
Jakarta RESTful Web Services

Contributors to Jakarta RESTful Web Services (https://github.com/eclipse-ee4j/jaxrs-

api/graphs/contributors)

3.0.0-M1, May 26, 2020

Santiago Pericas-Geertsen

Santiago Pericas-Geertsen
3.1, February 28, 2022

!"#$%&'(&)'*+%*+,
!"#$%&'()

*+,&#-./0"1234)&"2/5#.+&6+4)&"2/7&+.2-.
8&-+,4&9.%-

:;/<2)%"31+)&"2
:;:;/5)4)1-

:;:;:;/51##"%)/="%/>!"2).?)/<2@.+)&"2

:;A;/B"4,-
:;C;/D"2EB"4,-

:;F;/!"2G.2)&"2-
:;H;/I.%9&2","'$

:;J;/K%"@.+)/I.49/L.9M.%-
:;N;/O+P2"Q,.3'.9.2)-

A;/O##,&+4)&"2-
A;:;/!"26'1%4)&"2

A;A;/R.%&6+4)&"2
A;C;/K1M,&+4)&"2

A;C;:;/S4G4/5*
A;C;A;/5.%G,.)

A;C;C;/T)(.%/!"2)4&2.%
C;/U.-"1%+.-

C;:;/U.-"1%+./!,4--.-

C;:;:;/7&=.+$+,./423/*2G&%"29.2)
C;:;A;/!"2-)%1+)"%-

C;A;/0&.,3-/423/V.42/K%"#.%)&.-
C;C;/U.-"1%+./L.)("3-

C;C;:;/R&-&M&,&)$
C;C;A;/K4%49.).%-

C;C;C;/U.)1%2/I$#.
C;C;F;/*?+.#)&"2-

C;C;H;/W*O8/423/TKI<TD5
C;F;/XU</I.9#,4).-

C;F;:;/51M/U.-"1%+.-
C;H;/8.+,4%&2'/L.3&4/I$#./!4#4M&,&)&.-

C;H;:;/5.,.+)&2'/=%"9/91,)&#,./9.3&4/)$#.-
C;H;A;/5#.+&4,/(423,&2'/="%/+"2-19&2'/91,)%)Y="%9E34)4/9.3&4/)$#.-

C;J;/O22")4)&"2/<2(.%&)42+.
C;N;/L4)+(&2'/U.Z1.-)-/)"/U.-"1%+./L.)("3-

C;N;:;/U.Z1.-)/K%.#%"+.--&2'

C;N;A;/U.Z1.-)/L4)+(&2'
C;N;C;/!"2G.%)&2'/XU</I.9#,4).-/)"/U.'1,4%/*?#%.--&"2-

C;[;/8.).%9&2&2'/)(./L.3&4I$#./"=/U.-#"2-.-
F;/K%"G&3.%-

F;:;/7&=.+$+,./423/*2G&%"29.2)

F;:;:;/O1)"94)&+/8&-+"G.%$
F;:;A;/5.%G&+.-

F;:;C;/!"2-)%1+)"%-
F;:;F;/K%&"%&)&.-

F;A;/*2)&)$/K%"G&3.%-
F;A;:;/L.--4'./V"3$/U.43.%

F;A;A;/L.--4'./V"3$/\%&).%
F;A;C;/8.+,4%&2'/L.3&4/I$#./!4#4M&,&)&.-

F;A;F;/5)4234%3/*2)&)$/K%"G&3.%-
F;A;H;/I%42-=.%/*2+"3&2'

F;A;J;/!"2).2)/*2+"3&2'
F;C;/!"2).?)/K%"G&3.%-

F;C;:;/8.+,4%&2'/L.3&4/I$#./!4#4M&,&)&.-
F;F;/*?+.#)&"2/L4##&2'/K%"G&3.%-

F;H;/*?+.#)&"2-

F;H;:;/5.%G.%/U12)&9.
F;H;A;/!,&.2)/U12)&9.

H;/!,&.2)/OK<
H;:;/V"")-)%4##&2'/4/!,&.2)/<2-)42+.

H;A;/U.-"1%+./O++.--
H;C;/!,&.2)/I4%'.)-

H;F;/I$#.3/*2)&)&.-
H;H;/<2G"+4)&"2-

H;J;/!"26'1%4M,./I$#.-
H;J;:;/0&,).%-/423/*2)&)$/<2).%+.#)"%-

H;N;/U.4+)&G./!,&.2)-
H;N;:;/U.4+)&G./OK</*?).2-&"2-

H;[;/*?.+1)"%/5.%G&+.-
H;];/!,&.2)/*?+.#)&"2-

J;/0&,).%-/423/<2).%+.#)"%-
J;:;/<2)%"31+)&"2

J;A;/0&,).%-

J;C;/*2)&)$/<2).%+.#)"%-
J;F;/7&=.+$+,.

J;H;/V&23&2'
J;H;:;/B,"M4,/V&23&2'

J;H;A;/D49./V&23&2'
J;H;C;/8$249&+/V&23&2'

J;H;F;/V&23&2'/&2/!,&.2)/OK<
J;J;/K%&"%&)&.-

J;N;/*?+.#)&"2-
J;N;:;/5.%G.%/U12)&9.

J;N;A;/!,&.2)/U12)&9.

N;/R4,&34)&"2
N;:;/!"2-)%4&2)/O22")4)&"2-

N;A;/O22")4)&"2-/423/R4,&34)"%-
N;C;/*2)&)$/R4,&34)&"2

N;F;/8.=41,)/R4,&34)&"2/L"3.
N;H;/O22")4)&"2/<2(.%&)42+.

N;J;/R4,&34)&"2/423/*%%"%/U.#"%)&2'
[;/O-$2+(%"2"1-/K%"+.--&2'

[;:;/<2)%"31+)&"2
[;A;/5.%G.%/OK<

[;A;:;/O-$2+U.-#"2-.
[;A;A;/!"9#,.)&"25)4'.

[;C;/*SV/U.-"1%+./!,4--.-
[;F;/!,&.2)/OK<

];/5.%G.%E5.2)/*G.2)-

];:;/<2)%"31+)&"2
];A;/!,&.2)/OK<

];C;/5.%G.%/OK<
];F;/V%"43+4-)&2'

];H;/K%"+.--&2'/K&#.,&2.
];J;/*2G&%"29.2)

:^;/!"2).?)
:^;:;/!"2+1%%.2+$

:^;A;/!"2).?)/I$#.-
:^;A;:;/O##,&+4)&"2

:^;A;A;/XU<-/423/XU</I.9#,4).-
:^;A;C;/W.43.%-

:^;A;F;/!"2).2)/D.'")&4)&"2/423/K%.+"23&)&"2-
:^;A;H;/5.+1%&)$/!"2).?)

:^;A;J;/K%"G&3.%-
:^;A;N;/U.-"1%+./!"2).?)

:^;A;[;/!"26'1%4)&"2

::;/*2G&%"29.2)
::;:;/5.%G,.)/!"2)4&2.%

::;A;/<2).'%4)&"2/Q&)(/S4P4%)4/**/I.+(2","'&.-
::;A;:;/5.%G,.)-

::;A;A;/L424'.3/V.42-
::;A;C;/!"2).?)/423/8.#.23.2+$/<2@.+)&"2/_!8<`

::;A;F;/*2).%#%&-./S4G4/V.42-/_*SV-`
::;A;H;/V.42/R4,&34)&"2

::;A;J;/S4G4/OK</="%/S5TD/K%"+.--&2'
::;A;N;/S4G4/OK</="%/S5TD/V&23&2'

::;A;[;/S4P4%)4/aL7/V&23&2'

::;A;];/O33&)&"24,/U.Z1&%.9.2)-
::;C;/T)(.%

:A;/U12)&9./8.,.'4).
:A;:;/!"26'1%4)&"2

O##.23&?/Ob/51994%$/"=/O22")4)&"2-
O##.23&?/Vb/WIIK/W.43.%/51##"%)

O##.23&?/!b/K%"+.--&2'/K&#.,&2.
O##.23&?/8b/!(42'./7"'

8;:;/!(42'.-/5&2+./C;^/U.,.4-.
8;A;/!(42'.-/5&2+./A;:/U.,.4-.

8;C;/!(42'.-/5&2+./A;:/K1M,&+/U.G&.Q
8;F;/!(42'.-/5&2+./A;:/*4%,$/8%4=)

8;H;/!(42'.-/5&2+./A;^/0&24,/U.,.4-.
8;J;/!(42'.-/5&2+./A;^/K%"#"-.3/0&24,/8%4=)

8;N;/!(42'.-/5&2+./A;^/K1M,&+/U.G&.Q/8%4=)

8;[;/!(42'.-/5&2+./A;^/*4%,$/8%4=)/_I(&%3/*3&)&"2`
8;];/!(42'.-/5&2+./A;^/*4%,$/8%4=)/_5.+"23/*3&)&"2`

8;:^;/!(42'.-/5&2+./A;^/*4%,$/8%4=)
8;::;/!(42'.-/5&2+./:;:/U.,.4-.

8;:A;/!(42'.-/5&2+./:;^/U.,.4-.
8;:C;/!(42'.-/5&2+./K%"#"-.3/0&24,/8%4=)

8;:F;/!(42'.-/5&2+./K1M,&+/U.G&.Q/8%4=)
V&M,&"'%4#($

Specification: Jakarta RESTful Web Services

Version: 3.1.0

Status: Final Release

Release: February 28, 2022

!"#$%&'()

!"#$%&'()*+,-./$*,(0%'"$1"./$*,(2$"',&'
By using and/or copying this document, or the Eclipse Foundation document from which this statement is linked,
you (the licensee) agree that you have read, understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document from which
this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, provided
that you include the following on ALL copies of the document, or portions thereof, that you use:

link or URL to the original Eclipse Foundation document.

All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse Foundation, Inc. <<url to
this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be provided in
any software, documents, or other items or products that you create pursuant to the implementation of the
contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to this license,
except anyone may prepare and distribute derivative works and portions of this document in software that
implements the specification, in supporting materials accompanying such software, and in documentation of such
software, PROVIDED that all such works include the notice below. HOWEVER, the publication of derivative works
of this document for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation. This software or document includes material copied from
or derived from [title and URI of the Eclipse Foundation specification document]."

!"#$%&"'()#

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION MAKE
NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE;
THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER
RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE
OR IMPLEMENTATION OF THE CONTENTS THEREOF.

!"#$%&'() +,- ./012 ./.. 3,48 7"89:;)&"9< ())#5=>>???<6,48<"%'>46';4>6@54<#(#

https://www.eclipse.org/legal/efsl.php

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in advertising or
publicity pertaining to this document or its contents without specific, written prior permission. Title to copyright
in this document will at all times remain with copyright holders.

*+,-.)%"/01)&".
This specification defines a set of Java APIs for the development of Web services built according to the
Representational State Transfer[1] (REST) architectural style. Readers are assumed to be familiar with REST; for
more information about the REST architectural style and RESTful Web services, see:

Architectural Styles and the Design of Network-based Software Architectures[1]

Representational State Transfer on Wikipedia[3]

3434(0/./+&
This is the final release of version 3.1. The issue tracking system for this release can be found at:

https://github.com/eclipse-ee4j/jaxrs-api/issues

The corresponding Javadocs can be found online at:

https://jakarta.ee/specifications/restful-ws/3.1/apidocs/

A compatible implementation can be obtained from:

https://eclipse-ee4j.github.io/jersey/

The project team seeks feedback from the community on any aspect of this specification, please send comments to:

jaxrs-dev@eclipse.org

++*+,-.//0)1,20),34051(61,758($1"05

As part of an effort to better align with Jakarta CDI (https://jakarta.ee/specifications/cdi/), future versions of this API will
no longer support @Context injection and related types such as ContextResolver . As much as possible, all
injection tasks will be delegated to Jakarta CDI for a better integration into the Jakarta EE (https://jakarta.ee/)

ecosystem.

3454(6*.#&
The following are the goals of the API:

POJO-based

The API will provide a set of annotations and associated classes/interfaces that may be used with POJOs in order
to expose them as Web resources. The specification will define object lifecycle and scope.

HTTP-centric

The specification will assume HTTP[4] is the underlying network protocol and will provide a clear mapping
between HTTP and URI[5] elements and the corresponding API classes and annotations. The API will provide
high level support for common HTTP usage patterns and will be sufficiently flexible to support a variety of
HTTP applications including WebDAV[6] and the Atom Publishing Protocol[7].

Format independence

https://github.com/eclipse-ee4j/jaxrs-api/issues
https://jakarta.ee/specifications/restful-ws/3.1/apidocs/
https://eclipse-ee4j.github.io/jersey/
mailto:jaxrs-dev@eclipse.org
https://jakarta.ee/specifications/cdi/
https://jakarta.ee/

The API will be applicable to a wide variety of HTTP entity body content types. It will provide the necessary
pluggability to allow additional types to be added by an application in a standard manner.

Container independence

Artifacts using the API will be deployable in a variety of Web-tier containers. The specification will define how
artifacts are deployed in a Servlet[8] container and as a JAX-WS[9] Provider.

Inclusion in Jakarta EE

The specification will define the environment for a Web resource class hosted in a Jakarta EE container and will
specify how to use Jakarta EE features and components within a Web resource class.

3474(8*,96*.#&
The following are non-goals:

Support for Java versions prior to Java SE 8

The API will make extensive use of annotations and lambda expressions that require Java SE 8 or later.

Description, registration and discovery

The specification will neither define nor require any service description, registration or discovery capability.

HTTP Stack

The specification will not define a new HTTP stack. HTTP protocol support is provided by a container that hosts
artifacts developed using the API.

Data model/format classes

The API will not define classes that support manipulation of entity body content, rather it will provide
pluggability to allow such classes to be used by artifacts developed using the API.

34:4(;*,<',/$*,&
The keywords M̀UST', M̀UST NOT', R̀EQUIRED', S̀HALL', S̀HALL NOT', S̀HOULD', S̀HOULD NOT', R̀ECOMMENDED',
M̀AY', and ÒPTIONAL' in this document are to be interpreted as described in RFC 2119[10].

Java code and sample data fragments are formatted as shown in figure [1.1]:

URIs of the general form h̀ttp://example.org/…' and h̀ttp://example.com/…' represent application or context-
dependent URIs.

packagepackage com.example.hello;

publicpublic classclass HelloHello {
 publicpublic staticstatic voidvoid main(String args[][]) {
 System.out.println("Hello World");
 }
}

JAVA

All parts of this specification are normative, with the exception of examples, notes and sections explicitly marked
as Ǹon-Normative'. Non-normative notes are formatted as shown below.

Note: This is a note.

34=4(>'?@$,*#*AB
Resource class

A Java class that uses JAX-RS annotations to implement a corresponding Web resource, see Chapter [resources].

Root resource class

A resource class annotated with @Path . Root resource classes provide the roots of the resource class tree and
provide access to sub-resources, see Chapter [resources].

Request method designator

A runtime annotation annotated with @HttpMethod . Used to identify the HTTP request method to be handled
by a resource method.

Resource method

A method of a resource class annotated with a request method designator that is used to handle requests on the
corresponding resource, see Resource Methods.

Sub-resource locator

A method of a resource class that is used to locate sub-resources of the corresponding resource, see Sub
Resources.

Sub-resource method

A method of a resource class that is used to handle requests on a sub-resource of the corresponding resource,
see Sub Resources.

Provider

An implementation of a JAX-RS extension interface. Providers extend the capabilities of a JAX-RS runtime and
are described in Chapter Providers.

Filter

A provider used for filtering requests and responses.

Entity Interceptor

A provider used for intercepting calls to message body readers and writers.

Invocation

A Client API object that can be configured to issue an HTTP request.

WebTarget

The recipient of an Invocation, identified by a URI.

Link

A URI with additional meta-data such as a media type, a relation, a title, etc.

34C4(D?*E'"/(>'.@(F'@G'?&
This specification is being developed as part of Jakarta RESTful Web Services project under the Jakarta EE
Specification Process. It is the result of the collaborative work of the project team and various contributors.

The following are the current committers of the Jakarta RESTful Web Services specification project:

 — Christian Kaltepoth (individual)

 — Markus Karg (individual)

 — Andy McCright (IBM)

 — Santiago Pericas-Geertsen (Oracle)

JAX-RS 2.1 has been developed as part of JSR 370 under the Java Community Process. The following are former
group members of the JSR 370 Expert Group:

 — Sergey Beryozkin (Talend SA)

 — Adam Bien (Individual Member)

 — Sebastian Dashner (Individual Member)

 — Markus Karg (Individual Member)

 — Casey Lee (Vision Service Plan)

 — Marcos Luna (Individual Member)

 — Andy McCright (IBM)

 — Julian Reschke (Individual Member)

 — Alessio Soldano (Red Hat)

The following are former group members of the JSR 339 Expert Group:

 — Jan Algermussen (Individual Member)

 — Florent Beniot (OW2)

 — Sergey Beryozkin (Talend SA)

 — Adam Bien (Individual Member)

 — Bill Burke (Red Hat)

 — Clinton L. Combs (Individual Member)

 — Jian Wu Dai (IBM)

 — Bill De Hora (Individual Member)

 — Markus Karg (Individual Member)

 — Sastry Malladi (eBay, Inc)

 — Julian Reschke (Individual Member)

 — Guilherme de Azevedo Silveira (Individual Member)

 — Synodinos, Dionysios G. (Individual Member)

JAX-RS 1.X has been developed as part of JSR 311 under the Java Community Process. The following were group
members of the JSR 311 Expert Group:

 — Heiko Braun (Red Hat Middleware LLC)

 — Larry Cable (BEA Systems)

 — Roy Fielding (Day Software, Inc.)

 — Harpreet Geekee (Nortel)

 — Nickolas Grabovas (Individual Member)

 — Mark Hansen (Individual Member)

 — John Harby (Individual Member)

 — Hao He (Individual Member)

 — Ryan Heaton (Individual Member)

 — David Hensley (Individual Member)

 — Stephan Koops (Individual Member)

 — Changshin Lee (NCsoft Corporation)

 — Francois Leygues (Alcatel-Lucent)

 — Jerome Louvel (Individual Member)

 — Hamid Ben Malek (Fujitsu Limited)

 — Ryan J. McDonough (Individual Member)

 — Felix Meschberger (Day Software, Inc.)

 — David Orchard (BEA Systems)

 — Dhanji R. Prasanna (Individual Member)

 — Julian Reschke (Individual Member)

 — Jan Schulz-Hofen (Individual Member)

 — Joel Smith (IBM)

 — Stefan Tilkov (innoQ Deutschland GmbH)

34H4(I"J,*K#'-A'@',/&
During the course of this specification we received great contributions and suggestions from many individuals.
Special thanks to Marek Potociar and Michal Gajdos. Also Gunnar Morling, Ondrej Mihalyi, Arjan Tijms, Guillermo
Gonzales de Aguero, Christian Kaltepoth and many, many others. Last but not least to the JSR 370 Expert Group for
all their contributions.

During the course of JSR 339 we received many excellent suggestions. Special thanks to Martin Matula, Gerard
Davison, Jakub Podlesak and Pavel Bucek from Oracle as well as Pete Muir and Emmanuel Bernard from Red Hat.
Also to Gunnar Morling and Ron Sigal (Red Hat) for their suggestions on how to improve resource validation, and
to Mattias Arthursson for his insights on hypermedia.

During the course of JSR 311 we received many excellent suggestions on the JSR and Jersey (RI) mailing lists,
thanks in particular to James Manger (Telstra) and Reto Bachmann-Gmür (Trialox) for their contributions. The
following individuals (all Sun Microsystems at the time) have also made invaluable technical contributions:
Roberto Chinnici, Dianne Jiao (TCK), Ron Monzillo, Rajiv Mordani, Eduardo Pelegri-Llopart, Jakub Podlesak (RI)
and Bill Shannon.

The GenericEntity class was inspired by the Google Guice TypeLiteral class. Our thanks to Bob Lee and Google
for donating this class to JAX-RS.

2+,3##4&15)&".6
A JAX-RS application consists of one or more resources (see Chapter Resources) and zero or more providers (see
Chapter Providers). This chapter describes aspects of JAX-RS that apply to an application as a whole, subsequent
chapters describe particular aspects of a JAX-RS application and requirements on JAX-RS implementations.

5434(;*,1A+?./$*,
The resources and providers that make up a JAX-RS application are configured via an application-supplied
subclass of Application . An implementation MAY provide alternate mechanisms for locating resource classes
and providers (e.g. runtime class scanning) but use of Application is the only portable means of configuration.

5454(L'?$1"./$*,
Specific application requirements are detailed throughout this specification and the JAX-RS Javadocs.
Implementations MAY perform verification steps that go beyond what it is stated in this document.

A JAX-RS implementation MAY report an error condition if it detects that two or more resources could result in an
ambiguity during the execution of the algorithm described Request Matching. For example, if two resource
methods in the same resource class have identical (or even intersecting) values in all the annotations that are
relevant to the algorithm described in that section. The exact set of verification steps as well as the error reporting
mechanism is implementation dependent.

5474(D+G#$"./$*,
Applications are published in different ways depending on whether the application is run in a Java SE
environment or within a container. This section describes the alternate means of publication.

A compliant implementation MUST support both alternatives on Java SE.

9+:+*+,;&<&,-=

There are two alternative ways of publishing on Java SE: Creating SE endpoints directly or using the SE bootstrap
API. Both are described in this section.

9+:+*+*+,;&<&,-=,=5>/0"51

In a Java SE environment a configured instance of an endpoint class can be obtained using the createEndpoint
method of RuntimeDelegate . The application supplies an instance of Application and the type of endpoint
required. An implementation MAY support zero or more endpoint types of any desired type.

How the resulting endpoint class instance is used to publish the application is outside the scope of this
specification.

!"#$%&

An implementation that supports publication via JAX-WS MUST support createEndpoint with an endpoint type
of jakarta.xml.ws.Provider . JAX-WS describes how a Provider based endpoint can be published in an SE
environment.

9+:+*+9+,;&<&,-=,?001#1)&/

This is the RECOMMENDED way of publishing an application on Java SE, as the bootstrapping code is completely
portable across vendors and products.

In a Java SE environment an application can be published using an embedded HTTP server bootstrapped by the
implementation. An application invokes SeBootstrap.start(app, config) with an implementation of
Application and a configuration built by calling build() on a configuration builder.

The builder is created by SeBootstrap.Configuration.builder() and assembles all information needed to
configure the embedded HTTP server using properties. A compliant implementation MUST support all properties
explicitly defined by SeBootstrap.Configuration , but MAY support additional properties using a product-
specific namespace prefix.

'()(*+(,-./0()1/2(- jakarta

The namespace prefix jakarta is reserved and MUST NOT be extended by vendors, but only by future revisions
of the Jakarta RESTful Web Services API, Javadoc and / or specification.

9+:+9+,-()<%(1

A JAX-RS application is packaged as a Web application in a .war file. The application classes are packaged in WEB-
INF/classes or WEB-INF/lib and required libraries are packaged in WEB-INF/lib . See the Servlet specification
for full details on packaging of web applications.

It is RECOMMENDED that implementations support the Servlet 3 framework pluggability mechanism to enable
portability between containers and to avail themselves of container-supplied class scanning facilities. When using
the pluggability mechanism the following conditions MUST be met:

If no Application subclass is present, JAX-RS implementations are REQUIRED to dynamically add a servlet
and set its name to

jakarta.ws.rs.core.Application

and to automatically discover all root resource classes and providers which MUST be packaged with the
application. Additionally, the application MUST be packaged with a web.xml that specifies a servlet mapping
for the added servlet. An example of such a web.xml file is:

If an Application subclass is present:

If there is already a servlet that handles this application. That is, a servlet that has an initialization
parameter named

<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
 <servlet>
 <servlet-name>jakarta.ws.rs.core.Application</servlet-name>
 </servlet>
 <servlet-mapping>
 <servlet-name>jakarta.ws.rs.core.Application</servlet-name>
 <url-pattern>/myresources/*</url-pattern>
 </servlet-mapping>
</web-app>

XML

jakarta.ws.rs.Application

whose value is the fully qualified name of the Application subclass, then no additional configuration steps
are required by the JAX-RS implementation.

If no servlet handles this application, JAX-RS implementations are REQUIRED to dynamically add a servlet
whose fully qualified name must be that of the Application subclass. If the Application subclass is
annotated with @ApplicationPath , implementations are REQUIRED to use the value of this annotation
appended with "/*" to define a mapping for the added server. Otherwise, the application MUST be packaged
with a web.xml that specifies a servlet mapping. For example, if org.example.MyApplication is the name
of the Application subclass, a sample web.xml would be:

When an Application subclass is present in the archive, if both Application.getClasses and
Application.getSingletons return an empty collection then all root resource classes and providers packaged in
the web application MUST be included and the JAX-RS implementation is REQUIRED to discover them
automatically by scanning a .war file as described above. If either getClasses or getSingletons returns a
non-empty collection then only those classes or singletons returned MUST be included in the published JAX-
RS application.

The following table summarizes the Servlet 3 framework pluggability mechanism:

Table 1. Summary of Servlet 3 framework pluggability cases

Condition Action Servlet Name web.xml

No Application
subclass

Add servlet jakarta.ws.rs.core.Application Required for servlet mapping

Application subclass
handled by existing
servlet

(none) (already defined) Not required

Application

subclass not handled
by existing servlet

Add servlet Subclass name If no @ApplicationPath then
required for servlet mapping

<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
 <servlet>
 <servlet-name>org.example.MyApplication</servlet-name>
 </servlet>
 <servlet-mapping>
 <servlet-name>org.example.MyApplication</servlet-name>
 <url-pattern>/myresources/*</url-pattern>
 </servlet-mapping>
</web-app>

XML

If not using the Servlet 3 framework pluggability mechanism (e.g. in a pre-Servlet 3.0 container), the servlet-
class or filter-class element of the web.xml descriptor SHOULD name the JAX-RS implementation-supplied
servlet or filter class respectively. The Application subclass SHOULD be identified using an init-param with a
param-name of jakarta.ws.rs.Application .

Note that the Servlet 3 framework pluggability mechanism described above is based on servlets and not filters.
Applications that prefer to use an implementation-supplied filter class must use the pre-Servlet 3.0 configuration
mechanism.

9+:+:+,@1A(),4051&"5()

An implementation MAY provide facilities to host a JAX-RS application in other types of container, such facilities
are outside the scope of this specification.

7+,896"0%196
Using JAX-RS a Web resource is implemented as a resource class and requests are handled by resource methods.
This chapter describes resource classes and resource methods in detail.

7434(M'&*+?"'(;#.&&'&
A resource class is a Java class that uses JAX-RS annotations to implement a corresponding Web resource.
Resource classes are POJOs that have at least one method annotated with @Path or a request method designator.

:+*+*+,B"2(C%(,&5>,=5<")05'(51

By default a new resource class instance is created for each request to that resource. First the constructor (see
Constructors) is called, then any requested dependencies are injected (see Fields and Bean Properties), then the
appropriate method (see Resource Methods) is invoked and finally the object is made available for garbage
collection.

An implementation MAY offer other resource class lifecycles, mechanisms for specifying these are outside the
scope of this specification. E.g. an implementation based on an inversion-of-control framework may support all of
the lifecycle options provided by that framework.

:+*+9+,405#1).$10)#

Root resource classes are instantiated by the JAX-RS runtime and MUST have a public constructor for which the
JAX-RS runtime can provide all parameter values. Note that a zero argument constructor is permissible under this
rule.

A public constructor MAY include parameters annotated with one of the following: @Context , @HeaderParam ,
@CookieParam , @MatrixParam , @QueryParam or @PathParam . However, depending on the resource class
lifecycle and concurrency, per-request information may not make sense in a constructor. If more than one public
constructor is suitable then an implementation MUST use the one with the most parameters. Choosing amongst
suitable constructors with the same number of parameters is implementation specific, implementations SHOULD
generate a warning about such ambiguity.

Non-root resource classes are instantiated by an application and do not require the above-described public
constructor.

7454()$'#-&(.,-(N'.,(D?*%'?/$'&
When a resource class is instantiated, the values of fields and bean properties annotated with one the following
annotations are set according to the semantics of the annotation:

@MatrixParam

Extracts the value of a URI matrix parameter.

@QueryParam

Extracts the value of a URI query parameter.

@PathParam

Extracts the value of a URI template parameter.

@CookieParam

Extracts the value of a cookie.

@HeaderParam

Extracts the value of a header.

@Context

Injects an instance of a supported resource, see chapters Context and Environment for more details.

Because injection occurs at object creation time, use of these annotations (with the exception of @Context) on
resource class fields and bean properties is only supported for the default per-request resource class lifecycle. An
implementation SHOULD warn if resource classes with other lifecycles use these annotations on resource class
fields or bean properties.

A JAX-RS implementation is only required to set the annotated field and bean property values of instances created
by its runtime. Objects returned by sub-resource locators (see Sub Resources) are expected to be initialized by
their creator.

Valid parameter types for each of the above annotations are listed in the corresponding Javadoc, however in
general (excluding @Context) the following types are supported:

1. Types for which a ParamConverter is available via a registered ParamConverterProvider . See Javadoc for
these classes for more information.

2. Primitive types.

3. Types that have a constructor that accepts a single String argument.

4. Types that have a static method named valueOf or fromString with a single String argument that return
an instance of the type. If both methods are present then valueOf MUST be used unless the type is an enum in
which case fromString MUST be used[1].

5. List<T> , Set<T> , SortedSet<T> or an array T[] , where T satisfies 1, 3 or 4 above.

The DefaultValue annotation may be used to supply a default value for some of the above, see the Javadoc for
DefaultValue for usage details and rules for generating a value in the absence of this annotation and the
requested data. The Encoded annotation may be used to disable automatic URI decoding for @MatrixParam ,
@QueryParam , and @PathParam annotated fields and properties.

A WebApplicationException thrown during construction of field or property values using any of the 5 steps
listed above is processed directly as described in Exceptions. Other exceptions thrown during construction of field
or property values using any of the 5 steps listed above are treated as client errors: if the field or property is
annotated with @MatrixParam , @QueryParam or @PathParam then an implementation MUST generate an
instance of NotFoundException (404 status) that wraps the thrown exception and no entity; if the field or
property is annotated with @HeaderParam or @CookieParam then an implementation MUST generate an instance
of BadRequestException (400 status) that wraps the thrown exception and no entity. Exceptions MUST be
processed as described in Exceptions.

7474(M'&*+?"'(F'/O*-&
Resource methods are methods of a resource class annotated with a request method designator. They are used to
handle requests and MUST conform to certain restrictions described in this section.

A request method designator is a runtime annotation that is annotated with the @HttpMethod annotation. JAX-
RS defines a set of request method designators for the common HTTP methods: @GET , @POST , @PUT , @DELETE ,
@PATCH , @HEAD and @OPTIONS . Users may define their own custom request method designators including
alternate designators for the common HTTP methods.

:+:+*+,D"#"E"%"1C

Only public methods may be exposed as resource methods. An implementation SHOULD warn users if a non-
public method carries a method designator or @Path annotation.

:+:+9+,F&)&'(1()#

When a resource method is invoked, parameters annotated with @FormParam or one of the annotations listed in
Section [resource_field] are mapped from the request according to the semantics of the annotation. Similar to
fields and bean properties:

The DefaultValue annotation may be used to supply a default value for parameters

The Encoded annotation may be used to disable automatic URI decoding of parameter values

Exceptions thrown during construction of parameter values are treated the same as exceptions thrown during
construction of field or bean property values, see Fields and Bean Properties. Exceptions thrown during
construction of @FormParam annotated parameter values are treated the same as if the parameter were
annotated with @HeaderParam .

For resource methods that consume multipart/form-data media types, the @FormParam annotation may be
used on jakarta.ws.rs.core.EntityPart parameters. See Special handling for consuming multipart/form-
data media types for more details.

:+:+9+*+,=51"1C,F&)&'(1()#

The value of a parameter not annotated with @FormParam or any of the annotations listed in in Fields and Bean
Properties, called the entity parameter, is mapped from the request entity body. Conversion between an entity
body and a Java type is the responsibility of an entity provider, see Entity Providers. Resource methods MUST have
at most one entity parameter.

:+:+:+,G(1.)5,HC/(

Resource methods MAY return void , Response , GenericEntity , or another Java type, these return types are
mapped to a response entity body as follows:

void

Results in an empty entity body with a 204 status code.

Response

Results in an entity body mapped from the entity property of the Response with the status code specified by the
status property of the Response . A null return value results in a 204 status code. If the status property of the
Response is not set: a 200 status code is used for a non- null entity property and a 204 status code is used if the
entity property is null .

GenericEntity

Results in an entity body mapped from the Entity property of the GenericEntity . If the return value is not
null a 200 status code is used, a null return value results in a 204 status code.

Other

Results in an entity body mapped from the class of the returned instance or of its type parameter T if the return
type is CompletionStage<T> (see CompletionStage); if the class is an anonymous inner class, its superclass is
used instead. If the return value is not null a 200 status code is used, a null return value results in a 204
status code.

Methods that need to provide additional metadata with a response should return an instance of Response , the
ResponseBuilder class provides a convenient way to create a Response instance using a builder pattern.

Conversion between a Java object and an entity body is the responsibility of an entity provider, see Entity
Providers. The return type of a resource method and the type of the returned instance are used to determine the
raw type and generic type supplied to the isWritable method of MessageBodyWriter as follows:

Table 2. Determining raw and generic types of return values

Return Type Returned Instance used[2] Raw Type Generic Type

GenericEntity GenericEntity or subclass RawType property Type property

Response GenericEntity or subclass RawType property Type property

Response Object or subclass Class of instance Class of instance

Other Return type or subclass Class of instance Generic type of return type

To illustrate the above consider a method that always returns an instance of ArrayList<String> either directly
or wrapped in some combination of Response and GenericEntity . The resulting raw and generic types are
shown below.

Table 3. Example raw and generic types of return values

Return Type Returned Instance Raw Type *Generic Type

GenericEntity GenericEntity<List<String>> ArrayList<?> List<String>

Response GenericEntity<List<String>> ArrayList<?> List<String>

Response ArrayList<String> ArrayList<?> ArrayList<?>

List<String> ArrayList<String> ArrayList<?> List<String>

:+:+I+,=6$(/1"05#

A resource method, sub-resource method or sub-resource locator may throw any checked or unchecked exception.
An implementation MUST catch all exceptions and process them in the following order:

1. Instances of WebApplicationException and its subclasses MUST be mapped to a response as follows. If the
response property of the exception is null, then an implementation MUST use the most appropriate exception
mapping provider (see Exception Mapping Providers) to create a new Response instance; otherwise the
response property is used directly. The resulting Response instance is then processed according to Return
Type.

2. An implementation MUST use the exception mapping provider (see Exception Mapping Providers) whose
generic type is the nearest superclass of the exception to create a Response instance that is then processed
according to Return Type. If the exception mapping provider throws an exception while creating a
Response then return a server error (status code 500) response to the client.

:+:+J+,K=L!,&5>,@FH7@M-

HEAD and OPTIONS requests receive additional automated support. On receipt of a HEAD request an
implementation MUST either:

1. Call a method annotated with a request method designator for HEAD or, if none present,

2. Call a method annotated with a request method designator for GET and discard any returned entity.

Note that option 2 may result in reduced performance where entity creation is significant.

On receipt of an OPTIONS request an implementation MUST either:

1. Call a method annotated with a request method designator for OPTIONS or, if none present,

2. Generate an automatic response using the metadata provided by the JAX-RS annotations on the matching class
and its methods.

74:4(PMQ(>'@%#./'&
A root resource class is anchored in URI space using the @Path annotation. The value of the annotation is a
relative URI path template whose base URI is provided by the combination of the deployment context and the
application path (see the @ApplicationPath annotation).

A URI path template is a string with zero or more embedded parameters that, when values are substituted for all
the parameters, is a valid URI[5] path. The Javadoc for the @Path annotation describes their syntax. E.g.:

In the above example the Widget resource class is identified by the relative URI path widgets/xxx where xxx is
the value of the id parameter.

@Path("widgets/{id}")
publicpublic classclass WidgetWidget {
 ...
}

JAVA

Note: Because \{and } are not part of either the reserved or unreserved productions of URI[5] they will not appear in
a valid URI.

The value of the annotation is automatically encoded, e.g. the following two lines are equivalent:

Template parameters can optionally specify the regular expression used to match their values. The default value
matches any text and terminates at the end of a path segment but other values can be used to alter this behavior,
e.g.:

In the above example the Widget resource class will be matched for any request whose path starts with widgets
and contains at least one more path segment; the value of the path parameter will be the request path following
widgets . E.g. given the request path widgets/small/a the value of path would be small/a .

The value of a URI path parameter is available for injection via @PathParam on a field, property or method
parameter. Note that if a URI template is used on a method, a path parameter injected in a field or property may
not be available (set to null). The following example illustrates this scenario:

:+I+*+,-.E,G(#0.)$(#

Methods of a resource class that are annotated with @Path are either sub-resource methods or sub-resource
locators. Sub-resource methods handle a HTTP request directly whilst sub-resource locators return an object or
class that will handle a HTTP request. The presence or absence of a request method designator (e.g. @GET)
differentiates between the two:

Present

@Path("widget list/{id}")
@Path("widget%20list/{id}")

JAVA

@Path("widgets/{path:.+}")
publicpublic classclass WidgetWidget {
 ...
}

JAVA

@Path("widgets")
publicpublic classclass WidgetsResourceWidgetsResource {
 @PathParam("id") String id;

 @GET
 publicpublic WidgetList getWidgets() {
 ... // id is null here
 }

 @GET
 @Path("{id}")
 publicpublic Widget findWidget() {
 returnreturn newnew WidgetResource(id);
 }
}

JAVA

Such methods, known as sub-resource methods, are treated like a normal resource method (see Resource
Methods) except the method is only invoked for request URIs that match a URI template created by
concatenating the URI template of the resource class with the URI template of the method[3].

Absent

Such methods, known as sub-resource locators, are used to dynamically resolve the object that will handle the
request. Sub-resource locators can return objects or classes; if a class is returned then an object is obtained by
the implementation using a suitable constructor as described in Constructors. In either case, the resulting object
is used to handle the request or to further resolve the object that will handle the request, see Matching Requests
to Resource Methods for further details. + When an object is returned, implementations MUST dynamically
determine its class rather than relying on the static sub-resource locator return type, since the returned instance
may be a subclass of the declared type with potentially different annotations, see Annotation Inheritance for
rules on annotation inheritance. Sub-resource locators may have all the same parameters as a normal resource
method (see Resource Methods) except that they MUST NOT have an entity parameter.

The following example illustrates the difference:

In the above a GET request for the widgets/offers resource is handled directly by the getDiscounted sub-
resource method of the resource class WidgetsResource whereas a GET request for widgets/xxx is handled by
the getDetails method of the WidgetResource resource class.

Note: A set of sub-resource methods annotated with the same URI template value are functionally equivalent to a
similarly annotated sub-resource locator that returns an instance of a resource class with the same set of resource
methods.

74=4(R'"#.?$,A(F'-$.(>B%'(;.%.G$#$/$'&
Application classes can declare the supported request and response media types using the @Consumes and
@Produces annotations respectively. These annotations MAY be applied to a resource method, a resource class, or
to an entity provider (see Declaring Media Type Capabilities). Use of these annotations on a resource method
overrides any on the resource class or on an entity provider for a method argument or return type. In the absence
of either of these annotations, support for any media type (/*) is assumed.

@Path("widgets")
publicpublic classclass WidgetsResourceWidgetsResource {
 @GET
 @Path("offers")
 publicpublic WidgetList getDiscounted() {...}

 @Path("{id}")
 publicpublic WidgetResource findWidget(@PathParam("id") String id) {
 returnreturn newnew WidgetResource(id);
 }
}

publicpublic classclass WidgetResourceWidgetResource {
 publicpublic WidgetResource(String id) {...}

 @GET
 publicpublic Widget getDetails() {...}
}

JAVA

The following example illustrates the use of these annotations:

In the above:

The getAsXML resource method will be called for GET requests that specify a response media type of
application/widgets+xml . It returns a Widgets instance that will be mapped to that format using the
WidgetsProvider class (see Entity Providers for more information on MessageBodyWriter).

The getAsHtml resource method will be called for GET requests that specify a response media type of
text/html . It returns a String containing text/html that will be written using the default implementation
of MessageBodyWriter<String> .

The addWidget resource method will be called for POST requests that contain an entity of the media type
application/widgets+xml . The value of the widget parameter will be mapped from the request entity using
the WidgetProvider class (see Entity Providers for more information on MessageBodyReader).

An implementation MUST NOT invoke a method whose effective value of @Produces does not match the request
Accept header. If no Accept header is present in the request, it is assumed that the client accepts any media type
or */* .

An implementation MUST NOT invoke a method whose effective value of @Consumes does not match the request
Content-Type header, with the exception of requests in which the Content-Type header is absent. In those
cases, the content type shall be treated as the wildcard */* for matching purposes[4]. This rule enables
inheritance of class-level @Consumes annotations on @GET resource methods that are typically matched by
requests without a Content-Type header.

:+J+*+,-(%($1"5N,2)0','.%1"/%(,'(>"&,1C/(#

@Path("widgets")
@Produces("application/widgets+xml")
publicpublic classclass WidgetsResourceWidgetsResource {

 @GET
 publicpublic Widgets getAsXML() {...}

 @GET
 @Produces("text/html")
 publicpublic String getAsHtml() {...}

 @POST
 @Consumes("application/widgets+xml")
 publicpublic voidvoid addWidget(Widget widget) {...}
}

@Provider
@Produces("application/widgets+xml")
publicpublic classclass WidgetsProviderWidgetsProvider implementsimplements MessageBodyWriter<Widgets> {...}

@Provider
@Consumes("application/widgets+xml")
publicpublic classclass WidgetProviderWidgetProvider implementsimplements MessageBodyReader<Widget> {...}

JAVA

When accepting multiple media types, clients may indicate preferences by using a relative quality factor known as
the q parameter. The value of the q parameter, or q-value, is used to sort the set of accepted types. For example, a
client may indicate preference for application/widgets+xml with a relative quality factor of 1 and for
application/xml with a relative quality factor of 0.8. Q-values range from 0 (undesirable) to 1 (highly desirable),
with 1 used as default when omitted. A GET request matched to the WidgetsResource class with an accept
header of text/html; q=1, application/widgets+xml; q=0.8 will result in a call to method getAsHtml instead
of getAsXML based on the value of q.

A server can also indicate media type preference using the qs parameter; server preference is only examined
when multiple media types are accepted by a client with the same q-value. Consider the following example:

Suppose a client issues a GET request with an accept header of application/*; q=0.5, text/html . Based on
this request, the server determines that both application/xml and application/json are equally preferred by
the client with a q-value of 0.5. By specifying a server relative quality factor as part of the @Produces annotation,
it is possible to control which response media type to select:

With the updated value for @Produces in this example, and in response to a GET request with an accept header
that includes application/*; q=0.5 , JAX-RS implementations are REQUIRED to select the media type
application/xml given its higher qs-value. Note that qs-values, just like q-values, are relative and as such are
only comparable to other qs-values within the same @Produces annotation instance. For more information see
Determining the MediaType of Responses.

:+J+9+,-/($"&%,A&5>%"5N,20),$05#.'"5N,'.%1"/&)1O20)'P>&1&,'(>"&,1C/(#

The multipart/form-data media type enables requests to send multiple entities (parts) as a single entity. Each
part contains its own set of headers, media type and content. There are a few different ways to consume these
requests in a resource method. First, a resource method may contain an entity parameter of type,
List<EntityPart> . For example:

@Path("widgets2")
publicpublic classclass WidgetsResource2WidgetsResource2 {

 @GET
 @Produces("application/xml", "application/json")
 publicpublic Widgets getWidget() {...}

}

JAVA

@Path("widgets2")
publicpublic classclass WidgetsResource2WidgetsResource2 {

 @GET
 @Produces("application/xml; qs=1", "application/json; qs=0.75")
 publicpublic Widgets getWidget() {...}

}

JAVA

Another approach is to use @FormParam parameters where the value in the annotation corresponds to the name
of the part. The parameter type may be a jakarta.ws.rs.core.EntityPart , a java.io.InputStream , or a
String . Here is an example:

The only way to access the headers for a particular part is to use the EntityPart type. The InputStream and
String types will only provide the content of the part. Note that parts of a multipart entity can be quite large, so
care should be taken when using String parameter types as that will load the entire content of the part into the
Java heap.

When converting the part’s content, the implementation MUST use the encoding charset specified in the part’s
Content-Type header, or UTF-8 if the charset is not specified in the header.

74C4(I,,*/./$*,(Q,O'?$/.,"'
JAX-RS annotations may be used on the methods and method parameters of a super-class or an implemented
interface. Such annotations are inherited by a corresponding sub-class or implementation class method provided
that the method and its parameters do not have any JAX-RS annotations of their own. Annotations on a super-class
take precedence over those on an implemented interface. The precedence over conflicting annotations defined in
multiple implemented interfaces is implementation specific. Note that inheritance of class or interface annotations
is not supported.

If a subclass or implementation method has any JAX-RS annotations then all of the annotations on the superclass
or interface method are ignored. E.g.:

@Path("widgets3")
publicpublic classclass WidgetsResource3WidgetsResource3 {

 @POST
 @Consumes(MediaType.MULTIPART_FORM_DATA)
 publicpublic Response postWidget(List<EntityPart> parts) {
 forfor (EntityPart part : parts) {
 String name = part.getName();
 Optional<String> fileName = part.getFileName();
 InputStream is = part.getContent();
 MultivaluedMap<String, String> partHeaders = part.getHeaders();
 MediaType mediaType = part.getMediaType();
 doSomethingWithPart(name, fileName, is, partHeaders, mediaType);
 }
 returnreturn Response.ok().build();
 }

}

JAVA

@Path("widgets4")
publicpublic classclass WidgetsResource4WidgetsResource4 {

 @POST
 @Consumes(MediaType.MULTIPART_FORM_DATA)
 publicpublic Response postWidget(@FormParam("part1Name") String part1,
 @FormParam("part2Name") InputStream part2,
 @FormParam("part3Name") EntityPart part3) {...}
}

JAVA

In the above, ActivityLog.getFeed inherits the @GET and @Produces annotations from the interface.
Conversely:

In the above, the @GET annotation on ReadOnlyAtomFeed.getFeed is not inherited by Activity-Log.getFeed
and it would require its own request method designator since it redefines the @Produces annotation.

For consistency with other Jakarta EE specifications, it is recommended to always repeat annotations instead of
relying on annotation inheritance.

74H4(F./"O$,A(M'S+'&/&(/*(M'&*+?"'(F'/O*-&
This section describes how a request is matched to a resource class and method. Implementations are not required
to use the algorithm as written but MUST produce results equivalent to those produced by the algorithm.

:+Q+*+,G(R.(#1,F)(/)0$(##"5N

Prior to matching, request URIs are normalized[5] by following the rules for case, path segment, and percent
encoding normalization described in section 6.2.2 of RFC 3986[5]. The normalized request URI MUST be reflected
in the URIs obtained from an injected UriInfo .

:+Q+9+,G(R.(#1,S&1$A"5N

A request is matched to the corresponding resource method or sub-resource method by comparing the normalized
request URI (see Request Preprocessing), the media type of any request entity, and the requested response entity
format to the metadata annotations on the resource classes and their methods. If no matching resource method or
sub-resource method can be found then an appropriate error response is returned. All exceptions reported by this
algorithm MUST be processed as described in Exceptions.

Matching of requests to resource methods proceeds in three stages as follows:

1. Identify a set of candidate root resource classes matching the request:

Input

Output

publicpublic interfaceinterface ReadOnlyAtomFeedReadOnlyAtomFeed {
 @GET @Produces("application/atom+xml")
 Feed getFeed();
}

@Path("feed")
publicpublic classclass ActivityLogActivityLog implementsimplements ReadOnlyAtomFeed {
 publicpublic Feed getFeed() {...}
}

JAVA

@Path("feed")
publicpublic classclass ActivityLogActivityLog implementsimplements ReadOnlyAtomFeed {
 @Produces("application/atom+xml")
 publicpublic Feed getFeed() {...}
}

JAVA

! = request URI path, " = {root resource classes}

a. Set .

b. For each class in add a regular expression (computed using the function described in
Converting URI Templates to Regular Expressions) to as follows:

Add where is the URI path template specified for the class .

Note that two or more classes in may add the same regular expression to if they are annotated
with the same URI path template (modulo variable names).

c. Filter by matching each member against as follows:

Remove members that do not match .

Remove members for which the final regular expression capturing group (henceforth simply referred
to as a capturing group) value is neither empty nor '/' and the class has no sub-resource methods or
locators.

d. If is empty then no matching resource can be found, the algorithm terminates and an implementation
MUST generate a NotFoundException (404 status) and no entity.

e. Sort using the number of literal characters[6] in each member as the primary key (descending order),
the number of capturing groups as a secondary key (descending order) and the number of capturing
groups with non-default regular expressions (i.e. not '([ˆ/]+?)') as the tertiary key (descending order).

f. Set to be the first member of and set to be the value of the final capturing group of

when matched against . Let be the set of classes such that . By definition, all

root resource classes in must be annotated with the same URI path template modulo variable names.

2. Obtain a set of candidate resource methods for the request:

Input

Output

}

a. If is null or '/', set

and go to step 3 if

b. Set .

c. For each class in add regular expressions to for each sub-resource method and locator as
follows:

i. For each sub-resource method , add where is the URI path template of the sub-resource
method.

ii. For each sub-resource locator , add where is the URI path template of the sub-resource
locator.

d. Filter by matching each member against as follows:

! = final capturing group not yet matched, = {root resouce classes matched so far}" ′

= {}
$ " %(&)

#

%()'$ '$ $

" #

!

!

$

#

#

%match # ! %match
! " ′ $ %() ='$ %match
" ′

! = final capturing group not yet matched, = {root resouce classes matched so far}" ′

(= {candidate resource methods
!

(= {resource methods of all classes in (excluding sub-resource methods)}" ′

(≠ {}
= {}

$ ′ " ′ #

) %()') ')

* %()'* '*

!

Remove members that do not match .

Remove members derived from (those added in step 3(c)i) for which the final capturing group
value is neither empty nor '/'.

e. If is empty, then no matching resource can be found and the algorithm terminates by generating a
NotFoundException (404 status) and no entity.

f. Sort using the number of literal characters in each member as the primary key (descending order), the
number of capturing groups as a secondary key (descending order), the number of capturing groups with
non-default regular expressions (i.e. not ([^/]+?)) as the tertiary key (descending order), and the source of
each member as quaternary key sorting those derived from sub-resource methods ahead of those derived
from sub-resource locators.

g. Set to be the first member of

h. Set as follows,
and go to step 3 if .

i. Let be a sub-resource locator such that . Implementations SHOULD report an error if

there is more than one sub-resource locator that satisfies this condition. Set to be the value of the final
capturing group of when matched against , and set to be the singleton set containing only the
class that defines .

j. Go to step 2a.

3. Identify the method that will handle the request:

Input

Output

a. Filter by removing members that do not meet the following criteria:

The request method is supported. If no methods support the request method an implementation MUST
generate a NotAllowedException (405 status) and no entity. Note the additional support for HEAD and
OPTIONS described in Section HEAD and OPTIONS.

The media type of the request entity body (if any) is a supported input data format (see Section
Declaring Media Type Capabilities). If no methods support the media type of the request entity body an
implementation MUST generate a NotSupportedException (415 status) and no entity.

At least one of the acceptable response entity body media types is a supported output data format (see
Section Declaring Media Type Capabilities). If no methods support one of the acceptable response
entity body media types an implementation MUST generate a NotAcceptableException (406 status)
and no entity.

b. If after filtering the set has more than one element, sort it in descending order as follows. First, let us
define the client media type and the server media type as those denoted by the Accept header in a
request and the @Produces annotation on a resource method, respectively. Let a client media type be of

!

')

#

#

%match #

((= {subresource methods of all classes in (excluding sub-resource locators)}]" ′

(≠ {}
* = %()%match '*

!
%()'* ! " ′

*

(= candidate resource methods

+ = instance of resource class matched,) = resource method matched from (
(

(

the form , a server media type be of the form and a combined media type of the
form , where the distance factor is defined below. For any of these types,
could be , or and could be and the values of q and qs are assumed to be if absent.

Let be defined over a client media type and a server media type as the function that
returns the most specific combined type with a distance factor if and are compatible and
otherwise. For example:

,

,

,

.

where the factor corresponds to the number of wildcards matched with a concrete type or subtype.
Note that q and qs are not matched, but simply combined in the resulting media type. A total ordering can
be defined over combined media types as follows.

We write if one of these ordered conditions

holds:

i. where the partial order is defined as ,

ii. and ,

iii. and and .

iv. and and and .

Note that is a total order even though is a partial order. For example, the following holds
 even though is

incomparable to according to . Additionally, it is possible under for two types to be
equal even though they are not identical [7]. For convenience, we defined for every media type .

Given these definitions, we can now sort in descending order based on as follows:

Let be the request content type and a resource method’s @Consumes set of server media types,
we use the media type as primary key.

Let be the request accept header set of client media types and a resource method’s
@Produces set of server media types, we use the media type as
secondary key. If there is more than one maximum element , implementations SHOULD report a
warning and select one of these types in an implementation dependent manner.

c. Let be the first resource method in the set [8] and an instance of the class that defines . If after
sorting, there is more than one maximum element in , implementations SHOULD report a warning and
select one of these methods in an implementation dependent manner.

Consider the following example and assume the request to be GET widgets/1 :

,/-;q=.1 ,/-;qs=.2
,/-;q= ;qs= ;d=.1 .2 .3 / -

∗ - , ∗ 1.0
0(,)11 12 11 12

11 12 ⊥

0(text/html;q=1, text/html;qs=1) = text/html;q=1;qs=1;d=0
0(text/*;q=0.5, text/html;qs=0.8) = text/html;q=0.5;qs=0.8;d=1
0(*/*;q=0.2, text/*;qs=0.9) = text/*;q=0.2;qs=0.9;d=1
0(text/*;q=0.4, application/*;qs=0.3) = ⊥

/

/ ;q= ;qs= ;d= ≥ / ;q= ;qs= ;d=,1 -1 .1 .′
1 .″

1 ,2 -2 .2 .′
2 .″

2

/ ≻ /,1 -1 ,2 -2 ≻ ,/- ≻ ,/* ≻ */*
/ ⊁ /,2 -2 ,1 -1 >.1 .2

/ ⊁ /,2 -2 ,1 -1 =.1 .2 >.′
1 .′

2

/ ⊁ /,2 -2 ,1 -1 =.1 .2 =.′
1 .′

2 ≤.″
1 .″

2

≥ ≻
text/html;q=1.0;qs=0.7;d=0 ≥ application/xml;q=1.0;qs=0.2;d=0 text/html

application/xml ≻ ≥
1 ≥ ⊥ 1

(≥
2 "(

{0(2, 3) | (2, 3) ∈ {2} × }max≥ "(

& 4(
{0(5, 1) | (5, 1) ∈ & × }max≥ 4(

) (+)
(

The input and output values for each of the 3 steps in the matching algorithm are as follows:

Step 1

Identify a set of candidate root resource classes matching the request. Let and
,

Input

 and

Output

 and

Step 2

Obtain a set of candidate resource methods for the request. Let ,

Input

 and

Output

Step 3

Identify the method that will handle the request,

Input

Output

@Path("widget")
publicpublic classclass WidgetResourceWidgetResource {
 privateprivate String id;

 publicpublic WidgetResource() {
 this("0");
 }

 publicpublic WidgetResource(String id) {
 this.id = id;
 }

 @GET
 publicpublic Widget findWidget() {
 returnreturn Widget.findWidgetById(id);
 }
}

@Path("widgets")
publicpublic classclass WidgetsResourceWidgetsResource {

 @Path("{id}")
 publicpublic WidgetResource getWidget(@PathParam("id") String id) {
 returnreturn newnew WidgetResource(id);
 }
}

JAVA

%(widgets) = widgets(/.*)?
%(widget) = widget(/.*)?

! = widgets/1 " = {WidgetResource, WidgetsResource}

! = /1 = {WidgetsResource}" ′

%({id}) = ([ˆ/]+?)(/.*)?

! = /1 = {WidgetsResource}" ′

(= {findWidget}

(= {findWidget}

 and

Note that the algorithm matches a single root resource class (WidgetsResource) and, consequently, the
@Path annotation on WidgetResource is ignored for the request GET widgets/1 .

:+Q+:+,405<()1"5N,TG7,H('/%&1(#,10,G(N.%&),=6/)(##"05#

The function converts a URI path template annotation into a regular expression as follows:

1. URI encode the template, ignoring URI template variable specifications.

2. Escape any regular expression characters in the URI template, again ignoring URI template variable
specifications.

3. Replace each URI template variable with a capturing group containing the specified regular expression or
'([ˆ/]+?)' if no regular expression is specified[9].

4. If the resulting string ends with / then remove the final character.

5. Append '(/.*)?' to the result.

Note that the above renders the name of template variables irrelevant for template matching purposes. However,
implementations will need to retain template variable names in order to facilitate the extraction of template
variable values via @PathParam or UriInfo.getPathParameters .

74T4(R'/'?@$,$,A(/O'(F'-$.>B%'(*U(M'&%*,&'&
In many cases it is not possible to statically determine the media type of a response. The following algorithm is
used to determine the response media type, , at run time:

1. If the method returns an instance of Response whose metadata includes the response media type (
) then set , finish.

2. Gather the set of producible media types :

If the method is annotated with @Produces , set where represents the values of
@Produces on the specified target .

Else if the class is annotated with @Produces , set .

Else set where writers is the set of MessageBodyWriter that support the class of the
returned entity object.

3. If , set

4. Obtain the acceptable media types . If , set

5. Set . For each member of :

For each member of :

If is compatible with , add to , where the function returns the most specific media type of
the pair with the q-value of and server-side qs-value of .

6. If then generate a NotAcceptableException (406 status) and no entity. The exception MUST be
processed as described in Exceptions. Finish.

+ = WidgetResource instance) = findWidget

%(&) &

(selected

(specified =(selected (specified
4

4 = {6 (method)} 6 (2)
2

4 = {6 (class)}
4 = {6 (writers)}

4 = {} 4 = {'*/*'}
& & = {} & = {'*/*'}

(= {} &, 5

4 , 1

5 1 0(5, 1) (0
5 1

(= {}

7. Sort in descending order, with a primary key of specificity (), a secondary key of q-value
and a tertiary key of qs-value.

8. For each member of :

If is a concrete type, set , finish.

9. If contains '*/*' or 'application/*', set , finish.

10. Generate a NotAcceptableException (406 status) and no entity. The exception MUST be processed as
described in Exceptions. Finish.

Note that the above renders a response with a default media type of 'application/octet-stream' when a concrete
type cannot be determined. It is RECOMMENDED that MessageBodyWriter implementations specify at least one
concrete type via @Produces .

(n/m > n/* > */*

(, -

- = -(selected
(= 'application/octet-stream'(selected

:+,;%"<&/9%6
Providers in JAX-RS are responsible for various cross-cutting concerns such as filtering requests, converting
representations into Java objects, mapping exceptions to responses, etc. A provider can be either pre-packaged in
the JAX-RS runtime or supplied by an application. All application-supplied providers implement interfaces in the
JAX-RS API and MAY be annotated with @Provider for automatic discovery purposes; the integration of pre-
packaged providers into the JAX-RS runtime is implementation dependent.

This chapter introduces some of the basic JAX-RS providers; other providers are introduced in Chapter Client API
and Chapter Filters and Interceptors.

:434(2$U'"B"#'(.,-(!,<$?*,@',/
By default a single instance of each provider class is instantiated for each JAX-RS application. First the constructor
(see Constructors) is called, then any requested dependencies are injected (see Chapter Context), then the
appropriate provider methods may be called multiple times (simultaneously), and finally the object is made
available for garbage collection. Providers describes how a provider obtains access to other providers via
dependency injection.

An implementation MAY offer other provider lifecycles, mechanisms for specifying these are outside the scope of
this specification. E.g. an implementation based on an inversion-of-control framework may support all of the
lifecycle options provided by that framework.

I+*+*+,L.10'&1"$,!"#$0<()C

The annotation @Provider is used by a JAX-RS runtime to automatically discover provider classes via
mechanisms such as class scanning. A JAX-RS implementation that supports automatic discovery of classes MUST
process only those classes that are annotated with @Provider .

I+*+9+,-()<"$(#

On runtime initialization, an implementation MUST discover and register certain service providers in
jakarta.ws.rs.core.Configuration runtime configurations, if and only if service loading is enabled. Service
loading is enabled, except when there is an Application subclass whose getProperties method returns a map
which contains the key jakarta.ws.rs.loadServices with a value of Boolean.FALSE . For each service X, where
X is jakarta.ws.rs.core.Feature or jakarta.ws.rs.container.DynamicFeature , the set of providers to be
registered MUST be determined as follows:

first, register all providers discovered with ServiceLoader.load(X.class)

additionally, register all providers discovered with ServiceLoader.load(X.class,
X.class.getClassLoader())

Note that service loading allows libraries to be self-sufficient: it allows them to register what they need with the
JAX-RS implementation without intervention from the application. From the viewpoint of an application
developer, this means that they do not need to understand the inner workings of their dependent libraries when
overriding getClasses . As another example, it allows system integrators to extend the JAX-RS implementation
(e.g. to provide integrations with other Jakarta EE specifications) in a completely portable manner.

I+*+:+,405#1).$10)#

Provider classes that are instantiated by the JAX-RS runtime and MUST have a public constructor for which the
JAX-RS runtime can provide all parameter values. Note that a zero argument constructor is permissible under this
rule.

A public constructor MAY include parameters annotated with @Context —Chapter Context defines the parameter
types permitted for this annotation. Since providers may be created outside the scope of a particular request, only
deployment-specific properties may be available from injected interfaces at construction time; request-specific
properties are available when a provider method is called. If more than one public constructor can be used then
an implementation MUST use the one with the most parameters. Choosing amongst constructors with the same
number of parameters is implementation specific, implementations SHOULD generate a warning about such
ambiguity.

I+*+I+,F)"0)"1"(#

Application-supplied providers enable developers to extend and customize the JAX-RS runtime. Therefore, an
application-supplied provider MUST always be preferred over a pre-packaged one if a single one is required.

Application-supplied providers may be annotated with @Priority . If two or more providers are candidates for a
certain task, the one with the highest priority is chosen: the highest priority is defined to be the one with the lowest
value in this case. That is, @Priority(1) is higher than @Priority(10) . If two or more providers are eligible and
have identical priorities, one is chosen in an implementation dependent manner. The default priority for all
application-supplied providers is jakarta.ws.rs.Priorities.USER .

The general rule about priorities is different for filters and interceptors since these providers are collected into
chains. For more information see Section Priorities.

:454(!,/$/B(D?*<$-'?&
Entity providers supply mapping services between representations and their associated Java types. Entity
providers come in two flavors: MessageBodyReader and MessageBodyWriter described below.

I+9+*+,S(##&N(,?0>C,G(&>()

The MessageBodyReader interface defines the contract between the JAX-RS runtime and components that provide
mapping services from representations to a corresponding Java type. A class wishing to provide such a service
implements the MessageBodyReader interface and may be annotated with @Provider for automatic discovery.

The following describes the logical[10] steps taken by a JAX-RS implementation when mapping a message entity
body to a Java method parameter:

1. Obtain the media type of the request. If the request does not contain a Content-Type header then use
application/octet-stream .

2. Identify the Java type of the parameter whose value will be mapped from the entity body. Matching Requests
to Resource Methods describes how the Java method is chosen.

3. Select the set of MessageBodyReader classes that support the media type of the request, see Declaring Media
Type Capabilities.

4. Iterate through the selected MessageBodyReader classes and, utilizing the isReadable method of each,
choose a MessageBodyReader provider that supports the desired Java type.

5. If step 4 locates one or more suitable MessageBodyReader ’s then select the one with the highest priority as
described in Priorities and use its readFrom method to map the entity body to the desired Java type.

6. Otherwise, the server runtime MUST generate a NotSupportedException (415 status) and no entity (to be
processed as described in Exceptions) and the client runtime MUST generate an instance of
ProcessingException .

See Exceptions for more information on handling exceptions thrown in MessageBodyReader.readFrom .

I+9+9+,S(##&N(,?0>C,U)"1()

The MessageBodyWriter interface defines the contract between the JAX-RS runtime and components that provide
mapping services from a Java type to a representation. A class wishing to provide such a service implements the
MessageBodyWriter interface and may be annotated with @Provider for automatic discovery.

The following describes the logical steps taken by a JAX-RS implementation when mapping a return value to a
message entity body:

1. Obtain the object that will be mapped to the message entity body. For a return type of Response or subclasses,
the object is the value of the entity property, for other return types it is the returned object.

2. Determine the media type of the response, see Determining the MediaType of Responses.

3. Select the set of MessageBodyWriter providers that support (see Declaring Media Type Capabilities) the object
and media type of the message entity body.

4. Sort the selected MessageBodyWriter providers with a primary key of generic type where providers whose
generic type is the nearest superclass of the object class are sorted first and a secondary key of media type (see
Declaring Media Type Capabilities).

5. Iterate through the sorted MessageBodyWriter providers and, utilizing the isWriteable method of each,
choose an MessageBodyWriter that supports the object that will be mapped to the entity body.

6. If step 5 locates one or more suitable MessageBodyWriter ’s that are equal with respect to the sorting in step 4,
then select the one with the highest priority as described in Priorities and use its writeTo method to map the
entity body to the desired Java type.

7. Otherwise, the server runtime MUST generate a generate an InternalServerErrorException , a subclass of
WebApplicationException with its status set to 500, and no entity (to be processed as described in
Exceptions) and the client runtime MUST generate a ProcessingException .

Experience gained in the field has resulted in the reversal of the sorting keys in step 4 in this specification. This
represents a backward incompatible change with respect to JAX-RS 1.X. Implementations of this specification are
REQUIRED to provide a backward compatible flag for those applications that rely on the previous ordering. The
mechanism defined to enable this flag is implementation dependent.

See Exceptions for more information on handling exceptions thrown in MessageBodyWriter.write .

I+9+:+,!($%&)"5N,S(>"&,HC/(,4&/&E"%"1"(#

Message body readers and writers MAY restrict the media types they support using the @Consumes and
@Produces annotations respectively. The absence of these annotations is equivalent to their inclusion with media
type ("*/*"), i.e. absence implies that any media type is supported. An implementation MUST NOT use an entity

provider for a media type that is not supported by that provider.

When choosing an entity provider an implementation sorts the available providers according to the media types
they declare support for. Sorting of media types follows the general rule: x/y x/* */*, i.e. a provider that
explicitly lists a media types is sorted before a provider that lists */*.

I+9+I+,-1&5>&)>,=51"1C,F)0<">()#

An implementation MUST include pre-packaged MessageBodyReader and MessageBodyWriter implementations
for the following Java and media type combinations:

byte[]

All media types (*/*).

java.lang.String

All media types (*/*).

java.io.InputStream

All media types (*/*).

java.io.Reader

All media types (*/*).

java.io.File

All media types (*/*).

jakarta.activation.DataSource

All media types (*/*).

javax.xml.transform.Source

XML types (text/xml , application/xml and media types of the form application/*+xml).

MultivaluedMap<String,String>

Form content (application/x-www-form-urlencoded).

java.util.List<EntityPart>

Multipart data (multipart/form-data)

StreamingOutput

All media types (*/*), MessageBodyWriter only.

java.lang.Boolean , java.lang.Character , java.lang.Number

Only for text/plain . Corresponding primitive types supported via boxing/unboxing conversion.

Depending on the environment, the list of standard entity providers MUST also include those for JSON or XML. For
more information about these providers see Java API for JSON Processing, Java API for JSON Binding and Jakarta
XML Binding.

< <

When reading zero-length message entities all pre-packaged MessageBodyReader implementations, except the
JAXB one and those for the (boxed) primitive types above, MUST create a corresponding Java object that
represents zero-length data. The pre-packaged JAXB and the pre-packaged primitive type
MessageBodyReader implementations MUST throw a NoContentException for zero-length message entities.

When a NoContentException is thrown while reading a server request entity from a MessageBodyReader it
MUST be translated by the server runtime into a BadRequestException wrapping the original
NoContentException and re-thrown to be processed by any registered exception mappers.

The implementation-supplied entity provider(s) for jakarta.xml.bind.JAXBElement and application-supplied
JAXB classes MUST use JAXBContext instances provided by application-supplied context resolvers, see Context
Providers. If an application does not supply a JAXBContext for a particular type, the implementation-supplied
entity provider MUST use its own default context instead.

The implementation-supplied entity provider(s) for application-supplied JSON-B classes MUST use Jsonb
instances provided by application-supplied context resolvers, see Context Providers. If an application does not
supply a Jsonb instance for a particular type, the implementation-supplied entity provider MUST use its own
default context instead.

When writing responses, implementations SHOULD respect application-supplied character set metadata and
SHOULD use UTF-8 if a character set is not specified by the application or if the application specifies a character
set that is unsupported.

An implementation MUST support application-provided entity providers and MUST use those in preference to its
own pre-packaged providers when either could handle the same request. More precisely, step 4 in Message Body
Reader and step 5 in Message Body Writer MUST prefer application-provided over pre-packaged entity providers.

I+9+J+,H)&5#2(),=5$0>"5N

Transfer encoding for inbound data is handled by a component of the container or the JAX-RS runtime.
MessageBodyReader providers always operate on the decoded HTTP entity body rather than directly on the HTTP
message body.

A JAX-RS runtime or container MAY transfer encode outbound data or this MAY be done by application code.

I+9+V+,4051(51,=5$0>"5N

Content encoding is the responsibility of the application. Application-supplied entity providers MAY perform such
encoding and manipulate the HTTP headers accordingly.

:474(;*,/'V/(D?*<$-'?&
Context providers supply context to resource classes and other providers. A context provider class implements the
ContextResolver<T> interface and may be annotated with @Provider for automatic discovery. E.g., an
application wishing to provide a customized JAXBContext to the default JAXB entity providers would supply a
class implementing ContextResolver<JAXBContext> .

Context providers MAY return null from the getContext method if they do not wish to provide their context for
a particular Java type. E.g. a JAXB context provider may wish to only provide the context for certain JAXB classes.
Context providers MAY also manage multiple contexts of the same type keyed to different Java types.

Note that a context provider for JAXB is only applicable in products that support Jakarta XML Binding.

I+:+*+,!($%&)"5N,S(>"&,HC/(,4&/&E"%"1"(#

Context provider implementations MAY restrict the media types they support using the @Produces annotation.
The absence of this annotation is equivalent to its inclusion with media type ("*/*"), i.e. absence implies that any
media type is supported.

When choosing a context provider an implementation sorts the available providers according to the media types
they declare support for. Sorting of media types follows the general rule: x/y x/* */*, i.e. a provider that
explicitly lists a media type is sorted before a provider that lists */*.

:4:4(!V"'%/$*,(F.%%$,A(D?*<$-'?&
Exception mapping providers map a checked or runtime exception to an instance of Response . An exception
mapping provider implements the ExceptionMapper<T> interface and may be annotated with @Provider for
automatic discovery.

When a resource class or provider method throws an exception, the matching provider is used to obtain a
Response instance. The resulting Response is processed as if a web resource method had returned the
Response , see Return Type. In particular, a mapped Response MUST be processed using the ContainerResponse
filter chain defined in Chapter Filters and Interceptors.

When choosing an exception mapping provider to map an exception, an implementation MUST use the provider
whose generic type is the nearest superclass of the exception. If two or more exception providers are applicable,
the one with the highest priority MUST be chosen as described in Priorities.

A JAX-RS implementation MUST include a default exception mapping provider that implements
ExceptionMapper<Throwable> and which SHOULD set the response status to 500.

When the default exception mapping provider handles a WebApplicationException, it MUST return the embedded
Response, and it MUST respect the status code in the Response.

Any registered CompletionCallback MUST be invoked with an unmapped exception before the default exception
mapping provider maps the unmapped exception to a Response.

To avoid a potentially infinite loop, a single exception mapper must be used during the processing of a request and
its corresponding response. JAX-RS implementations MUST NOT attempt to map exceptions thrown while
processing a response previously mapped from an exception. Instead, this exception MUST be processed as
described in steps 3 and 4 in Exceptions.

Note that exception mapping providers are not supported as part of the Client API.

:4=4(!V"'%/$*,&

< <

Exception handling differs depending on whether a provider is part of the client runtime or server runtime. This
is covered in the next two sections.

I+J+*+,-()<(),G.51"'(

When a provider method throws an exception, the JAX-RS server runtime will attempt to map the exception to a
suitable HTTP response in the same way as described for methods and locators in Exceptions. If the exception is
thrown while generating a response, JAX-RS implementations are required to map the exception only when the
response has not been committed yet.

As explained in Exception Mapping Providers, an application can supply exception mapping providers to
customize this mapping, but these exception mappers will be ignored during the processing of a previously
mapped response to avoid entering a potentially infinite loop. For example, suppose a method in a message body
reader throws an exception that is mapped to a response via an exception mapping provider; if the message body
writer throws an exception while trying to write the mapped response, JAX-RS implementations will not attempt
to map the exception again.

I+J+9+,4%"(51,G.51"'(

When a provider method throws an exception, the JAX-RS client runtime will map it to an instance of
ProcessingException if thrown while processing a request, and to a ResponseProcessingException if thrown
while processing a response.

Note that the client runtime will only throw an instance of WebApplicationException (or any of its subclasses) as
a result of a response from the server with status codes 3xx, 4xx or 5xx. See Client Exceptions for more details on
WebApplicationException .

=+,!4&9.),3;-
The Client API is used to access Web resources. It provides a higher-level API than HttpURLConnection as well as
integration with JAX-RS providers. Unless otherwise stated, types presented in this chapter live in the
jakarta.ws.rs.client package.

=434(N**/&/?.%%$,A(.(;#$',/(Q,&/.,"'
An instance of Client is required to access a Web resource using the Client API. The default instance of
Client can be obtained by calling newClient on ClientBuilder . Client instances can be configured using
methods inherited from Configurable as follows:

See Chapter Providers for more information on providers. Properties are simply name-value pairs where the
value is an arbitrary object. Features are also providers and must implement the Feature interface; they are
useful for grouping sets of properties and providers (including other features) that are logically related and must
be enabled as a unit.

=454(M'&*+?"'(I""'&&
A Web resource can be accessed using a fluent API in which method invocations are chained to build and
ultimately submit an HTTP request. The following example gets a text/plain representation of the resource
identified by http://example.org/hello :

Conceptually, the steps required to submit a request are the following: (i) obtain an instance of Client (ii) create a
WebTarget (iii) create a request from the WebTarget and (iv) submit a request or get a prepared Invocation for
later submission. See Section [invocations] for more information on using Invocation .

Method chaining is not limited to the example shown above. A request can be further specified by setting headers,
cookies, query parameters, etc. For example:

See the Javadoc for the classes in the jakarta.ws.rs.client package for more information.

// Default instance of client
Client client = ClientBuilder.newClient();

// Additional configuration of default client
client.property("MyProperty", "MyValue")
 .register(MyProvider.class)
 .register(MyFeature.class);

JAVA

Client client = ClientBuilder.newClient();
Response res = client.target("http://example.org/hello")
 .request("text/plain").get();

JAVA

Response res = client.target("http://example.org/hello")
 .queryParam("MyParam","...")
 .request("text/plain")
 .header("MyHeader", "...")
 .get();

JAVA

http://example.org/hello

=474(;#$',/(>.?A'/&
The benefits of using a WebTarget become apparent when building complex URIs, for example by extending base
URIs with additional path segments or templates. The following example highlights these cases:

Note the use of the URI template parameter {whom} . The example above gets a representation for the resource
identified by http://example.org/hello/world .

WebTarget instances are immutable with respect to their URI (or URI template): methods for specifying additional
path segments and parameters return a new instance of WebTarget . However, WebTarget instances are mutable
with respect to their configuration. Thus, configuring a WebTarget does not create new instances.

In this example, two instances of WebTarget are created. The instance hello inherits the configuration from
base and it is further configured by registering MyProvider.class . Note that changes to hello ’s configuration
do not affect base , i.e. inheritance performs a deep copy of the configuration. See Configurable Types for
additional information on configurable types.

=4:4(>B%'-(!,/$/$'&
The response to a request is not limited to be of type Response . The following example upgrades the status of
customer number 123 to "gold status" by first obtaining an entity of type Customer and then posting that entity to
a different URI:

Note the use of the variant xml() in the call to post . The class jakarta.ws.rs.client.Entity defines variants
for the most popular media types used in JAX-RS applications.

In the example above, just like in the Server API, JAX-RS implementations are REQUIRED to use entity providers to
map a representation of type application/xml to an instance of Customer and vice versa. See Standard Entity
Providers for a list of entity providers that MUST be supported by all JAX-RS implementations.

=4=4(Q,<*"./$*,&

WebTarget base = client.target("http://example.org/");
WebTarget hello = base.path("hello").path("{whom}");
Response res = hello.resolveTemplate("whom", "world").request("...").get();

JAVA

// Create WebTarget instance base
WebTarget base = client.target("http://example.org/");
// Create new WebTarget instance hello and configure it
WebTarget hello = base.path("hello");
hello.register(MyProvider.class);

JAVA

Customer c = client.target("http://examples.org/customers/123")
.request("application/xml").get(Customer.class);
String newId = client.target("http://examples.org/gold-customers/")
.request().post(xml(c), String.class);

JAVA

http://example.org/hello/world

An invocation is a request that has been prepared and is ready for execution. Invocations provide a generic
interface that enables a separation of concerns between the creator and the submitter. In particular, the submitter
does not need to know how the invocation was prepared, but only how it should be executed: namely,
synchronously or asynchronously.

Let us consider the following example [11]:

In this example, two invocations are prepared and stored in a collection by the creator. The submitter then
traverses the collection applying a transformation that maps an Invocation to a Response . The mapping calls
Invocation.invoke to execute the invocation synchronously; asynchronous execution is also supported by
calling Invocation.submit . Refer to Chapter Asynchronous Processing for more information on asynchronous
invocations.

=4C4(;*,1A+?.G#'(>B%'&
The following Client API types are configurable: Client , ClientBuilder , and WebTarget . Configuration
methods are inherited from the Configurable interface implemented by all these classes. This interface supports
configuration of:

Properties

Name-value pairs for additional configuration of features or other components of a JAX-RS implementation.

Features

A special type of provider that implement the Feature interface and can be used to configure a JAX-
RS implementation.

Providers

Classes or instances of classes that implement one or more of the provider interfaces from Chapter Providers. A
provider can be a message body reader, a filter, a context resolver, etc.

The configuration defined on an instance of any of the aforementioned types is inherited by other instances
created from it. For example, an instance of WebTarget created from a Client will inherit the Client ’s
configuration. However, any additional changes to the instance of WebTarget will not impact the Client ’s

// Executed by the creator
Invocation inv1 = client.target("http://examples.org/atm/balance")
 .queryParam("card", "111122223333").queryParam("pin", "9876")
 .request("text/plain").buildGet();
Invocation inv2 = client.target("http://examples.org/atm/withdrawal")
 .queryParam("card", "111122223333").queryParam("pin", "9876")
 .request().buildPost(text("50.0"));
Collection<Invocation> invs = Arrays.asList(inv1, inv2);

// Executed by the submitter
Collection<Response> ress =
 Collections.transform(invs, newnew F<Invocation, Response>() {
 @Override
 publicpublic Response apply(Invocation inv) {
 returnreturn inv.invoke();
 }
 });

JAVA

configuration and vice versa. Therefore, once a configuration is inherited it is also detached (deep copied) from its
parent configuration and changes to the parent and child configurations are not be visible to each other.

J+V+*+,W"%1()#,&5>,=51"1C,751()$(/10)#

As explained in Chapter Filters and Interceptors, filters and interceptors are defined as JAX-RS providers.
Therefore, they can be registered in any of the configurable types listed in the previous section. The following
example shows how to register filters and interceptors on instances of Client and WebTarget :

In this example, LoggingFilter is inherited by each instance of WebTarget created from client ; an additional
provider named CachingFilter is registered on the instance of WebTarget .

=4H4(M'."/$<'(;#$',/&
Client API introduces asynchronous programming in the Client API. Asynchronous programming in JAX-
RS enables clients to unblock certain threads by pushing work to background threads which can be monitored and
possibly waited on (joined) at a later time. This can be accomplished in JAX-RS by either providing an instance of
InvocationCallback or operating on the result of type Future<T> returned by an asynchronous invoker —or
some combination of both styles.

Using InvocationCallback enables a more reactive programming style in which user-provided code activates (or
reacts) only when a certain event has occurred. Using callbacks works well for simple cases, but the source code
becomes harder to understand when multiple events are in play. For example, when asynchronous invocations
need to be composed, combined or in any way operated upon. These type of scenarios may result in callbacks that
are nested inside other callbacks making the code far less readable —often referred to as the pyramid of doom
because of the inherent nesting of calls.

To address the requirement of greater readability and to enable programmers to better reason about
asynchronous computations, Java 8 introduces the a new interface called CompletionStage that includes a large
number of methods dedicated to managing asynchronous computations.

JAX-RS 2.1 defines a new type of invoker called RxInvoker , as well a default implementation of this type called
CompletionStageRxInvoker that is based on the Java 8 type CompletionStage . There is a new rx method
which is used in a similar manner to async as described in Client API. Let us consider the following example:

// Create client and register logging filter
Client client = ClientBuilder.newClient().register(LoggingFilter.class);

// Executes logging filter from client and caching filter from target
WebTarget wt = client.target("http://examples.org/customers/123");
Customer c = wt.register(CachingFilter.class).request("application/xml")
 .get(Customer.class);

JAVA

CompletionStage<String> csf = client.target("forecast/{destination}")
 .resolveTemplate("destination", "mars")
 .request()
 .rx()
 .get(String.class);

csf.thenAccept(System.out::println);

JAVA

This example first creates an asynchronous computation of type CompletionStage<String> , and then simply
waits for it to complete and displays its result (technically, a second computation of type CompletionStage<Void>
is created on the last line simply to consume the result of the first computation).

The value of CompletionStage becomes apparent when multiple asynchronous computations are necessary to
accomplish a task. The following example obtains, in parallel, a price and a forecast for a destination and makes a
reservation only if the desired conditions are met.

Note that the Consumer passed in the call to method thenCombine requires the values of each stage to be
available and, therefore, can only be executed after the two parallel stages are completed.

As we shall see in the next section, support for CompletionStage is the default for all JAX-RS implementations, but
other reactive APIs may also be supported as extensions.

J+Q+*+,G(&$1"<(,LF7,=61(5#"05#

There have been several proposals for reactive APIs in Java. All JAX-RS implementations MUST support an invoker
for CompletionStage as shown above. Additionally, JAX-RS implementations MAY support other reactive APIs
using an extension built into the Client API.

RxJava [11] is a popular reactive library available in Java. The type representing an asynchronous computation in
this API is called an Observable . An implementation may support this type by providing a new invoker as shown
in the following example:

First, a provider for the new invoker must be registered on the Client object. Second, the type of the invoker
must be specified as a parameter to the rx method. Note that because this is a JAX-RS extension, the actual names
for the provider and the invoker in the example above are implementation dependent. The reader is referred to
the documentation for the JAX-RS implementation of choice for more information.

CompletionStage<Number> csp = client.target("price/{destination}")
 .resolveTemplate("destination", "mars")
 .request()
 .rx()
 .get(Number.class);

CompletionStage<String> csf = client.target("forecast/{destination}")
 .resolveTemplate("destination", "mars")
 .request()
 .rx()
 .get(String.class);

csp.thenCombine(csf, (price, forecast) ->
 reserveIfAffordableAndWarm(price, forecast));

JAVA

Client client = client.register(ObservableRxInvokerProvider.class);

Observable<String> of = client.target("forecast/{destination}")
 .resolveTemplate("destination", "mars")
 .request()
 .rx(ObservableRxInvoker.class) // overrides default invoker
 .get(String.class);

of.subscribe(System.out::println);

JAVA

Version 2.0 of RxJava [12] has been completely re-written on top of the Reactive-Streams specification. This new
architecture prompted the introduction of a new type called Flowable . JAX-RS implementations could easily
support this new version by implementing a new provider (such as FlowableRxInvokerProvider) and using the
same pattern shown in the example above.

=4T4(!V'"+/*?(0'?<$"'&
Executor services can be used to submit asynchronous tasks for execution. JAX-RS applications can specify
executor services while building a Client instance. Two methods are provided in ClientBuilder for this
purpose, namely, executorService and scheduledExecutorService .

In an environment that supports Jakarta Concurrency [13], such as full Jakarta EE platform products,
implementations MUST use ManagedExecutorService and ManagedScheduledExecutorService , respectively.
The reader is referred to the Javadoc of ClientBuilder for more information about executor services.

=4W4(;#$',/(!V"'%/$*,&
A method of the JAX-RS Client API that nominally throws WebApplicationException MUST actually throw the
most specific exception subclass for the current response status code, unless no such subclass is defined by the JAX-
RS API.

Only in the latter case the method MAY throw the WebApplicationException class directly.

The method MAY throw a direct or indirect subclass of the mandatory exception.

Example: If a response has the status 404, a compliant implementation MUST NOT throw
WebApplicationException(404) , but instead MUST throw NotFoundException , or a subclass of
NotFoundException , because the description of NotFoundException exactly matches the status code 404.

Example: If a response has the status 567, a compliant implementation MUST NOT throw
WebApplicationException(567) but instead MUST throw ServerErrorException , or a subclass of
ServerErrorException , because the description of ServerErrorException indirectly matches the status code
567 by matching the whole 5XX family of codes.

>+,?&4)9%6,5./,-.)9%19#)"%6
Filters and entity interceptors can be registered for execution at well-defined extension points in JAX-
RS implementations. They are used to extend an implementation in order to provide capabilities such as logging,
confidentiality, authentication, entity compression, etc.

C434(Q,/?*-+"/$*,
Entity interceptors wrap around a method invocation at a specific extension point. Filters execute code at an
extension point but without wrapping a method invocation. There are four extension points for filters:
ClientRequest , ClientResponse , ContainerRequest and ContainerResponse . There are two extension points
for entity interceptors: ReadFrom and WriteTo . For each of these extension points, there is a corresponding
interface:

A client filter is a class that implements ClientRequestFilter or ClientResponseFilter or both. A container
filter is a class that implements ContainerRequestFilter or ContainerResponseFilter , or both. An entity
interceptor is a class that implements ReaderInterceptor or WriterInterceptor , or both. Filters and entity
interceptors are providers and, as such, may be annotated with @Provider for automatic discovery.

In the Client API, a ClientRequestFilter is executed as part of the invocation pipeline, before the HTTP request
is delivered to the network; a ClientResponseFilter is executed upon receiving a server response, before
control is returned to the application. In the Server API, a ContainerRequestFilter is executed upon receiving a
request from a client; a ContainerResponseFilter is executed as part of the response pipeline, before the HTTP
response is delivered to the network.

publicpublic interfaceinterface ClientRequestFilterClientRequestFilter {
 voidvoid filter(ClientRequestContext requestContext) throwsthrows IOException;
}

publicpublic interfaceinterface ClientResponseFilterClientResponseFilter {
 voidvoid filter(ClientRequestContext requestContext,
 ClientResponseContext responseContext) throwsthrows IOException;
}

publicpublic interfaceinterface ContainerRequestFilterContainerRequestFilter {
 voidvoid filter(ContainerRequestContext requestContext) throwsthrows IOException;
}

publicpublic interfaceinterface ContainerResponseFilterContainerResponseFilter {
 voidvoid filter(ContainerRequestContext requestContext,
 ContainerResponseContext responseContext) throwsthrows IOException;
}

publicpublic interfaceinterface ReaderInterceptorReaderInterceptor {
 Object aroundReadFrom(ReaderInterceptorContext context)
 throwsthrows java.io.IOException, jakarta.ws.rs.WebApplicationException;
}

publicpublic interfaceinterface WriterInterceptorWriterInterceptor {
 voidvoid aroundWriteTo(WriterInterceptorContext context)
 throwsthrows java.io.IOException, jakarta.ws.rs.WebApplicationException;
}

JAVA

A globally-bound (see Global Binding) ContainerRequestFilter is a container filter executed after resource
matching unless it is annotated with @PreMatching . The use of this annotation on this type of filters defines a new
extension point for applications to use, namely . Certain ContainerRequestContext methods may not be
available at this extension point.

An entity interceptor implementing ReaderInterceptor wraps around calls to MessageBodyReader ’s method
readFrom . An entity interceptor implementing WriterInterceptor wraps around calls to MessageBodyWriter ’s
method writeTo . JAX-RS implementations are REQUIRED to call registered interceptors when mapping
representations to Java types and vice versa. See Entity Providers for more information on entity providers.

Please refer to Appendix Processing Pipeline for some diagrams on the client and server processing pipelines that
show the interaction between filters and entity interceptors.

C454()$#/'?&
Filters are grouped into filter chains. There is a separate filter chain for each extension point introduced in the
previous section, namely: ClientRequest , ClientResponse , ContainerRequest , ContainerResponse and
PreMatchContainerRequest . Filters in a chain are sorted based on their priorities (see Priorities) and are
executed in order.

The following example shows an implementation of a container logging filter: each method simply logs the
message and returns.

ContainerRequestContext is a mutable class that provides request-specific information for the filter, such as the
request URI, message headers, message entity or request-scoped properties. The exposed setters allow (certain)
modification of the request before it is processed by the resource method. Similarly, there is a corresponding
ContainerResponseContext that provides response-specific information.

Request filters implementing ClientRequestFilter or ContainerRequestFilter can stop the execution of their
corresponding chains by calling abortWith(Response) in their corresponding context object. If this method is
invoked, JAX-RS implementations are REQUIRED to abort execution of the chain and treat the response object as if

@Provider
classclass LoggingFilterLoggingFilter implementsimplements ContainerRequestFilter,
 ContainerResponseFilter {

 @Override
 publicpublic voidvoid filter(ContainerRequestContext requestContext)
 throwsthrows IOException {
 log(requestContext);
 }

 @Override
 publicpublic voidvoid filter(ContainerRequestContext requestContext,
 ContainerResponseContext responseContext) throwsthrows IOException {
 log(responseContext);
 }
 ...
}

JAVA

produced by calling the resource method (Server API) or executing the HTTP invocation (Client API). For example,
upon a cache hit, a client caching filter may call abortWith(Response) to abort execution and optimize network
access.

As stated above, a ContainerRequestFilter that is annotated with @PreMatching is executed upon receiving a
client request but before a resource method is matched. Thus, this type of filter has the ability to modify the input
to the matching algorithm (see Request Matching) and, consequently, alter its outcome. The following example
uses a ContainerRequestFilter annotated with @PreMatching to tunnel requests via POST by using the X-
HTTP-Method-Override header to overwrite the HTTP method prior to resource matching.

C474(!,/$/B(Q,/'?"'%/*?&
An entity interceptor implements interface ReaderInterceptor or WriterInterceptor , or both. There is an
interceptor chain for each kind of entity interceptor. Entity interceptors in a chain are sorted based on their
priorities (see Priorities) and are executed in order.

As part of the JAX-RS processing pipeline (see Appendix Processing Pipeline), entity interceptors wrap calls to the
methods readFrom in classes implementing MessageBodyReader and writeTo in classes implementing
MessageBodyWriter . An interceptor SHOULD explicitly call the context method proceed to continue the
execution of the chain. Because of their wrapping nature, failure to call this method will prevent execution of the
wrapped method in the corresponding message body reader or message body writer.

The following example shows an implementation of a GZIP entity interceptor that provides deflate and inflate
capabilities [12].

@Provider
@PreMatching
publicpublic classclass HttpMethodOverrideFilterHttpMethodOverrideFilter implementsimplements ContainerRequestFilter {

 @Override
 publicpublic voidvoid filter(ContainerRequestContext requestContext)
 throwsthrows IOException {
 ifif (requestContext.getMethod().equalsIgnoreCase("POST")) {
 String override = requestContext.getHeaders()
 .getFirst("X-HTTP-Method-Override");
 ifif (override != null) {
 requestContext.setMethod(override);
 }
 }
 }
}

JAVA

The context types, ReaderInterceptorContext and WriterInterceptorContext , provide read and write access
to the parameters of the corresponding wrapped methods. In the example shown above, the input and output
streams are wrapped and updated in the context object before proceeding. JAX-RS implementations MUST use the
last parameter values set in the context object when calling the wrapped methods MessageBodyReader.readFrom
and MessageBodyWriter.writeTo .

It is worth noting that a readFrom or a writeTo that is called directly from application code, e.g. via the injection
of a Providers instance, will not trigger the execution of any entity interceptors since it is not part of the normal
JAX-RS processing pipeline.

C4:4(2$U'"B"#'
By default, just like all the other providers, a single instance of each filter or entity interceptor is instantiated for
each JAX-RS application. First the constructor is called, then any requested dependencies are injected, then the
appropriate methods are called (simultaneously) as needed. Implementations MAY offer alternative lifecycle
options beyond the default one. See Lifecycle and Environment for additional information.

C4=4(N$,-$,A
Binding is the process by which a filter or interceptor is associated with a resource class or method (Server API) or
an invocation (Client API). The forms of binding presented in the next sections are only supported as part of the
Server API. See Binding in Client API for binding in the Client API.

@Provider
classclass GzipInterceptorGzipInterceptor implementsimplements ReaderInterceptor, WriterInterceptor {

 @Override
 Object aroundReadFrom(ReaderInterceptorContext ctx) ... {
 ifif (isGzipped(ctx)) {
 InputStream old = ctx.getInputStream();
 ctx.setInputStream(newnew GZIPInputStream(old));
 trytry {
 returnreturn ctx.proceed();
 } finallyfinally {
 ctx.setInputStream(old);
 }
 } elseelse {
 returnreturn ctx.proceed();
 }
 }

 @Override
 voidvoid aroundWriteTo(WriterInterceptorContext ctx) ... {
 OutputStream old = ctx.getOutputStream();
 GZIPOutputStream gzipOutputStream = newnew GZIPOutputStream(old);
 ctx.setOutputStream(gzipOutputStream);
 updateHeaders(ctx);
 trytry {
 ctx.proceed();
 } finallyfinally {
 gzipOutputStream.finish();
 ctx.setOutputStream(old);
 }
 }
 ...
}

JAVA

V+J+*+,X%0E&%,?"5>"5N

Global binding is the default type of binding. A filter or interceptor that has no annotations is assumed to be bound
globally, i.e. it applies to all the resource methods in an application. Like any other provider, a filter or interceptor
can be registered manually (e.g., via Application or Configuration) or be discovered automatically. Note that
for a filter or interceptor to be automatically discovered it MUST be annotated with @Provider (see Automatic
Discovery).

For example, the LoggingFilter defined in Filters is both automatically discovered (it is annotated with
@Provider) and bound globally. If this filter is part of an application, requests and responses will be logged for all
resource methods.

As stated in Introduction, a global ContainerRequestFilter is executed after resource matching unless
annotated with @PreMatching . A global filter that injects ResourceInfo , and generally depends on resource
information for its execution, must not be annotated with @PreMatching .

V+J+9+,M&'(,?"5>"5N

A filter or interceptor can be associated with a resource class or method by declaring a new binding annotation à
la CDI [14]. These annotations are declared using the JAX-RS meta-annotation @NameBinding and are used to
decorate both the filter (or interceptor) and the resource method or resource class. For example, the
LoggingFilter defined in Filters can be bound to the method hello in MyResourceClass , instead of globally, as
follows:

According to the semantics of LoggingFilter , the request will be logged before the hello method is called and
the response will be logged after it returns. The declaration of the @Logged annotation is shown next.

@Provider
@Logged
classclass LoggingFilterLoggingFilter implementsimplements ContainerRequestFilter,
 ContainerResponseFilter {
 ...
}

JAVA

@Path("/")
publicpublic classclass MyResourceClassMyResourceClass {
 @Logged
 @GET
 @Produces("text/plain")
 @Path("{name}")
 publicpublic String hello(@PathParam("name") String name) {
 returnreturn "Hello " + name;
 }
}

JAVA

@NameBinding
@Target({ ElementType.TYPE, ElementType.METHOD })
@Retention(value = RetentionPolicy.RUNTIME)
publicpublic @interface Logged { }

JAVA

Multiple filters and interceptors can be bound to a single resource method using additional annotations. For
example, given the following filter:

method hello above could be decorated with @Logged and @Authenticated in order to provide both logging
and authentication capabilities to the resource.

A filter or interceptor class can be decorated with multiple binding annotations. In this case, in accordance with
the semantics described in CDI [14], all those annotations must be present in the resource class or method for the
binding to be established. For example, if LoggingFilter is defined as follows:

then method hello above must be annotated with both @Logged and @Verbose for the binding to be in effect.

Binding annotations can also be applied to resource classes and Application subclasses. Binding annotations
that decorate resource classes apply to all resource methods defined in them. Binding annotations that decorate
Application subclasses can also be used to bind filters and interceptors globally, even if other annotations are
present. For example, LoggingFilter as defined at the beginning of this section can be bound globally as follows:

Note that returning filters or interceptors from the methods getClasses or getSingletons in an application
subclass will bind them globally only if they are not decorated with a name binding annotation. If they are
decorated with at least one name binding annotation, the application subclass must be annotated as shown above
in order for those filters or interceptors to be bound globally. See Chapter Applications for more information on
JAX-RS applications.

V+J+:+,!C5&'"$,?"5>"5N

The annotation-based forms of binding presented thus far are static. Dynamic binding is also supported using
dynamic features. A dynamic feature is a provider that implements the DynamicFeature interface. These
providers are used to augment the set of filters and entity interceptors bound to a resource method.

The following example defines a dynamic feature that binds the filter LoggingFilter —assumed not globally
bound for the purpose of this example— with all the resource methods in MyResource that are annotated with
@GET .

@Provider
@Authenticated
classclass AuthenticationFilterAuthenticationFilter implementsimplements ContainerRequestFilter {
 ...
}

JAVA

@Provider
@Logged @Verbose
classclass LoggingFilterLoggingFilter implementsimplements ContainerRequestFilter,
 ContainerResponseFilter {
 ...
}

JAVA

@Logged
publicpublic classclass MyApplicationMyApplication extendsextends Application {
 ...
}

JAVA

The overridden method in this provider updates the Configuration object assigned to each resource method; the
information about the resource method is provided in the form of a ResourceInfo instance. JAX-
RS implementations SHOULD resolve dynamic features for filters and interceptors once for each resource method.
It is RECOMMENDED to process dynamic features at application deployment time.

V+J+I+,?"5>"5N,"5,4%"(51,LF7

Binding in the Client API is accomplished via API calls instead of annotations. Client , Invocation ,
Invocation.Builder and WebTarget are all configurable types: their configuration can be accessed using the
methods inherited from the Configurable interface. See Configurable Types for more information.

C4C4(D?$*?$/$'&
The order in which filters and interceptors are executed as part of their corresponding chains is controlled by the
@Priority annotation defined in [15]. Priorities are represented by integer numbers. Execution chains for
extension points ContainerRequest , PreMatchContainerRequest , ClientRequest , ReadFrom and WriteTo
are sorted in ascending order; the lower the number the higher the priority. Execution chains for extension points
ContainerResponse and ClientResponse are sorted in descending order; the higher the number the higher the
priority. These rules ensure that response filters are executed in reversed order of request filters.

The Priorities class in JAX-RS defines a set of built-in priorities for security, header decorators, decoders and
encoders. The default binding priority is jakarta.ws.rs.Priorities.USER . For example, the priority of an
authentication filter can be set as follows:

Note that even though, as explained in Binding in Client API, annotations are not used for binding in the Client
API, they are still used to define priorities. Therefore, if a priority other than the default is required, the
@Priority annotation must be used for a filter or interceptor registered with the Client API.

The order in which filters and interceptors that belong to the same priority class are executed is implementation
dependent.

@Provider
publicpublic finalfinal classclass DynamicLoggingFilterFeatureDynamicLoggingFilterFeature implementsimplements DynamicFeature {

 @Override
 publicpublic voidvoid configure(ResourceInfo resourceInfo,
 FeatureContext context) {
 ifif (MyResource.class.isAssignableFrom(resourceInfo.getResourceClass())
 && resourceInfo.getResourceMethod().isAnnotationPresent(GET.class)) {
 context.register(newnew LoggingFilter());
 }
 }
}

JAVA

@Provider
@Authenticated
@Priority(Priorities.AUTHENTICATION)
publicpublic classclass AuthenticationFilterAuthenticationFilter implementsimplements ContainerRequestFilter {
 ...
}

JAVA

C4H4(!V"'%/$*,&

V+Q+*+,-()<(),G.51"'(

When a filter or interceptor method throws an exception, the server runtime will process the exception as
described in Server Runtime. As explained in Exception Mapping Providers, a JAX-RS implementation will supply
a default exception mapping provider and an application can supply additional exception mapping providers. At
most one exception mapper MUST be used in a single request processing cycle to avoid potentially infinite loops.

A response mapped from an exception MUST be processed using the filter chain and the interceptor chain (if an
entity is present in the mapped response). The number of entries in these chains depends on whether a resource
method has been matched or not at the time the exception is thrown. There are two cases:

1. If a web resource has been matched before the exception was thrown, then the filters in and the interceptors
in will include everything that has been bound to the method as well as globally;

2. Otherwise, only global filters and interceptors will be included.

Note that a filter or interceptor invoked in case 2 will not have access to resource-dependent information, such as
that returned by an injectable instance of ResourceInfo .

V+Q+9+,4%"(51,G.51"'(

When a filter or interceptor method throws an exception, the client runtime will process the exception as
described in Client Runtime.

@+,A54&/5)&".
Validation is the process of verifying that some data obeys one or more pre-defined constraints. The Bean
Validation specification [16] defines an API to validate Java Beans. This chapter describes how JAX-RS provides
native support for validating resource classes based on the concepts presented in [16]. See Bean Validation for
more information on implementation requirements.

H434(;*,&/?.$,/(I,,*/./$*,&
The Server API provides support for extracting request values and mapping them into Java fields, properties and
parameters using annotations such as @HeaderParam , @QueryParam , etc. It also supports mapping of request
entity bodies into Java objects via non-annotated parameters (i.e., parameters without any JAX-RS annotations).
See Chapter Resources for additional information.

In earlier versions of JAX-RS, any additional validation of these values needed to be performed programmatically.
This version of JAX-RS introduces support for declarative validation based on the Bean Validation specification
[16].

The Bean Validation specification [16] supports the use of constraint annotations as a way of declaratively
validating beans, method parameters and method returned values. For example, consider the following resource
class augmented with constraint annotations:

The annotations @NotNull and @Email impose additional constraints on the form parameters firstName ,
lastName and email . The @NotNull constraint is built-in to the Bean Validation API; the @Email constraint is
assumed to be user defined in the example above. These constraint annotations are not restricted to method
parameters, they can be used in any location in which the JAX-RS binding annotations are allowed with the
exception of constructors and property setters. Rather than using method parameters, the MyResourceClass
shown above could have been written as follows:

@Path("/")
classclass MyResourceClassMyResourceClass {

 @POST
 @Consumes("application/x-www-form-urlencoded")
 publicpublic voidvoid registerUser(
 @NotNull @FormParam("firstName") String firstName,
 @NotNull @FormParam("lastName") String lastName,
 @Email @FormParam("email") String email) {
 ...
 }
}

JAVA

Note that in this version, firstName and lastName are fields initialized via injection and email is a resource
class property. Constraint annotations on properties are specified in their corresponding getters.

Constraint annotations are also allowed on resource classes. In addition to annotating fields and properties, an
annotation can be defined for the entire class. Let us assume that @NonEmptyNames validates that one of the two
name fields in MyResourceClass is provided. Using such an annotation, the example above can be extended as
follows:

Constraint annotations on resource classes are useful for defining cross-field and cross-property constraints.

H454(I,,*/./$*,&(.,-(L.#$-./*?&
Annotation constraints and validators are defined in accordance with the Bean Validation Specification [16]. The
@Email annotation shown above is defined using the Bean Validation @Constraint meta-annotation:

@Path("/")
classclass MyResourceClassMyResourceClass {

 @NotNull @FormParam("firstName")
 privateprivate String firstName;

 @NotNull @FormParam("lastName")
 privateprivate String lastName;

 privateprivate String email;

 @FormParam("email")
 publicpublic voidvoid setEmail(String email) {
 this.email = email;
 }

 @Email
 publicpublic String getEmail() {
 returnreturn email;
 }
 ...
}

JAVA

@Path("/")
@NonEmptyNames
classclass MyResourceClassMyResourceClass {

 @NotNull @FormParam("firstName")
 privateprivate String firstName;

 @NotNull @FormParam("lastName")
 privateprivate String lastName;

 privateprivate String email;
 ...
}

JAVA

The @Constraint annotation must include a reference to the validator class that will be used to validate
decorated values. The EmailValidator class must implement ConstraintValidator<Email, T> where T is the
type of values being validated. For example,

Thus, EmailValidator applies to values annotated with @Email that are of type String . Validators for different
types can be defined for the same constraint annotation.

Constraint annotations must also define a groups element to indicate which processing groups they are
associated with. If no groups are specified (as in the example above) the Default group is assumed. For
simplicity, JAX-RS implementations are NOT REQUIRED to support processing groups other than Default . In what
follows, we assume that constraint validation is carried out in the Default processing group.

H474(!,/$/B(L.#$-./$*,
Request entity bodies can be mapped to resource method parameters. There are two ways in which these entities
can be validated. If the request entity is mapped to a Java bean whose class is decorated with Bean Validation
annotations, then validation can be enabled using @Valid :

@Target({ METHOD, FIELD, PARAMETER })
@Retention(RUNTIME)
@Constraint(validatedBy = EmailValidator.class)
publicpublic @interface Email {
 String message() defaultdefault "{com.example.validation.constraints.email}";
 Class<?>[][] groups() defaultdefault {};
 Class<? extendsextends Payload>[][] payload() defaultdefault {};
}

JAVA

publicpublic classclass EmailValidatorEmailValidator implementsimplements ConstraintValidator<Email, String> {
 publicpublic voidvoid initialize(Email email) {
 ...
 }

 publicpublic booleanboolean isValid(String value, ConstraintValidatorContext context) {
 ...
 }
}

JAVA

@StandardUser
classclass UserUser {

 @NotNull
 privateprivate String firstName;
 ...
}

@Path("/")
classclass MyResourceClassMyResourceClass {

 @POST
 @Consumes("application/xml")
 publicpublic voidvoid registerUser(@Valid User user) {
 ...
 }
}

JAVA

In this case, the validator associated with @StandardUser (as well as those for non-class level constraints like
@NotNull) will be called to verify the request entity mapped to user . Alternatively, a new annotation can be
defined and used directly on the resource method parameter.

In the example above, @PremiumUser rather than @StandardUser will be used to validate the request entity.
These two ways in which validation of entities can be triggered can also be combined by including @Valid in the
list of constraints. The presence of @Valid will trigger validation of all the constraint annotations decorating a
Java bean class. This validation will take place in the Default processing group unless the @ConvertGroup
annotation is present. See [16] for more information on @ConvertGroup .

Response entity bodies returned from resource methods can be validated in a similar manner by annotating the
resource method itself. To exemplify, assuming both @StandardUser and @PremiumUser are required to be
checked before returning a user, the getUser method can be annotated as shown next:

Note that @PremiumUser is explicitly listed and @StandardUser is triggered by the presence of the
@Valid annotation —see definition of User class earlier in this section.

H4:4(R'U.+#/(L.#$-./$*,(F*-'
According to [16], validation is enabled by default only for the so called constrained methods. Getter methods as
defined by the Java Beans specification are not constrained methods, so they will not be validated by default. The
special annotation @ValidateOnExecution defined in [16] can be used to selectively enable and disable
validation. For example, you can enable validation on method getEmail shown above as follows:

@Path("/")
classclass MyResourceClassMyResourceClass {

 @POST
 @Consumes("application/xml")
 publicpublic voidvoid registerUser(@PremiumUser User user) {
 ...
 }
}

JAVA

@Path("/")
classclass MyResourceClassMyResourceClass {

 @GET
 @Path("{id}")
 @Produces("application/xml")
 @Valid @PremiumUser
 publicpublic User getUser(@PathParam("id") String id) {
 User u = findUser(id);
 returnreturn u;
 }
 ...
}

JAVA

The default value for the type attribute of @ValidateOnExecution is IMPLICIT which, in the example above,
results in method getEmail being validated. See [16] for more information on other uses of this annotation.

Note that if validation for getter methods is enabled and a resource method’s signature obeys the rules for getters,
the resource method may be (unintentionally) invoked during validation. Conversely, if validation for getter
methods is disabled and the matching resource method’s signature obeys the rules for getters, the JAX-RS runtime
will still validate the method (i.e., the validation preference will be ignored) before invocation.

H4=4(I,,*/./$*,(Q,O'?$/.,"'
The rules for inheritance of constraint annotation are defined in [16]. It is worth noting that these rules are
incompatible with those defined in Annotation Inheritance. Generally speaking, constraint annotations in [16] are
cumulative (can be strengthen) across a given type hierarchy while JAX-RS annotations are inherited or,
overridden and ignored.

The goal of this specification is to enable validation of JAX-RS resources by leveraging existing Bean Validation
implementations. Therefore, JAX-RS implementations MUST follow the constraint annotation rules defined in [16].

H4C4(L.#$-./$*,(.,-(!??*?(M'%*?/$,A
Constraint annotations are allowed in the same locations as the following annotations: @MatrixParam ,
@QueryParam , @PathParam , @CookieParam , @HeaderParam and @Context , except in class constructors and
property setters. Specifically, they are allowed in resource method parameters, fields and property getters as well
as resource classes, entity parameters and resource methods (return values).

The default resource class instance lifecycle is per-request in JAX-RS. Implementations MAY support other
lifecycles; the same caveats related to the use of other JAX-RS annotations in resource classes apply to constraint
annotations. For example, a constraint validation annotating a constructor parameter in a resource class whose
lifecycle is singleton will only be executed once.

JAX-RS implementations SHOULD use the following process to validate resource class instances after they have
been instantiated:

Phase 1

Inject field values and initialize bean properties as described in Section Fields and Bean Properties.

Phase 2

Validate annotations on fields, property getters (if enabled) and the resource class. The order in which these
validations are executed is implementation dependent.

@Path("/")
classclass MyResourceClassMyResourceClass {

 @Email
 @ValidateOnExecution
 publicpublic String getEmail() {
 returnreturn email;
 }
 ...
}

JAVA

Phase 3

Validate annotations on parameters passed to the resource method matched.

Phase 4

If no constraint violations found thus far, invoke resource method and validate returned value.

The exception model in [16] defines a base class jakarta.validation.ValidationException and a few
subclasses to report errors that are specific to constraint definitions, constraint declarations, group definitions and
constraint violations. JAX-RS implementations MUST provide a default exception mapper (see Exception Mapping
Providers) for jakarta.validation.ValidationException according to the following rules:

1. If the exception is of type jakarta.validation.ValidationException or any of its subclasses excluding
jakarta.validation.ConstraintViolationException , then it is mapped to a response with status code 500
(Internal Server Error).

2. If the exception is an instance of jakarta.validation.ConstraintViolationException , then:

a. If the exception was thrown while validating a method return type, then it is mapped to a response with
status code 500 (Internal Server Error).[13]

b. Otherwise, it is mapped to a response with status code 400 (Bad Request).

In all cases, JAX-RS implementations SHOULD include a response entity describing the source of the error;
however, the exact content and format of this entity is beyond the scope of this specification. As described in
Exception Mapping Providers, applications can provide their own exception mappers and, consequently,
customize the default mapper described above.

B+,36$.1(%"."06,;%"1966&.'
This chapter describes the asynchronous processing capabilities in JAX-RS. Asynchronous processing is supported
both in the Client API and in the Server API.

T434(Q,/?*-+"/$*,
Asynchronous processing is a technique that enables a better and more efficient use of processing threads. On the
client side, a thread that issues a request may also be responsible for updating a UI component; if that thread is
blocked waiting for a response, the user’s perceived performance of the application will suffer. Similarly, on the
server side, a thread that is processing a request should avoid blocking while waiting for an external event to
complete so that other requests arriving to the server during that period of time can be attended[14].

T454(0'?<'?(IDQ

Y+9+*+,L#C5$G(#/05#(

Synchronous processing requires a resource method to produce a response upon returning control back to the
JAX-RS implementation. Asynchronous processing enables a resource method to inform the JAX-RS
implementation that a response is not readily available upon return but will be produced at a future time. This
can be accomplished by first suspending and later resuming the client connection on which the request was
received.

Let us illustrate these concepts via an example:

A resource method that elects to produce a response asynchronously must inject as a method parameter an
instance of the class AsyncResponse using the special annotation @Suspended . In the example above, the method
longRunningOp is called upon receiving a GET request. Rather than producing a response immediately, this
method forks a (non-request) thread to execute a long running operation and returns immediately. Once the
execution of the long running operation is complete, the connection is resumed and the response returned by
calling resume on the injected instance of AsyncResponse .

For more information on executors, concurrency and thread management in a Jakarta EE environment, the
reader is referred to Jakarta Concurrency Specification [13]. For more information about executors in the JAX-RS
Client API see Executor Services.

@Path("/async/longRunning")
publicpublic classclass MyResourceMyResource {

 @GET
 publicpublic voidvoid longRunningOp(@Suspended finalfinal AsyncResponse ar) {
 executor.submit(
 newnew Runnable() {
 publicpublic voidvoid run() {
 executeLongRunningOp();
 ar.resume("Hello async world!");
 }
 });
 }
 ...
}

JAVA

Y+9+*+*+,H"'(0.1#,&5>,4&%%E&$Z#

A timeout value can be specified when suspending a connection to avoid waiting for a response indefinitely. The
default unit is milliseconds, but any unit of type java.util.concurrent.TimeUnit can be used. The following
example sets a timeout of 15 seconds and registers an instance of TimeoutHandler in case the timeout is reached
before the connection is resumed.

JAX-RS implementations are REQUIRED to generate a ServiceUnavailableException , a subclass of
WebApplicationException with its status set to 503, if the timeout value is reached and no timeout handler is
registered. The exception MUST be processed as described in Exceptions. If a registered timeout handler resets the
timeout value or resumes the connection and returns a response, JAX-RS implementations MUST NOT generate an
exception.

It is also possible to register callbacks on an instance of AsyncResponse in order to listen for processing
completion (CompletionCallback) and connection termination (ConnectionCallback) events. See Javadoc for
AsyncResponse for more information on how to register these callbacks. Note that support for
ConnectionCallback is OPTIONAL.

Y+9+9+,40'/%(1"05-1&N(

An alternative approach to the injection of AsyncResponse is for a resource method to return an instance of
CompletionStage<T> as an indication to the underlying JAX-RS implementation that asynchronous processing is
enabled. The example from AsyncResponse can be re-written using CompletionStage as follows:

@GET
publicpublic voidvoid longRunningOp(@Suspended finalfinal AsyncResponse ar) {
 // Register handler and set timeout
 ar.setTimeoutHandler(newnew TimeoutHandler() {
 publicpublic voidvoid handleTimeout(AsyncResponse ar) {
 ar.resume(Response.status(SERVICE_UNAVAILABLE).entity(
 "Operation timed out -- please try again").build());
 }
 });
 ar.setTimeout(15, SECONDS);

 // Execute long running operation in new thread
 executor.execute(
 newnew Runnable() {
 publicpublic voidvoid run() {
 executeLongRunningOp();
 ar.resume("Hello async world!");
 }
 });
}

JAVA

In this example, a CompletableFuture instance is created and returned in the resource method; the call to
method complete on that instance is executed only after the long running operation terminates.

T474(!XN(M'&*+?"'(;#.&&'&
As stated in Enterprise Java Beans (EJBs), JAX-RS implementations in products that support EJB must also support
the use of stateless and singleton session beans as root resource classes. When an EJB method is annotated with
@Asynchronous , the EJB container automatically allocates the necessary resources for its execution. Thus, in this
scenario, the use of an Executor is unnecessary to generate an asynchronous response.

Consider the following example:

There is no explicit thread management needed in this case since that is under the control of the EJB container.
Just like the other examples in this chapter, the response is produced by calling resume on the injected
AsyncResponse . Hence, the return type of longRunningOp is simply void .

T4:4(;#$',/(IDQ
The fluent API supports asynchronous invocations as part of the invocation building process. By default,
invocations are synchronous but can be set to run asynchronously by calling the async method and (optionally)
registering an instance of InvocationCallback as shown next:

@Path("/async/longRunning")
publicpublic classclass MyResourceMyResource {

 @GET
 publicpublic CompletionStage<String> longRunningOp() {
 CompletableFuture<String> cs = newnew CompletableFuture<>();
 executor.submit(
 newnew Runnable() {
 publicpublic voidvoid run() {
 executeLongRunningOp();
 cs.complete("Hello async world!");
 }
 });
 returnreturn cs;
 }
 ...
}

JAVA

@Stateless
@Path("/")
classclass EJBResourceEJBResource {

 @GET @Asynchronous
 publicpublic voidvoid longRunningOp(@Suspended AsyncResponse ar) {
 executeLongRunningOp();
 ar.resume("Hello async world!");
 }
}

JAVA

Note that in this example, the call to get after calling async returns immediately without blocking the caller’s
thread. The response type is specified as a type parameter to InvocationCallback . The method completed is
called when the invocation completes successfully and a response is available; the method failed is called with
an instance of Throwable when the invocation fails.

All asynchronous invocations return an instance of Future<T> here the type parameter T matches the type
specified in InvocationCallback . This instance can be used to monitor or cancel the asynchronous invocation:

Even though it is recommended to pass an instance of InvocationCallback when executing an asynchronous
call, it is not mandated. When omitted, the Future<T> returned by the invocation can be used to gain access to the
response by calling the method Future.get , which will return an instance of T if the invocation was successful
or null if the invocation failed.

Client client = ClientBuilder.newClient();
WebTarget target = client.target("http://example.org/customers/{id}");
target.resolveTemplate("id", 123).request().async().get(
 newnew InvocationCallback<Customer>() {
 @Override
 publicpublic voidvoid completed(Customer customer) {
 // Do something
 }
 @Override
 publicpublic voidvoid failed(Throwable throwable) {
 // Process error
 }
});

JAVA

Future<Customer> ff = target.resolveTemplate("id", 123).request().async()
 .get(newnew InvocationCallback<Customer>() {
 @Override
 publicpublic voidvoid completed(Customer customer) {
 // Do something
 }
 @Override
 publicpublic voidvoid failed(Throwable throwable) {
 // Process error
 }
 });

// After waiting for a while ...
ifif (!ff.isDone()) {
 ff.cancel(true);
}

JAVA

C+,D9%<9%ED9.),F<9.)6

W434(Q,/?*-+"/$*,
Server-sent events (SSE) is a specification originally introduced as part of HTML5 by the W3C, but is currently
maintained by the WHATWG [17]. It provides a way to establish a one-way channel from a server to a client. The
connection is long running: it is re-used for multiple events sent from the server, yet it is still based on the HTTP
protocol. Clients request the opening of an SSE connection by using the special media type text/event-stream in
the Accept header.

Events are structured and contain several fields, namely, event , data , id , retry and comment . SSE is a
messaging protocol where the event field corresponds to a topic, and where the id field can be used to validate
event order and guarantee continuity. If a connection is interrupted for any reason, the id can be sent in a
request header for a server to re-play past events —although this is an optional behavior that may not be
supported by all implementations. Event payloads are conveyed in the data field and must be in text format;
retry is used to control re-connects and finally comment is a general purpose field that can also be used to keep
connections alive.

W454(;#$',/(IDQ
The JAX-RS client API for SSE was inspired by the corresponding JavaScript API in HTML5, but with changes that
originate from the use of a different language. The entry point to the client API is the type SseEventSource , which
provides a fluent builder similarly to other classes in the JAX-RS API. An SseEventSource is constructed from a
WebTarget that is already configured with a resource location; SseEventSource does not duplicate any
functionality in WebTarget and only adds the necessary logic for SSE.

The following example shows how to open an SSE connection and read some messages for a little while:

As seen in this example, an SseEventSource implements AutoCloseable . Before opening the source, the client
registers an event consumer that simply prints each event. Additional handlers for other life-cycle events such as
onComplete and onError are also supported, but for simplicity only onEvent is shown in the example above.

W474(0'?<'?(IDQ
The JAX-RS SSE server API is used to accept connections and send events to one or more clients. A resource
method that injects an SseEventSink and produces the media type text/event-stream is an SSE resource
method.

The following example accepts SSE connections and uses an executor thread to send 3 events before closing the
connection:

WebTarget target = client.target("http://...");
trytry (SseEventSource source = SseEventSource.target(target).build()) {
 source.register(System.out::println);
 source.open();
 Thread.sleep(500); // Consume events for just 500 ms
} catchcatch (InterruptedException e) {
 // falls through
}

JAVA

SSE resource methods follow a similar pattern to those for asynchronous processing (see Introduction) in that the
object representing the incoming connection, in this case SseEventSink , is injected into the resource method.

The example above also injects the Sse type which provides factory methods for events and broadcasters. See
Broadcasting for more information about broadcasting. Note that, just like SseEventSource , the interface
SseEventSink is also auto-closeable, hence the use of the try-with-resources statement above.

Method send on SseEventSink returns a CompletionStage<?> as a way to provide a handle to the action of
asynchronously sending a message to a client.

W4:4(N?*.-".&/$,A
Applications may need to send events to multiple clients simultaneously. This action is called broadcasting in JAX-
RS. Multiple SseEventSink ’s can be registered on a single SseBroadcaster .

A broadcaster can only be created by calling method newBroadcaster on the injected Sse instance. The life-cycle
and scope of an SseBroadcaster is fully controlled by applications and not the JAX-RS runtime. The following
example shows the use of broadcasters, note the @Singleton annotation on the resource class:

@GET
@Path("eventStream")
@Produces(MediaType.SERVER_SENT_EVENTS)
publicpublic voidvoid eventStream(@Context SseEventSink eventSink,
 @Context Sse sse) {
 executor.execute(() -> {
 trytry (SseEventSink sink = eventSink) {
 eventSink.send(sse.newEvent("event1"));
 eventSink.send(sse.newEvent("event2"));
 eventSink.send(sse.newEvent("event3"));
 }
 });
}

JAVA

The register method on a broadcaster is used to add a new SseEventSink ; the broadcast method is used to
send an SSE event to all registered consumers.

W4=4(D?*"'&&$,A(D$%'#$,'
Connections from SSE clients are represented by injectable instances of SseEventSink . There are some
similarities between SSE and asynchronous processing (see Chapter Asynchronous Processing). Asynchronous
responses can be resumed at most once while an SseEventSink can be used multiple times to stream individual
events.

For compatibility purposes, implementations MUST initiate processing of an SSE response when either the first
message is sent or when the resource method returns, whichever happens first. The initial SSE response, which
may only include the HTTP headers, is processed using the standard JAX-RS pipeline as described in Appendix
Processing Pipeline. Each subsequent SSE event may include a different payload and thus require the use of a
specific message body writer. Note that since this use case differs slightly from the normal JAX-RS pipeline,
implementations SHOULD NOT call entity interceptors on each individual event.[15]

W4C4(!,<$?*,@',/
The SseEventSource class uses the existing JAX-RS mechanism based on RuntimeDelegate to find an
implementation using the service name jakarta.ws.rs.sse.SseEventSource.Builder . The majority of types in
the jakarta.ws.rs.sse are thread safe; the reader is referred to the Javadoc for more information on thread
safety.

@Path("/")
@Singleton
publicpublic classclass SseResourceSseResource {

 @Context
 privateprivate Sse sse;

 privateprivate volatilevolatile SseBroadcaster sseBroadcaster;

 @PostConstruct
 publicpublic init() {
 this.sseBroadcaster = sse.newBroadcaster();
 }

 @GET
 @Path("register")
 @Produces(MediaType.SERVER_SENT_EVENTS)
 publicpublic voidvoid register(@Context SseEventSink eventSink) {
 eventSink.send(sse.newEvent("welcome!"));
 sseBroadcaster.register(eventSink);
 }

 @POST
 @Path("broadcast")
 @Consumes(MediaType.MULTIPART_FORM_DATA)
 publicpublic voidvoid broadcast(@FormParam("event") String event) {
 sseBroadcaster.broadcast(sse.newEvent(event));
 }
}

JAVA

*G+,!".)9H)
JAX-RS provides facilities for obtaining and processing information about the application deployment context and
the context of individual requests. Such information is available to Application subclasses (see Section
Configuration), root resource classes (see Chapter Resources), and providers (see Chapter Providers). This chapter
describes these facilities.

3Y434(;*,"+??',"B
Context is specific to a particular request but instances of certain JAX-RS components (providers and resource
classes with a lifecycle other than per-request) may need to support multiple concurrent requests. When injecting
an instance of one of the types listed in Context Types, the instance supplied MUST be capable of selecting the
correct context for a particular request. Use of a thread-local proxy is a common way to achieve this.

3Y454(;*,/'V/(>B%'&
This section describes the types of context available to providers (client and server) as well as resource classes and
Application subclasses (server only). Except for Configuration and Providers , which are injectable in both
client and server-side providers, all the other types are server-side only.

[+9++,L//%"$&1"05

The instance of the application-supplied Application subclass can be injected into a class field or method
parameter using the @Context annotation. Access to the Application subclass instance allows configuration
information to be centralized in that class. Note that this cannot be injected into the Application subclass itself
since this would create a circular dependency.

*[+9+9+,TG7#,&5>,TG7,H('/%&1(#

An instance of UriInfo can be injected into a class field or method parameter using the @Context annotation.
UriInfo provides both static and dynamic, per-request information, about the components of a request URI. E.g.
the following would return the names of any query parameters in a request:

Note that the methods of UriInfo provide access to request URI information following the pre-processing
described in Request Preprocessing.

*[+9+:+,K(&>()#

An instance of HttpHeaders can be injected into a class field or method parameter using the
@Context annotation. HttpHeaders provides access to request header information either in map form or via
strongly typed convenience methods. E.g. the following would return the names of all the headers in a request:

@GET
@Produces("text/plain")
publicpublic String listQueryParamNames(@Context UriInfo info) {
 StringBuilder buf = newnew StringBuilder();
 forfor (String param: info.getQueryParameters().keySet()) {
 buf.append(param);
 buf.append("\n");
 }
 returnreturn buf.toString();
}

JAVA

Note that the methods of HttpHeaders provide access to request information following the pre-processing
described in Request Preprocessing.

Response headers may be provided using the Response class, see Return Type for more details.

*[+9+I+,4051(51,M(N01"&1"05,&5>,F)($05>"1"05#

JAX-RS simplifies support for content negotiation and preconditions using the Request interface. An instance of
Request can be injected into a class field or method parameter using the @Context annotation. The methods of
Request allow a caller to determine the best matching representation variant and to evaluate whether the
current state of the resource matches any preconditions in the request. Precondition support methods return a
ResponseBuilder that can be returned to the client to inform it that the request preconditions were not met. E.g.
the following checks if the current entity tag matches any preconditions in the request before updating the
resource:

The application could also set the content location, expiry date and cache control information into the returned
ResponseBuilder before building the response.

*[+9+J+,-($.)"1C,4051(61

The SecurityContext interface provides access to information about the security context of the current request.
An instance of SecurityContext can be injected into a class field or method parameter using the
@Context annotation. The methods of SecurityContext provide access to the current user principal,
information about roles assumed by the requester, whether the request arrived over a secure channel and the
authentication scheme used.

*[+9+V+,F)0<">()#

The Providers interface allows for lookup of provider instances based on a set of search criteria. An instance of
Providers can be injected into a class field or method parameter using the @Context annotation.

@GET
@Produces("text/plain")
publicpublic String listHeaderNames(@Context HttpHeaders headers) {
 StringBuilder buf = newnew StringBuilder();
 forfor (String header: headers.getRequestHeaders().keySet()) {
 buf.append(header);
 buf.append("\n");
 }
 returnreturn buf.toString();
}

JAVA

@PUT
publicpublic Response updateFoo(@Context Request request, Foo foo) {
 EntityTag tag = getCurrentTag();
 ResponseBuilder responseBuilder = request.evaluatePreconditions(tag);
 ifif (responseBuilder != null)
 returnreturn responseBuilder.build();
 elseelse
 returnreturn doUpdate(foo);
}

JAVA

This interface is expected to be primarily of interest to provider authors wishing to use other providers
functionality. It is injectable in both client and server providers.

*[+9+Q+,G(#0.)$(,4051(61

The ResourceContext interface provides access to instantiation and initialization of resource or sub-resource
classes in the default per-request scope. It can be injected to help with creation and initialization, or just
initialization, of instances created by an application.

Let us revisit the example from Sub Resources with some simple modifications:

Note that the instance returned by the resource locator findWidget in WidgetsResource is initialized using the
injected ResourceContext before it is returned. Without this step, the headers field in WidgetResource will not
be properly initialized.

*[+9+Y+,405\N.)&1"05

Both the client and the server runtime configurations are available for injection via @Context . These
configurations are available for injection in providers (client or server) and resource classes (server only).

As an example, consider the case of a client logging filter that not only logs messages but also logs information
about certain features enabled during the processing of a request:

@Path("widgets")
publicpublic classclass WidgetsResourceWidgetsResource {
 @Context
 privateprivate ResourceContext rc;

 @Path("{id}")
 publicpublic WidgetResource findWidget(@PathParam("id") String id) {
 returnreturn rc.initResource(newnew WidgetResource(id));
 }
}

publicpublic classclass WidgetResourceWidgetResource {
 @Context
 privateprivate HttpHeaders headers;

 publicpublic WidgetResource(String id) {...}

 @GET
 publicpublic Widget getDetails() {...}
}

JAVA

A client runtime configuration is injected in the filter shown above and its isEnabled method called to check if
MyFeature is enabled.

publicpublic classclass LoggingFilterLoggingFilter implementsimplements ClientRequestFilter {

 @Context
 privateprivate Configuration config;

 @Override
 publicpublic voidvoid filter(ClientRequestContext ctx) throwsthrows IOException {
 ifif (config.isEnabled(MyFeature.class)) {
 logMyFeatureEnabled(ctx);
 }
 logMessage(ctx);
 }
 ...
}

JAVA

**+,F.<&%".I9.)
The container-managed resources available to a JAX-RS root resource class or provider depend on the
environment in which it is deployed. Section Context Types describes the types of context available regardless of
container. The following sections describe the additional container-managed resources available to a JAX-RS root
resource class or provider deployed in a variety of environments.

33434(0'?<#'/(;*,/.$,'?
The @Context annotation can be used to indicate a dependency on a Servlet-defined resource. A Servlet-based
implementation MUST support injection of the following Servlet-defined types: ServletConfig ,
ServletContext , HttpServletRequest and HttpServletResponse .

An injected HttpServletRequest allows a resource method to stream the contents of a request entity. If the
resource method has a parameter whose value is derived from the request entity then the stream will have
already been consumed and an attempt to access it MAY result in an exception.

An injected HttpServletResponse allows a resource method to commit the HTTP response prior to returning. An
implementation MUST check the committed status and only process the return value if the response is not yet
committed.

Servlet filters may trigger consumption of a request body by accessing request parameters. In a servlet container
the @FormParam annotation and the standard entity provider for application/x-www-form-urlencoded MUST
obtain their values from the servlet request parameters if the request body has already been consumed. Servlet
APIs do not differentiate between parameters in the URI and body of a request so URI-based query parameters
may be included in the entity parameter.

33454(Q,/'A?./$*,(K$/O(X.J.?/.(!!(>'"O,*#*A$'&
This section describes the additional requirements that apply to a JAX-RS implementation when combined in a
product that supports the following specifications.

**+9+*+,-()<%(1#

In a product that also supports the Servlet specification, implementations MUST support JAX-RS applications that
are packaged as a Web application. See Servlet for more information Web application packaging.

It is RECOMMENDED for a JAX-RS implementation to provide asynchronous processing support, as defined in
Asynchronous Processing, by enabling asynchronous processing (i.e., asyncSupported=true) in the underlying
Servlet 3 container. It is OPTIONAL for a JAX-RS implementation to support asynchronous processing when
running on a Servlet container whose version is prior to 3.

As explained in Servlet Container, injection of Servlet-defined types is possible using the @Context annotation.
Additionally, web application’s <context-param> and servlet’s <init-param> can be used to define application
properties passed to server-side features or injected into server-side JAX-RS components. See Javadoc for
Application.getProperties for more information.

**+9+9+,S&5&N(>,?(&5#

In a product that supports Managed Beans, implementations MUST support the use of Managed Beans as root
resource classes, providers and Application subclasses.

For example, a bean that uses a managed-bean interceptor can be defined as a JAX-RS resource as follows:

The example above uses a managed-bean interceptor to intercept calls to the resource method getIt . See
Additional Requirements for additional requirements on Managed Beans.

**+9+:+,4051(61,&5>,!(/(5>(5$C,758($1"05,]4!7^

In a product that supports CDI, implementations MUST support the use of CDI-style Beans as root resource classes,
providers and Application subclasses. Providers and Application subclasses MUST be singletons or use
application scope.

For example, assuming CDI is enabled via the inclusion of a beans.xml file, a CDI-style bean that can be defined
as a JAX-RS resource as follows:

The example above takes advantage of the type-safe dependency injection provided in CDI by using another bean,
of type MyOtherCdiBean , in order to return a resource representation. See Additional Requirements for additional
requirements on CDI-style Beans.

**+9+I+,=51()/)"#(,;&<&,?(&5#,]=;?#^

@ManagedBean
@Path("/managedbean")
publicpublic classclass ManagedBeanResourceManagedBeanResource {

 publicpublic staticstatic classclass MyInterceptorMyInterceptor {
 @AroundInvoke
 publicpublic String around(InvocationContext ctx) throwsthrows Exception {
 System.out.println("around() called");
 returnreturn (String) ctx.proceed();
 }
 }

 @GET
 @Produces("text/plain")
 @Interceptors(MyInterceptor.class)
 publicpublic String getIt() {
 returnreturn "Hi managedbean!";
 }
}

JAVA

@Path("/cdibean")
publicpublic classclass CdiBeanResourceCdiBeanResource {

 @Inject MyOtherCdiBean bean; // CDI injected bean

 @GET
 @Produces("text/plain")
 publicpublic String getIt() {
 returnreturn bean.getIt();
 }
}

JAVA

In a product that supports EJBs, an implementation MUST support the use of stateless and singleton session beans
as root resource classes, providers and Application subclasses. JAX-RS annotations can be applied to methods in
an EJB’s local interface or directly to methods in a no-interface EJB. Resource class annotations (like @Path) MUST
be applied to an EJB’s class directly following the annotation inheritance rules defined in Annotation Inheritance.

For example, a stateless EJB that implements a local interface can be defined as a JAX-RS resource class as follows:

JAX-RS implementations are REQUIRED to discover EJBs by inspecting annotations on classes and local interfaces;
they are not REQUIRED to read EJB deployment descriptors (ejb-jar.xml). Therefore, any information in an EJB
deployment descriptor for the purpose of overriding EJB annotations or providing additional meta-data will likely
result in a non-portable JAX-RS application.

If an ExceptionMapper for a EJBException or subclass is not included with an application then exceptions
thrown by an EJB resource class or provider method MUST be unwrapped and processed as described in
Exceptions.

See EJB Resource Classes for more information on asynchronous EJB methods and Additional Requirements for
additional requirements on EJBs.

**+9+J+,?(&5,D&%">&1"05

In a product that supports the Bean Validation specification [16] , implementations MUST support resource
validation using constraint annotations as described in Chapter Validation. Otherwise, support for resource
validation is OPTIONAL.

**+9+V+,;&<&,LF7,20),;-@M,F)0$(##"5N

In a product that supports the Java API for JSON Processing (JSON-P) [18], implementations MUST support entity
providers for JsonValue and all of its sub-types: JsonStructure , JsonObject , JsonArray , JsonString and
JsonNumber .

Note that other types from the JSON-P API such as JsonParser , JsonGenerator , JsonReader and JsonWriter
can also be integrated into JAX-RS applications using the entity providers for InputStream and
StreamingOutput .

@Local
publicpublic interfaceinterface LocalEjbLocalEjb {

 @GET
 @Produces("text/plain")
 publicpublic String getIt();
}

@Stateless
@Path("/stateless")
publicpublic classclass StatelessEjbResourceStatelessEjbResource implementsimplements LocalEjb {

 @Override
 publicpublic String getIt() {
 returnreturn "Hi stateless!";
 }
}

JAVA

**+9+Q+,;&<&,LF7,20),;-@M,?"5>"5N

In a product that supports the Java API for JSON Binding (JSON-B) [19], implementations MUST support entity
providers for all Java types supported by JSON-B in combination with the following media types:
application/json , text/json as well as any other media types matching /json or /*+json .

Note that if JSON-B and JSON-P are both supported in the same environment, entity providers for JSON-B take
precedence over those for JSON-P for all types except JsonValue and its sub-types.

**+9+Y+,;&Z&)1&,_SB,?"5>"5N

In a product that supports the Jakarta XML Binding API (JAXB) [21], implementations MUST support entity
providers for the type, jakarta.xml.bind.JAXBElement , and application-supplied JAXB classes in combination
with the following XML-based media types: text/xml and application/xml and media types of the form
application/*+xml .

**+9+`+,L>>"1"05&%,G(R.")('(51#

The following additional requirements apply when using Managed Beans, CDI-style Beans or EJBs as resource
classes, providers or Application subclasses:

For JAX-RS resources and providers where the JAX-RS implementation participates in their creation and
initialization, field and property injection in these resources and providers MUST be performed prior to the
container invoking any @PostConstruct annotated method. For resources and providers created by the
application (e.g. instances returned via the Application.getSingletons() method, or instances passed via
Configurable.register), this requirement does not apply.

Support for constructor injection of JAX-RS resources is OPTIONAL. Portable applications MUST instead use
fields or bean properties in conjunction with a @PostConstruct annotated method. Implementations SHOULD
warn users about use of non-portable constructor injection.

Implementations MUST NOT require use of @Inject or @Resource to trigger injection of JAX-RS annotated
fields or properties. Implementations MAY support such usage but SHOULD warn users about non-portability.

33474(Z/O'?
Other container technologies MAY specify their own set of injectable resources but MUST, at a minimum, support
access to the types of context listed in Context Types.

*2+,80.)&I9,J949'5)9
RuntimeDelegate is an abstract factory class that provides various methods for the creation of objects that
implement JAX-RS APIs. These methods are designed for use by other JAX-RS API classes and are not intended to
be called directly by applications. RuntimeDelegate allows the standard JAX-RS API classes to use different JAX-
RS implementations without any code changes.

An implementation of JAX-RS MUST provide a concrete subclass of RuntimeDelegate . Using the supplied
RuntimeDelegate this can be provided to JAX-RS in one of two ways:

1. An instance of RuntimeDelegate can be instantiated and injected using its static method setInstance . In
this case the implementation is responsible for creating the instance; this option is intended for use with
implementations based on IoC frameworks.

2. The class to be used can be configured, see Configuration. In this case JAX-RS is responsible for instantiating an
instance of the class and the configured class MUST have a public constructor which takes no arguments.

Note that an implementation MAY supply an alternate implementation of the RuntimeDelegate API class
(provided it passes the TCK signature test and behaves according to the specification) that supports alternate
means of locating a concrete subclass.

A JAX-RS implementation may rely on a particular implementation of RuntimeDelegate being used – applications
SHOULD NOT override the supplied RuntimeDelegate instance with an application-supplied alternative and
doing so may cause unexpected problems.

35434(;*,1A+?./$*,
If not supplied by injection, the supplied RuntimeDelegate API class obtains the concrete implementation class
using the following algorithm. The steps listed below are performed in sequence and, at each step, at most one
candidate implementation class name will be produced. The implementation will then attempt to load the class
with the given class name using the current context class loader or, missing one, the
java.lang.Class.forName(String) method. As soon as a step results in an implementation class being
successfully loaded, the algorithm terminates.

1. Use the Java SE class java.util.ServiceLoader to attempt to load an implementation from META-
INF/services/jakarta.ws.rs.ext.RuntimeDelegate . Note that this may require more than one call to
method ServiceLoader.load(Class, ClassLoader) in order to try both the context class loader and the
current class loader as explained above.[16]

2. If the ${java.home}/lib/jaxrs.properties file exists and it is readable by the
java.util.Properties.load(InputStream) method and it contains an entry whose key is
jakarta.ws.rs.ext.RuntimeDelegate , then the value of that entry is used as the name of the
implementation class.

3. If a system property with the name jakarta.ws.rs.ext.RuntimeDelegate is defined, then its value is used as
the name of the implementation class.

4. Finally, a default implementation class name is used.

3##9./&H,3K,D0II5%$,"L,3..")5)&".6

Annotation Target Description

Consumes Type or method Specifies a list of media types that can be
consumed.

Produces Type or method Specifies a list of media types that can be
produced.

GET Method Specifies that the annotated method handles HTTP
GET requests.

POST Method Specifies that the annotated method handles HTTP
POST requests.

PUT Method Specifies that the annotated method handles HTTP
PUT requests.

DELETE Method Specifies that the annotated method handles HTTP
DELETE requests.

PATCH Method Specifies that the annotated method handles HTTP
PATCH requests.

HEAD Method Specifies that the annotated method handles HTTP
HEAD requests. Note that HEAD may be
automatically handled, see HEAD and OPTIONS.

OPTIONS Method Specifies that the annotated method handles HTTP
OPTIONS requests.

ApplicationPath Type Specifies the resource-wide application path that
forms the base URI of all root resource classes.

Path Type or method Specifies a relative path for a resource. When used
on a class this annotation identifies that class as a
root resource. When used on a method this
annotation identifies a sub-resource method or
locator.

PathParam Parameter, field or method Specifies that the value of a method parameter,
class field, or bean property is to be extracted from
the request URI path. The value of the annotation
identifies the name of a URI template parameter.

QueryParam Parameter, field or method

Specifies that the value of a method parameter,
class field, or bean property is to be extracted from
a URI query parameter. The value of the
annotation identifies the name of a query
parameter.

FormParam Parameter, field or method Specifies that the value of a method parameter is
to be extracted from a form parameter in a request
entity body. The value of the annotation identifies
the name of a form parameter. Note that whilst the
annotation target allows use on fields and
methods, the specification only requires support
for use on resource method parameters.

MatrixParam Parameter, field or method Specifies that the value of a method parameter,
class field, or bean property is to be extracted from
a URI matrix parameter. The value of the
annotation identifies the name of a matrix
parameter.

CookieParam Parameter, field or method Specifies that the value of a method parameter,
class field, or bean property is to be extracted from
a HTTP cookie. The value of the annotation
identifies the name of a the cookie.

HeaderParam Parameter, field or method Specifies that the value of a method parameter,
class field, or bean property is to be extracted from
a HTTP header. The value of the annotation
identifies the name of a HTTP header.

Encoded Type, constructor, method,
field or parameter

Disables automatic URI decoding for path, query,
form and matrix parameters.

DefaultValue Parameter, field or method Specifies a default value for a field, property or
method parameter annotated with @QueryParam ,
@MatrixParam , @CookieParam , @FormParam or
@HeaderParam . The specified value will be used if
the corresponding query or matrix parameter is
not present in the request URI, if the
corresponding form parameter is not in the
request entity body, or if the corresponding HTTP
header is not included in the request.

Context Field, method or parameter Identifies an injection target for one of the types
listed in Context Types or the applicable section of
Chapter Environment.

HttpMethod Annotation Specifies the HTTP method for a request method
designator annotation.

Provider Type Specifies that the annotated class implements a
JAX-RS extension interface.

Since JAX-RS 2.0

NameBinding Annotation Meta-annotation to create annotations for binding
filters or interceptors to resource methods and
applications. Name binding is only supported as
part of the Server API.

Suspended Parameter Indicates that a resource method is asynchronous.
I.e., that it does not produce a response upon
returning. JAX-RS implementations will suspend
the incoming connection until a response becomes
available.

PreMatching Type Global binding annotation that can be applied to a
container filter to indicate that it should be applied
globally and before the resource method is
matched.

BeanParam Parameter, field or method Can be used to inject a user-defined bean whose
fields and properties may be annotated with JAX-
RS param annotations.

ConstrainedTo Type Can be used to restrict the applicability of a
provider to just the Client API or just the Server
API. If omitted, a provider can be used in either
context.

ParamConverter.Lazy Type Indicates that a conversion of a default value
delegated to a ParamConverter SHOULD occur
only when the value is actually requested.

3##9./&H,MK,NOO;,N95/9%,D0##"%)
The following table lists HTTP headers that are directly supported, either automatically by a JAX-
RS implementation runtime or by an application using the JAX-RS API. Any request header may be obtained using
HttpHeaders , see Headers; response headers not listed here may set using the ResponseBuilder.header
method.

Header Description

Accept Used by runtime when selecting a resource method, compared to value of
@Produces annotation, see Declaring Media Type Capabilities.

Accept-Charset Processed by runtime if application uses Request.selectVariant method,
see Content Negotiation and Preconditions.

Accept-Encoding Processed by runtime if application uses Request.selectVariant method,
see Content Negotiation and Preconditions.

Accept-Language Processed by runtime if application uses Request.selectVariant method,
see Content Negotiation and Preconditions.

Allow Included in automatically generated 405 error responses (see Request
Matching) and automatically generated responses to OPTIONS requests (see
HEAD and OPTIONS).

Authorization Depends on container, information available via SecurityContext , see
Security Context.

Cache-Control See CacheControl class and ResponseBuilder.cacheControl method.

Content-Encoding Response header set by application using Response.ok or
ResponseBuilder.variant .

Content-Language Response header set by application using Response.ok ,
ResponseBuilder.language , or ResponseBuilder.variant .

Content-Length Processed automatically for requests, set automatically in responses if value is
provided by the MessageBodyWriter used to serialize the message entity.

Content-Type Request header used by runtime when selecting a resource method, compared
to value of @Consumes annotation, see Declaring Media Type Capabilities.
Response header either set by application using Response.ok ,
ResponseBuilder.type , or ResponseBuilder.variant , or set automatically
by runtime (see Determining the MediaType of Responses).

Cookie See Cookie class and HttpHeaders.getCookies method.

Date Included in responses automatically as per HTTP/1.1.

ETag See EntityTag class, Response.notModified method and
ResponseBuilder.tag method.

Expect Depends on underlying container.

Expires Set by application using the ResponseBuilder.expires method.

If-Match Processed by runtime if application uses corresponding
Request.evaluatePreconditions method, see Content Negotiation and
Preconditions. If-Modified-Since & Processed by runtime if application
uses corresponding Request.evaluatePreconditions method, see Content
Negotiation and Preconditions.

If-None-Match Processed by runtime if application uses corresponding
Request.evaluatePreconditions method, see Section Content Negotiation
and Preconditions.

If-Unmodified-Since Processed by runtime if application uses corresponding
Request.evaluatePreconditions method, see Content Negotiation and
Preconditions.

Last-Modified Set by application using the ResponseBuilder.lastModified method.
Location & Set by application using the applicable Response method or
directly using the ResponseBuilder.location method.

Set-Cookie See NewCookie class and ResponseBuilder.cookie method.

Transfer-Encoding See Transfer Encoding.

Vary Set by application using Response.notAcceptable method or
ResponseBuilder.variants method.

WWW-Authenticate Depends on container.

3##9./&H,!K,;%"1966&.',;^&.9

Figure 1. JAX-RS Server Processing Pipeline

Figure 2. JAX-RS Client Processing Pipeline

3##9./&H,JK,!(5.'9,P"'

R434(;O.,A'&(0$,"'(74Y(M'#'.&'
Standard Entity Providers: JSON-B entity providers MUST favor Jsonb instances provided by
ContextResolver<Jsonb> over their own default context.

Special handling for consuming multipart/form-data media types: Added portable API for handling
multipart/form-data.

Services: Added requirement that JAX-RS implementations MUST automatically register certain service
providers.

Java SE Bootstrap: Added portable HTTP server bootstrapping on Java SE.

Exception Mapping Providers: Added requirement that JAX-RS implementations have default exception
mappers.

Fields and Bean Properties: Array types may be specified for @CookieParam , @FormParam , @HeaderParam ,
@MatrixParam and @QueryParam parameters.

Deprecated Link.JaxbLink and Link.JaxbAdapter inner classes.

New method #hasProperty(String) wherever #getProperty(String) exists

Response.created(URI) now resolves relative URIs into an absolute URI against the base URI, not against the
request URI anymore.

Support for @Context Injection: New section that mentions removal of @Context injection support in future
versions.

Declaring Media Type Capabilities: Clarified resource matching when Content-Type or Accept are missing in
request.

Constructors of Cookie class are deprecated in favor of new Cookie.Builder class.

Constructors of NewCookie are deprecated in favor of new NewCookie.Builder class.

R454(;O.,A'&(0$,"'(543(M'#'.&'
Referencing Jakarta EE instead of Java EE

Package changes from javax.ws.rs. to jakarta.ws.rs.

Jakarta XML Binding: JAXB API is now optional

Additional Requirements: Clarified injection with regard to getSingletons() method

R474(;O.,A'&(0$,"'(543(D+G#$"(M'<$'K
Processing Pipeline: New section describing the SSE processing pipeline.

Sub Resources: Allow sub-resource locators to return classes as well.

Executor Services: Removed defaults for all environments not supporting the Java Concurrenty Utilities for
Java EE API.

Java API for JSON Processing: Support for JsonValue and all its sub-types.

Java API for JSON Binding: New section for JSON-B support.

CompletionStage: New section for CompletionStage<T> as return type in a resource method.

Priorities: New section introducing support for @Priority for all providers.

Entity Providers: Modified algorithm steps to add support for @Priority in selection of message body readers
and writers.

R4:4(;O.,A'&(0$,"'(543(!.?#B(R?.U/
Chapter Server-Sent Events: API changes and removal of Flow API references.

Resource Methods: Added @PATCH to list of supported HTTP methods.

Executor Services: New section about executor services.

Configuration: Use of ServiceLoader in first step of algorithm.

R4=4(;O.,A'&(0$,"'(54Y()$,.#(M'#'.&'
Fields and Bean Properties: Clarified exception handling for all 5 steps used to convert a string to a Param.
Allowed the combination of List<T> , Set<T> , or SortedSet<T> and ParamConverter .

Request Matching: Defined client and server media types.

Reactive Clients: New section introducing support for reactive clients.

Server-Sent Events: New chapter describing the Server-Sent Events API.

R4C4(;O.,A'&(0$,"'(54Y(D?*%*&'-()$,.#(R?.U/
Message Body Reader and Message Body Writer: Updated last logical step separating client and server
runtimes.

Standard Entity Providers: New exception NoContentException to handle zero-length entities.

Exceptions and Exceptions: New subsections to separate client and server processing of exceptions.

Configurable Types: Invocation and Invocation.Builder are no longer configurable types.

Filters and Entity Interceptors: Updated samples based on changes to Client API.

Default Validation Mode: Updated section based on changes to Bean Validation API.

Validation and Error Reporting: Minor re-wording of Phase 2.

Timeouts and Callbacks: Improved example to return a response if a timeout expires.

Client API: Updated samples based on changes to Client API.

Context Types: Clarified server vs. client injectable types.

Configuration: New section about injection of Configuration instances.

Bean Validation: New section stating that support for resource validation is required only in a product that
supports Bean Validation.

R4H4(;O.,A'&(0$,"'(54Y(D+G#$"(M'<$'K(R?.U/

In Javadocs: Method getSize in class MessageBodyWriter is deprecated.

Chapter Resources and Providers: Replaced WebApplicationException by corresponding subclass depending
on HTTP status code.

Fields and Bean Properties: New step for ParamConverter .

Standard Entity Providers: Special case for zero-length entities and primitive types.

Chapter Client API: Updated samples and text related to the configuration of Client API types. Method
configuration has been removed in favor of the Configurable interface.

Chapter Client API: ClientFactory renamed to ClientBuilder .

Chapter Client API: Dropped support for @Uri annotation.

Entity Interceptors: New paragraph clarifying that entity interceptors are not called if a readFrom or writeTo
method is called directly from application code.

Entity Interceptors: Improved GzipInterceptor sample.

Name Binding: Clarified name binding with multiple annotations. Made semantics compatible with CDI
interceptor binding. Name binding with Application subclasses.

Priorities: Annotation @BindingPriority replaced by common annotation @Priority .

Exceptions: Clarified processing of a response mapped from an exception.

Server API: Updated samples in this section. New citation for JSR 236.

Timeouts and Callbacks: Improved example.

Client API: Fixed signature of method failed in samples.

Default Validation Mode: New section about default validation and @ValidateExecutable .

Validation and Error Reporting: Restored validation phases.

Java API for JSON Processing: New section about integration with JSON-P.

R4T4(;O.,A'&(0$,"'(54Y(!.?#B(R?.U/([>O$?-(!-$/$*,\
Chapter "Validation": Removed from PR. JAX-RS 2.0 will defer to CDI for Bean Validation. Only those resource
classes that are CDI beans would be validated.

Exceptions: Clarified that the steps must be followed in order and that throwables are propagated to the
underlying container only if they cannot be mapped.

Resource Methods: Added @OPTIONS to list.

Return Type: New note about anonymous inner classes.

Request Matching: Allow multiple root resource classes to share same URI in algorithm. Note changes in output
and input of steps 1 and 2, respectively.

Message Body Writer: Throw new exception InternalServerErrorException .

Entity Providers: Removed steps that required the use of the JavaBeans Activation Framework[20] to map
objects to representations and vice-versa. The EG deemed this feature to be confusing and not portable across
implementations.

Standard Entity Providers: Support for pre-packaged readers and writers for Java types java.lang.Boolean ,
java.lang.Character , java.lang.Number and media type text/plain .

Standard Entity Providers: Detailed behavior for readers and zero-length request entities.

Dynamic Binding: DynamicBinder replaced by DynamicFeature .

Exceptions: Clarified processing of responses mapped using exception mappers.

Chapter Asynchronous Processing: Updated sections related to the Server API. @Suspended annotation,
timeouts and callbacks.

Timeouts and Callbacks: Throw new exception ServiceUnavailableException .

Resource Context: New section for ResourceContext .

Enterprise Java Beans (EJBs): Clarified location of annotations in accordance to the JAX-RS annotation
inheritance rules.

Filters and Interceptors: Replaced @PostMatching by @PreMatching . Post-matching is now the default.

Summary of Annotations: Edited section on JAX-RS 2.0 annotations.

R4W4(;O.,A'&(0$,"'(54Y(!.?#B(R?.U/([0'"*,-(!-$/$*,\
URI Templates: New example showing a scenario in which a @PathParam is not be available for injection.

Request Matching: Formalization of certain parts of the matching algorithm that were vague. Defined formal
ordering between media types and highlighted situations in which implementations should report a warning if
the matching is ambiguous.

Request Matching: New sample showing the resource matching algorithm in action.

Converting URI Templates to Regular Expressions: New footnote about syntax of regular expression.

Chapter Providers: The annotation @Provider is now only required for automatic discovery of providers
(typically via class scanning). It is no longer required for a provider that is manually registered in classes such
as Application or Configuration .

Automatic Discovery: New section about automatic discovery of provider classes. Only those annotated with
@Provider must be discovered automatically.

Chapter Client API: Features are now providers and can be registered as such. A feature can no longer be
disabled.

Chapter Client API: Class Target renamed to WebTarget . Removed text describing how to use a builder
factory class (no longer supported). A few other minor updates and typos fixed.

Chapter Filters and Interceptors: Extension points for filters revised. New filter interfaces
ClientRequestFilter and ClientResponseFilter in Client API and new filter interfaces
ContainerRequestFilter and ContainerResponseFilter in Server API. Corresponding context classes also
updated in chapter. A ContainerRequestFilter is executed before resource matching unless annotated with
@PostMatching . It is no longer possible to share a filter implementation between the Client and Server APIs;
entity interceptors are still shareable.

Chapter Filters and Interceptors: Section on the relationship between filters and entity interceptors (including
diagram) dropped.

Global Binding: Clarified global binding in relation to the new semantics of @Provider for automatic
discovery.

Dynamic Binding: The DynamicBinding interface, intended to be implemented by filters and entity
interceptors, is replaced by DynamicBinder . A dynamic binder is a new type of provider that binds filters and
entity interceptors with resource methods.

Chapter Validation: Use media type names instead of Java constants for clarity. More descriptive names for
constraint annotations. Changed inheritance rules for constraint annotations to follow those defined in [16].
New note about @Valid support for return values. Fixed phase number typo.

Timeouts and Callbacks: New sentence about calling suspend more than once or in a method annotated with
@Suspend .

EJB Resource Classes: New section about EJB resource classes with methods annotated with @Asynchronous .

Chapter Environment: Re-structured chapter with sub-sections for each of the EE technologies with which JAX-
RS integrates. New examples added.

R43Y4(;O.,A'&(0$,"'(54Y(!.?#B(R?.U/
Project Team Members: Updated 2.0 expert group member list.

Acknowledgements: Updated acknowledgements for 2.0 version.

Exceptions: New section that describes exception handling for all providers. Related changes to reference this
new section.

Exceptions: New section for filter and interceptor exceptions. Related changes to reference this new section.

Request Matching: Updated step 2a so that it only goes to step 3 when .

Request Matching: New sentence about the use of a server quality parameter (qs-value) during request
matching.

Chapter Filters and Interceptors: New extension point for pre-match filters that are executed before resource
matching.

Chapter Filters and Interceptors: Filter methods no longer return a next action; the execution of a request filter
chain is stopped by setting a response in the associated context.

Chapter Filters and Interceptors: Handlers renamed to entity interceptors for clarity (in this log included).

Section Global Binding: Global binding is now the default for filters and entity interceptors. The annotation
@GlobalBinding has been dropped.

Section Priorities: Clarified reverse ordering of the response filter chain based on binding priorities.

Appendix C: Removed from this version after changes to Chapter Filters and Interceptors.

Chapter Validation: Moved to an instantiate-then-validate strategy in which validation of constructor
parameters and setters is no longer supported. Simplified validation process to better align with Bean
Validation 1.1 [16]. In particular, validation of resource classes, fields and property getters are all carried out in
a single step.

R4334(;O.,A'&(0$,"'(343(M'#'.&'

(≠ {}

Status: Updated URLs to JSR pages, etc.

Non-Goals: Removed Client APIs as non-goal.

Terminology: Added new terminology.

Project Team Members: List 2.0 expert group members.

Acknowledgements: acknowledgements for 2.0 version.

Chapter Applications: Somewhat generic section on validation removed to avoid confusion with the type of
validation defined in Chapter "Validation".

Servlet: Clarified used of Servlet 3 framework pluggability. Added sample web.xml files and a table
summarizing all cases.

Entity Parameters: Clarified notion of entity parameter as a parameter not annotated with any JAX-RS
annotation.

Declaring Media Type Capabilities: Explained use of quality factor q. Introduced server-side quality factor qs
and included example.

Annotation Inheritance: Added sentence about conflicting annotations and recommendation to repeat
annotations for consistency with other Java EE specifications.

Request Preprocessing: Highlighted input and output for each step in algorithm. Minor edits to simplify
presentation.

Determining the MediaType of Responses: Updated algorithm to support server-side quality factor qs.

Client API: New chapter Client API.

Filters and Interceptors: New chapter Filters and Interceptors.

Chapter "Validation": New chapter Validation.

Chapter Asynchronous Processing: New chapter Asynchronous Processing.

Appendix Summary of Annotations: New section for 2.0 annotations.

Appendix C: New appendix describing filter and interceptor extension points.

R4354(;O.,A'&(0$,"'(34Y(M'#'.&'
Servlet: New requirements for Servlet 3 containers.

Integration with Jakarta EE Technologies: Requirements for Java EE 6 containers.

Standard Entity Providers: Requirements on standard entity providers when presented with an empty message
entity.

Message Body Writer: Add closeness of generic type as secondary sort key.

Message Body Reader: Default to application/octet-stream if a request does not contain a content-type header.

Fields and Bean Properties: Add support for static fromString method.

Annotation Inheritance: Clarify annotation inheritance.

Security Context: Fix typo.

Servlet Container: Additional considerations related to filters consuming request bodies.

R4374(;O.,A'&(0$,"'(D?*%*&'-()$,.#(R?.U/
Request Matching: Additional sort criteria so that templates with explicit regexs are sorted ahead of those with
the default.

Request Matching, Determining the MediaType of Responses, Declaring Media Type Capabilities and Declaring
Media Type Capabilities: Q-values not used in @Consumes or @Produces .

Message Body Writer: Fixed algorithm to refer to Determining the MediaType of Responses instead of restating
it. Fixed status code returned when the media type has been determined but an appropriate message body
writer cannot be located.

Chapter Runtime Delegate: Clarify that an implementation can supply an alternate RuntimeDelegate API
class.

R43:4(;O.,A'&(0$,"'(D+G#$"(M'<$'K(R?.U/
Applications: Renamed ApplicationConfig class to Application.

Chapter Resources: UriBuilder reworked to always encode components.

Constructors and Constructors: Added requirement to warn when choice of constructor is ambiguous.

Fields and Bean Properties: FormParam no longer required to be supported on fields or properties.

Return Type: Added text describing how to determine raw and generic types from method return type and
returned instance.

URI Templates: Template parameters can specify the regular expression that forms their capturing group.

Request Preprocessing: Make pre-processed URIs available rather than original request URI. Added URI
normalization.

Request Preprocessing: Removed URI-based content negotiation.

Request Matching: Reorganized the request matching algorithm to remove redundancy and improve
readability, no functional change.

Converting URI Templates to Regular Expressions: Changes to regular expressions to eliminate edge cases.

Entity Providers: Added requirement to use JavaBean Activation Framework when no entity provider can be
found.

Standard Entity Providers: Require standard JAXB entity providers to use application-supplied JAXB contexts in
preference to their own.

Context Providers: Added support for specifying media type capabilities of context providers.

Context Types: Removed ContextResolver from list of injectable resources.

Providers: Changed name to Providers, removed entity provider-specific text to reflect more generic
capabilities.

HTTP Header Support: New appendix describing where particular HTTP headers are supported.

M&Q4&"'%5#($
[1] R. Fielding. Architectural Styles and the Design of Network-based Software Architectures. Ph.d dissertation,
University of California, Irvine, 2000. See https://roy.gbiv.com/pubs/dissertation/top.htm.

[3] Representational State Transfer. Web site, Wikipedia. See https://en.wikipedia.org/wiki/Representational
State Transfer.

[4] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk, and T. Berners-Lee. RFC 2616: Hypertext Transfer Protocol –
HTTP/1.1. RFC, IETF, January 1997. See https://www.ietf.org/rfc/rfc2616.txt.

[5] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 3986: Uniform Resource Identifier (URI): Generic Syntax.
RFC, IETF, January 2005. See https://www.ietf.org/rfc/rfc3986.txt.

[6] L. Dusseault. RFC 4918: HTTP Extensions for Web Distributed Authoring and Versioning (WebDAV). RFC,
IETF, June 2007. See https://www.ietf.org/rfc/rfc4918.txt.

[7] J.C. Gregorio and B. de hOra. The Atom Publishing Protocol. Internet Draft, IETF, March 2007. See
https://bitworking.org/projects/atom/draft-ietf-atompub-protocol-14.html.

[8] Jakarta Servlet Specification, Version 4.0. Available at: https://jakarta.ee/specifications/servlet/4.0

[9] Jakarta XML Web Services, Version 3.0 https://jakarta.ee/specifications/xml-web-services/3.0/.

[10] S. Bradner. RFC 2119: Keywords for use in RFCs to Indicate Requirement Levels. RFC, IETF, March 1997. See
https://www.ietf.org/rfc/rfc2119.txt.

[11] RxJava: a library for composing asynchronous and event-based programs using observable sequences for
the java VM. See https://github.com/ReactiveX/RxJava.

[12] RxJava 2.0: What’s different in 2.0. See https://github.com/ReactiveX/RxJava/wiki/What’s-different-in-2.0.

[13] Jakarta Concurrency Specification, Version 2.0. Available at:
https://jakarta.ee/specifications/concurrency/2.0/

[14] Jakarta Contexts and Dependency Injection Specification, Version 2.0. Available at:
https://jakarta.ee/specifications/cdi/2.0/

[15] Jakarta Annotations Specification, Version 2.0. Available at:
https://jakarta.ee/specifications/annotations/2.0/

[16] Jakarta Bean Validation Specification, Version 2.0. Available at: https://jakarta.ee/specifications/bean-
validation/2.0/

[17] Server-Sent Events. See https://html.spec.whatwg.org/#server-sent-events.

[18] Jakarta JSON Processing Specification, Version 2.0. Available at: https://jakarta.ee/specifications/jsonp/2.0/

[19] Jakarta JSON Binding Specification, Version 2.0. Available at: https://jakarta.ee/specifications/jsonb/2.0/

[20] Jakarta Activation, Version 2.0 https://jakarta.ee/specifications/activation/2.0/

[21] Jakarta XML Binding, Version 3.0 https://jakarta.ee/specifications/xml-binding/3.0/

®

®

®

®

®

®

®

®

®

®

1. Due to limitations of the built-in valueOf method that is part of all Java enumerations, a fromString method is often defined
by the enum writers. Consequently, the fromString method is preferred when available.

https://roy.gbiv.com/pubs/dissertation/top.htm
https://en.wikipedia.org/wiki/Representational
https://www.ietf.org/rfc/rfc2616.txt
https://www.ietf.org/rfc/rfc3986.txt
https://www.ietf.org/rfc/rfc4918.txt
https://bitworking.org/projects/atom/draft-ietf-atompub-protocol-14.html
https://jakarta.ee/specifications/servlet/4.0
https://jakarta.ee/specifications/xml-web-services/3.0/
https://www.ietf.org/rfc/rfc2119.txt
https://github.com/ReactiveX/RxJava
https://github.com/ReactiveX/RxJava/wiki/What%E2%80%99s-different-in-2.0
https://jakarta.ee/specifications/concurrency/2.0/
https://jakarta.ee/specifications/cdi/2.0/
https://jakarta.ee/specifications/annotations/2.0/
https://jakarta.ee/specifications/bean-validation/2.0/
https://html.spec.whatwg.org/#server-sent-events
https://jakarta.ee/specifications/jsonp/2.0/
https://jakarta.ee/specifications/jsonb/2.0/
https://jakarta.ee/specifications/activation/2.0/
https://jakarta.ee/specifications/xml-binding/3.0/

2. Or Entity property of returned instance if return type is Response or a subclass thereof.
3. If the resource class URI template does not end with a / character then one is added during the concatenation.
4. Given that content types do not include wildcards, this is an exceptional condition for the purpose of simplifying the matching

algorithm.
5. Note: some containers might perform this functionality prior to passing the request to an implementation.
6. Here, literal characters means those not resulting from template variable substitution.
7. E.g., and

.

8. Step 3a ensures the set contains at least one member.
9. Note that the syntax +? denotes a reluctant quantifier as defined in the java.util.regex.Pattern class.
10. Implementations are free to optimize their processing provided the results are equivalent to those that would be obtained if

these steps are followed.
11. The Collections class in this example is arbitrary and does not correspond to any specific implementation. There are a number

of Java collection libraries available that provide this type of functionality.
12. This class is not intended to be a complete implementation of this interceptor.
13. The property path of a ConstraintViolation provides information about the location from which an exception originated. See

Javadoc for more information.
14. The maximum number of request threads is typically set by the administrator; if that upper bound is reached, subsequent

requests will be rejected.
15. As a matter of fact, there is no API to bind entity interceptors to individual SSE events.

16. Earlier versions of JAX-RS did not mandate the use ServiceLoader . This backward-compatible change that started in JAX-
RS 2.1 is to ensure forward compatibility with the Java SE 9 module system.

text/html;q=1.0;qs=0.7;d=0 ≥ application/xml;q=1.0;qs=0.7;d=0
application/xml;q=1.0;qs=0.7;d=0 ≥ text/html;q=1.0;qs=0.7;d=0

e<0</

H;5) 8#:;)6: ./..O.O.1 0/=.1=ij O/f//

