JAKARTA EE

Jakarta Server Pages

Jakarta Server Pages Team, https://projects.eclipse.org/projects/ee4j.jsp

4.1-M1, October 16, 2025: DRAFT

Table of Contents

Eclipse Foundation Specification License - v1.1 ...ttt 3
DISCIAIIMETS . ..ttt e 5
Jakarta Server Pages Specification, Version 4.1o 7

= (P 7
Who Should Read This DOCUMENT.ttt ieaaas 7
Organization of This DOCUIMENT.ttt 7
HIStOTICal NOTe . . o oottt e et 7

OV BTV o ottt e 8
The Jakarta Server Pages TeChnology ...t 8
BasiC COMCEPLS . o v vttt ettt e 9
Users of Jakarta Server Pages.ttt e 11

o5 1 15

1. Core Syntax and SEMANTICSottt 17

11 WhatIsa JSP Pageottt e 17
1.1.1. Web Containers and Web Components. ...ttt 17
1.1.2. Generating HTML.o it it 17
1.1.3. Generating XMLottt e e 17
1.1.4. Translation and Execution Phases............. .o i, 18
1.1.5. Validating JSP Pages. . .. oottt e 18
1.1.6. EVents IN JSP Pages. . ..o oottt e 19
1.1.7.JSP Configuration Informationc i 19
1.1.8. Naming Conventions for JSPFilesttt 19
1.1.9. Compiling JSP Pages.ottt 20
1.1.10. Debugging JSP Pagesottt e 20
1.2. Web APPLCAtiONS . . . oottt e 20
1.2.1. Relative URL Specificationsttt 21
1.3. Syntactic Elements of a JSP Page 22
1.3.1. Elements and Template Data.oooiiiiiiiiiiiiiiiiiiiii e 22
1.3.2. Element SYNtax.ttt s 22
1.33. Startand ENAd Tagso oo vttt e 23
1.3.4. EmMpty EIemMents e 23
1.3.5. Attribute Values ot e 24
1.3.6. The jsp:attribute, jsp:body and jsp:element Elements.ot 24
1.3.7. Valid Names for Actions and Attributesoo it 25
1.3.8. White SPacCe . ..ot e 25
1.3.9.JSP DOCUIMEINIES. . . o oottt ettt ettt e ittt ettt 26
1.3.10. JSP SyNtax GraIIMaATottt ettt ettt ittt 27

1.4. Error Handlingo e e 39

1.4.1. Translation Time Processing EITOTSttt 39

1.4.2. Request Time Processing EXTOrS.ttt ettt iiiee e eiiaee e 40
1.4.3. USING JSPS @S ErTOr Pagesottt et et 40
1.5, COMUIMEIITS .ottt et e it it it it it et e e it e 41
1.5.1. Comments in JSP Pages in Standard Syntax.oouiiiineiiinneennnnnnnn 41
1.5.2. Comments in JSP DOCUMENTS.o v ettt ettt et et et ie et eiiee e eiaeeen 42
1.6. Quoting and Escape CONVENTIONS.ttt ettt e eee e eiee e eiaae e 42
1.7. Overall Semantics 0f @ JSP Pageottt e 44
18, O CtS .ttt et e e 45
1.8.1. Objects and Variablest e e 45
1.8.2. ODjJECtS AN SCOPES . .+« vttt ettt ettt e e et e e e 45
1.8.3. IMPLICIt ODJECtS . . oo ettt e e e e e 46
1.8.4. The pageContext ODJECTttt ettt eiiaae e 47
1.9. Template TeXt SEMANTICSottt ettt e e e i 48
110, DIrECtIVES . . ettt ettt e e 48
1.10.1. The page DIrECHIVEttt ettt et et et e it 48
1.10.2. The taglib DIreCtiVeottt e ettt 53
1.10.3. The include DIreCtiVeouuuumni et 55
1.10.4. Implicit INCIUAeS.ot e e e 55
1.10.5. Including Data in JSP Pages v vttt et e 56
1.10.6. Additional Directives for Tag Files.t 57
111 EL El@MEIES. . oottt ettt ettt et e e e e 57
1.12. Scripting EI@IMENTS. . . . oottt ettt ettt e e ettt e e 57
1.12.1. DeClarations. . . .ottt e 58

O 007 T oh 1 1 L] € AP 59
1.12.3 EXPIESSIONS & ..o vt vttt e ettt e e e e et e e e ettt e e e et e 60
130 ACHIONIS ottt 60
1.14. Tag Attribute Interpretation SemanticS......... ...t itiinr i, 61
1.14.1. Request Time Attribute Values ...t et 61
1.14.2. TYPE COMVEISIONS .+« .ot ettt et ettt e e e e et e e e et e et e ie e e iea e 62

2. EXPression LangUagettt ettt ettt e e e e e 65
2.1. Syntax of Expressions in JSP Pages: ${} vs #{}.o 65
2.2. Expressions and Template TexXtoouint it e e 65
2.3. Expressions and Attribute Values e 66
2.3.1.Static Atributeo e 66
2.3.2. Dynamic AttribULeo 66
2.33.Deferred Value e 67
2.34. Deferred Method e 67
2.3.5. Dynamic Attribute or Deferred EXpression.couuiiiiiiiinneeennneennn. 67
2.3.6. Examples of Using ${} and #{}. oo oo e 67

2.4, IMPLICIt ODJECES. . o v vttt e 68

2.5. Deactivating EL Evaluationttt e e 69

2.6. Disabling Scripting Elementsttt i e e 69
2.7.UnKnown EL Identifiers e 69
2.8. Invalid EL EXPIreSSIONS . .« v v ittt ettt ettt e e e e i e e et iee i 69
2.9. Errors, Warnings, Default Values. oo e 70
2.10. Resolution of Variables and their Properties ...ttt iiinnnnn 70
200 FUNCHONS . o oottt ettt e e e e e e e e 72
2.11.1. INVOCAtION SYNEAK. « . o vt ettt ettt et e e e e e e e et 72
2.11.2. Tag Library Descriptor Informationc..oui it 72

2. 0.3 ERAIMDLe oo 73
2104, SeIMANTICS . . o oottt 73

3. JSP CONIgUIAtION. . . oottt ettt ettt et e e e e e 75
3.1.JSP Configuration Information inweb.xml........ o i 75
3. 2. Tagli D VAP . oottt 75
3.3. JSP PrOPerty GIOUPS . .ttt et ettt e e et e e et e e ettt 75
3.3. 1. JSP Property GrOUPS. -« « ot vv e te ettt et e et et e e e e e 76
3.3.2. Deactivating EL Evaluationt e 76
3.3.3. Disabling Scripting Elements.ttt i 78
3.3.4. Unknown EL Identifiersoou e e e 78
3.3.5. Declaring Page ENCOAINGSottt et 79
3.3.6. Defining Implicit InCludesot e e e 80
3.3.7.Denoting XML DOCUIMEINTSottt ettt ettt ettt iee e iiee e 81
3.3.8. Deferred Syntax (character sequence #{)..........ouuuiiiiiiinn i 81
3.3.9. Removing Whitespaces from Template TeXt..........ooiiiiiineiiiiineiinnnnn 81
3.3.10. Declaring Default Content TyPeottt et iiiaee e 82
3.3.11. Setting Default Buffer Size........ ... e 82
3.3.12. Raising Errors for Undeclared Namespacesouieiiineeimnneennnnnnnnn 83
3.4. Backwards Compatibility with JSP 2.0o 83
4. Internationalization ISSUESottt e 85
4.1. Page Character ENCOAINGottt et iiaae e 85
4.1.1. Standard SYNTAK . .. oo vttt et e 85
412, XML SYMEAK .« ettt et e e e 86
4.2. Response Character ENCOAING.ottt it e eiiaae e 87
4.3. Request Character ENCOAINGottt et eiiaae e 87
4.4. XML View Character ENCOAING.ottt it 88
4.5. Delivering Localized CONtENToottti e i et et iiee e iiiaae e 88
5. Standard ACHIONSo vt e 89
5. L. ISP PIUSEB AN . . .o 89
RIS 1] ¢ T 0] 01 P 93
RO T IS 1Y ¢ B 20 () 01 PP 95

5. ISP U E> . . oot e 96

5., I SPOTWATA> . . oo e 97

RS TN 151 ¢ 14 0 T2 U - 1 44 P 98
5.7, ISP At I ULE> . . o oo e 99
5.8, ISP DOy > .o e 101
5.0, IS PIIIVOKE> oo e 102
5,00 BaASIC USA. . o v vttt ettt et e e e e 102
5.9.2. Storing Fragment OULPULttt ettt e ie e ieiee s 102
5.9.3. Providing a Fragment Accessto Variables........... ..., 103
5.10. <JSPiAOBOAY>. . ..ottt e 104
5.1, <SPl . 105
TN O 13 8 1= PP 106
518, P OU DU ottt e 107
5.14. Other Standard ACHIONSottt e 111
6. JSP DOCUIMEINITS . . . oottt et et e e e et et e e e 113
6.1. Overview of JSP Documents and of XML VIeWS.ttt 113
6.2. JSP DOCUINIEIILS . . . oottt ettt et et et et et ettt et et 114
6.2.1. Identifying JSP DOCUIMENTS.o\ttt e et e e 115
6.2.2. Overview of Syntax of JSP DOCUMENTSootuiritii i 115
6.2.3. Semantic Model 116
6.2.4. JSP Document Validationiiuuiiit i et e 117
6.3. Syntactic Elements in JSP DOCUMENTS.ottt eiiiae e e 117
6.3.1. Namespaces, Standard Actions, and Tag Librariescooiiiiiiooa... 117
6.3.2. The JSpiroot Elemento o e e e 118
6.3.3. The jsp:output Element.t i i e 119
6.3.4. The jsp:directive.page Element.ttt it 119
6.3.5. The jsp:directive.include Element ittt 119
6.3.6. Additional Directive Elementsin Tag Files, 120
6.3.7. Scripting Elements.t 120
6.3.8. Other Standard ACHONS.ttt i 121
6.3.9. Template CONteNt.ttt ettt 121
6.3.10. Dynamic Template CONtent.ouuuirt et eennns 121
6.4. Examples of JSP DOCUIMENTSttt et i et iiiaeeens 122
6.4.1. Example: A Simple JSPDocumentoouuinitiiie it 122
6.4.2. Example: Generating Namespace-aware Documents................cooieeeen... 123
6.4.3. Example: Generating non-XML documents.c.c.iiiiiiinnneennnnennnn. 123
6.4.4. Example: Using Custom Actionsand Tag Files, 124
6.5. Possible Future Directions for JSPdocumentscoiiiiiiniiiinneennnennn 126
6.5.1. Generating XML Content Natively......... ... 126
6.5.2. Schema and XInclude SUPPOTtottt e e 126

7. Tag EXEBINSIONS & o ..ttt ettt ettt e e e e e e e 127

72 T 54 oY L0 (s (o) o 127

L. GOALS vttt e 128

7 O 0)= i V4 (= 128
7.1.3. Classic Tag Handlersottt e e 129
7.1.4. Simple Examples of Classic Tag Handlersc.cooiiiiiiiiiiiiiinnneennn. 129
7.1.5.Simple Tag Handlers oot e e e 131
706, JSP FragImentsot e 132
7.1.7. Simple Examples of Simple Tag Handlersottt 132
7.1.8. Attributes With Dynamic Namesuitttiie it 133
7.1.9. EVENt LISTENEIS . . oo vttt ettt et ettt 134
7.1.10. JSPId AttriDUte. . . . oot 134
7.1.11. ReSOUICe INJECTION . . . oo vttt ettt ettt e et e e e e e 134
7.2. Tag LIDraries . . o oottt e e e 135
7.2.1. Packaged Tag Libraries.ouuuntt i e 135
7.2.2. Location Of Java ClasSesottt 135
7.2.3. Tag Library DIreCtiveottt i et 135
7.3. The Tag Library DesCriptor c.. ettt ettt e ie e i e iiiaeeans 136
7.3.1. Identifying Tag Library DeSCriptorsouuuietttiine e iiineeeinneeennns 136
7.3.2. TLD Resource Path. e 137
7.3.3. Taglib Mapinweb.xml 137
7.3.4. Implicit Map Entries from TLDS oot 138
7.3.5. Implicit Map Entries from the Container.c.cooiiiiiiiinniiinnneennn. 138
7.3.6. Determining the TLD Resource Path.......... i, 138
7.3.7. Translation-Time Class Loader........ ...ttt 140
7.3.8. Assembling a Web Application...........oouiiiiiniiiii it 140
7.3.9. Well-KNOWN URIS . . . oo vttt 140
7.3.10. Tag and Tag Library Extension Elements., 140
7.4.Valldation. . . .o ot e 143
7.4.1. Translation-Time MechaniSms ...t i 144
7.4.2. Request-Time EITOTSottt et e 145
7.5. Conventions and Other ISSUESt et 145
7.5.1. How to Define New Implicit Objectsot e eeens 145
7.5.2. Access to Vendor-Specific information.......... ... i i i 145
7.5.3. Customizing a Tag Library.ot it 146

8. LA FIleS . . ettt e e 147
T B 177 74 1= 147
8.2. Syntax Of Tag Fileso e e 147
8.3.Semantics Of Tag Files. e e e 147
8.4. Packaging Tag Filest e e e 149
8.4.1.Location Of Tag FIleSottt e it e 149
8.4.2. Packaging in @ JARot t 150

8.4.3. Packaging Directly in a Web Application............c.cooiiiiiiiiiiiiiiinnnnnnn.. 150

8.4.4. Packaging as Precompiled Tag Handlerscoiiiiiiniiiiinnnennnn... 152

8.5. Tag File DIreCHIVES . . o oottt ettt ettt et e e e et et iiae e 152
8.5.1. The tag DIreCtiVe. . . . oottt ettt ettt e e et e e et e ittt 152
8.5.2. The attribute DIrectiveot e e 155
8.5.3. The variable Directive.ottt e 156

8.6. Tag Files IN XML SYINTaX . . . oo vttt ettt ettt et et e e et ie et iiee e eiaaeeens 158

8.7. XML View of a Tag Fileo e e e eees 159

8.8. IMPLICIt OB CES. . . ottt ettt e e e 159

8.9. Variable Synchronizationt i e 160
8.9.1. Synchronization POINES.ttt e i e 160
8.9.2. Synchronization EXamplesot 161

TR0 1 010 4 165

9.1. OVerall StrUCTUTEottt e e e i 165
9.1.1. Valid JSP Paget 165
9.1.2. RESEIVEd NAIMIESttt ettt e et e 165
9.1.3. Implementation Flexibilityttt i 165

9.2. Declarations SECHIONttt e e 166

9.3. Initialization SECHIONottt e 166

9.4, MaAIN SECHIOML . . . vttt et e et e e e 166
9.4.1. Template Data.coot ettt et et e e 167
0.4, 2. SCTI P TS, . ettt e 167
0.4.3. EXPIESSIONIS & o vttt ettt et ettt et e et e e e e e e e e 167
044, ACHIONIS . oottt e 167

10, XML VIW ottt e e 169

10.1. XML View of a JSP Document, JSP Pageor TagFile............ ...t 169
10.1.1. JSP Documents and Tag Files in XML Syntaxc.c.oiiiiiiinnneennnnnennnn. 169
10.1.2. JSP Pages or Tag Files in JSP Syntax.couuiniiiiiin it 169
T10.1.3. JSP COMIMENTSottt ettt et et et e ettt et e e et 170
10.1.4. The page DireCtiVeottt e e et 170
10.1.5. The taglib DIreCtiVeottt e e e et e 171
10.1.6. The include DIrectiveoiiiiiiiiii i e 171
10.1.7. DeClarations.o vttt 171
10.1.8. SIS, . ettt 172
10.1.9. EXPIESSIONS & o vttt ettt et e ettt et et e e e e e e e e 172
10.1.10. Standard and Custom ACHIONS.o vttt ittt 172
10.1.11. Request-Time Attribute EXpressions.uietitinn e, 172
10.1.12. Template Text and XML Elements. ...ttt 173
10.1.13. The jsp:id Attributeot 173
10.1.14. The tag DITeCHIVEottt ettt e e e et e et 174
10.1.15. The attribute DIrectiveottt e 174

10.1.16. The variable DireCtiVeo vttt e e e e e e e et e et e 174

10.2. Validating an XML View 0f @ JSP Pageo oottt it es 174

10.3. BRI PIES .« .ottt e 175
10.3. 1. AJSP DOCUIMENT . ..ottt e e e e e ettt e it 175
10.3.2. AJSP Page and its Corresponding XML VIeWc.oiiiiiiinninnnennnn. 175
10.3.3. Clearing Out Default NamespaceonIncludeccooiiiiiiiinnoan... 176
10.3.4. Taglib Direcive Adds to Global Namespace...........c.c.coviiiiiiiniiiinnnennnn. 177
10.3.5. Collective Application of Inclusion Semanticsccoiiiiiiiiinneenn.. 177

e o 179
I N S0 0 V0 1= PP 181

11.1.JSP Page MOdeL.o e 181
11.1.1. Protocol Seen by the Web Server. ...t 181

11.2. JSP Page Implementation Classouuuiurintetin it iinneeanns 182
/200 R N = 0) ¢ = o1 183
11.2.2. Request and Response Parametersouuieittinneeinneeennnneennn. 184
11.2.3. Omitting the extends Attribute. ...t i 184
11.2.4. Using the extends Attribute. i e 186

113, BUL OTIN g . oot e e 187

11.4. Precompilation.oouu ittt e 188
11.4.1. Request Parameter Names.ottt i e et ie i 188
11.4.2. Precompilation Protocol.ttt e e 188

11.5. Debugging REQUITEMENTS\ttt ettt et iie e iiaeeans 188
11.5.1. Line Number Mapping Guidelines.iiiiiiint it 189

e o 193
Appendix A: Packaging JSP Pagesttt e 195

AT AVery SImple JSP Paget 195

A.2. The JSP Page Packaged as SourceinaWARFile 195

A.3. The Servlet for the Compiled JSP Page.cooimiiii it 195

A.4. The Web Application DesCriptorottt et e 197

A.5. The WAR for the Compiled JSPPage. ..ottt i 197

Appendix B: Page Encoding Detectionooiiiiriii i e 199
B.1. Detection Algorithm for JSP pages.ottt e e e 199
B.2. Detection Algorithm for Tag Files ...t e e es 200

APPENdIX C: Chamges . ..ottt ittt et et e e e e 203

C.1. Changes between JSP 4.1 and JSP 4.0ttt e e 203

C.2. Changes between JSP 4.0 and JSP 3.1 ittt e e 203

C.3. Changes between JSP 3.1 and JSP 3.0ttt e e 203

C.4. Changes between JSP 3.0 and JSR 245.ottt i e 204

APPENAIX D GlOSSATY . . .ottt e ettt e e e 205

Specification: Jakarta Server Pages
Version: 4.1-M1
Status: DRAFT

Release: October 16, 2025

Copyright (c) 2018, 2025 Eclipse Foundation.

Eclipse Foundation Specification
License - v1.1

By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked or incorporated by reference, you (the licensee) agree that you have read,
understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

* link or URL to the original Eclipse Foundation document.

* All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation AISBL [url to this license] "

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation AISBL. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document].”

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND TO THE EXTENT PERMITTED BY APPLICABLE LAW
THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION AISBL MAKE NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT
THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

TO THE EXTENT PERMITTED BY APPLICABLE LAW THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION AISBL WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation AISBL may NOT be
used in advertising or publicity pertaining to this document or its contents without specific, written
prior permission. Title to copyright in this document will at all times remain with copyright
holders.

Jakarta Server Pages Specification, Version
4.1

Copyright (c) 2013, 2025 Oracle and/or its affiliates and others. All rights reserved.

Eclipse is a registered trademark of the Eclipse Foundation. Jakarta is a trademark of the Eclipse
Foundation. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names
may be trademarks of their respective owners.

The Jakarta Server Pages Team - October 16, 2025

Comments to: jsp-dev@eclipse.org

Preface

This is the Jakarta Server Pages specification version 4.1, developed by the Jakarta Server Pages
Team under the Eclipse Foundation Specification Process. References in this document to JSP refer
to Jakarta Server Pages unless otherwise noted.

Who Should Read This Document

This document is the authoritative JSP 4.1 specification. It is intended to provide requirements for
implementations of JSP page processing, and support by web containers in web servers and
application servers. As an authoritative document, it covers material pertaining to a wide audience,
including Page Authors, Tag Library Developers, Deployers, Container Vendors, and Tool Vendors.

This document is not intended to be a user’s guide. We expect other documents will be created that
will cater to different readerships.

Organization of This Document

This document comprises of a number of Chapters and Appendices that are organized into 3 parts.
In addition, the document contains a Preface (this section) and an Overview.

Part I contains several chapters intended for all JSP Page Authors. These chapters describe the
general structure of the language, including the expression language, fragments, and scripting.

Part II contains detailed chapters on the JSP container engine and API in full detail. The
information in this part is intended for advanced JSP users.

Finally, Part III contains all the appendices.

Historical Note

Prior to version 3.0, this specification was developed under the Java Community Process as part of
JSR 245.

mailto:jsp-dev@eclipse.org

Overview

The Jakarta Server Pages Technology

Jakarta Server Pages (JSP) is the Jakarta EE technology for building applications for generating
dynamic web content, such as HTML, DHTML, XHTML, and XML. JSP technology enables the easy
authoring of web pages that create dynamic content with maximum power and flexibility.

General Concepts

JSP technology provides the means for textual specification of the creation of a dynamic response to
a request. The technology builds on the following concepts:

» Template Data
A substantial portion of most dynamic content is fixed or template content. Text or XML
fragments are typical template data. JSP technology supports natural manipulation of template
data.

» Addition of Dynamic Data
JSP technology provides a simple, yet powerful, way to add dynamic data to template data.

* Encapsulation of Functionality
JSP technology provides two related mechanisms for the encapsulation of functionality:
JavaBeans™ component architecture, and tag libraries delivering custom actions, functions,
listener classes, and validation.

* Good Tool Support
Good tool support leads to significantly improved productivity. Accordingly, JSP technology has
features that enable the creation of good authoring tools.

Careful development of these concepts yields a flexible and powerful server-side technology.

Benefits of Jakarta Server Pages Technology

JSP technology offers the following benefits:

» Write Once, Run Anywhere properties
JSP technology is platform independent in its dynamic web pages, its web servers, and its
underlying server components. JSP pages may be authored on any platform, run on any web
server or web enabled application server, and accessed from any web browser. Server
components can be built on any platform and run on any server.

* High quality tool support
Platform independence allows the JSP user to choose best-of-breed tools. Additionally, an
explicit goal of the Jakarta Server Pages design is to enable the creation of high quality portable
tools.

» Separation of Roles
JSP supports the separation of developer and author roles. Developers write components that
interact with server-side objects. Authors put static data and dynamic content together to create
presentations suited for their intended audience.
Each group may do their job without knowing the job of the other. Each role emphasizes

different abilities and, although these abilities may be present in the same individual, they most
commonly will not be. Separation allows a natural division of labor.

A subset of the developer community may be engaged in developing reusable components
intended to be used by authors.

Reuse of components and tag libraries

Jakarta Server Pages technology emphasizes the use of reusable components such as JavaBeans
components, Enterprise JavaBeans™ components, and tag libraries. These components can be
used with interactive tools for component development and page composition, yielding
considerable development time savings. In addition, they provide the cross-platform power and
flexibility of the Java programming language or other scripting languages.

Separation of dynamic and static content

Jakarta Server Pages technology enables the separation of static content in a template from
dynamic content that is inserted into the static template. This greatly simplifies the creation of
content. The separation is supported by beans specifically designed for the interaction with
server-side objects, and by the tag extension mechanism.

Support for actions, expressions, and scripting

Jakarta Server Pages technology supports scripting elements as well as actions. Actions
encapsulate useful functionality in a convenient form that can be manipulated by tools.
Expressions are used to access data. Scripts can be used to glue together this functionality in a
per-page manner.

Expressions in the EL directly express page author concepts like properties in beans and
provide more controlled access to the Web Application data. Functions defined through the tag
library mechanism can be accessed in the EL.

Page authors can write actions using the JSP technology directly. This greatly increases the ease
with which action abstractions can be created.

Web access layer for N-tier enterprise application architecture(s)

Jakarta Server Pages technology is an integral part of Jakarta EE. The Jakarta EE platform brings
Java technology to enterprise computing. One can now develop powerful middle-tier server
applications that include a web site using Jakarta Server Pages technology as a front end to
Enterprise JavaBeans components in a Jakarta EE compliant environment.

Basic Concepts

This section introduces basic concepts that will be defined formally later in the specification.

What Is a JSP Page?

A JSP page is a text-based document that describes how to process a request to create a response.
The description intermixes template data with dynamic actions and leverages the Java Platform.
JSP technology supports a number of different paradigms for authoring dynamic content. The key
features of Jakarta Server Pages are:

Standard directives
Standard actions
Scripting elements

Tag Extension mechanism

* Template content

Web Applications

The concept of a web application is inherited from the servlet specification. A web application can
be composed of:

* Java Runtime Environment(s) running on the server (required)

JSP page(s) that handle requests and generate dynamic content

Servlet(s) that handle requests and generate dynamic content

» Server-side JavaBeans components that encapsulate behavior and state

Static HTML, DHTML, XHTML, XML, and similar pages.

The Jakarta Server Pages specification inherits from the servlet specification the concepts of web
applications, servlet contexts, sessions, and requests and responses. See the Jakarta Servlet 6.2
specification for more details.

Components and Containers

JSP pages and servlet classes are collectively referred to as web components. JSP pages are delivered
to a container that provides the services indicated in the JSP Component Contract.

The separation of components from containers allows the reuse of components, with quality-of-
service features provided by the container.

Translation and Execution Steps

JSP pages are textual components. They go through two phases: a translation phase, and a request
phase. Translation is performed once per page. The request phase is performed once per request.

The JSP page is translated to create a servlet class, the JSP page implementation class, that is
instantiated at request time. The instantiated JSP page object handles requests and creates
responses.

JSP pages may be translated prior to their use, providing the web application with a servlet class
that can serve as the textual representation of the JSP page.

The translation may also be done by the JSP container at deployment time, or on-demand as the
requests reach an untranslated JSP page.

Deployment Descriptor and Global Information

The JSP pages delivered in a web application may require some JSP configuration information. This
information is delivered through JSP-specific elements in the web.xml deployment descriptor, rooted
on the <jsp-config> element. Configuration information includes <taglib> elements for mapping of
tag libraries and <jsp-property-group> elements used to provide properties of collections of JSP files.
The properties that can be indicated this way include page encoding information, EL evaluation
activation, automatic includes before and after pages, and whether scripting is enabled in a given

page.

10

Role in Jakarta EE

With a few exceptions, integration of JSP pages within Jakarta EE is inherited from the Servlet
specification since translation turns JSPs into servlets.

Users of Jakarta Server Pages

There are six classes of users that interact with Jakarta Server Pages technology. This section
describes each class of user, enumerates the technologies each must be familiar with, and identifies
which sections of this specification are most relevant to each user class. The intent is to ensure that
Jakarta Server Pages remains a practical and easy-to-use technology for each class of user, even as
the language continues to grow.

Page Authors

Page Authors are application component providers that use Jakarta Server Pages to develop the
presentation component of a web application. It is expected that they will not make use of the
scripting capabilities of Jakarta Server Pages, but rather limit their use to standard and custom
actions. Therefore, it is assumed that they know the target language, such as HTML or XML, and
basic XML concepts, but they need not know Java at all.

The following sections are most relevant to this class of user:
* Chapter 1, Core Syntax and Semantics, except for Section 1.12, “Scripting Elements” and Section
1.14, “Tag Attribute Interpretation Semantics”, which both talk about scripting
* Chapter 2, Expression Language
» Chapter 3, JSP Configuration
» Chapter 4, Internationalization Issues
* Chapter 5, Standard Actions

» Chapter 6, JSP Documents, except for sections that discuss declarations, scriptlets, expressions,
and request-time attributes

» Section 7.1.1, “Goals” and Overview of Chapter 7, Tag Extensions
» Chapter 8, Tag Files
» Appendices Appendix A, Packaging JSP Pages, Appendix C, Changes, and Appendix D, Glossary

Advanced Page Authors

Like Page Authors, Advanced Page Authors are also application component providers that use
Jakarta Server Pages to develop the presentation component of a web application. These authors
have a better understanding of XML and also know Java. Though they are recommended to avoid it
where possible, these authors do have scripting at their disposal and should be able to read and
understand JSPs that make use of scripting.

The following sections are most relevant to this class of user:
* Chapters Chapter 1, Core Syntax and Semantics, Chapter 2, Expression Language, Chapter 3, JSP

Configuration, Chapter 4, Internationalization Issues and Chapter 5, Standard Actions

11

Chapter 6, JSP Documents
» Section 9.1.1, “Valid JSP Page” and Section 9.1.2, “Reserved Names” of Chapter 9, Scripting

» Section 7.1.1, “Goals” and Section 7.1.2, “Overview” of Chapter 7, Tag Extensions

Chapter 8, Tag Files

Section 11.4, “Precompilation” of Chapter 11, JSP Container

* Appendices Appendix A, Packaging JSP Pages, Appendix C, Changes, and Appendix D, Glossary

Advanced page authors may also wish to look at the Javadoc for the jakarta.servlet.jsp package
and the XML schema for the JSP 4.1 deployment descriptor.

Tag Library Developers

Tag Library Developers are application component providers who write tag libraries that provide
increased functionality to Page Authors and Advanced Page Authors. They have an advanced
understanding of the target language, XML, and Java.

The following sections are most relevant to this class of user:

* Chapters Chapter 1, Core Syntax and Semantics, Chapter 2, Expression Language, Chapter 3, JSP
Configuration, Chapter 4, Internationalization Issues and Chapter 5, Standard Actions

Chapter 6, JSP Documents
» Section 9.1.1, “Valid JSP Page” and Section 9.1.2, “Reserved Names” of Chapter 9, Scripting

* Chapter 7, Tag Extensions

Chapter 8, Tag Files

Section 11.4, “Precompilation” of Chapter 11, JSP Container

» All Appendices

Tag library developers may also wish to look at the Javadoc for the jakarta.servlet.jsp and
jakarta.servlet.jsp.tagext packages.

Deployers

A deployer is an expert in a specific operational environment who is responsible for configuring a
web application for, and deploying the web application to, that environment. The deployer does not
need to understand the target language or Java, but must have an understanding of XML or use
tools that provide the ability to read deployment descriptors.

The following sections are most relevant to this class of user:

Section 1.1, “What Is a JSP Page” and Section 1.2, “Web Applications” of Chapter 1, Core Syntax
and Semantics

Chapter 3, JSP Configuration

Chapter 4, Internationalization Issues

Chapter 11, JSP Container

12

» All Appendices

Container Developers and Tool Vendors

Container Developers develop containers that host Jakarta Server Pages. Tool Vendors write
development tools to assist Page Authors, Advanced Page Authors, Tag Library Developers, and
Deployers. Both Container Developers and Tool Vendors must know XML and Java, and must know
all the requirements and technical details of Jakarta Server Pages. Therefore, this entire
specification is relevant to both classes of user.

13

14

Part 1

The next chapters form the core of the JSP specification. These chapters provide information for
Page authors, Tag Library developers, deployers and Container and Tool vendors.

The chapters of this part are:

* Core Syntax and Semantics
* Expression Language

* Configuration Information
* Internationalization Issues
« Standard Actions

* JSP Documents

» Tag Extensions

» Tag Files

* Scripting

* XML Views

15

16

Chapter 1. Core Syntax and Semantics

This chapter describes the core syntax and semantics for the Jakarta Server Pages 4.1 specification
(JSP 4.1).

1.1. What Is a JSP Page

A JSP page is a textual document that describes how to create a response object from a request
object for a given protocol. The processing of the JSP page may involve creating and/or using other
objects.

A JSP page defines a JSP page implementation class that implements the semantics of the JSP page.
This class implements the jakarta.servlet.Servlet interface (see Chapter 11, JSP Container for
details). At request time a request intended for the JSP page is delivered to the JSP page
implementation object for processing.

HTTP is the default protocol for requests and responses. Additional request/response protocols may
be supported by JSP containers. The default request and response objects are of type
HttpServletRequest and HttpServletResponse respectively.

1.1.1. Web Containers and Web Components

A JSP container is a system-level entity that provides life-cycle management and runtime support
for JSP pages and servlet components. Requests sent to a JSP page are delivered by the JSP container
to the appropriate JSP page implementation object. The term web container is synonymous with JSP
container.

A web component is either a servlet or a JSP page. The servlet element in a web.xml deployment
descriptor is used to describe both types of web components. JSP page components are defined
implicitly in the deployment descriptor through the use of an implicit .jsp extension mapping, or
explicitly through the use of a jsp-group element.

1.1.2. Generating HTML

A traditional application domain of the JSP technology is HTML content. The JSP specification
supports well this use through a syntax that is friendly to HTML and XML although it is not HTML-
specific; for instance, HTML comments are treated no differently than other HTML content. The JSP
Standard Tag Library has specific support for HTML though some specific custom actions.

1.1.3. Generating XML

An increasingly important application domain for JSP technology is dynamic XML content using
formats like XHTML, SVG and the Open Office format, and in applications like content publishing,
data representation and Web Services. The basic JSP machinery (JSP syntax) can be used to
generate XML content, but it is also possible to tag a JSP page as a JSP document and get additional
benefits.

A JSP document is an XML document; this means that a JSP document is a well-formed, structured

17

document and that this will be validated by the JSP container. Additionally, this structure will be
available to the JSP validation machinery, the TagLibraryValidators. A JSP document is a
namespace-aware XML document, with namespaces reflecting the structure of both content and
custom actions and with some additional care, a JSP page can reflect quite accurately the structure
of the resulting content. A JSP document can also use machinery like entity definitions.

The JSP 1.2 specification made a stronger distinction between JSP documents and non-XML JSP
pages. For instance standard actions like <jsp:expression> were only available in JSP documents.
The difference proved to be confusing and distracting and the distinction was relaxed in JSP 2.0 to
facilitate the transition from the JSP syntax to XML syntax.

1.1.4. Translation and Execution Phases

A JSP container manages two phases of a JSP page’s lifecycle. In the translation phase, the container
validates the syntactic correctness of the JSP pages and tag files and determines a JSP page
implementation class that corresponds to the JSP page. In the execution phase the container
manages one or more instances of this class in response to requests and other events.

During the translation phase the container locates or creates the JSP page implementation class that
corresponds to a given JSP page. This process is determined by the semantics of the JSP page. The
container interprets the standard directives and actions, and the custom actions referencing tag
libraries used in the page. A tag library may optionally provide a validation method acting on the
XML View of a JSP page, see below, to validate that a JSP page is correctly using the library.

A JSP container has flexibility in the details of the JSP page implementation class that can be used to
address quality-of-service—most notably performance-- issues.

During the execution phase the JSP container delivers events to the JSP page implementation object.
The container is responsible for instantiating request and response objects and invoking the
appropriate JSP page implementation object. Upon completion of processing, the response object is
received by the container for communication to the client. The details of the contract between the
JSP page implementation class and the JSP container are described in Chapter 11, JSP Container.

The translation of a JSP source page into its implementation class can occur at any time between
initial deployment of the JSP page into the JSP container and the receipt and processing of a client
request for the target JSP page. Section 1.1.9, “Compiling JSP Pages” describes how to perform the
translation phase ahead of deployment.

1.1.5. Validating JSP pages

All JSP pages, regardless of whether they are written in the traditional JSP syntax or the XML syntax
of JSP documents, have an equivalent XML document, the XML view of a JSP page, that is presented
to tag library validators in the translation phase for validation.

The structure of the custom actions in a JSP page is always exposed in the XML view. This means
that a tag library validator can check that, for instance, some custom actions are only used within
others.

The structure of the content used in a JSP page is exposed in greater or lesser detail depending on

18

whether the XML syntax or the traditional JSP syntax is used. When using XML syntax a tag library
validator can use that extra structure to, for example, check that some actions are only used with
some content, or within some content, and, using knowledge of the semantics of the custom actions,
make assertions on the generated dynamic content.

1.1.6. Events in JSP Pages
A JSP page may indicate how some events are to be handled.

As of JSP 1.2 only init and destroy events can be described in the JSP page. When the first request is
delivered to a JSP page, a jspInit() method, if present, will be called to prepare the page. Similarly,
a JSP container invokes a JSP’s jspDestroy() method to reclaim the resources used by the JSP page at
any time when a request is not being serviced. This is the same life-cycle as for servlets.

1.1.7. JSP Configuration Information

JSP pages may be extended with configuration information that is delivered in the JSP
configuration portion of the web.xml deployment descriptor of the web application. The]JSP
configuration information includes interpretation for the tag libraries used in the JSP files and
different property information for groups of JSP files. The property information includes: page
encoding information, whether the EL evaluation and the scripting machinery is enabled, and
prelude and coda automatic inclusions. The JSP configuration information can also be used to
indicate that some resources in the web application are JSP files even if they do not conform to the
default . jsp extension, and to modify the default interpretation for . jspx.

1.1.8. Naming Conventions for JSP Files

A JSP page is packaged as one or more JSP files, often in a web application, and delivered to a tool
like a JSP container, a Jakarta EE container, or an IDE. A complete JSP page may be contained in a
single file. In other cases, the top file will include other files that contain complete JSP pages, or
included segments of pages.

It is common for tools to need to differentiate JSP files from other files. In some cases, the tools also
need to differentiate between top JSP files and included segments. For example, a segment may not
be a legal JSP page and may not compile properly. Determining the type of file is also very useful
from a documentation and maintenance point of view, as people familiar with the .c and .h
convention in the C language know.

By default the extension .jsp means a top-level JSP file. We recommend, but do not mandate, to
differentiate between top-level JSP files (invoked directly by the client or dynamically included by
another page or servlet) and statically included segments so that:

* The .jsp extension is used only for files corresponding to top level JSP files, forming a JSP page
when processed.

« Statically included segments use any other extension. As included segments were called ‘JSP
fragments’ in past versions of this specification, the extension .jspf was offered as a suggestion.
This extension is still suggested for consistency reasons, despite that they are now called ‘JSP
segments’.

19

JSP documents, that is, JSP pages that are delivered as XML documents, use the extension .jspx by
default.

The jsp-property-group element of web.xml can be used to indicate that some group of files, perhaps
not using either of the extensions above, are JSP pages, and can also be used to indicate which ones
are delivered as XML documents.

1.1.9. Compiling JSP Pages

A JSP page may be compiled into its implementation class plus deployment information during
development (a JSP page can also be compiled at deployment time). In this way JSP page authoring
tools and JSP tag libraries may be used for authoring servlets. The benefits of this approach include:

* Removal of the start-up lag that occurs when a container must translate a JSP page upon receipt
of the first request.
* Reduction of the footprint needed to run a JSP container, as the Java compiler is not needed.
Compilation of a JSP page in the context of a web application provides resolution of relative URL

specifications in include directives and elsewhere, tag library references, and translation-time
actions used in custom actions.

A JSP page can also be compiled at deployment time.

1.1.9.1. JSP Page Packaging

When a JSP page implementation class depends on support classes in addition to the JSP 4.1 and
Servlet 6.2 classes, the support classes are included in the packaged WAR, as defined in the Servlet
6.2 specification, for portability across JSP containers.

Appendix A, Packaging JSP Pages contains two examples of JSP pages packaged in WARs:

1. AJSP page delivered in source form (the most common case).

2. A JSP page translated into an implementation class plus deployment information. The
deployment information indicates support classes needed and the mapping between the
original URL path to the JSP page and the URL for the JSP page implementation class for that

page.

1.1.10. Debugging JSP Pages

In the past debugging tools provided by development environments have lacked a standard format
for conveying source map information allowing the debugger of one vendor to be used with the JSP
container of another. JSP 4.1 containers must support the Jakarta Debugging Support for Other
Languages Specification. Details can be found in Section 11.5, “Debugging Requirements”.

1.2. Web Applications

A web application is a collection of resources that are available at designated URLs. A web
application is made up of some of the following:

20

* Java runtime environment(s) running in the server (required)
* JSP page(s) that handle requests and generate dynamic content

* Servlet(s) that handle requests and generate dynamic content

Server-side JavaBeans components that encapsulate behavior and state

Static HTML, DHTML, XHTML, XML and similar pages.

* Resource files used by Java classes.
Web applications are described in more detail in the Servlet 6.2 specification.

A web application contains a deployment descriptor web.xml that contains information about the
JSP pages, servlets, and other resources used in the web application. The deployment descriptor is
described in detail in the Servlet 6.2 specification.

JSP 4.1 requires that these resources be implicitly associated with and accessible through a unique
ServletContext instance available as the implicit application object (see Section 1.8, “Objects”).

The application to which a JSP page belongs is reflected in the application object, and has impact on
the semantics of the following elements:

The include directive (see Section 1.10.3, “The include Directive”).

The taglib directive (see Section 1.10.2, “The taglib Directive”).
* The jsp:include action element (see Section 5.4, “<jsp:include>”).

» The jsp:forward action (seeSection 5.5, “<jsp:forward>").

JSP 4.1 supports portable packaging and deployment of web applications through the Servlet 6.2
specification. The Jakarta Server Pages specification inherits from the servlet specification the
concepts of applications, ServletContexts, Sessions, Requests and Responses.

1.2.1. Relative URL Specifications

Elements may use relative URL specifications, called URI paths in the Servlet 6.2 specification.
These paths are as described in RFC 3986. We refer to the path part of that specification, not the
scheme, nor authority parts. Some examples are:

* A context-relative path is a path that starts with a slash (/). It is to be interpreted as relative to
the application to which the JSP page or tag file belongs. That is, its ServletContext object
provides the base context URL.

» A page relative path is a path that does not start with a slash (/). It is to be interpreted as relative
to the current JSP page, or the current JSP file or tag file, depending on where the path is being
used. For an include directive (see Section 1.10.3, “The include Directive”) where the path is used
in a file attribute, the interpretation is relative to the JSP file or tag file. For a jsp:include action
(see Section 5.4, “<jsp:include>”) where the path is used in a page attribute, the interpretation is
relative to the JSP page. In both cases the current page or file is denoted by some path starting
with / that is then modified by the new specification to produce a path starting with /. The new
path is interpreted through the ServletContext object. See Section 1.10.5, “Including Data in JSP
Pages” for exact details on this interpretation.

21

The JSP specification uniformly interprets paths in the context of the web container where the JSP
page is deployed. The specification goes through a mapping translation. The semantics outlined
here apply to the translation-time phase and to the request-time phase.

1.3. Syntactic Elements of a JSP Page

This section describes the basic syntax rules of JSP pages.

1.3.1. Elements and Template Data

A JSP page has elements and template data. An element is an instance of an element type known to
the JSP container. Template data is everything else; that is, anything that the JSP translator does not
know about.

The type of an element describes its syntax and its semantics. If the element has attributes, the type
describes the attribute names, their valid types, and their interpretation. If the element defines
objects, the semantics includes what objects it defines and their types.

1.3.2. Element Syntax
There are three types of elements: directive elements, scripting elements, and action elements.

Directives
Directives provide global information that is conceptually valid independent of any specific request
received by the JSP page. They provide information for the translation phase.

Directive elements have a syntax of the form <%@ directive...%>.

Actions

Actions provide information for the request processing phase. The interpretation of an action may,
and often will, depend on the details of the specific request received by the JSP page. An Action can
either be standard (that is, defined in this specification), or custom (that is, provided via the
portable tag extension mechanism).

Action elements follow the syntax of an XML element. They have a start tag including the element
name and may have attributes, an optional body, and a matching end tag, or may be an empty tag,
possibly with attributes:

<mytag attri1="attribute value"...>body</mytag>
And:

<mytag attri1="attribute value".../>
<mytag attrl1="attribute value"...></mytag>

An element has an element type describing its tag name, its valid attributes and its semantics. We
refer to the type by its tag name.

22

JSP tags are case-sensitive, as in XML and XHTML.

An action may create objects and may make them available to the scripting elements through
scripting-specific variables.

Scripting Elements
Scripting elements provide “glue” around template text and actions.

The Expression Language (EL) can be used to simplify accessing data from different sources. EL
expressions can be used in JSP standard and custom actions and template data. EL expressions use
the syntax ${expr} and #{expr}. For example:

<mytag attr1="${bean.property}".../>

${map[entry]}
<lib:myAction>${3+counter}</1lib:myAction>

Chapter 2, Expression Language provides more details on the EL.

There are three language-based types of scripting elements: declarations, scriptlets, and
expressions. Declarations follow the syntax <%! ... %>. Scriptlets follow the syntax <% ... %.
Expressions follow the syntax <%= ... %>.

1.3.3. Start and End Tags

Elements that have distinct start and end tags (with enclosed body) must start and end in the same
file. The start tag cannot be on one file while the end tag is in another.

The same rule applies to elements in the alternate syntax. For example, a scriptlet has the syntax <%
scriptlet %>. Both the opening <% characters and the closing %> characters must be in the same
physical file.

A scripting language may also impose constraints on the placement of start and end tags relative to
specific scripting constructs. For example, Chapter 9, Scripting shows that Java language blocks
cannot separate a start and an end tag. See Section 9.4, “Main Section” for details.

1.3.4. Empty Elements

Following the XML specification, an element described using an empty tag is indistinguishable from
one using a start tag, an empty body, and an end tag

As examples, the following are all empty tags:

<x:foo></x:foo>

<x:foo />

<x:foo/>

<x:foo><%-- any comment --%></x:foo>

While the following are all non-empty tags:

23

<foo> </foo>

<foo><%= expression %></foo>
<foo><% scriptlet %></foo>
<foo><bar/></foo>

<foo><!-- a comment --></foo>

1.3.5. Attribute Values

Following the XML specification, attribute values always appear quoted. Either single or double
quotes can be used to reduce the need for escaping quotes; the quotation conventions available are
described in Section 1.6, “Quoting and Escape Conventions”. There are two types of attribute values,
literals and request-time expressions (Section 1.14.1, “Request Time Attribute Values”), but the
quotation rules are the same.

1.3.6. The jsp:attribute, jsp:body and jsp:element Elements

Until JSP 2.0, tag handlers could be passed input two ways: through attribute values and through
the element body. Attribute values were always evaluated once (if they were specified as an
expression) and the result was passed to the tag handler. The body could contain scripting elements
and action elements and be evaluated zero or more times on demand by the tag handler.

As of JSP 2.0, page authors can provide input in new ways using the <jsp:attribute> standard
action element. Based on the configuration of the action being invoked, the body of the element
either specifies a value that is evaluated once, or it specifies a “JSP fragment”, which represents the
body in a form that makes it possible for a tag handler to evaluate it as many times as needed. The
<jsp:attribute> action must only be used to specify an attribute value for standard or custom
actions. A translation error must occur if it is used in any other context, for example to specify the
value of template text that looks like an XML element.

It is illegal JSP syntax, which must result in a translation error, to use both an XML element
attribute and a <jsp:attribute> standard action to pass the value of the same attribute. See Section
5.7, “<jsp:attribute>” for more details on the <jsp:attribute> standard action.

The following example uses an XML element attribute to define the value of the param1 attribute,
and uses an attribute standard action to define the value of the param2 attribute. In this example,
the value of param2 comes from the result of a custom action invocation.

<mytag:paramTag paraml="valuel">
<jsp:attribute name="param2">
<mymath:add x="2" y="2"/>
</jsp:attribute>
</mytag:paramlag>

If a page author wishes to pass both an attribute standard action and a tag body, the <jsp:body>
standard action must be used to specify the body. A translation error will result if the custom action
invocation has <jsp:attribute> elements but does not define the body using a <jsp:body> element.
See Section 5.8, “<jsp:body>” for more details on the <jsp:body> standard action.

24

The following example shows two equivalent tag invocations to the hypothetical <mytag: formatBody>
custom action. The first invocation uses an XML element attribute to pass the values of the color
and size attributes. The second example uses an attribute standard action to pass the value of the
color attribute. Both examples have tag body containing simply the words “Template Text”.

<mytag:tagWithBody color="blue" size="12">
Template Text
</mytag:tagWithBody>

<mytag:tagWithBody size="12">
<jsp:attribute name="color">blue</jsp:attribute>
<jsp:body>
Template Text
</jsp:body>
</mytag:tagWithBody>

<jsp:attribute> can be used with the <jsp:element> standard action to generate dynamic content in
a well structured way. The example below generates an HTML head of some type unknown at page
authoring time:

<jsp:element name="H${headlLevel}">
<jsp:attribute name="size">${headSize}</jsp:attribute>
<jsp:body>${headText}<jsp:body>

</jsp:element>

1.3.7. Valid Names for Actions and Attributes

The names for actions must follow the XML convention (i.e. must be an NMTOKEN as indicated in the
XML 1.0 specification). The names for attributes must follow the conventions described in the
JavaBeans specification.

Attribute names that start with jsp, _jsp, java and jakarta are reserved in this specification.

1.3.8. White Space

In HTML and XML white space is usually not significant, but there are exceptions. For example, an
XML file may start with the characters <?xml, and, when it does, it must do so with no leading
whitespace characters.

This specification follows the whitespace behavior defined for XML. White space within the body
text of a document is not significant, but is preserved. This default behavior can be modified for JSP
pages in standard syntax as described in Section 3.3.9, “Removing Whitespaces from Template
Text”.

Next are two examples of JSP code with their associated output. Note that directives generate no
data and apply globally to the JSP page.

25

Table JSP.1-1 Example 1 - Input

LineNo Source Text

1 <?xml version="1.0" 7>

2 <%@ page buffer="8kb" %>

3 The rest of the document goes here

The result is:

Table JSP.1-2 Example 1 - Output

LineNo Output Text

1 <?xml version="1.0" 7>

2

3 The rest of the document goes here

The next two tables show another example, with input and output.

Table JSP.1-3 Example 2 - Input

LineNo Source Text

1 <% response.setContentType("...");

2 whatever... %><?xml version="1.0" 7>
3 <%@ page buffer="8kb" %>

4 The rest of the document goes here

The result is:

Table JSP.1-4 Example 2 - Output

LineNo Output Text

1 <?xml version="1.0" 7>

2

3 The rest of the document goes here

It is possible to have extraneous whitespaces removed from template text through element trim-
directive-whitespaces of JSP Property Groups (See Section 3.3.9, “Removing Whitespaces from
Template Text”), or the page and tag file directive attribute trimDirectiveWhitespaces (See Section
1.10.1, “The page Directive”, Section 8.5.1, “The tag Directive”).

1.3.9. JSP Documents

A JSP page is usually passed directly to a JSP container. A JSP document is a JSP page that is also an
XML document. When a JSP document is encountered by the JSP container, it is interpreted as an
XML document first and after that as a JSP page. Among the consequences of this are:

26

e The document must be well-formed
e Validation, if indicated

 Entity resolution will apply, if indicated

<% style syntax cannot be used

JSP documents are often a good match for the generation of dynamic XML content as they can
preserve much of the structure of the generated document.

The default convention for JSP documents is .jspx. There are configuration elements that can be
used to indicate that a specific file is a JSP document.

See Chapter 6, JSP Documents for more details on JSP documents, and Chapter 3, JSP Configuration
for more details on configuration.

1.3.10. JSP Syntax Grammar

This section presents a simple EBNF grammar for the JSP syntax. The grammar is intended to
provide a concise syntax overview and to resolve any syntax ambiguities present in this
specification. Other sections may apply further restrictions to this syntax, for example to restrict
what represents a valid attribute value for a page directive. In all other cases the grammar takes
precedence in resolving syntax questions.

The notation for this grammar is identical to that described by Chapter 6 of the XML 1.0
specification, available at the following URL:

https://www.w3.org/TR/xml/#sec-notation
In addition, the following notes and rules apply:

» The root production for a JSP page is JSPPage.

* The prefix XML:: is used to refer to an EBNF definition in the XML 1.0 specification. Refer to
http://www.w3.0org/TR/REC-xml.

* Where applicable, to resolve grammar ambiguities, the first matching production must always
be followed. This is commonly known as the “greedy” algorithm.

If the <TRANSLATION_ERROR> production is followed, the page is invalid, and the result will be a
translation error.

* Many productions make use of XML-style attributes. These attributes can appear in any order,
separated from each other by whitespace, but no attribute can be repeated more than once. To
make these XML-style attribute specifications more concise and easier to read, the syntax
ATTR[attrset] is used in the EBNF to define a set of XML attributes that are recognized in a
particular production.

Within the square brackets (attrset) is listed a comma-separated list of case-sensitive attribute
names that are valid. Each attribute name represents a single XML attribute. If the attribute
name is prefixed with an =, the production Attribute (defined below) must be matched (either a
rtexprvalue or a static value is accepted). If not, the production NonRTAttribute must be matched
(only static values are accepted). If the attribute name is prefixed with a !, the attribute is

27

https://www.w3.org/TR/xml/#sec-notation
http://www.w3.org/TR/REC-xml

required and must appear in order for this production to be matched. If an attribute that
matches the Attribute production with a name not listed appears adjacent to any of the other
attributes, the production is not matched.

For example, consider a production that contains ATTR[!name, =value, =!repeat]. This
production is matched if and only if all of the following hold true:
- The name attribute appears exactly once and matches the NonRTAttribute production.

o The value attribute appears at most once. If it appears, the Attribute production must be
matched.

o The repeat attribute appears exactly once and matches the Attribute production.

o There must be no other attributes aside from name, value, or repeat.
For example, the following sample strings match the above:

o name="somename" value="somevalue" repeat="2"

o repeat="${ x + y }" name="othername"

1.3.10.1. EBNF Grammar for JSP Syntax

JSPPage = Body

JSPTagDef = Body

Body = Al1Body | ScriptlessBody

[vc: ScriptingEnabled]
[vc: ScriptlessBody]

A11Body s (0 ("% JSPCommentBody)
| ('<%@' DirectiveBody)
| ('<jsp:directive.' XMLDirectiveBody)
| ('<%!" DeclarationBody)
| ("<jsp:declaration' XMLDeclarationBody)
| ('<%=' ExpressionBody)
| ("<jsp:expression' XMLExpressionBody)
| ('<%' ScriptletBody)
| ('<jsp:scriptlet’ XMLScriptletBody)
| ("${° ELExpressionBody)
| "#{' ELExpressionBody)
| ('<jsp:text' XMLTemplateText)
| ("<jsp:’ StandardAction)
| ('</' ExtraClosingTag)
| ('<' CustomAction

CustomActionBody)
| TemplateText
)*

ScriptlessBody v (0 (<% JSPCommentBody)

| ('<%0' DirectiveBody)

28

TemplateTextBody

JSPCommentBody

DirectiveBody

XMLDirectiveBody

JSPDirectiveBody

)*
[

(

)*
[

'<jsp:directive.'
<!
'<jsp:declaration’
gt
'<jsp:expression’
eyt
<jsp:scriptlet’
1

(!

'<jsp:text'
<jsp:'

7

<

e e S S S
AN AN AN AN AN AN AN AN AN A AN A

| TemplateText

vce: ELEnabled]

<%--
"%
'<jsp:directive.'
<%l
'<jsp:declaration’

1 g, _1
<%=

<jsp:expression’
<%'
<jsp:scriptlet’
l${l
l#{l
'<jsp:text'
<jsp:'

‘<" CustomAction
emplateText

e e e e e e e e e e e e

vc: ELEnabled]

XMLDirectiveBody)
<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)
ELExpressionBody
ELExpressionBody
XMLTemplateText
StandardAction
ExtraClosingTag
CustomAction
CustomActionBody)

~— N N N

JSPCommentBody)
DirectiveBody)
XMLDirectiveBody)
<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)
<TRANSLATION_ERROR>)

(Char* - (Char* '--%"')) '--%'

<TRANSLATION_ERROR>

JSPDirectiveBody | TagDefDirectiveBody

[vc: TagFileSpecificDirectives]

XMLISPDirectiveBody | XMLTagDefDirectiveBody

[vc: TagFileSpecificXMLDirectives]

S?

(('page' S PageDirectiveAttrList)
| ('taglib' S TaglLibDirectiveAttrList)
| ("include' S IncludeDirectiveAttrList)

29

XMLJSPDirectiveBody

TagDefDirectiveBody

XMLTagDefDirectiveBody

PageDirectiveAttrlList

TagLibDirectiveAttrList

IncludeDirectiveAttrlList

TagDirectiveAttrlList

30

| <TRANSLATION_ERROR>

S?
(('page' S PageDirectiveAttrList S?
('"/>" | ('>'"S?ETag))
)
| ("include' S IncludeDirectiveAttrList S?
('/>"] ('>"S?ETag))
)
)
| <TRANSLATION_ERROR>
S?
(("tag' S TagDirectiveAttrList)
| ("taglib' S TaglLibDirectiveAttrList)
| ("include' S IncludeDirectiveAttrlList)
| ('attribute' S AttributeDirectiveAttrList)
| ('variable' S VariableDirectiveAttrlList)
)
S? "%

| <TRANSLATION_ERROR>

(

)

("tag' S TagDirectiveAttrList S?
('/>" | ('>'"S?ETag))

("include' S IncludeDirectiveAttrList S?
('/>"] ('>"S?ETag))

("attribute' S AttributeDirectiveAttrList S?
('/>" | ('>"S?ETag))

('variable' S VariableDirectiveAttrList S?
('/>" | ('>"S?ETag))
)

| <TRANSLATION_ERROR>

ATTR[language, extends, import, session, buffer,

[ve:

autoFlush, info, errorPage, isErrorPage,
contentType, pageEncoding, isELIgnored,
errorOnELNotFound]
PageDirectiveUniqueAttr]

ATTR[!uri, !prefix]
| ATTR[!tagdir, !prefix]
[vc: TaglLibDirectiveUniquePrefix]

ATTR[!file]

ATTR[display-name, body-content, dynamic-attributes,

small-icon, large-icon, description, example,

AttributeDirectiveAttrList ::

VariableDirectiveAttrList

DeclarationBody

XMLDeclarationBody

ExpressionBody

XMLExpressionBody

ELExpressionBody

ELExpression

ScriptletBody

XMLScriptletBody

language, import, pageEncoding, isELIgnored,
errorOnELNotFound]
[vc: TagDirectiveUniqueAttr]

ATTR[!name, required, fragment, rtexprvalue,
type, description]
[ve: UniqueAttributeName]

ATTR[!name-given, variable-class,
scope, declare, description]
| ATTR[!name-from-attribute, !alias, variable-class,
scope, declare, description]
[vc: UniqueVariableName]

(Char* - (Char* '%>"')) "%’
| <TRANSLATION_ERROR>

(S?'/>")
| (S? ">
((Char* - (Char* '<')) (DSect?)*
ETag
)

| <TRANSLATION_ERROR>

(Char* - (Char* '"%>"')) '"%'
| <TRANSLATION_ERROR>
[vc: ExpressionBodyContent]

(S?'/>")
| (S? ">
((Char* - (Char* '<'")) CDSect?)*
ETag
)

| <TRANSLATION_ERROR>
[vc: ExpressionBodyContent]

ELExpression '}’
| <TRANSLATION_ERROR>

[See EL spec document, production Expression]

(Char* - (Char* '%')) '%'
| <TRANSLATION_ERROR>"

(S?'/>")
| (5?2 '>'
((Char* - (Char* '<')) (DSect?)*
ETag
)

| <TRANSLATION_ERROR>

31

StandardAction

StdActionContent

StdActionBody

EmptyBody

TagDependentActionBody

TagDependentBody

JspAttributeAndBody

ActionBody

ScriptlessActionBody

OptionalBody
ScriptlessOptionalBody
TagDependentOptionalBody

ParamBody

<TRANSLATION_ERROR>
ve: TagFileSpecificActions]

('useBean' StdActionContent)
| ('setProperty' StdActionContent)
| ('getProperty' StdActionContent)
| ("include' StdActionContent)
| ('forward' StdActionContent)
| ("invoke' StdActionContent)
| ('doBody' StdActionContent)
| ('element’ StdActionContent)
| ('output' StdActionContent)
|
[

Attributes StdActionBody
[ve: StdActionAttributesValid]

EmptyBody
| OptionalBody
| ParamBody
[vc: StdActionBodyMatch]

l/>l
| ('>' ETag)
| ('>' S? '<jsp:attribute' NamedAttributes ETag)

JspAttributeAndBody
| ('>' TagDependentBody ETag)

Char* - (Char* ETag)

(">" S? ('<jsp:attribute' NamedAttributes)?

'<jsp:body'
(JspBodyBody | <TRANSLATION_ERROR>)
S? ETag
)
JspAttributeAndBody

| ('>' Body ETag)

JspAttributeAndBody
| ('>' ScriptlessBody ETag)

EmptyBody | ActionBody
EmptyBody | ScriptlessActionBody
EmptyBody | TagDependentActionBody
EmptyBody
| ('>" S? ('<jsp:attribute' NamedAttributes)?

'<jsp:body'
(JspBodyParam | <TRANSLATION_ERROR>)

S? ETag

)
| (S? '>" Param* ETag)

NamedAttributes ::= AttributeBody S? ('<jsp:attribute' AttributeBody S?)*
AttributeBody ::= ATTR[!name, trim, omit] S?
(|/>l

| '></jsp:attribute>’
| '>" AttributeBodyBody '</jsp:attribute>'
| <TRANSLATION_ERROR>

)

AttributeBodyBody ::= AllBody
| ScriptlessBody
| TemplateTextBody
[vc: AttributeBodyMatch]

JspBodyBody ::= (S? JspBodyEmptyBody)
| (S? '>" (JspBodyBodyContent - '') '</jsp:body>')
JspBodyBodyContent ::= ScriptlessBody | Body | TagDependentBody

[vc: JspBodyBodyContent]

JspBodyEmptyBody = !
| '></jsp:body>'
| <TRANSLATION_ERROR>

JspBodyParam 1:= S§? '>" S? Param* '</jsp:body>'
Param ::= '<jsp:param' StdActionContent
Attributes i:= (S Attribute)* S?

[vc: UniqueAttSpec]

CustomAction ::= TagPrefix ':' CustomActionName
[vc: CustomActionMatchesAndValid]

TagPrefix ::= Name
CustomActionName ::= Name
CustomActionBody ::= (Attributes CustomActionEnd)

| <TRANSLATION_ERROR>

CustomActionEnd ::= CustomActionTagDependent
| CustomAction]SPContent
| CustomActionScriptlessContent

CustomActionTagDependent ::= TagDependentOptionalBody
[vc: CustomActionTagDependentMatch]

CustomAction]SPContent ::= OptionalBody
[vc: CustomAction]SPContentMatch]

CustomActionScriptlessContent ::= ScriptlessOptionalBody
[vc: CustomActionScriptlessContentMatch]

TemplateText = (<N S)
| (TemplateChar* -
(TemplateChar* ('<" | "${" | "#{')))
TemplateChar = \§'
| "\#'
| "<\%'
| Char
[ve : QuotedDollarMatched]
XMLTemplateText = (S?'/>)
| (S? >
((Char* - (Char* ('<" | "${" | "#{")))
(("${' ELExpressionBody)?
| ("#{" ELExpressionBody)?
)
(DSect?
)* ETag
)
| <TRANSLATION_ERROR>
[ve: ELEnabled]
ExtraClosingTag = ETag
[vec: ExtraClosingTagMatch]°
ETag = '</' TagPrefix ':' Name S? '>'
[vc: ETagMatch]*
Attribute ::= Name Eq
((""<%=' RTAttributeValueDouble)
| ("'<%=" RTAttributeValueSingle)
| ('"" AttributeValueDouble)
| (""" AttributeValueSingle)
)
NonRTAttribute ::= Name Eq
((""" AttributeValueDouble)
| (""" AttributeValueSingle)
)
AnyAttributeValue ::= AttributeValue | RTAttributeValue
AttributeValue ::= AttributeValueDouble | AttributeValueSingle

34

RTAttributeValue ::= RTAttributeValueDouble | RTAttributeValueSingle

AttributeValueDouble ::= (QuotedChar - '"')*
(""" | <TRANSLATION_ERROR>)
AttributeValueSingle .:= (QuotedChar - "'")*
(""" | <TRANSLATION_ERROR>)
RTAttributeValueDouble .:= ((QuotedChar - '"')* -
((QuotedChar - """)* '%")

)
('%>"" | <TRANSLATION_ERROR>)
[vc: RTAttributeScriptingEnabled]
[ve: ExpressionBodyContent]
RTAttributeValueSingle ::= ((QuotedChar - "'")* -
((QuotedChar - """)* '%"')

)
("%>'" | <TRANSLATION_ERROR>)
[vc: RTAttributeScriptingEnabled]
[vc: ExpressionBodyContent]

Name 1= XML::Name
Char 1:= XML::Char

QuotedChar 1= ''’
| '"’
| "\\'
|\
|
| "\§'
| "\#'
| ("${" ELExpressionBody)
| ("#{' ELExpressionBody)
| Char
[vc: QuotedDollarMatched]

S 1i= XML::S
Eq 1:= XML::Eq
CDSect ::= XML::CDSect

1.3.10.2. Validity Constraints

The following validity constraints are referenced in the above grammar using the syntax [vc:
ValidityConstraint], and must be followed:

» ScriptingEnabled - The ScriptlessBody production must be followed if scripting is disabled for

35

36

this translation unit. See the scripting-invalid JSP Configuration element (Section 3.3.3,
“Disabling Scripting Elements”).

ScriptlessBody - The Al1Body production cannot be followed if one of the parent nodes in the
parse tree is a ScriptlessBody production. That is, once we have followed the ScriptlessBody
production, until that production is complete we cannot choose the A11Body production.

ELEnabled - The token ${ or #{ is not followed if expressions are disabled for this translation unit.
See the isELIgnored page and tag directive (See Section 1.10.1, “The page Directive”) and Section
8.5.1, “The tag Directive” respectively) and the el-ignored JSP Configuration element (Section
3.3.2, “Deactivating EL Evaluation™).

TagFileSpecificDirectives - The JSPDirectiveBody production must be followed if the root
production is JSPPage (i.e. this is a JSP page). The TagDefDirectiveBody production must be
followed if the root production is JSPTagDef (i.e. this is a tag file).

TagFileSpecificXMLDirectives - The XMLISPDirectiveBody production must be followed if the root
production is JSPPage (i.e. this is a JSP page). The XMLTagDefDirectiveBody production must be
followed if the root production is JSPTagDef (i.e. this is a tag file).

PageDirectiveUniqueAttr - A translation error will result if there is more than one occurrence of
any attribute defined by this directive in a given translation unit, and if the value of the
attribute is different than the previous occurrence. No translation error results if the value is
identical to the previous occurrence. In addition, the import and pageEncoding attributes are
excluded from this constraint (see Section 1.10.1, “The page Directive”).

TagLibDirectiveUniquePrefix - A translation error will result if the prefix AttributeValue has
already previously been encountered as a potential TagPrefix in this translation unit.

TagDirectiveUniqueAttr - A translation error will result if the prefix of this tag directive is
already defined in the current scope, and if that prefix is bound to a namespace other than that
specified by the uri or tagdir attribute.

UniqueAttributeName - A translation error will result if there are two or more attribute directives
with the same value for the name attribute in the same translation unit. A translation error will
result if there is a variable directive with a name-given attribute equal to the value of the name
attribute of an attribute directive in the same translation unit.

UniqueVariableName - A translation error must occur if more than one variable directive appears
in the same translation unit with the same value for the name-given attribute or the same value
for the name-from-attribute attribute. A translation error must occur if there is a variable
directive with a name-given attribute equal to the value of the name attribute of an attribute
directive in the same translation unit. A translation error must occur if there is a variable
directive with a name-from-attribute attribute whose value is not equal to the name attribute of
an attribute directive in the same translation unit that is also of type java.lang.String, that is
required and that is not an rtexprvalue. A translation error must occur if the value of the alias
attribute is equal to the value of a name-given attribute of a variable directive, or the value of the
name attribute of an attribute directive in the same translation unit.

TagFileSpecificActions - The invoke and doBody standard actions are only matched if the
JSPTagDef production was followed (i.e. if this is a tag file instead of a JSP page).

RTAttributeScriptingEnabled - If the RTAttributeValueDouble or RTAttributeValueSingle
productions are visited during parsing and scripting is disabled for this page, a translation error

must be produced. See the scripting-invalid JSP Configuration element (Section 3.3.3,
“Disabling Scripting Elements”).

* ExpressionBodyContent - A translation error will result if the body content minus the closing
delimiter (%> , or </jsp:expression> depending on how the expression started) does not
represent a well-formed expression in the scripting language selected for the JSP page.

» StdActionAttributesValid - An attribute is considered “provided” for this standard action if
either the Attribute production or the AttributeBody production is followed in the context of the
enclosing StandardAction production. A translation error will result if any of the following
conditions is true:

o The set of attributes “provided” for this standard action does not match one of the valid
attribute combinations specified in Table JSP.1-5 , “Valid body content and attributes for
Standard Actions”.

o The same attribute is “provided” more than once, as determined by the attribute name.

o An attribute is “provided” using the AttributeBody production that does not accept a
request-time expression value, as indicated by the = prefix in Table JSP.1-5 , “Valid body
content and attributes for Standard Actions”.

» StdActionBodyMatch - The StdActionBody production will only be matched if the production listed
for this standard action in the “Body Production” column in Table JSP.1-5 , “Valid body content
and attributes for Standard Actions” is followed.

» AttributeBodyMatch - The type of element being specified determines which production is
followed (see Section 5.7, “<jsp:attribute>” for details):

o If a custom action that specifies an attribute of type JspFragment, ScriptlessBody must be
followed.

- If a standard or custom action that accepts a request-time expression value, A11JspBody must
be followed.

o If a standard or custom action that does not accept a request-time expression value,
TemplateTextBody must be followed.

* JspBodyBodyContent - The ScriptlessBody production must be followed if the body content for this
tag is scriptless. The Body production must be followed if the body content for this tag is JSP.
The TagDependentBody production must be followed if the body content for this tag is
tagdependent.

* UniqueAttSpec - A translation error will result if the same attribute name appears more than
once.

* CustomActionMatchesAndValid - Following the rules in Section 7.3, “The Tag Library Descriptor”

for determining the relevant set of tags and tag libraries, assume the following:

o Let U be the URI indicated by the uri AttributeValue of the previously encountered
TagLibDirectiveAttrList with prefix matching the TagPrefix for this potential custom action,
or nil if no such TagLibDirectiveAttrList was encountered in this translation unit.

o If Uis not nil, let L be the <taglib> element in the relevant TLD entry such that L.ur1i is equal
to U.

Then:

37

o If, after being parsed, the CustomAction production is matched (not yet taking into account
the following rules), TagPrefix is considered a potential TagPrefix in this translation unit for
the purposes of the TagLibDirectiveUniquePrefix validity constraint.

o The CustomAction production will not be matched if U is nil or if the TagPrefix does not
match the prefix AttributeValue of a TagLibDirectiveAttrList previously encountered in this
translation unit.

o Otherwise, if the CustomAction production is matched, a translation error will result if there
does not exist a <tag> element T in a relevant TLD such that L.T.name is equal to
CustomActionName.

* CustomActionTagDependentMatch - Assume the definition of L from the

38

CustomActionMatchesAndValid validity constraint above. The CustomActionTagDependent production
is not matched if there does not exist a <tag> element T in a relevant TLD such that L.T.body-
content contains the value tagdependent.

CustomAction]SPContentMatch - Assume the definition of L from the CustomActionMatchesAndValid
validity constraint above. The CustomActionJSPContent production is not matched if there exists a
<tag> element T in a relevant TLD such that L.T.body-content does not contain the value JSP.

CustomActionScriptlessContentMatch - Assume the definition of L from the
CustomActionMatchesAndValid validity constraint above. The CustomActionScriptlessContent
production is not matched if there does not exist a <tag> element T in a relevant TLD such that
L.T.body-content contains the value scriptless.

QuotedDollarMatch - The \$ or \# token is only matched if EL is enabled for this translation unit.
See Section 3.3.2, “Deactivating EL Evaluation”.

ETagMatch - Assume the definition of U from the CustomActionMatchesAndValid validity constraint.
If TagPrefix is not ‘jsp’ and U is nil, the ETag production is not matched. Otherwise, the ETag
production is matched and a translation error will result if the prefix and name of this closing
tag does not match the prefix and name of the starting tag at the corresponding nesting level, or
if there is no corresponding nesting level (i.e. too many closing tags). This is similar to the way
XML is defined, except that template text that looks like a closing element with an unrecognized
prefix is allowed in the body of a custom or standard action. In the following example,
assuming ‘my’ is a valid prefix and ‘indent’ is a valid tag, the tag is considered template
text, and no translation error is produced:

<my:indent level="2">

</my:indent>

The following example, however, would produce a translation error, assuming ‘my’ is a valid
prefix and ‘indent’ is a valid tag, and regardless of whether ‘othertag’ is a valid tag or not.

<my:indent level="2">
</my:othertag>
</my:indent>

» ExtraClosingTagMatch - The ExtraClosingTag production is not matched if encountered within
two or more nested Body productions (e.g. if encountered inside the body of a standard or
custom action).

1.3.10.3. Standard Action Attributes

Table JSP.1-5, “Valid body content and attributes for Standard Actions” specifies, for each standard
action element, the bodies and the attribute combinations that are valid. The value in the “Body
Production” column specifies a production name that must be matched for the body of the standard
action to be considered valid. The value in the “Valid Attribute Combinations” column uses the
same syntax as the attrset notation described at the start of Section 1.3.10, “JSP Syntax Grammar”,
and indicates which attributes can be provided.

Table JSP.1-5 Valid body content and attributes for Standard Actions

Element Body Production Valid Attribute Combinations
jsp:useBean OptionalBody (!id, scope, !class)
(!'id, scope, !type)
('id, scope, !class, !type)
('id, scope, =!beanName, !type)
jspisetProperty EmptyBody ('name, !property, param)
('name, !property, =!value)
jsp:getProperty EmptyBody ('name, !property)
jsp:include ParamBody (=!page, flush)
jsp:forward ParamBody (=!page)
jsp:invoke EmptyBody (!fragment, !var, scope)
(!'fragment, !varReader, scope)
(!fragment)
jsp:doBody EmptyBody (lvar, scope)
(!varReader, scope)
0
jsp:element OptionalBody (=!name)
jsp:output EmptyBody (omit-xml-declaration)
(omit-xml-declaration, !doctype-root-element,
Idoctype-system, doctype-public)
jsp:param EmptyBody (!'name, =!value)

1.4. Error Handling

Errors may occur at translation time or at request time. This section describes how errors are
treated by a compliant implementation.

1.4.1. Translation Time Processing Errors

The translation of a JSP page source into a corresponding JSP page implementation class by a JSP

39

container can occur at any time between initial deployment of the JSP page into the JSP container
and the receipt and processing of a client request for the target JSP page. If translation occurs prior
to the receipt of a client request for the target JSP page, error processing and notification is
implementation dependent and not covered by this specification. In all cases, fatal translation
failures shall result in the failure of subsequent client requests for the translation target with the
appropriate error specification: For HTTP protocols the error status code 500 (Server Error) is
returned.

1.4.2. Request Time Processing Errors

During the processing of client requests, errors can occur in either the body of the JSP page
implementation class, or in some other code (Java or other implementation programming
language) called from the body of the JSP page implementation class. Runtime errors occurring are
realized in the page implementation, using the Java programming language exception mechanism
to signal their occurrence to caller(s) of the offending behavior.

This is independent of scripting language. This specification requires that

o unhandled errors occurring in a scripting language environment used in a JSP
container implementation to be signalled to the JSP page implementation class via
the Java programming language exception mechanism.

These exceptions may be caught and handled (as appropriate) in the body of the JSP page
implementation class.

Any uncaught exceptions thrown in the body of the JSP page implementation class result in the
forwarding of the client request and uncaught exception to the errorPage URL specified by the JSP
page (or the implementation default behavior, if none is specified).

Information about the error is passed as jakarta.servlet.ServletRequest attributes to the error
handler, with the same attributes as specified by the Servlet specification. Names starting with the
prefixe jakarta are reserved by the different specifications of the Jakarta EE platform. The
jakarta.servlet prefix is reserved and used by the servlet and JSP specifications.

1.4.3. Using JSPs as Error Pages

A JSP is considered an Error Page if it sets the page directive’s isErrorPage attribute to true. If a page
has isErrorPage set to true, then the “exception” implicit scripting language variable (see Table
JSP.1-7 , “Implicit Objects Available in Error Pages”) of that page is initialized. The variable is set to
the value of the jakarta.servlet.error.exception request attribute value if present, otherwise to the
value of the jakarta.servlet.jsp.jspException request attribute value (for backwards compatibility
for JSP pages pre-compiled with a JSP 1.2 compiler).

In addition, an ErrorData instance must be initialized based on the error handler ServletRequest
attributes defined by the Servlet specification, and made available through the PageContext to the
page. This has the effect of providing easy access to the error information via the Expression
Language. For example, an Error Page can access the status code using the syntax
${pageContext.errorData.statusCode}. See the Javadoc for details.

By default, a JSP error page sets the status code of the response to the value of

40

${pageContext.errorData.statusCode} (which is equal to 500 by default), but may set it to a different
value (including 200) as it sees fit.

A JSP container must detect if a JSP error page is self-referencing and throw a translation error.

1.5. Comments

There are different types of comments available in JSP pages in standard syntax and JSP documents
(in XML syntax).

1.5.1. Comments in JSP Pages in Standard Syntax

There are two types of comments in a JSP page: comments to the JSP page itself, documenting what
the page is doing; and comments that are intended to appear in the generated document sent to the
client.

1.5.1.1. Generating Comments in Output to Client

In order to generate comments that appear in the response output stream to the requesting client,
the HTML and XML comment syntax is used, as follows:

<!-- comments ... -->

These comments are treated as uninterpreted template text by the JSP container. Dynamic content
that appears within HTML/XML comments, such as actions, scriptlets and expressions, is still
processed by the container. If the generated comment is to have dynamic data, this can be obtained
through an expression syntax, as in:

<!-- comments <%= expression %> more comments ... -->

1.5.1.2. JSP Comments

A JSP comment is of the form
<%-- anything but a closing --%> ... --%

The body of the content is ignored completely. Comments are useful for documentation but also are
used to “comment out” some portions of a JSP page. Note that JSP comments do not nest.

An alternative way to place a comment in JSP is to use the comment mechanism of the scripting
language. For example:

<% /** this is a comment ... **/ %>

41

1.5.2. Comments in JSP Documents

Comments in JSP documents use the XML syntax, as follows:
<!-- comments ... -->

The body of the content is ignored completely. Comments in JSP documents may be used for
documentation purposes and for “commenting out” portions of a JSP page.

Comments in JSP documents do not nest.

1.6. Quoting and Escape Conventions

The following quoting conventions apply to JSP pages.

o The current quoting rules do not allow for quoting special characters such as \n -
the only current way to do this in a JSP is with a Java expression.

Quoting in EL Expressions

* There is no special quoting mechanism within EL expressions; use a literal '${" if the literal ${
is desired and expressions are enabled for the page (similarly, use a literal '#{" if the literal #{ is
desired). For example, the evaluation of ${'${'} is '${'. Note that ${'}'} is legal, and simply
evaluatesto '}'.

Quoting in Scripting Elements
* Aliteral %> is quoted by %\>
Quoting in Template Text

* Aliteral <% is quoted by <\%

* Only when the EL is enabled for a page (see Section 3.3.2, “Deactivating EL Evaluation”), a literal
$ can be quoted by \$, and a literal # can be quoted by \#. This is not required but is useful for
quoting EL expressions.

Quoting in Attributes

Quotation is done consistently regardless of whether the attribute value is a literal or a request-
time attribute expression. Quoting can be used in attribute values regardless of whether they are
delimited using single or double quotes. It is only required as described below.

* A'is quoted as\'. This is required within a single quote-delimited attribute value.

* A" is quoted as \". This is required within a double quote-delimited attribute value.

* A\is quoted as \\

* Only when the EL is enabled for a page (see Section 3.3.2, “Deactivating EL Evaluation”), a literal
$ can be quoted by \$. Similarly, a literal # can be quoted by \#. This is not required but is useful

42

for quoting EL expressions.
* A %> is quoted as %\>
* A<%is quoted as <\%

» The entities ' and " are available to describe single and double quotes.
Examples

The following line shows an illegal attribute value.

n

<mytags:tag value="<%= "hil" %" />

The following line shows a legal scriptlet, but perhaps with an unintended value. The result is Joe
said %\>not Joe said %>

n g
%>

<%= "Joe said %\\>

The next lines are all legal quotations.

n g
%>

<%= "Joe said %/>

<%= "Joe said %\>" %>

<% String joes_statement = "hil!"; %>
<%= "Joe said \"" + joes_statement + "\"." %>
<x:tag value='<%="Joe said \\"" + joes_statement + "\\"."%>'/>

<x:tag value='<%= "hi!" %' />

<x:tag value="<%= \"hi!l\" %" />

<x:tag value='<%= \"name\" %>' />

<x:tag value="<%= \"Joe said 'hello'\" %>"/>

<x:tag value="<%= \"Joe said \\\"hello\\\" \" %>"/>

43

<x:tag value="end expression %\>"/>

<% String s="abc"; %>
<x:tag value="<%= s + \"def\" + \"jk1\" + 'm' + \'n\' %" />
<x:tag value='<%= s + \"def\" + "jk1" + \'m\' + \'n\' %' />

XML Documents

The quoting conventions are different from those of XML. See Chapter 6, JSP Documents.

1.7. Overall Semantics of a JSP Page

A JSP page implementation class defines a _jspService() method mapping from the request to the
response object. Some details of this transformation are specific to the scripting language used (see
Chapter 9, Scripting). Most details are not language specific and are described in this chapter.

The content of a JSP page is devoted largely to describing the data that is written into the output
stream of the response. (The JSP container usually sends this data back to the client.) The
description is based on a JspWriter object that is exposed through the implicit object out (see
Section 1.8.3, “Implicit Objects”). Its value varies:

* Initially, out is a new JspWriter object. This object may be different from the stream object
returned from response.getWriter(), and may be considered to be interposed on the latter in
order to implement buffering (see Section 1.10.1, “The page Directive”). This is the initial out
object. JSP page authors are prohibited from writing directly to either the PrintWriter or
OutputStream associated with the ServletResponse.

* The JSP container should not invoke response.getWriter() until the time when the first portion
of the content is to be sent to the client. This enables a number of uses of JSP, including using JSP
as a language to “glue” actions that deliver binary content, or reliably forwarding to a servlet, or
change dynamically the content type of the response before generating content. See Chapter 4,
Internationalization Issues.

» Within the body of some actions, out may be temporarily re-assigned to a different (nested)
instance of a JspWriter object. Whether this is the case depends on the details of the action’s
semantics. Typically the content of these temporary streams is appended to the stream
previously referred to by out, and out is subsequently re-assigned to refer to the previous
(nesting) stream. Such nested streams are always buffered, and require explicit flushing to a
nesting stream or their contents will be discarded.

« If the initial out JspWriter object is buffered, then depending upon the value of the autoFlush
attribute of the page directive, the content of that buffer will either be automatically flushed out
to the ServletResponse output stream to obviate overflow, or an exception shall be thrown to
signal buffer overflow. If the initial out JspWriter is unbuffered, then content written to it will be
passed directly through to the ServletResponse output stream.

A JSP page can also describe what should happen when some specific events occur. In JSP 4.1, the
only events that can be described are the initialization and the destruction of the page. These

44

events are described using “well-known method names” in declaration elements. (See Chapter 11,
JSP Container).

1.8. Objects

A JSP page can access, create, and modify server-side objects. Objects can be made visible to actions,
EL expressions and to scripting elements. An object has a scope describing what entities can access
the object.

Actions can access objects using a name in the PageContext object.

An object exposed through a scripting variable has a scope within the page. Scripting elements can
access some objects directly via a scripting variable. Some implicit objects are visible via scripting
variables and EL expressions in any JSP page.

1.8.1. Objects and Variables

An object may be made accessible to code in the scripting elements through a scripting language
variable. An element can define scripting variables that will contain, at process request-time, a
reference to the object defined by the element, although other references may exist depending on
the scope of the object.

An element type indicates the name and type of such variables although details on the name of the
variable may depend on the Scripting Language. The scripting language may also affect how
different features of the object are exposed. For example, in the JavaBeans specification, properties
are exposed via getter and setter methods, while these properties are available directly as variables
in the JavaScript™ programming language.

The exact rules for the visibility of the variables are scripting language specific. Section 1.1, “What
Is a JSP Page” defines the rules for when the 1anguage attribute of the page directive is java.

1.8.2. Objects and Scopes

A JSP page can create and/or access some Java objects when processing a request. The JSP
specification indicates that some objects are created implicitly, perhaps as a result of a directive
(see Section 1.8.3, “Implicit Objects”). Other objects are created explicitly through actions, or created
directly using scripting code. Created objects have a scope attribute defining where there is a
reference to the object and when that reference is removed.

The created objects may also be visible directly to scripting elements through scripting-level
variables (see Section 1.8.3, “Implicit Objects”).

Each action and declaration defines, as part of its semantics, what objects it creates, with what
scope attribute, and whether they are available to the scripting elements.

Objects are created within a JSP page instance that is responding to a request object. There are
several scopes:

* page - Objects with page scope are accessible only within the page where they are created. All

45

references to such an object shall be released after the response is sent back to the client from
the JSP page or the request is forwarded somewhere else. References to objects with page scope
are stored in the pageContext object.

request - Objects with request scope are accessible from pages processing the same request
where they were created. References to the object shall be released after the request is
processed. In particular, if the request is forwarded to a resource in the same runtime, the
object is still reachable. References to objects with request scope are stored in the request object.

session - Objects with session scope are accessible from pages processing requests that are in
the same session as the one in which they were created. It is not legal to define an object with
session scope from within a page that is not session-aware (see Section 1.10.1, “The page
Directive”). All references to the object shall be released after the associated session ends.
References to objects with session scope are stored in the session object associated with the
page activation.

application - Objects with application scope are accessible from pages processing requests that
are in the same application as they one in which they were created. Objects with application
scope can be defined (and reached) from pages that are not session-aware. References to objects
with application scope are stored in the application object associated with a page activation.
The application object is the ServletContext obtained from the ServletConfig object. All
references to the object shall be released when the runtime environment reclaims the
ServletContext.

A name should refer to a unique object at all points in the execution; that is, all the different scopes
really should behave as a single name space. A JSP container implementation may or may not
enforce this rule explicitly for performance reasons.

1.8.3. Implicit Objects

JSP page authors have access to certain implicit objects that are always available for use within
scriptlets and scriptlet expressions through scripting variables that are declared implicitly at the
beginning of the page. All scripting languages are required to provide access to these objects. See
Section 2.4, “Implicit Objects” for the implicit objects available within EL expressions. Implicit
objects are available to tag handlers through the pageContext object, see below.

Each implicit object has a class or interface type defined in a core Java technology or Jakarta Servlet
API package, as shown in Table JSP.1-6 , “Implicit Objects Available in JSP Pages”.

Table JSP.1-6 Implicit Objects Available in JSP Pages

Variable Type Semantics & Scope

Name

request protocol dependent subtype of: The request triggering the service
jakarta.servlet.ServletRequest e.g: invocation.

jakarta.servlet.http.HttpServietRequest request scope.

response protocol dependent subtype of: The response to the request.

46

jakarta.servlet.ServletResponse, e.g: page scope.
jakarta.servlet.http.HttpServletResponse

Variable Type Semantics & Scope
Name

pageContext jakarta.servlet.jsp.PageContext The page context for this JSP page.
page scope.
session jakarta.servlet.http.HttpSession The session object created for the

requesting client (if any).

This variable is only valid for HTTP
protocols.

session scope.

application jakarta.servlet.ServletContext The servlet context obtained from the
servlet configuration object (as in the
call getServletConfig().getContext()).
application scope.

out jakarta.servlet.jsp.JspWriter An object that writes into the output
stream.
page scope.

config jakarta.servlet.ServletConfig The ServletConfig for this JSP page.
page scope.

page java.lang.Object The instance of this page’s

implementation class processing the
current request.

page scope.

When the scripting language is java
then page is a synonym for this in the
body of the page.

In addition, the exception implicit object can be accessed in an error page, as described in Table
JSP.1-7 , “Implicit Objects Available in Error Pages”.

Table JSP.1-7 Implicit Objects Available in Error Pages

Variable Name Type Semantics & Scope

exception java.lang.Throwable The uncaught Throwable that resulted
in the error page being invoked.
page scope.

Object names with prefixes jsp, jsp, jspx and jspx, in any combination of upper and lower case, are
reserved by the JSP specification.

See Section 7.5.1, “How to Define New Implicit Objects” for some non-normative conventions for
the introduction of new implicit objects.

1.8.4. The pageContext Object

A PageContext is an object that provides a context to store references to objects used by the page,
encapsulates implementation-dependent features, and provides convenience methods. A JSP page

47

implementation class can use a PageContext to run unmodified in any compliant JSP container while
taking advantage of implementation-specific improvements like high performance JspWriters .

See the jakarta.servlet.jsp Javadocs for more details.

1.9. Template Text Semantics

The semantics of template (or uninterpreted) Text is very simple: the template text is passed
through to the current out JspWriter implicit object, after applying the substitutions of Section 1.6,
“Quoting and Escape Conventions”.

1.10. Directives

Directives are messages to the JSP container. Directives have this syntax:
<%@ directive { attr="value" }* %>

There may be optional white space after the <%@ and before %>.

This syntax is easy to type and concise but it is not XML-compatible. Chapter 6, JSP Documents
describes equivalent alternative mechanisms that are consistent with XML syntax.

Directives do not produce any output into the current out stream.

There are three directives: the page, the taglib and the include directive which are described next.

1.10.1. The page Directive

The page directive defines a number of page dependent properties and communicates these to the
JSP container.

This <jsp:directive.page> element (Section 6.3.4, “The jsp:directive.page Element”) describes the
same information following the XML syntax.

A translation unit (JSP source file and any files included via the include directive) can contain more
than one instance of the page directive, all the attributes will apply to the complete translation unit
(i.e. page directives are position independent). An exception to this position independence is the use
of the pageEncoding and contentType attributes in the determination of the page character encoding;
for this purpose, they should appear at the beginning of the page (see Section 4.1, “Page Character
Encoding”). There shall be only one occurrence of any attribute/value pair defined by this directive
in a given translation unit, unless the values for the duplicate attributes are identical for all
occurrences. The import and pageEncoding attributes are exempt from this rule and can appear
multiple times. Multiple uses of the import attribute are cumulative (with ordered set union
semantics). The pageEncoding attribute can occur at most once per file (or a translation error will
result), and applies only to the file in which it appears. Other such multiple attribute/value
(re)definitions result in a fatal translation error if the values do not match.

The attribute/value namespace is reserved for use by this, and subsequent, JSP specification(s).

48

Unrecognized attributes or values result in fatal translation errors.
Examples

The following directive provides some user-visible information on this JSP page:

<%@ page info="my latest JSP Example" %>

The following directive requests no buffering, and provides an error page.

n g
©>

<%@ page buffer="none" errorPage="/00ps.jsp

The following directive indicates that the scripting language is based on Java, that the types
declared in the package com.myco are directly available to the scripting code and EL environment,
and that a buffering of 16KB should be used.

<%@ page language="java" import="com.myco.*" buffer="16kbl %>

Syntax

<%0 page page_directive_attr_list %>

page_directive_attr_list ::= { lanquage="scriptinglLanguage"
{ extends="className"
{ import="1importList"
{ session="true|false"
{ buffer="none|sizekb"
{ autoFlush="true|false"
{ info="1info_text"
{ errorPage="error_url"
{ isErrorPage="true|false"
{ contentType="ctinfo"
{ pageEncoding="peinfo"
{ isELIgnored="true|false"
{ errorOnELNotFound="true|false"
{ deferredSyntaxAllowedAsLiteral="true|false"
{ trimDirectiveWhitespaces="true|false"

O = T e B e e e A R e i

The details of the attributes are as follows:

49

Table JSP.1-8 Page Directive Attributes

language

extends

import

50

Defines the scripting language to be used in the scriptlets, expression
scriptlets, and declarations within the body of the translation unit (the JSP
page and any files included using the include directive below).

In JSP 4.1, the only defined and required scripting language value for this
attribute is java (all lowercase, case-sensitive).

This specification only describes the semantics of scripts for when the value of
the language attribute is java.

When java is the value of the scripting language, the Java Programming
Language source code fragments used within the translation unit are required
to conform to the Java Programming Language Specification in the way
indicated in Chapter 9, Scripting.

All scripting languages must provide some implicit objects that a JSP page
author can use in declarations, scriptlets, and expressions. The specific objects
that can be used are defined in Section 1.8.3, “Implicit Objects”.

All scripting languages must support the Java Runtime Environment (JRE). All
scripting languages must expose the Java technology object model to the script
environment, especially implicit variables, JavaBeans component properties,
and public methods.

Future versions of the JSP specification may define additional values for the
language attribute and all such values are reserved.

It is a fatal translation error for a directive with a non- java language attribute
to appear after the first scripting element has been encountered.

Default is java.

The value is a fully qualified Java programming language class name, that
names the superclass of the class to which this JSP page is transformed (see
Chapter 11, JSP Container).

This attribute should not be used without careful consideration as it restricts
the ability of the JSP container to provide specialized superclasses that may
improve on the quality of rendered service. See Section 7.5.1, “How to Define
New Implicit Objects” for an alternate way to introduce objects into a JSP page
that does not have this drawback.

An import attribute describes the types that are available to the scripting and
EL environments. The value is as in an import declaration in the Java
programming language, a (comma separated) list of either a fully qualified
Java programming language type name denoting that type, or of a package
name followed by the .* string, denoting all the public types declared in that
package. The import list shall be imported by the translated JSP page
implementation and is thus available to the scripting and EL environments.
Packages java.lang.*, jakarta.servlet.*, jakarta.servlet.jsp.*, and
jakarta.servlet.http.* are imported implicitly by the JSP container. No other
packages may be part of this implicitly imported list. Page authors may use the
include-prelude feature (see Section 3.3.6, “Defining Implicit Includes”) in
order to have additional packages imported transparently into their pages.
This attribute is currently only defined when the value of the 1anguage
directive is java.

session

buffer

autoFlush

info

isErrorPage

Indicates that the page requires participation in an (HTTP) session.

If true then the implicit script language variable named session of type
jakarta.servlet.http.HttpSession references the current/new session for the
page.

If false then the page does not participate in a session; the session implicit
variable is unavailable, and any reference to it within the body of the JSP page
is illegal and shall result in a fatal translation error.

Default is true.

Specifies the buffering model for the initial out JspWriter to handle content
output from the page.

If none, then there is no buffering and all output is written directly through to
the ServletResponse PrintWriter.

The size can only be specified in kilobytes. The suffix kb is mandatory or a
translation error must occur.

If a buffer size is specified then output is buffered with a buffer size not less
than that specified.

Depending upon the value of the autoFlush attribute, the contents of this
buffer is either automatically flushed, or an exception is raised, when
overflow would occur.

The default is buffered with an implementation buffer size of not less than 8kb.
The corresponding JSP configuration element is buffer (see Section 3.3.11,
“Setting Default Buffer Size”).

Specifies whether the buffered output should be flushed automatically (true
value) when the buffer is filled, or whether an exception should be raised
(false value) to indicate buffer overflow. It is illegal, resulting in a translation
error, to set autoFlush to false when buffer=none. The default value is true.

Defines an arbitrary string that is incorporated into the translated page, that
can subsequently be obtained from the page’s implementation of
Servlet.getServletInfo method.

Indicates if the current JSP page is intended to be the URL target of another JSP
page’s errorPage.

If true, then the implicit script language variable exception is defined and its
value is a reference to the offending Throwable from the source JSP page in
error.

If false then the exception implicit variable is unavailable, and any reference
to it within the body of the JSP page is illegal and shall result in a fatal
translation error.

Default is false.

31

errorPage

contentType

52

Defines a URL to a resource to which any Java programming language
Throwable object(s) thrown but not caught by the page implementation are
forwarded for error processing.

The provided URL spec is as in Section 1.2.1, “Relative URL Specifications”.

If the URL names another JSP page then, when invoked that JSP page’s
exception implicit script variable shall contain a reference to the originating
uncaught Throwable.

The default URL is implementation dependent.

Note the Throwable object is transferred by the throwing page implementation
to the error page implementation by saving the object reference on the
common ServletRequest object using the setAttribute method, with a name of
jakarta.servlet.jsp.jspException (for backwards-compatibility) and also
jakarta.servlet.error.exception (for compatibility with the servlet
specification). See Section 1.4.3, “Using JSPs as Error Pages” for more details).
Note: if autoFlush=true then if the contents of the initial JspWriter has been
flushed to the ServletResponse output stream then any subsequent attempt to
dispatch an uncaught exception from the offending page to an errorPage may
fail.

If the page defines an error page via the page directive, any error pages
defined in web.xml will not be used.

Defines the MIME type and the character encoding for the response of the JSP
page, and is also used in determining the character encoding of the JSP page.
Values are either of the form “TYPE” or “TYPE; charset=CHARSET” with an optional
white space after the “;”. “TYPE” is a MIME type, see the IANA registry at
http://www.iana.org/assignments/media-types/index.html for useful values.
“CHARSET”, if present, must be the IANA name for a character encoding.

The default value for “TYPE” is “text/html” for JSP pages in standard syntax, or
“text/xml” for JSP documents in XML syntax. If “CHARSET” is not specified, the
response character encoding is determined as described in Section 4.2,
“Response Character Encoding”.

The corresponding JSP configuration element is default-content-type (see
Section 3.3.10, “Declaring Default Content Type”). See Chapter 4,
Internationalization Issues for complete details on character encodings.

http://www.iana.org/assignments/media-types/index.html

pageEncoding Describes the character encoding for the JSP page. The value is of the form
“CHARSET”, which must be the IANA name for a character encoding. For JSP
pages in standard syntax, the character encoding for the JSP page is the
charset given by the pageEncoding attriute if it is present, otherwise the charset
given by the contentType attribute if it is present, otherwise “IS0-8859-1".
For JSP documents in XML syntax, the character encoding for the JSP page is
determined as described in section 4.3.3 and appendix F.1 of the XML
specification. The pageEncoding attribute is not needed for such documents. It
is a translation-time error if a document names different encodings in its XML
prolog / text declaration and in the pageEncoding attribute. The corresponding
JSP configuration element is page-encoding (see Section 3.3.5, “Declaring Page
Encodings”).
See Chapter 4, Internationalization Issues for complete details on character
encodings.

isELIgnored Defines whether EL expressions are ignored or recognized for this page and
translation unit. If true, EL expressions (of the form ${...} and #{...}) are
ignored by the container. If false, EL expressions (of the form ${...} and
#{...}) are recognized when they appear in template text or action attributes.
The corresponding JSP configuration element is el-ignored (see Section 3.3.2,
“Deactivating EL Evaluation”). The default value varies depending on the
web.xml version - see Section 2.5, “Deactivating EL Evaluation”.

errorOnELNotFound Defines whether a PropertyNotFoundException is thrown when an EL
expression contains an identifier that the EL machinery cannot resolve. The
corresponding JSP configuration element is error-on-el-not-found (see Section
3.3.4, “Unknown EL Identifiers”)

deferredSyntax- Indicates if the character sequence #{ is allowed or not when used as a String

AllowedAsLiteral literal in this page and translation unit. If false (the default value), a
translation error occurs when the character sequence is used as a String
literal. The corresponding JSP configuration element is deferred-syntax-
allowed-as-literal (see Section 3.3.8, “Deferred Syntax (character sequence
#{)”). See Section 3.4, “Backwards Compatibility with JSP 2.0” for more

information.
trimDirective- Indicates how whitespaces in template text should be handled. If true,
Whitespaces template text that contains only whitespaces is removed from the output. The

default is not to trim whitespaces. This attribute is useful to remove the
extraneous whitespaces from the end of a directive that is not followed by
template text. The corresponding JSP configuration element is trim-directive-
whitespaces (see Section 3.3.9, “Removing Whitespaces from Template Text”).
The attribute is ignored by JSP documents (XML syntax).

1.10.2. The taglib Directive
The set of significant tags a JSP container interprets can be extended through a tag library.

The taglib directive in a JSP page declares that the page uses a tag library, uniquely identifies the
tag library using a URI and associates a tag prefix that will distinguish usage of the actions in the

33

library.

If a JSP container implementation cannot locate a tag library description, a fatal translation error
shall result.

It is a fatal translation error for the taglib directive to appear after actions or functions using the
prefix.

A tag library may include a validation method that will be consulted to determine if a JSP page is
correctly using the tag library functionality.

See Chapter 7, Tag Extensions for more specification details. And see Section 7.2.3, “Tag Library
Directive” for an implementation note.

Section 6.3.1, “Namespaces, Standard Actions, and Tag Libraries” describes how the functionality of
this directive can be exposed using XML syntax.

Examples

In the following example, a tag library is introduced and made available to this page using the super
prefix; no other tag libraries should be introduced in this page using this prefix. In this particular
case, we assume the tag library includes a doMagic element type, which is used within the page.

<%@ taglib uri="http://www.mycorp/supertags" prefix="super" %>
<super:doMagic>

</super :doMagic>
Syntax
<%@ taglib (uri="taglLibraryURI" | tagdir="tagDir") prefix="tagPrefix" %>

where the attributes are:

Table JSP.1-9

uri Either an absolute URI or a relative URI specification that uniquely identifies
the tag library descriptor associated with this prefix.
The URI is used to locate a description of the tag library as indicated in
Chapter 7, Tag Extensions.

tagdir Indicates this prefix is to be used to identify tag extensions installed in the
/WEB-INF/tags/ directory or a subdirectory. An implicit tag library descriptor is
used (see Section 8.4, “Packaging Tag Files” for details). A translation error
must occur if the value does not start with /WEB-INF/tags. A translation error
must occur if the value does not point to a directory that exists. A translation
error must occur if used in conjunction with the uri attribute.

54

prefix Defines the prefix string in <prefix>:<tagname> that is used to distinguish a
custom action, e.g <myPrefix:myTag>.
Prefixes starting with jsp:, jspx:, java:, jakarta: and servlet: are reserved.
A prefix must follow the naming convention specified in the XML namespaces
specification.
Empty prefixes are illegal in this version of the specification, and must result
in a translation error.

A fatal translation-time error will result if the JSP page translator encounters a tag with name
prefix: Name using a prefix that is introduced using the taglib directive, and Name is not recognized
by the corresponding tag library.

1.10.3. The include Directive

The include directive is used to substitute text and/or code at JSP page translation-time. The <%@
include file="relativeURLspec" %> directive inserts the text of the specified resource into the page
or tag file. The included file is subject to the access control available to the JSP container. The file
attribute is as in Section 1.2.1, “Relative URL Specifications”.

With respect to the standard and XML syntaxes, a file included via the include directive can use
either the same syntax as the including page, or a different syntax. the semantics for mixed syntax
includes are described in Section 1.10.5, “Including Data in JSP Pages”.

A JSP container can include a mechanism for being notified if an included file changes, so the
container can recompile the JSP page. However, the JSP 4.1 specification does not have a way of
directing the JSP container that included files have changed.

The <jsp:directive.include> element (Section 6.3.5, “The jsp:directive.include Element”) describes
the same information following the XML syntax.

Examples

The following example requests the inclusion, at translation time, of a copyright file. The file may
have elements which will be processed too.

<%@ include file="copyright.html" %>

Syntax

n g
©>

<%0 include file="relativeURLspec

1.10.4. Implicit Includes

Many JSP pages start with a list of taglib directives that activate the use of tag libraries within the
page. In some cases, these are the only tag libraries that are supposed to be used by the JSP page
authors. These, and other common conventions are greately facilitated by two JSP configuration
elements: include-prelude and include-coda. A full description of the mechanism is in Section 3.3.6,

55

“Defining Implicit Includes”.

With respect to the standard and XML syntaxes, just as with the include directive, implicit includes
can use either the same syntax as the including page, or a different syntax. The semantics for mixed
syntax includes are described in Section 1.10.5, “Including Data in JSP Pages”.

1.10.5. Including Data in JSP Pages

Including data is a significant part of the tasks in a JSP page. Accordingly, the JSP 4.1 specification
has two include mechanisms suited to different tasks. A summary of their semantics is shown in
Table JSP.1-10, “Summary of Include Mechanisms in JSP 4.1”.

Table JSP.1-10 Summary of Include Mechanisms in JSP 4.1
Syntax Spec Object Description Section

Include Directive - Translation-time

<%@ include file=... %> file-relative static Content is parsed by Section 1.10.3,
JSP container. “The include
Directive”

Include Action - Request-time

<jsp:include page=... /> page-relative staticand Content is not parsed; it Section 5.4,
dynamic isincluded in place. “<jsp:include>”

The Spec column describes what type of specification is valid to appear in the given element. The
JSP specification requires a relative URL spec. The reference is resolved by the web/application
server and its URL map is involved. Include directives are interpreted relative to the current JSP
file; jsp:include actions are interpreted relative to the current JSP page.

An include directive regards a resource like a JSP page as a static object; i.e. the text in the JSP page
is included. An include action regards a resource like a JSP page as a dynamic object; i.e. the request
is sent to that object and the result of processing it is included.

Implicit include directives can also be requested for a collection of pages through the use of the
<include-prelude> and <include-coda> elements of the JSP configuration section of web.xml.

For translation-time includes, included content can use either the same syntax as the including
page, or a different syntax. For example, a JSP file written in the standard JSP syntax can include a
JSP file written using the XML syntax. The following semantics for translation-time includes apply:

* The JSP container must detect the syntax for each JSP file individually and parse each JSP file
according to the syntax in which it is written.

* A JSP file written using the XML syntax must be well-formed according to the "XML" and
"Namespaces in XML" specifications, otherwise a translation error must occur.

* When including a JSP document (written in the XML syntax), in the resulting XML View of the
translation unit the root element of the included segment must have the default namespace
reset to "". This is so that any namespaces associated with the empty prefix in the including
document are not carried over to the included document.

56

* When a taglib directive is encountered in a standard syntax page, the namespace is applied
globally, and is added to the <jsp:root> element of the resulting XML View of the translation
unit.

 If a taglib directive is encountered in a standard syntax page that attempts to redefine a prefix
that is already defined in the current scope (by a JSP segment in either syntax), a translation
error must occur unless that prefix is being redefined to the same namespace URI.

See Section 10.3, “Examples” for examples of how these semantics are applied to actual JSP pages
and documents.

1.10.6. Additional Directives for Tag Files

Additional directives are available when editing a tag file. See Section 8.5, “Tag File Directives” for
details.

1.11. EL Elements

EL expressions can appear in template data and in attribute values. EL expressions are defined in
more detail in Chapter 2, Expression Language.

EL expressions can be disabled through the use of JSP configuration elements and page directives;
see Section 1.10.1, “The page Directive” and Section 3.3.2, “Deactivating EL Evaluation”.

EL expressions, when not disabled, can be used anywhere within template data.

EL expressions can be used in any attribute of a standard action that this specification indicates can
accept a run-time expression value, and in any attribute of a custom action that has been indicated
to accept run-time expressions (i.e. their associated <rtexprvalue> in the TLD is true ; see the XML
schema for TLDs).

1.12. Scripting Elements

Scripting elements are commonly used to manipulate objects and to perform computation that
affects the content generated.

JSP 2.0 added EL expressions as an alternative to scripting elements. These are described in more
detail in Chapter 2, Expression Language. Note that scripting elements can be disabled through the
use of the scripting-invalid element in the web.xml deployment descriptor (see Section 3.3.3,
“Disabling Scripting Elements”).

There are three other classes of scripting elements: declarations, scriptlets and expressions. The
scripting language used in the current page is given by the value of the language directive (see
Section 1.10.1, “The page Directive”). In JSP 4.1, the only value defined is java.

Declarations are used to declare scripting language constructs that are available to all other
scripting elements. Scriptlets are used to describe actions to be performed in response to some
request. Scriptlets that are program fragments can also be used to do things like iterations and
conditional execution of other elements in the JSP page. Expressions are complete expressions in

57

the scripting language that get evaluated at response time; commonly, the result is converted into a
string and inserted into the output stream.

All JSP containers must support scripting elements based on the Java programming language.
Additionally, JSP containers may also support other scripting languages. All such scripting
languages must support:

* Manipulation of Java objects.

» Invocation of methods on Java objects.

* Catching of Java language exceptions.

The precise definition of the semantics for scripting done using elements based on the Java
programming language is given in Chapter 9, Scripting.

The semantics for other scripting languages are not precisely defined in this version of the
specification, which means that portability across implementations cannot be guaranteed. Precise
definitions may be given for other languages in the future.

Each scripting element has a <% -based syntax as follows:

<%! this is a declaration %>
<% this is a scriptlet %
<%= this is an expression %>

White space is optional after <%!, <%, and <%=, and before %>.

The equivalent XML elements for these scripting elements are described in Section 6.3.7, “Scripting
Elements”.

1.12.1. Declarations

Declarations are used to declare variables and methods in the scripting language used in a JSP page.
A declaration must be a complete declarative statement, or sequence thereof, according to the
syntax of the scripting language specified.

Declarations do not produce any output into the current out stream.

Declarations are initialized when the JSP page is initialized and are made available to other
declarations, scriptlets, and expressions.

The <jsp:declaration> element (Section 6.3.7, “Scripting Elements”) describes the same information
following the XML syntax.

Examples

For example, the first declaration below declares an integer, global to the page. The second
declaration does the same and initializes it to zero. This type of initialization should be done with
care in the presence of multiple requests on the page. The third declaration declares a method
global to the page.

38

<%! int 1; %

<%!int i = 0; %

<%! public String f(int i) { if (i<3) return("..."); ... } %
Syntax

<%! declaration(s) %>

1.12.2. Scriptlets

Scriptlets can contain any code fragments that are valid for the scripting language specified in the
language attribute of the page directive. Whether the code fragment is legal depends on the details of
the scripting language (see Chapter 9, Scripting).

Scriptlets are executed at request-processing time. Whether or not they produce any output into the
out stream depends on the code in the scriptlet. Scriptlets can have side-effects, modifying the
objects visible to them.

When all scriptlet fragments in a given translation unit are combined in the order they appear in
the JSP page, they must yield a valid statement, or sequence of statements, in the specified scripting
language.

To use the %> character sequence as literal characters in a scriptlet, rather than to end the scriptlet,
escape them by typing %\>.

The <jsp:scriptlet> element (Section 6.3.7, “Scripting Elements”) describes the same information
following the XML syntax.

Examples

Here is a simple example where the page changed dynamically depending on the time of day.

<% if

(Calendar.getInstance().get(Calendar.AM_PM) == Calendar.AM) {%>
Good Morning

<% } else { %

Good Afternoon

<%} %

A scriptlet can also have a local variable declaration, for example the following scriptlet just
declares and initializes an integer, and later increments it.

39

<% int i; 1= 0; %
About to increment 1i...
<% it++; %>

Syntax

<% scriptlet %>

1.12.3. Expressions

An expression element in a JSP page is a scripting language expression that is evaluated and the
result is coerced to a String. The result is subsequently emitted into the current out JspWriter
object.

If the result of the expression cannot be coerced to a String the following must happen: If the
problem is detected at translation time, a translation time error shall occur. If the coercion cannot
be detected during translation, a ClassCastException shall be raised at request time.

A scripting language may support side-effects in expressions when the expression is evaluated.
Expressions are evaluated left-to-right in the JSP page. If an expression appears in more than one
run-time attribute, they are evaluated left-to-right in the tag. An expression might change the value
of the out object, although this is not something to be done lightly.

The expression must be a complete expression in the scripting language in which it is written, or a
translation error must occur.

Expressions are evaluated at request processing time. The value of an expression is converted to a
String and inserted at the proper position in the . jsp file.

The <jsp:expression> element (Section 6.3.7, “Scripting Elements”) describes the same information
following the XML syntax.

Examples

This example inserts the current date.
<%= (new java.util.Date()).tolLocaleString() %>

Syntax

<%= expression %>

1.13. Actions

Actions may affect the current out stream and use, modify and/or create objects. Actions may

60

depend on the details of the specific request object received by the JSP page.

The JSP specification includes some actions that are standard and must be implemented by all
conforming JSP containers; these actions are described in Chapter 5, Standard Actions.

New actions are defined according to the mechanisms described in Chapter 7, Tag Extensions and
the jakarta.servlet.jsp.tagext Javadoc and are introduced using the taglib directive.

The syntax for action elements is based on XML. Actions can be empty or non-empty.

1.14. Tag Attribute Interpretation Semantics

The interpretation of all actions start by evaluating the values given to its attributes left to right,
and assigning the values to the attributes. In the process some conversions may be applicable; the
rules for them are described in Section 1.14.2, “Type Conversions”.

Many values are fixed translation-time values, but JSP 4.1 also provides a mechanism for describing
values that are computed at request time, the rules are described in Section 1.14.1, “Request Time
Attribute Values”.

1.14.1. Request Time Attribute Values

An attribute value of the form "<%= scriptlet_expr %>" or '<%= scriptlet_expr %>' denotes a
request-time attribute value. The value denoted is that of the scriptlet expression involved. If
Expression Language evaluation is not deactivated for the translation unit (see Section 3.3.2,
“Deactivating EL Evaluation”) then request-time attribute values can also be specified using the EL
through the syntax '${el_expr}' or "${el_expr}" (as well as '#{el_expr}' or "#{el_expr}").
Containers must also recognize multiple EL expressions mixed with optional string constants. For
example, "Version ${major}.${minor} Installed" is a valid request-time attribute value.

Request-time attribute values can only be used in actions. If a request-time attribute value is used
in a directive, a translation error must occur. If there are more than one such attribute in a tag, the
expressions are evaluated left-to-right.

Quotation is done as in any other attribute value (Section 1.6, “Quoting and Escape Conventions”).

Only attribute values can be denoted this way (the name of the attribute is always an explicit
name). When using scriptlet expressions, the expression must appear by itself (multiple
expressions, and mixing of expressions and string constants are not permitted). Multiple operations
must be performed within the expression. Type conversions are described in Section 1.14.2, “Type
Conversions”.

By default, except in tag files, all attributes have page translation-time semantics. Attempting to
specify a scriptlet expression or EL expression as the value for an attribute that (by default or
otherwise) has page translation time semantics is illegal, and will result in a fatal translation error.
The type of an action element indicates whether a given attribute will accept request-time attribute
values.

Most attributes in the standard actions from Chapter 5, Standard Actions have page translation-time
semantics, but the following attributes accept request-time attribute expressions:

61

» The value attribute of jsp:setProperty (Section 5.2, “<jsp:setProperty>”).
* The beanName attribute of jsp:useBean (Section 5.1, “<jsp:useBean>”).

* The page attribute of jsp:include (Section 5.4, “<jsp:include>”).

» The page attribute of jsp:forward (Section 5.5, “<jsp:forward>").

* The value attribute of jsp:param (Section 5.6, “<jsp:param>”).

» The name attribute of jsp:element (Section 5.11, “<jsp:element>").

1.14.2. Type Conversions

We describe two cases for type conversions.

1.14.2.1. Conversions from String values

A string value can be used to describe a value of a non-String type through a conversion. Whether
the conversion is possible, and, if so, what is it, depends on a target type.

String values can be used to assign values to a type that has a PropertyEditor class as indicated in
the JavaBeans specification. When that is the case, the setAsText(String) method is used. A
conversion failure arises if the method throws an I1leqgalArgumentException.

String values can also be used to assign to the types as listed in Table JSP.1-11, “Conversions from
string values to target type”. The conversion applied is that shown in the table.

A conversion failure leads to an error, whether at translation time or request-time.

Table JSP.1-11 Conversions from string values to target type

Target Type

Bean Property

boolean or
Boolean

byte or Byte

char or Character
double or Double
int or Integer
float or Float
long or Long
short or Short

Object

62

Source String Value

As converted by the corresponding PropertyEditor, if any, using
PropertyEditor. setAsText(string-literal) and PropertyEditor.getValue(). If
there is no corresponding PropertyEditor or the PropertyEditor throws an
exception, ‘null’ if the string is empty, otherwise error.

As indicated in java.lang.Boolean.valueOf(String). This results in false if the
String is empty.

As indicated in java.lang.Byte.valueOf(String) or (byte) @ if the string is
empty.

As indicated in String.charAt(0), or (char) @ if the string is empty.

As indicated in java.lang.Double.valueOf(String), or 0 if the string is empty.
As indicated in java.lang.Integer.valueOf(String), or 0 if the string is empty.
As indicated in java.lang.Float.valueOf(String), or 0 if the string is empty.
As indicated in java.lang.Long.valueOf(String), or 0 if the string is empty.

As indicated in java.lang.Short.valueOf(String), or 0 if the string is empty.

As if new String(string-literal). This results in new String(
empty.

) if the string is

These conversions are part of the generic mechanism used to assign values to attributes of actions:
when an attribute value that is not a request-time attribute is assigned to a given attribute, the
conversion described here is used, using the type of the attribute as the target type. The type of
each attribute of the standard actions is described in this specification, while the types of the
attributes of a custom action are described in its associated Tag Library Descriptor.

A given action may also define additional ways where type/value conversions are used. In
particular, Section 5.2, “<jsp:setProperty>” describes the mechanism used for the setProperty
standard action.

1.14.2.2. Conversions from request-time expressions

Request-time expressions can be assigned to properties of any type. In the case of scriptlet
expressions, no automatic conversions will be performed. In the case of EL expressions, the rules in
section 1.23, "Type Conversion" of the EL 6.1 specification document must be followed.

63

64

Chapter 2. Expression Language

Please consult the Jakarta Expression Language 6.1 specification document for details on the
Expression Language supported by JSP 4.1.

The addition of the EL to the JSP technology facilitates the writing of scriptless JSP pages. These
pages can use EL expressions but can’t use Java scriptlets, Java expressions, or Java declaration
elements. This usage pattern can be enforced through the scripting-invalid JSP configuration
element.

The EL is available in attribute values for standard and custom actions and within template text.

This chapter describes how the expression language is integrated within the JSP 4.1 environment.

2.1. Syntax of Expressions in JSP Pages: ${} vs #{}

There are two constructs to represent EL expressions: ${expr} and #{expr}. While the EL parses and
evaluates ${} and #{} the same way, additional restrictions are placed on the usage of these
delimiters in JSP pages.

An EL expression that is evaluated immediately is represented in JSP with the syntax ${}, while an
EL expression whose evaluation is deferred is represented with the syntax #{}.

2.2. Expressions and Template Text

The EL can be used directly in template text, be it inside the body of a custom or standard actions or
in template text outside of any action.Exceptions are if the body of the tag is tagdependent, or if EL is
turned off (usually for compatibility issues) explicitly through a directive or implicitly; see below.

Only the ${} syntax is allowed for expressions in template text. A translation error will result if #{}
is used in template text unless #{} is turned off via a backwards compatibility mechanism.

All EL expressions in JSP template text are evaluated as Strings, and are evaluated by the JSP engine
immediately when the page response is rendered.

The semantics of an EL expression are the same as with Java expressions: the value is computed
and inserted into the current output. In cases where escaping is desired (for example, to help
prevent cross-site scripting attacks), the JSTL core tag <c:out> can be used. For example:

<c:out value="${anELexpression}" />
The following shows a custom action where two EL expressions are used to access bean properties:

<c:wombat>
One value is ${bean1.a} and another is ${bean2.a.c}
</c:wombat>

65

2.3. Expressions and Attribute Values

EL expressions can be used in any attribute that can accept a run-time expression, be it a standard
action or a custom action. For more details, see the sections on backward compatibility issues,
specifically Section 2.5, “Deactivating EL Evaluation” and Section 2.6, “Disabling Scripting
Elements”.

For example, the following shows a conditional action that uses the EL to test whether a property of
a bean is less than 3.

<c:if test="${beanl.a < 3}">
</c:if>

Note that the normal JSP coercion mechanism already allows for:
<mytags:if test="true" />

An EL expression that appears in an attribute value is processed differently depending on the
attribute’s type category defined in the TLD. Details are provided in the sections below.

2.3.1. Static Attribute

* Defined in the TLD through element <rtexprvalue> set to false.
* Type is always java.lang.String.

» Value must be a String literal (since it is determined at translation time). It is illegal to specify an
expression.

* Type in the TLD is ignored. The String value is converted to the attribute’s target type (as
defined in the tag handler) using the conversions defined in Table JSP.1-11 , “Conversions from
string values to target type”.

2.3.2. Dynamic Attribute

* Defined in the TLD through element <rtexprvalue> set to true.
* If type is not specified in the TLD, defaults to java.lang.0Object.
* Value can be a String literal, a scriptlet expression, or an EL expression using the ${} syntax.

* An EL expression is parsed using ExpressionFactory.createValueExpression() (with an expected
type equal to the type specified in the TLD) and the evaluation of the expression takes place
immediately by calling method getValue() on the ValueExpression. After evaluation of the
expression, the value is coerced to the expected type. The resulting value is passed in to the
setter method for the tag attribute.

66

2.3.3. Deferred Value

Defined in the TLD through element <deferred-value>.
If type is not specified in the TLD, defaults to java.lang.0Object.
Value can be a String literal or an EL expression using the #{} syntax.

An EL expression is parsed using ExpressionFactory.createValueExpression() (with an expected
type equal to the type specified in the TLD). The expression is not evaluated. The result of
parsing the expression is passed directly to the setter method of the tag attribute, whose
argument type must be jakarta.el.ValueExpression. This allows for deferred evaluation of EL
expressions. When the expression is evaluated by the tag handler, the value is coerced to the
expected type. If a static value is provided, it is converted to a ValueExpression where
isLiteralText() returns true.

2.3.4. Deferred Method

Defined in the TLD through element <deferred-method>.
If the method signature is not defined in the TLD, it defaults to void method().
Value can be a String literal or an EL expression using the #{} syntax.

An EL expression is parsed using ExpressionFactory.createMethodExpression() (with a method
signature equal to the method signature specified in the TLD). The result of parsing the
expression is passed directly to the setter method of the tag attribute, whose argument type
must be jakarta.el.MethodExpression. This allows for deferred processing of EL expressions that
identify a method to be invoked on an Object.

A String literal can be provided, as long as the return type of the deferred method signature is
not void. A MethodExpression is created, which when invoked, returns the String literal coerced
to expected return type (the standard EL coercion rules - see section 1.23, "Type Conversion" of
the EL 6.1 specification) apply. A translation error occurs if the return type is void or if the
string literal cannot be coerced to the return type of the deferred method signature.

2.3.5. Dynamic Attribute or Deferred Expression

Defined in the TLD through elements <rtexprvalue> (see Section 2.3.2, “Dynamic Attribute”)
specified together with <deferred-value> (see Section 2.3.3, “Deferred Value”) or <deferred-
method> (see Section 2.3.4, “Deferred Method”).

Value can be a String literal, a scriptlet expression, or an EL expression using the ${} or #{}
syntax. The attribute value is considered a deferred value or a deferred method if the value is
an EL expression using the #{} syntax. It is considered a dynamic attribute otherwise.

The attribute value is processed according to its type category as described above. The only
difference is that the setter method argument must be of type java.lang.Object. The setter
method will normally use instanceof to discriminate whether the attribute value is a dynamic
attribute or a deferred value.

2.3.6. Examples of Using ${} and #{}

As an example, assume a tag with the following three attributes:

67

static - rtexprvalue=false, type=java.lang.String
dynamic - rtexprvalue=true, type=java.lang.String

deferred - rtexprvalue=true, type=java.lang.ValueExpression

The following tags would yield the following results:

Table JSP.2-1 Examples of Using ${} and #{}

Expression Result
<my:tag static="xyz" /> OK
<my:tag static="${x[yl}" /> ERROR
<my:tag static="#{x[y]}" /> ERROR
<my:tag dynamic="xyz" /> OK
<my:tag dynamic="${x[yI}" /> OK
<my:tag dynamic="#{x[y]}" /> ERROR
<my:tag deferred="xyz" /> OK
<my:tag deferred="${x[y1}" /> ERROR
<my:tag deferred="#{x[yl}" /> OK

2.4. Implicit Objects

There are several implicit objects that are available to EL expressions used in JSP pages. These
objects are always available under these names:

68

pageContext - the PageContext object

pageScope - a Map that maps page-scoped attribute names to their values

requestScope - a Map that maps request-scoped attribute names to their values
sessionScope - a Map that maps session-scoped attribute names to their values
applicationScope - a Map that maps application-scoped attribute names to their values

param - a Map that maps parameter names to a single String parameter value (obtained by calling
ServletRequest.getParameter(String name))

paramValues - a Map that maps parameter names to a String[] of all values for that parameter
(obtained by calling ServletRequest.getParameterValues(String name))

header - a Map that maps header names to a single String header value (obtained by calling
HttpServletRequest.getHeader(String name))

headerValues - a Map that maps header names to a String[] of all values for that header (obtained
by calling HttpervletRequest.getHeaders(String))

cookie - a Map that maps cookie names to a single Cookie object. Cookies are retrieved according
to the semantics of HttpServletRequest.getCookies(). If the same name is shared by multiple
cookies, an implementation must use the first one encountered in the array of Cookie objects
returned by the getCookies() method. However, users of the cookie implicit object must be

aware that the ordering of cookies is currently unspecified in the servlet specification.

* initParam - a Map that maps context initialization parameter names to their String parameter
value (obtained by calling ServletContext.getInitParameter(String name))

The following table shows some examples of using these implicit objects:

Table JSP.2-2 Examples of Using Implicit Objects

Expression Result

${pageContext.request.requestURI} The request’s URI (obtained from
HttpServletRequest)

${sessionScope.profile} The session-scoped attribute named profile

(null if not found)

${param.productId} The String value of the productId parameter, or
null if not found

${paramValues.productId} The String[] containing all values of the
productId parameter, or null if not found

2.5. Deactivating EL Evaluation

Since the syntactic patterns ${ expr } and #{ expr } were not reserved in the JSP specifications
before JSP 2.0, there may be situations where such patterns appear but the intention is not to
activate EL expression evaluation but rather to pass through the pattern verbatim. To address this,
the EL evaluation machinery can be deactivated as indicated in Section 3.3.2, “Deactivating EL
Evaluation”.

2.6. Disabling Scripting Elements

With the addition of the EL, some JSP page authors, or page authoring groups, may want to follow a
methodology where scripting elements are not allowed. See Section 3.3.3, “Disabling Scripting
Elements” for more details.

2.7. Unknown EL Identifiers

The default behaviour of the NotFoundELResolver is to return null when attempting to resolve an
unknown identifier. This can mask bugs and therefore may not always be the desired behaviour. To
address this, the default behaviour can be changed as indicated in Section 3.3.4, “Unknown EL
Identifiers”

2.8. Invalid EL Expressions

JSP containers are required to produce a translation error when a syntactically invalid EL
expression is encountered in an attribute value or within template text. The syntax of an EL
expression is described in detail in the EL specification document.

69

2.9. Errors, Warnings, Default Values

JSP pages are mostly used in presentation, and in that usage, experience suggests that it is most
important to be able to provide as good a presentation as possible, even when there are simple
errors in the page. To meet this requirement, the EL does not provide warnings, just default values
and errors. Default values are type-correct values that are assigned to a subexpression when there
is some problem. An error is an exception thrown (to be handled by the standard JSP machinery).

2.10. Resolution of Variables and their Properties

The EL API provides a generalized mechanism, an ELResolver, implemented by the JSP container
and which defines the rules that govern the resolution of variables and object properties.

The ELResolver shown in Figure JSP.2-1 JSP Resolver Hierarchy is passed to all EL expressions that
appear in a JSP page or tag file. It is an instance of jakarta.el.CompositeELResolver that contains the
following component ELResolvers, in order:

1. jsp.ImplicitObjectELResolver
Resolves the implicit objects mentioned in Section 2.4, “Implicit Objects”.

2. All ELResolvers added via JspApplicationContext.addELResolver(), in the same order in which
they were registered.
This itself can take the form of a el.CompositeELResolver. This will include the ELResolver
registered by Faces.

The ELResolver returned by ExpressionFactory.getStreamELResolver().
jakarta.el.StaticFieldResolver

jakarta.el.MapELResolver - constructed in read/write mode.
jakarta.el.ResourceBundleELResolver

jakarta.el.ListELResolver - constructed in read/write mode.

jakarta.el.ArrayELResolver - constructed in read/write mode.

© ® N o U ok W

jakarta.el.RecordELResolver - always read only.

10. jakarta.el.BeanELResolver - constructed in read/write mode.
Handles all cases where base != null

11. jsp.ScopedAttributeELResolver
Handles cases where base == null.
Provides a map for other identifiers by looking up its value as an attribute, according to the
behavior of PageContext.findAttribute(String) on the pageContext object. For example:

${product}

This expression will look for the attribute named product, searching the page, request, session,
and application scopes, and will return its value if the attribute is found.

12. jsp.ImportELResolver Handles cases where base == null and property represents and imported
class or static import.

70

13. jsp.NotFoundELResolver
Always resolves the requested value, returning null

Figure JSP.2-1 JSP Resolver Hierarchy

(el.CompositeELResolver)

—C jsp.ImplicitObjectELResolver)

—(el.CompositeELResolver)

_(JSF’s el.CompositeELResolver)

—(jsf.ImplicitObjectELResolver)
—(jsf. ManagedBeanELResolver)

_< ELResolvers in faces-config.xml

jsf.VariableResolverChainWrapper
(Supports legacy jsf.VariableResolvers)

jsf.PropertyResolverChainWrapper
(Supports legacy jsf.PropertyResolvers)

—(ELResolvers from Application.addELResolver()

Other ELResolvers added via
JspApplicationContext.addELResolver()

el.MapELResolver

__/

el.ResourceBundleELResolver

el.ListELResolver

el.ArrayELResolver

el.RecordELResolver

el.BeanELResolver

jsp.ScopedAttributeELResolver

jsp.ImportELResolver

jsp.NotFoundELResolver

LLLLLLLL L

2.11. Functions

The EL has qualified functions, reusing the notion of qualification from XML namespaces (and
attributes), XSL functions, and JSP custom actions. Functions are mapped to public static methods in
Java classes. In JSP, the map is specified in the TLD.

Function mapping information is bound into the ValueExpression or MethodExpression at parse-time
and is serialized along with the state of the expression. No function mapper needs to be provided at
evaluation time.

2.11.1. Invocation Syntax

The full syntax is that of qualified n-ary functions:
ns:f(al,a2, ..., an)

As with the rest of EL, this element can appear in attributes and directly in template text.

The prefix ns must match the prefix of a tag library that contains a function whose name and
signature matches the function being invoked (f), or a translation error must occur. If the prefix is
omitted, the tag library associated with the default namespace is used (this is only possible in JSP
documents).

In the following standard syntax example, func1 is associated with some-taglib :

<%@ taglib prefix="some" uri="http://acme.com/some-taglib" %>
${some:func1(true)}

In the following JSP document example, both func2 and func3 are associated with default-taglib:

<some:tag xmlns="http://acme.com/default-taglib"
xmlns:some="http://acme.com/some-taglib"
xmlns:jsp="http://java.sun.com/JSP/Page">
<some:other value="${func2(true)}">
${func3(true)}
</some:other>
</some:tag>

2.11.2. Tag Library Descriptor Information

Each tag library may include zero or more n-ary (static) functions. The Tag Library Descriptor (TLD)
associated with a tag library lists the functions.

Each such function is given a name (as seen in the EL), and a static method in a specific class that
will implement the function. The class specified in the TLD must be a public class, and must be
specified using a fully-qualified class name (including packages). The specified method must be a

72

public static method in the specified class, and must be specified using a fully-qualified return type
followed by the method name, followed by the fully-qualified argument types in parenthesis,
separated by commas (see the XML Schema for Tag Library Descriptors for a full description of this
syntax). Failure to satisfy these requirements shall result in a translation-time error.

A tag library can have only one function element in the same tag library with the same value for
their name element. If two functions have the same name, a translation-time error shall be
generated.

Reference the function element in the XML Schema for Tag Library Descriptors for how to specify a
function in the TLD.

2.11.3. Example

The following TLD fragment describes a function with name nickname that is intended to fetch the
nickname of the user:

<taglib>

<function>
<name>nickname</name>
<function-class>mypkg.MyFunctions</function-class>
<function-signature>

java.lang.String nickName(java.lang.String)

</function-signature>

</function>

</taglib>

The following EL fragment shows the invocation of the function:

<h2>Dear ${my:nickname(user)}</h2>

2.11.4. Semantics

« If the function has no prefix, the default namespace is used and the function is not validated. If
the function has a prefix, assume the namespace as that associated with the prefix.

Let ns be the namespace associated with the function, and f be the name of the function.

* Locate the TLD associated with ns. If none can be found, this shall be a translation-time error.

» Locate the function element with a name subelement with value f in that TLD. If none can be
found, this shall be a translation-time error.

* Locate the public class with name equal to the value of the function-class element. Locate the
public static method with name and signature equal to the value of the function-signature
element. If any of these don’t exist, a translation-time error shall occur.

* Evaluate each argument to the corresponding type indicated in the signature.

73

74

Evaluate the public static Java method. The resulting value is the value returned by the method
evaluation, or null if the Java method is declared to return void. If an exception is thrown
during the method evaluation, the exception must be wrapped in an ELException and the
ELException must be thrown.

The introduction in Expression Language 3.0 of Lambdas and the ability to import
o methods at runtime via an ImportHandler, mean it is no longer possible to validate
functions without a prefix at translation time.

Chapter 3. JSP Configuration

This chapter describes the JSP configuration information, which is specified in the Web Application
Deployment Descriptor in WEB-INF/web.xml. For Servlet 6.2, the Web Application Deployment
Descriptor is defined using XML Schema, and imports the elements described in the XML Schema
for JSP 4.1 Deployment Descriptor. See the XML Schema for the details on how to specify JSP
configuration information in a Web Application.

3.1. JSP Configuration Information in web.xml

A Web Application can include general JSP configuration information in its web.xml file that is to be
used by the JSP container. The information is described through the jsp-config element and its
subelements.

The jsp-config element is a subelement of web-app that is used to provide global configuration
information for the JSP files in a Web Application. A jsp-config has two subelements: taglib and
jsp-property-group, defining the taglib mapping and groups of JSP files respectively.

3.2. Taglib Map

The web.xml file can include an explicit taglib map between URIs and TLD resource paths described
using taglib elements in the Web Application Deployment descriptor.

The taglib element is a subelement of jsp-config that can be used to provide information on a tag
library that is used by a JSP page within the Web Application. The taglib element has two
subelements: taglib-uri and taglib-location.

A taglib-uri element describes a URI identifying a tag library used in the web application. The body
of the taglib-uri element may be either an absolute URI specification, or a relative URI as in Section
1.2.1, “Relative URL Specifications”. There should be no entries in web.xml with the same taglib-uri
value.

A taglib-location element contains a resource location (as indicated in Section 1.2.1, “Relative URL
Specifications”) of the Tag Library Description File for the tag library.

3.3. JSP Property Groups

A JSP property group is a collection of properties that apply to a set of files that represent JSP pages.
These properties are defined in one or more jsp-property-group elements in the Web Application
deployment descriptor.

Most properties defined in a JSP property group apply to an entire translation unit, that is, the
requested JSP file that is matched by its URL pattern and all the files it includes via the include
directive. The exceptions are the page-encoding and is-xml properties, which apply separately to
each JSP file matched by the URL pattern.

The applicability of a JSP property group is defined through one or more URL patterns. URL
patterns use the same syntax as defined in Chapter SRV.12 of the Servlet 6.2 specification, but are

75

bound at translation time. All the properties in the group apply to the resources in the Web
Application that match any of the URL patterns. There is an implicit property: that of being a JSP
file. JSP Property Groups do not affect tag files.

If a resource matches a URL pattern in both a <servlet-mapping> and a <jsp-property-group>, the
pattern that is most specific applies (following the same rules as in the Servlet specification). If the
URL patterns are identical, the <jsp-property-group> takes precedence over the <servlet-mapping>. If
at least one <jsp-property-group> contains the most specific matching URL pattern, the resource is
considered to be a JSP file, and the properties in that <jsp-property-group> apply. In addition, if a
resource is considered to be a JSP file, all include-prelude and include-coda properties apply from
all the <jsp-property-group> elements with matching URL patterns (see Section 3.3.6, “Defining
Implicit Includes”).

3.3.1. JSP Property Groups

A jsp-property-group is a subelement of jsp-config. The properties that can currently be described
in a jsp-property-group include:

 Indicate that a resource is a JSP file (implicit).

* Control disabling of EL evaluation.

» Control disabling of Scripting elements.

* Indicate page Encoding information.

* Prelude and Coda automatic includes.

* Indicate that a resource is a JSP document.

* Indicate that the deferred syntax (initiated by the character sequence #{) is allowed as a String
literal.

* Control handling of whitespaces in template text.
* Indicate response ContentType information.
* Indicate response buffer size.

* Control handling of undeclared namespaces in a JSP page.

3.3.2. Deactivating EL Evaluation

Since the syntactic pattern ${expr} was not reserved in the JSP specifications before JSP 2.0, and the
syntactic pattern #{expr} was not reserved before JSP 2.1, there may be situations where such
patterns appear but the intention is not to activate EL expression evaluation but rather to pass
through the pattern verbatim. To address this, the EL evaluation machinery can be deactivated as
indicated in this section.

Each JSP page has a default setting as to whether to ignore EL expressions. When ignored, the
expression is passed through verbatim. The default setting does not apply to tag files, which always
default to evaluating expressions.

The default mode for JSP pages in a Web Application delivered using a web.xml using the Servlet 2.3
or earlier format is to ignore EL expressions; this provides for backward compatibility.

76

The default mode for JSP pages in a Web Application delivered using a web.xml using the Servlet 2.4
or later format is to evaluate EL expressions with the ${} syntax. Expressions using the #{} are
evaluated starting with JSP 2.1. See Section 3.4, “Backwards Compatibility with JSP 2.0” for more
details on the evaluation of #{} expressions.

The default mode can be explicitly changed by setting the value of the el-ignored element. The el-
ignored element is a subelement of jsp-property-group (see Section 3.3.1, “JSP Property Groups”) It
has no subelements. Its valid values are true and false.

For example, the following web.xml fragment defines a group that deactivates EL evaluation for all
JSP pages delivered using the .jsp extension:

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<el-ignored>true</el-ignored>

</jsp-property-group>

Page authors can override the default mode through the isELIgnored attribute of the page directive.
For tag files, there is no default, but the isELIgnored attribute of the tag directive can be used to
control the EL evaluation settings.

Table JSP.3-1, “EL Evaluation Settings for JSP Pages” summarizes the EL evaluation settings for JSP
pages, and their meanings:

Table JSP.3-1 EL Evaluation Settings for JSP Pages

JSP Configuration <el- Page Directive isELIgnored EL Encountered

ignored>

unspecified unspecified Ignored if web.xml <= 2.3 Evaluated
otherwise.

false unspecified Evaluated

true unspecified Ignored

don’t care false Evaluated

don’t care true Ignored

Table JSP.3-2 , “EL Evaluation Settings for Tag Files” summarizes the EL evaluation settings for tag
files, and their meanings:

Table JSP.3-2 EL Evaluation Settings for Tag Files

Tag Directive isELIgnored EL Encountered
unspecified Evaluated

false Evaluated

true Ignored

The EL evaluation setting for a translation unit also affects whether the \$ and \# quote sequences

77

are enabled for template text and attribute values in a JSP page, document, or tag file. When EL
evaluation is disabled, \$ and \# will not be recognized as quotes, whereas when EL evaluation is
enabled, \$ and \# will be recognized as quotes for § and # respectively. See Section 1.6, “Quoting
and Escape Conventions” and Section 6.2.2, “Overview of Syntax of JSP Documents” for details.

3.3.3. Disabling Scripting Elements

With the addition of the EL, some JSP page authors, or page authoring groups, may want to follow a
methodology where scripting elements are not allowed. Previous versions of JSP enabled this
through the notion of a TaglLibraryValidator that would verify that the elements are not present. JSP
2.0 made this slightly easier through a JSP configuration element.

The scripting-invalid element is a subelement of jsp-property-group (see Section 3.3.1, “JSP
Property Groups”). It has no subelements. Its valid values are true and false. Scripting is enabled by
default. Disabling scripting elements can be done by setting the scripting-invalid element to true
in the JSP configuration.

For example, the following web.xml fragment defines a group that disables scripting elements for all

JSP pages delivered using the . jsp extension:

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<script >true</scripting-invalid>
</jsp-property-group>

Table JSP.3-3 , “Scripting Settings” summarizes the scripting settings and their meanings:

Table JSP.3-3 Scripting Settings

JSP Configuration <scripting-invalid> Scripting Encountered
unspecified Valid

false Valid

true Translation Error

3.3.4. Unknown EL Identifiers

The default behaviour of the NotFoundELResolver is to return null when attempting to resolve an
unknown identifier. This can mask bugs and therefore may not always be the desired behaviour. To
address this, the default behaviour can be changed as indicated in this section.

The default behaviour can be explicitly changed by setting the value of the error-on-el-not-found
element. The error-on-el-not-found element is a subelement of jsp-property-group (see Section
3.3.1, “JSP Property Groups”) It has no subelements. Its valid values are true and false.

For example, the following web.xml fragment defines a group that configures all JSP pages delivered
using the .jsp extension to throw a PropertyNotFoundException if an EL expression contains an
unknown identifier.:

78

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<error-on-el-not-found>true</error-on-el-not-found>
</jsp-property-group>

Page authors can override the default mode through the errorOnELNotFound attribute of the page
directive and the errorOnELNotFound attribute of the tag directive can.

Table JSP.3-4 , “EL Evaluation Unknown Identifier for JSP Pages” summarizes the EL unknown
identifier settings for JSP pages, and their meanings:

Table JSP.3-4 EL Evaluation Unknown Identifier for JSP Pages

JSP Configuration <error- Page Directive Unknown Identifier Encountered

on-el-not-found> errorOnELNotFound

unspecified unspecified null is returned by ELResolver

false unspecified null is returned by ELResolver

true unspecified PropertyNotFoundException thrown by
ELResolver

don’t care false null is returned by ELResolver

don’t care true PropertyNotFoundException thrown by
ELResolver

Table JSP.3-5 , “EL Unknown Identifier Settings for Tag Files” summarizes the EL unknown
identifier settings for tag files, and their meanings:

Table JSP.3-5 EL Unknown Identifier Settings for Tag Files

Tag Directive errorOnELNotFound Unknown Identifier Encountered

unspecified null is returned by ELResolver

false null is returned by ELResolver

true PropertyNotFoundException thrown by ELResolver

3.3.5. Declaring Page Encodings

The JSP configuration element page-encoding can be used to easily set the pageEncoding property of a
group of JSP pages defined using the jsp-property-group element. This is only needed for pages in
standard syntax, since for documents in XML syntax the page encoding is determined as described
in section 4.3.3 and appendix F.1 of the XML specification.

The page-encoding element is a subelement of jsp-property-group (see Section 3.3.1, “JSP Property
Groups”). It has no subelements. Its valid values are those of the pageEncoding page directive. It is a
translation-time error to name different encodings in the pageEncoding attribute of the page
directive of a JSP page and in a JSP configuration element matching the page. It is also a translation-
time error to name different encodings in the prolog / text declaration of the document in XML
syntax and in a JSP configuration element matching the document. It is legal to name the same

79

encoding through multiple mechanisms.

For example, the following web.xml fragment defines a group that explicitly assigns Shift_JIS to all
JSP pages and included JSP segments in the /ja subdirectory of the web application:

<jsp-property-group>
<url-pattern>/ja/*</url-pattern>
<page-encoding>Shift_JIS</page-encoding>

</jsp-property-group>

3.3.6. Defining Implicit Includes

The include-prelude element is an optional subelement of jsp-property-group. It has no
subelements. Its value is a context-relative path that must correspond to an element in the Web
Application. When the element is present, the given path will be automatically included (as in an
include directive) at the beginning of the JSP page in the jsp-property-group. When there is more
than one include-prelude element in a group, they are to be included in the order they appear.
When more than one jsp-property-group applies to a JSP page, the corresponding include-prelude
elements will be processed in the same order as they appear in the JSP configuration section of
web. xml.

The include-coda element is an optional subelement of jsp-property-group. It has no subelements.
Its value is a context-relative path that must correspond to an element in the Web Application.
When the element is present, the given path will be automatically included (as in an include
directive) at the end of the JSP page in the jsp-property-group. When there is more than one
include-coda element in a group, they are to be included in the order they appear. When more than
one jsp-property-group applies to a JSP page, the corresponding include-coda elements will be
processed in the same order as they appear in the JSP configuration section of web.xml . Note that
these semantics are in contrast to the way url-pattern s are matched for other configuration
elements.

Preludes and codas follow the same rules as statically included JSP segments. In particular, start
tags and end tags must appear in the same file (see Section 1.3.3, “Start and End Tags”).

For example, the following web.xml fragment defines two groups. Together they indicate that
everything in directory /two/ has /WEB-INF/jspf/preludel.jspf and /WEB-INF/jspf/prelude2.jspf at
the beginning and /WEB-INF/jspf/codal.jspf and /WEB-INF/jspf/coda2.jspf at the end, in that order,
while other .jsp files only have /WEB-INF/jspf/preludel.jspf at the beginning and /WEB-
INF/jspf/codal.jspf at the end.

<jsp-property-group>
<url-pattern>*.jsp</url-pattern>
<include-prelude>/WEB-INF/jspf/preludel.jspf</include-prelude>
<include-coda>/WEB-INF/jspf/codal.jspf</include-coda>
</jsp-property-group>
<jsp-property-group>
<url-pattern>/two/*</url-pattern>
<include-prelude>/WEB-INF/jspf/prelude2.jspf</include-prelude>

80

<include-coda>/WEB-INF/jspf/coda2.jspf</include-coda>
</jsp-property-group>

3.3.7. Denoting XML Documents

The JSP configuration element is-xml can be used to denote that a group of files are JSP documents,
and thus must be interpreted as XML documents.

The is-xml element is a subelement of jsp-property-group (see Section 3.3.1, “JSP Property Groups”).
It has no subelements. Its valid values are true and false. When false, the files in the associated
property group are assumed to not be JSP documents, unless there is another property group that
indicates otherwise. The files are still considered to be JSP pages due to the implicit property given
by the <jsp-property-group> element.

For example, the following web.xml fragment defines two groups. The first one indicates that those
files with extension .jspx, which is the default extension for JSP documents, are instead just plain
JSP pages. The last group indicates that files with extension .svg are actually JSP documents (which
most likely are generating SVG files).

<jsp-property-group>
<url-pattern>*.jspx</url-pattern>
<is-xml>false</is-xml>
</jsp-property-group>
<jsp-property-group>
<url-pattern>*.svg</url-pattern>
<is-xml>true</is-xml>
</jsp-property-group>

3.3.8. Deferred Syntax (character sequence #{)

As of JSP 2.1, the character sequence #{ is reserved for EL expressions. Consequently, a translation
error occurs if the #{ character sequence is used as a String literal (in template text of a JSP 2.1+
container or as an attribute value for a tag-library where jsp-version is 2.1+).

The deferred-syntax-allowed-as-literal element is a subelement of jsp-property-group (See Section
3.3.1, “JSP Property Groups”). It has no subelements. Its valid values are true and false, and it is
disabled (false) by default. Allowing the character sequence #{ when used as a String literal can be
done by setting the deferred-syntax-allowed-as-literal element to true in the JSP configuration.

Page authors can override the default value through the deferredSyntaxAllowedAsLiteral attribute
of the page directive (see Section 1.10, “Directives”). See also Section 3.4, “Backwards Compatibility
with JSP 2.0” for more information.

3.3.9. Removing Whitespaces from Template Text

Whitespaces in template text of a JSP page are preserved by default (See Section 1.3.8, “White
Space”). Unfortunately, this means that unwanted extraneous whitespaces often make it into the
response output.

81

For example, the following code snippet (wWhere <EOL> represents the end-of-line character(s))

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %><EOL>

<%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml" %><EOL>
Hello World!<EOL>

would generate the following output:

<EOL>
<EOL>
Hello World!<EOL>

For JSP pages (standard syntax), the JSP configuration element trim-directive-whitespaces can be
used to indicate that template text containing only whitespaces must be removed from the response
output. It has no effect on JSP documents (XML syntax). In the example above, the first <EOL>
represents template text that contains only whitespaces and would therefore be removed. <EOL>
HelloWorld! <EOL> represents template text that does not contain only whitespaces and would
therefore be preserved as-is.

<EOL>
Hello World!<EOL>

The trim-directive-whitespaces element is a subelement of jsp-property-group (See Section 3.3.1,
“JSP Property Groups™). It has no subelements. Its valid values are true and false, and it is disabled
(false) by default. Enabling the trimming of whitespaces can be done by setting the trim-directive-
whitespaces element to true in the JSP configuration.

Page authors can override the default value through the trimDirectiveWhitespaces attribute of the
page directive (see Section 1.10, “Directives”).

3.3.10. Declaring Default Content Type

The JSP configuration element default-content-type can be used to specify the default contentType
property of a group of JSP pages defined using the jsp-property-group element.

The valid values for the default-content-type element are those of the contentType attribute of the
page directive. It specifies the default response contentType if the page directive does not include a
contentType attribute.

3.3.11. Setting Default Buffer Size

The JSP configuration element buffer can be used to specify the default buffering model for the
initial out JspWriter for a group of JSP pages defined using the the jsp-property-group element.

The valid values for the buffer element are those of the buffer attribute of the page directive. It can
be used to specify if buffering should be used for the output to Response, and if so, the size of the

82

buffer to use.

3.3.12. Raising Errors for Undeclared Namespaces

The default behavior when a tag with unknown namespace is used in a JSP page is to silently ignore
it. For most page authors, this is often a source of errors. To make the mistakes obvious, this JSP
configuration element can be used to force an error when an unknown namespace is used in a JSP
page, as is already the case for JSP documents (XML syntax).

The error-on-undeclared-namespace element is a subelement of jsp-property-group. It has no
subelements. Its valid values are true and false, with false being the default.

If it is set to true, then an error must be raised during the translation time, when an undeclared tag
is used in a JSP page.

3.4. Backwards Compatibility with JSP 2.0

As of JSP 2.1, the character sequence #{ was reserved for EL expressions.

When used as a tag attribute value, the #{expr} syntax is evaluated by the container only if the the
jsp-version element specified in the TLD has the value 2.1 or higher. If the version specified is less
than 2.1, then the #{expr} syntax is simply processed as a String literal.

When used in template text in a JSP page, the #{ character sequence triggers a translation error,
unless specifically allowed through a configuration setup. This is because the #{} syntax is
associated exclusively with deferred-evaluation in JSP 2.1 and does not make sense in the context of
template text (only immediate evaluation using the ${expr} syntax makes sense in template text).

In a tag file, #{expr} in template text is handled according to the tag file’s JSP version. If the tag file’s
JSP version is 2.0 or less, #{expr} in template text will not cause any error. If the tag file’s JSP
version is equal to or greater than 2.1, #{expr} in template text must cause an error, unless it has
been escaped or the tag file contains a deferredSyntaxAllowedAsLiteral tag directive attribute set to
TRUE. See Section 8.4.2, “Packaging in a JAR”, and Section 8.4.3, “Packaging Directly in a Web
Application”, for how the JSP version of a tag file is determined.

83

84

Chapter 4. Internationalization Issues

This chapter describes requirements for internationalization with Jakarta Server Pages.

The JSP specification by itself does not provide a complete platform for internationalization. It is
complemented by functionality provided by the underlying Java platform, the Servlet APIs, and by
tag libraries such as the JSP Standard Tag Library (JSTL) with its collection of internationalization
and formatting actions. For complete information, see the respective specifications.

Primarily, this specification addresses the issues of character encodings.

The Java programming language represents characters internally using the Unicode character
encoding, which provides support for most languages. As of Java 8, the Unicode 6.2 character set is
supported. For storage and transmission over networks, however, many other character encodings
are used. The Java SE platform therefore also supports character conversion to and from other
character encodings. Any Java runtime must support the Unicode transformations UTF-8, UTF-16BE,
and UTF-16LE as well as the ISO-8859-1 (Latin-1) and US-ASCII character encodings, but most
implementations support many more.

In JSP pages and in JSP configuration elements, character encodings are named using the names
defined in the IANA charset registry:

http://www.iana.org/assignments/character-sets

4.1. Page Character Encoding

The page character encoding is the character encoding in which the JSP page or tag file itself is
encoded. The character encoding is determined for each file separately, even if one file includes
another using the include directive (Section 1.10.3, “The include Directive”). A detailed algorithm
for determining the page character encoding of a JSP page or tag file can be found in Appendix B,
Page Encoding Detection.

4.1.1. Standard Syntax

For JSP pages in standard syntax, the page character encoding is determined from the following
sources:

* A byte order mark (BOM)

» A JSP configuration element page-encoding value whose URL pattern matches the page.

» The pageEncoding attribute of the page directive of the page. It is a translation-time error to name
different encodings in the pageEncoding attribute of the page directive of a JSP page and in a JSP
configuration element whose URL pattern matches the page.

» The charset value of the contentType attribute of the page directive. This is used to determine
the page character encoding if neither a JSP configuration element page-encoding nor the
pageEncoding attribute are provided.

* If none of the above is provided, ISO-8859-1 is used as the default character encoding.

85

http://www.iana.org/assignments/character-sets

For tag files in standard syntax, the page character encoding is determined from a BOM or the
pageEncoding attribute of the tag directive of the tag file (in this precedence order), or is IS0-8859-1
if neither is specified.

A BOM consists of the Unicode character code U+FEFF at the beginning of a data stream, where it is
used to define the byte order and encoding form of unmarked plaintext files.

The exact byte representation of the BOM depends on the particular encoding of the text file, as
follows:

Table JSP.4-1 Byte representations of the BOM

Bytes Encoding Form

FE FF UTF-16, big-endian
FF FE UTF-16, little-endian
00 00 FE FF UTF-32, big-endian
FF FE 00 00 UTF-32, little-endian
EF BB BF UTEF-8

The above byte sequences have been reserved to identify a BOM at the beginning of JSP pages in
standard syntax, and will not appear in the page’s output.

The pageEncoding and contentType attributes determine the page character encoding of only the file
that physically contains them. Parsers are only required to take these attributes into consideration
for character encoding detection if the directive appears at the beginning of the page or tag file and
if the character encoding is an extension of ASCII, that is, if byte values 0 to 127 have the same
meaning as in ASCII, at least until the attributes are found. For character encodings where this is
not the case (including UTF-16 and EBCDIC -based encodings), the JSP configuration element page-
encoding or a BOM should be used.

When using a BOM, it is legal to describe the character encoding in a JSP configuration element
page-encoding or a pageEncoding attribute of the page directive of the page, as long as they are
consistent.

4.1.2. XML Syntax

For JSP documents and tag files in XML syntax, the page character encoding is determined as
described in section 4.3.3 and appendix F.1 of the XML specification.

For JSP documents in XML syntax, it is legal to also describe the character encoding in a JSP
configuration element page-encoding or a pageEncoding attribute of the page directive of the
document, as long as they are consistent. It is a translation-time error to name different encodings
in two or more of the following: the XML prolog / text declaration of a JSP document, the
pageEncoding attribute of the page directive of the JSP document, and in a JSP configuration element
whose URL pattern matches the document.

Note that for tag files in XML syntax, it is illegal for the tag directive to include a pageEncoding
attribute: the encoding is inferred solely by using the conventions for XML documents.

86

A JSP container must raise a translation-time error if an unsupported page character encoding is
requested.

4.2. Response Character Encoding

The response character encoding is the character encoding of the response generated from a JSP
page, if that response is in the form of text. It is primarily managed as the
jakarta.servlet.ServletResponse object’s characterEncoding property.

The JSP container determines an initial response character encoding along with the initial content
type for a JSP page and calls ServletResponse.setContentType() with this information before
processing the page. JSP pages can set initial content type and initial response character encoding
using the contentType attribute of the page directive. The JSP configuration element default-content-
type can also be used to set the default initial content type and default initial response chrarcter
encoding of a group of JSP pages using the jsp-property-group element. See Section 3.3.10,
“Declaring Default Content Type”.

The initial response content type is set to the TYPE value of the contentType attribute of the page
directive. If the page doesn’t provide this attribute, the initial content type is “text/html” for JSP
pages in standard syntax and “text/xml” for JSP documents in XML syntax.

The initial response character encoding is set to the CHARSET value of the contentType attribute of the
page directive. If the page doesn’t provide this attribute or the attribute doesn’t have a CHARSET
value, the initial response character encoding is determined as follows:

* For documents in XML syntag, it is UTF-8 .

» For JSP pages in standard syntax, it is the character encoding specified by the BOM, by the
pageEncoding attribute of the page directive, or by a JSP configuration element page-encoding
whose URL pattern matches the page. Only the character encoding specified for the requested
page is used; the encodings of files included via the include directive are not taken into
consideration. If there’s no such specification, no initial response character encoding is passed
to ServletResponse.setContentType() - the ServletResponse object’s default, IS0-8859-1, is used.

After the initial response character encoding has been set, the JSP page’s content can dynamically
modify it by calling the ServletResponse object’s setCharacterEncoding and setlocale methods
directly or indirectly. A number of JSTL internationalization and formatting actions call
ServletResponse.setlocale(), which may affect the response character encoding. See the Servlet
and JSTL specifications for more information.

Note that the response character encoding can only be changed until the response is committed.
Data is sent to the response stream on buffer flushes for buffered pages, or on encountering the
first content (beware of whitespace) on unbuffered pages. Whitespace is notoriously tricky for JSP
Pages in JSP syntax, but much more manageable for JSP documents in XML syntax.

4.3. Request Character Encoding

The request character encoding is the character encoding in which parameters in an incoming
request are interpreted. It is primarily managed as the ServletRequest object’s characterEncoding

87

property.

The JSP specification doesn’t provide functionality to handle the request character encoding
directly. To control the request character encoding from JSP pages without embedded Java code, the
JSTL <fmt:requestEncoding> can be used.

4.4. XML View Character Encoding

The XML view character encoding is the character encoding used for externalizing the XML view of
a JSP page or tag file.

The XML view character encoding is always UTF-8.

4.5. Delivering Localized Content

The JSP specification does not mandate any specific approach for structuring localized content, and
different approaches are possible. Two common approaches are to use a template taglib and pull
localized strings from a resource repository, or to use-per-locale JSP pages. Each approach has
benefits and drawbacks. The JSTL internationalization and formatting actions provide support for
retrieving localized content from resource bundles and thus support the first approach. Some users
have been using transformations on JSP documents to do simple replacement of elements by
localized strings, thus maintaining JSP syntax with no performance cost at run-time. Combinations
of these approaches also make sense.

88

Chapter 5. Standard Actions

This chapter describes the standard actions of Jakarta Server Pages 4.1 (JSP 4.1). Standard actions
are represented using XML elements with a prefix of jsp (though that prefix can be redefined in the
XML syntax). A translation error will result if the JSP prefix is used for an element that is not a
standard action.

5.1. <jsp:useBean>

A jsp:useBean action associates an instance of a Java programming language object defined within a
given scope and available with a given id with a newly declared scripting variable of the same id.

When a <jsp:useBean> action is used in an scriptless page, or in an scriptless context (as in the body
of an action so indicated), there are no Java scripting variables created but instead an EL variable is
created.

The jsp:useBean action is quite flexible; its exact semantics depends on the attributes given. The
basic semantic tries to find an existing object using id and scope. If the object is not found it will
attempt to create the object using the other attributes.

It is also possible to use this action to give a local name to an object defined elsewhere, as in
another JSP page or in a servlet. This can be done by using the type attribute and not providing
class or beanName attributes.

At least one of type and class must be present, and it is not valid to provide both class and beanName.
If type and class are present, class must be assignable to type (in the Java platform sense). For it not
to be assignable is a translation-time error.

The attribute beanName specifies the name of a Bean, as specified in the JavaBeans specification. It is
used as an argument to the instantiate method in the java.beans.Beans class. It must be of the form
a.b.c, which may be either a class, or the name of a resource of the form a/b/c.ser that will be
resolved in the current ClassLoader. If this is not true, a request-time exception, as indicated in the
semantics of the instantiate method will be raised. The value of this attribute can be a request-time
attribute expression.

The id Attribute

The id="name" attribute/value tuple in a jsp:useBean action has special meaning to a JSP container,
at page translation time and at client request processing time. In particular:

* the name must be unique within the translation unit, and identifies the particular element in
which it appears to the JSP container and page.

Duplicate id’s found in the same translation unit shall result in a fatal translation error.

* The JSP container will associate an object (a JavaBean component) with the named value and
accessed via that name in various contexts through the pagecontext object described later in this
specification.

89

The name is also used to expose a variable (name) in the page’s scripting language environment.
The scope of the scripting language variable is dependent upon the scoping rules and
capabilities of the scripting language used in the page.

Note that this implies the name value syntax must comply with the variable naming syntax rules
of the scripting language used in the page. Chapter 9, Scripting provides details for the case
where the language attribute is java.

An example of the scope rules just mentioned is shown next:

<% { // introduce a new block %>

<jsp:useBean id="customer" class="com.myco.Customer" />

* the tag above creates or obtains the Customer Bean

* reference, associates it with the name Ocustomerl in the

* PageContext, and declares a Java programming lanquage

* variable of the same name initialized to the object reference
* in this blockls scope.

<%= customer.getName(); %>

<% } // close the block %>

o

<
// the variable customer is out of scope now but
// the object is still valid (and accessible via pageContext)

[
0>

The scope Attribute

The scope="page|request|session|application” attribute/value tuple is associated with, and modifies
the behavior of, the id attribute described above (it has both translation time and client request
processing time semantics). In particular it describes the namespace, the implicit lifecycle of the
object reference associated with the name, and the APIs used to access this association. For all
scopes, it is illegal to change the instance object so associated, such that its new runtime type is a
subset of the type(s) of the object previously so associated. See Section 1.8.2, “Objects and Scopes”
for details on the available scopes.

Semantics
The actions performed in a jsp:useBean action are:

1. An attempt to locate an object based on the attribute values id and scope. For application and
session scope, the inspection is done synchronized per scope namespace to avoid non-
deterministic behavior.

90

2. A scripting language variable of the specified type (if given) or class (if type is not given) is
defined with the given id in the current lexical scope of the scripting language. The type
attribute should be used to specify a Java type that cannot be instantiated as a JavaBean (i.e. a
Java type that is an abstract class, interface, or a class with no public no-args constructor). If the
class attribute is used for a Java type that cannot be instantiated as a JavaBean, the container
may consider the page invalid, and is recommended to (but not required to) produce a fatal
translation error at translation time, or a java.lang.InstantiationException at request time.
Similarly, if either type or class specify a type that can not be found, the container may consider
the page invalid, and is recommended to (but not required to) produce a fatal translation error
at translation time, or a java.lang.(ClassNotFoundException at request time.

3. If the object is found, the variable’s value is initialized with a reference to the located object,
cast to the specified type. If the cast fails, a java.lang.(ClassCastException shall occur. This
completes the processing of this jsp:useBean action.

4. If the jsp:useBean action had a non-empty body it is ignored. This completes the processing of
this jsp:useBean action.

5. If the object is not found in the specified scope and neither class nor beanName are given, a
java.lang.InstantiationException shall occur. This completes the processing of this jsp:useBean
action.

6. If the object is not found in the specified scope, and the class specified names a non-abstract
class that defines a public no-args constructor, then the class is instantiated. The new object
reference is associated with the scripting variable and with the specified name in the specified
scope using the appropriate scope dependent association mechanism (see PageContext). After
this, step 8 is performed.

If the object is not found, and the class is either abstract, an interface, or no public no-args
constructor is defined therein, then a java.lang.InstantiationException shall occur. This
completes the processing of this jsp:useBean action.

7. If the object is not found in the specified scope ; and beanName is given, then the method
instantiate of java.beans.Beans will be invoked with the ClassLoader of the servlet object and
the beanName as arguments. If the method succeeds, the new object reference is associated the
with the scripting variable and with the specified name in the specified scope using the
appropriate scope dependent association mechanism (see PageContext). After this, step 8 is
performed.

8. If the jsp:useBean action has a non-empty body, the body is processed. The variable is initialized
and available within the scope of the body. The text of the body is treated as elsewhere. Any
template text will be passed through to the out stream. Scriptlets and action tags will be
evaluated.

A common use of a non-empty body is to complete initializing the created instance. In that case the
body will likely contain jsp:setProperty actions and scriptlets that are evaluated. This completes
the processing of this useBean action.

Examples

In the following example, a Bean with name connection of type com.myco.myapp.Connection is
available after actions on this element, either because it was already created and found, or because
it is newly created.

91

<jsp:useBean id="connection" class="com.myco.myapp.Connection" />

In the next example, the timeout property is set to 33 if the Bean was instantiated.

<jsp:useBean id="connection" class="com.myco.myapp.Connection"> +
<jsp:setProperty name="connection" property="timeout" value="33"> +
</jsp:useBean>"

In the final example, the object should have been present in the session. If so, it is given the local
name wombat with WombatType. A ClassCastException may be raised if the object is of the wrong class,
and an InstantiationException may be raised if the object is not defined.

<jsp:useBean id="wombat" type="my.WombatType" scope="session"/>

Syntax

This action may or not have a body. If the action has no body, it is of the form:

<jsp:useBean id="name" scope="page|request|session|application" typeSpec />

typeSpec ::= class="className"

class="className" type="typeName"
type="typeName" class="className"
beanName="beanName" type="typeName"
type="typeName" beanName="beanName"
type="typeName"

If the action has a body, it is of the form:

<jsp:useBean id="name" scope="page|request|session|application" typeSpec >
body
</jsp:useBean>

In this case, the body will be invoked if the Bean denoted by the action is created. Typically, the
body will contain either scriptlets or jsp:setProperty tags that will be used to modify the newly
created object, but the contents of the body are not restricted.

The <jsp:useBean> tag has the following attributes:

92

Table JSP.5-1 jsp:useBean Attributes

id The name used to identify the object instance in the specified scope’s
namespace, and also the scripting variable name declared and initialized with
that object reference. The name specified is case sensitive and shall conform to
the current scripting language variable-naming conventions.

scope The scope within which the reference is available. The default value is page.
See the description of the scope attribute defined earlier herein. A translation
error must occur if scope is not one of “page”, “request”, “session” or
“application”.

class The fully qualified name of the class that defines the implementation of the
object. The class name is case sensitive.
If the class and beanName attributes are not specified the object must be present
in the given scope.

beanName The name of a bean, as expected by the instantiate method of the
java.beans.Beans class.
This attribute can accept a request-time attribute expression as a value.

type If specified, it defines the type of the scripting variable defined.
This allows the type of the scripting variable to be distinct from, but related to,
the type of the implementation class specified.
The type is required to be either the class itself, a superclass of the class, or an
interface implemented by the class specified.
The object referenced is required to be of this type, otherwise a
java.lang.(ClassCastException shall occur at request time when the assignment
of the object referenced to the scripting variable is attempted.
If unspecified, the value is the same as the value of the class attribute.

5.2. <jsp:setProperty>

The jsp:setProperty action sets the values of properties in a bean. The name attribute that denotes
the bean must be defined before this action appears.

There are two variants of the jsp:setProperty action. Both variants set the values of one or more
properties in the bean based on the type of the properties. The usual bean introspection is done to
discover what properties are present, and, for each, its name, whether it is simple or indexed, its
type, and the setter and getter methods. Introspection also indicates if a given property type has a
PropertyEditor class.

Properties in a Bean can be set from one or more parameters in the request object, from a String
constant, or from a computed request-time expression. Simple and indexed properties can be set
using jsp:setProperty.

When assigning from a parameter in the request object, the conversions described in Section
1.14.2.1, “Conversions from String values” are applied, using the target property to determine the
target type.

When assigning from a value given as a String constant, the conversions described in Section

93

1.14.2.1, “Conversions from String values” are applied, using the target property to determine the
target type.

When assigning from a value given as a request-time attribute, no type conversions are applied if a
scripting expression is used, as indicated in Section 1.14.2.2, “Conversions from request-time
expressions”. If an EL expression is used, the type conversions described in Section 1.23 “Type
Conversion” of the EL specification document are performed.

When assigning values to indexed properties the value must be an array; the rules described in the
previous paragraph apply to the actions.

A conversion failure leads to an error, whether at translation time or request-time.
Examples
The following two actions set a value from the request parameter values.

<jsp:setProperty name="request" property="*" />
<jsp:setProperty name="user" property="user" param="username" />

The following two elements set a property from a value

<jsp:setProperty name="results" property="col" value="${i mod 4}"/>
<jsp:setProperty name="results" property="row" value="<%= i/4 %>" />

Syntax

<jsp:setProperty name="beanName" prop_expr />

prop_expr ::= property="*"
| property="propertyName"
| property="propertyName" param="parameterName'
| property="propertyName" value="propertyValue"

propertyValue ::= string

The value propertyValue can also be a request-time attribute value, as described in Section 1.14.1,
“Request Time Attribute Values”.

propertyValue ::= expr_scriptlet

The <jsp:setProperty> action has the following attributes:

94

Table JSP.5-2 jsp:setProperty Attributes

name The name of a bean instance defined by a <jsp:useBean> action or some other
action. The bean instance must contain the property to be set. The defining
action must appear before the <jsp:setProperty> action in the same file.

property The name of the property whose value will be set. If propertyName is set to *
then the tag will iterate over the current ServletRequest parameters, matching
parameter names and value type(s) to property names and setter method
type(s), setting each matched property to the value of the matching parameter.
If a parameter has a value of "", the corresponding property is not modified.

param The name of the request parameter whose value is given to a bean property.
The name of the request parameter usually comes from a web form.
If param is omitted, the request parameter name is assumed to be the same as
the bean property name.
If the paramis not set in the Request object, or if it has the value of "", the
jsp:setProperty action has no effect (a noop).
An action may not have both param and value attributes.

value The value to assign to the given property.
This attribute can accept a request-time attribute expression as a value.
An action may not have both param and value attributes.

5.3. <jsp:getProperty>

The <jsp:getProperty> action places the value of a bean instance property, converted to a String,
into the implicit out object, from which the value can be displayed as output. The bean instance
must be defined as indicated in the name attribute before this point in the page (usually via a
jsp:useBean action).

The conversion to String is done as in the println methods, i.e. the toString method of the object is
used for Object instances, and the primitive types are converted directly.

If the object is not found, a request-time exception is raised.

The value of the name attribute in jsp:setProperty and jsp:getProperty will refer to an object that
is obtained from the pageContext object through its findAttribute method.

The object named by the name must have been “introduced” to the JSP processor using either the
jsp:useBean action or a custom action with an associated VariableInfo entry for this name. If the
object was not introduced in this manner, the container implementation is recommended (but not
required) to raise a translation error, since the page implementation is in violation of the
specification.

A consequence of the previous paragraph is that objects that are stored in, say, the

o session by a front component are not automatically visible to jsp:setProperty and
jsp:getProperty actions in that page unless a jsp:useBean action, or some other
action, makes them visible.

95

If the JSP processor can ascertain that there is an alternate way guaranteed to access the same
object, it can use that information. For example it may use a scripting variable, but it must
guarantee that no intervening code has invalidated the copy held by the scripting variable. The
truth is always the value held by the pageContext object.

Examples
<jsp:getProperty name="user" property="name" />
Syntax
<jsp:getProperty name="name" property="propertyName" />

The attributes are:

Table JSP.5-3 jsp:getProperty Attributes
name The name of the object instance from which the property is obtained.

property Names the property to get.

5.4. <jsp:include>

A <jsp:include .../> action provides for the inclusion of static and dynamic resources in the same
context as the current page. See Table JSP.1-10 , “Summary of Include Mechanisms in JSP 4.1” for a
summary of include facilities.

Inclusion is into the current value of out. The resource is specified using a relativeURLspec that is
interpreted in the context of the web application (i.e. it is mapped).

The page attribute of both the jsp:include and the jsp:forward actions are interpreted relative to the
current JSP page, while the file attribute in an include directive is interpreted relative to the
current JSP file. See below for some examples of combinations of this.

An included page cannot change the response status code or set headers. This precludes invoking
methods like setCookie. Attempts to invoke these methods will be ignored. The constraint is
equivalent to the one imposed on the include method of the RequestDispatcher class.

A jsp:include action may have jsp:param subelements that can provide values for some parameters
in the request to be used for the inclusion.

Request processing resumes in the calling JSP page, once the inclusion is completed.

The flush attribute controls flushing. If true, then, if the page output is buffered and the flush
attribute is given a true value, then the buffer is flushed prior to the inclusion, otherwise the buffer
is not flushed. The default value for the flush attribute is false.

Examples

96

<jsp:include page="/templates/copyright.html"/>

The above example is a simple inclusion of an object. The path is interpreted in the context of the
Web Application. It is likely a static object, but it could be mapped into, for instance, a servlet via
web . xml.

For an example of a more complex set of inclusions, consider the following four situations built
using four JSP files: A.jsp, C.jsp, dir/B.jspand dir/C.jsp:

* A.jsp says <%@ include file="dir/B.jsp"%> and dir/B.jsp says <%@ include file="C.jsp"%>. In
this case the relative specification C.jsp resolves to dir/C.jsp.

* A.jsp says <jsp:include page="dir/B.jsp"/>and dir/B.jsp says <jsp:include page="C.jsp" />.In
this case the relative specification C.jsp resolves to dir/C.jsp.

* A.jsp says <jsp:include page="dir/B.jsp"/> and dir/B.jsp says <%@ include file="C.jsp" %>. In
this case the relative specification C.jsp resolves to dir/C.jsp.

* A.jsp says <%@ include file="dir/B.jsp"%> and dir/B.jsp says <jsp:include page="C.jsp"/>. In
this case the relative specification C. jsp resolves to C.jsp.

Syntax
<jsp:include page="urlSpec" flush="true|false"/>
and

<jsp:include page="urlSpec" flush="true|false">
{ <jsp:param ... /> }*
</jsp:include>

The first syntax just does a request-time inclusion. In the second case, the values in the param
subelements are used to augment the request for the purposes of the inclusion.

The valid attributes are:

Table JSP.5-4 jsp:include Atrributes

page The URL is a relative ur1Spec as in Section 1.2.1, “Relative URL Specifications”.
Relative paths are interpreted relative to the current JSP page.
Accepts a request-time attribute value (which must evaluate to a String that is
a relative URL specification).

flush Optional boolean attribute. If the value is true, the buffer is flushed now. The
default value is false.

5.5. <jsp:forward>

A <jsp:forward page="urlSpec" /> action allows the runtime dispatch of the current request to a

97

static resource, a JSP page or a servlet in the same context as the current page. A jsp:forward
effectively terminates the execution of the current page. The relative urlSpec is as in Section 1.2.1,
“Relative URL Specifications”.

The request object will be adjusted according to the value of the page attribute.

A jsp:forward action may have jsp:param subelements that can provide values for some parameters
in the request to be used for the forwarding.

If the page output is buffered, the buffer is cleared prior to forwarding.

If the page output is buffered and the buffer was flushed, an attempt to forward the request will
result in an I1legalStateException.

If the page output was unbuffered and anything has been written to it, an attempt to forward the
request will result in an I1legalStateException.

Examples

The following action might be used to forward to a static page based on some dynamic condition.

<% String whereTo = "/templates/"+someValue; %>

<jsp:forward page='<%= whereTo %>' />

Syntax
<jsp:forward page="relativeURLspec" />
and

<jsp:forward page="urlSpec">
{ <jsp:param ... /> }*
</jsp:forward>

This tag allows the page author to cause the current request processing to be affected by the
specified attributes as follows:

Table JSP.5-5 jsp:forward Attributes

page The URL is a relative urlSpec as in Section 1.2.1, “Relative URL Specifications”.
Relative paths are interpreted relative to the current JSP page.
Accepts a request-time attribute value (which must evaluate to a String that is
a relative URL specification).

5.6. <jsp:param>

The jsp:param element is used to provide key/value information. This element is used in the

98

jsp:include, jsp:forward, and jsp:params elements. A translation error shall occur if the element is
used elsewhere.

When doing jsp:include or jsp:forward, the included page or forwarded page will see the original
request object, with the original parameters augmented with the new parameters, in the order of
appearance, with new values taking precedence over existing values when applicable. The scope of
the new parameters is the jsp:include or jsp:forward call; i.e. in the case of an jsp:include the new
parameters (and values) will not apply after the include. This is the same behavior as in the
ServletRequest include and forward methods (see Section 9.1.1 in the Servlet 6.2 specification).

For example, if the request has a parameter A=foo and a parameter A=bar is specified for forward,
the forwarded request shall have A=bar, foo. Note that the new param has precedence.

The parameter names and values specified should be left unencoded by the page author. The JSP
container must encode the parameter names and values using the character encoding from the
request object when necessary. For example, if the container chooses to append the parameters to
the URL in the dispatched request, both the names and values must be encoded as per the content
type application/x-www-form-urlencoded in the HTML specification.

Syntax
<jsp:param name="name" value="value" />

This action has two mandatory attributes: name and value. name indicates the name of the parameter,
and value, which may be a request-time expression, indicates its value.

5.7. <jsp:attribute>

The <jsp:attribute> standard action has two uses. It allows the page author to define the value of
an action attribute in the body of an XML element instead of in the value of an XML attribute. It
also allows the page author to specify the attributes of the element being output, when used inside
a <jsp:element> action. The action must only appear as a subelement of a standard or custom
action. An attempt to use it otherwise must result in a translation error. For example, it cannot be
used to specify the value of an attribute for XML elements that are template text. For custom action
invocations, JSP containers must support the use of <jsp:attribute> for both Classic and Simple Tag
Handlers.

The behavior of the <jsp:attribute> standard action varies depending on the type of attribute being
specified, as follows:

* A translation error must occur if <jsp:attribute> is used to define the value of an attribute of
<jsp:attribute>.

* If the enclosing action is <jsp:element> , the value of the name attribute and the body of the
action will be used as attribute name/value pairs in the dynamically constructed element. See
Section 5.11, “<jsp:element>” for more details on <jsp:element>. Note that in this context, the
attribute does not apply to the <jsp:element> action itself, but rather to the output of the
element. That is, <jsp:attribute> cannot be used to specify the name attribute of the

99

<jsp:element> action.

* For custom action attributes of type jakarta.servlet.jsp.tagext.JspFragment, the container must
create a JspFragment out of the body of the <jsp:attribute> action and pass it to the tag handler.
This applies for both Classic Tag Handlers and Simple Tag Handlers. A translation error must
result if the body of the <jsp:attribute> action is not scriptless in this case.

* If the custom action accepts dynamic attributes (Section 7.1.8, “Attributes With Dynamic
Names”), and the name of the attribute is not one explicitly indicated for the tag, then the
container will evaluate the body of <jsp:attribute> and assign the computed value to the
attribute using the dynamic attribute machinery. Since the type of the attribute is unknown and
the body of <jsp:attribute> evaluates to a String, the container must pass in an instance of
String.

* For standard or custom action attributes that accept a request-time expression value, the
Container must evaluate the body of the <jsp:attribute> action and use the result of this
evaluation as the value of the attribute. The body of the attribute action can be any JSP content
in this case. If the type of the attribute is not String, the standard type conversion rules are
applied, as per Section 1.14.2.1, “Conversions from String values”.

» For standard or custom action attributes that do not accept a request-time expression value, the
Container must use the body of the <jsp:attribute> action as the value of the attribute. A
translation error must result if the body of the <jsp:attribute> action contains anything but
template text.

mn

If the body of the <jsp:attribute> action is empty, it is the equivalent of specifying "" as the value of
the attribute. Note that after being trimmed, non-empty bodies can result in a value of "" as well.

The <jsp:attribute> action accepts a name attribute, a trim attribute, and a omit attribute. The name
attribute associates the action with one of the attributes the tag handler is declared to accept, or in
the case of <jsp:element> it associates the action with one of the attributes in the element being
output. The optional trim attribute determines whether the whitespace appearning at the beginning
and at the end of the element body should be discarded or not. By default, the leading and trailing
whitespace is discarded. The Container must trim at translation time only. The Container must not
trim at runtime. For example, if a body contains a custom action that produces leading or trailing
whitespace, that whitespace is preserved regardless of the value of the trim attribute. The optional
omit attribute, when used with <jsp:element>, determines whether the attribute in the element
being output should be omitted.

The following is an example of using the <jsp:attribute> standard action to define an attribute that
is evaluated by the container prior to the custom action invocation. This example assumes the
name attribute is declared with type java.lang.Stringin the TLD.

<mytag:highlight>
<jsp:attribute name="text">
Inline definition.
</jsp:attribute>
</mytag:highlight>

The following is an example of using the <jsp:attribute> standard action within <jsp:element>, to

100

define which attributes are to be output with that element:

<jsp:element name="firstname">
<jsp:attribute name="name">Susan</jsp:attribute>
</jsp:element>

This would produce the following output:
<firstname name="Susan"/>

See Section 1.3.10, “JSP Syntax Grammar” for the formal syntax definition of the <jsp:attribute>
standard action.

The attributes are:

Table JSP.5-6 Attributes for the <jsp:attribute> standard action

name (required) If not being used with <jsp:element>, then if the action does not
accept dynamic attributes, the name must match the name of an attribute for
the action being invoked, as declared in the Tag Library Descriptor for a
custom action, or as specified for a standard action, or a translation error will
result. Except for when used with <jsp:element>, a translation error will result
if both an XML element attribute and a <jsp:attribute> element are used to
specify the value for the same attribute.
The value of name can be a QName. If so, a translation error must occur if the
prefix does not match that of the action it applies to, unless the action supports
dynamic attributes, or unless the action is <jsp:element>.
When used with <jsp:element>, this attribute specifies the name of the
attribute to be included in the generated element.

trim (optional) Valid values are true and false. If true, the whitespace, including
spaces, carriage returns, line feeds, and tabs, that appears at the beginning
and at the end of the body of the <jsp:attribute> action will be ignored by the
JSP compiler. If false the whitespace is not ignored. Defaults to true.

omit (optional) Valid values are true and false. If true, and when used with
<jsp:element>, the attribute in the element being ouput is omitted. Ignored
when used with a standard or custom action. Defaults to false.

5.8. <jsp:body>

Normally, the body of a standard or custom action invocation is defined implicitly as the body of
the XML element used to represent the invocation. The body of a standard or custom action can
also be defined explicitly using the <jsp:body> standard action. This is required if one or more
<jsp:attribute> elements appear in the body of the tag.

If one or more <jsp:attribute> elements appear in the body of a tag invocation but no <jsp:body>
element appears or an empty <jsp:body> element appears, it is the equivalent of the tag having an

101

empty body.

It is also legal to use the <jsp:body> standard action to supply bodies to standard actions, for any
standard action that accepts a body (except for <jsp:body>, <jsp:attribute>, <jsp:scriptlet>,
<jsp:expression>and <jsp:declaration>).

The body standard action accepts no attributes.

5.9. <jsp:invoke>

The <jsp:invoke> standard action can only be used in tag files (see Chapter 8, Tag Files), and must
result in a translation error if used in a JSP. It takes the name of an attribute that is a fragment, and
invokes the fragment, sending the output of the result to the JspWriter, or to a scoped attribute that
can be examined and manipulated. If the fragment identified by the given name is null,
<jsp:invoke> will behave as though a fragment was passed in that produces no output.

5.9.1. Basic Usage

The most basic usage of this standard action will invoke a fragment with the given name with no
parameters. The fragment will be invoked using the JspFragment.invoke method, passing in null for
the Writer parameter so that the results will be sent to the JspWriter of the JspContext associated
with the JspFragment. The following is an example of such a basic fragment invocation:

<jsp:invoke fragment="frag1"/>

5.9.2. Storing Fragment Output

It is also possible to invoke the fragment and send the results to a scoped attribute for further
examination and manipulation. This can be accomplished by specifying the var or varReader
attribute in the action. In this usage, the fragment is invoked using the JspFragment.invoke method,
but a custom java.io.Writer is passed in instead of null.

If var is specified, the container must ensure that a java.lang.String object is made available in a
scoped attribute with the name specified by var. The String must contain the content sent by the
fragment to the Writer provided in the JspFragment.invoke call.

If varReader is specified, the container must ensure that a java.io.Reader object is constructed and is
made available in a scoped attribute with the name specified by varReader. The Reader object can
then be passed to a custom action for further processing. The Reader object must produce the
content sent by the fragment to the provided Writer. The Reader must also be resettable. That is, if its
reset method is called, the result of the invoked fragment must be able to be read again without re-
executing the fragment.

An optional scope attribute indicates the scope of the resulting scoped variable.

The following is an example of using var or varReader and the scope attribute:

102

<jsp:invoke fragment="frag2" var="resultString" scope="session"/>

<jsp:invoke fragment="frag3" varReader="resultReader" scope="page"/>

5.9.3. Providing a Fragment Access to Variables

JSP fragments have access to the same page scope variables as the page or tag file in which they
were defined (in addition to variables in the request, session, and application scopes). Tag files have
access to a local page scope, separate from the page scope of the calling page. When a tag file
invokes a fragment that appears in the calling page, the JSP container provides a way to
synchronize variables between the local page scope in the tag file and the page scope of the calling
page. For each variable that is to be synchronized, the tag file author must declare the variable with
a scope of either AT_BEGIN or NESTED. The container must then generate code to synchronize the page
scope values for the variable in the tag file with the page scope equivalent in the calling page or tag
file. The details of how variables are synchronized can be found in Section 8.9, “Variable
Synchronization”.

The following is an example of a tag file providing a fragment access to a variable:

<%@ variable name-given="x" scope="NESTED" %>

m.n

<c:set var="x" value="1"/>
<jsp:invoke fragment="frag4"/>

A translation error shall result if the <jsp:invoke> action contains a non-empty body.

See Section 1.3.10, “JSP Syntax Grammar” for the formal syntax definition of the <jsp:invoke>
standard action.

The attributes are:

Table JSP.5-7 Attributes for the <jsp:invoke> standard action
fragment (required) The name used to identify this fragment during this tag invocation.

var (optional) The name of a scoped attribute to store the result of the fragment
invocation in, as a java.lang.String object. A translation error must occur if
both var and varReader are specified. If neither var nor varReader are specified,
the result of the fragment goes directly to the Jspliriter, as described above.

varReader (optional) The name of a scoped attribute to store the result of the fragment
invocation in, as a java.io.Reader object. A translation error must occur if both
var and varReader are specified. If neither var nor varReader is specified, the
result of the fragment invocation goes directly to the JspWriter, as described
above.

103

scope (optional) The scope in which to store the resulting variable. A translation
error must result if the value is not one of page, request, session, or
application. A translation error will result if this attribute appears without
specifying either the var or varReader attribute as well. Note that a value of
session should be used with caution since not all calling pages may be
participating in a session. A container must throw an I1legalStateException at
runtime if scope is session and the calling page does not participate in a
session. Defaults to page.

5.10. <jsp:doBody>

The <jsp:doBody> standard action can only be used in tag files (see Chapter 8, Tag Files), and must
result in a translation error if used in a JSP. It invokes the body of the tag, sending the output of the
result to the JspWriter, or to a scoped attribute that can be examined and manipulated.

The <jsp:doBody> standard action behaves exactly like <jsp:invoke>, except that it operates on the
body of the tag instead of on a specific fragment passed as an attribute. Because it always operates
on the body of the tag, there is no name attribute for this standard action. The var, varReader, and
scope attributes are all supported with the same semantics as for <jsp:invoke>. Fragments are
provided access to variables the same way for <jsp:doBody> as they are for <jsp:invoke>. If no body
was passed to the tag, <jsp:doBody> will behave as though a body was passed in that produces no
output.

The body of a tag is passed to the simple tag handler as a JspFragment object.
A translation error shall result if the <jsp:doBody> action contains a non-empty body.

See Section 1.3.10, “JSP Syntax Grammar” for the formal syntax definition of the <jsp:doBody>
standard action.

The attributes are:

Table JSP.5-8 Attributes for the <jsp:doBody> standard action

var (optional) The name of a scoped attribute to store the result of the body
invocation in, as a java.lang.String object. A translation error must occur if
both var and varReader are specified. If neither var nor varReader are specified,
the result of the body goes directly to the JspWriter, as described above.

varReader (optional) The name of a scoped attribute to store the result of the body
invocation in, as a java.io.Reader object. A translation error must occur if both
var and varReader are specified. If neither var nor varReader is specified, the
result of the body invocation goes directly to the JspWriter, as described above.

104

scope (optional) The scope in which to store the resulting variable. A translation
error must result if the value is not one of page, request, session, or
application. A translation error will result if this attribute appears without
specifying either the var or varReader attribute as well. Note that a value of
session should be used with caution since not all calling pages may be
participating in a session. A container must throw an I1legalStateException at
runtime if scope is session and the calling page does not participate in a
session. Defaults to page.

5.11. <jsp:element>

The jsp:element action is used to dynamically define the value of the tag of an XML element. This
action can be used in JSP pages, tag files and JSP documents. This action has an optional body; the
body can use the jsp:attribute and jsp:body actions.

A jsp:element action has one mandatory attribute, name, of type String. The value of the attribute is
used as that of the tag of the element generated.

Examples

The following example generates an XML element whose name depends on the result of an EL
expression, content.headerName. The element has an attribute, lang, and the value of the attribute
is that of the expression content.lang. The body of the element is the value of the expression
content.body.

<jsp:element
name="${content.headerName}"
xmlns:jsp="http://java.sun.com/JSP/Page" >
<jsp:attribute name="1lang">${content.lang}</jsp:attribute>
<jsp:body>${content.body}</jsp:body>
</jsp:element>

The next example fragment shows that jsp:element needs no children. The example generates an
empty element with name that of the value of the expression myName.

<jsp:element name="${myName}"/>

Syntax
The jsp:element action may have a body. Two forms are valid, depending on whether the element is

to have attributes or not. In the first form, no attributes are present:

<jsp:element name="name">
optional body
</jsp:element>

105

In the second form, zero or more attributes are requested, using jsp:attribute and jsp:body, as
appropriate.

<jsp:element name="name">
jsp:attribute*
jsp:body?

</jsp:element>

The one valid, mandatory, attribute of jsp:element is its name. Unlike other standard actions, the
value of the name attribute must be given as an XML-style attribute and cannot be specified using
<jsp:attribute> This is because <jsp:attribute> has a special meaning when used in the body of
<jsp:element>. See Section 5.7, “<jsp:attribute>” for more details..

Table JSP.5-9 Attributes for the <jsp:element> standard action

name (required) The value of name is that of the element generated. The name can
be a QName; JSP 4.1 places no constraints on this value: it is accepted as is. A
request-time attribute value may be used for this attribute.

5.12. <jsp:text>

A jsp:text action can be used to enclose template data in a JSP page, a JSP document, or a tag file. A
jsp:text action has no attributes and can appear anywhere that template data can. Its syntax is:

<jsp:text> template data </jsp:text>

The interpretation of a jsp:text element is to pass its content through to the current value of out.
This is very similar to the XSLT xs1:text element.

Examples
The following example is a fragment that could be in both a JSP page or a JSP document.
<jsp:text>

This is some content
</jsp:text>

Expressions may appear within jsp:text, as in the next example, where the expression foo.content
is evaluated and the result is inserted.

<jsp:text>
This is some content: ${foo.content}
</jsp:text>

No subelements may appear within jsp:text ; for example the following fragment is invalid and

106

must generate a translation error.

<jsp:text>
This is some content: <jsp:text>foo</jsp:text>
</jsp:text>

When within a JSP document, of course, the body content needs to additionally conform to the
constraints of being a well-formed XML document, so the following example, although valid in a JSP
page is invalid in a JSP document:

<jsp:text>
This is some content: ${foo.content > 3}
</jsp:text>

The same example can be made legal, with no semantic changes, by using gt instead of > in the
expression; i.e. ${foo.content gt 3}.

In an JSP document, CDATA sections can also be used to quote, uninterpreted, content, as in the
following example:

<jsp:text>
<I[CDATA[<mumble></foobar>]]>
</jsp:text>

Syntax

The jsp:text action has no attributes. The action may have a body. The body may not have nested
actions nor scripting elements. The body may have EL expressions. The syntax is of the form:

<jsp:text>
optional body
</jsp:text>

5.13. <jsp:output>

The jsp:output action can only be used in JSP documents and in tag files in XML syntax, and a
translation error must result if used in a standard syntax JSP or tag file. This action is used to
modify some properties of the output of a JSP document or a tag file. In JSP 4.1 there are four
properties that can be specified, all of which affect the output of the XML prolog.

The omit-xml-declaration property allows the page author to adjust whether an XML declaration is
to be inserted at the beginning of the output. Since XML declarations only make sense for when the
generated content is XML, the default value of this property is defined so that it is unnecessary in
most cases.

107

non non

The omit-xml-declaration property is of type String and the valid values are "yes", "no", "true" and
"false". The name, values and semantics mimic that of the xsl:output element in the XSLT
specification: if a value of "yes" or "true" is given, the container will not add an XML declaration; if
a value of "no" or "false" is given, the container will add an XML declaration.

The default value for a JSP document that has a jsp:root element is "yes". The default value for JSP
documents without a jsp:root element is "no".

The default value for a tag file in XML syntax is always "yes". If the value is "false" or "no" the tag
file will emit an XML declaration as its first content.

The generated XML declaration is of the form:
<?xml version="1.0" encoding="encodingValue" ?>

Where encodingValue is the response character encoding, as determined in Section 4.2, “Response
Character Encoding”.

The doctype-root-element, doctype-system and doctype-public properties allow the page author to
specify that a DOCTYPE be automatically generated in the XML prolog of the output. Without these
properties, the DOCTYPE would need to be output manually via a <jsp:text> element before the
root element of the JSP document, which is inconvenient.

A DOCTYPE must be automatically output if and only if the doctype-system element appears in the
translation unit as part of a <jsp:output> action. The doctype-root-element must appear and must
only appear if the doctype-system property appears, or a translation error must occur. The doctype-
public property is optional, but must not appear unless the doctype-system property appears, or a
translation error must occur.

The DOCTYPE to be automatically output, if any, is statically determined at translation time.
Multiple occurrences of the doctype-root-element, doctype-system or doctype-public properties will
cause a translation error if the values for the properties differ from the previous occurrence.

The DOCTYPE that is automatically output, if any, must appear immediately before the first element
of the output document. The name following <!DOCTYPE must be the value of the doctype-root-
element property. If a doctype-public property appears, then the format of the generated DOCTYPE
is:

<!DOCTYPE nameOfRootElement PUBLIC "doctypePublic" "doctypeSystem">
If a doctype-public property does not appear, then the format of the generated DOCTYPE is:
<IDOCTYPE nameOfRootElement SYSTEM "doctypeSystem">

Where nameOfRootElement is the value of the doctype-root-element property, doctypePublic is the
value of the doctype-public attribute, and doctypeSystem is the value of the doctype-system property.

108

The values for doctypePublic and doctypeSystem must be enclosed in either single or double quotes,
depending on the value provided by the page author. It is the responsibility of the page author to
provide a syntactically-valid URI as per the XML specification (see http://www.w3.0rg/TR/REC-xml#
dt-sysid).

Examples

The following JSP document (with an extension of .jspx or with <is-xml> set to true in the JSP
configuration):

<?xml version="1.0" encoding="EUC-JP" 7>
<hello></hello>

generates an XML document as follows:

<?xml version="1.0" encoding="UTF-8" 7>
<hello></hello>

The following JSP document is like the previous one, except that the XML declaration is omited. A
typical use would be where the XML fragment is to be included within another document.

<?xml version="1.0" encoding="EUC-IP" 7>
<hello>
<jsp:output
xmlns:jsp="http://java.sun.com/JSP/Page"
omit-xml-declaration="true"/>
</hello>

The following JSP document is equivalent but uses jsp:root instead of jsp:output.

<?xml version="1.0" encoding="EUC-JP" 7>

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0" >
<hello></hello>

</jsp:root>

The following JSP document specifies both a doctype-public and a doctype-system:

<?xml version="1.0" encoding="UTF-8" 7>
<html xmlns:jsp="http://java.sun.com/JSP/Page">
<jsp:output doctype-root-element="html"
doctype-public="-//W3C//DTD XHTML Basic 1.0//EN"
doctype-system="http://www.w3.0rg/TR/xhtml-basic/xhtml-basic10.dtd" />
<body>
<h1>Example XHTML Document</h1>
</body>

109

http://www.w3.org/TR/REC-xml#dt-sysid
http://www.w3.org/TR/REC-xml#dt-sysid

</html>
and generates and XML document as follows:

<?xml version="1.0" encoding="UTF-8" 7>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML Basic 1.0//EN"
“http://www.w3.0rg/TR/xhtml-basic/xhtml-basic10.dtd">
<html><body><h1>Example XHTML Document</h1></body></html>

The following JSP document omits the doctype-public and explicitly omits the XML declaration:

<?xml version="1.0" encoding="UTF-8" 7>
<elementA>
<jsp:output omit-xml-declaration="true"
doctype-root-element="elementA"
doctype-system="test.dtd" />
Element body goes here.
</elementA>

and generates an XML document as follows:

<IDOCTYPE elementA SYSTEM "test.dtd">
<elementA>Element body goes here.</elementA>

Syntax

The jsp:output action cannot have a body. The <jsp:output> action has the following syntax:

<jsp:output (omit-xml-declaration="yes|no|true|false") { doctypeDecl } />

doctypeDecl ::= (doctype-root-element="rootElement"
doctype-public="PubidlLiteral"
doctype-system="SystemLiteral")
| (doctype-root-element="rootElement"
doctype-system="SystemLiteral")

The following are the valid attributes of jsp:output:

Table JSP.5-10 Attribute for the <jsp:output> standard action

omit-xml-declaration (optional) Indicates whether to omit the generation of an XML

declaration. Acceptable values are "true", "yes", "false" and "no".

doctype-root-element (optional) Must be specified if and only if doctype-system is specified
or a translation error must occur. Indicates the name that is to be
output in the generated DOCTYPE declaration.

110

doctype-system (optional) Specifies that a DOCTYPE declaration is to be generated
and gives the value for the System Literal.

doctype-public (optional) Must not be specified unless doctype-system is specified.
Gives the value for the Public ID for the generated DOCTYPE.

5.14. Other Standard Actions

Chapter 6, JSP Documents defines several other standard actions that are either convenient or
needed to describe JSP pages with an XML document, some of which are available in all JSP pages.
They are:

* <jsp:root>, defined in Section 6.3.2, “The jsp:root Element”.

* <jsp:declaration>, defined in Section 6.3.7, “Scripting Elements”.

» <jsp:scriptlet>, defined in Section 6.3.7, “Scripting Elements”.

* <jsp:expression>, defined in Section 6.3.7, “Scripting Elements”.

111

112

Chapter 6. JSP Documents

This chapter introduces two concepts related to XML and JSP: JSP documents and XML views. This
chapter provides a brief overview of the two concepts and their relationship and also provides the
details of JSP documents. The details of the XML view of a JSP document are described in Chapter
10, XML View.

6.1. Overview of JSP Documents and of XML Views

A JSP document is a JSP page written using XML syntax. JSP documents need to be described as
such, either implicitly or explicitly, to the JSP container, which will then process them as XML
documents, checking for well-formedness and applying requests like entity declarations, if present.
JSP documents are used to generate dynamic content using the standard JSP semantics.

Here is a simple JSP document:

<table>
<c:forEach
xmlns:c="http://java.sun.com/jsp/jstl/core"
var="counter" begin="1" end="3">
<row>${counter}</row>
</c:forEach>
</table>

This well-formed, namespace-aware XML document generates, using the JSP standard tag library,
an XML document that has <table> as the root element. That element has 3 <row> subelements
containing values 1, 2 and 3. See Section 6.4, “Examples of JSP Documents” for more details of this
and other examples.

The design of JSP documents is focused on the generation of dynamic XML content, in any of its
many uses, but JSP documents can be used to generate any dynamic content.

Some of the syntactic elements described in Chapter 1, Core Syntax and Semantics are not legal
XML; this chapter describes alternative syntaxes for those elements that are aligned with the XML
syntax. The alternative syntaxes can be used in JSP documents; most of them (jsp:output and
jsp:root are exceptions) can also be used in JSP pages in JSP syntax. As it will be described later, the
alternative syntax is also used in the XML view of JSP pages.

JSP documents can be used in a number of ways, including:

* JSP documents can be passed directly to the JSP container; this is becoming more important as
more and more content is authored as XML, be it in an XML-based languages like XHTML or
SVG, or for the exchange of documents in applications like Web Services. The generated content
may be sent directly to a client, or it may be part of some XML processing pipeline.

* JSP documents can be manipulated by XML-aware tools.

* A JSP document can be generated from a textual representation by applying an XML
transformation, like XSLT.

113

* AJSP document can be generated automatically, say by serializing some objects.

Tag files can also be authored using XML syntax. The rules are very similar to that of JSP
documents; see Section 8.6, “Tag Files in XML Syntax” for more details.

The XML view of a JSP page is an XML document that is derived from the JSP page following a
mapping defined later in this chapter. The XML view of a JSP page is intended to be used for
validating the JSP page against some description of the set of valid pages. Validation of the JSP page
is supported in the JSP 4.1 specification through a TaglLibraryValidator class associated with a tag
library. The validator class acts on a PageData object that represents the XML view of the JSP page
(see, for example, Section 7.4.1.2, “Validator Classes”)

Figure JSP.6-1 Relationship between JSP Pages and XML views of JSP pages below depicts the
relationship between the concepts of JSP pages, JSP documents and XML views. Two phases are
involved: the Translation phase, where JSP pages, in either syntax, are exposed to Tag Library
Validators, via their XML view, and the Request Processing phase, where requests are processed to
produce responses.

Figure JSP.6-1 Relationship between JSP Pages and XML views of JSP pages

JSP Pages
TRANSLATION PHASE
s)]:llt,ax TLV1 - ERRORS OR OK
TLV2 - ERRORS OR OK
XML
View
XML /
Syntax \
Request
JSP
Implementation
Class Response

REQUEST PROCESSING
PHASE

JSP documents are used by JSP page authors. They can be authored directly, using a text editor,
through an XML editing tool, or through a JSP page authoring tool that is aware of the XML syntax.
Any JSP page author that is generating XML content should consider the use of JSP documents. In
contrast, the XML view of a JSP page is a concept internal to the JSP container and is of interest only
to Tag Library Authors and to implementors of JSP containers.

6.2. JSP Documents

A JSP document is a JSP page that is a namespace-aware XML document and that is identified as a
JSP document to the JSP container.

114

6.2.1. Identifying JSP Documents

A JSP document can be identified as such in three ways:

o If there is a <jsp-property-group> that explicitly indicates, through the <is-xml> element,
whether a given file is a JSP document, then that indication overrides any other determination.
Otherwise,

« If this web application is using a version 2.4 web.xml, and if the extension is . jspx, then the file
is a JSP document. Otherwise,

« If the file is explicitly or implicitly identified as a JSP page and the top element is a jsp:root
element then the file is identified as a JSP document. This behavior provides backwards
compatibility with JSP 1.2.

It is a translation-time error for a file that is identified as a JSP document to not be a well-formed,
namespace-aware, XML document.

See Section 8.6, “Tag Files in XML Syntax” for details on identifying tag files in XML syntax.

6.2.2. Overview of Syntax of JSP Documents

A JSP document may or not have a <jsp:root> as its top element; <jsp:root> was mandatory in JSP
1.2, but we expect most JSP documents in JSP 4.1 not to use it.

JSP documents identify standard actions through the use of a well-defined URI in its namespace;
although in this chapter the prefix jsp is used for the standard actions, any prefix is valid as long as
the correct URI identifying JSP 4.1 standard actions is used. Custom actions are identified using the
URI that identifies their tag library; taglib directives are not required and cannot appear in a JSP
document.

A JSP document can use XML elements as template data; these elements may have qualified names
(and thus be in a namespace), or be unqualified.

The <jsp:text> element can be used to define some template data verbatim.

Since a JSP document must be a valid XML document, there are some JSP elements that can’t be
used in a JSP document. The elements that can be used are:

* JSP directives and scripting elements in XML syntax.

* EL expressions in the body of elements and in attribute values.

All JSP standard actions described in Chapter 1, Core Syntax and Semantics.
* The jsp:root, jsp:text, and jsp:output elements.

e Custom action elements.

Template data described using jsp:text elements.

Template data described through XML fragments.

Scriptlet expressions used to specify request-time attribute values use a slightly different syntax in
JSP documents than in non JSP documents; rather than using <%= expr %>, they use %= expr %. The

115

white space around expr is not needed, and note the missing < and >. The expr, after any applicable
quoting as in any other XML document, is an expression to be evaluated as in Section 1.14.1,
“Request Time Attribute Values”.

The mechanisms that enable scripting and EL evaluation in a JSP page apply also when the page is a
JSP document. Just as in the standard syntax, the $ in an EL expression can be quoted using \$ in
both attribute values and template text. Recall, however, that \\ is not an escape sequence in XML
attributes so whereas within an attribute in standard syntax \\${1+1} would result in \2 (assuming
EL is enabled) or \${1+1} (assuming EL is ignored), in XML syntax \\${1+1} always results in
\${1+1}.

It should be noted that the equivalent JSP document form of
<a href="<%= url %>">, where’a’ is not a custom action, is:

<jsp:text><![CDATA[</jsp:text><jsp:expression>url</jsp:expression>
<jsp:text><![CDATA[">]]></jsp:text>

In the JSP document element , "%= url %" does not represent a request-time
attribute value. That syntax only applies for custom action elements. This is in contrast to , where “${url}” represents an EL expression in both JSP pages and JSP documents.

6.2.3. Semantic Model

The semantic model of a JSP document is unchanged from that of a JSP page in JSP syntax: JSP pages
generate a response stream of characters from template data and dynamic elements. Template data
can be described explicitly through a jsp:text element, or implicitly through an XML fragment.
Dynamic elements are EL expressions, scripting elements, standard actions or custom actions.
Scripting elements are represented as XML elements with the exception of request-time attribute
expressions, which are represented through special attribute syntax.

The first step in processing a JSP document is to process it as an XML document, checking for well-
formedness, processing entity resolution and, if applicable, performing validation as described in
Section 6.2.4, “J]SP Document Validation”. As part of the processing XML quoting will be performed,
and JSP quoting will not be performed later.

After these steps, the JSP document will be passed to the JSP container which will then interpret it
as a JSP page.

The JSP processing step for a JSP document is as for any other JSP page except that namespaces are
used to identify standard actions and custom action tag libraries and that run time expressions in
attributes use the slightly different syntax. Note that all the JSP elements that are described in this
chapter are valid in all JSP pages, be they identified as JSP documents or not. This is a backward
compatible change from the behavior in JSP 1.2 to enable gradual introduction of XML syntax in
existing JSP pages.

To clearly explain the processing of whitespace, we follow the structure of the XSLT specification.
The first step in processing a JSP document is to identify the nodes of the document. Then, all
textual nodes that have only white space are dropped from the document; the only exception are

116

nodes in a jsp:text element, which are kept verbatim. The resulting nodes are interpreted as
described in the following sections. Template data is either passed directly to the response or it is
mediated through (standard or custom) actions.

Following the XML specification (and the XSLT specification), whitespace characters are #x20, #x9,
#xD, or #xA.

The container will add, in some conditions, an XML declaration to the output; the rules for this
depend on the use of jsp:root and jsp:output; see Section 6.3.3, “The jsp:output Element”.

6.2.4. JSP Document Validation

A JSP document with a DOCTYPE declaration must be validated by the container in the translation
phase. Validation errors must be handled the same way as any other translation phase errors, as
described in Section 1.4.1, “Translation Time Processing Errors”.

JSP 4.1 requires only DTD validation for JSP Documents; containers should not perform validation
based on other types of schemas, such as XML schema.

If an author wishes to have the JSP document framed by the root element of a vocabulary outside
the http://java.sun.com/JSP/Page namespace, and they wish to be able to validate the JSP document
according to a DTD, then they should be aware that the DTD must make explicit provision for
elements from the JSP namespace, and the namespace prefix to which they are bound.

For example, the following XML document:

<?xml version="1.0"7>

<IDOCTYPE root PUBLIC "-//My Org//My DTD//EN"
"http://www.my.org/dtd/my.dtd">

<root ="http://java.sun.com/JSP/Page" />

can only be validated against its DTD if the DTD makes special provision for both the attribute
"xmlns:jsp" on the root element, and also for elements with a "jsp" namespace prefix. Even if the
DTD provides for this, you must bind the namespace to the prefix that the DTD has chosen.

6.3. Syntactic Elements in JSP Documents

This section describes the elements in a JSP document.

6.3.1. Namespaces, Standard Actions, and Tag Libraries

JSP documents and tag files in XML syntax use XML namespaces to identify the standard actions,
the directives, and the custom actions. JSP pages and tags in the JSP syntax cannot use XML
namespaces and instead must use the taglib directive.

Though the prefix “sp” is wused throughout this specification, it is the namespace
http://java.sun.com/JSP/Page and not the prefix “jsp” that identifies the JSP standard actions.

An xmlns attribute for a custom tag library of the form xml:prefix="uri’ identifies the tag library

117

http://java.sun.com/JSP/Page
http://java.sun.com/JSP/Page

through the uri value. The uri value may be of one of three forms, either a URN of the form
urn:jsptagdir:tagdir, a URN of the form urn:jsptld:path, or a plain URL

If the uri value is a URN of the form urn:jsptld:path, then the TLD is determined following the
mechanism described in Section 7.3.2, “TLD Resource Path”.

If the uri value is a URN of the form urn:jsptagdir:tagdir, then the TLD is determined following the
mechanism described in Section 8.4, “Packaging Tag Files”.

If the uri value is a plain URI, then a path is determined by consulting the mapping indicated in
web.xml extended using the implicit maps in the packaged tag libraries (Sections Section 7.3.3,
“Taglib Map in web.xml” and Section 7.3.4, “Implicit Map Entries from TLDs”), as indicated in
Section 7.3.6, “Determining the TLD Resource Path”. In contrast to Section 7.3.6.2, “Computing the
TLD Resource Path”, however, a translation error must not be generated if the given uri is not
found in the taglib map. Instead, any actions in the namespace defined by the uri value must be
treated as uninterpreted.

6.3.2. The jsp:root Element

The jsp:root element can only appear as the root element in a JSP document or in a tag file in XML
syntax; otherwise a translation error shall occur. JSP documents and tag files in XML syntax need
not have a jsp:root element as its root element.

The jsp:root element has two main uses. One is to indicate that the JSP file is in XML syntax,
without having to use configuration group elements nor using the .jspx extension. The other use of
the jsp:root element is to accomodate the generation of content that is not a single XML document:
either a sequence of XML documents or some non-XML content.

A jsp:root element can be used to provide zero or more xmlns attributes that correspond to
namespaces for the standard actions, for custom actions or for generated template text. Unlike in
JSP 1.2, not all tag libraries used within the JSP document need to be introduced on the root; tag
libraries can be incorporated as needed inside the document using additional xmlns attributes.

The jsp:root element has one mandatory element, the version of the JSP spec that the page is using.

When jsp:root is used, the container will, by default, not insert an XML declaration; the default can
be changed using the jsp:output element.

Examples

The following example generates a sequence of two XML documents. No XML declaration is
generated.

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">
<table>foo</table>
<table>bar</table>

</jsp:root>

The following example generates one XML document. An XML declaration is generated because of

118

the use of jsp:output. The example is mostly instructional, as the same content could be generated
dropping the jsp:root element.

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">
<jsp:output omit-xml-declaration="no"/>
<table>foo</table>
</jsp:root>
Syntax
No other attributes are defined in this element.
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" body...
</jsp:root>
The one valid, mandatory, attribute of jsp:root is the version of the JSP specification used:

Table JSP.6-1 Attributes for the <jsp:root> standard action

version (required) The version of the JSP specification used in this page. Valid values
are "1.2","2.0","2.1", "2.2","2.3","3.0", "3.1", "4.0" and "4.1". It is a translation
error if the container does not support the specified version.

6.3.3. The jsp:output Element

The jsp:output element can be used in JSP documents and in tag files in XML syntax. The jsp:output
element is described in detail in Section 5.13, “<jsp:output>”.

6.3.4. The jsp:directive.page Element

The jsp:directive.page element defines a number of page dependent properties and communicates
these to the JSP container. This element must be a child of the root element. Its syntax is:

<jsp:directive.page page_directive_attr_list />

Where page_directive_attr_list is as described in Section 1.10.1, “The page Directive”.

The interpretation of a jsp:directive.page element is as described in Section 1.10.1, “The page
Directive”, and its scope is the JSP document and any fragments included through an include
directive.

6.3.5. The jsp:directive.include Element

The jsp:directive.include element is used to substitute text and/or code at JSP page translation-
time. This element can appear anywhere within a JSP document. Its syntax is:

119

<jsp:directive.include file="relativeURLspec" />

The interpretation of a jsp:directive.include element is as in Section 1.10.3, “The include
Directive”.

The XML view of a JSP page does not contain jsp:directive.include elements, rather the included
file is expanded in-place. This is done to simplify validation.

6.3.6. Additional Directive Elements in Tag Files

Chapter 8, Tag Files describes the tag, attribute and variable directives, which can be used in tag
files. The XML syntax for these directives is the same as in the XML view (see Section 10.1.14, “The
tag Directive”, Section 10.1.15, “The attribute Directive”, and Section 10.1.16, “The variable
Directive” for details).

6.3.7. Scripting Elements

The wusual scripting elements: declarations, scriptlets and expressions, can be used in JSP
documents, but the only valid forms for these elements in a JSP document are the XML syntaxes; i.e.
those using the elements jsp:declaration, jsp:scriptlet and jsp:expression.

The jsp:declaration element is used to declare scripting language constructs that are available to
all other scripting elements. A jsp:declaration element has no attributes and its body is the
declaration itself. The interpretation of a jsp:declaration element is as in Section 1.12.1,
“Declarations”. Its syntax is:

<jsp:declaration> declaration goes here </jsp:declaration>

The jsp:scriptlet element is used to describe actions to be performed in response to some request.
Scriptlets are program fragments. A jsp:scriptlet element has no attributes and its body is the
program fragment that comprises the scriptlet. The interpretation of a jsp:scriptlet element is as
in Section 1.12.2, “Scriptlets™. Its syntax is:

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

The jsp:expression element is used to describe complete expressions in the scripting language that
get evaluated at response time. A jsp:expression element has no attributes and its body is the
expression. The interpretation of a jsp:expression element is as in Section 1.12.3, “Expressions”. Its
syntax is:

<jsp:expression> expression goes here </jsp:expression>

120

6.3.8. Other Standard Actions

The standard actions of Chapter 5, Standard Actions use a syntax that is consistent with XML syntax
and they can be used in JSP documents and in tag files in XML syntax.

6.3.9. Template Content

A JSP page has no structure on its template content, and, correspondingly, imposes no constraints
on that content. On the other hand, JSP documents have structure and some constraints are needed.

JSP documents can generate unconstrained content using jsp:text, as defined in Section 5.12,
“<jsp:text>”. jsp:text can be used to generate totally fixed content but it can also be used to
generate some dynamic content, as described in Section 6.3.10, “Dynamic Template Content” below.

Fixed structured content can be generated using XML fragments. A template XML element, an
element that represents neither a standard action nor a custom action, can appear anywhere where
a jsp:text may appear in a JSP document. The interpretation of such an XML element is to pass its
textual representation to the current value of out, after the whitespace processing described in
Section 6.2.3, “Semantic Model”.

For example, if the variable i has the value 3, and the JSP document is of the form. :

Table JSP.6-2 Example 1 - Input

LineNo Source Text

1 <hello>
<hi>

<jsp:text> hi you all

2
3
4 </jsp:text>${i}
5 </hi>
6

</hello>

The result is:

Table JSP.6-3 Example 1 - Output

LineNo Output Text
1 <hello><hi> hi you all
2 3</hi></hello>

6.3.10. Dynamic Template Content

Custom actions can be used to generate any content, both structured and unstructured. Future
versions of the JSP specification may allow for custom actions to check constraints on the generated
content (see Section 6.5.1, “Generating XML Content Natively”) but the current specification has no
standards support for any such constraints.

121

The most flexible standard mechanism for dynamic content is jsp:element. jsp:element, together
with jsp:attribute and jsp:body can be used to generate any element. Further details of
jsp:element, jsp:attribute and jsp:body are given in Section 5.11, “<jsp:element>”, in Section 5.7,
“<jsp:attribute>” and in Section 5.8, “<jsp:body>”. The following example is from that section:

<jsp:element
name="${content.headerName}"
xmlns:jsp="http://java.sun.com/ISP/Page" >
<jsp:attribute name="1lang">${content.lang}</jsp:attribute>
<jsp:body>${content.body}</jsp:body>
</jsp:element>

In some cases, the dynamic content that is generated can be described as simple substitutions on
otherwise static templates. JSP documents can have XML templates where EL expressions are used
as the values of the body or of attributes. For instance, the next example uses the expression
table.indent as the value of an attribute, and the expression table.value as that for the body of an
element:

<table indent="${table.indent}">
<row>${table.value}</row>
</table>

6.4. Examples of JSP Documents

The following sections provide several annotated examples of JSP documents.

6.4.1. Example: A Simple JSP Document

This simple JSP document generates a table with 3 rows with numeric values 1, 2, 3. The JSP
document uses template XML elements intermixed with actions from the JSP Standard Tag Library.

<table size="${3}">
<c:forEach
xmlns:c="http://java.sun.com/jsp/jst1l/core"
var="counter" begin="1" end="8${3}">
<row>${counter}</row>
</c:forEach>
</table>

Some comments:

» The XML template elements are <table> and <row>. The custom action element is <c:forEach>

* The JSP standard tag library is introduced through the use of its URI namespace and the specific
prefix used, c in this case, is irrelevant. The prefix is introduced in a non-root element, and the
top element of the document is still <table>.

122

* The expression ${counter} is used within the <row> template element.

* The expression ${3} (3 would have been equally good, but an expression is used for expository
reasons) is used within the value of an attribute in both the XML template element <table> and
in the custom action element <c:forEach>.

* The JSP document does not have an xml declaration - we are assuming the encoding of the file
did not require it, e.g. it used UTF-8, - but the output will include an xml declaration due to the
defaulting rules and to the absence of jsp:output element directing the container to do
otherwise.

The JSP document above does not generate an XML document that uses namespaces, but the next
example does.

6.4.2. Example: Generating Namespace-aware Documents

<table
xmlns="http://table.com/Table1"
size="${3}">
<c:forEach
xmlns:c="http://java.sun.com/jsp/jst1l/core"
var="counter" begin="1" end="${3}">
<row>${counter}</row>
</c:forEach>
</table>

This example is essentially the same as the one above, except that a default namespace is
introduced in the top element The namespace applies to the unqualified elements: <table> and
<row>. Also note that if the default namespace were to correspond to a custom action, then the
elements so effected would be interpreted as invocations on custom actions or tags.

Although the JSP container understands that this document is a namespace-aware document, the
JSP 4.1 container does not really understand that the generated content is a well-formed XML
document and, as the next example shows, a JSP document can generate other types of content.

6.4.3. Example: Generating non-XML documents

<jsp:root
xmlns:c="http://java.sun.com/jsp/jst1l/core"
xmlns:jsp="http://java.sun.com/JSP/Page"
version="2.0">
<c:forEach
var="counter" begin="1" end="${3}">
<jsp:text>${counter}</jsp:text>
</c:forEach>
</jsp:root>

This example just generates 123. There is no xml declaration generated because there is no

123

<jsp:output> element to modify the default rule for when a JSP document has <jsp:root>. No
additional whitespace is introduced because there is none within the <jsp:text> element.

The previous example used elements in the JSP namespace. That example used the jsp prefix, but,
unlike with JSP pages in JSP syntax, the name of the prefix is irrelevant (although highly
convenient) in JSP documents: the JSP URI is the only important indicative and the corrent URI
should be used, and introduced via a namespace attribute.

For example, the same output would be generated with the following modification of the previous
example:

<wombat:root
xmlns:c="http://java.sun.com/jsp/jstl/core’
xmlns:wombat="http://java.sun.com/JSP/Page’
version="2.0">
<c:forEach
var="counter" begin="1" end="${3}">
<wombat:text>${counter}</wombat:text>
</c:forEach>
</wombat:root>

On the other hand, although the following example uses the jsp prefix the URI used in the
namespace attribute is not the JSP URI and the JSP document will generate as output an XML
document with root <jsp:root> using the URI http://johnsonshippingproducts.com.

<jsp:root
xmlns:c="http://java.sun.com/jsp/jstl/core"
xmlns:jsp="http://johnsonshippingproducts.com"
version="2.0">
<c:forEach
var="counter" begin="1" end="${3}">
<jsp:text>${counter}</jsp:text>
</c:forEach>
</jsp:root>

Finally, note that, since a JSP document is a well-formed, namespace-aware document, prefixes,
including jsp cannot be used without being introduced through a namespace attribute.

6.4.4. Example: Using Custom Actions and Tag Files

Custom actions are frequently used within a JSP document to generate portions of XML content.
The JSP specification treats this content as plain text, with no intepretation nor constraints imposed
on it. Good practice, though, suggests abstractions that organize the content along well-formed
fragments.

The following example generates an XHTML document using tag library abstractions for
presentation and data access, made available through the prefixes u and data respectively.

124

http://johnsonshippingproducts.com

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:c="http://java.sun.com/jsp/jst1l/core"
xmlns:u="urn:jsptagdir:/WEB-INF/tags/mylib/"
xmlns:data="http://acme.com/functions">
<c:set var="title" value="Best Movies" />
<u:headInfo title="${title}"/>
<body>
<h1>${title}</h1>
<h2>List of Best Movies</h2>

<c:forEach var="m" varStatus="s" items="data:movieltems()">
${s.index}${m.title}</1i>
</c:forEach>

</body>
</html>

For convenience we use the <c:set> JSTL action, which defines variables and associates values with
them. This allows grouping in a single place of definitions used elsewhere.

Notice that if the above example included a DOCTYPE declaration for XHTML documents, it would
not validate according to the DTD for XHTML documents, because that DTD does not list any of the
namespaces declared on the <html> root element as valid attributes on the <html> element type.

However, to output a DOCTYPE, the <jsp:output> standard action specified in Section 5.13,
“<jsp:output>” could be used.

The action <u:headInfo> could be implemented either through a custom action or through a tag. For
example, as a tag it could be defined by the following code:

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page" version="2.0">
<jsp:directive.tag />
<jsp:directive.attribute name="title" required="true" />
<head>
<meta http-equiv="content-type"
content="text/html;charset=${pageCharSet}" />
<title>${title}</title>
</head>
</jsp:root>

where pageCharSet is a variable with a value as is0-8859-1.

Note that this tag is a JSP document (because of the jsp:root declaration), and, as such, it is validated
by the container. Also note that the content that is generated in this case is not using QNames,
which means that the interpretation of the generated elements can be ’captured’ based on the
invocation context. That is the case here, as there is a default namespace active (that of XHTML)
where the tag is being invoked.

125

6.5. Possible Future Directions for JSP documents

This section is non-normative. Two features are sketched briefly here to elicit input that could be
used on future versions of the JSP specification.

6.5.1. Generating XML Content Natively

All JSP 4.1 content is textual, even when using JSP documents to generate XML content. This is quite
acceptable, and even ideal, for some applications, but in some other applications XML documents
are the main data type being manipulated. For example, the data source may be an XML document
repository, perhaps queried using XQuery, some of the manipulation on this data internal to the JSP
page will use XML concepts (XPath, XSTL operations), and the generated XML document may be
part of some XML pipeline.

In one such application, it is appealing not to transform back and forth between a stream of
characters (text) and a parsed representation of the XML document. The JSP expert group has
explored different approaches on how such XML-awareness could be added, and a future version
of JSP could support this functionality.

6.5.2. Schema and XInclude Support

The current specification only requires DTD validation support for JSP documents. A more flexible
schema language, like XML Schema, could be useful and could be explored by a future version of
the JSP specification.

Similarly, future versions of the specification may also consider support for XInclude.

126

Chapter 7. Tag Extensions

This chapter describes the tag library facility for introducing new actions into a JSP page. The tag
library facility includes portable run-time support, a validation mechanism, and authoring tool
support. Both the classic JSP 1.2 style tag extension mechanism and the newer JSP 2.0 onwards
simple tag extension mechanism are described. In Chapter 8, Tag Files, a mechanism for authoring
tag extensions using only JSP syntax is described. This brings the power of tag extensions to page
authors that may not know the Java programming language.

This chapter also provides an overview of the tag library concept. It describes the Tag Library
Descriptor, and the taglib directive. A detailed description of the APIs involved may be found in the
jakarta.servlet.jsp.tagext Javadoc.

7.1. Introduction

A Tag Library abstracts functionality used by a JSP page by defining a specialized (sub)language
that enables a more natural use of that functionality within JSP pages.

The actions introduced by the Tag Library can be used by the JSP page author in JSP pages
explicitly, when authoring the page manually, or implicitly, when using an authoring tool. Tag
Libraries are particularly useful to authoring tools because they make intent explicit and the
parameters expressed in the action instance provide information to the tool.

Actions that are delivered as tag libraries are imported into a JSP page using the taglib directive.
They are available for use in the page using the prefix given by the directive. An action can create
new objects that can be passed to other actions, or can be manipulated programmatically through a
scripting element in the JSP page.

The semantics of a specific custom action in a tag library is described via a tag handler class which
is usually instantiated at runtime by the JSP page implementation class. When the tag library is well
known to the JSP container (Section 7.3.9, “Well-Known URIs”), the Container can use alternative
implementations as long as the semantics are preserved.

Tag libraries are portable: they can be used in any legal JSP page regardless of the scripting
language used in that page.

The tag extension mechanism includes information to:

* Execute a JSP page that uses the tag library.

» Author or modify a JSP page.

Validate the JSP page.

Present the JSP page to the end user.

A Tag Library is described via the Tag Library Descriptor (TLD), an XML document that is
described below.

127

7.1.1. Goals

The tag extension mechanism described in this chapter addresses the following goals. It is designed
to be:
* Portable - An action described in a tag library must be usable in any JSP container.

» Simple - Unsophisticated users must be able to understand and use this mechanism. Vendors of
JSP functionality must find it easy to make it available to users as actions.

* Expressive - The mechanism must support a wide range of actions, including nested actions,
scripting elements inside action bodies, and creation, use, and updating of scripting variables.

» Usable from different scripting languages - Although the JSP specification currently only defines
the semantics for scripts in the Java programming language, we want to leave open the
possibility of other scripting languages.

* Built upon existing concepts and machinery - We do not want to reinvent what exists elsewhere.
Also, we want to avoid future conflicts whenever we can predict them.

7.1.2. Overview
The processing of a JSP page conceptually follows these steps:
Parsing

JSP pages can be authored using two different syntaxes: a JSP syntax and an XML syntax. The
semantics and validation of a JSP syntax page is described with reference to the semantics and
validation of an equivalent document in the XML syntax.

The first step is to parse the JSP page. The page that is parsed is as expanded by the processing of
include directives. Information in the TLD is used in this step, including the identification of custom
tags, so there is some processing of the taglib directives in the JSP page.

Validation
The tag libraries in the XML document are processed in the order in which they appear in the page.

Each library is checked for a validator class. If one is present, the whole document is made
available to its validate method as a PageData object. As of JSP 2.0, the Container must provide a
jsp:id attribute. This information can be used to provide location information on errors.

Each custom tag in the library is checked for a TagExtralnfo class. If one is present, its validate
method is invoked. The default implementation of validate is to call isValid. See the APIs for more
details.

Translation

Finally, the XML document is processed to create a JSP page implementation class. This process may
involve creating scripting variables. Each custom action will provide information about variables,
either statically in the TLD, or more flexibly by using the getVariableInfo method of a TagExtralnfo
class.

128

Execution

Once a JSP page implementation class has been associated with a JSP page, the class will be treated
as any other servlet class: requests will be directed to instances of the class. At run-time, tag
handler instances will be created and methods will be invoked in them.

7.1.3. Classic Tag Handlers

A classic tag handler is a Java class that implements the Tag, IterationTag, or BodyTag interface, and
is the run-time representation of a custom action.

The JSP page implementation class instantiates a tag handler object, or reuses an existing tag
handler object, for each action in the JSP page. The handler object is a Java object that implements
the jakarta.servlet.jsp.tagext.Tag interface. The handler object is responsible for the interaction
between the JSP page and additional server-side objects.

There are three main interfaces: Tag, IterationTag, and BodyTag.

* The Tag interface defines the basic methods needed in all tag handlers. These methods include
setter methods to initialize a tag handler with context data and attribute values of the action,
and the doStartTag and doEndTag methods.

* The IterationTag interface is an extension to Tag that provides the additional method,
doAfterBody, invoked for the reevaluation of the body of the tag.

* The BodyTag interface is an extension of IterationTag with two new methods for when the tag
handler wants to manipulate the tag body: setBodyContent passes a buffer, the BodyContent
object, and doInitBody provides an opportunity to process the buffer before the first evaluation
of the body into the buffer.

The use of interfaces simplifies making an existing Java object a tag handler. There are also two
support classes that can be used as base classes: TagSupport and BodyTagSupport.

JSP 1.2 introduced a new interface designed to help maintain data integrity and resource
management in the presence of exceptions. The TryCatchFinally interface is a “mix-in” interface
that can be added to a class implementing any of Tag, IterationTag, or BodyTag.

7.1.4. Simple Examples of Classic Tag Handlers

As examples, we describe prototypical uses of tag extensions, briefly sketching how they take
advantage of these mechanisms.

7.1.4.1. Plain Actions

The simplest type of action just does something, perhaps with parameters to modify what the
“something” is, and improve reusability.

This type of action can be implemented with a tag handler that implements the Tag interface. The
tag handler needs to use only the doStartTag method which is invoked when the start tag is
encountered. It can access the attributes of the tag and information about the state of the JSP page.
The information is passed to the Tag object through setter method calls, prior to the call to

129

doStartTag.

Since simple actions with empty tag bodies are common, the Tag Library Descriptor can be used to
indicate that the tag is always intended to be empty. This indication leads to better error checking at
translation time, and to better code quality in the JSP page implementation class.

7.1.4.2. Actions with a Body

Another set of simple actions require something to happen when the start tag is found, and when
the end tag is found. The Tag interface can also be used for these actions. The doEndTag is similar to
the doStartTag method except that it is invoked when the end tag of the action is encountered. The
result of the doEndTag invocation indicates whether the remainder of the page is to be evaluated or
not.

7.1.4.3. Conditionals

In some cases, a body needs to be invoked only when some (possibly complex) condition happens.
Again, this type of action is supported by the basic Tag interface through the use of return values in
the doStartTag method.

7.1.4.4. Iterations

For iteration the IterationTag interface is needed. The doAfterBody method is invoked to determine
whether to reevaluate the body or not.

7.1.4.5. Actions that Process their Body

Consider an action that evaluates its body many times, creating a stream of response data. The
IterationTag protocol is used for this.

If the result of the reinterpretation is to be further manipulated for whatever reason, including just
discarding it, we need a way to divert the output of reevaluations. This is done through the creation
of a BodyContent object and use of the setBodyContent method, which is part of the BodyTag interface.
BodyTag also provides the doInitBody method which is invoked after setBodyContent and before the
first body evaluation provides an opportunity to interact with the body.

7.1.4.6. Cooperating Actions

Cooperating actions may offer the best way to describe a desired functionality. For example, one
action may be used to describe information leading to the creation of a server-side object, while
another action may use that object elsewhere in the page. These actions may cooperate explicitly,
via scoped variables: one action creates an object and gives it a name; the other refers to the object
through the name.

Two actions can also cooperate implicitly. A flexible and convenient mechanism for action
cooperation uses the nested structure of the actions to describe scoping. This is supported in the
specification by providing each tag handler with its parent tag handler (if any) through the
setParent method. The findAncestorWithClass static method in TagSupport can then be used to locate
a tag handler, and, once located, to perform valid operations on the tag handler.

130

7.1.4.7. Actions Defining Scripting Variables

A custom action may create server-side objects and make them available to scripting elements by
creating or updating the scripting variables. The variables thus affected are part of the semantics of
the custom action and are the responsibility of the tag library author.

This information is used at JSP page translation time and can be described in one of two ways:
directly in the TLD for simple cases, or through subclasses of TagExtraInfo. Either mechanism will
indicate the names and types of the scripting variables.

At request time the tag handler will associate objects with the scripting variables through the
pageContext object.

It is the responsibility of the JSP page translator to automatically supply the code required to do the
“synchronization” between the pageContext values and the scripting variables.

There are some sections of JSP where scripting is not allowed. For example, this is the case in a tag
body where the body-content is declared as ‘scriptless’, or in a page where <scripting-invalid> is
true. In these sections, it is not possible to access scripting variables directly via scriptlets or
expressions, and therefore the container need not synchronize them. Instead, the page author can
use the EL to access the pageContext values.

7.1.5. Simple Tag Handlers

The API and invocation protocol for classic tag handlers is necessarily somewhat complex because
scriptlets and scriptlet expressions in tag bodies can rely on surrounding context defined using
scriptlets in the enclosing page.

With the advent of the Expression Language (EL) and JSP Standard Tag Library (JSTL), it is now
feasible to develop JSP pages that do not need scriptlets or scriptlet expressions. This allows us to
define a tag invocation protocol that is easier to use for many use cases.

In that interest, JSP 2.0 introduced a new type of tag extension called a Simple Tag Extension.
Simple Tag Extensions can be written in one of two ways:

* In Java, by defining a class that implements the jakarta.servlet.jsp.tagext.SimpleTag interface.
This class is intended for use by advanced page authors and tag library developers who need
the flexibility of the Java language in order to write their tag handlers. The
jakarta.servlet.jsp.tagext.SimpleTagSupport class provides a default implementation for all
methods in SimpleTag.

* In JSP, using tag files. This method can be used by page authors who do not know Java. It can
also be used by advanced page authors or tag library developers who know Java but are
producing tag libraries that are presentation-centric or can take advantage of existing tag
libraries. See Chapter 8, Tag Files for more details.

The lifecycle of a Simple Tag Handler is straightforward and is not complicated by caching
semantics. Once a Simple Tag Handler is instantiated by the Container, it is executed and then
discarded. The same instance must not be cached and reused. Initial performance metrics show
that caching a tag handler instance does not necessarily lead to greater performance, and to
accommodate such caching makes writing portable tag handlers difficult and makes the tag

131

handler prone to error.

In addition to being simpler to work with, Simple Tag Extensions do not directly rely on any servlet
APIs, which allows for potential future integration with other technologies. This is facilitated by the
JspContext class, which PageContext now extends. JspContext provides generic services such as
storing the JspWriter and keeping track of scoped attributes, whereas PageContext has functionality
specific to serving JSPs in the context of servlets. Whereas the Tag interface relies on PageContext,
SimpleTag only relies on JspContext.

The body of a Simple Tag, if present, is translated into a JSP Fragment and passed to the setJspBody
method. The tag can then execute the fragment as many times as needed. See Section 7.1.6, “JSP
Fragments” for more details on JSP Fragments.

Because JSP Fragments do not support scriptlets, the <body-content> of a SimpleTag cannot be "JSP".
A JSP page is invalid if it references a custom tag whose tag handler implements the SimpleTag
interface and whose <body-content> is equal to "JSP" as per the supporting TLD.

7.1.6. JSP Fragments

During the translation phase, various pieces of the page are translated into implementations of the
jakarta.servlet.jsp.tagext.JspFragment abstract class, before being passed to a tag handler. This is
done automatically for any JSP code in the body of a named attribute (one that is defined by
<jsp:attribute>) that is declared to be a fragment, or of type JspFragment, in the TLD. This is also
automatically done for the body of any tag handled by a Simple Tag handler. Once passed in, the tag
handler can then evaluate and re-evaluate the fragment as many times as needed, or even pass it
along to other tag handlers, in the case of Tag Files.

A JSP fragment can be parameterized by a tag handler by setting page-scoped attributes in the
JspContext associated with the fragment. These attributes can then be accessed via the EL.

A translation error must occur if a piece of JSP code that is to be translated into a JSP Fragment
contains scriptlets or scriptlet expressions.

See the jakarta.servlet.jsp.tagext Javadoc for more details on the JspFragment abstract class.

7.1.7. Simple Examples of Simple Tag Handlers

In this section, we revisit the prototypical uses of classic tag extensions, as was presented in Section
7.1.4, “Simple Examples of Classic Tag Handlers”, and briefly describe how they are implemented
using simple tag handlers.

7.1.7.1. Plain Actions

To implement plain actions, the tag library developer creates a class that extends SimpleTagSupport
and implements the doTag method. The details on accessing attributes and enforcing an empty body
are the same as with classic tag handlers. By default, the rest of the page will be evaluated after
invoking doTag. To signal that the page is to be skipped, doTag throws SkipPageException.

132

7.1.7.2. Actions with a Body

To implement actions with a body, the tag library developer implements doTag and invokes the body
at any point by calling invoke on the JspFragment object passed in via the setJspBody method. The tag
handler can provide the fragment access to variables through the JspContext object.

7.1.7.3. Conditionals

All conditional logic is handled in the doTag method. If the body is not to be invoked, the tag library
developer simply does not call invoke on the JspFragment object passed in via setJspBody.

7.1.7.4. Iterations

All iteration logic is handled in the doTag method. The tag library developer simply calls invoke on
the JspFragment object passed in via setJspBody as many times as needed.

7.1.7.5. Actions that Process their Body

To divert the result of the body invocation, the tag library developer passes a java.io.Writer object
to the invoke method on the body JspFragment. Unlike the standard tag handler’s BodyContent
solution, the result of the invocation does not need to be buffered.

7.1.7.6. Cooperating Actions

Cooperating actions work the same way as with classic tag handlers. A setParent method is
available in the SimpleTag interface and is called by the container before calling doTag if one tag
invocation is nested within another. A findAncestorWithClass method is available on
SimpleTagSupport. This should be used, instead of TagSupport.findAncestorWithClass(), in all cases
where the desired return value may implement SimpleTag.

Note that SimpleTag does not extend Tag. Because of this, the JspTag common base is used in these
new APIs instead of Tag. Furthermore, because Tag.setParent only accepts an object of type Tag, tag
collaboration becomes more difficult when classic tag handlers are nested inside SimpleTag custom
actions.

To make things easier, the jakarta.servlet.jsp.tagext.TagAdapter class can wrap any SimpleTag and
expose it as if it were a Tag instace. The original JspTag can be retrieved through its getAdaptee
method. Whenever calling the setParent method on a classic Tag in a case where the outer tag does
not implement Tag, the JSP Container must construct a new TagAdapter and call setParent on the
classic Tag passing in the adapter.

See the jakarta.servlet.jsp.tagext Javadoc for more details on these APIs.

7.1.8. Attributes With Dynamic Names

Prior to JSP 2.0, the name of every attribute that a tag handler accepted was predetermined at the
time the tag handler was developed. It is sometimes useful, however, to be able to define a tag
handler that accepts attributes with dynamic names that are not known until the page author uses
the tag. For example, it is time consuming and error-prone to anticipate what attributes a user may
wish to pass to a tag that mimics an HTML element.

133

Available since JSP 2.0 is the ability to declare that a tag handler accepts additional attributes with
dynamic names. This is done by having the tag handler implement the
jakarta.servlet.jsp.tagext.DynamicAttributes interface. See the jakarta.servlet.jsp.tagext
Javadoc for more details on this interface.

7.1.9. Event Listeners

A tag library may include classes that are event listeners (see the Servlet 6.2 specification). The
listeners classes are listed in the tag library descriptor and the JSP container automatically
instantiates them and registers them. A Container is required to locate all TLD files (see Section
7.3.1, “Identifying Tag Library Descriptors” for details on how they are identified), read their
listener elements, and treat the event listeners as extensions of those listed in web. xm1.

The order in which the listeners are registered is undefined, but they are registered before
application start.

7.1.10. JspId Attribute

Sometimes it may be useful to provide unique identifications for tag handlers. A tag handler can
implement the interface jakarta.servlet.jsp.tagext.JspIdConsumer for such functionality. See
jakarta.servlet.jsp.tagext Javadoc for more details.

7.1.11. Resource Injection

The Java Metadata specification (JSR-175), which is part of Java SE 5.0 and greater, provides a
means of specifying configuration data in Java code. Metadata in Java code is also referred to as
annotations. In Jakarta EE, annotations are used to declare dependencies on external resources and
configuration data in Java code without the need to define that data in a configuration file.

Section SRV.15.5 of the Servlet Specification describes the behavior of annotations and resource
injection in Jakarta EE technology compliant web containers.

In the JSP specification, tag handlers which implement interfaces jakarta.servlet.jsp.tagext.Tag
and jakarta.servlet.jsp.tagext.SimpleTag may be annotated for injection. In both cases, injection
occurs immediately after an instance of the tag handler is constructed, and before any of the tag
properties are initialized.

Event Listeners (See Section 7.1.9, “Event Listeners”) can also be annotated for resource injection.
Injection occurs immediately after an instance of the event handler is constructed, and before it is
registered.

The annotations supported are:

©EJB, @EJBs
» @PersistenceContext, @PersistenceContexts

e @PersistenceUnit, @Persistencelnits

@PostConstruct, @PreDestroy

* @Resource, @Resources

134

e @WebServiceRef, @WebServiceRefs
Please see Section SRV.15.5 of the servlet specification for more details on these annotations.

A JSP container that is not part of a Jakarta EE technology-compliant implementation is encouraged,
but not required, to support resource injection.

Resource injection is not supported for JSP pages or tag files.

7.2. Tag Libraries

A tag library is a collection of actions that encapsulate some functionality to be used from within a
JSP page. A tag library is made available to a JSP page through a taglib directive that identifies the
tag library via a URI (Universal Resource Identifier).

The URI identifying a tag library may be any valid URI as long as it can be used to uniquely identify
the semantics of the tag library.

The URI identifying the tag library is associated with a Tag Library Description (TLD) file and with
tag handler classes as indicated in Section 7.3, “The Tag Library Descriptor” below.

7.2.1. Packaged Tag Libraries

JSP page authoring tools and JSP containers are required to accept a tag library that is packaged as
a JAR file. When deployed in a JSP container, the standard JAR conventions described in the Servlet
6.2 specification apply, including the conventions for dependencies on extensions.

Packaged tag libraries must have at least one tag library descriptor file. The JSP 1.1 specification
allowed only a single TLD, in META-INF/taglib.tld, but as of JSP 1.2 multiple tag libraries are
allowed. See Section 7.3.1, “Identifying Tag Library Descriptors” for how TLDs are identified.

Both Classic and Simple Tag Handlers (implemented either in Java or as tag files) can be packaged
together.

7.2.2. Location of Java Classes

A tag library contains classes for instantiation at translation time and classes for instantiation at
request time. The former includes classes such as TagLibraryValidator and TagExtralnfo. The latter
includes tag handler classes.

The usual conventions for Java classes apply: as part of a web application, they must reside either
in a JAR file in the WEB-INF/1ib directory, or in a directory in the WEB-INF/classes directory.

A JAR containing packaged tag libraries must be dropped into the WEB-INF/11ib directory to make its
classes available at request time (and also at translation time, see Section 7.3.7, “Translation-Time
Class Loader”). The mapping between the URI and the TLD is explained further below.

7.2.3. Tag Library Directive

The taglib directive in a JSP page declares that the page uses a tag library, uniquely identifies the

135

tag library using a URI, and associates a tag prefix with usage of the actions in the library.

A JSP container maps the URI used in the taglib directive into a Tag Library Descriptor in two steps:
it resolves the URI into a TLD resource path, and then derives the TLD object from the TLD resource
path.

If the JSP container cannot locate a TLD resource path for a given URI, a fatal translation error shall
result. Similarly, it is a fatal translation error for a URI attribute value to resolve to two different
TLD resource paths.

It is a fatal translation error for the taglib directive to appear after actions using the prefix
introduced by it.

7.3. The Tag Library Descriptor

The Tag Library Descriptor (TLD) is an XML document that describes a tag library. The TLD for a tag
library is used by a JSP container to interpret pages that include taglib directives referring to that
tag library. The TLD is also used by JSP page authoring tools that will generate JSP pages that use a
library, and by authors who do the same manually.

The TLD includes documentation on the library as a whole and on its individual tags, version
information on the JSP container and on the tag library, and information on each of the actions
defined in the tag library.

The TLD may name a TaglLibraryValidator class that can validate that a JSP page conforms to a set of
constraints expected by the tag library.

Each action in the library is described by giving its name, the class of its tag handler, information
on any scripting variables created by the action, and information on attributes of the action.
Scripting variable information can be given directly in the TLD or through a TagExtralnfo class. For
each valid attribute there is an indication about whether it is mandatory, whether it can accept
request-time expressions, and additional information.

A TLD file is useful for providing information on a tag library. It can be read by tools without
instantiating objects or loader classes. Our approach conforms to the conventions used in other
Jakarta EE technologies.

As of JSP 2.0, the format for the Tag Library Descriptor is represented in XML Schema. This allows
for a more extensible TLD that can be used as a true single-source document.

7.3.1. Identifying Tag Library Descriptors

Tag library descriptor files have names that use the extension .tld, and the extension indicates a
tag library descriptor file. When deployed inside a JAR file, the tag library descriptor files must be
in the META-INF directory, or a subdirectory of it. When deployed directly into a web application, the
tag library descriptor files must always be in the WEB-INF directory, or some subdirectory of it. TLD
files should not be placed in /WEB-INF/classes or /WEB-INF/1ib, and must not be placed inside /WEB-
INF/tags or a subdirectory of it, unless named implicit.tld and intended to configure an implicit
tag library with its JSP version and tlib-version.

136

The XML Schema for a TLD document is http://java.sun.com/xml/ns/j2ee/web-
jsptaglibrary_2_1.xsd.

Note that tag files, which collectively form tag libraries, may or may not have an explicitly defined
TLD. In the case that they do not, the container generates an implicit TLD that can be referenced
using the tagdir attribute of the taglib directive. More details about identifying this implicit Tag
Library Descriptor can be found in Chapter 8, Tag Files.

7.3.2. TLD Resource Path

A URI in a taglib directive is mapped into a context relative path (as discussed in Section 1.2.1,
“Relative URL Specifications”). The context relative path is a URL without a protocol and host
components that starts with / and is called the TLD resource path.

The TLD resource path is interpreted relative to the root of the web application and should resolve
to a TLD file directly, or to a JAR file that has a TLD file at location META-INF/taglib.t1d. If the TLD
resource path is not one of these two cases, a fatal translation error will occur.

The URI describing a tag library is mapped to a TLD resource path though a taglib map, and a
fallback interpretation that is to be used if the map does not contain the URI The taglib map is built
from an explicit taglib map in web.xml (described in Section 7.3.3, “Taglib Map in web.xml”) that is
extended with implicit entries deduced from packaged tag libraries in the web application
(described in Section 7.3.4, “Implicit Map Entries from TLDs”), and implicit entries known to the JSP
container. The fallback interpretation is targetted to a casual use of the mechanism, as in the
development cycle of the Web Application; in that case the URI is interpreted as a direct path to the
TLD (see Section 7.3.6.2, “Computing the TLD Resource Path”).

The following order of precedence applies (from highest to lowest) when building the taglib map
(see the following sections for details):

1. If the container is Jakarta EE platform compliant, the Map Entries for the tag libraries that are
part of the Jakarta EE platform. This currently includes the Jakarta Server Pages Standard Tag
Library libraries and the Jakarta Server Faces libraries.

2. Taglib Map in web.xml

3. Implicit Map Entries from TLDs
a. TLDs in JAR files in WEB-INF/lib
b. TLDs under WEB-INF

4. Implicit Map Entries from the Container

7.3.3. Taglib Map in web.xml

The web.xml file can include an explicit taglib map between URIs and TLD resource paths described
using the taglib elements of the Web Application Deployment descriptor in WEB-INF/web.xml. See
Section 3.2, “Taglib Map” for more details.

137

http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_1.xsd
http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_1.xsd

7.3.4. Implicit Map Entries from TLDs

The taglib map described in web.xml is extended with new entries extracted from TLD files in the
Web Application. The new entries are computed as follows:

» The container searches for all files with a .t1d extension under /WEB-INF or a subdirectory, and
inside JAR files that are in /WEB-INF/1ib. When examining a JAR file, only resources under /META-
INF or a subdirectory are considered. The order in which these files are searched for is
implementation-specific and should not be relied on by web applications.

* Each TLD file is examined. If it has a <uri> element, then a new <taglib> element is created,
with a <taglib-uri> subelement whose value is that of the <uri> element, and with a <taglib-
location> subelement that refers to the TLD file.

* If the created <taglib> element has a different <taglib-uri> to any in the taglib map, it is added.

This mechanism provides an automatic URI to TLD mapping as well as supporting multiple TLDs
within a packaged JAR. Note that this functionality does not require explicitly naming the location
of the TLD file, which would require a mechanism like the jar:protocol.

Note also that the mechanism does not add duplicated entries.

7.3.5. Implicit Map Entries from the Container

The Container may also add additional entries to the taglib map. As in the previous case, the entries
are only added for URIs that are not present in the map. Conceptually the entries correspond to TLD
describing these tag libraries.

These implicit map entries correspond to libraries that are known to the Container, who is
responsible for providing their implementation, either through tag handlers, or via the mechanism
described in Section 7.3.9, “Well-Known URIs”.

7.3.6. Determining the TLD Resource Path

The TLD resource path can be determined from the uri attribute of a taglib directive as described
below. In the explanation below an absolute URI is one that starts with a protocol and host, while a
relative URI specification is as in section 2.5.2, i.e. one without the protocol and host part.

All steps are described as if they were taken, but an implementation can use a different
implementation strategy as long as the result is preserved.

7.3.6.1. Computing TLD Locations

The taglib map generated in Sections Section 7.3.3, “Taglib Map in web.xml”, Section 7.3.4, “Implicit
Map Entries from TLDs” and Section 7.3.5, “Implicit Map Entries from the Container” may contain
one or more <taglib></taglib> entries. Each entry is identified by a taglib_uri, which is the value
of the <taglib-uri> subelement. This taglib_uri may be an absolute URI, or a relative URI spec
starting with / or one not starting with /. Each entry also defines a taglib_location as follows:

* If the <taglib-location> subelement is some relative URI specification that starts with a / the
taglib_location is this URL

138

 If the <taglib-location> subelement is some relative URI specification that does not start with /,
the taglib_location is the resolution of the URI relative to /WEB-INF/web.xml (the result of this
resolution is a relative URI specification that starts with /).

7.3.6.2. Computing the TLD Resource Path

The following describes how to resolve a taglib directive to compute the TLD resource path. It is
based on the value of the uri attribute of the taglib directive.

o Ifuriis abs_uri, an absolute URI

Look in the taglib map for an entry whose taglib_uri is abs_uri. If found, the corresponding
taglib_location is the TLD resource path. If not found, a translation error is raised.

e Ifuriisroot_rel_uri, arelative URI that starts with /

Look in the taglib map for an entry whose taglib_uri is root_rel_uri. If found, the
corresponding taglib_location is the TLD resource path. If no such entry is found, root_rel_uri
is the TLD resource path.

e Ifuriisnoroot_rel_uri, a relative URI that does not start with /

Look in the taglib map for an entry whose taglib_uri is noroot_rel_uri. If found, the
corresponding taglib_location is the TLD resource path. If no such entry is found, resolve
noroot_rel_uri relative to the current JSP page where the directive appears; that value (by
definition, this is a relative URI specification that starts with /) is the TLD resource path. For
example, if /a/b/c.jsp references

../../WEB-INF/my.t1ld, then if there is no taglib_location that matches

../../WEB-INF/my.t1ld, the TLD resource path would be /WEB-INF/my.t1d.

7.3.6.3. Usage Considerations

The explicit web.xml map provides a explicit description of the tag libraries that are being used in a
web application.

The implicit map from TLDs means that a JAR file implementing a tag library can be dropped in
and used immediatedly through its stable URIs.

The use of relative URI specifications in the taglib map enables very short names in the taglib
directive. For example, if the map is:

<taglib>
<taglib-uri>/myPRlibrary</taglib-uri>
<taglib-location>/WEB-INF/t1ds/PRlibrary_1_4.t1ld</taglib-location>
</taglib>

then it can be used as:

139

n,n g

<%@ taglib uri="/myPRlibrary" prefix="x" %>

Finally, the fallback rule allows a taglib directive to refer directly to the TLD. This arrangement is
very convenient for quick development at the expense of less flexibility and accountability. For
example, in the case above, it enables:

<%@ taglib uri="/WEB-INF/tlds/PRlibrary_1_4.t1d" prefix="x" %>

7.3.7. Translation-Time Class Loader

The set of classes available at translation time is the same as that available at runtime: the classes
in the underlying Java platform, those in the JSP container, and those in the class files in WEB-
INF/classes, in the JAR files in WEB-INF/1ib, and, indirectly those indicated through the use of the
class-path attribute in the META-INF/MANIFEST file of these JAR files.

7.3.8. Assembling a Web Application

As part of the process of assembling a web application, the Application Assembler will create a WEB-
INF/ directory, with appropriate 1ib/ and classes/ subdirectories, place JSP pages, servlet classes,
auxiliary classes, and tag libraries in the proper places, and create a WEB-INF/web.xml that ties
everything together.

Tag libraries that have been delivered in the standard JAR format can be dropped directly into WEB-
INF/11b. This automatically adds all the TLDs inside the JAR, making their URIs advertised in their
<uri> elements visible to the URI to TLD map. The assembler may create taglib entries in web.xml
for each of the libraries that are to be used.

Part of the assembly (and later the deployment) may create and/or change information that
customizes a tag library; see Section 7.5.3, “Customizing a Tag Library”.

7.3.9. Well-Known URIs

A JSP container may “know of” some specific URIs and may provide alternate implementations for
the tag libraries described by these URIs, but the user must see the behavior as that described by
the required, portable tag library description described by the URI.

A JSP container must always use the mapping specified for a URI in the web.xml deployment
descriptor if present. If the deployer wants to use the platform-specific implementation of the well-
known URI, the mapping for that URI should be removed at deployment time.

7.3.10. Tag and Tag Library Extension Elements

The JSP 2.0 Tag Library Descriptor supports the notion of Tag Extension Elements and Tag Library
Extension Elements. These are elements added to the TLD by the tag library developer that provide
additional information about the tag, using a schema defined outside of the JSP specification.

The information contained in these extensions is intended to be used by tools only, and is not

140

accessible at compile-time, deployment-time, or run-time. JSP containers must not alter their
behavior based on the content, the presence, or the absence of a particular Tag or Tag Library
Extension Element. In addition, JSP containers must consider invalid any tag library that specifies
mustUnderstand="true" for any Tag or Tag Library Extension element. Any attempt to use an invalid
tag library must produce a translation error. This is to preserve application compatibility across
containers.

The JSP container may use schema to validate the structure of the Tag Library Descriptor. If it does
S0, any new content injected into Tag or Tag Library Extension elements must not be validated by
the JSP Container.

Tag Library Extension Elements provide extension information at the tag library level, and are
specified by adding a <taglib-extension> element as a child of <taglib>. Tag Extension Elements
provide extension information at the tag level, and are specified by adding a <tag-extension>
element as a child of <tag>. To use these elements, an XML namespace must first be defined and the
namespace must be imported into the TLD.

7.3.10.1. Example

In the following non-normative example, a fictitious company called ACME has decided to enhance
the page author’s experience by defining a set of Tag and Tag Library Extension elements that
cause sounds to be played when inserting tags in a document.

In this hypothetical example, ACME has published an XML Schema at http://www.acme.com/acme.xsd
that defines the extensions, and has provided plug-ins for various JSP-capable IDEs to recognize
these extension elements.

The following example tag library uses ACME’s extensions to provide helpful voice annotations that
describe how to use each tag in the tag library.

<taglib xmlns="http://java.sun.com/xml/ns/javaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:acme="http://acme.com/"
xsi:schemalocation="http://java.sun.com/xml/ns/javaee
http://java.sun.com/xml/ns/j2ee/web-jsptaglibrary_2_1.xsd
http://acme.com/ http://acme.com/acme.xsd"
version="2.1">
<description>
Simple Math Tag Library.
Contains ACME sound extensions with helpful voice annotations
that describe how to use the tags in this library.
</description>
<tlib-version>1.0</tlib-version>
<short-name>math</short-name>
<tag>
<description>Adds two numbers</description>
<display-name>add</display-name>
<name>add</name>
<tag-class>com. foobar.tags.AddTag</tag-class>
<body-content>empty</body-content>

141

http://www.acme.com/acme.xsd

<attribute>
<name>x</name>
<type>java.lang.Double</type>
</attribute>
<attribute>
<name>y</name>
<type>java.lang.Double</type>
</attribute>
<tag-extension namespace="http://acme.com/">
<!-- Extensions for tag sounds -->
<extension-element xsi:type="acme:acme-soundsType">
<acme:version>1.5</acme:version>
<!-- Sound played for help on the add tag -->
<acme:tag-sound>sounds/add.au</acme: tag-sound>
<!-- Sound played for help on the x attribute -->
<acme:attribute-sound name="x">
sounds/add-x.au
</acme:attribute-sound>
<!-- Sound thatls played for help on the yattribute -->
<acme:attribute-sound name="y">
sounds/add-y.au
</acme:attribute-sound>
</extension-element>
</tag-extension>
</tag>
<taglib-extension namespace="http://acme.com/">
<!-- Extensions for taglibrary sounds-->
<extension-element xsi:type="acme:acme-soundsType">
<acme:version>1.5</acme:version>
<!-- Sound played when author imports this taglib -->
<acme:import-sound>sounds/intro.au</acme:import-sound>
</extension-element>
</taglib-extension>
</taglib>

The corresponding acme.xsd file would look something like:

<?xml version="1.0" encoding="UTF-8"7>
<xsd:schema targetNamespace="http://acme.com/"
xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"
xmlns:acme="http://acme.com/"
xmlns:xsd="http://www.w3.0rg/2001/XMLSchema"
xmlns:xml="http://www.w3.0rg/XML/1998/namespace"
elementFormDefault="qualified"
attributeFormDefault="unqualified"
version="1.0">
<xsd:annotation>
<xsd:documentation>
This an XML Schema for sample Acme taglib extensibility
elements, used to test TLD extensibility.

142

</xsd:documentation>
</xsd:annotation>

<|__ *kkhkkkhkkhkhkhkhhhhhhkhhhkhhhkhhhkhhhkhhhkhkhkhhkhkhhkhkhhkhkhkkhkhkkxx o>

<xsd:import namespace="http://java.sun.com/xml/ns/j2ee"
schemalocation="../web-jsptaglibrary_2_0.xsd" />

<|__ *kkhkkkhkkhkhkhhhhhhhhhhhhhhhhkhhhhhhkhkhkhhkhkhkkhkhkkhkhkkhkikkkxx o>

<xsd:complexType name="acme-soundsType">
<xsd:annotation>
<xsd:documentation>
Extension for sounds associated with a tag
</xsd:documentation>
</xsd:annotation>
<xsd:complexContent>
<xsd:extension base="j2ee:extensibleType">
<xsd:sequence>
<xsd:element name="version" type="xsd:string"/>
<xsd:element name="tag-sound" type="xsd:string"
minOccurs="0" maxOccurs="unbounded"/>
<xsd:element name="attribute-sound"
minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:simpleContent>
<xsd:extension base="xsd:string">
<xsd:attribute name="name" use="required" type="xsd:string" />
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
<xsd:element name="1import-sound" type="xsd:string"
minOccurs="0" maxOccurs="unbounded"/>
</xsd:sequence>
</xsd:extension>
</xsd:complexContent>
</xsd:complexType>
</xsd:schema>

7.4. Validation

There are a number of reasons why the structure of a JSP page should conform to some validation
rules:

* Request-time semantics; e.g. a subelement may require the information from some enclosing
element at request-time.

* Authoring-tool support; e.g. a tool may require an ordering in the actions.

* Methodological constraints; e.g. a development group may want to constrain the way some

143

features are used.

Validation can be done either at translation-time or at request-time. In general translation-time
validation provides a better user experience, and the JSP 4.1 specification provides a very flexible
translation-time validation mechanism.

7.4.1. Translation-Time Mechanisms

Some translation-time validation is represented in the Tag Library Descriptor. In some cases a
TagExtralnfo class needs to be provided to supplement this information.

7.4.1.1. Attribute Information

The Tag Library Descriptor contains the basic syntactic information. In particular, the attributes are
described including their name, whether they are optional or mandatory, and whether they accept
request-time expressions. Additionally the body-content element can be used to indicate that an
action must be empty.

All constraints described in the TLD must be enforced. A tag library author can assume that the tag
handler instance corresponds to an action that satisfies all constraints indicated in the TLD.

7.4.1.2. Validator Classes

A TaglibraryValidator class may be listed in the TLD for a tag library to request that a JSP page be
validated. The XML view of a JSP page is exposed through a PageData class, and the validator class
can do any checks the tag library author may have found appropriate.

The JSP container must uniquely identify all XML elements in the XML view of a JSP page through a
jsp:id attribute. This attribute can be used to provide better information on the location of an
error.

A TaglibraryValidator can be passed some initialization parameters in the TLD. This eases the reuse
of validator classes. We expect that validator classes will be written based on different XML schema
mechanisms (DTDs, XSchema, Relaxx, others). Standard validator classes may be incorporated into
a later version of the JSP specification if a clear schema standard appears at some point.

7.4.1.3. TagExtralnfo Class Validation

Additional translation-time validation can be done using the validate method in the TagExtralnfo
class. The validate method is invoked at translation-time and is passed a TagData instance as its
argument. As of JSP 2.0, the default behavior of validate is to call the isValid method.

The isValid mechanism was the original validation mechanism introduced in JSP 1.1 with the rest
of the Tag Extension machinery. Tag libraries that are designed to run in JSP 1.2 containers or
higher should use the validator class mechanism. Tag libraries that are designed to run in JSP 2.0
containers or higher that wish to use the TagExtralnfo validation mechanism are encouraged to
implement the validate method in favor of the isValid method due to the ability to provide better
validation messages. Either method will work, though implementing both is not recommended.

144

7.4.2. Request-Time Errors

In some cases, additional request-time validation will be done dynamically within the methods in
the tag handler. If an error is discovered, an instance of JspException can be thrown. If uncaught,
this object will invoke the errorpage mechanism of the JSP specification.

7.5. Conventions and Other Issues

This section is not normative, although it reflects good design practices.

7.5.1. How to Define New Implicit Objects

We advocate the following style for the introduction of implicit objects:

* Define a tag library.

* Add an action called defineObjects to define the desired objects.

The JSP page can make these objects available as follows:

<%@ taglib prefix="me" uri="..." %>
<me:defineObjects />

. start using the objects...

This approach has the advantage of requiring no new machinery and of making very explicit the
dependency.

In some cases there may be an implementation dependency in making these objects available. For
example, they may be providing access to some functionality that exists only in a particular
implementation. This can be done by having the tag extension class test at run-time for the
existence of some implementation dependent feature and raise a run-time error (this, of course,
makes the page not Jakarta EE compliant).

This mechanism, together with the access to metadata information allows for vendors to innovate
within the standard.

If a feature is added to a JSP specification, and a vendor also provides that feature

o through its vendor-specific mechanism, the standard mechanism, as indicated in
the JSP specification will “win”. This means that vendor-specific mechanisms can
slowly migrate into the specification as they prove their usefulness.

7.5.2. Access to Vendor-Specific information

If a vendor wants to associate some information that is not described in the current version of the
TLD with some tag library, it can do so by inserting the information in a document it controls,
inserting the document in the WEB-INF portion of the Web Application where the Tag Library
resides, and using the standard Servlet 6.2 mechanisms to access that information.

145

7.5.3. Customizing a Tag Library

A tag library can be customized at assembly and deployment time. For example, a tag library that
provides access to databases may be customized with login and password information.

There is no convenient place in web.xml in the Servlet 6.2 spec for customization information. A
standardized mechanism is probably going to be part of a forthcoming JSP specification, but in the
meantime the suggestion is that a tag library author place this information in a well-known
location at some resource in the WEB-INF/ portion of the Web Application and access it via the
getResource call on the ServletContext.

146

Chapter 8. Tag Files

This chapter describes the details of tag files, a JSP 2.0 onwards facility that allows page authors to
author tag extensions using only JSP syntax. In the past, the ability to encapsulate presentation logic
into reusable, full-featured tag libraries was only available to developers that had a reasonable
amount of Java experience. Tag files bring the power of reuse to the basic page author, who are not
required to know Java. When used together with JSP Fragments and Simple Tag Handlers, these
concepts have the ability to simplify JSP development substantially, even for developers who do
know Java.

8.1. Overview

As of JSP version 2.0, the JSP Compiler is required to recognize tag files. A tag file is a source file that
provides a way for a page author to abstract a segment of JSP code and make it reusable via a
custom action.

Tag files allow a JSP page author to create tag libraries using JSP syntax. This means that page
authors no longer need to know Java or ask someone who knows Java to write a tag extension.
Even for page authors or tag library developers who know Java, writing tag files is more convenient
when developing tags that primarily output template text.

The required file extension for a tag file are .tag or .tagx. As is the case with JSP files, the actual tag
may be composed of a top file that includes other files that contain either a complete tag or a
segment of a tag file. Just as the recommended extension for a segment of a JSP file is .jspf, the
recommended extension for a segment of a tag file is . tagf.

8.2. Syntax of Tag Files
The syntax of a tag file is similar to that of a JSP page, with the following exceptions:

* Directives - Some directives are not available or have limited availability, and some tag file
specific directives are available. See Section 8.5, “Tag File Directives” for a discussion on tag file
directives.

* The <jsp:invoke> and <jsp:doBody> standard actions can only be used in Tag Files.

The EBNF grammar in Section 1.3.10, “JSP Syntax Grammar” describes the syntax of tag files. The
root production for a tag files is JSPTagDef.

See Section 8.6, “Tag Files in XML Syntax” for details on tag files in XML syntax.

8.3. Semantics of Tag Files

For each tag file in the web application, a tag handler is made available to JSP pages and other tag
files. The specifics of how this is done are left up to the Container implementation. For example,
some Containers may choose to compile tag files into Java tag handlers, whereas others may decide
to interpret the tag handlers.

147

However the Container chooses to prepare the tag handler, the following conditions must hold true

for

148

all tag handlers defined as tag files:

The tag file implementation must keep a copy of the JspContext instance passed to it by the
invoking page via the setJspContext method. This is called the Invoking JSP Context.

The tag file implementation must create and maintain a second instance of JspContext called a
JSP Context Wrapper. If the Invoking JSP Context is an instance of PageContext, the JSP Context
Wrapper must also be an instance of PageContext. This wrapper must be returned when
getJspContext() is called.

For each invocation to the tag, the JSP Context Wrapper must present a clean page scope
containing no initial elements. All scopes other than the page scope must be identical to those in
the Invoking JSP Context and must be modified accordingly when updates are made to those
scopes in the JSP Context Wrapper. Any modifications to the page scope, however, must not
affect the Invoking JSP Context.

For each attribute declared and specified, a page-scoped variable must be created in the page
scope of the JSP Context Wrapper, unless the attribute is a deferred value or a deferred method,
in which case the VariableMapper obtained from the ELContext in the current pageContext is
used to map the deferred expression to the attribute name. The name of the variable must be
the same as the declared attribute name. The value of the variable must be the value of the
attribute passed in during invocation. For each attribute declared as optional and not specified,
no variable is created. If the tag accepts dynamic attributes, then the names and values of those
dynamic attributes must be exposed to the tag file as specified in Table JSP.8-2 , “Details of tag
directive attributes”.

If the attribute is a deferred-value, it is directly mapped. If the attribute is a deferred-method, it
is wrapped in a ValueExpression, and the resulting ValueExpression is mapped.

There are two implications here. They are best illustrated by examples. Suppose we have a tag
file tagf.tag:

<%@ attribute name="attr1" deferredValue="true"/>

<%@ attribute name="attr2" deferredMethod="true"/>

<c:out value="${attr1.bar}"/>

<h:commandButton value="#{attr1.foo}" action="#{attr2}"/>

used in test.jsp:

<%@ taglib prefix="my" tagdir="/WEB-INF/tags"%>
<my:tagf attr1="#{someExpr}" attr2="#{someMethod}"/>

First, in tagf.tag, ${attr1.bar} will cause the immediate evaluation of the deferred expression.
Secondly, since the VariableMapper is used to resolve variables at EL parse time, a deferred
expression such as #{attr1.foo} is not dependent on attr1 anymore, so that it can be evaluated
long after the end of life of the tag file’s pageContext. This is very useful for Jakarta Server Faces
applications.

Since the EL syntax does not allow for invocation of the method in a MethodExpression, the only
allowable use of attr2 is to pass it to another tag that has a deferred-method attribute, in the
form of “#{attr2}”.

* For all intents and purposes other than for synchronizing the AT_BEGIN, NESTED, and AT_END
scripting variables, the effective JspContext for the tag file is the JSP Context Wrapper. For
example, the jspContext scripting variable must point to the JSP Context Wrapper instead of the
invoking JSP Context.

* The tag handler must behave as though a tag library descriptor entry was defined for it, in
accordance with the tag, attribute, and variable directives that appear in the tag file translation
unit.

It is legal for a tag file to forward to a page via the <jsp:forward> standard action. Just as for JSP
pages, the forward is handled through the request dispatcher. Upon return from the
RequestDispatcher.forward method, the generated tag handler must stop processing of the tag file
and throw jakarta.servlet.jsp.SkipPageException. Similarly, if a tag file invokes a Classic Tag
Handler which returns SKIP_PAGE from the doEndTag method, or if it invokes a Simple Tag Handler
which throws SkipPageException in the doTag method, the generated tag handler must terminate and
SkipPageException must be thrown. In either of these two cases, the doCatch and doFinally methods
must be called on enclosing tags that implement the TryCatchFinally interface before returning. The
doEndTag methods of enclosing classic tags must not be called.

Care should be taken when invoking a classic tag handler from a tag file. In general, SimpleTag
Extensions can be used in environments other than servlet environments. However, because the
Tag interface relies on PageContext, which in turn assumes a servlet environment, using classic tag
handlers indirectly binds the use of the tag file to servlet environments. Nonetheless, the JSP
container must allow such an invocation to occur. When a tag file attempts to invoke a classic tag
handler (i.e. one that implements the Tag interface), it must cast the JspContext passed to the
SimpleTag into a PageContext. In the event that the class cast fails, the invocation of the classic tag
fails, and a JspException must be thrown.

If a tag file in XML syntax contains a jsp:root element, the value of that element’s version attribute
must match the tag file’s JSP version. See Section 8.4.2, “Packaging in a JAR”, and Section 8.4.3,
“Packaging Directly in a Web Application”, for how the JSP version of a tag file is determined.

8.4. Packaging Tag Files

One of the goals of tag files as a technology is to make it as easy to write a tag handler as it is to
write a JSP. Traditionally, writing tag handlers has been a tedious task, with a lot of time spent
compiling and packaging the tag handlers and writing a TLD to provide information to tools and
page authors about the custom actions. The rules for packaging tag files are designed to make it
very simple and fast to write simple tags, while still providing as much power and flexibility as
classic tag handlers have.

8.4.1. Location of Tag Files

Tag extensions written in JSP using tag files can be placed in one of two locations. The first
possibility is in the /META-INF/tags/ directory (or a subdirectory of /META-INF/tags/) in a JAR file

149

installed in the /WEB-INF/1ib/ directory of the web application. Tags placed here are typically part of
a reusable library of tags that can be easily dropped into any web application.

The second possibility is in the /WEB-INF/tags/ directory (or a subdirectory of /WEB-INF/tags/) of the
web application. Tags placed here are within easy reach and require little packaging. Only files
with a .tag or .tagx extension are recognized by the container to be tag files.

Tag files that appear in any other location are not considered tag extensions and must be ignored
by the JSP container. For example, a tag file that appears in the root of a web application would be
treated as content to be served.

8.4.2. Packaging in a JAR

To be accessible, tag files bundled in a JAR require a Tag Library Descriptor. Tag files that appear in
a JAR but are not defined in a TLD must be ignored by the JSP container.

JSP 2.0 added an additional TLD element to describe tags within a tag library, namely <tag-file>.
The <tag-file> element requires <name> and <path> subelements, which define the tag name and the
full path of the tag file from the root of the JAR, respectively. In a JAR file, the <path> element must
always begin with /META-INF/tags. The values for the other subelements of <tag-file> override the
defaults specified in the tag directive. Tag files packaged in a JAR inherit the JSP version of the TLD
that references them.

Note that it is possible to combine both classic tag handlers and tag handlers implemented using tag
files in the same tag library by combining the use of <tag> and <tag-file> elements under the
<taglib> element. This means that in most instances the client is unaware of how the tag extension
was implemented. Given that <tag> and <tag-file> share a namespace, a tag library is considered
invalid and must be rejected by the container if a <tag-file> element has a <name> subelement with
the same content as a <name> subelement in a <tag> element. Any attempt to use an invalid tag
library must trigger a translation error.

8.4.3. Packaging Directly in a Web Application

Tag files placed in the /WEB-INF/tags/ directory of the web application, or a subdirectory, are made
easily accessible to JSPs without the need to explicitly write a Tag Library Descriptor. This makes it
convenient for page authors to quickly abstract reusable JSP code by simply creating a new file and
placing the code inside of it.

The JSP container must interpret the /WEB-INF/tags/ directory and each subdirectory under it, as
another implicitly defined tag library containing tag handlers defined by the tag files that appear in
that directory. There are no special relationships between subdirectories - they are allowed simply
for organizational purposes. For example, the following web application contains three tag
libraries:

/WEB-INF/tags/
/WEB-INF/tags/a.tag
/WEB-INF/tags/b.tag
/WEB-INF/tags/foo/
/WEB-INF/tags/foo/c.tagx

150

/WEB-INF/tags/bar/baz/
/WEB-INF/tags/bar/baz/d.tag

The JSP container must generate an implicit tag library for each directory under and including
/WEB-INF/tags/. This tag library can be imported only via the tagdir attribute of the taglib directive
(see Section 1.10.2, “The taglib Directive”), and has the following hard-wired values:

» <tlib-version> for the tag library defaults to 1.0

* <short-name> is derived from the directory name. If the directory is /WEB-INF/tags/, the short
name is simply tags. Otherwise, the full directory path (relative to the web application) is taken,
minus the /WEB-INF/tags/ prefix. Then, all / characters are replaced with -, which yields the
short name. Note that short names are not guaranteed to be unique (as in /WEB-INF/tags/ versus
/WEB-INF/tags/tags/ or /WEB-INF/tags/a-b/ versus /WEB-INF/tags/a/b/)

* A <tag-file> element is considered to exist for each tag file in this directory, with the following
sub-elements:

o The <name> for each is the filename of the tag file, without the .tag or .tagx extension.

o The <path> for each is the path of the tag file, relative to the root of the web application.

For the above example, the implicit Tag Library Descriptor for the /WEB-INF/tags/bar/baz/ directory
would be:

<taglib>
<tlib-version>1.0</tlib-version>
<short-name>bar-baz</short-name>
<tag-file>
<name>d</name>
<path>/WEB-INF/tags/bar/baz/d.tag</path>
</tag-file>
</taglib>

The JSP version of an implicit tag library defaults to 2.0.

The JSP version and tlib-version of an implicit tag library may be configured by placing a TLD with
the reserved name implicit.tld in the same directory as the implicit tag library’s constituent tag
files. A JSP 2.1 onwards container must consider only the JSP version and tlib-version specified by
an implicit.tld file, and ignore its short-name element. Any additional elements in an implicit.tld file
must cause a translation error. The JSP version specified in an implicit.tld file must be equal to or
greater than 2.0, or else a translation error must be reported.

Upon deployment, the JSP container must search for and process all tag files appearing in these
directories and subdirectories. In processing a tag file, the container makes the custom actions
defined in these tags available to JSP files.

If a directory contains two files with the same tag name (e.g. a.tag and a. tagx), it is considered to be
the same as having a TLD file with two <tag> elements whose <name> sub-elements are identical. The
tag library is therefore considered invalid.

151

Despite the existence of an implicit tag library, a Tag Library Descriptor in the web application can
still create additional tags from the same tag files. This is accomplished by adding a <tag-file>
element with a <path> that points to the tag file. In this case, the value of <path> must start with
/WEB-INF/tags. It a tag file is referenced by both a TLD as well as an implicit TLD, the JSP versions of
the TLD and implicit TLD do not need to match.

8.4.4. Packaging as Precompiled Tag Handlers

Tag files can also be compiled into Java classes and bundled as a tag library. This is useful for the
situation where a tag library developer wishes to distribute a binary version of the tag library
without the original source. Tag library developers that choose this form of packaging must use a
tool that produces portable JSP code that uses only standard APIs. Containers are not required to
provide such a tool.

8.5. Tag File Directives

This section describes the directives available within tag files, which define Simple Tag Handlers.
Table JSP.8-1, “Directives available to tag files” outlines which directives are available in tag files:
Table JSP.8-1 Directives available to tag files

Directive Available? Interpretation/Restrictions

page no A tag file is not a page. The tag directive must be used
instead. If this directive is used in a tag file, a translation
error must result.

taglib yes Identical to JSP pages.

include yes Identical to JSP pages. Note that if the included file
contains syntax unsuitable for tag files, a translation error
must occur.

tag yes Only applicable to tag files. An attempt to use this directive

in JSP pages will result in a translation error.

attribute yes Only applicable to tag files. An attempt to use this directive
in JSP pages will result in a translation error.

variable yes Only applicable to tag files. An attempt to use this directive
in JSP pages will result in a translation error.

8.5.1. The tag Directive

The tag directive is similar to the page directive, but applies to tag files instead of JSPs. Like the page
directive, a translation unit can contain more than one instance of the tag directive, all the
attributes will apply to the complete translation unit (i.e. tag directives are position independent).
There shall be only one occurrence of any attribute/value defined by this directive in a given
translation unit, unless the values for the duplicate attributes are identical for all occurrences. The
import and pageEncoding attributes are exempt from this rule and can appear multiple times.
Multiple uses of the import attribute are cumulative (with ordered set union semantics). Other such
multiple attribute/value (re)definitions result in a fatal translation error if the values do not match.

152

The attribute/value namespace is reserved for use by this, and subsequent, JSP specifications.

Unrecognized attributes or values result in fatal translation errors.

Examples

<%@ tag display-name="Addition"
body-content="scriptless"
dynamic-attributes="dyn"
small-icon="/WEB-INF/sample-small.jpg"
large-icon="/WEB-INF/sample-large.jpg"

description="Sample usage of tag directive

Syntax

n g
%>

<%@ tag tag_directive_attr_list %>

tag_directive_attr_list

::= { display-name="display-name"

{ body-content="scriptless|tagdependent |empty"
{ dynamic-attributes="name"

{ small-icon="small-icon"

{ large-icon="large-icon"

{ description="description"

{ example="example"

{ language="scriptinglLanguage"

{ import="1importList"

{ pageEncoding="peinfo"

{ isELIgnored="true|false"

{ errorOnELNotFound="true|false"

{ deferredSyntaxAllowedAslLiteral="true|false"
{ trimDirectiveWhitespaces="true|false"

The details of the attributes are as follows:

Table JSP.8-2 Details of tag directive attributes

display-name (optional) A short name that is intended to be displayed by tools. Defaults to

the name of the tag file, without the .tag extension.

P o o

body-content (optional) Provides information on the content of the body of this tag. Can be
either empty, tagdependent , or scriptless. A translation error will result if JSP
or any other value is used. Defaults to scriptless.

153

dynamic-attributes (optional) The presence of this attribute indicates this tag supports additional

small-icon

large-icon

description

example

language

import

pageEncoding

isELIgnored

errorOnELNotFound

deferredSyntax-
AllowedAsLiteral

154

attributes with dynamic names. If present, the generated tag handler must
implement the jakarta.servlet.jsp.tagext.DynamicAttributes interface, and
the container must treat the tag as if its corresponding TLD entry contained
<dynamic-attributes>true</dynamic-attributes>. The implementation must not
reject any attribute names. The value identifies a page scoped attribute in
which to place a Map containing the names and values of the dynamic
attributes passed during this invocation. The Map must contain each dynamic
attribute name as the key and the dynamic attribute value as the
corresponding value. Only dynamic attributes with no uri are to be present in
the Map ; all other dynamic attributes are ignored. A translation error will
result if there is a tag directive with a dynamic-attributes attribute equal to the
value of a name-given attribute of a variable directive or equal to the value of a
name attribute of an attribute directive in this translation unit.

(optional) Either a context-relative path, or a path relative to the tag source
file, of an image file containing a small icon that can be used by tools. Defaults
to no small icon.

(optional) Either a context-relative path, or a path relative to the tag source
file, of an image file containing a large icon that can be used by tools. Defaults
to no large icon.

(optional) Defines an arbitrary string that describes this tag. Defaults to no
description.

(optional) Defines an arbitrary string that presents an informal description of
an example of a use of this action. Defaults to no example.

(optional) Carries the same syntax and semantics of the language attribute of
the page directive.

(optional) Carries the same syntax and semantics of the import attribute of the
page directive.

(optional) Carries the same syntax and semantics of the pageEncoding attribute
in the page directive. However, there is no corresponding global configuration
element in web.xml. The pageEncoding attribute cannot be used in tag files in
XML syntax.

(optional) Carries the same syntax and semantics of the isELIgnored attribute
of the page directive. However, there is no corresponding global configuration
element in web.xml.

(optional) Carries the same syntax and semantics of the errorOnELNotFound
attribute of the page directive. However, there is no corresponding global
configuration element in web. xm1.

(optional) Carries the same syntax and semantics of the
deferredSyntaxAllowedAsLiteral attribute of the page directive. However,
there is no corresponding global configuration element in web.xml. Causes a
translation error if specified in a tag file with a JSP version less than 2.1.

trimDirective- (optional) Carries the same syntax and semantics of the
Whitespaces trimDirectiveWhitespaces attribute of the page directive. However, there is no
corresponding global configuration element in web. xml.

8.5.2. The attribute Directive

The attribute directive is analogous to the <attribute> element in the Tag Library Descriptor, and
allows for the declaration of custom action attributes.

Examples

<%@ attribute name="x" required="true" fragment="false"
rtexprvalue="false" type="java.lang.Integer"
description="The first operand" %>

<%@ attribute name="y" type="java.lang.Integer" %>

n g
0>

<%@ attribute name="prompt" fragment="true
Syntax

<%@ attribute attribute directive attr list %>

attribute directive attr _list ::= name="attribute-name"
{ required="true|false" }
{ fragment="true|false" }
{ rtexprvalue="true|false" }
{ type="type" }
{ description="description" }
{ deferredValue="true|false" }
{ deferredValueType="type" }
{ deferredMethod="true|false" }
{ deferredMethodSignature="signature" }

The details of the attributes are as follows:

Table JSP.8-3 Details of attribute directive attributes

name (required) The unique name of the attribute being declared. A translation
error must result if more than one attribute directive appears in the same
translation unit with the same name. A translation error will result if there is an
attribute directive with a name attribute equal to the value of the name-given
attribute of a variable directive or the dynamic-attributes attribute of a tag
directive in this translation unit.

155

required (optional) Whether this attribute is required (true) or optional (false). Defaults
to false if not specified.

fragment (optional) Whether this attribute is a fragment to be evaluated by the tag
handler (true) or a normal attribute to be evaluated by the container prior to
being passed to the tag handler. If this attribute is true, the type attribute is
fixed at jakarta.servlet.jsp.tagext.JspFragment and a translation error will
result if the type attribute is specified. Also, if this attribute is true, the
rtexprvalue attribute is fixed at true and a translation error will result if the
rtexprvalue attribute is specified. Defaults to false.

rtexprvalue (optional) Whether the attribute’s value may be dynamically calculated at
runtime by a scriptlet expression. Unlike the corresponding TLD element, this
attribute defaults to true.

type (optional) The runtime type of the attribute’s value. Defaults to
java.lang.String if not specified. It is a translation error to specify a primitive
type.

description (optional) Description of the attribute. Defaults to no description.

deferredValue (optional) Whether the attribute’s value represents a deferred value

expression. Only one of deferredValue or deferredMethod may be true. If
deferredValueType is specified, default is true, otherwise default is false. Causes
a translation error if specified in a tag file with a JSP version less than 2.1.

deferredValueType (optional) The expected type resulting from the evaluation of the attribute’s
value expression. If both deferredValueType and deferredValue are specified,
deferredValue must be true. If deferredValue is true, default is java.lang.0Object
. Causes a translation error if specified in a tag file with a JSP version less than
2.1.

deferredMethod (optional) Whether the attribute’s value represents a deferred method
expression. Only one of deferredValue or deferredMethod may be true. If
deferredMethodSignature is specified, default is true, otherwise default is false.
Causes a translation error if specified in a tag file with a JSP version less than

2.1.
deferredMethod- (optional) The signature, as defined in the Java Language Specification, of the
Signature method to be invoked in the attribute’s method expression. If both

deferredMethod and deferredMethodSignature are specified, deferredMethod must
be true. If deferredMethod is true and deferredMethodSignature is not specified,
it defaults to void methodname(). Causes a translation error if specified in a tag
file with a JSP version less than 2.1.

8.5.3. The variable Directive

The variable directive is analogous to the <variable> element in the Tag Library descriptor, and
defines the details of a variable exposed by the tag handler to the calling page.

See Section 7.1.4.7, “Actions Defining Scripting Variables” for more details.

Examples

156

<%@ variable name-given="sum"
variable-class="java.lang.Integer"
scope="NESTED"
declare="true"
description="The sum of the two operands" %>

<%@ variable name-given="op1"
variable-class="java.lang.Integer"
description="The first operand" %>

<%@ variable name-from-attribute="var" alias="result" %>
Syntax

<%@ variable variable _directive _attr_list %>

variable_directive_attr_list ::= (name-given="output-name"
| (name-from-attribute="attr-name"
alias="local-name"
)
)

{ variable-class="output-type"

{ declare="true|false"

{ scope="AT_BEGIN|AT_END|NESTED"
{ description="description"

}
}
}
}

The details of the attributes are as follows:

Table JSP.8-4 Details of variable directive attributes

name-given Defines a scripting variable to be defined in the page invoking this tag.
Either the name-given attribute or the name-from-attribute attribute must
be specified. Specifying neither or both will result in a translation error.
A translation error will result if two variable directives have the same
name-given. A translation error will result if there is a variable directive
with a name-given attribute equal to the value of the name attribute of an
attribute directive or the dynamic-attributes attribute of a tag directive
in this translation unit.

157

name-from-attribute Defines a scripting variable to be defined in the page invoking this tag.
The specified name is the name of an attribute whose (translation-time)
value at of the start of the tag invocation will give the name of the
variable. A translation error will result if there is no attribute directive
with a name attribute equal to the value of this attribute that is of type
java.lang.String, is required and not an rtexprvalue. Either the name-
given attribute or the name-from-attribute attribute must be specified.
Specifying neither or both will result in a translation error. A translation
error will result if two variable directives have the same name-from-
attribute.

alias Defines a locally scoped attribute to hold the value of this variable. The
container will synchronize this value with the variable whose name is
given in name-from-attribute. Required when name-from-attribute is
specified. A translation error must occur if used without name-from-
attribute. A translation error must occur if the value of alias is the same
as the value of a name attribute of an attribute directive or the alias or
name-given attribute of a variable directive in the same translation unit.

variable-class (optional) The name of the class of the variable. The default is
java.lang.String.

declare (optional) Whether the variable is declared or not in the calling page/tag
file, after this tag invocation. true is the default.

scope (optional) The scope of the scripting variable defined. Can be either
AT _BEGIN, AT_END, or NESTED. Defaults to NESTED.

description (optional) An optional description of this variable. Defaults to no
description.

8.6. Tag Files in XML Syntax

Tag files can be authored using the XML syntax, as described in Chapter 6, JSP Documents. This
section describes the few distinctions from the case of JSP documents.

Tag files in XML syntax must have the extension .tagx. All files with extension .tagx according to
the rules in Section 8.4.1, “Location of Tag Files” are tag files in XML syntax. Conversely, files with
extension .tag are not in XML syntax.

The jsp:root element can, but needs not, appear in tag files in XML syntax. A jsp:root element
cannot appear in a tag file in JSP syntax.

As indicated in Section 5.13, “<jsp:output>”, the default for tag files, in either syntax, is not to
generate the xml declaration. The element jsp:output can be used to change that default for tag files
in XML syntax.

Finally, the tag directive in a tag file in XML syntax cannot include a pageEncoding attribute; the
encoding is inferred using the conventions for XML documents. Using the pageEncoding attribute
shall result in a translation-time error.

158

8.7. XML View of a Tag File

Similar to JSP pages, tag files have an equivalent XML document, the XML view of a tag file, that is
exposed to the translation phase for validation. During the translation phase for a tag file, a tag
XML view is created and passed to all tag library validators declared in all tag libraries declared in
the tag file.

The XML view of a tag file is identical to the XML view of a JSP, except that there are additional XML
elements defined to handle tag file specific features. The XML view of a tag file is obtained in the
same way that the XML view of a JSP page is obtained (see Chapter 10, XML View).

8.8. Implicit Objects

Tag library developers writing tag files have access to certain implicit objects that are always
available for use within scriptlets and expressions through scripting variables that are declared
implicitly at the beginning of the tag handler implementation. All scripting languages are required
to provide access to these objects.

Each implicit object has a class or interface type defined in a core Java technology or Jakarta Servlet
API package, as shown in Table JSP.8-5, “Implicit Objects Available in Tag Files”.

Table JSP.8-5 Implicit Objects Available in Tag Files

Variable Type Semantics & Scope

Name

request protocol dependent subtype of: The request triggering the service
jakarta.servlet.ServletRequest invocation.
e.g request scope.

jakarta.servlet.http.HttpServletRequest

response protocol dependent subtype of: The response to the request.
jakarta.servlet.ServletResponse page scope.
e.g:
jakarta.servlet.http.HttpServletResponse
jspContext jakarta.servlet.jsp.JspContext The JspContext for this tag file.
page scope.
session jakarta.servlet.http.HttpSession The session object created for the

requesting client (if any).

This variable is only valid for HTTP
protocols.

session scope.

application jakarta.servlet.ServletContext The servlet context obtained from the
servlet configuration object (as in the
call getServletConfig().getContext()).
application scope.

159

Variable Type Semantics & Scope
Name

out jakarta.servlet.jsp.JspWriter An object that writes into the output
stream.
page scope.

config jakarta.servlet.ServletConfig The ServletConfig for this JSP page.
page scope.

Object names with prefixes jsp, jsp, jspx and jspx, in any combination of upper and lower case, are
reserved by the JSP specification.

8.9. Variable Synchronization

Just as is the case for all tag handlers, a tag file is able to communicate with its calling page via
variables. As mentioned earlier, in tag files, variables are declared using the variable directive.
Though the scopes of variables are similar to those in classic tag handlers, the semantics are slightly
different. The intent is to be able to emulate IN and OUT parameters using attributes and variables,
which appear as page-scoped attributes local to the tag file, and are synchronized with the calling
page’s JspContext at various points.

The name-from-attribute and alias attributes of the variable directive can be used to allow the
caller to customize the name of the variable in the calling page while referring to a constant name
in the tag file. When using these attributes, the name of the variable in the calling page is derived
from the value of name-from-attribute at the time the tag was called. The name of the corresponding
variable in the tag file is the value of alias.

* IN parameters - Use attributes. For each attribute, a page-scoped attribute is made available in
the JspContext of the tag file. The page-scoped attribute is initialized to the value of the attribute
when the tag is called. No further synchronization is performed.

* OUT parameters - Use variables with scope AT_BEGIN or AT_END. For each AT_BEGIN or AT_END
variable, a page-scoped attribute is made available in the JspContext of the tag file. The scoped
attribute is not initialized. Synchronization is performed at the end of the tag for AT_BEGIN and
AT_END and also before the invocation of a fragment for AT_BEGIN. See Table JSP.8-6 , “Variable
synchronization behavior” for details.

* Nested parameters - Use variables with scope AT_BEGIN or NESTED. For each AT_BEGIN or NESTED
variable, a page-scoped attribute is made available in the JspContext of the tag file. The scoped
attribute is not initialized. Synchronization is performed before each fragment invocation for
AT_BEGIN and NESTED, and also after the end of the tag for AT_BEGIN. See Table JSP.8-6 , “Variable
synchronization behavior” for details.

8.9.1. Synchronization Points

The JSP container is required to generate code to handle the synchronization of each declared
variable. The details of how and when each variable is synchronized varies by the variable’s scope,
as per Table JSP.8-6 , “Variable synchronization behavior”.

160

Table JSP.8-6 Variable synchronization behavior

AT _BEGIN NESTED AT_END
Beginning of tag file do nothing save do nothing
Before any fragment tag - page tag - page do nothing
After any fragment do nothing do nothing do nothing
End of tag file tag - page restore tag - page

The following list describes what each synchronization action means. If name-given is used, the
name of the variable in the calling page (referred to as P) and the name of the variable in the tag
file (referred to as T) are the same and are equal to the value of name-given. If name-from-attribute is
used, the name of P is equal to the value of the attribute (at the time the page was called) specified
by the value of name-from-attribute and the name of T is equal to the value of the alias attribute.

* tag — page - For this variable, if T exists in the tag file, create/update P in the calling page. If a T
does not exist in the tag file, and P does exist in the calling page, P is removed from the calling
page’s page scope. If the declare attribute for this variable is set to true , a corresponding
scripting variable is declared in the calling page or tag file, as with any other tag handler. If this
scripting variable would not be accessible in the context in which it is defined, the container
need not declare the scripting variable (for example in a scriptless body).

» save - For this variable, save the value of P, for later restoration. If P did not exist, remember
that fact.

* restore - For this variable, restore the value of P in the calling page, from the value saved
earlier. If P did not exist before, ensure it does not exist now.

All variable synchronization and restoration that occurs at the end of a tag file must occur
regardless of whether an exception is thrown inside the tag file. All variable synchronization that
occurs after the invocation of a fragment must occur regardless of whether an exception occured
while invoking the fragment.

8.9.2. Synchronization Examples

The following examples help illustrate how variable synchronization works between a tag file and
its calling page.

8.9.2.1. Example of AT BEGIN

In this example, the AT_BEGIN scope is used to pass a variable to the tag’s body, and make it available
to the calling page at the end of the tag invocation.

<%-- page.jsp --%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="my" tagdir="/WEB-INF/tags" %>
<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%
<my:example>
${x} <%-- (x == 2) --%

161

<c:set var="x" value="3"/>
</my:example>
${x} <%-- (x == 4) --%

<%-- /WEB-INF/tags/example.tag --%>

<%@ variable name-given="x" scope="AT_BEGIN" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
${x} <%-- (x == null) --%>

<c:set var="x" value="2"/>

<jsp:doBody/>

${x} <%-- (x ==2) --%

<c:set var="x" value="4"/>

8.9.2.2. Example of AT _BEGIN and name-from-attribute

Like the previous example, in this example the AT_BEGIN scope is used to pass a variable to the tag’s
body, and make it available to the calling page at the end of the tag invocation. The name of the
attribute is customized via name-from-attribute.

<%-- page.jsp --%
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%@ taglib prefix="my" tagdir="/WEB-INF/tags" %>
<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%
<my:example var="x">

${x} <%-- (x == 2) --%

${result} <%-- (result == null) --%>

<c:set var="x" value="3"/>

<c:set var="result" value="invisible"/>
</my:example>
${x} <%-- (x == 4) --%

${result} <%-- (result == 'invisible') --%>

<%-- /WEB-INF/tags/example.tag --%>

<%@ attribute name="var" required="true" rtexprvalue="false" %>
<%0 variable alias="result" name-from-attribute="var" scope="AT_BEGIN"
%>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
${x} <%-- (x == null) --%>

${result} <%-- (result == null) --%

<c:set var="x" value="1ignored"/>

<c:set var="result" value="2"/>

<jsp:doBody/>

${x} <%-- (x == "ignored') --%>

${result} <%-- (result == 2) --%

<c:set var="x" value="still‘ignored"/>
<c:set var="result" value="4"/>

162

8.9.2.3. Example of NESTED

In this example, the NESTED scope is used to make a private variable available to the calling page.
The original value is restored when the tag is done.

<%-- page.jsp --%>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%0 taglib prefix="my" tagdir="/WEB-INF/tags" %>

<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%
<my:example>
${x} <%-- (x ==2) --%
<c:set var="x" value="3"/>
</my:example>
${x} <%-- (x == 1) --%

<%-- /WEB-INF/tags/example.tag --%>

<%@ variable name-given="x" scope="NESTED" %>
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
${x} <%-- (x == null) --%>

<c:set var="x" value="2"/>
<jsp:doBody/>
${x} <%-- (x == 2) --%

<c:set var="x" value="4"/>

8.9.2.4. Example of AT _END

In this example, the AT_END scope is used to return a value to the page. The body of the tag is not
affected.

<%-- page.jsp --%
<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<%0 taglib prefix="my" tagdir="/WEB-INF/tags" %>

<c:set var="x" value="1"/>
${x} <%-- (x == 1) --%
<my:example>
${x} <%-- (x == 1) --%
<c:set var="x" value="3"/>
</my:example>

${x} <%-- (x == 4) --%

<%-- /WEB-INF/tags/example.tag --%>

<%@ variable name-given="x" scope="AT_END" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
${x} <%-- (x == null) --%

<c:set var="x" value="2"/>
<jsp:doBody/>
${x} <%-- (x == 2) --%>

<c:set var="x" value="4"/>

163

8.9.2.5. Example of Removing Parameters

This example illustrates how the tag file can remove objects from the page scope of the calling page
during synchronization.

<%-- page.jsp --%>
<%0 taglib prefix="my" tagdir="/WEB-INF/tags" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<c:set var="x" value="2"/>
${x}
<my:tag1>
${x}
</my:tagl>

${x}

<%-- /WEB-INF/tags/example.tag --%>
<%@ variable name-given="x" scope="NESTED" %>

<%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>
<c:set var="x" value="1"/>

<jsp:doBody/>

<c:remove var="x"/>

<jsp:doBody/>

The expected output of this example is: 2 '1' " 2

164

Chapter 9. Scripting

This chapter describes the details of the Scripting Elements when the language directive value is
java.

The scripting language is based on the Java programming language (as specified by “The Java
Language Specification”), but note that there is no valid JSP page, or a subset of a page, that is a
valid Java program.

The following sections describe the details of the relationship between the scripting declarations,
scriptlets, and scripting expressions, and the Java programming language. The description is in
terms of the structure of the JSP page implementation class. A JSP Container need not generate the
JSP page implementation class, but it must behave as if one exists.

9.1. Overall Structure

Some details of what makes a JSP page legal are very specific to the scripting language used in the
page. This is especially complex since scriptlets are language fragments, not complete language
statements.

9.1.1. Valid JSP Page

A JSP page is valid for a Java Platform if and only if the JSP page implementation class defined by
Table JSP.9-1 , “Structure of the Java Programming Language Class” (after applying all include
directives), together with any other classes defined by the JSP container, is a valid program for the
given Java Platform, and if it passes the validation methods for all the tag libraries associated with
the JSP page.

9.1.2. Reserved Names

All names of the form {_}jsp_* and {_}jspx_%*, in any combination of upper and lower case, are
reserved for the JSP specification. Names of this form that are not defined in this specification are
reserved for future expansion.

9.1.3. Implementation Flexibility

The transformations described in this chapter need not be performed literally. An implementation
may implement things differently to provide better performance, lower memory footprint, or other
implementation attributes.

Table JSP.9-1 Structure of the Java Programming Language Class

Optional imports clause import name1
as indicated via jsp
directive

165

SuperClass is either class jspXXX extends SuperClass
selected by the JSP

container or by the JSP

author via the jsp

directive.

Name of class (jspXXX)

is implementation

dependent.

Start of the body ofa
JSP page
implementation class

(1) Declaration Section // declarations...

signature for generated public void _jspService(<ServletRequestSubtype> request,
<ServletResponseSubtype> response) throws ServletException,

method
IOException {
(2) Implicit Objects // code that defines and initializes request, response, page,
Section pageContext etc.
(3) Main Section // code that defines request/response mapping
close of _jspService }
method
close of jspXXX }

9.2. Declarations Section

The declarations section corresponds to the declaration elements.

The contents of this section is determined by concatenating all the declarations in the page in the
order in which they appear.

9.3. Initialization Section

This section defines and initializes the implicit objects available to the JSP page. See Section 1.8.3,
“Implicit Objects”.
9.4. Main Section

This section provides the main mapping between a request and a response object.

The content of the main section is determined from scriptlets, expressions, and the text body of the
JSP page. The elements are processed sequentially in the order in which they appear in the page.
The translation for each one is determined as indicated below, and its translation is inserted into
this section. The translation depends on the element type.

166

9.4.1. Template Data

Template data is transformed into code that will place the template data into the stream named by
the implicit variable out when the code is executed. White space is preserved.

Ignoring quotation issues and performance issues, this corresponds to a statement of the form:

Original Equivalent Text
template out.print(template)
9.4.2. Scriptlets

A scriptlet is transformed into its code fragment.:

Original Equivalent Text

<% fragment %> fragment

9.4.3. Expressions

An expression is transformed into a Java statement to insert the value of the expression, converted
to java.lang.String if needed, into the stream named by the implicit variable out. No additional
newlines or space is included.

Ignoring quotation and performance issues, this corresponds to a statement of the form:

Original Equivalent Text
<%= expression %> out.print(expression)
9.4.4. Actions

An action defining one or more objects is transformed into one or more variable declarations for
those objects, together with code that initializes the variables. Their visibility may be affected by
other constructs, for example scriptlets.

The semantics of the action type determines the names of the variables (usually the name of an id
attribute, if present) and their type. The only standard action in the JSP specification that defines
objects is the jsp:useBean action. The name of the variable introduced is the name of the id attribute
and its type is the type of the class attribute.

Original Equivalent Text
<x:tag> declare AT_BEGIN variables
foo {
</x:tag> declare NESTED variables
transformation of foo
}

declare AT_END variables

Note that as per Section 9.1.3, “Implementation Flexibility”, implementations may opt to take a

167

different approach to the location of variable declarations. The value of the scope attribute does not
affect the visibility of the variables within the generated program. It affects where and thus for how
long there will be additional references to the object denoted by the variable. Developers wishing to
have more precise control over variable declarations may configure the variables with
declare=false and explicitly declare the variables themselves.

168

Chapter 10. XML View

This chapter provides details on the XML view of a JSP page and tag files. The XML views are used
to enable validation of JSP pages and tag files.

10.1. XML View of a JSP Document, JSP Page or Tag File

This section describes the XML view of a JSP page or tag file: the mapping between a JSP page, JSP
document or tag file, and an XML document describing it.

10.1.1. JSP Documents and Tag Files in XML Syntax

The XML view of a JSP document or of a tag file written in XML syntax is very close to the original
JSP page. Only five transformations are performed:

* Expand all include directives into the JSP content they include. See Section 1.10.5, “Including
Data in JSP Pages” for the semantics of mixing XML and standard syntax content.

* Add a jsp:root element as the root element if the JSP document or tag file in XML syntax does
not have it.

» Set the value of the pageEncoding attribute of the page directive to “UTF-8”. The page directive
and the pageEncoding attribute are added if they don’t exist already.

 Set the value of the contentType attribute of the page directive to the value that the container will
pass to ServletResponse.setContentType(), determined as described in Section 4.2, “Response
Character Encoding”. The page directive and the contentType attribute are added if they don’t
exist already.

* Add the jsp:id attribute (see Section 10.1.13, “The jsp:id Attribute”).

10.1.2. JSP Pages or Tag Files in JSP Syntax

The XML view of a JSP page or tag file written in standard syntax is defined by the following
transformation:

* Expand all include directives into the JSP content they include. See Section 1.10.5, “Including
Data in JSP Pages” for the semantics of mixing XML and standard syntax content.

* Add a jsp:root element as the root, with appropriate xmlns: jsp attribute, and convert the taglib
directive into xmlns: attributes of the jsp:root element.

* Convert declarations, scriptlets, and expressions into valid XML elements as described in
Section 6.3.2, “The jsp:root Element” and the following sections.

* Convert request-time attribute expressions as in Section 10.1.11, “Request-Time Attribute
Expressions”.

* Convert JSP quotations to XML quotations.
* Create jsp:text elements for all template text.

* Add the jsp:id attribute (see Section 10.1.13, “The jsp:id Attribute”).

169

Note that the XML view of a JSP page or tag file has no DOCTYPE information; see Section 10.2,
“Validating an XML View of a JSP page”.

A quick overview of the transformation is shown in Table JSP.10-1 , “XML View Transformations”:

Table JSP.10-1 XML View Transformations

JSP element

<%-- comment --%>

<%@ page ... %>

o
\Y4

<%@ taglib ...

o
\Y4

<%@ include ...

0, 0,
Ll Lo %
[0,

<% v B>
o _ 0,
<%= .00 B

Standard action

Custom action

template

<%Q@ tag ... %>

<%@ attribute ... %
<%@ variable ... %>

In more detail:

10.1.3. JSP Comments

XML view
removed
<jsp:directive.page ... /> Add jsp:id.

jsp:root element is annotated with namespace information. Add
jsp:id.

expanded in place
<jsp:declaration> ... </jsp:declaration>. Add jsp:id.
<jsp:scriptlet> ... </jsp:scriptlet>. Add jsp:id.
<jsp:expression> ... </jsp:expression>. Add jsp:id.

Replace with XML syntax (adjust request-time expressions; add
jsp:id)

As is (adjust request-time expressions; add jsp:id)

Replace with jsp:text. Add jsp:id.

<jsp:directive.tag ... /> Add jsp:id. [tag files only]
<jsp:directive.attribute ... />. Add jsp:id. [tag files only]

<jsp:directive.variable ... />. Add jsp:id. [tag files only]

JSP comments (of the form <%-- comment --%>) are not passed through to the XML view of a JSP

page.

10.1.4. The page Directive

A page directive of the form:

<%@ page { attr="value" }* %>

is translated into an element of the form:

<jsp:directive.page { attr="value" }* />

The value of the pageEncoding attribute is set to “UTF-8”. The value of the contentType attribute is set

170

to the value that the container will pass to ServletResponse.setContentType(), determined as
described in Section 4.2, “Response Character Encoding”. The page directive and both attributes are
added if they don’t exist already.

10.1.5. The taglib Directive

A taglib directive of the form

<%@ taglib uri="uriValue" prefix="prefix" %>

is translated into an xmlns:prefix attribute on the root of the JSP document, with a value that
depends on uriValue. If uriValue is a relative path, then the value used is urn:jsptld: uriValue ;
otherwise, the uriValue is used directly.

A taglib directive of the form
<%@ taglib tagdir="tagDirValue" prefix="prefix" %>

is translated into an xmlns:prefix attribute on the root of the JSP document, with a value of the form
urn:jsptagdir: tagDirValue.

10.1.6. The include Directive

An include directive of the form
<%@ include file="value" %>

is expanded into the JSP content indicated by value. This is done to allow for validation of the page.

10.1.7. Declarations

Declarations are translated into a jsp:declaration element. For example, the second example from
Section 1.12.1, “Declarations”:

<%! public String f(int i) { if (i<3) return("..."); ... }

o°
\V4

is translated into the following.

<jsp:declaration> <![CDATA[public String f(int i) { if (i<3) return("..."); } 1>
</jsp:declaration>

Alternatively, we could use an < and instead say:

<jsp:declaration> public String f(int i) {if (i<3) return("..."); }

171

</jsp:declaration>

10.1.8. Scriptlets
Scriptlets are translated into a jsp:scriptlet element. In the XML document corresponding to JSP

pages, directives are represented using the syntax:

<jsp:scriptlet> code fragment goes here </jsp:scriptlet>

10.1.9. Expressions

In the XML document corresponding to JSP pages, directives are represented using the
jsp:expression element:

<jsp:expression> expression goes here </jsp:expression>

10.1.10. Standard and Custom Actions

The syntax for both standard and action elements is based on XML. The transformations needed
are due to quoting conventions and the syntax of request-time attribute expressions.

10.1.11. Request-Time Attribute Expressions

Request-time attribute expressions are of the form <%= expression %>. Although this syntax is
consistent with the syntax used elsewhere in a JSP page, it is not a legal XML syntax. The XML
mapping for these expressions is into values of the form %= expression % where the JSP
specification quoting convention has been converted to the XML quoting convention.

Request-time attribute values can also be specified using EL expressions of the form ${expression}.
Expressions of this form are represented verbatim in the XML view.

The XML view of an escaped EL expression using the ${expr} syntax can be obtained as follows:

» The XML view of an unescaped expression ${foo} is ${foo}.
* The XML view of an escaped expression \${foo} is \${foo}.
 For each escaped \ preceeding an unescaped expression ${foo}, a ${"\\'} must be generated in

the XML view, and neighboring generated ${'\\'} expressions must be combined.

Table JSP.10-2 , “XML View of an Escaped EL Expression in a Request-time Attribute Value”
illustrates these rules. Assume the EL expression ${foo} evaluates to [bar] and that EL is enabled
for this translation unit.

Table JSP.10-2 XML View of an Escaped EL Expression in a Request-time Attribute Value

Attribute Value XML View Result
${foo} ${foo} [bar]

172

Attribute Value XML View Result

\${foo} \${foo} ${foo}
\\${foo} ${"\\"}${foo} \[bar]
\\\${foo} \\${foo} \${foo}
\\\\${foo} ${"\\\\"}${foo} \\[bar]
\\\\\${foo} \\\${foo} \\${foo}
\\\\\\${foo} ${ \\\\\\"}${foo} \\\[bar]

The XML view of an escaped EL expression using the #{expr} syntax follows the same rules as the
${expr} syntax, where ${ is simply substituted with #{.

10.1.12. Template Text and XML Elements

All text that is uninterpreted by the JSP translator is converted into the body for a jsp:text element.
As a consequence no XML elements of the form described in Section 6.3.9, “Template Content” will
appear in the XML view of a JSP page written in JSP syntax.

Because \\ is not an escape sequence within template text in the standard syntax, no special
transformation needs to be done to obtain the XML view of an escaped EL expression that appears
in template text.

Table JSP.10-3 , “XML View of an Escaped EL Expression in Template Text” illustrates how the XML
view of an escaped EL expression is obtained. Assume the EL expression ${foo} evaluates to [bar]
and that EL is enabled for this translation unit. The same rules apply for the #{expr} syntax, where
${ is simply substituted with \#{.

Table JSP.10-3 XML View of an Escaped EL Expression in Template Text

Attribute Value XML View Result
${foo} ${foo} [bar]
\${foo} \${foo} ${foo}
\\${foo} \\${foo} \${foo}
\\\${foo} \\\${foo} \\${foo}

10.1.13. The jsp:id Attribute

A JSP container must support a jsp:id attribute. This attribute can only be present in the XML view
of a JSP page and can be used to improve the quality of translation time error messages.

The XML view of any JSP page will have an additional jsp:id attribute added to all XML elements.
This attribute is given a value that is unique over all elements in the XML view. The prefix for the id
attribute need not be “jsp” but it must map to the namespace http://java.sun.com/JSP/Page. In the
case where the page author has redefined the jsp prefix, an alternative prefix must be used by the
container. See the jakarta.servlet.jsp.tagext Javadoc for more details.

173

http://java.sun.com/JSP/Page

10.1.14. The tag Directive

The tag directive is applicable to tag files only. A tag directive of the form:
<%@ tag { attr="value" }* %>

is translated into an element of the form:
<jsp:directive.tag { attr="value" }* />

The value of the pageEncoding attribute is set to “UTF-8”. A tag directive and the pageEncoding
attribute are added if they don’t exist already.

10.1.15. The attribute Directive

The attribute directive is applicable to tag files only. An attribute directive of the form:
<%@ attribute { attr="value" }* %>
is translated into an element of the form:

<jsp:directive.attribute { attr="value" }* />

10.1.16. The variable Directive

The variable directive is applicable to tag files only. A variable directive of the form:
<%@ variable { attr="value" }* %>
is translated into an element of the form:

<jsp:directive.variable { attr="value" }* />

10.2. Validating an XML View of a JSP page

The XML view of a JSP page is a namespace-aware document and it cannot be validated against a
DTD except in the most simple cases. To reduce confusion and possible unintended performance
consequences, the XML view of a JSP page will not include a DOCTYPE.

There are several mechanisms that are aware of namespaces that can be used to do validation of
XML views of JSP pages. The most popular mechanism is the W3C XML Schema language, but
others are also suited, including some very simple ones that may check, for example, that only

174

some elements are being used, or, inversely, that they are not used. The TagLibraryValidator for a
tag library permits encapsulating this knowledge with a tag library.

The TaglibraryValidator acts on the XML view of the JSP page. If the page was authored in JSP
syntax, that view does not provide any detail on template data (all being grouped inside jsp:text
elements), but fine detail can be described when using JSP documents. Similarly, when applying an
XSLT transformation to a JSP document, XML fragments will be plainly visible, while the content of
jsp:text elements will not.

10.3. Examples

This section presents various examples of XML Views. The first shows a JSP page in XML syntax that
includes XML fragments. The second shows a JSP page in JSP syntax and its mapping to XML syntax.
The three following examples illustrate the semantics of cross-syntax translation-time includes and
the effect on the XML View.

10.3.1. A JSP Document

This is an example of a very simple JSP document that has some template XML elements. This
particular example describes a table that is a collection of 3 rows, with numeric values 1, 2, 3. The
JSP Standard Tag Library is being used:

<?xml version="1.0"7>
<table>
<c:forEach
xmlns:c="http://java.sun.com/jsp/jstl/core"
var="counter" begin="1" end="3">
<row>${counter}</row>
</c:forEach>
</table>

10.3.2. AJSP Page and its Corresponding XML View
Here is an example of mapping between JSP and XML syntax.
For this JSP page:

<html>

<title>positiveTaglLib</title>
<body>

<%0 taglib uri="http://java.apache.org/tomcat/examples-taglib" prefix="eg" %>
<%@ taglib uri="/tomcat/taglib" prefix="test" %>
<%@ taglib uri="WEB-INF/tlds/my.t1ld" prefix="temp" %>

<eg:test toBrowser="true" att1="Working">

Positive Test taglib directive </eg:test>
</body>

175

</html>
The XML View of the previous page is:

<jsp:root

xmlns:jsp="http://java.sun.com/JSP/Page"
xmlns:eg="http://java.apache.org/tomcat/examples-taglib"
xmlns:test="urn:jsptld:/tomcat/taglib"
xmlns:temp="urn:jsptld:/WEB-INF/t1ds/my.t1d">

<jsp:text><![CDATA[<html>
<title>positiveTaglLib</title>
<body>

11></jsp:text>

<eg:test toBrowser="true" att1="Working">
<jsp:text>Positive test taglib directive</jsp:text>
</eg:test>

<jsp:text><![CDATA[

</body>

</html>

11></jsp:text>

</jsp:root>

10.3.3. Clearing Out Default Namespace on Include

This example illustrates the need to clear out the default namespace when doing a translation-time
include of a JSP document:

<I-- a.jspx -->
<elementA>
<tagB xmlns="http://namespacel”>
<jsp:directive.include file="b.jspx"
xmlns:jsp="http://java.sun.com/JSP/Page" />
</tagB>
</elementA>

<!I-- b.jspx -->
<elementC />

The resulting XML View for these two JSP documents is:

<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page">

176

<elementA>
<tagB xmlns="http://namespacel”>
<elementC />
</tagB>
</elementA>
</jsp:root>

10.3.4. Taglib Direcive Adds to Global Namespace

This example illustrates the effect of the taglib directive on the XML View. Notice how the taglib
directive always affects the <jsp:root> element, independent of where it is encountered.

<l-- ¢.jspx -->

<elementD xmlns:jsp="http://java.sun.com/JSP/Page">
<jsp:directive.include file="d.jsp" />
<jsp:directive.include file="e.jsp" />

</elementD>

<%-- d.jsp --%>
<%@ taglib prefix="x" uri="http://namespace2" %>
<x:tagE />

<%-- e.jsp --%
<x:tagk />

The resulting XML View of these documents and pages is:

<jsp:root xmlns:x="http://namespace2"
xmlns:jsp="http://java.sun.com/ISP/Page" >
<elementD>
<x:tagk />
<x:tagk />
</elementD>
</jsp:root>

10.3.5. Collective Application of Inclusion Semantics

This example illustrates how the various translation-time include semantics are collectively
applied:

<%-- f.jsp --%
<%@ taglib prefix="m" uri="http://namespace3" %>
<%@ include file="g.jspx" %>

<I-- g.jspx -->

<tagF xmlns="http://namespaced” >
<y:tagG xmlns:y="http://namespace5">

177

<tagH />
<jsp:directive.include file="i.jspx"
xmlns:jsp="http://java.sun.com/JSP/Page" />
</y:tagL>
<jsp:directive.include file="h.jsp"
xmlns:jsp="http://java.sun.com/JSP/Page" />
<taql />
</tagF>

<%-- h.jsp --%

<%@ taglib prefix="n" uri="http://namespaceb” %>
<m:tagl />

<n:tagK />

<I==NIRSpXa==>
<jsp:root xmlns:jsp="http://java.sun.com/JSP/Page">
<y:taglL xmlns:y="http://namespace7">
<elementM />
<jsp:directive.include file="h.jsp" />
</y:tagl>
</jsp:root>

The resulting XML View of these documents and pages is:

<jsp:root xmlns:m="http://namespace3"
xmlns:n="http://namespace6"
xmlns:jsp="http://java.sun.com/JSP/Page" >
<tagF xmlns="http://namespaces">
<y:tagG xmlns:y="http://namespace5">
<tagH />
<y:taglL xmlns=
<elementM />
<m:tagl />
<n:tagK />
</y:tagl>
</y:tagL>
<m:tag] />
<n:tagK />
<tagl />
</tagF>
</jsp:root>

xmlns:y="http://namespace7">

178

Part 11

The next chapter provides detail specification information on some portions of the JSP specification
that are intended for JSP Container Vendors, JSP Page authors, and JSP Tag Library authors.

The chapters is normative.
The chapter is:
* JSP Container
JSP Container Vendors, JSP Page authors, and JSP Tag Library authors should also read:

* jakarta.servlet.jsp Javadoc
* jakarta.servlet.jsp.tagext Javadoc

* Expression Language Specification

These external resources are considered normative within the context of this specification.

179

180

Chapter 11. JSP Container

This chapter describes the contracts between a JSP container and a JSP page, including the
precompilation protocol and debugging support requirements.

The information in this chapter is independent of the Scripting Language used in the JSP page.
Chapter 9, Scripting describes information specific to when the language attribute of the page
directive has java as its value.

JSP page implementation classes should use the IJspFactory and PageContext classes to take
advantage of platform-specific implementations.

11.1. JSP Page Model

A JSP page is represented at execution time by a JSP page implementation object and is executed by
a JSP container. The JSP page implementation object is a servlet. The JSP container delivers requests
from a client to a JSP page implementation object and responses from the JSP page implementation
object to the client.

The JSP page describes how to create a response object from a request object for a given protocol,
possibly creating and/or using some other objects in the process . A JSP page may also indicate how
some events are to be handled. In JSP 4.1 only init and destroy events are allowed events.

The JSP container must render a JSP page for the HTTP methods GET and POST with identical
responses. The response for a HEAD request to a JSP page must be identical to the response for a
GET request minus the response body. The behavior of the JSP container is undefined for other
methods.

11.1.1. Protocol Seen by the Web Server

The JSP container locates the appropriate instance of the JSP page implementation class and
delivers requests to it using the servlet protocol. A JSP container may need to create such a class
dynamically from the JSP page source before delivering request and response objects to it.

The Servlet class defines the contract between the JSP container and the JSP page implementation
class. When the HTTP protocol is used, the contract is described by the HttpServlet class. Most JSP
pages use the HTTP protocol, but other protocols are allowed by this specification.

The JSP container automatically makes a number of server-side objects available to the JSP page
implementation object . See Section 1.8.3, “Implicit Objects”.

11.1.1.1. Protocol Seen by the JSP Page Author

The JSP specification defines the contract between the JSP container and the JSP page author. This
contract defines the assumptions an author can make for the actions described in the JSP page.

The main portion of this contract is the _jspService method that is generated automatically by the
JSP container from the JSP page. The details of this contract are provided in Chapter 9, Scripting.

181

The contract also describes how a JSP author can indicate what actions will be taken when the init
and destroy methods of the page implementation occur. In JSP 4.1 this is done by defining methods
with the names jspInit and jspDestroy in a declaration scripting element in the JSP page. The
jspInit method, if present, will be called to prepare the page before the first request is delivered.
Similarly a JSP container can reclaim resources used by a JSP page when a request is not being
serviced by the JSP page by invoking its jspDestroy method, if present.

A JSP page author may not (re)define servlet methods through a declaration scripting element.

The JSP specification reserves names for methods and variables starting with jsp, jsp, jspx, and
jspx, in any combination of upper and lower case.

11.1.1.2. The Http]JspPage Interface

The enforcement of the contract between the JSP container and the JSP page author is aided by the
requirement that the Servlet class corresponding to the JSP page must implement the
jakarta.servlet.jsp.HttpJspPage interface (or the jakarta.servlet.jsp.JspPage interface if the
protocol is not HTTP).

Figure JSP.11-1 Contracts between a JSP Page and a JSP Container

JSP Container JSP Page
init event [jspInit j <%!
public void jspInit() ...

public void jspDestroy() ...

request
a _jspService %>
response <html>
This is the response ...
</html>
destroy event [jspDestroy]
REQUEST PROCESSING TRANSLATION PHASE

PHASE

The involved contracts are shown in Figure JSP.11-1 Contracts between a JSP Page and a JSP
Container. We now revisit this whole process in more detail.

11.2. JSP Page Implementation Class
The JSP container creates a JSP page implementation class for each JSP page.
The name of the JSP page implementation class is implementation dependent.

The JSP Page implementation object belongs to an implementation-dependent named package. The

182

package used may vary between one JSP and another, so minimal assumptions should be made.

As of JSP 2.0, it is illegal to refer to any classes from the unnamed (a.k.a. default) package. This will
result in a translation error. This restriction also applies for all other cases where classes are
referenced, such as when specifying the class name for a tag in a TLD.

The JSP container may create the implementation class for a JSP page, or a superclass may be
provided by the JSP page author through the use of the extends attribute in the page directive.

The extends mechanism is available for sophisticated users. It should be used with extreme care as
it restricts decisions that a JSP container can make. It may restrict efforts to improve performance,
for example.

The JSP page implementation class will implement jakarta.servlet.Servlet and requests are
delivered to the class as per the rules in the Servlet 6.2 specification.

A JSP page implementation class may depend on support classes. If the JSP page implementation
class is packaged into a WAR, any dependent classes will have to be included so it will be portable
across all JSP containers.

A JSP page author writes a JSP page expecting that the client and the server will communicate using
a certain protocol. The JSP container must guarantee that requests to and responses from the page
use that protocol. Most JSP pages use HTTP, and their implementation classes must implement the
HttpJspPage interface, which extends JspPage. If the protocol is not HTTP, then the class will
implement an interface that extends JspPage.

11.2.1. API Contracts

The contract between the JSP container and a Java class implementing a JSP page corresponds to
the Servlet interface. Refer to the Servlet 6.2 specification for details.

The responsibility for adhering to this contract rests on the JSP container implementation if the JSP
page does not use the extends attribute of the jsp directive. If the extends attribute of the jsp
directive is used, the JSP page author must guarantee that the superclass given in the extends
attribute supports this contract.

Table JSP.11-1 How the JSP Container Processes JSP Pages

Methods the JSP Container Invokes Comments

void jspInit() Method is optionally defined in JSP page.
Method is invoked when the JSP page is
initialized.

When method is called all the methods in
servlet, including getServletConfig are
available.

void jspDestroy() Method is optionally defined in JSP page.
Method is invoked before destroying the

page.

183

Methods the JSP Container Invokes Comments

void _jspService(<ServletRequestSubtype>, Method may not be defined in JSP page.
<ServletRespoqseSubtype>) throws IOException, The JSP container automatically generates
ServietException this method, based on the contents of the
JSP page.
Method invoked at each client request.

11.2.2. Request and Response Parameters

As shown in Table JSP.11-1 , “How the JSP Container Processes JSP Pages” the methods in the
contract between the JSP container and the JSP page require request and response parameters.

The formal type of the request parameter (which this specification calls <ServletRequestSubtype>) is
an interface that extends jakarta.servlet.ServletRequest. The interface must define a protocol-
dependent request contract between the JSP container and the class that implements the JSP page.

Likewise, the formal type of the response parameter (which this specification calls
<ServletResponseSubtype>) is an interface that extends jakarta.servlet.ServletResponse. The
interface must define a protocol-dependent response contract between the JSP container and the
class that implements the JSP page.

The request and response interfaces together describe a protocol-dependent contract between the
JSP container and the class that implements the JSP page. The HTTP contract is defined by the
jakarta.servlet.http.HttpServletRequest and jakarta.servlet.http.HttpServletResponse interfaces.

The JspPage interface refers to these methods, but cannot describe syntactically the methods
involving the Servlet(Request,Response) subtypes. However, interfaces for specific protocols that
extend JspPage can, just as HttpJspPage describes them for the HTTP protocol.

JSP containers that conform to this specification (in both JSP page implementation classes and JSP
container runtime) must support the request and response interfaces for the HTTP protocol as
described in this section.

11.2.3. Omitting the extends Attribute

If the extends attribute of the page directive (see Section Section 1.10.1, “The page Directive”) in a JSP
page is not used, the JSP container can generate any class that satisfies the contract described in
Table JSP.11-1, “How the JSP Container Processes JSP Pages” when it transforms the JSP page.

In the following code examples, Code Example JSP.11-1 A Generic HTTP Superclass illustrates a
generic HTTP superclass named ExampleHttpSuper. Code Example JSP.11-2 The Java Class Generated
From a JSP Page shows a subclass named _jsp1344 that extends ExampleHttpSuper and is the class
generated from the JSP page. By using separate _jsp1344 and ExampleHttpSuper classes, the JSP page
translator does not need to discover whether the JSP page includes a declaration with jspInit or
jspDestroy. This significantly simplifies the implementation.

Code Example JSP.11-1 A Generic HTTP Superclass

imports jakarta.servlet.*;

184

imports jakarta.servlet.http.*;
imports jakarta.servlet.jsp.*;

/**

* An example of a superclass for an HTTP JSP class
*/

abstract class ExampleHttpSuper implements HttpJspPage {
private ServletConfig config;

final public void init(ServletConfig config) throws ServletException {
this.config = config;
jspInit();

}

public void jspInit() {
}

public void jspDestroy() {
}

final public ServletConfig getServletConfig() {
return config;

}

// This one is not final so it can be overridden by a more precise method
public String getServletInfo() {

return "A Superclass for an HTTP JSP"; // maybe better?
}

final public void destroy() {
jspDestroy();
}

/**

* The entry point into service.

*/

final public void service(ServletRequest req, ServletResponse res)
throws ServletException, IOException {

// casting exceptions will be raised if an internal error.
HttpServletRequest request = (HttpServletRequest) req;
HttpServletResponse response = (HttpServletResponse) res;

_jspService(request, response);

}

/**

* abstract method to be provided by the JSP processor in the subclass
* Must be defined in subclass.
*/

185

abstract public void _jspService(HttpServletRequest request,
HttpServletResponse response) throws ServletException, IOException;

}

Code Example JSP.11-2 The Java Class Generated From a JSP Page

imports jakarta.servlet.*;
imports jakarta.servlet.http.*;
imports jakarta.servlet.jsp.*;

/**

* An example of a class generated for a JSP.
*

* The name of the class is unpredictable.

* We are assuming that this is an HTTP JSP page (like almost all are)
*/

class _jsp1344 extends ExampleHttpSuper {

// Next code inserted directly via declarations.

// Any of the following pieces may or not be present
// 1f they are not defined here the superclass methods
// will be used.

public void jspInit() {...}
public void jspDestroy() {...}

// The next method is generated automatically by the
// JSP processor.
// body of JSP page

public void _jspService(HttpServletRequest request,
HttpServletResponse response)

throws ServletException, IOException {

// initialization of the implicit variables
/] ...

// next is code from scriptlets, expressions, and static text.

11.2.4. Using the extends Attribute

If the JSP page author uses extends, the generated class is identical to the one shown in Code
Example JSP.11-2 The Java Class Generated From a JSP Page, except that the class name is the one
specified in the extends attribute.

The contract on the JSP page implementation class does not change. The JSP container should check

186

(usually through reflection) that the provided superclass:

* Implements HttpJspPage if the protocol is HTTP, or JspPage otherwise.

» All of the methods in the Servlet interface are declared final.
Additionally, it is the responsibility of the JSP page author that the provided superclass satisfies:

* The service method of the servlet API invokes the _jspService method.

* The init(ServletConfig) method stores the configuration, makes it available via
getServletConfig, then invokes jspInit.

* The destroy method invokes jspDestroy.

A JSP container may give a fatal translation error if it detects that the provided superclass does not
satisfy these requirements, but most JSP containers will not check them.

11.3. Buffering

The JSP container buffers data (if the jsp directive specifies it using the buffer attribute) as it is sent
from the server to the client. Headers are not sent to the client until the first flush method is
invoked. Therefore, it is possible to call methods that modify the response header, such as
setContentType, sendRedirect, or error methods, up until the flush method is executed and the
headers are sent. After that point, these methods become invalid, as per the Servlet specification.

The jakarta.servlet.jsp.JspWriter class buffers and sends output. The JspWriter class is used in the
_jspService method as in the following example:

import jakarta.servlet.jsp.JspWriter;
static JspFactory jspFactory = JspFactory.getDefaultFactory();

_jspService(<SRequest> request, <SResponse> response) {

PageContext pageContext = jspFactory.createPageContext(
this,
request,
response,
false,
PageContext.DEFAULT ‘BUFFER,
false);
JSPWriter out = pageContext.getOut();

out.flush();
}

The complete listing of jakarta.servlet.jsp.JspWriter can be found in the jakarta.servlet.jsp

187

Javadoc.

With buffering turned on, a redirect method can still be used in a scriptlet in a . jsp file, by invoking
response.redirect(someURL) directly.

11.4. Precompilation

A JSP page that is using the HTTP protocol will receive HTTP requests. JSP 4.1 compliant containers
must support a simple precompilation protocol, as well as some basic reserved parameter names.
Note that the precompilation protocol is related but not the same as the notion of compiling a JSP
page into a Servlet class (Appendix A, Packaging JSP Pages).

11.4.1. Request Parameter Names

All request parameter names that start with the prefix jsp are reserved by the JSP specification and
should not be used by any user or implementation except as indicated by the specification.

All JSPs pages should ignore (not depend on) any parameter that starts with jsp_.

11.4.2. Precompilation Protocol

A request to a JSP page that has a request parameter with name jsp_precompile is a precompilation
request. The jsp_precompile parameter may have no value, or may have values true or false. In all
cases, the request should not be delivered to the JSP page.

The intention of the precompilation request is that of a suggestion to the JSP container to
precompile the JSP page into its JSP page implementation class. The suggestion is conveyed by
giving the parameter the value true or no value, but note that the request can be ignored.

For example:

. 7jsp_precompile

. 7jsp_precompile=true

1

2

3. ?jsp_precompile=false

4. ?foobar=foobaz&jsp_precompile=true
5

. ?7foobar=foobaz&jsp_precompile=false

1, 2, and 4 are legal; the request will not be delivered to the page. 3 and 5 are legal; the request will
not be delivered to the page.

6. ?jsp_precompile=foo

This is illegal and will generate an HTTP error; 500 (Server error).

11.5. Debugging Requirements

The Jakarta Debugging Support for Other Languages specification provides the JSP Compiler with a
standard format to convey source map debugging information to tools such as debuggers. See

188

https://jakarta.ee/specifications/debugging/2.0/ for details.

JSP 4.1 containers are required to provide debugging support for JSP pages and tag files written in
either standard or XML syntax.

The JSP compiler must produce .class files with a SourceDebugExtension attribute, mapping each
line or lines of JSP code to the corresponding generated line or lines of Java code. For both pages
and tag files, the stratum that maps to the original source should be named JSP in the Source Debug
Extension (this stratum name is reserved for use by the JSP specification). This stratum should be
specified as the default, unless the page or tag file was generated from some other source.

The exact mechanism for causing the JSP compiler to produce source map debugging information is
implementation-dependent.

11.5.1. Line Number Mapping Guidelines

The following is a set of non-normative guidelines for generating high quality line number
mappings. The guidelines are presented to help produce a consistent debugging experience for
page authors across containers. Where possible the JSP container should generate line number
mappings as follows:

1. A breakpoint on a JSP line causes execution to stop before any Java code which amounts to a
translation of the JSP line is executed (for one possible exception, see (5). Note that given the
LineInfo Composition Algorithm (see Jakarta Debugging Support for Other Languages
specification), it is acceptable for the mappings to include one or more Java lines which are
never translated into executable byte code, as long as at least one of them does.

2. It is permitted for two or more lines of JSP to include the same Java lines in their mappings.

3. If a line of JSP has no manifestation in the Java source other than white-space preserving
source, it should not be mapped.

- The following standard syntax JSP entities should not be mapped to generated code. These
entities either have no manifestation in the generated Java code (e.g. comments), or are not
manifest in such a way that it allows the debugged process to stop (e.g. the page directive
import):

= JSP comments
= Directives

o The following XML syntax JSP entities should not be mapped to generated code. These
entities frequently have no manifestation in the generated Java code.

= <jsp:root>
= <jsp:output>

4. Declarations and scriptlets (standard or XML JSP). Lines in these constructs should preserve a
one-to-one mapping with the corresponding generated code lines. Empty lines and comment
lines are not mapped.

5. For scriptlets, scriptlet expressions, EL expressions, standard actions and custom actions in
template text, a line containing one or more of these entities should be mapped to Java source
lines which include the corresponding Java code.

189

https://jakarta.ee/specifications/debugging/2.0/

7.

190

If the line starts with template text, the Java code which handles it may be excluded from the
mappings if this would cause the debugger to stop before the apparent execution of JSP lines
preceding the line in question. For example:

100 <p>This is a line with template text.</p>
101 <h1><fmt:message key="company" bundle="${bundle}"/></h1>

200 out.write("<p>This is a line with template text.</p>\r\n");
201 out.write("<h1>");

202 org.apache.taglibs.standard.tag.el.fmt.MessageTag taghandler =
203 new org.apache.taglibs.standard.tag.el.fmt.MessageTag();

204 taghandler.setPageContext(pageContext);

205 ...

In this example, given that <h1> has its own call to write(), it makes sense to map 101 to 201, 202
etc.

200 out.write("<p>This is a line with template text.</p>\r\n<h1>");
201 org.apache.taglibs.standard.tag.el.fmt.MessageTag taghandler =
202 new org.apache.taglibs.standard.tag.el.fmt.MessageTag();

203 taghandler.setPageContext(pageContext);

204 ...

In this second example, given that <h1> is output using the same call to write() that was used for
line 100, mapping 101 to 202, 203 etc. may result in more intuitive behavior of the debugger.

For scriptlets that contain more than one line, there should be a one-to-one mapping from JSP to
Java lines, and the mapping should start at the first Java code that is not whitespace or
comments. Therefore, a line that contains only the open scriptlet delimeter is not mapped.

Scriptlet expressions and EL expressions in attribute values. The source line mappings should
include any Java source lines that deal with the evaluation of the rtexpr value as well as source
that deals with the JSP action.

Standard or custom actions.

o Empty tags and start tags special case: The jsp:params action typically has no manifestation
and should not be mapped.

- Empty tags and start tags: The Java line mappings should include as much of the
corresponding Java code as possible, including any separate lines that deal with rtexpr
evaluation as described in (6). If it is not possible to include all the Java code in the
mappings, the mapped lines should include the first sequential line which deals with either
the tag or the attribute evaluation in order to meet (1)

> Closing tags frequently do not have a manifestation in the Java source, but sometimes do. In
case a JSP line contains only a closing tag, the line may be mapped to whitespace preserving
Java source if it has no semantic translation. This will avoid a confusing user experience
where it is sometimes possible to set a breakpoint on a line consisting of a closing tag and

sometimes not.

191

192

Part 111

Appendices B is normative. Appendices A, C, and D are non-normative.
The Appendices are:

* Appendix A - Packaging JSP pages

* Appendix B - Page Character Encoding Detection Algorithm
* Appendix C - Changes

* Appendix D - Glossary of terms

193

194

Appendix A: Packaging JSP Pages

This appendix shows two simple examples of packaging a JSP page into a WAR for delivery into a
Web container. In the first example, the JSP page is delivered in source form. This is likely to be the
most common example. In the second example the JSP page is compiled into a servlet that uses only
Servlet 6.2 and JSP 4.1 API calls; the servlet is then packaged into a WAR with a deployment
descriptor such that it looks as the original JSP page to any client.

This appendix is non normative. Actually, strictly speaking, the appendix relates more to the Servlet
6.2 capabilities than to the JSP 4.1 capabilities. The appendix is included here as this is a feature
that JSP page authors and JSP page authoring tools are interested in.

A.1. A Very Simple JSP Page

We start with a very simple JSP page HelloWorld.jsp.

<%@ page info="Example JSP pre-compiled" %>
<p>

Hello World

</p>

A.2. The JSP Page Packaged as Source in a WAR File

The JSP page can be packaged into a WAR file by just placing it at location /HelloWorld.jsp the
default JSP page extension mapping will pick it up. The web.xml is trivial:

<IDOCTYPE webapp
SYSTEM "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">
<webapp>
<session-config>
<session-timeout>1</session-timeout>
</session-config>
</webapp>

A.3. The Servlet for the Compiled JSP Page

As an alternative, we will show how one can compile the JSP page into a servlet class to run in a JSP
container.

The JSP page is compiled into a servlet with some implementation dependent name
com.acme._jsp_HelloWorld_XXX_Impl. The servlet code only depends on the JSP 4.1 and Servlet 6.2
APIs, as follows:

package ;

195

import jakarta.servlet.*;
import jakarta.servlet.http.*;
import jakarta.servlet.jsp.*;

public class _jsp_HelloWorld_XXX_Impl

}

196

extends PlatformDependent_Jsp_Super_Impl {

public void jspInit() {
/] ...
}

public void jspDestroy() {
/] ...
}

static JspFactory _factory = JspFactory.getDefaultFactory();

public void _jspService(HttpServletRequest request,
HttpServletResponse response)
throws IOException, ServletException {

Object page = this;

HttpSession session = request.getSession();
ServletConfig config = getServletConfig();
ServletContext application = config.getServletContext();

PageContext pageContext = _factory.getPageContext(this,
request,
response,
(String)NULL,
true,
JspWriter .DEFAULT_BUFFER,
true);

JspWriter out = pageContext.getOut();
// page context creates initial JspWriter

out"

try {
out.println("<p>");
out.println("Hello World");
out.println("</p>");

} catch (Exception e) {
pageContext.handlePageException(e);

} finally {
_factory.releasePageContext(pageContext);

}

}

A.4. The Web Application Descriptor

The servlet is made to look as a JSP page with the following web. xm1:

<!DOCTYPE webapp
SYSTEM "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">
<webapp>
<servlet>
<servlet-name>HelloWorld</servlet-name>
<servlet-class>com.acme._jsp_HelloWorld_XXX_Impl</servlet-class>
</servlet>

<servlet-mapping>
<servlet-name>HelloWorld</servlet-name>
<url-pattern>/HelloWorld.jsp</url-pattern>
</servlet-mapping>

<session-config>
<session-timeout>1</session-timeout>
</session-config>
</webapp>

A.5. The WAR for the Compiled JSP Page

Finally everything is packaged together into a WAR:

* /WEB-INF/web.xml
* /WEB-INF/classes/com/acme/_jsp_HelloWorld_XXX_Impl.class

Note that if the servlet class generated for the JSP page had depended on some support classes, they
would have to be included in the WAR.

197

198

Appendix B: Page Encoding Detection

This appendix details the algorithm containers are required to use in order to determine the
character encoding for a JSP page or tag file. See Chapter 4, Internationalization Issues for details on
where this algorithm is used. The algorithm is designed to maximize convenience to the page
author, while preserving backwards compatibility with previous versions of the JSP specification.

B.1.

Detection Algorithm for JSP pages

The following is a complete though unoptimized algorithm for determining the character encoding
for a JSP file. JSP containers may use an optimized version of this algorithm, but it must detect the
same encoding as the algorithm in all cases.

1. Decide whether the source file is a JSP page in standard syntax or a JSP document in XML
syntax.

a.

d.

If there is a <is-xml> element in a <jsp-property-group> that names this file, then if it has the
value “true”, the file is a JSP document, and if it has the value “false”, the file is not a JSP
document.

Otherwise, if the file name has the extension “jspx”, the file is a JSP document.
Otherwise, try to find a <jsp:root> element in the file.

i. Determine the initial encoding from the first four bytes of the file, as described in
appendix F.1 of the XML 1.0 specification. For the byte sequence “3C 3F 78 6D”, use I150-
8859-1 ; for the byte sequence “4C 6F A7 94”, use IBM@37 ; for all other cases, use the UTF-
or UCS- encoding given in the appendix.

ii. Read the file using the initial encoding and search for a <jsp:root> element. If the
element is found and is the top element, the file is a JSP document in XML syntax

Otherwise, the file is a JSP page in standard syntax.

2. Reset the file.

3. If the file is a JSP page in standard syntax:

3.1 If the file is not preceded by a BOM:

Check whether there is a JSP configuration element <page-encoding> whose URL pattern
matches this file.

Read the file using the initial encoding and search for a pageEncoding attribute in a page
declaration. The specification requires the attribute to be found only if it is not preceded by
non-ASCII characters, so simplified implementations are allowed.

Report an error if there are a <page-encoding> configuration element whose URL pattern
matches this file and a pageEncoding attribute, and the two name different encodings.

If there is a <page-encoding> configuration element whose URL pattern matches this file, the
page character encoding is the one named in this element.

Otherwise, if there is a pageEncoding attribute, the page character encoding is the one named
in this attribute.

199

f. Otherwise, read the file using the initial encoding and search for a charset value within a
contentType attribute in a page declaration. If it exists, the page character encoding is the
one named in this charset value. The specification requires the attribute to be found only if
it is not preceded by non-ASCII characters, so simplified implementations are allowed.

g. Otherwise, the page character encoding is I50-8859-1.
3.2 If the file is preceded by a BOM:
h. Read the file using the encoding indicated by the BOM, and search for a pageEncoding
attribute in a page declaration.

i Report an error if any of the following conditions are met:

i There is a <page-encoding> configuration element whose URL pattern matches this page
and whose encoding does not match the encoding indicated by the BOM.

i.. There is a pageEncoding page directive attribute whose encoding does not match the
encoding indicated by the BOM.

4. If the file is a JSP document in XML syntax, use these steps.

a. Determine the page character encoding as described in appendix F.1 of the XML 1.0
specification. Note whether the encoding was named in the encoding attribute of the XML
prolog or just derived from the initial bytes.

b. Check whether there is a JSP configuration element <page-encoding> whose URL pattern
matches this file.

c. Read the file using the detected encoding and search for a pageEncoding attribute in a
<jsp:directive.page> element.

d. Report an error if any of the following conditions is met:

i. The XML prolog names an encoding and there is <page-encoding> configuration element
whose URL pattern matches this file and which names a different encoding.

ii. The XML prolog names an encoding and there is a pageEncoding attribute which names a
different encoding.

iii. There are a <page-encoding> configuration element whose URL pattern matches this file
and a pageEncoding attribute, and the two name different encodings.

5. Reset the file and read it using the page character encoding.

B.2. Detection Algorithm for Tag Files

The following details the algorithm for determining the character encoding for a tag file. JSP
containers may use an optimized version of this algorithm, but it must detect the same encoding as
the algorithm in all cases.

1. Determine whether the source file is a tag file in standard or XML syntax.

a. If the file name has the extension "tagx", the file is a tag file in XML syntax. Otherwise, it is a
tag file in standard syntax.

2. If the file is a tag file in standard syntax, use these steps:

200

2.1 If the file is not preceded by a BOM:

a. Read the file using the initial default encoding and search for a pageEncoding attribute in a
tag directive. The specification requires the attribute to be found only if it is not preceded by
non-ASCII characters.

b. If there is a pageEncoding attribute, the page character encoding is the one named in this
attribute.

c. Otherwise, the page character encoding is IS0-8859-1.

d. Reset the file and read it using the page character encoding.
2.2 If the file is preceded by a BOM:
e. Read the file using the encoding indicated by the BOM, and search for a pageEncoding

attribute in a tag directive.

f. Report an error if there is a pageEncoding tag directive attribute whose encoding does not
match the encoding indicated by the BOM.

3. If the file is a JSP document in XML syntax, use these steps.

a. Determine the page character encoding as described in appendix F.1 of the XML 1.0
specification.

b. Read the file using the detected encoding.

201

202

Appendix C: Changes

This appendix lists the changes in the Jakarta Server Pages specification. This appendix is non-
normative.

C.

C.

1. Changes between JSP 4.1 and JSP 4.0

#245 [https://github.com/eclipse-ee4j/jsp-api/issues/245] Utilise the new
ELResolver.StandaloneldentifierMarker class to optimise the performance of the
ImportELResolver. This should significantly improve the resolving of standalong identifiers e.g.
${my-identifier}.

2. Changes between JSP 4.0 and JSP 3.1

Update the minimum Java version to Java 17.

Remove the methods that implemented ELResolver.getFeatureDescriptors() as those methods
have been removed as of EL 6.1.

Remove the deprecated classes from the jakarta.servlet.jsp.el package.
Remove the deprecated BodyTag.EVAL_BODY_TAG constant.

Remove the deprecated JspException.getRootCause.

Remove the deprecated isThreadSafe page directive attribute.

Remove the deprecated jsp:plugin action and related actions.

#235 [https:/github.com/eclipse-eedj/jsp-api/issues/235] Update ErrorData to add support for the new
attribute jakarta.servlet.error.query_string.

Update ErrorData to add support for the new attribute jakarta.servlet.error.method.

C.3. Changes between JSP 3.1 and JSP 3.0

Deprecate methods that override ELResolver.getFeatureDescriptors() as that method has been
deprecated as of EL 5.0.

#40 [https://github.com/eclipse-ee4j/jsp-api/issues/40] Add an option to raise a
PropertyNotFoundException when an EL expression contains an unknown identifier.

#42 [https://github.com/eclipse-ee4j/jsp-api/issues/42] Clarify the meaning of 'scope' in the context of
scripting variables associated with custom actions.

#44 [nttps://github.com/eclipse-eedj/jsp-api/issues/44] Clarify that the EL environment within a JSP has
a set of default imports consistent with the default imports for the scripting environment.
Refactor the ScopedAttributeELResolver to remove the special handling for imports and
unresolved variables.

Deprecate the isThreadSafe page directive attribute as the related Servlet API interface
SingleThreadModel has been removed as of the Servlet 6.0 specification.

#226 [https://github.com/eclipse-eedj/jsp-api/issues/226] Deprecate the jsp:plugin action and related

203

https://github.com/eclipse-ee4j/jsp-api/issues/245
https://github.com/eclipse-ee4j/jsp-api/issues/235
https://github.com/eclipse-ee4j/jsp-api/issues/40
https://github.com/eclipse-ee4j/jsp-api/issues/42
https://github.com/eclipse-ee4j/jsp-api/issues/44
https://github.com/eclipse-ee4j/jsp-api/issues/226

actions as the associated HTML elements are no longer supported by any major browser.

C.4. Changes between JSP 3.0 and JSR 245

* The API has moved from the javax.servlet.jsp package to the jakarta.servlet.jsp package.
* All deprecated methods now include the @Deprecated annotation.
» All API methods use generics where appropriate.

* The contents of the Javadoc and XML schemas were removed and are now included by
reference.

204

Appendix D: Glossary

This appendix is a glossary of the main concepts mentioned in this specification. This appendix is
non-normative.

action

An element in a JSP page that can act on implicit objects and other server-side objects or can define
new scripting variables. Actions follow the XML syntax for elements with a start tag, a body and an
end tag; if the body is empty it can also use the empty tag syntax. The tag must use a prefix.

action, standard
An action that is defined in the JSP specification and is always available to a JSP file without being
imported.

action, custom
An action described in a portable manner by a tag library descriptor and a collection of Java classes
and imported into a JSP page by a taglib directive.

Application Assembler
A person that combines JSP pages, servlet classes, HTML content, tag libraries, and other Web
content into a deployable Web application.

classic tag handler
A tag handler that implements the jakarta.servlet.jsp.tagext.Tag interface.

component contract
The contract between a component and its container, including life cycle management of the
component and the APIs and protocols that the container must support.

Component Provider
A vendor that provides a component either as Java classes or as JSP page source.

distributed container
A JSP container that can run a Web application that is tagged as distributable and is spread across
multiple Java virtual machines that might be running on different hosts.

declaration
A scripting element that declares methods, variables, or both in a JSP page. Syntactically it is
delimited by the <%! and %> characters.

directive
An element in a JSP page that gives an instruction to the JSP container and is interpreted at
translation time. Syntactically it is delimited by the <%@ and %> characters.

dynamic attribute
An attribute, passed to a custom action, whose name is not explicitly declared in the tag library
descriptor.

element
A portion of a JSP page that is recognized by the JSP translator. An element can be a directive, an

205

action, or a scripting element.

EL expression
An element in a JSP page representing an expression to be parsed and evaluated via the JSP
Expression Language. Syntactically it is delimited by the ${ and } characters.

expression
Either a scripting expression or an EL expression.

fixed template data

Any portions of a JSP file that are not described in the JSP specification, such as HTML tags, XML
tags, and text. The template data is returned to the client in the response or is processed by a
component.

implicit object

A server-side object that is defined by the JSP container and is always available in a JSP file without
being declared. The implicit objects are request, response, pageContext, session, application, out,
config, page, and exception for scriptlets and scripting expressions. The implicit objects are
pageContext, pageScope, requestScope, sessionScope, applicationScope, param, paramValues, header,
headerValues, cookie and initParam for EL expressions.

Jakarta Server Pages technology

An extensible Web technology that uses template data, custom elements, scripting languages, and
server-side Java objects to return dynamic content to a client. Typically the template data is HTML
or XML elements, and in many cases the client is a Web browser.

JSP container
A system-level entity that provides life cycle management and runtime support for JSP and servlet
components.

JSP configuration
The deployment-time process by which the JSP container is declaratively configured using a
deployment descriptor.

JSP file

A text file that contains JSP elements, forming a complete JSP page or just a partial page that must
be combined with other JSP files to form a complete page. Most top-level JSP files have a .jsp
extension, but other extensions can be configured as well.

JSP fragment
A portion of JSP code, translated into an implementation of the jakarta.servlet.jsp.JspFragment
abstract class.

JSP page
One or more JSP files that form a syntactically complete description for processing a request to
create a response.

JSP page, front
A JSP page that receives an HTTP request directly from the client. It creates, updates, and/or
accesses some server-side data and then forwards the request to a presentation JSP page.

206

JSP page, presentation
A JSP page that is intended for presentation purposes only. It accesses and/or updates some server-
side data and incorporates fixed template data to create content that is sent to the client.

JSP page implementation class

The Java programming language class, a servlet, that is the runtime representation of a JSP page
and which receives the request object and updates the response object. The page implementation
class can use the services provided by the JSP container, including both the servlet and the JSP APIs.

JSP page implementation object
The instance of the JSP page implementation class that receives the request object and updates the
response object.

JSP segment
A portion of JSP code defined in a separate file, and imported into a page using the include
directive.

named attribute
A standard or custom action attribute whose value is defined using the <jsp:attribute> standard
action.

scripting element

A declaration, scriptlet, or expression, whose tag syntax is defined by the JSP specification, and
whose content is written according to the scripting language used in the JSP page. The JSP
specification describes the syntax and semantics for the case where the language page attribute is
java.

scripting expression

A scripting element that contains a valid scripting language expression that is evaluated, converted
to a String, and placed into the implicit out object. Syntactically it is delimited by the <%= and %>
characters.

scriptlet

An scripting element containing any code fragment that is valid in the scripting language used in
the JSP page. The JSP specification describes what is a valid scriptlet for the case where the
language page attribute is java. Syntactically a scriptlet is delimited by the <% and %> characters.

simple tag handler
A tag handler that implements the jakarta.servlet.jsp.tagext.SimpleTag interface.

tag
A piece of text between a left angle bracket and a right angle bracket that has a name, can have
attributes, and is part of an element in a JSP page. Tag names are known to the JSP translator, either
because the name is part of the JSP specification (in the case of a standard action), or because it has
been introduced using a Tag Library (in the case of custom action).

tag file
A text-based document that uses fixed template data and JSP elements to define a custom action.
The semantics of a tag file are realized at runtime by a tag handler.

207

tag library
A collection of custom actions described by a tag library descriptor and Java classes.

tag library descriptor
An XML document describing a tag library.

Tag Library Provider

A vendor that provides a tag library. Typical examples may be a JSP container vendor, a
development group within a corporation, a component vendor, or a service vendor that wants to
provide easier use of their services.

web application
An application built for the Internet, an intranet, or an extranet.

web application, distributable

A Web application that is written so that it can be deployed in a Web container distributed across
multiple Java virtual machines running on the same host or different hosts. The deployment
descriptor for such an application uses the distributable element.

Web Application Deployer
A person who deploys a Web application in a Web container, specifying at least the root prefix for
the Web application, and in a Jakarta EE environment, the security and resource mappings.

web component
A servlet class or JSP page that runs in a JSP container and provides services in response to
requests.

Web Container Provider
A vendor that provides a servlet and JSP container that support the corresponding component
contracts.

208

	Jakarta Server Pages
	Table of Contents
	Eclipse Foundation Specification License - v1.1
	Disclaimers
	Jakarta Server Pages Specification, Version 4.1
	Preface
	Who Should Read This Document
	Organization of This Document
	Historical Note

	Overview
	The Jakarta Server Pages Technology
	Basic Concepts
	Users of Jakarta Server Pages

	Part I
	Chapter 1. Core Syntax and Semantics
	1.1. What Is a JSP Page
	1.1.1. Web Containers and Web Components
	1.1.2. Generating HTML
	1.1.3. Generating XML
	1.1.4. Translation and Execution Phases
	1.1.5. Validating JSP pages
	1.1.6. Events in JSP Pages
	1.1.7. JSP Configuration Information
	1.1.8. Naming Conventions for JSP Files
	1.1.9. Compiling JSP Pages
	1.1.10. Debugging JSP Pages

	1.2. Web Applications
	1.2.1. Relative URL Specifications

	1.3. Syntactic Elements of a JSP Page
	1.3.1. Elements and Template Data
	1.3.2. Element Syntax
	1.3.3. Start and End Tags
	1.3.4. Empty Elements
	1.3.5. Attribute Values
	1.3.6. The jsp:attribute, jsp:body and jsp:element Elements
	1.3.7. Valid Names for Actions and Attributes
	1.3.8. White Space
	1.3.9. JSP Documents
	1.3.10. JSP Syntax Grammar

	1.4. Error Handling
	1.4.1. Translation Time Processing Errors
	1.4.2. Request Time Processing Errors
	1.4.3. Using JSPs as Error Pages

	1.5. Comments
	1.5.1. Comments in JSP Pages in Standard Syntax
	1.5.2. Comments in JSP Documents

	1.6. Quoting and Escape Conventions
	1.7. Overall Semantics of a JSP Page
	1.8. Objects
	1.8.1. Objects and Variables
	1.8.2. Objects and Scopes
	1.8.3. Implicit Objects
	1.8.4. The pageContext Object

	1.9. Template Text Semantics
	1.10. Directives
	1.10.1. The page Directive
	1.10.2. The taglib Directive
	1.10.3. The include Directive
	1.10.4. Implicit Includes
	1.10.5. Including Data in JSP Pages
	1.10.6. Additional Directives for Tag Files

	1.11. EL Elements
	1.12. Scripting Elements
	1.12.1. Declarations
	1.12.2. Scriptlets
	1.12.3. Expressions

	1.13. Actions
	1.14. Tag Attribute Interpretation Semantics
	1.14.1. Request Time Attribute Values
	1.14.2. Type Conversions

	Chapter 2. Expression Language
	2.1. Syntax of Expressions in JSP Pages: ${} vs #{}
	2.2. Expressions and Template Text
	2.3. Expressions and Attribute Values
	2.3.1. Static Attribute
	2.3.2. Dynamic Attribute
	2.3.3. Deferred Value
	2.3.4. Deferred Method
	2.3.5. Dynamic Attribute or Deferred Expression
	2.3.6. Examples of Using ${} and #{}

	2.4. Implicit Objects
	2.5. Deactivating EL Evaluation
	2.6. Disabling Scripting Elements
	2.7. Unknown EL Identifiers
	2.8. Invalid EL Expressions
	2.9. Errors, Warnings, Default Values
	2.10. Resolution of Variables and their Properties
	2.11. Functions
	2.11.1. Invocation Syntax
	2.11.2. Tag Library Descriptor Information
	2.11.3. Example
	2.11.4. Semantics

	Chapter 3. JSP Configuration
	3.1. JSP Configuration Information in web.xml
	3.2. Taglib Map
	3.3. JSP Property Groups
	3.3.1. JSP Property Groups
	3.3.2. Deactivating EL Evaluation
	3.3.3. Disabling Scripting Elements
	3.3.4. Unknown EL Identifiers
	3.3.5. Declaring Page Encodings
	3.3.6. Defining Implicit Includes
	3.3.7. Denoting XML Documents
	3.3.8. Deferred Syntax (character sequence #{)
	3.3.9. Removing Whitespaces from Template Text
	3.3.10. Declaring Default Content Type
	3.3.11. Setting Default Buffer Size
	3.3.12. Raising Errors for Undeclared Namespaces

	3.4. Backwards Compatibility with JSP 2.0

	Chapter 4. Internationalization Issues
	4.1. Page Character Encoding
	4.1.1. Standard Syntax
	4.1.2. XML Syntax

	4.2. Response Character Encoding
	4.3. Request Character Encoding
	4.4. XML View Character Encoding
	4.5. Delivering Localized Content

	Chapter 5. Standard Actions
	5.1. <jsp:useBean>
	5.2. <jsp:setProperty>
	5.3. <jsp:getProperty>
	5.4. <jsp:include>
	5.5. <jsp:forward>
	5.6. <jsp:param>
	5.7. <jsp:attribute>
	5.8. <jsp:body>
	5.9. <jsp:invoke>
	5.9.1. Basic Usage
	5.9.2. Storing Fragment Output
	5.9.3. Providing a Fragment Access to Variables

	5.10. <jsp:doBody>
	5.11. <jsp:element>
	5.12. <jsp:text>
	5.13. <jsp:output>
	5.14. Other Standard Actions

	Chapter 6. JSP Documents
	6.1. Overview of JSP Documents and of XML Views
	6.2. JSP Documents
	6.2.1. Identifying JSP Documents
	6.2.2. Overview of Syntax of JSP Documents
	6.2.3. Semantic Model
	6.2.4. JSP Document Validation

	6.3. Syntactic Elements in JSP Documents
	6.3.1. Namespaces, Standard Actions, and Tag Libraries
	6.3.2. The jsp:root Element
	6.3.3. The jsp:output Element
	6.3.4. The jsp:directive.page Element
	6.3.5. The jsp:directive.include Element
	6.3.6. Additional Directive Elements in Tag Files
	6.3.7. Scripting Elements
	6.3.8. Other Standard Actions
	6.3.9. Template Content
	6.3.10. Dynamic Template Content

	6.4. Examples of JSP Documents
	6.4.1. Example: A Simple JSP Document
	6.4.2. Example: Generating Namespace-aware Documents
	6.4.3. Example: Generating non-XML documents
	6.4.4. Example: Using Custom Actions and Tag Files

	6.5. Possible Future Directions for JSP documents
	6.5.1. Generating XML Content Natively
	6.5.2. Schema and XInclude Support

	Chapter 7. Tag Extensions
	7.1. Introduction
	7.1.1. Goals
	7.1.2. Overview
	7.1.3. Classic Tag Handlers
	7.1.4. Simple Examples of Classic Tag Handlers
	7.1.5. Simple Tag Handlers
	7.1.6. JSP Fragments
	7.1.7. Simple Examples of Simple Tag Handlers
	7.1.8. Attributes With Dynamic Names
	7.1.9. Event Listeners
	7.1.10. JspId Attribute
	7.1.11. Resource Injection

	7.2. Tag Libraries
	7.2.1. Packaged Tag Libraries
	7.2.2. Location of Java Classes
	7.2.3. Tag Library Directive

	7.3. The Tag Library Descriptor
	7.3.1. Identifying Tag Library Descriptors
	7.3.2. TLD Resource Path
	7.3.3. Taglib Map in web.xml
	7.3.4. Implicit Map Entries from TLDs
	7.3.5. Implicit Map Entries from the Container
	7.3.6. Determining the TLD Resource Path
	7.3.7. Translation-Time Class Loader
	7.3.8. Assembling a Web Application
	7.3.9. Well-Known URIs
	7.3.10. Tag and Tag Library Extension Elements

	7.4. Validation
	7.4.1. Translation-Time Mechanisms
	7.4.2. Request-Time Errors

	7.5. Conventions and Other Issues
	7.5.1. How to Define New Implicit Objects
	7.5.2. Access to Vendor-Specific information
	7.5.3. Customizing a Tag Library

	Chapter 8. Tag Files
	8.1. Overview
	8.2. Syntax of Tag Files
	8.3. Semantics of Tag Files
	8.4. Packaging Tag Files
	8.4.1. Location of Tag Files
	8.4.2. Packaging in a JAR
	8.4.3. Packaging Directly in a Web Application
	8.4.4. Packaging as Precompiled Tag Handlers

	8.5. Tag File Directives
	8.5.1. The tag Directive
	8.5.2. The attribute Directive
	8.5.3. The variable Directive

	8.6. Tag Files in XML Syntax
	8.7. XML View of a Tag File
	8.8. Implicit Objects
	8.9. Variable Synchronization
	8.9.1. Synchronization Points
	8.9.2. Synchronization Examples

	Chapter 9. Scripting
	9.1. Overall Structure
	9.1.1. Valid JSP Page
	9.1.2. Reserved Names
	9.1.3. Implementation Flexibility

	9.2. Declarations Section
	9.3. Initialization Section
	9.4. Main Section
	9.4.1. Template Data
	9.4.2. Scriptlets
	9.4.3. Expressions
	9.4.4. Actions

	Chapter 10. XML View
	10.1. XML View of a JSP Document, JSP Page or Tag File
	10.1.1. JSP Documents and Tag Files in XML Syntax
	10.1.2. JSP Pages or Tag Files in JSP Syntax
	10.1.3. JSP Comments
	10.1.4. The page Directive
	10.1.5. The taglib Directive
	10.1.6. The include Directive
	10.1.7. Declarations
	10.1.8. Scriptlets
	10.1.9. Expressions
	10.1.10. Standard and Custom Actions
	10.1.11. Request-Time Attribute Expressions
	10.1.12. Template Text and XML Elements
	10.1.13. The jsp:id Attribute
	10.1.14. The tag Directive
	10.1.15. The attribute Directive
	10.1.16. The variable Directive

	10.2. Validating an XML View of a JSP page
	10.3. Examples
	10.3.1. A JSP Document
	10.3.2. A JSP Page and its Corresponding XML View
	10.3.3. Clearing Out Default Namespace on Include
	10.3.4. Taglib Direcive Adds to Global Namespace
	10.3.5. Collective Application of Inclusion Semantics

	Part II
	Chapter 11. JSP Container
	11.1. JSP Page Model
	11.1.1. Protocol Seen by the Web Server

	11.2. JSP Page Implementation Class
	11.2.1. API Contracts
	11.2.2. Request and Response Parameters
	11.2.3. Omitting the extends Attribute
	11.2.4. Using the extends Attribute

	11.3. Buffering
	11.4. Precompilation
	11.4.1. Request Parameter Names
	11.4.2. Precompilation Protocol

	11.5. Debugging Requirements
	11.5.1. Line Number Mapping Guidelines

	Part III
	Appendix A: Packaging JSP Pages
	A.1. A Very Simple JSP Page
	A.2. The JSP Page Packaged as Source in a WAR File
	A.3. The Servlet for the Compiled JSP Page
	A.4. The Web Application Descriptor
	A.5. The WAR for the Compiled JSP Page

	Appendix B: Page Encoding Detection
	B.1. Detection Algorithm for JSP pages
	B.2. Detection Algorithm for Tag Files

	Appendix C: Changes
	C.1. Changes between JSP 4.1 and JSP 4.0
	C.2. Changes between JSP 4.0 and JSP 3.1
	C.3. Changes between JSP 3.1 and JSP 3.0
	C.4. Changes between JSP 3.0 and JSR 245

	Appendix D: Glossary

