
Jakarta NoSQL

1.1-M1, October 12, 2025: Final

Table of Contents

Copyright . 2

Eclipse Foundation Specification License - v1.1 . 2

Disclaimers . 2

1. Introduction . 3

1.1. Goal . 3

1.2. Non-Goals . 3

1.3. Conventions . 4

1.4. Jakarta NoSQL Project Team. 4

1.4.1. Project Lead. 4

1.4.2. Contributors . 4

1.4.3. Committers . 4

1.4.4. Historical Committer. 4

1.4.5. Mentor . 4

1.4.6. Full List of Contributors . 5

2. Entity Classes . 6

2.1. Programming Model for Entity Classes . 6

2.1.1. Persistent Fields . 7

2.1.2. Basic Types . 8

2.1.3. Embedded Fields and Embeddable Classes . 9

2.1.4. Array Support . 12

2.1.5. Entity Associations . 13

2.1.6. Collections of Embeddable Classes and Basic Types . 14

2.1.7. Map Collections . 15

2.1.8. Entity Property Names . 16

3. Annotations . 17

3.1. @Entity. 18

3.1.1. Entity Definition Reference. 18

3.1.2. Associating with Other Entities . 19

3.2. @Embeddable . 21

3.3. @Id . 22

3.4. @Column . 22

3.5. @Convert . 23

3.6. Inheritance . 24

3.6.1. Abstract Entity Classes . 25

3.6.2. @MappedSuperclass . 25

3.6.3. @Inheritance . 26

3.6.4. @DiscriminatorColumn . 27

3.6.5. @DiscriminatorValue . 27

4. Template Classes . 30

4.1. Template and Inheritance classes . 31

4.2. Fluent API Query . 32

4.2.1. Importance of Fluent API Query . 32

4.2.2. Limitations in Key-Value Databases . 32

4.2.3. Supported Methods in Other NoSQL Databases. 32

4.2.4. Query Navigation Hierarchy. 33

4.3. TTL (Time-To-Live) Support . 33

5. Jakarta NoSQL Providers. 35

5.1. Configuration and Credentials . 35

5.2. Schema Generation. 35

5.3. Jakarta NoSQL Providers Extensions . 36

5.4. Persistent Fields. 36

6. Interoperability with other Jakarta EE Specifications . 37

6.1. Jakarta Contexts and Dependency Injection. 37

6.1.1. CDI Extensions for Jakarta Data Providers . 37

6.2. Jakarta Bean Validation . 38

6.3. Jakarta Data . 39

6.4. Jakarta Query . 39

6.4.1. Query Limitations in NoSQL Providers . 39

6.4.2. Object Mapping Integration . 41

Specification: Jakarta NoSQL

Version: 1.1-M1

Status: Final

Release: October 12, 2025

1

Copyright

Copyright (c) 2025 Eclipse Foundation.

Eclipse Foundation Specification License - v1.1

By using and/or copying this document, or the Eclipse Foundation document from which this statement is linked or

incorporated by reference, you (the licensee) agree that you have read, understood, and will comply with the following

terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document from which this

statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, provided that you

include the following on ALL copies of the document, or portions thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual representation is

permitted) of the form: "Copyright (c) [$date-of-document] Eclipse Foundation AISBL https://www.eclipse.org/legal/

efsl.php "

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be provided in any

software, documents, or other items or products that you create pursuant to the implementation of the contents of this

document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to this license,

except anyone may prepare and distribute derivative works and portions of this document in software that

implements the specification, in supporting materials accompanying such software, and in documentation of such

software, PROVIDED that all such works include the notice below. HOWEVER, the publication of derivative works of

this document for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) 2025 Eclipse Foundation AISBL.This software or document includes material copied from or derived

from Jakarta NoSQL and https://jakarta.ee/

specifications/nosql/."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND TO THE EXTENT PERMITTED BY APPLICABLE LAW THE COPYRIGHT

HOLDERS AND THE ECLIPSE FOUNDATION AISBL MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR

IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY

PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,

COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

TO THE EXTENT PERMITTED BY APPLICABLE LAW THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION AISBL

WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE

OF THE DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation AISBL may NOT be used in advertising or

publicity pertaining to this document or its contents without specific, written prior permission. Title to copyright in this

document will at all times remain with copyright holders.

2

https://www.eclipse.org/legal/efsl.php
https://www.eclipse.org/legal/efsl.php

Chapter 1. Introduction

In the ever-evolving landscape of modern application development, non-relational databases—also known as

NoSQL—have become essential for managing large volumes of unstructured and semi-structured data. Jakarta NoSQL

bridges the gap between Java applications and NoSQL data stores by providing a unified API model built on

annotations and Service Provider Interfaces (SPIs). This standard enables developers to integrate Java applications with

diverse NoSQL databases seamlessly, promoting flexibility in database choice while preserving consistent application

logic.

At its core, Jakarta NoSQL aims to simplify the complexity associated with NoSQL database integration, providing a

unified approach for developers to interact with different database systems. By abstracting away the intricacies of

database-specific operations, such as data modeling, and querying, Jakarta NoSQL fosters a consistent development

experience across diverse NoSQL technologies. This abstraction layer not only streamlines development efforts but also

future-proofs applications against changes in underlying database implementations, enabling smooth transitions

between different NoSQL solutions as project requirements evolve.

1.1. Goal

The primary goal of Jakarta NoSQL is to streamline and enhance productivity in performing everyday NoSQL

operations within Java applications. In the ever-expanding landscape of data management, NoSQL databases have

emerged as powerful tools for handling diverse data structures and massive volumes of information. Jakarta NoSQL

aims to facilitate seamless integration between Java applications and NoSQL databases, providing developers with a

standardized and efficient approach to interacting with these databases.

1. Increasing Productivity: Jakarta NoSQL is designed to simplify the process of working with NoSQL databases,

enabling developers to focus on application logic rather than the intricacies of database management. By offering

standardized APIs, annotations, and query languages, Jakarta NoSQL reduces the learning curve associated with

integrating and interacting with various NoSQL database systems.

2. Rich Object Mapping: One of the core features of Jakarta NoSQL is its support for rich object mapping. This feature

allows developers to map Java objects directly to NoSQL database structures, eliminating the need for complex data

transformation code. By providing a seamless mapping mechanism, Jakarta NoSQL enables developers to work with

NoSQL databases using familiar object-oriented paradigms, enhancing productivity and code readability.

3. Flexibility and Adaptability: Jakarta NoSQL is designed to be flexible and adaptable, capable of working with a

wide range of NoSQL database systems. Moreover, its extensible architecture allows for the easy integration of new

database types and behaviors through extensions. It ensures that Jakarta NoSQL remains relevant and up-to-date in

the face of evolving database technologies and requirements.

1.2. Non-Goals

While Jakarta NoSQL aims to enhance productivity and simplify integration with NoSQL databases, it is essential to

clarify its non-goals:

1. ORM-like Features: Jakarta NoSQL does not aim to replicate all Object-Relational Mapping (ORM) framework

features. While it provides rich object mapping capabilities, it may offer a different level of abstraction and

functionality than traditional ORM frameworks for relational databases.

2. Full Compatibility with Every NoSQL Database: Jakarta NoSQL aims to provide a standardized approach for

working with NoSQL databases. However, it may offer partial compatibility with every NoSQL database on the

market. Compatibility may vary based on the database type and specific features supported by each database.

3. Replacing Database-specific Features: Jakarta NoSQL does not intend to remove all database-specific features

provided by individual NoSQL databases. While it offers a standard set of APIs and annotations, developers may still

3

need to leverage database-specific features directly for certain advanced use cases.

1.3. Conventions

Throughout the Jakarta NoSQL specification, the terms "entity attribute" and "entity property" are used

interchangeably to refer to the fields or properties defined within an entity class.

When demonstrating output samples, JSON format is commonly used to represent data structures. However, it’s

important to note that this does not imply that a NoSQL database must serialize data in JSON format. The JSON samples

provided serve to demonstrate and exemplify the structure of the data.

It’s crucial to understand that a Jakarta NoSQL provider and the underlying NoSQL database have the flexibility to

define the serialization process according to their requirements. This may involve using user-defined types (UDTs),

proprietary serialization formats, or other methods tailored to the specific database technology used.

1.4. Jakarta NoSQL Project Team

This specification is being developed as part of Jakarta NoSQL project under the Jakarta EE Specification Process. It is

the result of the collaborative work of the project committers and various contributors.

1.4.1. Project Lead

• Otavio Santana

1.4.2. Contributors

• Ivar Grimstad

• Kevin Sutter

• Scott Stark

1.4.3. Committers

• Andres Galante

• Fred Rowe

• Gaurav Gupta

• Ivan Junckes Filho

• Jesse Gallagher

• Michael Redlich

• Nathan Rauh

• Otavio Santana

• Werner Keil

1.4.4. Historical Committer

• Leonardo Lima

1.4.5. Mentor

• Wayne Beaton

4

https://projects.eclipse.org/content/otavio-santana-project-lead-jakarta-nosql
https://projects.eclipse.org/user/8408
https://projects.eclipse.org/user/8180
https://projects.eclipse.org/user/10810
https://projects.eclipse.org/content/andres-galante-committer-jakarta-nosql
https://projects.eclipse.org/content/fred-rowe-committer-jakarta-nosql
https://projects.eclipse.org/content/gaurav-gupta-committer-jakarta-nosql
https://projects.eclipse.org/content/ivan-junckes-filho-committer-jakarta-nosql
https://projects.eclipse.org/content/jesse-gallagher-committer-jakarta-nosql
https://projects.eclipse.org/content/michael-redlich-committer-jakarta-nosql
https://projects.eclipse.org/content/nathan-rauh-committer-jakarta-nosql
https://projects.eclipse.org/content/otavio-santana-committer-jakarta-nosql
https://projects.eclipse.org/content/werner-keil-committer-jakarta-nosql
https://projects.eclipse.org/content/leonardo-lima-committer-jakarta-nosql
https://projects.eclipse.org/content/wayne-beaton-mentor-jakarta-nosql

1.4.6. Full List of Contributors

The complete list of Jakarta NoSQL contributors may be found here.

5

https://github.com/jakartaee/nosql/graphs/contributors

Chapter 2. Entity Classes

An entity represents the core concept of persistent data within a Jakarta NoSQL application. Conceptually, an entity

defines a schema for structured or semi-structured data stored in a NoSQL database.

Depending on the type of data store:

• The schema may be explicit, as in document-oriented or column-family databases.

• It may be implicit, as is common in key–value stores.

In Jakarta NoSQL, an entity is represented in Java by an entity class. This class defines the mapping between Java fields

and the attributes stored in the underlying database.

 When the context is clear, the term “entity” may refer either to the entity class or to an instance of that

class.

The data record represented by an entity is persistent: it continues to exist independently of the Java process that

accesses it. Each persistent instance is uniquely identified by an identifier and may be represented by one or more Java

instances of the same entity class.

In Jakarta NoSQL, the concrete definition of an entity may be understood to encompass the following aspects:

1. The entity class itself: An entity class is simple Java object equipped with fields or accessor methods designating

each property of the entity. An entity class is identified by an annotation.

2. Its data schema: Some data storage technologies require an explicit schema defining the structure and properties of

the data the entity represents.

2.1. Programming Model for Entity Classes

A programming model for entity classes specifies:

• a set of restrictions on the implementation of a Java class that allows it to be used as an entity class with a given

Jakarta NoSQL provider, and

• a set of annotations allowing the identification of a Java class as an entity class, and further specification of the

entity’s schema.

Jakarta NoSQL defines its programming model for entities explicitly. It relies on annotations provided by the

specification. Jakarta NoSQL’s programming model allows for seamless integration with custom annotations defined by

Jakarta NoSQL providers or extensions.

This approach ensures flexibility and interoperability, enabling developers to leverage Jakarta NoSQL’s standardized

annotations alongside provider-specific annotations for fine-tuning entity behavior and mapping. Additionally, Jakarta

NoSQL facilitates integration with other Jakarta EE specifications, fostering a cohesive Java-based NoSQL application

development ecosystem.

This section lays out the core requirements that an entity programming model must satisfy to be compatible with

Jakarta Data and for the defining provider to be considered a fully compliant implementation of this specification.

Every entity programming model specifies an entity-defining annotation, jakarta.nosql.Entity.

Furthermore, an entity programming model must define an annotation that identifies the field or property holding the

unique identifier of an entity, the Jakarta.nosql.Id.

Typically, an entity programming model specifies additional annotations used to make the entity schema explicit, for

6

example, jakarta.nosql.Id and jakarta.nosql.Column. The nature of such annotations is beyond the scope of this

specification.

In a given entity programming model, entity classes are always mutable, or immutable, or the model might support a

mix of mutable and immutable entity classes.

• A programming model that supports immutable entity classes may require that every mutable entity class declare a

constructor with no parameters and might limit this constructor’s visibility.

• A programming model that supports the use of immutable entity classes—ideally represented as Java record types—

would not typically require the existence of such a constructor.

In either case, an entity programming model might restrict the visibility of an entity class’s fields and property

accessors.

An entity programming model might support inheritance between entities and provide support for retrieving entities

in a polymorphic fashion. This specification does not require support for inheritance.

To ensure compatibility with Jakarta NoSQL, an entity programming model must adhere to the following constructor

rules:

• Constructors must be public or protected with no parameters or with parameters annotated with Jakarta.nosql.Column

or Jakarta.nosql.Id.

• Annotations at the constructor will build the entity and read information from the database, while field annotations

are required to write information to the database.

• If both a non-args constructor and a constructor with annotated parameters exist, the constructor with annotations

will be used to create the entity.

• Constructor parameters without annotations will be ignored, utilizing a non-arg constructor instead.

• Entities should not have multiple constructors using jakarta.nosql.Id or jakarta.nosql.Column annotations.

2.1.1. Persistent Fields

A field of an entity class may or may not represent state which is persistent in the datastore. A persistent field has some

corresponding representation in the data schema of the entity.

Every programming model for entity classes must support direct field access, that is, access to the persistent fields of an

entity class without triggering any intermediating user-written code such as JavaBeans-style property accessors.

A programming model might place constraints on the visibility of persistent fields.

Jakarta NoSQL distinguishes three kinds of persistent field within entity classes.

• A basic field holds a value belonging to some fundamental data type supported natively by the Jakarta NoSQL

Provider. Support for the set of basic types enumerated in the next section below is mandatory for all Jakarta NoSQL

providers.

• An embedded field allows the inclusion of the state of a finer-grained Java class within the state of an entity. The type

of an embedded field is often a user-written Java class. Support for embedded fields varies depending on the Jakarta

NoSQL provider and the database type.

• An association field implements an association between entity types. Support for association fields varies depending

on the Jakarta NoSQL provider and the database type.

Collection-valued persistent fields and properties must be defined in terms of one of the following collection-valued

interfaces, regardless of whether the entity class otherwise adheres to the JavaBeans method conventions noted below,

and of whether field or property access is used: java.util.Collection, java.util.Set, java.util.List, java.util.Map.

7

Use of the generic variants of these collection types is strongly encouraged, for example, Set<Order> is preferred to the

raw type Set.

 Terminology Note: The terms “collection” and “collection-valued” are used in this specification to

denote any of the above types, unless further qualified. In cases where a java.util.Collection type (or

one of its subtypes) is to be distinguished, the type is identified as such. The terms “map” and “map

collection” are used to denote to a collection of type java.util.Map.

2.1.2. Basic Types

Every Jakarta NoSQL provider must support the following basic types within its programming model:

Basic Data Type Description

Primitive types and wrapper classes All Java primitive types, such as int, double, boolean, etc., and

their corresponding wrapper types from java.lang (e.g.,

Integer, Double, Boolean).

java.lang.String Represents text data.

LocalDate, LocalDateTime, LocalTime, Instant from java.time Represent date and time-related data.

java.util.UUID Universally Unique IDentifier for identifying entities.

BigInteger and BigDecimal from java.math Represent large integer and decimal numbers.

byte[] Represents binary data.

User-defined enum types Custom enumerated types defined by user-written code.

For example, the following entity class has five basic fields:

@Entity
public class Person {
 @Id
 private UUID id;
 @Column
 private String name;
 @Column
 private long ssn;
 @Column
 private LocalDate birthdate;
 @Column
 private byte[] photo;
}

In addition to the types listed above, an entity programming model might support additional domain-specific basic

types. This extended set of basic types might include types with a nontrivial internal structure. An entity programming

model might even provide mechanisms to convert between user-written types and natively-supported basic types,

defined at the AttributeConverter interface.

 Many key-value, wide-column, and document databases feature native support for arrays or even

associative arrays of these basic types.

8

2.1.2.1. Enum Type

Enum types in Java represent a fixed set of constants. In Jakarta NoSQL, enums are considered basic types and are

commonly used to represent data with a limited number of predefined values. By default, enums are stored as strings

in the database, with the enum constant name being used as the stored value. The name() method of the enum class is

typically used to retrieve the name of the enum constant.

For example, consider the following enum representing the days of the week:

public enum DayOfWeek {
 MONDAY,
 TUESDAY,
 WEDNESDAY,
 THURSDAY,
 FRIDAY,
 SATURDAY,
 SUNDAY
}

When using an enum type in an entity class, it can be annotated with the @Column annotation to specify the storage

details. Here’s an entity class Meeting that includes an enum field representing the day of the week:

@Entity
public class Meeting {
 @Id
 private String id;

 @Column
 private DayOfWeek day;

 @Column
 private List<String> attendees;
}

In this example, the day field of the Meeting entity is of type DayOfWeek, an enum type representing the days of the week.

The @Column annotation indicates that this enum will be stored as a string in the database using the name() method to

retrieve the enum constant’s name.

The JSON representation of a Meeting entity might look like this:

{
 "id": "123456",
 "day": "MONDAY",
 "attendees": ["Alice", "Bob", "Charlie"]
}

2.1.3. Embedded Fields and Embeddable Classes

An embeddable class differs from an entity class in that:

• the embeddable class lacks its own persistent identity and

• the state of an instance of the embeddable class can only be stored in the database when the instance is referenced

directly or indirectly by a "parent" entity class instance.

An embedded field is a field whose type is an embeddable class.

Embeddable classes may have basic, embeddable, and association fields, but unlike entities, they do not have identifier

fields.

9

Like entities, a programming model for entity classes might support mutable embeddable classes, immutable

embeddable classes, or both.

Jakarta NoSQL defines an annotation identifying a user-written class as an embeddable class: jakarta.nosql.Embeddable.

There are two natural ways that a Jakarta NoSQL provider might store the state of an instance of an embedded class in

a database:

• by flattening the fields of the embeddable class into the data structure representing the parent entity or

• by grouping the fields of the embedded class into a fine-grained structured type (a User-defined type,UDT, for

example).

In a flattened representation of an embedded field, the fields of the embeddable class occur directly alongside the basic

fields of the entity class in the data schema of the entity. There is no representation of the embeddable class itself in the

data schema.

To ensure compatibility with Jakarta NoSQL, an embeddable class must adhere to the following constructor rules:

• Constructors must be public or protected with no parameters or parameters annotated with jakarta.nosql.Column.

• Annotations at the constructor will build the entity and read information from the database, while field annotations

are required to write information to the database.

• If both a non-args constructor and a constructor with annotated parameters exist, the constructor with annotations

will be used to create the entity.

• Constructor parameters without annotations will be ignored, utilizing a non-arg constructor instead.

• Embeddable classes should not have multiple constructors using jakarta.nosql.Column annotations.

For example, consider the following Java classes:

@Embeddable
public class Address {
 @Column
 private String street;
 @Column
 private String city;
 @Column
 private String postalCode;
}

@Entity
public class Person {
 @Id
 private Long id;
 @Column
 private String name;
 @Column
 private Address address; // flat embedded field
}

In a document, wide-column, or graph database, the JSON representation of an instance of the Person entity where the

Address class is flat might be:

{
 "id": 1,
 "name": "John Doe",
 "street": "123 Main St",
 "city": "Sampleville",
 "postalCode": "12345"
}

10

In a structured representation, when the embeddable field is grouping it will be together in the data schema.

@Embeddable(GROUPING)
public class Address {
 @Column
 private String street;
 @Column
 private String city;
 @Column
 private String postalCode;
}

In a document, wide-column, or graph database, the JSON representation of an instance of the Person entity where the

Address class is grouping might be:

{
 "id": 1,
 "name": "John Doe",
 "address":
 {
 "street": "123 Main St",
 "city": "Sampleville",
 "postalCode": "12345"
 }
}

When an embeddable class is used within an iterable field of an entity class, both embedding strategies, namely

flattening and grouping, will function as grouping. This means that the fields of the embeddable class will be grouped

together within the data schema, regardless of whether the embeddable class is marked for flattening or grouping.

For example, consider the following entity class Driver containing an iterable of Car instances:

@Entity
public class Driver {
 @Id
 private UUID id;
 @Column
 private String name;
 @Column
 private Iterable<Car> cars;
}

@Embeddable
public class Car {
 @Column
 private String plate;
 @Column
 private String category;
}

In this scenario, the Car embeddable class is used within the cars field, which is an iterable in the Driver entity class. As

a result, the embedding strategy will behave as grouping, regardless of whether the Car class is marked with the

@Embeddable(GROUPING) annotation.

The JSON representation of an instance of the Driver entity might appear as follows:

{
 "id": "123e4567-e89b-12d3-a456-426614174000",
 "name": "John Doe",
 "cars": [
 {
 "plate": "ABC123",

11

 "category": "Sedan"
 },
 {
 "plate": "XYZ789",
 "category": "SUV"
 }
]
}

In this JSON representation, the cars field contains an array of Car objects, each with its own plate and category fields.

This structure reflects the grouping embedding strategy, where the fields of the Car embeddable class are grouped

together within the Driver entity’s data schema.

Additionally, it’s important to note that support for embedding with a Map may vary by NoSQL database and Jakarta

NoSQL provider. Different providers may have different approaches or limitations regarding the embedding of data

structures such as maps with embeddable classes. Developers should consult the documentation of their chosen NoSQL

database and Jakarta NoSQL provider for specific details and considerations regarding map embedding.

 Support for grouping embeddable classes and embedded fields is not required by this specification.

However, every Jakarta NoSQL provider is strongly encouraged to support embeddable classes within

its entity programming model. Some databases might require the use of the udt attribute in the @Column

annotation for embedded fields.

2.1.4. Array Support

Jakarta NoSQL supports Map collections to model key-value associations within your entities. This is useful for

representing dynamic or grouped data without requiring fixed fields.

When using Map<K, V> in Jakarta NoSQL:

• Key (K) must be a Basic Types Supported types include: String, Integer, Long, UUID, etc.

• Value (V) can be:

• A Basic Types (e.g., String, Boolean)

• A class annotated with @Embeddable

• A class annotated with @Entity

Depending on the value type, Jakarta NoSQL behaves differently:

1. Basic Type Values: Stored directly as key-value pairs.

2. @Embeddable Values: Treated as grouped objects. Their fields are embedded directly within the parent entity.

3. @Entity Values: Also treated as grouped objects, serialized inline within the parent document. These are not treated

as separate references or persisted independently.

Support for map collections depends on the underlying NoSQL database and provider. Some backends may require

explicit support for nested/grouped structures. Always consult the provider documentation for advanced behavior.

Consider an entity class Library with an array of Book entities and an array of String tags.

@Entity
public class Library {
 @Id
 private Long id;

 @Column
 private Book[] books;

12

 @Column
 private String[] tags;
}

@Entity
public class Book {
 @Id
 private Long id;

 @Column
 private String title;
}

In this example, the array of Book entities will be treated as an embedded collection within the Library entity, using

grouping to represent the structure.

The JSON representation of an instance of the Library entity might be:

{
 "id": 1,
 "books": [
 {"id": 101, "title": "Java Programming"},
 {"id": 102, "title": "Introduction to NoSQL"}
],
 "tags": ["Programming", "NoSQL", "Java"]
}

2.1.5. Entity Associations

An association field is a field of an entity class whose declared type is also an entity class. Given an instance of the first

entity class, its association field references an instance of a second entity class.

For example, consider the following Java classes:

@Entity
public class Author {
 @Id
 private UUID id;
 @Column
 private String name;
 @Column
 private List<Book> books;
}

@Entity
public class Book {
 @Column
 private String title;
 @Column
 private String category;
}

For example, the JSON representation of Author might be:

{
 "id": "550e8400-e29b-41d4-a716-446655440000",
 "name": "John Smith",
 "books": [
 {
 "title": "Java Programming",
 "category": "Programming"
 },

13

 {
 "title": "Introduction to NoSQL",
 "category": "Database"
 }
]
}

In this scenario, the association between Author and Book is represented by the books field in the Author entity class. Since

NoSQL databases do not support joins, the association field behaves as a grouping embedded field defined at

Embedded Fields and Embeddable Classes . It means that the books field groups together instances of the Book entity

within the Author entity’s data schema.

 This specification does not require support for entity associations. Some databases might require the

use of the udt attribute in the @Column annotation for embedded fields.

2.1.6. Collections of Embeddable Classes and Basic Types

A persistent field or property of an entity or embeddable class may correspond to a collection of a basic type,

embeddable, or entity class.

No action is required beyond including the Column annotation for a collection of basic types.

@Entity
public class BucketList {
 @Id
 private Long id;
 @Column
 private String name;
 @Column
 private List<String> tasks;
}

{
 "id": 123,
 "name": "Personal Goals",
 "tasks": ["Travel the world", "Learn a new language", "Write a book"]
}

The entity class will behave as an embeddable grouping class. This support may vary among NoSQL providers and

might require a UDT name presentation in the case of embeddable or entity.

For key-value databases, the serialization will occur through a unique blob, a process outside the scope of the Jakarta

NoSQL specification.

@Entity
public class Company {
 @Id
 private String name;

 @Column(udt= "headquarter")
 private Set<Headquarter> headquarters;
}

@Entity
// It could be Embedded, and the behavior won't change
public class Headquarter {

 @Column
 private String city;

14

 @Column
 private String country;
}

{
 "name": "Acme Inc.",
 "headquarters": [
 {"city": "New York", "country": "USA"},
 {"city": "London", "country": "UK"}
]
}

Collections within entities can accommodate various types of data, including basic types and complex structures like

lists of strings. Jakarta NoSQL provides flexibility in handling such collections, ensuring seamless integration with the

underlying NoSQL database.

2.1.7. Map Collections

Jakarta NoSQL supports Map collections to model key-value associations within your entities. This is useful for

representing dynamic or grouped data without requiring fixed fields.

When using Map<K, V> in Jakarta NoSQL:

• Key (K) should be a Basic Types Supported types include: String, Integer, Long, UUID, etc.

• Value (V) can be:

• A Basic Types (e.g., String, Boolean)

• A class annotated with @Embeddable

• A class annotated with @Entity

Depending on the value type, Jakarta NoSQL behaves differently:

1. Basic Type Values: Stored directly as key-value pairs.

2. @Embeddable Values: Treated as grouped objects.

3. @Entity Values: Also treated as grouped objects.

Support for map collections depends on the underlying NoSQL database and provider. Some backends may require

explicit support for nested/grouped structures. Always consult the provider documentation for advanced behavior.

@Entity
public class Contact {
 @Id
 private String name;

 @Column
 private Map<String, String> socialMedia;
}

JSON representation:

{
 "name": "John Doe",
 "socialMedia": {
 "twitter": "@johndoe",
 "linkedin": "linkedin.com/in/johndoe"
 }
}

15

In the example above, the Contact entity includes a socialMedia field, represented as a Map where the key is a string

representing the social media platform, and the value is the corresponding username or profile link.

For instance, consider the following example:

@Entity
public class Computer {
 @Id
 private String name;

 @Column
 private Map<String, Program> programs;
}

@Embeddable
public class Program {
 @Column
 private String name;

 @Column
 private Map<String, String> socialMedia;
}

JSON representation:

{
 "name": "My Computer",
 "programs": {
 "browser": {
 "socialMedia": {
 "twitter": "@browseruser",
 "instagram": "@browseruser"
 }
 },
 "editor": {
 "socialMedia": {
 "github": "github.com/editoruser",
 "linkedin": "linkedin.com/in/editoruser"
 }
 }
 }
}

The Computer entity includes a programs field, a map where the keys represent program names, and the values are

instances of the Program embeddable class. Each Program instance contains its own socialMedia map, representing the

social media profiles associated with that program.

It’s important to note that support for map collections may vary depending on the NoSQL database and Jakarta NoSQL

provider used. Developers should consult the documentation of their chosen provider for specific details and

considerations regarding map collections.

2.1.8. Entity Property Names

Within an entity, property names must be unique ignoring case. For simple entity properties, the field or accessor

method name serves as the entity property name. In the case of embedded classes, entity property names are

computed by concatenating the field or accessor method names at each level, optionally joined by a delimiter.

16

Chapter 3. Annotations

Jakarta NoSQL introduces a comprehensive set of annotations tailored to streamline and simplify mapping Java entities

to NoSQL databases. These annotations offer:

• A standardized approach for defining entity classes, marked with @Entity, to establish the structural blueprint of

data entities within the NoSQL environment.

• Precise specification of primary keys using the @Id annotation, essential for uniquely identifying entities within the

database.

• Flexible mapping of entity properties to database fields through the @Column annotation, ensuring seamless

integration of Java objects with NoSQL data storage.

• Conversion of non-persistent object types to database-compatible formats facilitated by the @Convert annotation,

enhancing compatibility and data manipulation capabilities.

• Embedding of objects within entity structures enabled by the @Embeddable annotation, allowing for efficient storage of

complex data structures as part of owning entities.

• Abstraction of common properties and behaviors across multiple entity classes through the @MappedSuperclass

annotation, promoting code reusability and maintainability.

• Specifying inheritance strategies using the @Inheritance, @DiscriminatorValue, and @DiscriminatorColumn annotations

facilitates polymorphic data modeling within the NoSQL environment.

Jakarta NoSQL has support for those nine types:

1. @Entity

2. @Embeddable

3. @Id

4. @Column

5. @Convert

6. @MappedSuperclass

7. @Inheritance

8. @DiscriminatorColumn

9. @DiscriminatorValue

In the realm of Jakarta NoSQL, developers wield a powerful arsenal of annotations tailored to meet diverse data

modeling needs:

• @Entity: The @Entity annotation signifies that a Java class represents a persistent entity with a lifecycle managed by

the underlying data store. By annotating a class with @Entity, developers indicate that instances of this class are

subject to CRUD (Create, Read, Update, Delete) operations within the NoSQL database. This annotation not only

defines the entity’s structure but also denotes its existence beyond the scope of a single Java application instance. In

essence, the @Entity annotation encapsulates the notion of a domain object that persists beyond the lifetime of a Java

process, ensuring consistency and durability in data management.

• @Embeddable: The @Embeddable annotation is a Java feature that identifies a class that can be embedded within

another entity. It enables developers to create intricate data structures by combining reusable components. This

technique makes it possible to represent finer-grained attributes of an entity by using an embeddable class, which

encapsulates related data fields into a single logical unit. There are two types of embedding strategies that can be

used with this annotation: flattening and grouping. In the flattening strategy, the fields of the embeddable class are

directly added to the data schema of the parent entity. In contrast, in the grouping strategy, the fields are grouped

within a structured type.

• @Id: Central to the entity model is the @Id annotation, which designates a field as the primary key. This annotation

17

empowers developers to define the unique identifier for each entity, ensuring data integrity and facilitating efficient

data retrieval operations.

• @Column: The @Column annotation provides fine-grained control over mapping entity properties to database fields.

By annotating fields with @Column, developers customize the storage and retrieval of data, specifying attributes such

as column names, types, and constraints.

• @Convert: With the @Convert annotation, developers can seamlessly transform entity attribute values between Java

and database types. This annotation offers flexibility in data representation, allowing developers to adapt entity

properties to suit the requirements of different database systems.

• @MappedSuperclass: The @MappedSuperclass annotation is used to define shared attributes and behaviors across

multiple entity classes by denoting a superclass whose mappings are applied to its subclasses.

• @Inheritance: The @Inheritance annotation facilitates modeling inheritance hierarchies within entity classes. By

default, Jakarta NoSQL supports a single inheritance strategy where subclass information is incorporated into the

data structure as a field within the parent entity. In this default strategy, attributes of subclasses are represented as

fields within the parent entity, maintaining a denormalized data structure. However, Jakarta NoSQL allows Jakarta

Data providers to offer alternative inheritance strategies beyond the default specification.

• @DiscriminatorColumn: The @DiscriminatorColumn annotation configures the discriminator column used in single

table inheritance mappings. By annotating a field with @DiscriminatorColumn, developers control the storage of

discriminator values, ensuring accurate and efficient retrieval of entity subclasses.

• @DiscriminatorValue: When using inheritance strategies, the @DiscriminatorValue annotation specifies the

discriminator value for entities in a single table inheritance hierarchy. This annotation enables database systems to

differentiate between subclasses based on a discriminator column value.

In essence, Jakarta NoSQL annotations empower developers to craft sophisticated data models that seamlessly bridge

the gap between Java entities and NoSQL databases. With a rich array of annotations at their disposal, developers can

unlock the full potential of NoSQL technology, building scalable, efficient, and maintainable applications within the

Jakarta EE ecosystem.

3.1. @Entity

The @Entity annotation is the cornerstone for defining persistent entities within Jakarta NoSQL. By annotating a Java

class with @Entity, developers signify its role as a persistent entity, eligible for storage and retrieval in a NoSQL

database. This annotation encapsulates the lifecycle management of entities, facilitating seamless integration with

various NoSQL data stores.

It defines how a Java class is mapped to a NoSQL database structure, such as a collection, table, bucket, column family,

or edge — depending on the database type.

3.1.1. Entity Definition Reference

First, let’s establish a reference for entity definition, denoted by Entity Classes. In Jakarta NoSQL, an entity class is

typically annotated with @Entity to indicate its persistent nature.

@Entity
public class Person {

@Id
private UUID id;
@Column
private String name;
}

In this example, the Person class is defined as an entity with an id field annotated with @Id, which designates it as the

18

primary key, and a name field annotated with @Column, indicating it as a persistent attribute.

One of the notable features of Jakarta NoSQL is its support for immutable and mutable entity classes. For immutable

classes, Jakarta NoSQL provides compatibility with Java records, allowing developers to define compact and immutable

entity structures concisely.

@Entity
public record Person(@Id private UUID id, @Column private String name) {
}

In this sample, the Person class is defined as a record, capturing its immutable nature. The @Id and @Column annotations

are applied directly to the constructor parameters, indicating the primary key and persistent attributes.

The serialization method of entity classes may vary depending on the NoSQL vendor and configuration. Here’s a

sample JSON structure representing a Person entity:

{
 "id": "550e8400-e29b-41d4-a716-446655440000",
 "name": "John Doe"
}

This JSON structure captures the serialized representation of a Person entity with its id and name attributes. The specific

serialization method may differ based on the chosen NoSQL vendor and its corresponding serialization mechanisms.

3.1.2. Associating with Other Entities

One of the powerful features of Jakarta NoSQL is its ability to associate entities with each other, enabling the creation

of complex data structures. When an entity is related to another entity, it is incorporated as an embeddable group

within the parent entity, as defined by Embedded Fields and Embeddable Classes . Let’s consider an example where a

Person entity is associated with an Address entity:

@Entity
public class Person {

 @Id
 private Long id;

 @Column
 private String name;

 @Column
 private Address address;
}

@Entity
public class Address {

 @Column
 private String street;

 @Column
 private String city;
}

In this example, the Person entity includes a field address of type Address, indicating the association between the two

entities. The address field will be represented as a nested structure within the Person entity when serialized.

The serialization method of entity classes may vary depending on the NoSQL vendor. Here’s a sample JSON structure

representing a Person entity with an associated Address:

19

{
 "_id":10,
 "name":"Ada Lovelace",
 "address":{
 "city":"São Paulo",
 "street":"Av Nove de Julho"
 }
}

This JSON structure represents a serialized Person entity with id, name, and address attributes. The address field is a nested

structure that includes city and street attributes from the associated Address entity.

Entities can also be associated using collection types like Iterable, such as List or Set. Let’s consider an example where

an Owner entity is associated with multiple Car entities:

@Entity
public class Owner {
 @Id
 private String name;
 @Column
 private List<Car> cars;
}

@Entity
public class Car {
 @Column
 private String make;
 @Column
 private String model;
}

In this example, the Owner entity includes a field cars of type List<Car>, indicating an association between the two

entities. The cars field will hold a collection of Car entities associated with the Owner.

The serialization method of entity classes may vary depending on the NoSQL vendor. Here’s a sample JSON structure

representing an Owner entity with associated Car entities:

{
 "name": "marie Curie",
 "cars": [
 {
 "make": "Toyota",
 "model": "Camry"
 },
 {
 "make": "Honda",
 "model": "Accord"
 }
]
}

This JSON structure represents a serialized Owner entity with name and cars attributes. The cars field is an array

containing nested structures representing associated Car entities.

 It’s important to note that not all NoSQL databases support entity associations. Developers should

verify the compatibility of association features with their chosen database technology.

20

3.2. @Embeddable

The @Embeddable annotation in Jakarta NoSQL marks a class as embeddable, as defined by Embedded Fields and

Embeddable Classes . An embeddable class is a class whose instances are stored as an intrinsic part of an owning entity

and share the identity of the entity. Each of the persistent properties or fields of the embedded object is mapped to the

database table for the entity.

By default, the embedding strategy is FLAT, where the fields of the embedded class are directly mapped to columns in

the owning entity’s table.

In the example below:

@Embeddable
public class Address {
 @Column
 private String street;
 @Column
 private String city;
 @Column
 private String postalCode;
}

@Entity
public class Person {
 @Id
 private Long id;
 @Column
 private String name;
 @Column
 private Address address; // embedded field
}

Here’s the JSON sample for FLAT embedding:

{
 "id": 1,
 "name": "John Doe",
 "address_street": "123 Main St",
 "address_city": "Sampleville",
 "address_postalCode": "12345"
}

In addition to FLAT, the GROUPING embedding strategy is also available. In GROUPING embedding, the fields of the

embedded class are grouped together within a structured type in the owning entity’s table.

To specify GROUPING embedding, use @Embeddable(GROUPING).

Here’s the JSON sample for GROUPING embedding:

{
 "id": 1,
 "name": "John Doe",
 "address": {
 "street": "123 Main St",
 "city": "Sampleville",
 "postalCode": "12345"
 }
}

21

3.3. @Id

The @Id annotation in Jakarta NoSQL defines the unique identifier for entities within a database. For any entity, it is

mandatory to have a field annotated with @Id to identify each instance uniquely. According to the specification, the field

annotated with @Id must be of a basic type defined by Basic Types.

While the @Id annotation allows for a native name, it’s essential to note that some NoSQL databases have reserved

keywords for their keys. In such cases, if the native name conflicts with a database keyword, the database might ignore

it.

Jakarta NoSQL does not provide any strategy for autoincrement when the field annotated with @Id is not filled up. The

behavior varies with the NoSQL database. For instance, in a Key-Value NoSQL database, a null value for an ID will

generate a NullPointerException. In other NoSQL databases, it might vary from generating a value to returning an

exception error.

Let’s consider an example:

@Entity
public class User {

 @Id
 private String userName;

 @Column
 private String name;

 @Column
 private List<String> phones;
}

In this example, the User entity includes a field userName annotated with @Id, indicating that userName serves as the unique

identifier for instances of the User entity.

Here’s a generated JSON sample of this structure:

{
 "userName": "john_doe",
 "name": "John Doe",
 "phones": [
 "123456789",
 "987654321"
]
}

This JSON structure represents a serialized User entity with userName, name, and phones attributes. The userName field acts as

the unique identifier for the entity.

3.4. @Column

The @Column annotation in Jakarta NoSQL marks fields that should be mapped to database columns within an entity,

similar to the @Id annotation.

In the example below:

@Entity
public class Person {
 @Column
 private String nickname;

22

 @Column
 private String name;

 @Column
 private List<String> phones;

 // ignored for Jakarta NoSQL
 private String address;
}

In this example, the Person entity includes fields nickname, name, and phones annotated with @Column. These fields are

marked for persistence, indicating that they should be mapped to database columns.

It’s important to note that fields without the @Column annotation, such as address in the example, will be ignored for

Jakarta NoSQL mapping.

Here’s a generated JSON sample of this structure:

{
 "nickname": "john_doe",
 "name": "John Doe",
 "phones": [
 "123456789",
 "987654321"
]
}

This JSON structure represents a serialized Person entity with nickname, name, and phones attributes. The nickname, name, and

phones fields are mapped to corresponding database columns.

 When using the @Column annotation, it’s important to remember that Key-Value databases usually only

require the @Id annotation to identify unique entities. The Jakarta NoSQL provider will determine how

to serialize the object for storage, which can be combined with other annotations, such as Jakarta JSON

Binding, to customize the serialization process. This flexibility allows developers to adapt the

serialization process to the specific requirements of their database.

 If you use NoSQL databases that serialize information to JSON, A Jakarta NoSQL provider can integrate

them with Jakarta JSON Binding annotations. The Jakarta NoSQL provider will define the integration

process, ensuring a smooth and efficient serialization of data to the JSON format.

3.5. @Convert

The @Convert annotation is used in Jakarta NoSQL to declare that a specific field in an entity class requires conversion

using a specified converter. This annotation is useful for converting non-persistent object types to formats that are

compatible with the database, which expands data storage and manipulation capabilities.

When you use the @Convert annotation, you must provide a converter class as an argument, which specifies the type of

conversion to be performed. The converter class must implement the AttributeConverter interface and define methods

for converting the object type from and to its database representation.

For example, consider the following entity class Employee:

@Entity
public class Employee {

 @Column

23

 private String name;

 @Column
 private Job job;

 @Column("money")
 @Convert(MoneyConverter.class)
 private MonetaryAmount salary;
}

In this example, the Employee' entity’s' salary' field is annotated with `@Convert, specifying the MoneyConverter class as

the converter. The MoneyConverter class implements the AttributeConverter interface to convert MonetaryAmount objects to

and from their database representation.

Here’s a simplified implementation of the MoneyConverter class:

public class MoneyConverter implements AttributeConverter<MonetaryAmount, String> {

 @Override
 public String convertToDatabaseColumn(MonetaryAmount appValue) {
 return appValue.toString();
 }

 @Override
 public MonetaryAmount convertToEntityAttribute(String dbValue) {
 return MonetaryAmount.parse(dbValue);
 }
}

Additionally, let’s generate a JSON format for this code:

{
 "name": "John Doe",
 "job": "Software Engineer",
 "money": "USD 5000.00"
}

In this JSON representation, the money field is stored in a database-compatible format after conversion by the

MoneyConverter class, ensuring seamless integration with the NoSQL database.

3.6. Inheritance

In Jakarta NoSQL, entities support inheritance, enabling the creation of hierarchies of classes where subclasses inherit

attributes and behaviors from their superclass. This feature allows for the modeling of complex data structures and

relationships within NoSQL databases.

Entities in Jakarta NoSQL can be both abstract and concrete classes. Abstract classes can be annotated with the @Entity

annotation and mapped as entities, allowing them to participate in entity inheritance hierarchies and be queried for as

entities. Similarly, concrete classes can also be annotated with @Entity and serve as entities in the inheritance hierarchy.

It’s important to note that entities can extend both entity and non-entity classes. This flexibility allows for the

construction of diverse inheritance structures, accommodating various data modeling requirements.

Inheritance in Jakarta NoSQL facilitates polymorphic associations and queries, allowing for more flexible and

expressive data manipulation and retrieval operations. Subclasses inherit attributes and behaviors from their

superclass, providing a mechanism for code reuse and organizational structuring within the data model.

Overall, the support for inheritance in Jakarta NoSQL contributes to the creation of robust and adaptable data models,

24

empowering developers to effectively represent complex domain structures in NoSQL databases.

 Some NoSQL databases, particularly key-value databases, might not fully support inheritance due to

their schemaless nature and limited querying capabilities. Developers should carefully consider the

compatibility of their chosen database with inheritance features when designing their data models.

3.6.1. Abstract Entity Classes

In Jakarta NoSQL, an abstract class can be specified as an entity, providing a mechanism for defining common

attributes and behaviors that are shared among multiple concrete subclasses. An abstract entity class is annotated with

the @Entity annotation, indicating its role as a mapped entity within the data model.

Abstract entity classes in Jakarta NoSQL differ from concrete entities primarily in their inability to be directly

instantiated. Instead, abstract entities serve as templates or blueprints for concrete subclasses, encapsulating shared

functionality and defining a common interface for their subclasses to implement.

Despite being abstract, abstract entity classes are fully mapped as entities and can participate in data manipulation

operations such as queries. Queries targeting abstract entity classes will operate over and/or retrieve instances of their

concrete subclasses, allowing for polymorphic queries that span the entire inheritance hierarchy.

By leveraging abstract entity classes, developers can effectively organize and structure their data model, promoting

code reuse, maintainability, and scalability. Abstract entities encapsulate common attributes and behaviors, fostering a

modular and extensible design approach within Jakarta NoSQL applications.

3.6.2. @MappedSuperclass

The @MappedSuperclass annotation designates a class whose mapping information is applied to the entities that inherit

from it. Unlike regular entities, a mapped superclass does not imply the existence of a separate storage structure such

as tables in relational databases.

In NoSQL databases, where data is often stored in a schema-less or schema-flexible manner, the concept of inheritance

may not directly correspond to table inheritance as seen in relational databases. However, the @MappedSuperclass

annotation serves a similar purpose by allowing common mappings to be defined in a superclass and inherited by its

subclasses.

For example, consider a mapped superclass Animal:

@Entity
public class Dog extends Animal {

 @Column
 private String name;
}

@MappedSuperclass
public class Animal {

 @Column
 private String breed;

 @Column
 private Integer age;
}

In this example, the Animal class serves as a mapped superclass where common attributes like breed and age are defined.

Subclasses, such as Dog, can then inherit these mappings, enabling a consistent data model across entities while

25

accommodating the flexibility of NoSQL database structures.

Here’s a JSON sample demonstrating the usage of Animal in a subclass Dog:

{
 "breed": "Golden Retriever",
 "age": 3,
 "name": "Buddy"
}

In this JSON representation, the attributes breed and age from the Animal superclass are inherited by the Dog entity,

showcasing the application of mapped superclass mappings to its subclasses.

3.6.3. @Inheritance

The @Inheritance annotation in Jakarta NoSQL enables the use of inheritance strategies within the data model, allowing

for the creation of class hierarchies where subclasses inherit attributes and behaviors from their superclass. By

applying @Inheritance to the superclass, developers can define the inheritance strategy to be used for mapping the class

hierarchy to the underlying NoSQL database.

Consider the following example:

@Entity
@Inheritance
public abstract class Notification {
 @Id
 private Long id;

 @Column
 private String name;

 @Column
 private LocalDate createdOn;

 public abstract void send();
}

In Jakarta NoSQL, a unique strategy is employed where a single data structure per class hierarchy is utilized. In this

strategy, all classes in the hierarchy are mapped to a single data structure in the database. The structure includes a

"discriminator column," which serves to identify the specific subclass to which each instance belongs. This approach

facilitates polymorphic relationships between entities and enables queries that span the entire class hierarchy.

However, this strategy does have a drawback: it requires that fields corresponding to subclass-specific state be nullable.

Despite this limitation, the @Inheritance annotation provides a powerful mechanism for organizing and structuring data

within Jakarta NoSQL applications, supporting code reuse, maintainability, and flexibility in data modeling.

It’s important to note that the @Inheritance annotation works in conjunction with other annotations such as

@DiscriminatorValue and @DiscriminatorColumn, which further refine the inheritance mapping strategy and specify how

subclass instances are differentiated within the single data structure.

 It’s crucial to note that the @Inheritance annotation may not be fully supported in all NoSQL databases,

particularly in Key-value databases. Due to the schemaless nature of these databases, the concept of

class inheritance and table inheritance, as seen in traditional relational databases, may not apply.

Therefore, the use of @Inheritance in such environments might lead to unexpected behavior or errors,

and the Key-value database may outright ignore this annotation.

Additionally, in cases where serialization is performed via JSON, certain NoSQL databases may not

26

inherently support polymorphism and inheritance. However, Jakarta NoSQL providers may implement

solutions using features from Jakarta JSON Binding to handle polymorphic entities effectively.

Developers should be aware of these limitations and ensure compatibility with their chosen NoSQL

database and serialization mechanisms when employing the @Inheritance annotation.

3.6.4. @DiscriminatorColumn

The @DiscriminatorColumn annotation is utilized to specify the discriminator column for the inheritance mapping strategy

within an entity class hierarchy. This annotation is typically applied at the root of the hierarchy, although it can also be

used within subhierarchies if a different inheritance strategy is applied.

When using inheritance mapping, the discriminator column serves as a means to differentiate between different

subclasses of the entity. This column holds a value that identifies the specific subclass represented by each entity

instance in the database.

If the @DiscriminatorColumn annotation is not explicitly provided, and a discriminator column is required, the default

name for the column is typically "DTYPE" or "dtype", depending on the NoSQL provider. The discriminator type is set to

STRING.

It’s essential to note that the @DiscriminatorColumn annotation can be applied to both concrete and abstract entity classes.

This flexibility allows for precise control over the inheritance mapping strategy within the entity hierarchy.

Let’s illustrate the usage of the @DiscriminatorColumn annotation with an example:

@Entity
@Inheritance
@DiscriminatorColumn("type")
public abstract class Notification {
 @Id
 private Long id;

 @Column
 private String name;

 @Column
 private LocalDate createdOn;

 public abstract void send();
}

In this example, the Notification class is marked as abstract and serves as the root of an inheritance hierarchy. The

@DiscriminatorColumn("type") annotation specifies that the discriminator column for this hierarchy will be named "type".

This column will hold values indicating the specific subclass type for each entity instance.

3.6.5. @DiscriminatorValue

This annotation specifies the value of the discriminator column for entities of the given type.

The DiscriminatorValue annotation can only be specified on a concrete entity class. If the DiscriminatorValue

annotation is not specified, a provider-specific function will be used to generate a value representing the entity type. By

default, the discriminator value is derived from the Class.getSimpleName().

The inheritance strategy and the discriminator column are only specified in the root of an entity class hierarchy or

subhierarchy in which a different inheritance strategy is applied. The discriminator value, if not defaulted, should be

specified for each entity class in the hierarchy.

27

@Entity
@DiscriminatorValue("SMS")
public class SmsNotification extends Notification {

 @Column
 private String phoneNumber;

 @Override
 public void send() {
 System.out.println("Sending message to sms: " + phoneNumber);
 }
}

@Entity
@DiscriminatorValue("Email")
public class EmailNotification extends Notification {

 @Column
 private String emailAddress;

 @Override
 public void send() {
 System.out.println("Sending message to email: " + emailAddress);
 }
}

@Entity
// the discriminator value is SocialMediaNotification
public class SocialMediaNotification extends Notification {
 @Column
 private String username;

 @Override
 public void send() {
 System.out.println("Sending a post to: " + username);
 }
}

This JSON structure represents three different types of notifications: SMS, Email, and Social Media. Each notification

has a unique ID, a name, a creation date, and type-specific attributes such as phone number or username. The

discriminator value "type" indicates the specific subclass of the Notification entity.

[
 {
 "id": 1,
 "name": "Notification 1",
 "createdOn": "2024-02-14",
 "type": "SMS",
 "phoneNumber": "+1234567890"
 },
 {
 "id": 2,
 "name": "Notification 2",
 "createdOn": "2024-02-14",
 "type": "Email",
 "phoneNumber": "user@example.com"
 },
 {
 "id": 3,
 "name": "Notification 3",
 "createdOn": "2024-02-14",
 "type": "SocialMediaNotification",
 "username": "socialmedia_user"
 }

28

]

In case of querying an entity using the @Inheritance annotation as defined by @Inheritance, the Jakarta NoSQL provider

must automatically include the condition where the value from @DiscriminatorColumn equals the value of

@DiscriminatorValue.

For example, given the sample code from @Inheritance and executing the query for SmsNotification, the generated

query should include a condition such as type = 'SMS' or its equivalent in the respective NoSQL database.

29

Chapter 4. Template Classes

The DAO (Data Access Object) pattern in Jakarta NoSQL simplifies the implementation of common database operations

by providing a basic API to the underlying persistence engine. This pattern encapsulates the logic for interacting with

the database, promoting a clean separation between the application’s business logic and its data access code.

In the DAO pattern, each entity in the application typically has a corresponding DAO class responsible for handling

database operations related to that entity. These DAO classes abstract away the complexity of database interactions,

providing a simplified interface for performing CRUD (Create, Read, Update, Delete) operations.

Jakarta NoSQL’s DAO feature follows this pattern closely, offering a set of template classes that serve as the foundation

for implementing DAOs. These template classes provide pre-defined methods for common database operations, such as

saving, updating, querying, and deleting entities.

Developers can extend these template classes to create custom DAOs for their application entities. By doing so, they can

focus on implementing the specific logic required for their application, while the underlying Jakarta NoSQL framework

handles the low-level database interactions.

Overall, the DAO pattern in Jakarta NoSQL promotes modularity, reusability, and maintainability in application

development by abstracting away database access details. By adhering to this pattern, developers can create robust and

scalable applications with ease, without having to deal with the complexities of database interaction at the application

level.

The provided code snippet demonstrates the usage of the Template class in Jakarta NoSQL to perform basic CRUD

operations on entities in the database using the DAO pattern.

1. Create Book Entity: An instance of the Book entity is created using the builder pattern. This entity represents a book

with attributes such as title, author, publication year, and edition.

2. Insert Operation: The insert method of the Template class is invoked to insert the Book entity into the database. This

method takes the entity as a parameter and stores it in the underlying database.

3. Find Operation: The find method of the Template class is called to retrieve the Book entity from the database based on

its ID (id). This method returns an Optional object containing the retrieved entity, if it exists.

4. Print Result: The retrieved Book entity is printed to the console using System.out.println. If the entity exists in the

database, it will be printed; otherwise, the output will indicate that the entity was not found.

5. Delete Operation: Finally, the delete method of the Template class is used to delete the Book entity from the database

based on its ID. This method removes the entity from the database.

Overall, this code snippet demonstrates how to use the Template class in Jakarta NoSQL to interact with the database,

abstracting away the low-level details of database operations and providing a simplified interface for performing CRUD

operations on entities.

@Inject
Template template;

//1. Create Book Entity
Book book = Book.builder()
 .id(id)
 .title("Java Concurrency in Practice")
 .author("Brian Goetz")
 .year(Year.of(2006))
 .edition(1)
 .build();
//2. Insert Operation
template.insert(book);
//3. Find Operation
Optional<Book> optional = template.find(Book.class, id);

30

//4. Print Result
System.out.println("The result " + optional);
//5. Delete Operation
template.delete(Book.class, id);

The Template class in Jakarta NoSQL simplifies CRUD (Create, Read, Update, Delete) operations by providing a fluent API

for interacting with the underlying NoSQL database. This API allows developers to perform advanced queries and

deletion operations beyond the basic ID attribute.

@Inject
Template template;

List<Book> books = template.select(Book.class)
 .where("author")
 .eq("Joshua Bloch")
 .and("edition")
 .gt(3)
 .result();

template.delete(Book.class)
 .where("author")
 .eq("Joshua Bloch")
 .and("edition")
 .gt(3)
 .execute();

The fluent API feature for searching and removing entities provided by the Template class in Jakarta NoSQL offers

excellent flexibility and convenience for CRUD operations. However, it’s essential to note that this feature may only be

fully supported for some types of NoSQL databases, as the capabilities of the underlying database technology may limit

certain operations.

In cases where the underlying NoSQL database does not support advanced querying or deletion beyond the basic ID

attribute, attempting to use these features with the Template class will result in an UnsupportedOperationException being

thrown by Jakarta NoSQL. This exception indicates that the current database type does not support the requested

operation.

Some NoSQL databases may not support all filter operations, such as logical OR operations in the fluent API. In such

cases, attempting to use unsupported operations with the Template class will result in an UnsupportedOperationException

being thrown by Jakarta NoSQL. This exception indicates that the current Jakarta NoSQL provider does not support the

requested operation due to limitations imposed by the underlying NoSQL database technology.

Developers should be aware that while Jakarta NoSQL aims to provide a unified API across different NoSQL databases,

there may be variations in support for certain operations depending on the capabilities of the specific database

provider. When encountering limitations or unsupported operations, developers may need to adjust their application

logic or consider alternative approaches to achieve the desired functionality within the constraints of the chosen

NoSQL database technology.

4.1. Template and Inheritance classes

In case of querying an entity using the @Inheritance annotation as defined by @Inheritance, the Jakarta NoSQL provider

must automatically include the condition where the value from @DiscriminatorColumn equals the value of

@DiscriminatorValue.

For example, given the sample code from @Inheritance and executing the query for SmsNotification, the generated

query should include a condition such as type = 'SMS' or its equivalent in the respective NoSQL database.

31

List<SmsNotification> notifications = template.select(SmsNotification.class);

It ensures that only entities of type SmsNotification, as indicated by the discriminator value, are retrieved from the

database.

4.2. Fluent API Query

The Template class in Jakarta NoSQL provides a fluent API for querying and deleting entities from the underlying NoSQL

database. This fluent API offers a convenient and expressive way for Java developers to interact with their data,

allowing them to construct complex queries efficiently and perform deletion operations.

4.2.1. Importance of Fluent API Query

The fluent API query is essential for Java developers as it simplifies retrieving and manipulating data from the NoSQL

database. By providing a fluent interface, Jakarta NoSQL enables developers to express their query logic concisely and

readably, making it easier to understand and maintain the codebase.

The fluent API query also allows developers to build dynamic queries at runtime by chaining together various methods

and conditions. This flexibility enables applications to adapt to changing requirements and user inputs, providing a

more robust and responsive user experience.

Furthermore, the fluent API query promotes code reuse and modularity by encapsulating query logic within reusable

components. Developers can define and combine reusable query fragments to construct more complex queries,

reducing duplication and improving code maintainability.

4.2.2. Limitations in Key-Value Databases

It is worth noting that the select and delete methods of the Template class may not be fully compatible with key-value

databases. This limitation arises because key-value databases primarily rely on key-value pairs for data retrieval and

deletion rather than complex query predicates.

The primary data access mode in key-value databases is through direct lookup by key. It is challenging to support

complex query operations like those provided by the fluent API query. As a result, attempts to use the select and delete

methods with key-value databases may throw an UnsupportedOperationException by Jakarta NoSQL, indicating that the

underlying database technology does not support the operation.

4.2.3. Supported Methods in Other NoSQL Databases

The fluent API query offers a wide range of supported methods through the QueryMapper class for other types of NoSQL

databases, such as document-oriented or column-family databases. These methods may include filtering, sorting, and

basic querying capabilities, providing developers with flexible data retrieval and manipulation tools.

However, it’s essential to consider that the availability of certain query methods may vary depending on the specific

NoSQL database being used. NoSQL databases that do not support certain operations can raise

UnsupportedOperationException.

Attempting to use unsupported operations with the fluent API query may result in runtime exceptions or unexpected

behavior. Developers should consult the documentation of their chosen NoSQL database to understand its query

capabilities and limitations and adjust their application logic accordingly.

32

4.2.4. Query Navigation Hierarchy

In Jakarta NoSQL, the query navigation hierarchy refers to navigating through the properties of entities and their

associated classes when constructing queries. Within an entity, property names must be unique, ignoring cases. For

simple entity properties, the field or accessor method name serves as the entity property name. In the case of

embedded and association classes, entity property names are computed by concatenating the field or accessor method

names at each level, optionally joined by a dot or period, ., delimiter.

Within a given entity or embeddable class, names assigned to persistent fields must be unique, ignoring cases.

Furthermore, within the context of a given entity, each persistent field of an embeddable class reachable by navigation

from the entity class may be assigned a compound name. The compound name is obtained by concatenating the names

assigned to each field traversed by navigation from the entity class to the persistent field of the embedded class,

optionally joined by a delimiter.

For example, consider the following data model:

class Person {
 private Long id;
 private MailingAddress address;
}

class MailingAddress {
 private String zipcode;
 private String city;
}

In this scenario, querying for records based on the zip code of the MailingAddress class requires accessing the address

field of Person and the zipcode property of MailingAddress.

@Inject
Template template;

List<Book> books = template.select(Person.class)
 .where("address.zipcode")
 .eq("402-775")
 .orderBy("address.city")
 .asc()
 .result();

template.delete(Person.class)
 .where("address.zipcode")
 .eq("402-775")
 .execute();

In the above example, the fluent API query navigates through the properties of the Person entity to access the zipcode

property of the MailingAddress embedded class. The where clause specifies the path to the zipcode property using dot

notation (address.zipcode). The orderBy clause similarly specifies the path to the city property for sorting the results by

city in ascending order.

This query navigation hierarchy enables developers to construct complex queries traverse multiple levels of entity

properties, facilitating flexible and precise data retrieval and manipulation in Jakarta NoSQL.

4.3. TTL (Time-To-Live) Support

TTL (Time-To-Live) is a feature provided by many NoSQL databases that allows developers to set an expiration time for

data stored in the database. When data reaches its TTL, it is automatically removed from the database, freeing up

33

resources and ensuring that it remains efficient and clutter-free.

For Java developers, TTL support is essential for managing data lifecycle and optimizing resource usage. It enables

developers to implement caching strategies, manage temporary data, and enforce data retention policies effectively.

While TTL support is valuable, not all NoSQL databases provide native support for TTL. In cases where TTL is not

supported, attempting to set a TTL on data may result in an UnsupportedOperationException being thrown by the Jakarta

NoSQL provider.

Additionally, some NoSQL providers may have limitations on the granularity of TTL values, such as supporting only

TTL values specified in certain units (e.g., hours) or rounding TTL values to the nearest supported unit. In such cases,

attempting to set a TTL value that does not align with the provider’s limitations may result in unexpected behavior or

no TTL being applied.

For example, suppose a NoSQL database only supports TTL values specified in hours. If a developer attempts to set a

TTL of 10 seconds, the Jakarta NoSQL provider may throw an UnsupportedOperationException. Similarly, if the

developer attempts to set a TTL of 3660 seconds (which is more than one hour), the TTL value may be rounded to the

nearest supported unit (i.e., one hour) by the provider.

@Inject
Template template;

// UnsupportedOperationException: TTL granularity not supported
template.insert(entity, Duration.ofSeconds(10L));

// Inserting data with a TTL of one hour
template.insert(entity, Duration.ofSeconds(3600));

// Inserting data with a TTL of one hour (rounded from 3660 seconds)
template.insert(entity, Duration.ofSeconds(3660));

34

Chapter 5. Jakarta NoSQL Providers

A Jakarta NoSQL provider might come as an integrated component of a Jakarta EE container or a separate component

that integrates with the Jakarta EE container via standard or proprietary SPIs. For example, a Jakarta NoSQL provider

might use a CDI portable extension to integrate with dependency injection.

Jakarta NoSQL providers play a crucial role in the ecosystem by interpreting the annotations provided by developers

and implementing the corresponding Template interfaces. These providers handle operations related to entities

according to the rules outlined in the Jakarta NoSQL specification.

By adhering to these rules, Jakarta NoSQL providers ensure seamless integration with the application via dependency

injection. This integration allows developers to access the functionality provided by the Template interfaces without

concerning themselves with the underlying database implementation details.

The Jakarta NoSQL specification sets clear guidelines for Jakarta NoSQL providers, ensuring consistency and

compatibility across different providers. These rules enable multiple Jakarta Data providers to coexist within a system

without interfering or overlapping at the same injection points. This level of standardization fosters interoperability

and flexibility, empowering developers to choose the provider that best suits their project requirements.

5.1. Configuration and Credentials

Configuration and credentials for NoSQL databases are not standardized within the Jakarta NoSQL specification. Each

Jakarta NoSQL provider is responsible for providing its own configuration mechanism, allowing developers to

configure the connection to the NoSQL database according to their specific requirements.

The Jakarta NoSQL specification highly recommends following the Twelve-Factor App methodology, particularly the

"Store config in the environment" principle. This approach advocates for storing configuration details such as database

credentials, connection URLs, and other settings as environment variables. This practice promotes portability,

scalability, and security by separating configuration from code and ensuring consistency across different

environments.

5.2. Schema Generation

The process of creating a schema for a database is called schema generation. This process is not included in the Jakarta

NoSQL specification. While some NoSQL databases allow schema definition and enforcement, many NoSQL databases

are schemaless, which means developers can store data without defining a schema beforehand.

Therefore, the ability to generate a schema may differ depending on the NoSQL database and the Jakarta NoSQL

provider being used. Some Jakarta NoSQL providers offer schema generation capabilities, while others do not.

For developers working with schemaless NoSQL databases, schema generation may not be necessary. This is because

the database dynamically adapts to the structure of the data being stored. In such cases, the focus should be on

organizing data to suit the application’s requirements best, rather than defining a rigid schema.

In cases where schema generation is supported, developers should be aware that the process may vary between NoSQL

databases and Jakarta NoSQL providers. Different databases may have unique requirements or conventions for

defining schemas, and Jakarta NoSQL providers may offer different approaches or tools for schema generation.

Whether schema generation is necessary or beneficial depends on the specific use case, the NoSQL database being

used, and the development team’s preferences. Developers should consult the documentation of their chosen NoSQL

database and Jakarta NoSQL provider for guidance on schema generation practices and considerations.

35

5.3. Jakarta NoSQL Providers Extensions

Jakarta NoSQL providers and NoSQL databases have the flexibility to extend the API according to their specific

requirements. This extensibility allows providers to create new annotations or develop specialized versions of the

Template API tailored to their unique features or functionalities.

However, it’s essential to note that these extensions are specific to the respective provider or database and may not be

compatible with others. As a result, there is no guarantee of compatibility between extensions developed by different

Jakarta NoSQL providers or NoSQL databases.

Despite the lack of cross-compatibility, this extensibility empowers providers to effectively innovate and address

specific use cases or requirements. By leveraging extensions, developers can harness the full potential of Jakarta

NoSQL while benefiting from the diverse capabilities offered by different providers and databases.

5.4. Persistent Fields

A Jakarta NoSQL provider can read the annotation via runtime, for example, using reflection, or via build-time, for

example, Java Annotation Processor.

Jakarta NoSQL provider runtime accesses the persistent state of an entity via either:

• property access using style property accessors defined by the Jakarta NoSQL provider for its respective field or

• field access, that is, direct access to instance variables.

When property access is used, the Jakarta NoSQL provider must define the conversion; the recommendation is the

method signature convention for JavaBeans read/write properties, as determined by the JavaBeans Introspector class.

 The Column annotation should be at the field in both access types.

36

Chapter 6. Interoperability with other Jakarta EE Specifications

This section discusses Interoperability with related Jakarta EE specifications. When operating within a Jakarta EE

product, the availability of other Jakarta EE technologies depends on whether the Jakarta EE Core profile, Jakarta EE

Web profile, or Jakarta EE Platform is used.

6.1. Jakarta Contexts and Dependency Injection

Contexts and Dependency Injection (CDI) is a foundational specification within the Jakarta EE Core profile, offering a

robust dependency injection framework for Java applications. CDI facilitates the decoupling of components and

manages their lifecycle through dependency injection, promoting loose coupling and enabling the creation of modular,

reusable code.

CDI is crucial in integrating the Jakarta NoSQL template seamlessly into applications through the @Inject annotation in

Jakarta EE environments. This integration allows developers to inject instances of the Template class directly into their

application components, enabling straightforward access to its methods and functionalities.

With CDI and the @Inject annotation, developers can inject the Template instance and utilize its methods effortlessly, as

illustrated in the following example:

@Inject
Template template;

// ...

List<Car> cars = template.select(Car.class).where("type").eq(CarType.SPORT).result();

The Jakarta NoSQL provider should also provide CDI qualifiers to work with multiple NoSQL databases through CDI.

Developers can use these qualifiers to specify which database instance they want to inject, enabling flexibility and

compatibility with different NoSQL data stores. Jakarta NoSQL providers typically supply annotations like

@DatabaseQualifier to annotate the injection points.

For example:

@Inject
@DatabaseQualifier
Template template;

@Inject
@DatabaseQualifier("another")
Template anotherTemplate;

The template implementation bean must have:

• qualifier type @Default, and

• the template interface as a bean type.

Thus, the implementation is eligible for injection to unqualified injection points typed to the repository interface, as

defined by section 2.4 of the CDI specification, version 4.0.

 This specification does not restrict the scope of the template implementation bean.

6.1.1. CDI Extensions for Jakarta Data Providers

In environments where CDI Full or CDI Lite is available, Jakarta NoSQL providers can leverage CDI extensions to

37

enhance the integration and discovery of entities or implementations. While Jakarta NoSQL does not prescribe a

specific type of CDI extension, it does require Jakarta NoSQL providers to ensure that template implementations are

injected into appropriate injection points, typically interfaces, without additional qualifiers.

It’s important to note the distinction between CDI Full and CDI Lite: CDI Full, part of the Jakarta Web profile and

Jakarta Platform, includes support for jakarta.enterprise.inject.spi.Extension, whereas CDI Lite (Jakarta Core profile)

does not. However, both CDI Full and CDI Lite support

jakarta.enterprise.inject.build.compatible.spi.BuildCompatibleExtension.

To avoid conflicts between the BuildCompatibleExtension and portable Extension in CDI Full environments, Jakarta NoSQL

providers can utilize CDI’s @SkipIfPortableExtensionPresent annotation.

CDI provides a robust foundation for integrating Jakarta NoSQL repositories into Jakarta EE applications, offering

flexibility and extensibility to meet diverse requirements and use cases.

6.2. Jakarta Bean Validation

Integrating Jakarta Bean Validation into Jakarta NoSQL ensures data consistency within the Java layer by enforcing

validation rules and constraints on data objects. By applying validation rules, developers can maintain data integrity,

improve data quality, and enhance the reliability of their applications.

Jakarta Validation offers several advantages for Jakarta NoSQL applications:

1. It helps identify and prevent invalid or inconsistent data from being processed or persisted, reducing the risk of

data corruption.

2. Catching validation errors early in the Java layer allows developers to identify and resolve potential issues before

further processing or persistence occurs, leading to more robust and reliable applications.

3. Jakarta Validation supports declarative validation rules, simplifying the validation logic and promoting cleaner,

more maintainable code.

In Jakarta NoSQL, template implementations are subject to method validation as specified in the "Method and

constructor validation" section of the Jakarta Validation specification. This validation includes checking for constraints

on method parameters and results. Automatic validation using these constraints is done by delegating validation to the

Bean Validation implementation when inserting, updating, or deleting data through the methods.

Let’s consider an example demonstrating the usage of Jakarta Bean Validation annotations in the Student entity class:

@Entity
public class Student {

 @Id
 private String id;

 @Column
 @NotBlank
 private String name;

 @Positive
 @Min(18)
 @Column
 private int age;
}

In this example, the name field is annotated with @NotBlank, indicating that it must not be blank. The age field is annotated

with both @Positive and @Min(18), ensuring it is a positive integer greater than or equal to 18.

To execute validation before inserting data using Jakarta NoSQL templates, developers can simply invoke the insert

38

and update methods on the template instance:

@Inject
private Template template;
...
// Execute the validation before inserting the data.
template.insert(student);

6.3. Jakarta Data

Developers can seamlessly incorporate common data patterns, such as repositories, into their codebase by integrating

Jakarta NoSQL with Jakarta Data.

Jakarta NoSQL providers that support Jakarta Data typically scan interfaces marked with the

jakarta.data.repository.Repository annotation. This annotation serves as a marker for repositories, providing a

standardized way to define repository interfaces.

By embracing Jakarta Data, Jakarta NoSQL providers enable Java developers to use standardized data patterns and

techniques when defining entities and repositories. This compatibility ensures interoperability with other technologies

and frameworks, fostering a cohesive and streamlined development experience.

6.4. Jakarta Query

Jakarta Query is a specification that defines an object-oriented, portable, and extensible query language for

persistence technologies. It is designed to unify how queries are expressed across various persistence models —

including both traditional relational databases and NoSQL systems.

Jakarta NoSQL builds on top of Jakarta Query Core as a foundational requirement. This core language provides a

minimal but expressive set of constructs — such as filtering, ordering, selection, and updates — that serve as the base

for querying entities in a database-independent way.

Although the syntax is consistent across databases, actual query behavior may vary depending on the underlying

NoSQL provider. For instance:

• Some databases may impose implicit result limits.

• Others may rely on eventual consistency for query visibility.

• Certain functions or expressions may not be supported uniformly.

Jakarta NoSQL providers are responsible for translating Jakarta Query into the native query dialect of the target NoSQL

database, while handling mapping between query results and Java entities or projections. This delegation preserves

query portability while respecting the constraints and capabilities of each NoSQL engine.

By integrating Jakarta Query, Jakarta NoSQL enables expressive, declarative, and vendor-neutral queries — all while

embracing the diversity and flexibility of NoSQL databases.

6.4.1. Query Limitations in NoSQL Providers

While Jakarta NoSQL offers a unified query interface based on Jakarta Query Core, the actual query behavior and

supported operations may vary across NoSQL database types. These limitations reflect fundamental differences in how

each data model handles access, indexing, and consistency.

The following guidelines describe expected behaviors by NoSQL category:

39

6.4.1.1. Key-Value Databases

Key-Value stores provide the most limited query capabilities:

• Only equality (=) comparisons are typically supported, and only on the primary key (@jakarta.nosql.Id).

• Queries like FROM Entity WHERE id = :id are supported.

• DELETE operations follow the same constraints — only by @jakarta.nosql.Id.

• UPDATE operations are not supported.

• No filtering is allowed on other fields or attributes.

6.4.1.2. Wide-Column Databases

Wide-Column stores may offer slightly more flexibility:

• Equality (=) on @jakarta.nosql.Id is generally supported.

• Additional filtering on non-ID fields (e.g., >, <, IN) is optional and often requires secondary indexes, which may affect

performance.

• UPDATE and DELETE operations typically require the presence of @Id, following the same restrictions as SELECT.

• The degree of support for additional conditions is vendor-specific.

6.4.1.3. Document Databases

Document databases typically offer full query capabilities:

• Allow filtering across multiple fields, not just @Id.

• Support a broad set of operators such as =, >, <, IN, AND, OR, etc.

• SELECT operations may include ordering (ORDER BY) and pagination features.

• Full UPDATE and DELETE support.

• Suitable for expressive queries using Jakarta Query Core.

6.4.1.4. Graph Databases

Graph databases support advanced query patterns and filtering:

• Queries can target relationships, properties, and deep structures.

• Support for SELECT, UPDATE, and DELETE varies by provider.

• Often comparable in flexibility to document databases.

6.4.1.5. Other or Custom NoSQL Providers

If a NoSQL database does not fit into the categories above, it must support at minimum:

• SELECT and DELETE queries using equality (=) on @jakarta.nosql.Id.

Additional features — such as filtering, sorting, or update operations — are allowed if they respect Jakarta Query Core

semantics.

6.4.1.6. Function and Time Expression Limitations

Most NoSQL databases do not natively support scalar or time-based functions in their query engines. This includes

expressions such as:

40

• LENGTH(…), LOWER(…), UPPER(…), ABS(…)

• NOW(), CURRENT_DATE, YEAR(…), etc.

Since these are generally evaluated at the database level, behavior is not guaranteed and may vary by provider.

Unsupported operations may result in: UnsupportedOperationException.

6.4.2. Object Mapping Integration

Jakarta NoSQL integrates query execution with Jakarta Mapping metadata. This integration allows Jakarta Query Core

to resolve attribute names and types based on the annotated Java class structure.

Only classes explicitly annotated with @jakarta.nosql.Entity are eligible for use in queries. Fields or constructor

parameters must be annotated with either @jakarta.nosql.Id or @jakarta.nosql.Column to be considered queryable.

• Fields or parameters without these annotations are ignored during both query parsing and result mapping.

• This mapping model applies consistently to both traditional classes and Java record types.

To define the entity name used in queries, Jakarta NoSQL uses the following precedence:

• If @Entity(name = …) is specified, the name value is used in query strings.

• Otherwise, the unqualified simple class name is used by default.

For example:

@Entity(name = "UserProfile")
public class User {
 @Id
 private String id;

 @Column
 private String name;
}

You may then write a query like:

FROM UserProfile WHERE name = 'Ada'

41

	Jakarta NoSQL
	Table of Contents
	Copyright
	Eclipse Foundation Specification License - v1.1
	Disclaimers

	Chapter 1. Introduction
	1.1. Goal
	1.2. Non-Goals
	1.3. Conventions
	1.4. Jakarta NoSQL Project Team
	1.4.1. Project Lead
	1.4.2. Contributors
	1.4.3. Committers
	1.4.4. Historical Committer
	1.4.5. Mentor
	1.4.6. Full List of Contributors

	Chapter 2. Entity Classes
	2.1. Programming Model for Entity Classes
	2.1.1. Persistent Fields
	2.1.2. Basic Types
	2.1.3. Embedded Fields and Embeddable Classes
	2.1.4. Array Support
	2.1.5. Entity Associations
	2.1.6. Collections of Embeddable Classes and Basic Types
	2.1.7. Map Collections
	2.1.8. Entity Property Names

	Chapter 3. Annotations
	3.1. @Entity
	3.1.1. Entity Definition Reference
	3.1.2. Associating with Other Entities

	3.2. @Embeddable
	3.3. @Id
	3.4. @Column
	3.5. @Convert
	3.6. Inheritance
	3.6.1. Abstract Entity Classes
	3.6.2. @MappedSuperclass
	3.6.3. @Inheritance
	3.6.4. @DiscriminatorColumn
	3.6.5. @DiscriminatorValue

	Chapter 4. Template Classes
	4.1. Template and Inheritance classes
	4.2. Fluent API Query
	4.2.1. Importance of Fluent API Query
	4.2.2. Limitations in Key-Value Databases
	4.2.3. Supported Methods in Other NoSQL Databases
	4.2.4. Query Navigation Hierarchy

	4.3. TTL (Time-To-Live) Support

	Chapter 5. Jakarta NoSQL Providers
	5.1. Configuration and Credentials
	5.2. Schema Generation
	5.3. Jakarta NoSQL Providers Extensions
	5.4. Persistent Fields

	Chapter 6. Interoperability with other Jakarta EE Specifications
	6.1. Jakarta Contexts and Dependency Injection
	6.1.1. CDI Extensions for Jakarta Data Providers

	6.2. Jakarta Bean Validation
	6.3. Jakarta Data
	6.4. Jakarta Query
	6.4.1. Query Limitations in NoSQL Providers
	6.4.2. Object Mapping Integration

