues/159]

Clarify the behaviour of the various methods for adding headers when passed null or the empty
string.

Issue 164 [https://github.com/eclipse-ee4j/servlet-api/issues/164]

Clarify Javadoc for ServletResponse and HttpServletResponse methods that are NO-OPs once the
response has been committed.

Issue 273 [https://github.com/eclipse-ee4j/servlet-api/issues/273]

Clarify the meaning of "write operation" in the Javadoc for ServletOutputStream.isReady() and,
in particular, that this does not include ServletOutputStream.close(), AsyncContext.complete()
nor any of the AsyncContext.dispatch() methods. Further clarify the Javadoc regarding the
serialization of asynchronous dispatches.

Issue 275 [https://github.com/eclipse-ee4j/servlet-api/issues/275]

Containers may provide an option to send redirects using a location header with a relative URL.

Issue 300 [https://github.com/eclipse-ee4j/servlet-api/issues/300]

Correct the wording in section 12.2 since the context path is not always the empty string when a
servlet is mapped using context root mapping. Also clarify that context root mapping occurs for
URIs with or without the trailing /.

Issue 316 [https://github.com/eclipse-ee4j/servlet-api/issues/316]

Clarify the behaviour of HttpServletMapping.getMatchValue().

Issue 325 [https://github.com/eclipse-ee4j/servlet-api/issues/325]

Clarify the behaviour of getDateHeader() and getIntHeader() when multiple headers with the
same name are present in the HttpServletRequest. The expected behaviour is aligned with
getHeader().

156

https://github.com/eclipse-ee4j/servlet-api/issues/59
https://github.com/eclipse-ee4j/servlet-api/issues/74
https://github.com/eclipse-ee4j/servlet-api/issues/95
https://github.com/eclipse-ee4j/servlet-api/issues/130
https://github.com/eclipse-ee4j/servlet-api/issues/159
https://github.com/eclipse-ee4j/servlet-api/issues/164
https://github.com/eclipse-ee4j/servlet-api/issues/273
https://github.com/eclipse-ee4j/servlet-api/issues/275
https://github.com/eclipse-ee4j/servlet-api/issues/300
https://github.com/eclipse-ee4j/servlet-api/issues/316
https://github.com/eclipse-ee4j/servlet-api/issues/325

Issue 336 [https://github.com/eclipse-ee4j/servlet-api/issues/336]

Add new constants to HttpServletResponse for the HTTP response codes 308, 421, 422 and 426.

Issue 415 [https://github.com/eclipse-ee4j/servlet-api/issues/415]

Add overloaded setCharacterEncoding() methods that support Charset.

Issue 431 [https://github.com/eclipse-ee4j/servlet-api/issues/431]

ServletRequest.getParameter() and the other parameter methods are now documented to throw
a runtime exception if the call triggers parsing of the parameters and an error is encountered
during that parsing. Containers may provide container specific options to handle some or all of
such errors in an alternative manner that may include not throwing the runtime exception.

Issue 443 [https://github.com/eclipse-ee4j/servlet-api/issues/443]

Remove references to the SecurityManager and associated APIs.

Issue 453 [https://github.com/eclipse-ee4j/servlet-api/issues/453]

Add a security warning and a clarification of canonicalization requirements to all ServletContext
methods that accept a path parameter.

Issue 463 [https://github.com/eclipse-ee4j/servlet-api/issues/463]

Clarify Javadoc for MultipartConfigElement and MultipartConfig that sizes are in bytes.

Issue 468 [https://github.com/eclipse-ee4j/servlet-api/issues/468]

Update references to the HTTP RFCs to use the current versions.

Issue 469 [https://github.com/eclipse-ee4j/servlet-api/issues/469]

Remove sensitive HTTP headers from responses to TRACE requests.

Issue 473 [https://github.com/eclipse-ee4j/servlet-api/issues/473]

The Javadoc for HttpServletRequest.isTrailerFieldsReady() has been corrected to correctly
describe the default implementation.

Issue 484 [https://github.com/eclipse-ee4j/servlet-api/issues/484]

Add ByteBuffer support to ServletInputStream and ServletOutputStream.

Clarify the expected behavior if the container receives an HTTP request using the CONNECT method.

Issue 538 [https://github.com/eclipse-ee4j/servlet-api/issues/538]

Deprecate support for HTTP/2 server push and make implementaing support for this feature
optional.

Issue 544 [https://github.com/eclipse-ee4j/servlet-api/issues/544]

Require that all error dispatches are performed as HTTP GET requests with the original HTTP
method being made available via a new request attribute jakarta.servlet.error.method.

Issue 546 [https://github.com/eclipse-ee4j/servlet-api/issues/546]

Provide a mechanism to allow applications to interact with the HttpSession object outside of the
standard HTTP request processing. This is expected to be particularly useful to applications

157

https://github.com/eclipse-ee4j/servlet-api/issues/336
https://github.com/eclipse-ee4j/servlet-api/issues/415
https://github.com/eclipse-ee4j/servlet-api/issues/431
https://github.com/eclipse-ee4j/servlet-api/issues/443
https://github.com/eclipse-ee4j/servlet-api/issues/453
https://github.com/eclipse-ee4j/servlet-api/issues/463
https://github.com/eclipse-ee4j/servlet-api/issues/468
https://github.com/eclipse-ee4j/servlet-api/issues/469
https://github.com/eclipse-ee4j/servlet-api/issues/473
https://github.com/eclipse-ee4j/servlet-api/issues/484
https://github.com/eclipse-ee4j/servlet-api/issues/538
https://github.com/eclipse-ee4j/servlet-api/issues/544
https://github.com/eclipse-ee4j/servlet-api/issues/546

using the Jakarta WebSocket API.

Issue 571 [https://github.com/eclipse-ee4j/servlet-api/issues/571]

Clarify the behaviour of Cookie.setAttribute(String,String) and Cookie.getAttribute(String)
with cookie attributes such as HttpOnly, Secure and Partitioned that do not have a value.

A.3. Changes Since Jakarta Servlet 5.0
The minimum Java version has been increased to Java 11.

Issue 18 [https://github.com/eclipse-ee4j/servlet-api/issues/18]

Clarify the decoding and normalization of URI paths.

Issue 37 [https://github.com/eclipse-ee4j/servlet-api/issues/37]

Update Cookie class, related classes and the specification to remove references to RFC 2109 and
to replace them with RFC 6265.

Issue 105 [https://github.com/eclipse-ee4j/servlet-api/issues/105]

Clarify the behaviour of getRealPath(String).

Issue 133 [https://github.com/eclipse-ee4j/servlet-api/issues/133]

Add support for the HTTP PATCH method.

Issue 175 [https://github.com/eclipse-ee4j/servlet-api/issues/175]

Provide generic attribute support to cookies, including session cookies, to provide support for
additional attributes such as the SameSite attribute.

Issue 201 [https://github.com/eclipse-ee4j/servlet-api/issues/201]

Add a module-info.java to support using the Servlet API in a modular environment as per the
Java module system and the Jakarta EE 10 recommendations [https://github.com/jakartaee/

specification-committee/blob/master/names.adoc].

Issue 225 [https://github.com/eclipse-ee4j/servlet-api/issues/225]

Deprecated wrapped response handling in the doHead method in favour of container
implementation of HEAD method behavior.

Issue 272 [https://github.com/eclipse-ee4j/servlet-api/issues/272]

Remove the recommendation that Servlet containers should include an `X-Powered-By`header.

Issue 365 [https://github.com/eclipse-ee4j/servlet-api/issues/365]

Correct the list of valid orderings for example 2 in Section 8.2.2, “Ordering of web.xml and web-
fragment.xml”.

Issue 368 [https://github.com/eclipse-ee4j/servlet-api/issues/368]

Clarify the behaviour of getRemoteAddress().

Issue 377 [https://github.com/eclipse-ee4j/servlet-api/issues/377]

Clarify the behaviour of setCharacterEncoding(null) and similar calls.

158

https://github.com/eclipse-ee4j/servlet-api/issues/571
https://github.com/eclipse-ee4j/servlet-api/issues/18
https://github.com/eclipse-ee4j/servlet-api/issues/37
https://github.com/eclipse-ee4j/servlet-api/issues/105
https://github.com/eclipse-ee4j/servlet-api/issues/133
https://github.com/eclipse-ee4j/servlet-api/issues/175
https://github.com/eclipse-ee4j/servlet-api/issues/201
https://github.com/jakartaee/specification-committee/blob/master/names.adoc
https://github.com/eclipse-ee4j/servlet-api/issues/225
https://github.com/eclipse-ee4j/servlet-api/issues/272
https://github.com/eclipse-ee4j/servlet-api/issues/365
https://github.com/eclipse-ee4j/servlet-api/issues/368
https://github.com/eclipse-ee4j/servlet-api/issues/377

Issue 407 [https://github.com/eclipse-ee4j/servlet-api/issues/407]

Add new methods to obtain unique identifiers for the current request and/or associated
connection.

Issue 411 [https://github.com/eclipse-ee4j/servlet-api/issues/411]

Relax the requirements set out in Section 6.2.2, “Wrapping Requests and Responses” and allow
the container to wrap Requests and Responses to meet the requirements of implementing the
RequestDispatcher functionality.

Issue 416 [https://github.com/eclipse-ee4j/servlet-api/issues/416]

Remove the restriction on programatically added listeners calling some ServletContext getter
methods.

Issue 418 [https://github.com/eclipse-ee4j/servlet-api/issues/418]

Remove API classes and methods that were deprecated in Servlet 5.0 and earlier. This includes
removing the SingleThreadModel and HttpSessionContext interfaces and the HttpUtils class as
well as various deprecated methods.

Add a new method getErrorOnELNotFound() to JspPropertyGroupDescriptor to align with changes in
the Jakarta Pages 3.1 specification.

Clarify the Javadoc for ServletRequest.isAsyncStarted() to align it with the specification text.

Update the Javadoc to clarify the scheduling implications when ServletInputStream.isReady() or
ServletOutputStream.isReady() return false.

Issue 460 [https://github.com/eclipse-ee4j/servlet-api/issues/460]

Reword the description of uncovered HTTP methods for improved clarity.

A.4. Compatibility with Jakarta Servlet Specification
Version 4.0
Jakarta Servlet version 5.0 is only a change of namespaces (see Section A.5, “Changes Since Jakarta
Servlet 4.0”). Thus, migrating a Servlet 4.0 project to Servlet 5.0 and above, requires the
replacement of the namespace javax.* with jakarta.*.

A.5. Changes Since Jakarta Servlet 4.0
The only major change was a change of namespaces. The javax.* namespaces have been replaced
with jakarta.*.

159

https://github.com/eclipse-ee4j/servlet-api/issues/407
https://github.com/eclipse-ee4j/servlet-api/issues/411
https://github.com/eclipse-ee4j/servlet-api/issues/416
https://github.com/eclipse-ee4j/servlet-api/issues/418
https://github.com/eclipse-ee4j/servlet-api/issues/460

160

Glossary
Application Developer

The producer of a web application. The output of an Application Developer is a set of servlet
classes, JSP pages, HTML pages, and supporting libraries and files (such as images, compressed
archive files, etc.) for the web application. The Application Developer is typically an application
domain expert. The developer is required to be aware of the servlet environment and its
consequences when programming, including concurrency considerations, and create the web
application accordingly.

Application Assembler

Takes the output of the Application Developer and ensures that it is a deployable unit. Thus, the
input of the Application Assembler is the servlet classes, JSP pages, HTML pages, and other
supporting libraries and files for the web application. The output of the Application Assembler is
a web application archive or a web application in an open directory structure.

Deployer

The Deployer takes one or more web application archive files or other directory structures
provided by an Application Developer and deploys the application into a specific operational
environment. The operational environment includes a specific servlet container and web server.
The Deployer must resolve all the external dependencies declared by the developer. To perform
this role, the deployer uses tools provided by the Servlet Container Provider.

The Deployer is an expert in a specific operational environment. For example, the Deployer is
responsible for mapping the security roles defined by the Application Developer to the user
groups and accounts that exist in the operational environment where the web application is
deployed.

principal

A principal is an entity that can be authenticated by an authentication protocol. A principal is
identified by a principal name and authenticated by using authentication data. The content and
format of the principal name and the authentication data depend on the authentication protocol.

role (development)

The actions and responsibilities taken by various parties during the development, deployment,
and running of a web application. In some scenarios, a single party may perform several roles;
in others, each role may be performed by a different party.

role (security)

An abstract notion used by an Application Developer in an application that can be mapped by
the Deployer to a user, or group of users, in a security policy domain.

security policy domain

The scope over which security policies are defined and enforced by a security administrator of
the security service. A security policy domain is also sometimes referred to as a realm.

161

security technology domain

The scope over which the same security mechanism, such as Kerberos, is used to enforce a
security policy. Multiple security policy domains can exist within a single technology domain.

Servlet Container Provider

A vendor that provides the runtime environment, namely the servlet container and possibly the
web server, in which a web application runs as well as the tools necessary to deploy web
applications.

The expertise of the Container Provider is in HTTP-level programming. Since this specification
does not specify the interface between the web server and the servlet container, it is left to the
Container Provider to split the implementation of the required functionality between the
container and the server.

servlet definition

A unique name associated with a fully qualified class name of a class implementing the Servlet
interface. A set of initialization parameters can be associated with a servlet definition.

servlet mapping

A servlet definition that is associated by a servlet container with a URL path pattern. All requests
to that path pattern are handled by the servlet associated with the servlet definition.

System Administrator

The person responsible for the configuration and administration of the servlet container and
web server. The administrator is also responsible for overseeing the well-being of the deployed
web applications at run time.

This specification does not define the contracts for system management and administration. The
administrator typically uses runtime monitoring and management tools provided by the
Container Provider and server vendors to accomplish these tasks.

uniform resource locator (URL)

A compact string representation of resources available via the network. Once the resource
represented by a URL has been accessed, various operations may be performed on that resource.
[1] A URL is a type of uniform resource identifier (URI). URLs are typically of the form:

<protocol>//<servername>/<resource>

For the purposes of this specification, we are primarily interested in HTTP based URLs which are
of the form:

http[s]://<servername>[:port]/<url-path>[?<query-string>]

For example:

162

http://www.example.com/products/servlet/index.html

https://example.com/purchase

In HTTP-based URLs, the "/" character is reserved to separate a hierarchical path structure in
the URL-path portion of the URL. The server is responsible for determining the meaning of the
hierarchical structure. There is no correspondence between a URL-path and a given file system
path.

web application

A collection of servlets, JSP pages , HTML documents, and other web resources which might
include image files, compressed archives, and other data. A web application may be packaged
into an archive or exist in an open directory structure.

All compatible servlet containers must accept a web application and perform a deployment of its
contents into their runtime. This may mean that a container can run the application directly
from a web application archive file or it may mean that it will move the contents of a web
application into the appropriate locations for that particular container.

web application archive

A single file that contains all of the components of a web application. This archive file is created
by using standard JAR tools which allow any or all of the web components to be signed.

Web application archive files are identified by the .war extension. A new extension is used
instead of .jar because that extension is reserved for files which contain a set of class files and
that can be placed in the classpath or double clicked using a GUI to launch an application. As the
contents of a web application archive are not suitable for such use, a new extension was in
order.

web application, distributable

A web application that is written so that it can be deployed in a web container distributed across
multiple Java virtual machines running on the same host or different hosts. The deployment
descriptor for such an application uses the distributable element.

[1] See RFC 1738

163

	Jakarta Servlet Specification
	Table of Contents
	Copyright
	Eclipse Foundation Specification License
	Disclaimers

	Jakarta Servlet Specification, Version 6.2-M1
	Preface
	Additional Sources
	Who Should Read This Specification
	API Reference
	Other Jakarta Platform Specifications
	Other Important References
	Providing Feedback

	Chapter 1. Overview
	1.1. What is a Servlet?
	1.2. What is a Servlet Container?
	1.3. An Example
	1.4. Comparing Servlets with Other Technologies

	Chapter 2. The Servlet Interface
	2.1. Request Handling Methods
	2.1.1. HTTP Specific Request Handling Methods
	2.1.2. HEAD Method
	2.1.3. Additional Methods
	2.1.4. Sensitive headers
	2.1.5. Conditional GET Support

	2.2. Number of Instances
	2.3. Servlet Life Cycle
	2.3.1. Loading and Instantiation
	2.3.2. Initialization
	2.3.2.1. Error Conditions on Initialization
	2.3.2.2. Tool Considerations

	2.3.3. Request Handling
	2.3.3.1. Multithreading Issues
	2.3.3.2. Exceptions During Request Handling
	2.3.3.3. Asynchronous processing
	2.3.3.4. Thread Safety
	2.3.3.5. Upgrade Processing

	2.3.4. End of Service

	Chapter 3. The Request
	3.1. HTTP Protocol Parameters
	3.1.1. When Parameters Are Available

	3.2. File Upload
	3.3. Attributes
	3.4. Headers
	3.5. Request URI Path Processing
	3.5.1. Obtaining the URI Path
	3.5.2. URI Path Canonicalization
	3.5.3. Example URIs

	3.6. Request Path Elements
	3.7. Path Translation Methods
	3.8. Non-Blocking IO
	3.9. HTTP/2 Server Push
	3.10. Cookies
	3.11. SSL Attributes
	3.12. Internationalization
	3.13. Request Data Encoding
	3.14. Lifetime of the Request Object

	Chapter 4. Servlet Context
	4.1. Introduction to the ServletContext Interface
	4.2. Scope of a ServletContext Interface
	4.3. Initialization Parameters
	4.4. Configuration Methods
	4.4.1. Programmatically Adding and Configuring Servlets
	4.4.1.1. addServlet(String servletName, String className)
	4.4.1.2. addServlet(String servletName, Servlet servlet)
	4.4.1.3. addServlet(String servletName, Class <? extends Servlet> servletClass)
	4.4.1.4. addJspFile(String servletName, String jspfile)
	4.4.1.5. <T extends Servlet> T createServlet(Class<T> clazz)
	4.4.1.6. ServletRegistration getServletRegistration(String servletName)
	4.4.1.7. Map<String, ? extends ServletRegistration> getServletRegistrations()

	4.4.2. Programmatically Adding and Configuring Filters
	4.4.2.1. addFilter(String filterName, String className)
	4.4.2.2. addFilter(String filterName, Filter filter)
	4.4.2.3. addFilter(String filterName, Class <? extends Filter> filterClass)
	4.4.2.4. <T extends Filter> T createFilter(Class<T> clazz)
	4.4.2.5. FilterRegistration getFilterRegistration(String filterName)
	4.4.2.6. Map<String, ? extends FilterRegistration> getFilterRegistrations()

	4.4.3. Programmatically Adding and Configuring Listeners
	4.4.3.1. void addListener(String className)
	4.4.3.2. <T extends EventListener> void addListener(T t)
	4.4.3.3. void addListener(Class <? extends EventListener> listenerClass)
	4.4.3.4. <T extends EventListener> void createListener(Class<T> clazz)
	4.4.3.5. Annotation processing requirements for programmatically added Servlets, Filters and Listeners

	4.4.4. Programmatically Configuring Session Time Out
	4.4.5. Programmatically Configuring Character Encoding

	4.5. Context Attributes
	4.5.1. Context Attributes in a Distributed Container

	4.6. Resources
	4.7. Multiple Hosts and Servlet Contexts
	4.8. Reloading Considerations
	4.8.1. Temporary Working Directories

	Chapter 5. The Response
	5.1. Buffering
	5.2. Headers
	5.3. HTTP Trailers
	5.4. Non-Blocking IO
	5.5. Convenience Methods
	5.6. Internationalization
	5.7. Closure of the Response Object
	5.8. Lifetime of the Response Object

	Chapter 6. Filtering
	6.1. What is a Filter?
	6.1.1. Examples of Filtering Components

	6.2. Main Concepts
	6.2.1. Filter Lifecycle
	6.2.2. Wrapping Requests and Responses
	6.2.3. Filter Environment
	6.2.4. Configuration of Filters in a Web Application
	6.2.5. Filters and the RequestDispatcher

	Chapter 7. Sessions
	7.1. Session Tracking Mechanisms
	7.1.1. Cookies
	7.1.2. SSL Sessions
	7.1.3. URL Rewriting
	7.1.4. Session Integrity

	7.2. Creating a Session
	7.3. Session Scope
	7.4. Binding Attributes into a Session
	7.5. Session Timeouts
	7.6. Last Accessed Times
	7.7. Important Session Semantics
	7.7.1. Threading Issues
	7.7.2. Distributed Environments
	7.7.3. Client Semantics

	Chapter 8. Annotations and Pluggability
	8.1. Annotations and Pluggability
	8.1.1. @WebServlet
	8.1.2. @WebFilter
	8.1.3. @WebInitParam
	8.1.4. @WebListener
	8.1.5. @MultipartConfig
	8.1.6. Other Annotations / Conventions

	8.2. Pluggability
	8.2.1. Modularity of web.xml
	8.2.2. Ordering of web.xml and web-fragment.xml
	8.2.3. Assembling the Descriptor from web.xml, web-fragment.xml and Annotations
	8.2.4. Shared Libraries / Runtimes Pluggability

	8.3. JSP Container Pluggability
	8.4. Processing Annotations and Fragments

	Chapter 9. Dispatching Requests
	9.1. Obtaining a RequestDispatcher
	9.1.1. Query Strings in Request Dispatcher Paths

	9.2. Using a Request Dispatcher
	9.3. The Include Method
	9.3.1. Included Request Parameters

	9.4. The Forward Method
	9.4.1. Forwarded Query String
	9.4.2. Forwarded Request Parameters

	9.5. Error Handling
	9.6. Obtaining an AsyncContext
	9.7. The Dispatch Method
	9.7.1. Query String
	9.7.2. Dispatched Request Parameters

	Chapter 10. Web Applications
	10.1. Web Applications Within Web Servers
	10.2. Relationship to ServletContext
	10.3. Elements of a Web Application
	10.4. Deployment Hierarchies
	10.5. Directory Structure
	10.5.1. Example of Application Directory Structure

	10.6. Web Application Archive File
	10.7. Web Application Deployment Descriptor
	10.7.1. Common Dependencies
	10.7.2. Web Application Class Loader

	10.8. Replacing a Web Application
	10.9. Error Handling
	10.9.1. Request Attributes
	10.9.2. Error Pages
	10.9.3. Error Filters

	10.10. Welcome Files
	10.11. Web Application Environment
	10.12. Web Application Deployment
	10.13. Inclusion of a web.xml Deployment Descriptor

	Chapter 11. Application Lifecycle Events
	11.1. Introduction
	11.2. Event Listeners
	11.2.1. Event Types and Listener Interfaces
	11.2.2. An Example of Listener Use

	11.3. Listener Class Configuration
	11.3.1. Provision of Listener Classes
	11.3.2. Deployment Declarations
	11.3.3. Listener Registration
	11.3.4. Notifications At Shutdown

	11.4. Deployment Descriptor Example
	11.5. Listener Instances and Threading
	11.6. Listener Exceptions
	11.7. Distributed Containers
	11.8. Session Events

	Chapter 12. Mapping Requests to Servlets
	12.1. Use of URL Paths
	12.2. Specification of Mappings
	12.2.1. Implicit Mappings
	12.2.2. Example Mapping Set

	12.3. Runtime Discovery of Mappings
	12.3.1. Runtime Discovery of Servlet Mappings

	Chapter 13. Security
	13.1. Introduction
	13.2. Declarative Security
	13.3. Programmatic Security
	13.4. Programmatic Security Policy Configuration
	13.4.1. @ServletSecurity Annotation
	13.4.1.1. Examples
	13.4.1.2. Mapping @ServletSecurity to security-constraint
	13.4.1.3. Mapping @HttpConstraint and @HttpMethodConstraint to XML.

	13.4.2. setServletSecurity of ServletRegistration.Dynamic

	13.5. Roles
	13.6. Authentication
	13.6.1. HTTP Basic Authentication
	13.6.2. HTTP Digest Authentication
	13.6.3. Form Based Authentication
	13.6.3.1. Login Form Notes

	13.6.4. HTTPS Client Authentication
	13.6.5. Additional Container Authentication Mechanisms

	13.7. Server Tracking of Authentication Information
	13.8. Specifying Security Constraints
	13.8.1. Combining Constraints
	13.8.2. Example
	13.8.3. Processing Requests
	13.8.4. Uncovered HTTP Protocol Methods
	13.8.4.1. Rules for Security Constraint Configuration
	13.8.4.2. Handling Uncovered HTTP Methods

	13.9. Default Policies
	13.10. Login and Logout

	Chapter 14. Deployment Descriptor
	14.1. Deployment Descriptor Elements
	14.2. Rules for Processing the Deployment Descriptor
	14.3. Deployment Descriptor
	14.4. Examples
	14.4.1. A Basic Example
	14.4.2. An Example of Security

	Chapter 15. Requirements related to other Specifications
	15.1. Sessions
	15.2. Web Applications
	15.2.1. Web Application Class Loader
	15.2.2. Web Application Environment

	15.3. Security
	15.3.1. Propagation of Security Identity in Jakarta Enterprise Bean Calls
	15.3.2. Container Authorization Requirements
	15.3.3. Container Authentication Requirements

	15.4. Deployment
	15.4.1. Deployment Descriptor Elements
	15.4.2. Packaging and Deployment of Jakarta XML Web Services Components
	15.4.3. Rules for Processing the Deployment Descriptor

	15.5. Annotations and Resource Injection
	15.5.1. Handling of metadata-complete
	15.5.2. @DeclareRoles
	15.5.3. @EJB Annotation
	15.5.4. @EJBs Annotation
	15.5.5. @Resource Annotation
	15.5.6. @PersistenceContext Annotation
	15.5.7. @PersistenceContexts Annotation
	15.5.8. @PersistenceUnit Annotation
	15.5.9. @PersistenceUnits Annotation
	15.5.10. @PostConstruct Annotation
	15.5.11. @PreDestroy Annotation
	15.5.12. @Resources Annotation
	15.5.13. @RunAs Annotation
	15.5.14. @WebServiceRef Annotation
	15.5.15. @WebServiceRefs Annotation
	15.5.16. Contexts and Dependency Injection for Jakarta EE Platform Requirements

	Appendix A: Change Log
	A.1. Changes Since Jakarta Servlet 6.1
	A.2. Changes Since Jakarta Servlet 6.0
	A.3. Changes Since Jakarta Servlet 5.0
	A.4. Compatibility with Jakarta Servlet Specification Version 4.0
	A.5. Changes Since Jakarta Servlet 4.0

	Glossary

