
Jakarta Query

1.0-M1, October 11, 2025: Draft

Table of Contents

Copyright . 2

Eclipse Foundation Specification License - v1.1 . 2

Disclaimers . 2

1. Introduction . 4

1.1. Object-oriented query languages. 4

1.2. Historical background . 4

1.3. Goals . 4

1.4. Non-goals . 5

1.5. Conventions . 5

1.6. Jakarta Query Project Team . 6

1.6.1. Project Leads. 6

1.6.2. Committers . 6

1.6.3. Contributors . 6

2. Type system . 7

2.1. Atomic values . 7

2.2. Collections . 7

2.3. Structures and records. 8

2.4. Entities and embeddable types . 9

2.4.1. Entity type inheritance. 10

2.5. Circularity . 10

2.6. Databases. 10

2.7. Mapping to Java . 11

2.8. Paths . 11

3. Basic operations . 13

3.1. The root entity . 13

3.2. Joins . 14

3.2.1. Joins to named entities . 14

3.2.2. Joins to nested entities or collections . 16

3.2.3. Left joins . 17

3.2.4. Fetch joins . 18

3.3. Restriction . 18

3.3.1. Restriction and aggregation . 18

3.4. Aggregation. 19

3.5. Projection . 19

3.5.1. Projection and aggregation . 20

3.6. Duplicate elimination. 20

3.7. Ordering . 20

3.8. Union, intersection, and complement . 21

3.9. Subqueries . 22

4. Lexical structure . 23

4.1. Identifiers and keywords. 23

4.2. Parameters . 23

4.3. Operators and punctuation. 23

4.4. String literals . 23

4.5. Numeric literals . 24

4.6. Single-character literals . 24

4.7. Whitespace . 24

5. Expressions. 26

5.1. Value expressions . 26

5.1.1. Literal expressions . 26

5.1.2. Special values . 26

5.1.3. Parameter expressions. 26

5.1.4. Enum literals. 27

5.1.5. Entity type literals . 27

5.1.6. Path expressions . 27

5.1.7. Identifier and version expressions . 28

5.1.8. Function calls . 29

5.1.9. Map keys and values. 32

5.1.10. Types and typecasts . 33

5.1.11. Aggregate functions calls. 34

5.1.12. Case expressions . 34

5.1.13. Operator expressions . 35

5.1.14. Subquery expressions . 36

5.1.15. Numeric types and numeric type promotion . 36

5.2. Conditional expressions. 37

5.2.1. Null comparisons. 37

5.2.2. In expressions. 37

5.2.3. Between expressions . 38

5.2.4. Like expressions. 38

5.2.5. Equality and inequality operators. 39

5.2.6. Quantified conditional expressions . 40

5.3. Natural order . 40

5.4. Logical operators . 41

6. Statements and clauses . 43

6.1. Clauses . 43

6.1.1. From clause. 43

6.1.2. Join clauses . 44

6.1.3. Where clause . 45

6.1.4. Group clause . 45

6.1.5. Having clause . 45

6.1.6. Select clause . 45

6.1.7. Set clause . 46

6.1.8. Order clause . 46

6.2. Union, intersect, and except . 47

6.2.1. Union and complement . 47

6.2.2. Intersection . 47

6.3. Statements. 47

6.3.1. Select statements . 48

6.3.2. Update statements . 48

6.3.3. Delete statements. 48

7. Syntax. 50

7.1. Core language grammar . 50

7.2. Full language grammar . 52

Specification: Jakarta Query

Version: 1.0-M1

Status: Draft

Release: October 11, 2025

1

Copyright

Copyright (c) 2025, 2025 Eclipse Foundation.

Eclipse Foundation Specification License - v1.1

By using and/or copying this document, or the Eclipse Foundation document from which this statement is linked or

incorporated by reference, you (the licensee) agree that you have read, understood, and will comply with the following

terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document from which this

statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, provided that you

include the following on ALL copies of the document, or portions thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual representation is

permitted) of the form: "Copyright (c) [$date-of-document] Eclipse Foundation AISBL https://www.eclipse.org/legal/

efsl.php "

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be provided in any

software, documents, or other items or products that you create pursuant to the implementation of the contents of this

document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to this license,

except anyone may prepare and distribute derivative works and portions of this document in software that

implements the specification, in supporting materials accompanying such software, and in documentation of such

software, PROVIDED that all such works include the notice below. HOWEVER, the publication of derivative works of

this document for use as a technical specification is expressly prohibited.

The notice is:

Copyright (c) 2025, 2025 Eclipse Foundation AISBL. This software or document includes material copied from or

derived from Jakarta Query and Jakarta Query specification.

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND TO THE EXTENT PERMITTED BY APPLICABLE LAW THE COPYRIGHT

HOLDERS AND THE ECLIPSE FOUNDATION AISBL MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY

PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY

PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

TO THE EXTENT PERMITTED BY APPLICABLE LAW THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION

AISBL WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT

OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation AISBL may NOT be used in advertising or

publicity pertaining to this document or its contents without specific, written prior permission. Title to copyright in this

2

https://www.eclipse.org/legal/efsl.php
https://www.eclipse.org/legal/efsl.php
https://jakarta.ee/specifications/query/

document will at all times remain with copyright holders.

3

Chapter 1. Introduction

Jakarta Query defines an object-oriented query language designed for use with Jakarta Persistence, Jakarta Data,

Jakarta NoSQL, and with any other similar persistence technology in any object-oriented programming language.

Jakarta Query specifies:

• a core language which can be implemented by Jakarta Data and Jakarta NoSQL providers, and

• an extended language tailored for Jakarta Persistence providers or other persistence technologies backed by

relational databases.

The language is closely based on the existing query languages defined by Jakarta Persistence and Jakarta Data, and is

backward compatible with both.

Jakarta Query prioritizes clients written in Java. However, it is not by nature limited to Java, and implementations in

other sufficiently Java-like programming languages are encouraged.

1.1. Object-oriented query languages

A data structure in an object-oriented language is a graph of objects interconnected by unidirectional object references,

which may be polymorphic. Some non-relational databases support similar representations. On the other hand,

relational databases represent relationships between entities using foreign keys, and therefore SQL has no syntactic

construct representing navigation of an association. Similarly, inheritance and polymorphism can be easily

represented within the relational model, but are not present as first-class constructs in the SQL language. An object-

oriented query language is a dialect of SQL with support for associations and subtype polymorphism.

An object-oriented query language is in many ways very similar to a graph-based query language like, for example,

SPARQL, but differs from such query languages by assuming a typed representation of the data native to the object-

oriented programming language.

1.2. Historical background

Object-oriented dialects of SQL have existed since at least the early 1990s. The Object Query Language (OQL) was an

early example, targeting object databases, but was never widely used, since object databases were themselves not

widely adopted. Hibernate Query Language (HQL) and the Enterprise JavaBeans Query Language (EJB-QL) were both

introduced in 2001 as query languages intended for use with object/relational mapping. HQL was widely adopted by

the Java community and was eventually standardized as the Java Persistence Query Language (JPQL) by JSR-220 in

2006. JPQL has been implemented by at least five different products and is in extremely wide use today. On the other

hand, since JPQL is defined as part of the Jakarta Persistence specification, it has not been reused outside the context of

object/relational mapping in Java. In 2024, Jakarta Data 1.0 introduced the Jakarta Data Query Language (JDQL), a strict

subset of JPQL intended for use with non-relational databases.

It is now inconvenient that JDQL and JPQL are maintained separately by different groups, and so the Jakarta Query

project has taken on responsibility for their evolution.

1.3. Goals

This specification defines an object-oriented query language with two well-defined levels of compliance:

• the extended language, which is known to be implementable by persistence solutions backed by SQL databases, and

• the core language, a strict subset which is designed to be implementable on other kinds of non-SQL data stores.

The extended language is designed for reuse by Jakarta Persistence. The core language is designed for reuse by Jakarta

4

https://jakarta.ee/specifications/persistence/
https://jakarta.ee/specifications/data/
https://jakarta.ee/specifications/nosql/
https://jakarta.ee/specifications/persistence/3.2/jakarta-persistence-spec-3.2#a4665
https://jcp.org/en/jsr/detail?id=220
https://jakarta.ee/specifications/data/1.0/jakarta-data-1.0#_jakarta_data_query_language

Data and Jakarta NoSQL. Jakarta Query itself has no dependence on either of these specifications, and reuse in other

contexts is encouraged.

Furthermore, the semantics defined by Jakarta Query may be reused by reference in other specifications, for example,

in the definition of the Jakarta Persistence Criteria API, or in the definition of the Jakarta Data Restrictions.

This document:

• standardizes the syntax and semantics of the language,

• delineates the core subset,

• provides guidelines on how query language constructs map to language elements in a program written in Java.

The definition of the query language itself is independent of the Java programming language, and of any details of the

underlying datastore and data access technology.

1.4. Non-goals

This specification does not specify Java APIs for:

• executing queries,

• embedding queries in Java programs,

• constructing queries programmatically, nor

• defining entity classes which are used in queries.

Jakarta Persistence and Jakarta Data define diverse ways in which queries may be embedded and executed in Java,

using the EntityManager or a @Repository interface, respectively.

This document does not define how constructs in Jakarta Query map to constructs in SQL or in any other datastore-

specific query languages. Jakarta Persistence defines an interpretation compatible with SQL.

1.5. Conventions

Italics are used to highlight a word or phrase which is being defined by the text in which it occurs.

Bold text is occasionally used to draw attention to important words or phrases.

Monospace font indicates a keyword or fragment of text from the query language itself, or from the grammar for the

language. When a keyword or name of a grammar rule is not part of the core language, the keyword or rule name is

highlighted .

ANTLR 4-style BNF is used to define the syntax of the language in Syntax.

An informal but readable BNF-like metalanguage is used to illustrate the syntax of some basic language elements in

Basic operations. Here, repetition is indicated by a comma-separated list terminated with an ellipsis, and production is

indicated by a label enclosed in brackets; all other tokens are interpreted literally. Code fragments written in this

metalanguage are never prescriptive.

Admonitions are used to set apart:

• explanatory text which is not prescriptive or not part of the definition of the language, and

• information relating to compatibility between implementations of Jakarta Query, and to differences between the

core language and the extended language.

Throughout this specification, the phrase "an implementation for Java" means an implementation of Jakarta Query

which targets clients written in the Java programming language and running on the Java Virtual Machine. It does not

5

imply that the implementation itself is entirely in Java. This specification places certain requirements on

implementations for Java which are relaxed when an implementation targets clients in a different programming

language.

1.6. Jakarta Query Project Team

This specification is being developed as part of Jakarta Query project under the Jakarta EE Specification Process. It is

the result of the collaborative work of the project committers and various contributors.

1.6.1. Project Leads

• Gavin King

• Lukas Jungmann

1.6.2. Committers

• Gavin King

• Lukas Jungmann

• Nathan Rauh

• Riva Tholoor Philip

1.6.3. Contributors

The complete list of Jakarta Query contributors may be found here.

6

https://projects.eclipse.org/user/8388
https://projects.eclipse.org/user/3043
https://projects.eclipse.org/user/8388
https://projects.eclipse.org/user/3043
https://projects.eclipse.org/user/10400
https://projects.eclipse.org/user/18033
https://github.com/jakartaee/query/graphs/contributors

Chapter 2. Type system

This specification assumes that data is represented in a structured form, that is, that it is expressed in terms of:

1. atomic values,

2. collections, and

3. structures.

Any atomic value, collection, or structure belongs to at least one well-defined type.

2.1. Atomic values

Atomic values are things defined externally to this specification, taken to include—at bare minimum—strings of

Unicode characters, true and false, integers, floating point numbers, and dates, times, and datetimes. Every atomic

value has a named type, referred to in the sister-specifications of this specification as a basic type.

 The atomic value types allowed by an implementation of Jakarta Query depend on the programming

language and underlying database technology.

Atomic values of distinct type are never considered identical (equal). Whether two atomic values of the same type are

considered identical depends on semantics which are specific to the type. For example, two Unicode strings are

identical if they have the same length and the same Unicode character at each position. Identity for a given atomic

value type must be reflexive, symmetric, and transitive.

 An implementation of this specification in Java typically supports at least the following atomic types:

Java primitive types, String, LocalDate, LocalDateTime, LocalTime, Year, and Instant, java.util.UUID,

java.math.BigInteger and java.math.BigDecimal, byte[], and enum types.

An atomic value might be null. Null values are conventionally used to represent missing or unknown information.[1] A

null value is considered distinct from and distinguishable from every non-null value of the same type. The relationship

between distinctness in this sense and equality is not defined by this specification, and the behavior of some

expressions involving null values varies between implementations of Jakarta Query.

 An implementation of Jakarta Query is permitted to treat null values as equal, so that, in the sense

defined by Conditional expressions, the comparison expression null = null is satisfied while null <>

null is unsatisfied. Such implementations are typically based on binary logic. On the other hand, an

implementation is permitted to treat null values as unequal, so that both null = null and null <> null

are unsatisfied. Such implementations are typically based on SQL-style ternary logic. Jakarta

Persistence requires the use of ternary logic and treats null values as unequal. Jakarta Data permits

either treatment.

2.2. Collections

A collection is a finite set, list, or map containing atomic values or structures. A collection might contain atomic values,

or it might contain structures. The keys of a map must be atomic values.

Collections are homogeneous. A collection may not contain both atomic values and structures.

• If a collection contains atomic values, then every atomic value has the same type.

• If a collection contains structures, then every structure has the same type.

7

• As an exception to the previous rule, a collection may contain structures belonging to distinct entity types if there is

some entity type which is inherited by the type of every structure contained in the collection.

• Every key of a map has the same atomic value type.

A collection therefore has a type derived from the type of the atomic values or structures it contains—and, for a map,

from the type of its keys. We consider that two collections have the same type if they contain the same type of atomic

value or structure. For a map, we also require that they have the same type of key.

A collection has no identity independent of the values it contains.

• Two sets are identical if they contain exactly the same elements.

• Two lists are identical if they contain exactly the same elements at exactly the same positions.

• Two maps are identical if they contain exactly the same keys, and identical values for each key.

As usual:

• A set never contains two identical elements; a map never contains two identical keys.

• On the other hand, a list may contain identical elements at different positions within the list[2]; a map may contain

identical values when their keys are non-identical.

2.3. Structures and records

A structure is a finite set of labeled elements, each of which is an atomic value, a nested structure, or a collection.

Structures are inhomogeneous. Elements with distinct labels may have distinct types.

Every structure has a type derived from the types of its elements. We consider that two structures have the same type

if:

• they contain the same labels, and

• for each label, the labeled elements have the same type.

A structure has no identity independent of the labeled elements it contains. Two structures are identical if they contain

exactly the same labels, and identical atomic values, collections, or nested structures for each label.

For example—borrowing a convenient notation—the following structure might represent a book:

{
 isbn: "1-85723-235-6",
 title: "Feersum Endjinn",
 pages: 279,
 year: 1994,
 authors: [
 {
 name: "Iain M. Banks",
 born: 'February 16, 1954',
 died: 'June 9, 2013'
 }
]
}

A record is a special kind of structure. Every record must have an identifier which uniquely distinguishes it from other

structures with the same type. The identifier must be a subset of the labeled elements of the structure.

For example, { isbn: "1-85723-235-6" } might be an identifier of the structure given above.

8

2.4. Entities and embeddable types

A structure type might be assigned a static name.[3]

• An embeddable type is an assignment of a name to a given type of structure. For example, we might assign the name

Author to the type of the structure:

{
 name: "Iain M. Banks",
 born: 'February 16, 1954',
 died: 'June 9, 2013'
}

• An entity (or entity type) is an assignment of a name to a given type of record. For example, we might assign the

name Book to the type of the record given in the example above.

The name must be a legal Java identifier. That is, it must be a string of letters and digits, along with the characters _ and

$, and must begin with a letter or with _.[4]

It follows from this definition that we may express:

• an embeddable type as a set of labels, together with their types,

• an entity as a set of labels, together with their types, and whether they belong to the record identifier.

For example:

Author :=
{
 name: String,
 born: LocalDate,
 died: LocalDate
}

Book :=
{
 isbn: @Id String,
 title: String,
 pages: Integer,
 year: Integer,
 authors: Set<Author>
}

A record with the same type as an entity type is said to be an instance (or instantiation) of the entity. Similarly, a

structure with the same type as an embeddable type is said to be an instance of the embeddable type. [5]

An entity is directly addressable in a query. An atomic value type, a collection type, or a structure type which is not an

entity is not directly addressable, and must be addressed indirectly via an entity.

 Some database technologies are capable of storing an arbitrary structure whose type is not known at

compile time. Other technologies require that the structure belong to a defined entity or embeddable

type. Independent of the database technology itself, an implementation of Jakarta Query might require

that structure types be named, or might offer a way to encode and store generic structures.

Implementations of Jakarta Query are not required to support storage of such generic structures.

 The name of an entity might be involved in mapping an association between a type defined in a

programming language (for example, a Java class) and an area of storage in the database (for example,

a table). Such mappings are completely outside the scope of this specification.

9

2.4.1. Entity type inheritance

Inheritance is a relationship between entity types. An entity X inherits an entity Y if and only if for every type labeled y

in Y, there is a corresponding type labeled y in X and either:

• the two types with label y are identical, or

• the type labeled y in Y is an entity type T, the type labeled y in X is an entity type S, and S inherits T.

Thus, there is a simple mapping from records of type X to records of type Y. Given a record r of type X, the restriction of r

to a type Y inherited by X is a structure s containing an element labeled y for each type with label y occurring in the type

Y:

• If the type of the element e of X with label y is identical to the type with label y in Y, then s contains e labeled y.

• Otherwise, the type of the element e of X must be an entity type S, the type with the label y in Y must be an entity type

T, and S must inherit T. Then s contains the restriction of e to T, labeled y.

Then s is a record of type Y.

Any well-defined operation on records of type Y is also a well-defined operation on the restriction of a record to Y. We

therefore adopt the principle that an operation which may be applied to a record of a given entity type may also be

applied to a record of any entity type which inherits the first entity type.

2.5. Circularity

Our definitions above are intended to be descriptive rather than constructive. It’s not, in general, possible to construct

an arbitrary record in a finite number of steps by beginning with atomic values and then recursively constructing

structures and collections.

The reason for this is that the graph representing a record is not, in general, a finite tree. The representation of a record

as a tree might necessarily be infinite, with a nonterminating cycle involving two or more structures.

On the other hand, any record is assumed to be representable as a finite directed graph.

 Circularity typically arises in implementations which support associations between entity types. An

association is a labeled element of an entity or embeddable type which is itself an entity type. This

specification does not require that implementations allow associations between entities, and the core

language does not feature constructs for querying associations. In particular, an implementation of

Jakarta Query which targets a non-relational database might not feature any support for associations.

On the other hand, the extended language defines constructs like joins and typecasts which are

intended for use in implementations which do support associations. In particular, association mapping

is a fundamental feature of Jakarta Persistence, and circularity is completely normal in

implementations based on object/relational mapping.

2.6. Databases

A database is a finite set of records.

A given database might be restricted to contain only records belonging to a statically-enumerated list of entities.

 Some databases store records as trees; other databases store them in a flattened normalized form. In

some databases, records must be disjoint; in other databases, one record might be nested inside

another record. Questions about the representation used for record storage are completely outside the

scope of this specification. Such questions are the domain of our sister-specifications.

10

2.7. Mapping to Java

When Jakarta Query is used from within the Java programming language:

• An entity or embeddable type typically corresponds to a Java class or record type, and the labeled elements of an

entity or embeddable typically correspond to fields or properties of the class or record type.

• An atomic value type typically corresponds to a Java primitive type, class, or enumerated type.

• Every value expression in a query is assigned a Java type. Conceptually — but not literally — the expression

evaluates to a (possibly null) instance of that type.

The interpretation of an operator expression or literal expression of a given type is given by the interpretation of the

equivalent expression in Java. However, the precise behavior of some queries might vary depending on the native

semantics of queries on the underlying datastore. For example, numeric precision and overflow, string collation, and

integer division are permitted to depart from the semantics of the Java language.

 This specification should not be interpreted to mandate an inefficient implementation of query

language constructs in cases where the native behavior of the database varies from Java in such minor

ways. That said, portability between implementations of Jakarta Query is maximized when their

behavior is closest to the Java language.

2.8. Paths

Consider an arbitrary root structure constructed recursively using only atomic values and structures (and no

collections). Such a structure may be viewed as a directed tree, where vertices are structures and atomic values, and

edges are labeled structure elements. Then it is possible to uniquely assign a compound label to any given element of

any structure in the tree by:

1. tracing a directed path from the given element to the root structure, and

2. collecting the labels of each element visited along the path.

Conventionally, we write such a compound label in reverse order, beginning with the label of the element belonging to

the root structure and ending with the label of the most nested element, and we separate labels with periods.

For example, given the structure:

{
 author: {
 name: "Iain M. Banks",
 born: {
 day: 16, month: { name: 'February', number: 2 }, year: 1954
 },
 died: {
 day: 9, month: { name: 'June', number: 6 }, year: 2013
 }
 }
}

The compound label author.born.month.name refers to the element name: 'February'.

It is not possible to uniquely assign compound labels to every element belonging to an arbitrary structure, since:

• a generic structure contains sets, whose elements cannot be assigned labels[6], and

• as discussed above in Circularity, a database is not required to contain only trees.

However, we may use such labelling within any subtree that does not contain a collection, though in principle the

11

compound labels might not be unique.

[1] The null value is also indispensable when evaluating path expressions in queries involving left joins and when

evaluating treated path expressions.

[2] When discussing query result lists, we sometimes say that identical elements belonging to a list are duplicates.

[3] That is, the name is assigned to the type before the program using Jakarta Query is compiled and executed.

[4] Use of _ or $ in the name of an entity is discouraged.

[5] In some implementations, it might be possible to assign multiple names to a single structure type, and then a given

instance of that type might be considered to belong to just one of the named entity or embeddable types. We do not

address this wrinkle here, since implementations of Jakarta Query are not required to allow this.

[6] It would be possible, of course, to assign labels to elements of a list or map.

12

Chapter 3. Basic operations

A query is a sequence of operations acting on lists of structures:

• specification of an initial root entity,

• a sequence of joins to joined entities, collections, or embeddable types,

• restriction,

• aggregation,

• more restriction,

• projection,

• duplicate elimination, and

• ordering.

For queries without nesting, these operations may be viewed as a pipeline.[1] Each operation may then be thought of as

a stage of the pipeline. Some stages may be missing in a given query. The only required stage is the first stage:

specification of the root entity.

Each operation in the pipeline produces a result list. A result list is a list in the sense of the previous chapter. The

elements of a result list are always structures. Thus, every result list has a well-defined type, which we sometimes call

its shape, according to the rules specified above. A result list may contain two or more structures which are identical in

the sense of Structures and records.

Each operation from the list above—except for the first operation, specification of the root entity—acts on the output of

the previous stage. When evaluated, the operation produces its result list by transforming the result list produced by

the previous stage.

A join or root entity has access not only to the result list of its previous stage, but also to the content of a database. A

query is executed against a specific database and any operation which ranges over an entity type ranges only over

those records which belong to the database. From now on, the database itself will usually be implicit, and we will not

explicitly specify that the records under consideration must belong to the database.

Finally, the binary operations union, intersection, and complementation may be used to join the outputs of multiple

pipelines.

3.1. The root entity

Every query begins with a root entity (unless it is a correlated subquery). A root entity is specified using the syntax:

from X

where X is the name of the entity.

We may assign a label to the root entity of the query using the syntax:

from X as x

which may be abbreviated as:

from X x

The label x must be a legal Java identifier. This label is often called an alias or identification variable.

When no label is explicitly specified, the root entity is assigned the implicit label this.

13

A root entity specification evaluates to a result list containing a structure for each record of the root entity type or of

any entity type which inherits the root entity type. Each structure contains a single labeled element: the record, labeled

by the alias x.

That is, for each record r in the database, the result list has a structure s containing r labeled by x if and only if the type

of r inherits the root entity type. The structure s contains no other elements.

For example, the query from Book might return a list containing structures like:

{
 this: {
 isbn: "9781857232738",
 title: "Feersum Endjinn",
 pages: 279,
 year: 1994,
 authors: [
 {
 name: "Iain M. Banks",
 born: 'February 16, 1954',
 died: 'June 9, 2013'
 }
]
 }
}

And the query from Book as book returns a list containing structures like:

{
 book: {
 isbn: "9781857232738",
 title: "Feersum Endjinn",
 pages: 279,
 year: 1994,
 authors: [
 {
 name: "Iain M. Banks",
 born: 'February 16, 1954',
 died: 'June 9, 2013'
 }
]
 }
}

3.2. Joins

Every join has a target, which must be:

• an entity,

• a collection, or

• an embeddable type.

A join introduces a new labeled element to a result list. Evaluating a sequence of joins produces a result list in which

each structure contains a labeled element corresponding to each join. The label of this element is often called the alias

or identification variable of the join.

3.2.1. Joins to named entities

A join may specify the name of an entity:

14

[from], Y as y

where Y is the name of the entity, y is the label (alias) assigned to it, and [from] is a root entity or a join. As before, the

keyword as is optional.

This kind of join produces a cartesian product. For each structure r of the result list of the operation on which the join

acts, and for each record y of any entity type which inherits Y, the result list contains a structure r' containing all

labeled elements of r together with the record y labeled by the alias y.

For example, this query is a cartesian product:

from Book as book, Loan as loan

This query evaluates to a result list containing a structure for each pairing of a record of entity Book with a record of

entity Loan. The structure contains two labeled elements, one for each entity, each labeled by its corresponding alias,

book, and loan, respectively. The list might contain structures this:

{
 book: {
 isbn: "9781857232738",
 title: "Feersum Endjinn",
 pages: 279,
 year: 1994,
 authors: [
 {
 name: "Iain M. Banks",
 born: 'February 16, 1954',
 died: 'June 9, 2013'
 }
]
 },
 loan: {
 bookIsbn: "9781932394153",
 borrowerCard: "XYZ-123"
 }
}

Note that there is no meaningful relationship between the book and the loan.

A join to a named entity may be immediately followed by a restriction. In this case, the syntax is slightly different:

[from] join Y as y on [predicate]

where [predicate] is a predicate, as defined later in Conditional expressions.

For example:

from Book as book
join Loan as loan
 on book.isbn = loan.bookIsbn

This kind of join is interpreted as a sequence of two operations, a join of the previous kind, with no on, followed by a

restriction with the given predicate.

The result of the query might contain structures like:

{
 book: {
 isbn: "9781857232738",

15

 title: "Feersum Endjinn",
 pages: 279,
 year: 1994,
 authors: [
 {
 name: "Iain M. Banks",
 born: 'February 16, 1954',
 died: 'June 9, 2013'
 }
]
 },
 loan: {
 bookIsbn: "9781857232738",
 borrowerCard: "ABC-098"
 }
}

This time, isbn and bookIsbn agree.

3.2.2. Joins to nested entities or collections

Instead of a named entity, a join may identify a structure or collection nested within the result list of the operation on

which it acts:

[from] inner join [path] as y

where [path] is a path expression, as defined later in Path expressions, and y is the label.

As usual, the keyword as is optional. The keyword inner is also completely optional, and so a join may be written:

[from] join [path] as y

For example:

from Book as book
join book.authors as author

The path expression identifies a structure nested within the result list of the operation on which the join acts.

For each structure r of the result list of the operation on which the join acts:

• If the path expression resolves to a structure s, the result list contains a structure r' containing all labeled elements

of r together with the structure s labeled by the alias y.

• If the path expression resolves to a collection c, the result list contains, for each element e of c, a structure r'

containing all labeled elements of r together with the structure e labeled by the alias y.

The previous example evaluates to a list containing a structure for each Author of each Book. The structure contains two

labeled elements, one for each entity, each labeled by its corresponding alias, book, and author, respectively. The list

might contain structures like this:

{
 book: {
 isbn: "9781857232738",
 title: "Feersum Endjinn",
 pages: 279,
 year: 1994,
 authors: [
 {
 name: "Iain M. Banks",

16

 born: 'February 16, 1954',
 died: 'June 9, 2013'
 }
]
 },
 author: {
 name: "Iain M. Banks",
 born: 'February 16, 1954',
 died: 'June 9, 2013'
 }
}

Notice that this kind of join has the effect of duplicating nested structures or atomic values at the top level of the of

structure belonging to the result list.

 This picture should not be taken too literally. Implementations of Jakarta Query do not, in practice,

always return the entire result of a query to the client, but instead replace some branches of the graph

with some sort of proxy object.

A join to a structure or collection may be immediately followed by a restriction.

[from] inner join [path] as y on [predicate]

where [predicate] is a predicate, as defined later in Conditional expressions.

This kind of join is interpreted as a sequence of two operations: a join of the previous kind, with no on, followed by a

restriction with the given predicate.

3.2.3. Left joins

A left join is similar to a regular join:

[from] left outer join [path] as y

where [path] is a path expression, as before, and y is the label.

As usual, the keyword as is optional. The keyword outer is also completely optional, and so a left join may be written:

[from] left join [path] as y

For example:

from Book as book
left join book.authors as author

The path expression identifies a structure nested within the result list of the operation on which the join acts.

For each structure r of the result list of the operation on which the join acts:

• If the path expression resolves to a structure s, the result list contains a structure r' containing all labeled elements

of r together with the structure s labeled by the alias y.

• If the path expression resolves to a nonempty collection c, the result list contains, for each element e of c, a structure

r' containing all labeled elements of r together with the structure e labeled by the alias y.

• Otherwise, if a path expression resolves to no structure, or to an empty collection, the result list contains a structure

r' containing only the labeled elements of r.

17

Just like regular joins, a left join may be followed by a restriction:

[from] left outer join [path] as y on [predicate]

In this case, however, the restriction is only evaluated for elements of the result list which contain structures labeled by

the alias y. Any element of the result list of the join which does not contain a structure labeled by the alias y is taken to

satisfy the restriction, even when the predicate would not be satisfied by that element.

3.2.4. Fetch joins

A fetch join is a hint to the Jakarta Query implementation regarding which data in the query result set the application

program will access. A fetch join does not affect the shape (type) of the query result set, and therefore does not

introduce a label. Otherwise, the syntax is similar to a left join:

[from] left outer join fetch [path]

[from] left join fetch [path]

 The sister specifications of this specification assign semantics to this syntax.

3.3. Restriction

Restriction, also called selection, reduces the size of a result list, without modifying its type.

Restriction may occur before or after aggregation, or, as we already saw above, it may occur immediately after a join.

When restriction precedes aggregation, the syntax is:

[from] where [predicate]

where [predicate] is a logical predicate expression.

When restriction follows aggregation, the syntax is:

[group-by] having [predicate]

where [group-by] is a legal aggregation.

Restriction eliminates every element of the result list which does not satisfy the given predicate expression, as defined

later in Conditional expressions. That is, the result list of a restriction contains a structure r if and only if:

• r is in the result list of the operation on which the restriction acts, and

• r satisfies the logical predicate.

3.3.1. Restriction and aggregation

When restriction is applied to a query involving aggregation, the predicate may only involve:

• value expressions which also occur in the group by clause, and

• aggregate function expressions, as specified below in Aggregate functions calls.

In this case, the restriction eliminates entire nested lists belonging to the result list of the aggregation operation.

18

3.4. Aggregation

Aggregation groups the elements of a result list into sublists. That is, it transforms a list into a list of lists.

Aggregation follows a root entity or join:

[from] group by [expression], [expression], ...

where each [expression] is a value expression, as defined later in Value expressions.

1. For each structure r of the result list of the operation on which the ordering operation acts, a grouping tuple is

constructed by evaluating each of the value expressions specified by the aggregation in the context of the structure

r, and packaging the resulting atomic values in a structure t where each value is labeled by the position of the value

expression in the group by clause.

2. For each distinct resulting value t of the grouping tuple, a nested list lt is constructed containing every structure r

which produced that value of the grouping tuple.

3. Finally, the result list of the aggregation contains every such nested list lt.

Each value expression must evaluate to an atomic value or record.

 If a value expression evaluates to a record, the record may be replaced by its identifier in the grouping

tuple.

3.5. Projection

Projection changes the type of a result list without modifying its size.

A projection is written in the form:

[result] select [expression] as x, [expression] as y, ...

or, more conventionally, but much more confusingly, in the form:

select [expression] as x, [expression] as y, ... [result]

where x, y, … are all labels and [result] is a root entity, join, restriction, or aggregation, and each [expression] is a value

expression, as defined later in Value expressions.

As usual, the as keyword is optional, and the labels must be legal Java identifiers.

The labels, sometimes called aliases, are optional. If a label is missing from a value expression, the value expression is

automatically assigned a label.

 For historical reasons, the label defaults to the integer position of the value expression in the select list.

This is unfortunate because an integer is not a legal Java identifier, and therefore not a legal label. Such

defaulted labels may not be referred to in the query language except—again for historical reasons—in

the order by clause.

Projection produces a new structure r' for each structure r in the result list of the operation on which the projection

acts. The new structure r' is built by evaluating the value expressions specified by the projection in the context of the

corresponding element structure r, according to semantics given later in Value expressions. For each value expression

with label x in the given select list, r' contains a element labeled x obtained by evaluating the value expression in the

context of r.

19

For example:

from Book as book
join book.authors as author
select book.isbn as isbn, book.title as title, author.name as author

returns a list containing elements like:

{
 isbn: "9781857232738",
 title: "Feersum Endjinn",
 author: "Iain M. Banks"
}

3.5.1. Projection and aggregation

When projection is applied to a query involving aggregation, every value expression in the select list must be either:

• a value expression which also occurs in the group by clause, or

• an aggregate function expression, as specified below in Aggregate functions calls.

In this case, the projection has the additional effect of collapsing the list of lists produced by aggregation, producing a

single result structure for each nested list in the result list of the operation to which the projection applies.

Alternatively, if every value expression in the select list is an aggregate function, and if the query does not have a group

by clause, then aggregation over all elements of the result list is implied.[2] Such a query produces a result list with a

single element.

A query with no group by clause may not mix aggregate function expressions with other value expressions.

3.6. Duplicate elimination

The distinct keyword, placed after select, specifies that duplicate structures should be eliminated from the result list.

Two structures are considered duplicates if they are identical in the sense defined in Structures and records.

Suppose the result list of a projection contains n ≥ 0 identical copies of a structure r. Then duplicate elimination

produces a result list containing (exactly one instance of) the structure r if and only n ≥ 1. Thus, any two structures

belonging to the final result list are distinct (non-identical).

Duplicate elimination does not change the shape (type) of the result list.

3.7. Ordering

Ordering changes the order of the elements in a result list, without changing the size or type of the list.

Ordering is the last operation of a query:

[result] order by [order], [order], ...

where [result] is a root entity, join, restriction, aggregation, or projection, and each [order] is an ordering criterion

comprising:

• a value expression, subject to the restrictions given below, and

• optionally, asc or desc, specifying ascending or descending order, and

• optionally, nulls first, or nulls last, specifying the precedence of null values.

20

If neither asc nor desc is explicitly specified, ascending order is assumed. If neither nulls first nor nulls last is

explicitly specified, the precedence of null values is not defined by this specification.

1. For each structure r of the result list of the operation on which the aggregation acts, an ordering tuple is constructed

by evaluating each of the value expressions specified by the ordering operation in the context of the structure r, and

packaging the resulting atomic values in a structure t where each value is labeled by the position of the value

expression in the group by clause.

2. The result list is sorted according to the lexicographic order of the resulting ordering tuples.

 This specification does not specify an order for atomic values or structures. Such ordering is typically

determined by the database itself. Some general principles for ordering of atomic types are established

in Natural order.

Each value expression in the order by list must also occur in the projection list. TODO!

For example:

from Book as book
join book.authors as author
select book.isbn as isbn, book.title as title, author.name as author
order by book.isbn desc

3.8. Union, intersection, and complement

The results of two queries may be combined via union, intersection, or complementation of their result lists viewed as

sets. The syntax of a union, intersection, or complement is, respectively:

[query] union [query]

[query] intersect [query]

[query] except [query]

where each [query] is a complete query pipeline as described above.

The union, intersect, and except operators are operators on sets. That is, they:

• produce result lists with distinct elements, and

• are not required to preserve any element ordering which might exist in the result lists being combined.

Suppose a union, intersect, or except operator is applied to the result lists lL and lR, with lL occurring to the left. The final

result list contains a structure r if and only if:

1. the operator is union, and r occurs in either lL or lR,

2. the operator is intersect, and r occurs in both lL or lR, or

3. the operator is except, and r occurs in lL but not in lR.

The semantics of union, intersection, or complementation may be modified by the all keyword:

[query] union all [query]

[query] intersect all [query]

21

[query] except all [query]

When all occurs, the operation preserves duplicate results from the argument result lists and so the final result list

might contain duplicate elements.

Suppose a union all, intersect all, or except all operator is applied to the result lists lL and lR, with lL occurring to the

left. Given a structure r which occurs nL times in lL and nR times in lR:

1. r occurs nL + nR times in the final result list if the operator is union all,

2. r occurs min(nL, nR) times in the final result list if the operator is intersect all, or

3. r occurs max(0, nL - nR) times in the final result list if the operator is except all.

 In principle, a union may act on result lists of distinct type, producing a result list containing structures

of heterogeneous type. This specification requires union, intersection, or complementation only for

lists of identical type because many data stores are not capable of unions that produce lists of

heterogeneous type. Some implementations allow unions of lists containing entities of distinct type

when the entity types are related by inheritance, but that functionality is not required by this

specification.

3.9. Subqueries

A subquery is a query which occurs as an expression in another outer query. Subqueries have a restricted syntax

compared to root queries, and, in particular, every subquery must have a projection with exactly one value expression.

 This specification defines the behavior of subqueries occurring within restrictions in the where clause or

having clause. Some implementations of Jakarta Query allow subqueries to occur elsewhere in the

query, but this functionality falls outside the scope of this specification.

A subquery may have expressions which involve aliases declared by any outer query. A query with such expressions is

called correlated.

• A subquery which is not correlated may be executed independently of the containing query, and its result set is

fixed for all rows of the outer query.

• A correlated subquery must be evaluated once for each given element of the result list to which the restricted is

applied. A correlated subquery does not have a root entity, and every element of the from clause is treated as a join.

When the correlated subquery is executed, the first join in the pipeline is applied to a result list containing only the

given element.

A subquery must not have an Ordering.

[1] Subqueries complicate the picture; a query involving subqueries is conceptually a tree.

[2] That is, the query functions as if it had an empty group by clause with no value expressions, so that every element of

the result list was assigned a grouping tuple of length zero, resulting in a result list containing a single nested list.

22

Chapter 4. Lexical structure

Lexical analysis requires recognition of the following token types:

• keywords (reserved identifiers),

• regular identifiers,

• named and ordinal parameters,

• operators and punctuation characters,

• literal strings, and

• integer and decimal number literals.

4.1. Identifiers and keywords

An identifier is any legal Java identifier which is not a keyword. Identifiers are case-sensitive: hello, Hello, and HELLO are

distinct identifiers.

In the grammar, identifiers are labeled with the IDENTIFIER token type.

The following identifiers are keywords: abs, all, and, any, as, asc, avg, between, both, by, case, ceiling, class, coalesce, concat,

count, current_date, current_time, current_timestamp, delete, desc, distinct, else, empty, end, entry, escape, except, exists, exp,

extract, false, fetch, first, floor, from, function, group, having, in, index, inner, intersect, is, join, key, leading, last, left,

length, like, local, ln, locate, lower, max, member, min, mod, new, not, null, nulls, nullif, object, of, on, or, order, outer, position,

power, replace, right, round, select, set, sign, size, some, sqrt, substring, sum, then, trailing, treat, trim, true, type, union, update,

upper, value, when, where.[1].

TODO: function names don’t really need to be keywords!

Keywords and other reserved identifiers are case-insensitive: null, Null, and NULL are three ways to write the same

keyword.

 Use of a reserved identifier as a regular identifier in a query might be accepted by a given Jakarta

Query provider, but such usage is not guaranteed to be portable between providers.

4.2. Parameters

A named parameter is a legal Java identifier prefixed with the : character, for example, :name.

An ordinal parameter is a decimal integer prefixed with the ? character, for example, ?1.

Ordinal parameters are numbered sequentially, starting with ?1.

4.3. Operators and punctuation

The character sequences +, -, *, /, ||, =, <, >, <>, <=, >= are operators.

The characters (,), and , are punctuation characters.

4.4. String literals

A literal string is a character sequence quoted using the character '.

A single literal ' character may be included within a string literal by self-escaping it, that is, by writing ''. For example,

the string literal 'Furry''s theorem has nothing to do with furries.' evaluates to the string Furry's theorem has nothing to

23

do with furries..

In the grammar, literal strings are labeled with the STRING token type.

4.5. Numeric literals

In the core language, numeric literals come in two flavors:

• any legal Java decimal literal of type int or long is an integer literal, and

• any legal Java literal of type float or double is a decimal literal.

A suffix L, D, or F may be used to indicate a specific numeric type:

• L means a 64-bit integer,

• D means a 64-bit floating-point value, and

• F means a 32-bit floating-point value

The suffix is not case-sensitive.

The literal numeric value preceding the suffix must conform to the rules for Java numeric literals established by the

Java Language Specification.

When the suffix is absent:

• a literal with neither exponent nor decimal point is interpreted as a 32-bit integer value, and

• a literal with either an exponent or decimal point is interpreted as a 64-bit floating-point value.

An implementation of Jakarta Query which targets a language other than Java is not required to respect the suffix in a

numeric literal.

In the grammar, integer and decimal literals are labeled with the INTEGER and DOUBLE token types respectively.

 Jakarta Query does not require support for literals written in octal or hexadecimal.

In the extended language, arbitrary-precision numeric literals are also provided:

• an arbitrary-precision integer literal follows the format of a Java integer literal, but with the explicit suffix BI, and

with no limit on the number of decimal digits, and

• an arbitrary-precision decimal literal follows the format of a Java floating-point literal, but with the explicit suffix

BD, and with no limit on the number of decimal digits.

4.6. Single-character literals

The trim_character and escape_character rules allow specification of a single literal character quoted using the '

character.

In the grammar, such single-character literals are labeled with the CHARACTER token type.

4.7. Whitespace

The characters Space, Horizontal Tab, Line Feed, Form Feed, and Carriage Return are considered whitespace characters

and make no contribution to the token stream.

As usual, token recognition is "greedy". Therefore, whitespace must be placed between two tokens when:

24

• a keyword directly follows an identifier or named parameter,

• an identifier directly follows a keyword or named parameter, or

• a numeric literal directly follows an identifier, keyword, or parameter.

[1] Jakarta Persistence reserves the following additional keywords for future use: BIT_LENGTH, CHAR_LENGTH,

CHARACTER_LENGTH, and UNKNOWN.

25

Chapter 5. Expressions

5.1. Value expressions

An expression is a sequence of tokens to which a type can be assigned, and which evaluates to a well-defined value

when the query is executed. Expressions may be categorized as:

• literal atomic values, enum literals, and special values,

• parameters,

• paths,

• function calls and aggregate function calls,

• typecasts, type expressions, and literal entity types,

• case expressions,

• operator expressions, and

• Subquery expressions.

5.1.1. Literal expressions

The syntax for literal expressions is given by the rules string_literal and numeric_literal, and in the previous section

titled Lexical structure.

In an implementation for Java, a string, integer, or decimal literal is assigned the type it would be assigned in Java. So,

for example, 'Hello' is assigned the type java.lang.String, 123 is assigned the type int, 1e4 is assigned the type double, and

1.23f is assigned the type float. In the extended language:

• arbitrary-precision integer literals (with suffix BI) are assigned the type java.math.BigInteger, and

• arbitrary-precision decimal literals (with suffix BD) are assigned the type java.math.BigDecimal.

When executed, a literal expression evaluates to its literal value.

5.1.2. Special values

The syntax for special values is given by the rules special_boolean_expression and special_datetime_expression.

In an implementation of Jakarta Query for Java:

• the special values true and false are assigned the type boolean, and

• the special values local date, local time, and local datetime are assigned the types java.time.LocalDate,

java.time.LocalTime, and java.time.LocalDateTime.

The expression true and false evaluate to their literal values. The expressions local date, local time, and local datetime

evaluate to the current date, current time, and current datetime of the database server, respectively.

5.1.3. Parameter expressions

A parameter expression, with syntax given by input_parameter, is assigned a type and value either:

1. at runtime, via invocation of some API (for example, setParameter() in Jakarta Persistence), or

2. at compile type, via static analysis (for example, by inspecting the parameters of a Jakarta Data repository method).

 This specification does not define how arguments are assigned to parameter expressions.

26

When executed, a parameter expression evaluates to the argument assigned to the parameter.

Positional and named parameters must not be mixed in a single query.

5.1.4. Enum literals

An enum literal expression is a sequence of identifiers, with syntax specified by enum_literal, and must refer to a

member of some sort of enumerated type. An enum literal may only occur as:

• the right operand of an update_item belonging to a set assignment,

• the right operand of an = or <> equality comparison, or

• an in_item element of an in_item_list occurring as the right operand of the in operator.

In each case, the enum literal expression is assigned the type of the left operand of the assignment, comparison, or in

operator.

In an implementation for Java, the type assigned must be a Java enum type, and the identifier must be the name of an

enumerated value of the enum type including the fully qualified Java enum class name. For example, day <>

java.time.DayOfWeek.MONDAY is a legal comparison expression.

When executed, the enum literal expression evaluates to the named member of the enumerated type.

TODO allow day <> MONDAY, since the enum type can be inferred.

5.1.5. Entity type literals

In the extended language, an entity type literal, with syntax given by entity_type_literal is just the name of an entity

type, in the sense given in Entities and embeddable types. When executed, it evaluates to a value which represents the

named entity type.

An implementation for Java assigns the type java.lang.Class<E> to an entity type literal, where E is the Java class

mapping the named entity type. When executed, the literal evaluates to an instance of Class representing the Java class

E.

5.1.6. Path expressions

A path expression has syntax specified by:

• simple_path_expression in the core language, and

• single_valued_path_expression , atomic_valued_path_expression , embeddable_valued_path_expression ,

entity_valued_path_expression , collection_valued_path_expression , or joinable_path_expression in the extended language.

A simple_path_expression or joinable_path_expression is simply a period-separated list of identifiers. Any other sort of path

expression might begin with:

• an identifier,

• a treated path expression, or

• a map key or value expression.

The first element of the path expression is called the root element of the path.

A path expression is a compound path identifying a labelled element of a structure, as discussed above in Paths. Every

prefix of a path is itself a path. That is, every identifier in a path is interpreted as the label of an element of a structure.

Each element of the path is assigned a type:

27

1. If the root element is an identifier matching an alias declared in a from clause of any containing query, as defined

below in From clause, the root element is assigned the entity type associated with that alias.[1]

2. Otherwise, if the root element is an identifier, and if a containing query has a from clause declaring a root entity with

(implicit or explicit) alias this, then the path expression is interpreted as if it were prefixed with the first element

this, with this being assigned the type of the root entity.[2]

3. If the root element is a treated_entity_path_expression , then it is assigned the treated type, according to the usual

rules defined by Treated path expressions.

4. If the root element is a map key or value expression, then it is assigned a type according to the usual rules specified

by Map keys and values.

5. The identifier of each non-root element must match the label of an element of the entity or embeddable type

assigned to the previous element. Then the non-root element is assigned the type of this element of the entity or

embeddable type.

The type of the whole path expression is the type of the last element of the list. For example, pages might be assigned the

type int, address might be assigned the type org.example.Address, and address.street might be assigned the type

java.lang.String.

 Typically, the last element of a path expression is assigned an atomic value type. Non-terminal path

elements are assigned a structure type, usually an embeddable type, if the element references an

embeddable, or an entity type, if the element references an association. Jakarta EE specifications that

use Jakarta Query determine whether a provider is required to support embedded attributes or

associations, which require support for compound path expressions.

When a path expression is executed, each element of the path is evaluated in turn:

• The root element of the path expression is evaluated in the context of a given structure belonging to a result list,

and:

◦ if the root element is an identifier, it evaluates to the value of the labeled element of the given structure, or

◦ otherwise, it is evaluated as a value expression according to the rules specified here.

• Each subsequent element of the path is evaluated in the context of the structure produced by evaluating the

previous element (typically, an instance of an entity or embeddable type), and evaluates to the value of the labeled

element of the result structure.

If any element of a path expression evaluates to a null value, the whole path expression evaluates to a null value.

 An implementation of the core language is not required to support path expressions which involve

multiple entities. For example, if Book and Publisher are different entity types, then the path expression

book.publisher.name is not part of the core language.[3]

5.1.7. Identifier and version expressions

In the core language, an identifier expression, with syntax given by id_expression, is assigned the type of the unique

identifier of the queried entity and evaluates to the unique identifier of a given record. An identifier expression is a

synonym for a path expression with one element matching the identifier attribute of the queried entity type. An

identifier expression may occur in the select clause, in the order clause, or as a scalar expression in the where clause.

In the extended language, the grammar rule entity_id_or_version_function gives the syntax of the special functions id

and version, which accept a path expression whose last element is assigned an entity type, and evaluate to, respectively,

the identifier or version element of the record to which the path expression evaluates when executed.

28

 Record identifiers were defined above in Structures and records. This specification leaves the notion of

a version undefined. Implementations of Jakarta Query are free to interpret this notion in terms of

concepts defined externally to this specification. For example, Jakarta Persistence specifies the notion

of a version field or property of an entity.

5.1.8. Function calls

A function call is the name of a function recognized by the Jakarta Query implementation, followed by a parenthesized

list of argument expressions, with syntax given by:

• function_expression in the core language, or

• functions_returning_strings , functions_returning_datetime , and functions_returning_numerics in the full grammar of the

extended language.

This specification defines the standard functions listed in the table below.

 Functions highlighted in yellow belong to the extended language and are not required for an

implementation of the core language.

Function name Parameters Parameter

types

Type Semantics

abs 1 Any numeric

type

Same as

argument

Evaluates to the absolute value of the numeric

value to which its argument evaluates.

sign 1 Numeric Integer Evaluates to the sign (-1, 0, or 1) of the numeric

value of its argument.

mod 2 Both integer Integer Evaluates to the remainder when its first

integer argument is divided by its second

integer argument. The behavior is undefined

when either or both of the arguments are

negative and depends on the data store that is

used.

sqrt 1 Numeric Double

precision

Evaluates to the positive square root of its

numeric argument.

exp 1 Numeric Double

precision

Evaluates to the natural exponential of its

numeric argument.

ln 1 Numeric Double

precision

Evaluates to the natural logarithm of its

numeric argument.

power 2 Both numeric Double

precision

Evaluates to the value produced by raising its

first numeric argument to the power specified

by its second numeric argument.

ceiling 1 Any numeric

type

Same as

argument

Evaluates to the smallest integral value at least

as large as its argument.

29

Function name Parameters Parameter

types

Type Semantics

floor 1 Any numeric

type

Same as

argument

Evaluates to the largest integral value at least as

small as its argument.

round 2 Any numeric

type, integer

Same as first

argument

Evaluates to the value produced by rounding its

first numeric argument with the precision

given by its second integer argument.

length 1 String Integer Evaluates to the length of string to which its

argument evaluates.

lower 1 String String Evaluates to the lowercase form of the string to

which its argument evaluates.

upper 1 String String Evaluates to the uppercase form of the string to

which its argument evaluates.

left 2 String, integer String Evaluates to a prefix of the string to which its

first argument evaluates. The length of the

prefix is given by the integer value to which its

second argument evaluates.

right 2 String, integer String Evaluates to a suffix of the string to which its

first argument evaluates. The length of the

suffix is given by the integer value to which its

second argument evaluates.

concat At least one All strings String Evaluates to the concatenation of its arguments.

substring 2 or 3 String, integer,

integer

String Evaluates to a specified substring of the first

argument. The second and third arguments

specify the starting position and length of the

substring. The third argument is optional. If it is

not specified, the substring from the starting

position to the end of the string is returned. The

first character of the string is at position 1.

trim 1* String String Trims a specified character from its last

argument. If the character to be trimmed is not

specified, the space character is trimmed. The

optional trim_character specifies the character

to be trimmed. The optional trim_specification

controls whether the character is trimmed from

the start and/or end of the string. By default, the

character is trimmed from both start and end.

replace 3 All strings String Evaluates to a new string formed by replacing

every occurrence of the second argument string

within the first argument string with the third

argument string.

30

Function name Parameters Parameter

types

Type Semantics

locate 2 or 3 String, string,

integer

Integer Evaluates to the position at which one string

occurs within a second string, optionally

ignoring any occurrences that begin before a

specified character position in the second

string. It returns the first character position

within the second string (after the specified

character position, if any) at which the first

string occurs, as an integer, where the first

character of the second string is denoted by 1.

That is, the first argument is the string to be

searched for; the second argument is the string

to be searched in; the optional third argument

is an integer representing the character

position at which the search starts (by default,

1, the first character of the second string). If the

first string does not occur within the second

string, 0 is returned.

size 1 Collection Integer Evaluates to the number of elements in the

collection to which its argument evaluates.

coalesce At least two Any atomic type

T

T Evaluates to the value of the first argument

expression which evaluates to a non-null value.

nullif 2 Any atomic type

T

T Evaluates to the null value if both argument

expressions evaluate to the same value, or,

otherwise, to the value of the first argument

expression.

extract 2 Any date or

time type

See text See text

When any argument expression of any function call evaluates to a null value, the whole function call evaluates to null.

 Some of these functions cannot be emulated on every datastore. When a function cannot be reasonably

emulated via the native query capabilities of the database, an implementation of Jakarta Query is not

required to provide the function.

 On the other hand, an implementation of Jakarta Query might provide additional built-in functions,

and might even allow invocation of user-defined functions.

An implementation Java must assign:

• the type java.lang.String to every function of type "String",

• the type java.lang.Integer to every function of type "Integer", and

• the type java.lang.Double to every function of type "Double precision".

The primitive types double, float, long, int, short, byte, wrappers for these primitive types, BigInteger, and BigDecimal are

all considered "Numeric" types.

31

In the extended language, the extract() function accepts an expression assigned a date, time, or datetime type, along

with an identifier — a datetime_field or datetime_part  — indicating a specific part of the date, time, or datetime to

extract, and evaluates to the specified part of the value to which its argument expression evaluates.

Like keywords, datetime_field and datetime_part identifiers are case-insensitive.

 As mentioned above in Atomic values, an implementation of Jakarta Persistence for Java usually

supports at least the date/time types java.time.LocalDate, java.time.LocalTime, and

java.time.LocalDateTime. Such implementations are encouraged to also support:

• the datetime_field identifiers YEAR , QUARTER , MONTH , WEEK , DAY , HOUR , MINUTE , SECOND , and

• the datetime_part identifiers DATE and TIME .

If the first argument of extract() is a datetime_field identifier, the function call is assigned the type

Integer. If the first argument of extract() is DATE , the function call is assigned the type LocalDate. If the

first argument of extract() is TIME , the function call is assigned the type LocalTime.

The datetime_field or datetime_part must be compatible with the type of the second argument

expression. For example, extract(day from local date) is well-typed; extract(year from local time) is not.

 Jakarta Persistence requires support for the function() function, with syntax given by

function_invocation , allowing invocation of a native or user-defined database function from a query

written in JPQL. On the other hand, an implementation of Jakarta Query might simply allow direct

invocation of such functions — without the requirement to use the function() syntax — as an extension

to the functionality required by this specification. This specification does not, therefore, require

support for function() , not even in an implementation of the extended language.

TODO Should we simply deprecate it? Remove it?

5.1.9. Map keys and values

In the extended language, a map key expression, map value expression, or map entry expression is an application of the

special key() function, special value() function, or special entry() function, respectively.

The entry() function may only occur in the select clause, as specified by the full grammar of the extended language.

The argument of the key() , value() , or entry() function must be an alias of a collection join of a map, as defined in Join

clauses.

TODO This is very restrictive. Should we allow application of key() or value() to a path expression?

• A map key expression is assigned the type of the key of the map. A map key expression evaluates to the key of the

map entry to which its argument expression evaluates.

• A map value expression is assigned the type of the value of the map. A map value expression evaluates to the value

to which its argument expression evaluates.

 Application of the value() value function is always optional.

An implementation for Java must assign the type java.util.Map.Entry<K,V> to a map entry expression, where K is the type

of the key of the map, and V is the type of the value of the map. The map entry expression evaluates to an instance of

this type packaging the value to which its argument expression evaluates and the key of the map entry of this value.

 An implementation of Jakarta Query which targets clients written in a language other than Java is not

32

required to provide support for the entry() function.

5.1.10. Types and typecasts

The extended language provides three special functions for working with subtype polymorphism.

5.1.10.1. Treated path expressions

A treated path expression is an invocation of the special treat() function, with syntax given by

treated_entity_path_expression and treated_joinable_path_expression . The treat() function accepts:

1. a path expression whose last element is assigned an entity type, and

2. the name of an entity type — called the treated type — which must be a subtype of the entity type assigned to the

path expression.

A treated path expression is assigned the treated type.

When a treated path expression is executed, the record produced by evaluating the path expression is compared to the

treated type.

• If the record is an instance of the treated type, the treated path expression evaluates to the record.

• Otherwise, if the record is not an instance of the treated type, the treated path expression evaluates to the null

value.

5.1.10.2. Coercion expressions

A coercion expression is an invocation of the special cast() function, with syntax given by the last alternatives of

functions_returning_numerics and functions_returning_strings . The cast() function accepts:

1. an expression assigned an atomic type, and

2. the name of an atomic type.

A coerced expression is assigned the named atomic type.

When a coercion expression is executed, the atomic value produced by evaluating the path expression is coerced to the

named atomic type.

 This specification places no specific requirements on the types which are allowed as arguments of the

cast() function, nor on the behavior of coercion between types. As suggested by the grammar for

functions_returning_numerics and functions_returning_strings , implementations of the extended language

are strongly encouraged to support at least:

• coercion from string to any numeric type, and

• coercion from any atomic type to string.

However, this part of the grammar should be read as indicative of what should be supported in

implementations for Java, and, more specifically, what is required for an implementation of Jakarta

Persistence.

The capabilities of the cast() function vary between client programming languages and between

databases.

33

5.1.10.3. Entity type expressions

An entity type expression is an invocation of the special type() function, with syntax given by type_discriminator . The

type() function accepts an expression assigned an entity type, and, when executed, evaluates to a value which

represents the type of the record to which the argument expression evaluates.

An implementation for Java assigns the type java.lang.Class<? extends E> where E is the Java class mapping the entity

type assigned to the argument expression, and an entity type expression evaluates to an instance of Class representing

the Java class which maps the entity type of the record to which the argument expression evaluates.

5.1.11. Aggregate functions calls

An aggregate function call may only occur in the select or having clause of a query involving aggregation. Such a clause

operates on a list of nested result lists, as specified above in Projection and aggregation and Restriction and

aggregation. An aggregate function call is evaluated in the context of such a nested list.

This specification defines the standard aggregate functions listed in the table below.

 Functions highlighted in yellow belong to the extended language and are not required for an

implementation of the core language.

Function name Parameters Parameter

types

Type Semantics

count 1 Any type Long integer The number of nested list elements for which

the argument expression evaluates to a non-

null value

min 1 Any ordered

type O

O The smallest non-null value of the argument

expression over all nested list elements

max 1 Any ordered

type O

O The largest non-null value of the argument

expression over all nested list elements

sum 1 Any numeric

type N

N The sum of non-null values of the argument

expression over all nested list elements

avg 1 Any numeric

type N

N The average (arithmetic mean) of non-null

values of the argument expression over all

nested list elements

In the core language, the only allowed aggregate function call is the expression count(this), as specified below in Select

clause.

In the extended language, the syntax for aggregate functions is given by aggregate_expression . An aggregate function

invocation may specify the keyword distinct , in which case duplicate elimination is applied to the list of values

produced by evaluating the argument expression over all elements of the nested list before counting or summing the

values.[4]

5.1.12. Case expressions

In the extended language, a case expression has syntax given by general_case_expression or simple_case_expression .

34

A general_case_expression has:

1. a list of one or more when_clauses, each of which has a conditional_expression paired with a result scalar_expression,

and,

2. optionally, a default scalar_expression.

When a general case expression is executed, each conditional_expression is evaluated, in order, until one is satisfied.

• If some conditional_expression is satisfied, then its result scalar_expression is evaluated.

• Otherwise, if no conditional_expression is satisfied, the default scalar_expression, if any, is evaluated.

The whole case expression evaluates to the value produced by the result or default scalar_expression which was

evaluated. If there is no else, and no scalar_expression was evaluated, the whole case expression evaluates to the null

value.

A simple_case_expression has:

1. a case_operand , which must be an atomic-valued path expression or an entity type expression,

2. a list of one or more simple_when_clauses, each of which has a tested scalar_expression paired with a result

scalar_expression, and,

3. optionally, a default scalar_expression.

When a simple case expression is executed, the case_operand is evaluated, and then each tested scalar_expression is

evaluated, in order, until one produces a value identical to the value of the case_operand .

• If some tested scalar_expression evaluates to the value of the case_operand , then its result scalar_expression is

evaluated.

• Otherwise, if no conditional_expression is satisfied, the default scalar_expression, if any, is evaluated.

The whole case expression evaluates to the value produced by the result or default scalar_expression which was

evaluated. If there is no else, and no scalar_expression was evaluated, the whole case expression evaluates to the null

value.

5.1.13. Operator expressions

The syntax of an operator expression is given by the scalar_expression rule. Within an operator expression, parentheses

indicate grouping.

• The operands of +, -, *, and / must be expressions assigned an atomic numeric type. The operators have their usual

interpretation in terms of integer or floating point arithmetic, subject to the rules of numeric promotion.

• The operands of || must be expressions assigned an atomic type representing character strings. An || operator

expression evaluates to the concatenation of the character strings obtained by evaluating its operands.

All binary infix operators are left-associative. The relative precedence, from highest to lowest precedence, is given by:

1. * and /,

2. + and -,

3. ||.

The unary prefix operators + and - have higher precedence than the binary infix operators. Thus, 2 * -3 + 5 means (2 *

(-3)) + 5 and evaluates to -1.

 The precise behavior of numeric operators is outside the scope of this specification and varies

according to the database and client programming language.

35

In an implementation for Java:

• The concatenation operator || is assigned the type java.lang.String. Its operand expressions must also be of type

java.lang.String. When executed, a concatenation operator expression evaluates to a new string concatenating the

strings to which its arguments evaluate.

• The numeric operators +, -, *, and / have the same meaning for primitive numeric types as they have in Java, and

operator expressions involving these operators are assigned the types they would be assigned in Java. As an

exception, when the operands of / are both integers, an implementation of Jakarta Query is not required to

interpret the operator expression as integer division if that is not the native semantics of the database. However,

portability is maximized when Jakarta Query providers do interpret such an expression as integer division.

• The four numeric operators may also be applied to an operand of wrapper type, for example, to java.lang.Integer or

java.lang.Double. In this case, the operator expression is assigned a wrapper type and evaluates to a null value when

either of its operands evaluates to a null value. When both operands are non-null, the semantics are identical to the

semantics of an operator expression involving the corresponding primitive types.

• The four numeric operators may also be applied to operands of type java.math.BigInteger or java.math.BigDecimal.

• A numeric operator expression is evaluated according to the native semantics of the database. In translating an

operator expression to the native query language of the database, a Jakarta Query provider is encouraged, but not

required, to apply reasonable transformations so that evaluation of the expression more closely mimics the

semantics of the Java language.[5]

 When a Jakarta Query implementation targets a non-relational database, support for arithmetic

operators or support for the use of parentheses to control operator precedence might vary from what is

described above. This specification does not require support for arithmetic operators or grouping

parentheses if the underlying datastore does not provide these features among its native querying

capabilities.

5.1.14. Subquery expressions

In the extended language, a subquery may occur as a scalar_expression in many places where an expression of atomic

type is legal. Such a subquery must produce a result list with exactly one element when executed. When the

scalar_expression is evaluated, the subquery is executed, and the whole expression evaluates to the single element of

the result list of the subquery.

5.1.15. Numeric types and numeric type promotion

The type assigned to an operator expression depends on the types of its operand expression, which need not be

identical. Numeric type promotion is defined by the following rules:

• If there is an operand of type Double or double, the expression is of type Double.

• Otherwise, if there is an operand of type Float or float, the expression is of type Float.

• Otherwise, if there is an operand of type BigDecimal, the expression is of type BigDecimal.

• Otherwise, if there is an operand of type BigInteger, the expression is of type BigInteger, unless the operator is /

(division), in which case the expression type is not defined here.

• Otherwise, if there is an operand of type Long or long, the expression is of type Long, unless the operator is /

(division), in which case the expression type is not defined here.

• Otherwise, if there is an operand of integral type, the expression is of type Integer, unless the operator is / (division),

in which case the expression type is not defined here.

36

5.2. Conditional expressions

A conditional expression is a sequence of tokens which specifies a condition which, for a given record, might be satisfied

or unsatisfied. Unlike the scalar Expressions defined in the previous section, a conditional expression is not considered

to have a well-defined type.

 The Jakarta Persistence specification defines the result of a conditional expression in terms of ternary

logic. This specification does not specify that a conditional expression evaluates to a well-defined value,

only the effect of the conditional expression when it is used as a restriction. The "value" of a conditional

expression is not considered observable by the application program.

Conditional expressions may be categorized as:

• null comparisons,

• in expressions,

• between expressions,

• like expressions,

• equality and inequality operator expressions,

• quantified conditional expressions, and

• logical operator expressions.

The syntax for conditional expressions is given by the conditional_expression rule. Within a conditional expression,

parentheses indicate grouping.

 When a Jakarta Query implementation targets a non-relational database, support for conditional

expression might depart from what is described below. This specification does not require support for

use of any sort of conditional expression if the underlying datastore does not provide a functionally

equivalent capability among its native querying capabilities.[6] For example, in a non-relational

database which only allows lookup by key, the only sort of conditional expression which is allowed is

an equality operator expression involving the entity identifier.[7]

5.2.1. Null comparisons

A null comparison, with syntax given by null_comparison_expression, is satisfied when:

• the not keyword is missing, and its operand evaluates to a null value, or

• the not keyword occurs, and its operand evaluates to any non-null value.

5.2.2. In expressions

In the core language, an in expression, with syntax given by in_expression, must have:

• a path expression as the leftmost operand, and

• a parenthesized list of one or more in_items, each of which must be a literal, enum literal, or parameter.

All operands must have the same type.

TODO We should relax the restrictions on the left operand.

In the extended language, the leftmost operand must be a path expression assigned an atomic type or an entity type

expression, and there must be exactly one of the following elements:

37

• a parenthesized list of one or more in_items, each of which must be a literal, an enum literal, a literal entity type,

true, false, or a parameter, and each having the same assigned type as the leftmost operand,

• a parenthesized subquery with a simple_select_expression expression with the same assigned type as the leftmost

operand, or

• an unparenthesized parameter.[8]

If the condition has a list of expressions, it is satisfied when its leftmost operand evaluates to a non-null value, and:

• the not keyword is missing, and any one of its parenthesized operands evaluates to the same value as its leftmost

operand, or

• the not keyword occurs, and none of its parenthesized operands evaluate to the same value as its leftmost operand.

If the condition has a subquery, it is satisfied when its leftmost operand evaluates to a non-null value, and:

• the not keyword is missing, and the value produced by evaluating the left operand occurs in the result list of the

subquery, or

• the not keyword occurs, and the value produced by evaluating the left operand does not occur in the result list of the

subquery.

If the condition has an unparenthesized parameter, it is satisfied when its leftmost operand evaluates to a non-null

value, and:

• the not keyword is missing, and the value produced by evaluating the left operand is a member of the value assigned

to the parameter, or

• the not keyword occurs, and the value produced by evaluating the left operand is not a member of the value

assigned to the parameter.

5.2.3. Between expressions

A between expression, with syntax given by between_expression is satisfied when its operands all evaluate to non-null

values, and, if the not keyword is missing, its left operand evaluates to a value which is:

• larger than or equal to the value taken by its middle operand, and

• smaller than or equal to the value taken by its right operand.

Or, if the not keyword occurs, the left operand must evaluate to a value which is:

• strictly smaller than the value taken by its middle operand, or

• strictly larger than the value taken by its right operand.

All three operands must have the same type.

5.2.4. Like expressions

A like expression has syntax given by like_expression.

• Its left operand must be an expression assigned some atomic type representing character strings.

• Its right operand must be a pattern given as a literal string, with syntax literal_pattern, or, in the extended

language, a parameter.

• Optionally, its right operand may specify an escape_character as a literal single character.

If an implementation of Jakarta Query targets clients written in Java, it must allow expressions assigned the type

java.lang.String as the left operand of a like expression.

38

The expression is satisfied when its left operand evaluates to a non-null value and:

• the not keyword is missing, and this value matches the pattern, or

• the not keyword occurs, and the value does not match the pattern.

Matching is lexicographic. Within the pattern, the character bigram '' is interpreted as a literal ', and the characters _

and % are interpreted as wildcards:

• _ matches any single character, and

• % matches any contiguous sequence of (zero or more) characters.

Any other character occurring in the pattern is interpreted literally and matches only itself.

An escape character may be used to suppress the interpretation as a wildcard of a particular _ or % character in the

pattern.

That is, if the escape character is c, then the character bigram c_ is interpreted literally as the character _, the bigram c%

as the character %, and the bigram cc as the character c.

5.2.5. Equality and inequality operators

The equality and inequality operators are =, <>, <, >, <=, >=.

The operands of an equality or inequality operator must have the same type, and it must be an atomic type considered

comparable by the implementation of Jakarta Query. Any type with a natural order must be treated as a comparable

type, and the equality and inequality operators must be interpreted in a way which is consistent with the natural order.

For non-null values, the following table defines an interpretation consistent with the natural order:

Operator Interpretation in terms of natural order

x < y Satisfied if x occurs before y in the natural order

x > y Satisfied if x occurs after y in the natural order

x ⇐ y Satisfied if x>y is not satisfied

x >= y Satisfied if x<y is not satisfied

x = y Satisfied if neither x>y nor x<y is satisfied

x <> y Satisfied if either x>y or x<y is satisfied

When exactly one of the operands of an equality or inequality operator evaluates to a null value, the conditional

expression is not satisfied.

 When both operands of an equality or inequality operator evaluate to null, the behavior is not defined

by this specification. As mentioned above in Atomic values, the semantics of comparisons involving two

null values depends on the underlying database — typically, on whether the database uses binary or

ternary logic.

In an implementation of Jakarta Query which targets clients written in Java, every primitive or primitive wrapper type

is considered comparable, along with java.lang.String, java.math.BigInteger, java.math.BigDecimal, and types representing

dates and datetimes.

39

• For primitive types, these operators have the same meaning they have in Java, except for <> which has the same

meaning that != has in Java. Such an operator expression is satisfied when the equivalent operator expression

would evaluate to true in Java.

• For wrapper types, these operators are satisfied if both operands evaluate to non-null values, and the equivalent

operator expression involving primitives would be satisfied.

• For other types, these operators are usually evaluated according to the native semantics of the database.

 Portability is maximized when Jakarta Query providers interpret equality and inequality operators in a

manner consistent with the implementation of Object.equals() or Comparable.compareTo() for the assigned

Java type. [9]

In the extended language, the right operand of an equality or inequality operator may be a subquery, as discussed in

the next section.

5.2.6. Quantified conditional expressions

In the extended language, there are two kinds of conditional expression involving quantification:

• existence expressions, with syntax given by exists_expression , and

• quantified comparison expressions, in which the right operand of an equality or inequality operator is an

all_or_any_expression .

In either case, a subquery occurs as the argument of one of the following special quantifier functions: exists , all , any , or

some . When a quantifier is evaluated, the subquery is executed, producing a result list containing values which are

instances of some atomic or entity type. For a quantified comparison expression, the type of these values must be the

same as the type of the left operand of the equality or inequality operator.

An existence expression is satisfied if and only if:

• the not keyword is missing, and the result list of the subquery is nonempty, or

• the not keyword is present, and the result list of the subquery is empty.

A quantified comparison expression is satisfied if and only if:

• the quantifier is any or some and the result list of the subquery contains at least one value which would make the

equality or inequality expression evaluate to true if it occurred as the right operand in place of the subquery, or

• the quantifier is all and every value belonging to the result list of the subquery would make the equality or

inequality expression evaluate to true if it occurred as the right operand in place of the subquery.

5.3. Natural order

Every atomic value type can, in principle, be equipped with a total order. An order for a type determines the result of

inequality comparisons and the effect of the Order clause.

For any numeric type, or for any date or datetime type, there is a natural order for non-null values completely

determined by the semantics of the type. Jakarta Query implementations must sort these types according to their

natural order:

• smaller numeric values come before larger numeric values, and

• earlier dates or datetimes come before later dates or datetimes.

 For an implementation of Jakarta Query which targets clients written in Java, this natural order agrees

40

with the order defined by the corresponding Java type from java.lang, java.math, or java.time.

Furthermore, Jakarta Query implementations must sort boolean values so that false < true is satisfied.

For other types, there is at least some freedom in the choice of order. Usually, the order is determined by the native

semantics of the database.

 For clients written in Java, note that:

• Textual data is represented in Java as the type java.lang.String. Strings are in general ordered

lexicographically, but the ordering also depends on the character set and collation used by the

database server. Applications must not assume that the order agrees with the compareTo() method of

java.lang.String. In evaluating an inequality involving string operands, an implementation of

Jakarta Query is not required to emulate Java collation.

• Binary data is represented in Java as the type byte[]. Binary data is in general ordered

lexicographically with respect to the constituent bytes. However, since this ordering is rarely

meaningful, this specification does not require implementations of Jakarta Query to respect it.

• This specification does not define an order for the sorting of Java enum values, which is provider-

dependent. An implementation of Jakarta Query might allow control over the order of enum values.

For example, Jakarta Persistence allows this via the @Enumerated annotation.

• This specification does not define an order for UUID values, which is completely implementation-

dependent. Applications must not assume that the order agrees with the compareTo() method of

java.util.UUID.

The natural order does not determine the precedence of null values, and so this specification leaves their precedence

undefined except when nulls first or nulls last is explicitly specified for an item of the order by clause, as defined by

Order clause.

5.4. Logical operators

The logical operators are and, or, and not.

• An and operator expression is satisfied if and only if both its operands are satisfied.

• An or operator expression is satisfied if at least one of its operands is satisfied.

• A not operator expression is never satisfied if its operand is satisfied.

This specification leaves undefined the interpretation of the not operator when its operand is not satisfied.

 A compliant implementation of Jakarta Query might feature SQL/JPQL-style ternary logic, where not n >

0 is an unsatisfied logical expression when n evaluates to null, or it might feature binary logic where the

same expression is considered satisfied. Application programmers should take great care when using

the not operator with scalar expressions involving null values.

Syntactically, logical operators are parsed with lower precedence than equality and inequality operators and other

conditional expressions listed above. The not operator has higher precedence than and and or. The and operator has

higher precedence than or.

 When a Jakarta Query implementation targets a non-relational database, support for logical operators

might vary from what is described above. This specification does not require support for logical

operators if the underlying datastore does not provide a functionally equivalent way to restrict query

41

results among its native querying capabilities.

[1] This is the same type as the type of a structure with that label belonging to each element of the result list.

[2] This is the same type as the type of a structure with label this belonging to each element of the result list.

[3] Path expressions involving multiple entities are called implicit joins by the Jakarta Persistence specification.

[4] Use of min(distinct …) or max(distinct …) is allowed but redundant.

[5] As earlier noted, this specification never mandates an inefficient implementation of operations which are

implemented by the database itself.

[6] This is not an open-ended invitation for implementations backed by non-relational databases to ignore the

requirements of this specification in cases where there is a reasonable way to emulate the behavior of a conditional

expression.

[7] In Jakarta NoSQL, the key attribute is identified by the annotation jakarta.nosql.Id.

[8] Jakarta Persistence treats this parameter as a collection-valued input parameter.

[9] A notable special case is java.math.BigDecimal, whose implementation of equals() is inconsistent with its

implementation of compareTo(). For BigDecimal, the = operator in Jakarta Data should be implemented for consistency

with compareTo().

42

Chapter 6. Statements and clauses

Each statement is built from a sequence of clauses. The beginning of a clause is identified by a keyword: from, where,

group, having, select, set, or order.

6.1. Clauses

As discussed in Basic operations, there is a logical ordering of clauses, reflecting the order in which their effect must be

computed by the datastore:

1. from,

2. where,

3. group ,

4. having ,

5. select or set,

6. order.

The interpretation and effect of each clause in this list is influenced by clauses occurring earlier in the list, but not by

clauses occurring later in the list.

6.1.1. From clause

In the core language, the from clause, with syntax given by from_clause, specifies an entity name identifying the root

entity of the query, as defined in The root entity. This entity is always assigned the implicit alias this.

In the core language, path expressions occurring in later clauses are interpreted with respect to this entity. That is, the

first element of each path expression in the query must be a persistent attribute of the entity named in the from clause.

The entity name is a Java identifier, usually the unqualified name of the entity class, as specified in Entities and

embeddable types.

 The core language does not have joins, and so the from clause is always trivial.

In the extended language, the from clause might enumerate multiple steps of the basic operation pipeline. The

from_clause of the full grammar allows:

1. A root entity, as defined in The root entity, which may either:

◦ explicitly specify its alias according to the syntax given by range_variable_declaration , or

◦ let the alias default to this, by using the syntax given by this_implicit_variable .

2. Optionally, a list of additional range_variable_declarations interpreted as joins to named entities.

3. Optionally, one or more join clauses, as defined in Joins, with syntax given by join , each interpreted as a join to a

named entity or as a join to a nested structure or collection, which may each optionally also contain a restriction

with syntax given by join_condition .

When the root entity is declared using the rule this_implicit_variable , the query must not have joins. A query with joins

must use an identification_variable_declarations list to specify the root entity and joins.

When a from clause has multiple elements in the identification_variable_declarations list, the root entity is always the

first identification_variable_declaration to occur in the list. Each subsequent identification_variable_declaration is

considered a join to a named entity. Join clauses are discussed below.

An identification_variable_declaration declaring a root entity has a range_variable_declaration with an entity_name

43

specifying the name of the root entity, and an identification_variable specifying its alias (label).

Since a from clause may introduce multiple distinct labels, paths in the extended language may begin with the label of

an entity. Alternatively, a path which does not begin with the label of an entity is interpreted as beginning with the

implicit label this.

The from clause is optional in select statements when a mechanism from an external specification is used to identify the

queried entity. For example:

1. a result type might be supplied via an API invocation (for example, via createQuery() in Jakarta Persistence), or

2. it might be determined by static analysis (for example, in Jakarta Data, by the return type of a repository method or

by the primary entity type of the repository).

For example, this query provided to the Jakarta Persistence createQuery() method with result type of Book.class or

supplied to a Jakarta Data repository method that returns List<Book>:

where title like :title

is equivalent to:

from Book where title like :title

6.1.2. Join clauses

In the extended language, an identification_variable_declaration might include a list of:

• joins, with syntax given by join and semantics specified by Joins, and

• fetch joins, with syntax given by fetch_join and semantics specified by Fetch joins.

Each join is in turn either a range_join , with semantics given by Joins to named entities or a path_join , with semantics

given by Joins to nested entities or collections. Such joins may specify a restriction.

In addition, each identification_variable_declaration apart from the first — which specifies the root entity — is itself

considered a join. Every such identification_variable_declaration is interpreted as a regular (inner) join and never

specifies a restriction.

Every join has a target, either a named entity type belonging to the database, or a path to a nested structure or

collection in the result list of the previous operation in the pipeline:

• A range_join or identification_variable_declaration has a range_variable_declaration with an entity_name specifying the

name of the joined entity.

• A path_join has a join_association_expression specifying the joined nested structure or collection.

In either case, a join_condition may occur, specifying a restriction which is applied to the result list of the join.

A range_join or identification_variable_declaration has a range_variable_declaration with an identification_variable .

Similarly, a path_join has a identification_variable . The identification_variable specifies the alias (label) introduced by

the join.

Every join or fetch_join begins with a join_spec :

• if the keyword left occurs in the join_spec , then the join is interpreted as a left (outer) join, as specified by Left joins,

or

• otherwise, if the keyword left is missing, the join is interpreted as a regular (inner) join.

The joins belonging to a query are evaluated in the order in which they occur in the query.

44

6.1.3. Where clause

The where clause, with syntax given by where_clause, specifies a restriction on a result list, as specified by Restriction.

The where clause specifies a conditional_expression, interpreted as the logical predicate of the restriction.

A restriction specified using where is applied after every join and before any aggregation or projection.

6.1.4. Group clause

The group clause in the extended language, with syntax given by groupby_clause , specifies a list of grouping items, which

are collectively interpreted as an aggregation, as specified in Aggregation.

According to the rule groupby_item , each item must be either:

• an atomic-valued path expression, with syntax given by atomic_valued_path_expression , or

• an entity-valued path expression, with syntax given by entity_valued_path_expression .

Each such path expression is interpreted as a value expression producing an element of the grouping tuple of the

aggregation.

 An implementation of Jakarta Query might treat the entity-valued path expression as an expression

referring to the identifier of the entity.

6.1.5. Having clause

The having clause in the extended language, with syntax given by having_clause , specifies a restriction on the result list

of an aggregation, as specified by Restriction.

The having clause specifies a conditional_expression, interpreted as the logical predicate of the restriction.

The having clause must follow a group clause. A query with no group clause may not have a having clause. A restriction

specified using having is applied after aggregation and before any projection.

6.1.6. Select clause

In the core language, the select clause, with syntax given by select_clause, specifies one or more path expressions with

syntax simple_path_expression, which are collectively interpreted as a projection with automatically assigned aliases, as

specified in Projection.

Alternatively, the select clause may contain either:

• a single count(this) aggregate function invocation, or

• a single identifier expression.

A query beginning with select count(this) performs aggregation (without grouping), as specified by Projection and

aggregation and always returns a result list of unit length.

 When a Jakarta Query implementation targets a non-relational database, support for projection might

vary from what is described above. In particular, this specification does not require support for

count(this) if the underlying datastore only provides for key-based lookups.

In the extended language, the select clause is much more flexible. Its syntax, given by select_clause , permits:

45

• one or more expressions, with optional labels, as given by select_item , where select_expression is the expression, and

result_variable is the label, and

• optionally, the distinct keyword.

The list of expressions is interpreted as a projection, as specified by Projection, and, if at least one of the expressions is

an aggregate function, also aggregation, as specified in Projection and aggregation.

If the distinct keyword occurs, then projection is followed by duplicate elimination, as specified by Duplicate

elimination.

6.1.7. Set clause

The set clause, with syntax given by set_clause, specifies a list of updates to attributes of the queried entity. For each

record satisfying the restriction imposed by the where clause, and for each element of the list, the scalar expression is

evaluated and assigned to the entity attribute identified by the path expression.

6.1.8. Order clause

The order clause (or order by clause), with syntax given by orderby_clause, specifies a lexicographic order for the query

results, that is, a list of expressions used to sort the records which satisfy the restriction imposed by the where clause, as

specified in Ordering.

An item of the order by clause, with syntax given by orderby_item has:

• an orderby_expression, which must be an expression assigned an atomic type, and

• optionally, the keyword asc or desc,

• optionally, in the extended language, nulls first or nulls last .

In the core language, an orderby_expression must be a path expression or identifier expression. In the extended

language, an orderby_expression may be almost any sort of atomic-valued expression (but not a parameter), as specified

by the full grammar of the extended language.

 An implementation of Jakarta Query is not required to support sorting by any expression not returned

by the query. If a query returns an entity, then any sortable attribute of the queried entity may occur in

the order clause. Otherwise, if the query has an explicit select clause, an implementation might require

that an attribute which occurs in the order also occurs in the select.

The keyword asc or desc specifies that the values of a given expression should be sorted in ascending or descending

order respectively; when neither is specified, ascending order is the default:

• ascending order is determined by the natural order of the expression type, as specified by Natural order, and

• descending order is the reverse of the natural order.

Entity attributes occurring earlier in the order by clause take precedence. That is, an attribute occurring later in the

order by clause is only used to resolve "ties" between records which cannot be unambiguously ordered using only

earlier attributes.

In the extended language, nulls first or nulls last specifies whether null values should be considered, respectively,

smaller or larger than non-null values. This specification does not define how null values are ordered with respect to

non-null values when the sorting of null values is not explicitly specified. The ordering of null values may vary

between data stores and between Jakarta Query providers.

The order clause is always optional. When it is missing, the order of the query results is not defined by this specification

46

and might not be deterministic.

 An implementation of Jakarta Query might provide some other facility to specify sorting criteria for the

results of a given query. For example, Jakarta Query allows an object carrying sorting criteria to be

passed as an argument to a repository method.

 When a Jakarta Query implementation targets a non-relational database, support for sorting query

results might vary from what is described above. This specification does not require support for sorting

a query result list according to a given ordering if the underlying datastore does not provide a way to

sort query results according to that ordering via its native querying capabilities.

 If a datastore does not natively provide the ability to sort query results, the Jakarta Query provider is

strongly encouraged, but not required, to sort the query results in Java before returning the results to

the client.

6.2. Union, intersect, and except

The semantics of union, intersection, and complementation of query result sets is specified by Union, intersection, and

complement above.

 These operations are part of the extended language, and so support for union, intersection, and

complementation is not required for an implementation of Jakarta Query core.

Each of these operations is treated as an infix binary operator acting on query result lists of identical shape (type) and

producing a new query result set of the same shape as the operands.

6.2.1. Union and complement

The syntax of union , union all , except , and except all is given by the rule union of the full grammar. The operands must

produce result lists of the same type. The type of the union or complement expression is the same as the type of its

operands.

6.2.2. Intersection

The syntax of intersect and intersect all is given by the rule intersection of the full grammar. The operands must

produce result lists of the same type. The type of the intersection expression is the same as the type of its operands.

6.3. Statements

Finally, there are three kinds of statement:

• select statements,

• update statements, and

• delete statements.

The clauses which can appear in a statement are given by the grammar for each kind of statement.

47

6.3.1. Select statements

A select statement, with syntax given by select_statement, returns data to the client.

In the core language, a select statement may contain one of more of the following clauses:

• select

• from

• where

• order.

A select statement is a pipeline as defined in Basic operations. The result list of the whole select statement is the same

as the result list of the last operation in the pipeline.

In the extended language, a select statement may contain, in addition, a group and/or a having clause, with syntax

specified by select_query . Each select_query is a pipeline as defined in Basic operations. A select_statement in the full

grammar may contain union, intersection, and complement operations, as defined in Union, intersect, and except.

• If the select_statement is a union or intersection , the result list of the whole select statement is the same as the result

list of the union or intersection.

• Otherwise, if the select_statement is just a select_query , result list of the whole select statement is the same as the

result list of the last operation in the pipeline.

The select clause is optional in a select statement. A query with a missing select clause is interpreted as if it had the

following single-item select clause:

select this

where this is the implicit alias.

6.3.2. Update statements

An update statement, with syntax given by update_statement, updates each record belonging to the entity type named in

the update clause which satisfies the restriction imposed by the where clause, if any.

An update statement does not have a well-defined result, but implementations typically return the number of matching

records to the client. Such functionality falls outside the scope of this specification.

 A Jakarta Query implementation which targets a non-relational database might not support conditional

updates. This specification does not require support for conditional updates if the underlying datastore

does not provide a functionally equivalent capability.[1]

6.3.3. Delete statements

A delete statement, with syntax given by delete_statement, deletes each record belonging to the entity type named in the

update clause which satisfies the restriction imposed by the where clause, if any.

A delete statement does not have a well-defined result, but implementations typically return the number of deleted

records to the client. Such functionality falls outside the scope of this specification.

 A Jakarta Query implementation which targets a non-relational database might not support conditional

deletes. This specification does not require support for conditional deletes if the underlying datastore

does not provide a functionally equivalent capability.

48

[1] Alternatively, in a non-relational database with append-only semantics — common in time-series and wide-column

databases — conditional updates might be provided, but the update operation might behave more like an insert

operation, with repeated updates to the same record not overwriting previous values.

49

Chapter 7. Syntax

The following grammars define the syntax of the Jakarta Query language, via ANTLR4-style BNF.

7.1. Core language grammar

The following grammar is the grammar for the core language.

grammar JQLCore;

statement : select_statement | update_statement | delete_statement;

select_statement : select_clause? from_clause? where_clause? orderby_clause?;
update_statement : update_clause set_clause where_clause?;
delete_statement : delete_clause where_clause?;

from_clause : 'FROM' this_implicit_variable;
this_implicit_variable : entity_name;

where_clause : 'WHERE' conditional_expression;

update_clause : 'UPDATE' entity_name;
set_clause : 'SET' update_item (',' update_item)*;
update_item : simple_path_expression '=' new_value;
new_value
 : scalar_expression
 | 'NULL'
 ;

delete_clause : 'DELETE' 'FROM' entity_name;

select_clause : 'SELECT' (select_item | select_items);
select_item
 : simple_path_expression
 | id_expression
 | aggregate_expression
 ;
select_items
 : simple_path_expression (',' simple_path_expression)+
 ;

orderby_clause : 'ORDER' 'BY' orderby_item (',' orderby_item)*;
orderby_item : orderby_expression ('ASC' | 'DESC');
orderby_expression
 : simple_path_expression
 | id_expression
 ;

conditional_expression
 // highest to lowest precedence
 : '(' conditional_expression ')'
 | null_comparison_expression
 | in_expression
 | between_expression
 | like_expression
 | comparison_expression
 | 'NOT' conditional_expression
 | conditional_expression 'AND' conditional_expression
 | conditional_expression 'OR' conditional_expression
 ;

comparison_expression : scalar_expression comparison_operator scalar_expression;
between_expression : scalar_expression 'NOT'? 'BETWEEN' scalar_expression 'AND' scalar_expression;
like_expression : scalar_expression 'NOT'? 'LIKE' escaped_pattern;

50

comparison_operator
 : '='
 | '>'
 | '>='
 | '<'
 | '<='
 | '<>'
 ;

escaped_pattern
 : literal_pattern
 ('ESCAPE' escape_character)?
 ;

in_expression : simple_path_expression 'NOT'? 'IN' in_item_list;
in_item_list : '(' in_item (',' in_item)* ')' ;
in_item : literal | enum_literal | input_parameter;

null_comparison_expression : simple_path_expression 'IS' 'NOT'? 'NULL';

scalar_expression
 // highest to lowest precedence
 : '(' scalar_expression ')'
 | primary_expression
 | ('+' | '-') scalar_expression
 | scalar_expression ('*' | '/') scalar_expression
 | scalar_expression ('+' | '-') scalar_expression
 | scalar_expression '||' scalar_expression
 ;

primary_expression
 : function_expression
 | special_expression
 | id_expression
 | simple_path_expression
 | enum_literal
 | input_parameter
 | literal
 ;

id_expression : 'ID' '(' 'THIS' ')' ;

aggregate_expression : 'COUNT' '(' 'THIS' ')';

function_expression
 : 'ABS' '(' scalar_expression ')'
 | 'LENGTH' '(' scalar_expression ')'
 | 'LOWER' '(' scalar_expression ')'
 | 'UPPER' '(' scalar_expression ')'
 | 'LEFT' '(' scalar_expression ',' scalar_expression ')'
 | 'RIGHT' '(' scalar_expression ',' scalar_expression ')'
 ;

special_expression
 : special_boolean_expression
 | special_datetime_expression
 ;

special_boolean_expression
 : 'TRUE'
 | 'FALSE'
 ;

special_datetime_expression
 : 'LOCAL' 'DATE'
 | 'LOCAL' 'TIME'

51

 | 'LOCAL' 'DATETIME'
 ;

simple_path_expression : IDENTIFIER ('.' IDENTIFIER)*;

entity_name : IDENTIFIER; // no ambiguity

enum_literal : IDENTIFIER ('.' IDENTIFIER)*; // ambiguity with simple_path_expression resolvable semantically

input_parameter : ':' IDENTIFIER | '?' INTEGER;

literal : string_literal | numeric_literal;

numeric_literal : INTEGER | DOUBLE;

string_literal : STRING;

literal_pattern : STRING;

escape_character : CHARACTER;

7.2. Full language grammar

This much longer grammar is the grammar for the full language.

grammar JQLFull;

statement
 : select_statement
 | update_statement
 | delete_statement
 ;

select_statement
 : union
 ;

union
 : intersection
 | union
 ('UNION' 'ALL'? | 'EXCEPT' 'ALL'?)
 intersection
 ;

intersection
 : query_expression
 | intersection
 'INTERSECT' 'ALL'?
 query_expression
 ;

query_expression
 : select_query
 | '(' union ')'
 ;

select_query
 : select_clause?
 from_clause
 where_clause?
 groupby_clause?
 having_clause?
 orderby_clause?
 ;

52

update_statement
 : update_clause set_clause where_clause?
 ;

delete_statement
 : delete_clause where_clause?
 ;

from_clause
 : 'FROM' (this_implicit_variable | identification_variable_declarations)
 ;

this_implicit_variable
 : entity_name
 ;

identification_variable_declarations
 : identification_variable_declaration
 (',' identification_variable_declaration)*
 ;

identification_variable_declaration
 : range_variable_declaration
 (join | fetch_join)*
 ;

range_variable_declaration
 : entity_name
 'AS'? identification_variable
 ;

join
 : range_join
 | path_join
 ;

range_join
 : join_spec range_variable_declaration
 join_condition?
 ;

path_join
 : join_spec join_association_expression
 'AS'? identification_variable
 join_condition?
 ;

fetch_join
 : join_spec 'FETCH' join_association_expression
 ;

join_spec
 : ('INNER' | 'LEFT' 'OUTER'?)?
 'JOIN'
 ;

join_condition
 : 'ON' conditional_expression
 ;

join_association_expression
 : joinable_path_expression
 | treated_joinable_path_expression
 ;

treated_joinable_path_expression
 : 'TREAT' '(' joinable_path_expression 'AS' subtype ')'

53

 ;

joinable_path_expression
 // Note that unlike in derived_path_expression,
 // JPQL does not allow use of TREAT() here
 // TODO: Should we allow KEY(), VALUE() here?
 : (identification_variable '.')?
 (structure_field '.')*
 (entity_field | collection_field)
 ;

map_entry_identification_variable
 : 'ENTRY' '(' identification_variable ')'
 ;

map_keyvalue_identification_variable
 : 'KEY' '(' identification_variable ')'
 | 'VALUE' '(' identification_variable ')'
 ;

single_valued_path_expression
 : atomic_valued_path_expression
 | embeddable_valued_path_expression
 | entity_valued_path_expression
 | map_entry_identification_variable
 ;

atomic_valued_path_expression
 : (root_entity_expression '.')?
 (structure_field '.')*
 atomic_field
 | map_keyvalue_identification_variable
 ;

embeddable_valued_path_expression
 : (root_entity_expression '.')?
 (structure_field '.')*
 embedded_field
 | map_keyvalue_identification_variable
 ;

entity_valued_path_expression
 : (root_entity_expression '.')?
 (structure_field '.')*
 entity_field
 | identification_variable
 | map_keyvalue_identification_variable
 ;

collection_valued_path_expression
 : (root_entity_expression '.')?
 (structure_field '.')*
 collection_field
 ;

root_entity_expression
 : identification_variable
 | map_keyvalue_identification_variable
 | treated_entity_path_expression
 ;

treated_entity_path_expression
 : 'TREAT' '(' entity_valued_path_expression 'AS' subtype ')'
 ;

update_clause
 // TODO: Could be:

54

 // 'UPDATE' (this_implicit_variable | range_variable_declaration)
 : 'UPDATE' entity_name
 ('AS'? identification_variable)?
 ;

set_clause
 : 'SET' update_item (',' update_item)*
 ;

update_item
 : updatable_path_expression '=' new_value
 ;

updatable_path_expression
 // must resolve to entity or atomic type (cannot have implicit joins)
 : (identification_variable '.')?
 (embedded_field '.')*
 (atomic_field | entity_field)
 ;

new_value
 : scalar_expression
 | simple_entity_expression
 | 'NULL';

simple_entity_expression
 : identification_variable
 | single_valued_input_parameter
 ;

delete_clause
 : 'DELETE' 'FROM' entity_name
 ('AS'? identification_variable)?
 ;

select_clause
 : 'SELECT' 'DISTINCT'?
 select_item (',' select_item)*
 ;

select_item
 : select_expression
 ('AS'? result_variable)?
 ;

select_expression
 : single_valued_path_expression // embeddables are allowed
 | scalar_expression
 | aggregate_expression
 | constructor_expression
 ;

constructor_expression
 : 'NEW' constructor_name
 '(' constructor_item (',' constructor_item)* ')'
 ;

constructor_item
 : single_valued_path_expression // embeddables are allowed
 | scalar_expression
 | aggregate_expression
 ;

aggregate_expression
 : ('AVG' | 'MAX' | 'MIN' | 'SUM') '(' 'DISTINCT'? atomic_valued_path_expression ')'
 | 'COUNT' '(' 'DISTINCT'? (atomic_valued_path_expression | entity_valued_path_expression) ')'
 | function_invocation;

55

where_clause
 : 'WHERE' conditional_expression
 ;

groupby_clause
 : 'GROUP' 'BY'
 groupby_item (',' groupby_item)*
 ;

groupby_item
 : atomic_valued_path_expression
 | entity_valued_path_expression
 ;

having_clause
 : 'HAVING' conditional_expression
 ;

orderby_clause
 : 'ORDER' 'BY'
 orderby_item (',' orderby_item)*
 ;

orderby_item
 : orderby_expression
 ('ASC' | 'DESC')?
 ('NULLS' ('FIRST' | 'LAST'))?
 ;

orderby_expression
 : atomic_valued_path_expression
 | result_variable
 | scalar_expression
 ;

subquery_expression
 : '(' subquery ')'
 ;

subquery
 : simple_select_clause
 subquery_from_clause
 where_clause?
 groupby_clause?
 having_clause?
 ;

subquery_from_clause
 : 'FROM' subselect_identification_variable_declaration
 (',' subselect_identification_variable_declaration)*
 ;

subselect_identification_variable_declaration
 : identification_variable_declaration
 | derived_path_expression 'AS'? identification_variable join*
 ;

derived_path_expression
 // TODO: Is support for TREAT() here really a requirement?
 // We don't allow it in joinable_path_expression
 // TODO: Should we allow KEY(), VALUE() here?
 : ((identification_variable | treated_entity_path_expression) '.')?
 (structure_field '.')*
 (entity_field | collection_field)
 ;

56

simple_select_clause
 : 'SELECT' 'DISTINCT'? simple_select_expression
 ;

simple_select_expression
 : atomic_valued_path_expression
 | entity_valued_path_expression
 | scalar_expression
 | aggregate_expression
 ;

scalar_expression
 : arithmetic_expression
 | string_expression
 | enum_expression
 | datetime_expression
 | boolean_expression
 | case_expression
 | entity_type_expression
 | entity_id_or_version_function
 ;

conditional_expression
 : conditional_term
 | conditional_expression 'OR' conditional_term
 ;

conditional_term
 : conditional_factor
 | conditional_term 'AND' conditional_factor
 ;

conditional_factor
 : 'NOT'? conditional_primary
 ;

conditional_primary
 : simple_conditional_expression
 | '(' conditional_expression ')'
 ;

simple_conditional_expression
 : comparison_expression
 | between_expression
 | in_expression
 | like_expression
 | null_comparison_expression
 | empty_collection_comparison_expression
 | collection_member_of_expression
 | exists_expression
 ;

between_expression
 : arithmetic_expression 'NOT'? 'BETWEEN' arithmetic_expression 'AND' arithmetic_expression
 | string_expression 'NOT'? 'BETWEEN' string_expression 'AND' string_expression
 | datetime_expression 'NOT'? 'BETWEEN' datetime_expression 'AND' datetime_expression
 ;

in_expression
 : (atomic_valued_path_expression | type_discriminator) // TODO: Much too restrictive
 'NOT'? 'IN'
 (in_item_list | subquery_expression | collection_valued_input_parameter)
 ;

in_item_list
 : '(' in_item (',' in_item)* ')'
 ;

57

in_item
 : literal
 | enum_literal
 | entity_type_literal
 | special_boolean_expression
 | single_valued_input_parameter
 ;

like_expression
 : string_expression
 'NOT'? 'LIKE' escaped_pattern
 ;

escaped_pattern
 : pattern_value
 ('ESCAPE' escape_character)?
 ;

pattern_value
 : literal_pattern
 | single_valued_input_parameter
 ;

null_comparison_expression
 : nullable_expression
 'IS' 'NOT'? 'NULL'
 ;

nullable_expression
 : atomic_valued_path_expression
 | entity_valued_path_expression
 | single_valued_input_parameter
 ;

empty_collection_comparison_expression
 : collection_valued_path_expression
 'IS' 'NOT'? 'EMPTY'
 ;

collection_member_of_expression
 : collection_member_element_expression
 'NOT'? 'MEMBER' 'OF'?
 collection_valued_path_expression
 ;

collection_member_element_expression
 : entity_valued_path_expression
 | atomic_valued_path_expression
 | single_valued_input_parameter
 | literal
 | enum_literal
 | special_boolean_expression
 ;

exists_expression
 : 'NOT'? 'EXISTS'
 subquery_expression
 ;

all_or_any_expression
 : ('ALL' | 'ANY' | 'SOME')
 subquery_expression
 ;

comparison_expression
 : string_expression comparison_operator (string_expression | all_or_any_expression)

58

 | boolean_expression equality_operator (boolean_expression | all_or_any_expression)
 | enum_expression equality_operator (enum_expression | all_or_any_expression)
 | datetime_expression comparison_operator (datetime_expression | all_or_any_expression)
 | entity_expression equality_operator (entity_expression | all_or_any_expression)
 | arithmetic_expression comparison_operator (arithmetic_expression | all_or_any_expression)
 | entity_id_or_version_function equality_operator single_valued_input_parameter
 | entity_type_expression equality_operator entity_type_expression
 ;

equality_operator
 : '='
 | '<>'
 ;

comparison_operator
 : '='
 | '>'
 | '>='
 | '<'
 | '<='
 | '<>'
 ;

arithmetic_expression
 : arithmetic_term
 | arithmetic_expression ('+' | '-') arithmetic_term
 ;

arithmetic_term
 : arithmetic_factor
 | arithmetic_term ('*' | '/') arithmetic_factor
 ;

arithmetic_factor
 : ('+' | '-')? arithmetic_primary
 ;

arithmetic_primary
 : atomic_valued_path_expression
 | numeric_literal
 | '(' arithmetic_expression ')'
 | single_valued_input_parameter
 | functions_returning_numerics
 | aggregate_expression
 | case_expression
 | function_invocation
 | subquery_expression
 ;

string_expression
 : atomic_valued_path_expression
 | string_literal
 | '(' string_expression ')'
 | single_valued_input_parameter
 | functions_returning_strings
 | aggregate_expression
 | case_expression
 | function_invocation
 | string_expression '||' string_expression
 | subquery_expression
 ;

datetime_expression
 : atomic_valued_path_expression
 | single_valued_input_parameter
 | functions_returning_datetime
 | special_datetime_expression

59

 | aggregate_expression
 | case_expression
 | function_invocation
 | subquery_expression
 ;

boolean_expression
 : atomic_valued_path_expression
 | special_boolean_expression
 | single_valued_input_parameter
 | case_expression
 | function_invocation
 | subquery_expression
 ;

enum_expression
 : atomic_valued_path_expression
 | enum_literal
 | single_valued_input_parameter
 | case_expression
 | subquery_expression
 ;

entity_expression
 : entity_valued_path_expression
 | single_valued_input_parameter
 ;

entity_type_expression
 : type_discriminator
 | entity_type_literal
 | single_valued_input_parameter
 ;

type_discriminator
 : 'TYPE' '(' entity_valued_path_expression ')'
 ;

functions_returning_numerics
 : 'LENGTH' '(' string_expression ')'
 | 'LOCATE' '(' string_expression ',' string_expression (',' arithmetic_expression)? ')'
 | 'ABS' '(' arithmetic_expression ')'
 | 'CEILING' '(' arithmetic_expression ')'
 | 'EXP' '(' arithmetic_expression ')'
 | 'FLOOR' '(' arithmetic_expression ')'
 | 'LN' '(' arithmetic_expression ')'
 | 'SIGN' '(' arithmetic_expression ')'
 | 'SQRT' '(' arithmetic_expression ')'
 | 'MOD' '(' arithmetic_expression',' arithmetic_expression ')'
 | 'POWER' '(' arithmetic_expression',' arithmetic_expression ')'
 | 'ROUND' '(' arithmetic_expression',' arithmetic_expression ')'
 | 'SIZE' '(' collection_valued_path_expression ')'
 | 'INDEX' '(' identification_variable ')'
 | 'EXTRACT' '(' datetime_field 'FROM' datetime_expression ')'
 | 'CAST' '(' string_expression 'AS' ('INTEGER' | 'LONG' | 'FLOAT' | 'DOUBLE') ')'
 ;

functions_returning_datetime
 : 'EXTRACT' '(' datetime_part 'FROM' datetime_expression ')'
 ;

functions_returning_strings
 : 'CONCAT' '(' string_expression ',' string_expression (',' string_expression)* ')'
 | 'SUBSTRING' '(' string_expression ',' arithmetic_expression (',' arithmetic_expression)? ')'
 | 'TRIM' '(' (trim_specification? trim_character? 'FROM')? string_expression ')'
 | 'LOWER' '(' string_expression ')'
 | 'UPPER' '(' string_expression ')'

60

 | 'CAST' '(' scalar_expression 'AS' 'STRING' ')'
 ;

trim_specification
 : 'LEADING'
 | 'TRAILING'
 | 'BOTH'
 ;

function_invocation
 : 'FUNCTION' '(' function_name (',' scalar_expression)* ')'
 ;

special_boolean_expression
 : 'TRUE'
 | 'FALSE'
 ;

special_datetime_expression
 : 'LOCAL' 'DATE'
 | 'LOCAL' 'TIME'
 | 'LOCAL' 'DATETIME'
 ;

entity_id_or_version_function
 : 'ID' '(' entity_valued_path_expression ')'
 | 'VERSION' '(' entity_valued_path_expression ')'
 ;

case_expression
 : general_case_expression
 | simple_case_expression
 | coalesce_expression
 | nullif_expression
 ;

general_case_expression
 : 'CASE' when_clause+
 ('ELSE' scalar_expression)?
 'END'
 ;

when_clause
 : 'WHEN' conditional_expression
 'THEN' scalar_expression
 ;

simple_case_expression
 : 'CASE' case_operand simple_when_clause+
 ('ELSE' scalar_expression)?
 'END'
 ;

case_operand
 : atomic_valued_path_expression
 | type_discriminator
 ;

simple_when_clause
 : 'WHEN' scalar_expression
 'THEN' scalar_expression
 ;

coalesce_expression
 : 'COALESCE' '(' scalar_expression (',' scalar_expression)+ ')'
 ;

61

nullif_expression
 : 'NULLIF' '(' scalar_expression ',' scalar_expression ')'
 ;

identification_variable : IDENTIFIER;

result_variable : IDENTIFIER;

entity_field
 : IDENTIFIER
 ;

embedded_field
 : IDENTIFIER
 ;

atomic_field
 : IDENTIFIER
 ;

collection_field
 : IDENTIFIER
 ;

structure_field
 : embedded_field
 | entity_field
 ;

datetime_field
 : IDENTIFIER
 ;

datetime_part
 : IDENTIFIER
 ;

entity_name : IDENTIFIER;

subtype : entity_name;

entity_type_literal : entity_name;

constructor_name : IDENTIFIER;

function_name : IDENTIFIER;

input_parameter : ':' IDENTIFIER | '?' INTEGER;

collection_valued_input_parameter : input_parameter;

single_valued_input_parameter : input_parameter;

literal : string_literal | numeric_literal;

numeric_literal : INTEGER | DOUBLE;

string_literal : STRING;

enum_literal : IDENTIFIER ('.' IDENTIFIER)*;

62

trim_character : CHARACTER;

escape_character : CHARACTER;

literal_pattern : STRING;

63

	Jakarta Query
	Table of Contents
	Copyright
	Eclipse Foundation Specification License - v1.1
	Disclaimers

	Chapter 1. Introduction
	1.1. Object-oriented query languages
	1.2. Historical background
	1.3. Goals
	1.4. Non-goals
	1.5. Conventions
	1.6. Jakarta Query Project Team
	1.6.1. Project Leads
	1.6.2. Committers
	1.6.3. Contributors

	Chapter 2. Type system
	2.1. Atomic values
	2.2. Collections
	2.3. Structures and records
	2.4. Entities and embeddable types
	2.4.1. Entity type inheritance

	2.5. Circularity
	2.6. Databases
	2.7. Mapping to Java
	2.8. Paths

	Chapter 3. Basic operations
	3.1. The root entity
	3.2. Joins
	3.2.1. Joins to named entities
	3.2.2. Joins to nested entities or collections
	3.2.3. Left joins
	3.2.4. Fetch joins

	3.3. Restriction
	3.3.1. Restriction and aggregation

	3.4. Aggregation
	3.5. Projection
	3.5.1. Projection and aggregation

	3.6. Duplicate elimination
	3.7. Ordering
	3.8. Union, intersection, and complement
	3.9. Subqueries

	Chapter 4. Lexical structure
	4.1. Identifiers and keywords
	4.2. Parameters
	4.3. Operators and punctuation
	4.4. String literals
	4.5. Numeric literals
	4.6. Single-character literals
	4.7. Whitespace

	Chapter 5. Expressions
	5.1. Value expressions
	5.1.1. Literal expressions
	5.1.2. Special values
	5.1.3. Parameter expressions
	5.1.4. Enum literals
	5.1.5. Entity type literals
	5.1.6. Path expressions
	5.1.7. Identifier and version expressions
	5.1.8. Function calls
	5.1.9. Map keys and values
	5.1.10. Types and typecasts
	5.1.11. Aggregate functions calls
	5.1.12. Case expressions
	5.1.13. Operator expressions
	5.1.14. Subquery expressions
	5.1.15. Numeric types and numeric type promotion

	5.2. Conditional expressions
	5.2.1. Null comparisons
	5.2.2. In expressions
	5.2.3. Between expressions
	5.2.4. Like expressions
	5.2.5. Equality and inequality operators
	5.2.6. Quantified conditional expressions

	5.3. Natural order
	5.4. Logical operators

	Chapter 6. Statements and clauses
	6.1. Clauses
	6.1.1. From clause
	6.1.2. Join clauses
	6.1.3. Where clause
	6.1.4. Group clause
	6.1.5. Having clause
	6.1.6. Select clause
	6.1.7. Set clause
	6.1.8. Order clause

	6.2. Union, intersect, and except
	6.2.1. Union and complement
	6.2.2. Intersection

	6.3. Statements
	6.3.1. Select statements
	6.3.2. Update statements
	6.3.3. Delete statements

	Chapter 7. Syntax
	7.1. Core language grammar
	7.2. Full language grammar

