
Jakarta NoSQL

1.0, March 10, 2025: Final

Table of Contents
Copyright . 2

Eclipse Foundation Specification License - v1.1 . 2

Disclaimers . 2

1. Introduction. 4

1.1. Goal . 4

1.2. Non-Goals . 5

1.3. Conventions . 5

1.4. Jakarta NoSQL Project Team . 5

1.4.1. Project Lead . 5

1.4.2. Contributors . 6

1.4.3. Committers . 6

1.4.4. Historical Committer . 6

1.4.5. Mentor . 6

1.4.6. Full List of Contributors . 6

2. Entity Classes . 7

2.1. Programming Model for Entity Classes . 7

2.1.1. Persistent Fields. 9

2.1.2. Basic Types . 9

2.1.3. Embedded Fields and Embeddable Classes . 11

2.1.4. Array Support . 15

2.1.5. Entity Associations . 15

2.1.6. Collections of Embeddable Classes and Basic Types . 17

2.1.7. Map Collections . 18

2.1.8. Entity Property Names . 20

3. Annotations . 21

3.1. @Entity . 22

3.1.1. Entity Definition Reference . 23

3.1.2. Associating with Other Entities . 24

3.2. @Embeddable . 26

3.3. @Id . 27

3.4. @Column . 28

3.5. @Convert . 29

3.6. Inheritance. 30

3.6.1. Abstract Entity Classes. 31

3.6.2. @MappedSuperclass . 31

3.6.3. @Inheritance . 32

3.6.4. @DiscriminatorColumn. 33

3.6.5. @DiscriminatorValue. 34

4. Template Classes. 37

4.1. Template and Inheritance classes . 39

4.2. Fluent API Query . 39

4.2.1. Importance of Fluent API Query . 39

4.2.2. Limitations in Key-Value Databases . 40

4.2.3. Supported Methods in Other NoSQL Databases . 40

4.2.4. Query Navigation Hierarchy . 40

4.3. TTL (Time-To-Live) Support . 41

5. Jakarta NoSQL Providers . 43

5.1. Configuration and Credentials . 43

5.2. Schema Generation . 43

5.3. Jakarta NoSQL Providers Extensions. 44

5.4. Persistent Fields . 44

6. Interoperability with other Jakarta EE Specifications . 45

6.1. Jakarta Contexts and Dependency Injection . 45

6.1.1. CDI Extensions for Jakarta Data Providers. 46

6.2. Jakarta Bean Validation. 46

6.3. Jakarta Data . 47

Specification: Jakarta NoSQL

Version: 1.0

Status: Final

Release: March 10, 2025

1

Copyright
Copyright (c) 2025 Eclipse Foundation.

Eclipse Foundation Specification License - v1.1
By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked or incorporated by reference, you (the licensee) agree that you have read,
understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation AISBL https://www.eclipse.org/legal/efsl.php "

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) 2025 Eclipse Foundation AISBL.This software or document includes material copied
from or derived from Jakarta NoSQL and <a href="https://jakarta.ee/specifications/nosql/.""
class="bare">https://jakarta.ee/specifications/nosql/."

Disclaimers
THIS DOCUMENT IS PROVIDED "AS IS," AND TO THE EXTENT PERMITTED BY APPLICABLE LAW
THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION AISBL MAKE NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT
THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

TO THE EXTENT PERMITTED BY APPLICABLE LAW THE COPYRIGHT HOLDERS AND THE ECLIPSE

2

https://www.eclipse.org/legal/efsl.php

FOUNDATION AISBL WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation AISBL may NOT be
used in advertising or publicity pertaining to this document or its contents without specific, written
prior permission. Title to copyright in this document will at all times remain with copyright
holders.

3

Chapter 1. Introduction
In the ever-evolving landscape of modern application development, NoSQL databases have
emerged as a vital component for handling vast amounts of unstructured data efficiently. Jakarta
NoSQL bridges the gap between Java applications and NoSQL databases by offering a
comprehensive set of APIs, annotations, and SPIs. These standardized tools empower developers to
seamlessly integrate their Java applications with various types of NoSQL databases, ensuring
flexibility and agility in database selection without compromising application logic.

At its core, Jakarta NoSQL aims to simplify the complexity associated with NoSQL database
integration, providing a unified approach for developers to interact with different database
systems. By abstracting away the intricacies of database-specific operations, such as data modeling,
querying, and transaction management, Jakarta NoSQL fosters a consistent development
experience across diverse NoSQL technologies. This abstraction layer not only streamlines
development efforts but also future-proofs applications against changes in underlying database
implementations, enabling smooth transitions between different NoSQL solutions as project
requirements evolve.

Furthermore, Jakarta NoSQL fosters a vibrant ecosystem by encouraging collaboration between
developers, database vendors, and the wider Java community. Its extensible architecture allows for
the seamless integration of custom database implementations, ensuring compatibility with both
established and emerging NoSQL technologies. With Jakarta NoSQL, developers can focus on
building robust, scalable applications while leveraging the strengths of NoSQL databases, confident
in the knowledge that their code remains portable, adaptable, and primed for future innovation.

1.1. Goal
The primary goal of Jakarta NoSQL is to streamline and enhance productivity in performing
everyday NoSQL operations within Java applications. In the ever-expanding landscape of data
management, NoSQL databases have emerged as powerful tools for handling diverse data
structures and massive volumes of information. Jakarta NoSQL aims to facilitate seamless
integration between Java applications and NoSQL databases, providing developers with a
standardized and efficient approach to interacting with these databases.

1. Increasing Productivity: Jakarta NoSQL is designed to simplify the process of working with
NoSQL databases, enabling developers to focus on application logic rather than the intricacies
of database management. By offering standardized APIs, annotations, and query languages,
Jakarta NoSQL reduces the learning curve associated with integrating and interacting with
various NoSQL database systems.

2. Rich Object Mapping: One of the core features of Jakarta NoSQL is its support for rich object
mapping. This feature allows developers to map Java objects directly to NoSQL database
structures, eliminating the need for complex data transformation code. By providing a seamless
mapping mechanism, Jakarta NoSQL enables developers to work with NoSQL databases using
familiar object-oriented paradigms, enhancing productivity and code readability.

3. Flexibility and Adaptability: Jakarta NoSQL is designed to be flexible and adaptable, capable
of working with a wide range of NoSQL database systems. Moreover, its extensible architecture
allows for the easy integration of new database types and behaviors through extensions. It

4

ensures that Jakarta NoSQL remains relevant and up-to-date in the face of evolving database
technologies and requirements.

1.2. Non-Goals
While Jakarta NoSQL aims to enhance productivity and simplify integration with NoSQL databases,
it is essential to clarify its non-goals:

1. ORM-like Features: Jakarta NoSQL does not aim to replicate all Object-Relational Mapping
(ORM) framework features. While it provides rich object mapping capabilities, it may offer a
different level of abstraction and functionality than traditional ORM frameworks for relational
databases.

2. Full Compatibility with Every NoSQL Database: Jakarta NoSQL aims to provide a
standardized approach for working with NoSQL databases. However, it may offer partial
compatibility with every NoSQL database on the market. Compatibility may vary based on the
database type and specific features supported by each database.

3. Replacing Database-specific Features: Jakarta NoSQL does not intend to remove all database-
specific features provided by individual NoSQL databases. While it offers a standard set of APIs
and annotations, developers may still need to leverage database-specific features directly for
certain advanced use cases.

1.3. Conventions
Throughout the Jakarta NoSQL specification, the terms "entity attribute" and "entity property" are
used interchangeably to refer to the fields or properties defined within an entity class.

When demonstrating output samples, JSON format is commonly used to represent data structures.
However, it’s important to note that this does not imply that a NoSQL database must serialize data
in JSON format. The JSON samples provided serve to demonstrate and exemplify the structure of
the data.

It’s crucial to understand that a Jakarta NoSQL provider and the underlying NoSQL database have
the flexibility to define the serialization process according to their requirements. This may involve
using user-defined types (UDTs), proprietary serialization formats, or other methods tailored to the
specific database technology used.

1.4. Jakarta NoSQL Project Team
This specification is being developed as part of Jakarta NoSQL project under the Jakarta EE
Specification Process. It is the result of the collaborative work of the project committers and various
contributors.

1.4.1. Project Lead

• Otavio Santana

5

https://projects.eclipse.org/content/otavio-santana-project-lead-jakarta-nosql

1.4.2. Contributors

• Ivar Grimstad

• Kevin Sutter

• Scott Stark

1.4.3. Committers

• Andres Galante

• Fred Rowe

• Gaurav Gupta

• Ivan Junckes Filho

• Jesse Gallagher

• Michael Redlich

• Nathan Rauh

• Otavio Santana

• Werner Keil

1.4.4. Historical Committer

• Leonardo Lima

1.4.5. Mentor

• Wayne Beaton

1.4.6. Full List of Contributors

The complete list of Jakarta NoSQL contributors may be found here.

6

https://projects.eclipse.org/user/8408
https://projects.eclipse.org/user/8180
https://projects.eclipse.org/user/10810
https://projects.eclipse.org/content/andres-galante-committer-jakarta-nosql
https://projects.eclipse.org/content/fred-rowe-committer-jakarta-nosql
https://projects.eclipse.org/content/gaurav-gupta-committer-jakarta-nosql
https://projects.eclipse.org/content/ivan-junckes-filho-committer-jakarta-nosql
https://projects.eclipse.org/content/jesse-gallagher-committer-jakarta-nosql
https://projects.eclipse.org/content/michael-redlich-committer-jakarta-nosql
https://projects.eclipse.org/content/nathan-rauh-committer-jakarta-nosql
https://projects.eclipse.org/content/otavio-santana-committer-jakarta-nosql
https://projects.eclipse.org/content/werner-keil-committer-jakarta-nosql
https://projects.eclipse.org/content/leonardo-lima-committer-jakarta-nosql
https://projects.eclipse.org/content/wayne-beaton-mentor-jakarta-nosql
https://github.com/jakartaee/nosql/graphs/contributors

Chapter 2. Entity Classes
The notion of an entity is the fundamental building block with which a data model may be
constructed. Abstractly, an entity (or entity type) is a schema for data.

• The schema may be as simple as a tuple of types or it might be structured, as in document data
stores.

• The schema might be explicit or it might be implicit, as is commonplace in key/value stores.

• Either way, we assume that the entity is represented in Java as a class, which we call the entity
class. [1]

When there’s no risk of confusion, we often use the word “entity” to mean the
entity class, or even an instance of the entity class.

Data represented by an entity is persistent, that is, the data itself outlives any Java process which
makes use of it. Thus, it is necessary to maintain an association between instances of Java entity
classes and state held in a data store.

• Each persistent instantiation of the schema is distinguishable by a unique identifier.

• Any persistent instantiation of the schema is representable by an instance of the entity class. In
a given Java program, multiple entity class instances might represent the same persistent
instance of the schema.

In Jakarta NoSQL, the concrete definition of an entity may be understood to encompass the
following aspects:

1. The entity class itself: An entity class is simple Java object equipped with fields or accessor
methods designating each property of the entity. An entity class is identified by an annotation.

2. Its data schema: Some data storage technologies require an explicit schema defining the
structure and properties of the data the entity represents.

2.1. Programming Model for Entity Classes
A programming model for entity classes specifies:

• a set of restrictions on the implementation of a Java class that allows it to be used as an entity
class with a given Jakarta NoSQL provider, and

• a set of annotations allowing the identification of a Java class as an entity class, and further
specification of the entity’s schema.

Jakarta NoSQL defines its programming model for entities explicitly. It relies on annotations
provided by the specification. Jakarta NoSQL’s programming model allows for seamless integration
with custom annotations defined by Jakarta NoSQL providers or extensions.

This approach ensures flexibility and interoperability, enabling developers to leverage Jakarta
NoSQL’s standardized annotations alongside provider-specific annotations for fine-tuning entity

7

behavior and mapping. Additionally, Jakarta NoSQL facilitates integration with other Jakarta EE
specifications, fostering a cohesive Java-based NoSQL application development ecosystem.

This section lays out the core requirements that an entity programming model must satisfy to be
compatible with Jakarta Data and for the defining provider to be considered a fully compliant
implementation of this specification.

Every entity programming model specifies an entity-defining annotation, jakarta.nosql.Entity.

Furthermore, an entity programming model must define an annotation that identifies the field or
property holding the unique identifier of an entity, the Jakarta.nosql.Id.

Typically, an entity programming model specifies additional annotations used to make the entity
schema explicit, for example, jakarta.nosql.Id and jakarta.nosql.Column. The nature of such
annotations is beyond the scope of this specification.

In a given entity programming model, entity classes are always mutable, or immutable, or the
model might support a mix of mutable and immutable entity classes.

• A programming model that supports immutable entity classes may require that every mutable
entity class declare a constructor with no parameters and might limit this constructor’s
visibility.

• A programming model that supports the use of immutable entity classes—ideally represented as
Java record types—would not typically require the existence of such a constructor.

In either case, an entity programming model might restrict the visibility of an entity class’s fields
and property accessors.

An entity programming model might support inheritance between entities and provide support for
retrieving entities in a polymorphic fashion. This specification does not require support for
inheritance.

To ensure compatibility with Jakarta NoSQL, an entity programming model must adhere to the
following constructor rules:

• Constructors must be public or protected with no parameters or with parameters annotated
with Jakarta.nosql.Column or Jakarta.nosql.Id.

• Annotations at the constructor will build the entity and read information from the database,
while field annotations are required to write information to the database.

• If both a non-args constructor and a constructor with annotated parameters exist, the
constructor with annotations will be used to create the entity.

• Constructor parameters without annotations will be ignored, utilizing a non-arg constructor
instead.

• Entities should not have multiple constructors using jakarta.nosql.Id or jakarta.nosql.Column
annotations.

8

2.1.1. Persistent Fields

A field of an entity class may or may not represent state which is persistent in the datastore. A
persistent field has some corresponding representation in the data schema of the entity.

Every programming model for entity classes must support direct field access, that is, access to the
persistent fields of an entity class without triggering any intermediating user-written code such as
JavaBeans-style property accessors.

A programming model might place constraints on the visibility of persistent fields.

Jakarta NoSQL distinguishes three kinds of persistent field within entity classes.

• A basic field holds a value belonging to some fundamental data type supported natively by the
Jakarta NoSQL Provider. Support for the set of basic types enumerated in the next section below
is mandatory for all Jakarta NoSQL providers.

• An embedded field allows the inclusion of the state of a finer-grained Java class within the state
of an entity. The type of an embedded field is often a user-written Java class. Support for
embedded fields varies depending on the Jakarta NoSQL provider and the database type.

• An association field implements an association between entity types. Support for association
fields varies depending on the Jakarta NoSQL provider and the database type.

2.1.2. Basic Types

Every Jakarta NoSQL provider must support the following basic types within its programming
model:

Basic Data Type Description

Primitive types and wrapper classes All Java primitive types, such as int, double,
boolean, etc., and their corresponding wrapper
types from java.lang (e.g., Integer, Double,
Boolean).

java.lang.String Represents text data.

LocalDate, LocalDateTime, LocalTime, Instant from
java.time

Represent date and time-related data.

java.util.UUID Universally Unique IDentifier for identifying
entities.

BigInteger and BigDecimal from java.math Represent large integer and decimal numbers.

byte[] Represents binary data.

User-defined enum types Custom enumerated types defined by user-
written code.

For example, the following entity class has five basic fields:

@Entity

9

public class Person {
 @Id
 private UUID id;
 @Column
 private String name;
 @Column
 private long ssn;
 @Column
 private LocalDate birthdate;
 @Column
 private byte[] photo;
}

In addition to the types listed above, an entity programming model might support additional
domain-specific basic types. This extended set of basic types might include types with a nontrivial
internal structure. An entity programming model might even provide mechanisms to convert
between user-written types and natively-supported basic types, defined at the AttributeConverter
interface.

Many key-value, wide-column, and document databases feature native support for
arrays or even associative arrays of these basic types.

2.1.2.1. Enum Type

Enum types in Java represent a fixed set of constants. In Jakarta NoSQL, enums are considered
basic types and are commonly used to represent data with a limited number of predefined values.
By default, enums are stored as strings in the database, with the enum constant name being used as
the stored value. The name() method of the enum class is typically used to retrieve the name of the
enum constant.

For example, consider the following enum representing the days of the week:

public enum DayOfWeek {
 MONDAY,
 TUESDAY,
 WEDNESDAY,
 THURSDAY,
 FRIDAY,
 SATURDAY,
 SUNDAY
}

When using an enum type in an entity class, it can be annotated with the @Column annotation to
specify the storage details. Here’s an entity class Meeting that includes an enum field representing
the day of the week:

@Entity
public class Meeting {

10

 @Id
 private String id;

 @Column
 private DayOfWeek day;

 @Column
 private List<String> attendees;
}

In this example, the day field of the Meeting entity is of type DayOfWeek, an enum type representing
the days of the week. The @Column annotation indicates that this enum will be stored as a string in
the database using the name() method to retrieve the enum constant’s name.

The JSON representation of a Meeting entity might look like this:

{
 "id": "123456",
 "day": "MONDAY",
 "attendees": ["Alice", "Bob", "Charlie"]
}

2.1.3. Embedded Fields and Embeddable Classes

An embeddable class differs from an entity class in that:

• the embeddable class lacks its own persistent identity and

• the state of an instance of the embeddable class can only be stored in the database when the
instance is referenced directly or indirectly by a "parent" entity class instance.

An embedded field is a field whose type is an embeddable class.

Embeddable classes may have basic, embeddable, and association fields, but unlike entities, they do
not have identifier fields.

Like entities, a programming model for entity classes might support mutable embeddable classes,
immutable embeddable classes, or both.

Jakarta NoSQL defines an annotation identifying a user-written class as an embeddable class:
jakarta.nosql.Embeddable.

There are two natural ways that a Jakarta NoSQL provider might store the state of an instance of an
embedded class in a database:

• by flattening the fields of the embeddable class into the data structure representing the parent
entity or

• by grouping the fields of the embedded class into a fine-grained structured type (a User-defined
type,UDT, for example).

11

In a flattened representation of an embedded field, the fields of the embeddable class occur directly
alongside the basic fields of the entity class in the data schema of the entity. There is no
representation of the embeddable class itself in the data schema.

To ensure compatibility with Jakarta NoSQL, an embeddable class must adhere to the following
constructor rules:

• Constructors must be public or protected with no parameters or parameters annotated with
jakarta.nosql.Column.

• Annotations at the constructor will build the entity and read information from the database,
while field annotations are required to write information to the database.

• If both a non-args constructor and a constructor with annotated parameters exist, the
constructor with annotations will be used to create the entity.

• Constructor parameters without annotations will be ignored, utilizing a non-arg constructor
instead.

• Embeddable classes should not have multiple constructors using jakarta.nosql.Column
annotations.

For example, consider the following Java classes:

@Embeddable
public class Address {
 @Column
 private String street;
 @Column
 private String city;
 @Column
 private String postalCode;
}

@Entity
public class Person {
 @Id
 private Long id;
 @Column
 private String name;
 @Column
 private Address address; // flat embedded field
}

In a document, wide-column, or graph database, the JSON representation of an instance of the
Person entity where the Address class is flat might be:

{
 "id": 1,
 "name": "John Doe",
 "street": "123 Main St",

12

 "city": "Sampleville",
 "postalCode": "12345"
}

In a structured representation, when the embeddable field is grouping it will be together in the
data schema.

@Embeddable(GROUPING)
public class Address {
 @Column
 private String street;
 @Column
 private String city;
 @Column
 private String postalCode;
}

In a document, wide-column, or graph database, the JSON representation of an instance of the
Person entity where the Address class is grouping might be:

{
 "id": 1,
 "name": "John Doe",
 "address":
 {
 "street": "123 Main St",
 "city": "Sampleville",
 "postalCode": "12345"
 }
}

When an embeddable class is used within an iterable field of an entity class, both embedding
strategies, namely flattening and grouping, will function as grouping. This means that the fields of
the embeddable class will be grouped together within the data schema, regardless of whether the
embeddable class is marked for flattening or grouping.

For example, consider the following entity class Driver containing an iterable of Car instances:

@Entity
public class Driver {
 @Id
 private UUID id;
 @Column
 private String name;
 @Column
 private Iterable<Car> cars;
}

13

@Embeddable
public class Car {
 @Column
 private String plate;
 @Column
 private String category;
}

In this scenario, the Car embeddable class is used within the cars field, which is an iterable in the
Driver entity class. As a result, the embedding strategy will behave as grouping, regardless of
whether the Car class is marked with the @Embeddable(GROUPING) annotation.

The JSON representation of an instance of the Driver entity might appear as follows:

{
 "id": "123e4567-e89b-12d3-a456-426614174000",
 "name": "John Doe",
 "cars": [
 {
 "plate": "ABC123",
 "category": "Sedan"
 },
 {
 "plate": "XYZ789",
 "category": "SUV"
 }
]
}

In this JSON representation, the cars field contains an array of Car objects, each with its own plate
and category fields. This structure reflects the grouping embedding strategy, where the fields of the
Car embeddable class are grouped together within the Driver entity’s data schema.

Additionally, it’s important to note that support for embedding with a Map may vary by NoSQL
database and Jakarta NoSQL provider. Different providers may have different approaches or
limitations regarding the embedding of data structures such as maps with embeddable classes.
Developers should consult the documentation of their chosen NoSQL database and Jakarta NoSQL
provider for specific details and considerations regarding map embedding.

Support for grouping embeddable classes and embedded fields is not required by
this specification. However, every Jakarta NoSQL provider is strongly encouraged
to support embeddable classes within its entity programming model. Some
databases might require the use of the udt attribute in the @Column annotation for
embedded fields.

14

2.1.4. Array Support

Jakarta NoSQL implementations MUST support binding Java arrays of the basic types, as referenced
in Basic Types, and arrays of entities and embedded classes.

Arrays of entities and embedded classes are supported and will function as embedded classes with
grouping.

Consider an entity class Library with an array of Book entities and an array of String tags.

@Entity
public class Library {
 @Id
 private Long id;

 @Column
 private Book[] books;

 @Column
 private String[] tags;
}

@Entity
public class Book {
 @Id
 private Long id;

 @Column
 private String title;
}

In this example, the array of Book entities will be treated as an embedded collection within the
Library entity, using grouping to represent the structure.

The JSON representation of an instance of the Library entity might be:

{
 "id": 1,
 "books": [
 {"id": 101, "title": "Java Programming"},
 {"id": 102, "title": "Introduction to NoSQL"}
],
 "tags": ["Programming", "NoSQL", "Java"]
}

2.1.5. Entity Associations

An association field is a field of an entity class whose declared type is also an entity class. Given an

15

instance of the first entity class, its association field references an instance of a second entity class.

For example, consider the following Java classes:

@Entity
public class Author {
 @Id
 private UUID id;
 @Column
 private String name;
 @Column
 private List<Book> books;
}

@Entity
public class Book {
 @Column
 private String title;
 @Column
 private String category;
}

For example, the JSON representation of Author might be:

{
 "id": "550e8400-e29b-41d4-a716-446655440000",
 "name": "John Smith",
 "books": [
 {
 "title": "Java Programming",
 "category": "Programming"
 },
 {
 "title": "Introduction to NoSQL",
 "category": "Database"
 }
]
}

In this scenario, the association between Author and Book is represented by the books field in the
Author entity class. Since NoSQL databases do not support joins, the association field behaves as a
grouping embedded field defined at Embedded Fields and Embeddable Classes . It means that the
books field groups together instances of the Book entity within the Author entity’s data schema.

This specification does not require support for entity associations. Some databases
might require the use of the udt attribute in the @Column annotation for
embedded fields.

16

2.1.6. Collections of Embeddable Classes and Basic Types

A persistent field or property of an entity or embeddable class may correspond to a collection of a
basic type, embeddable, or entity class.

No action is required beyond including the Column annotation for a collection of basic types.

@Entity
public class BucketList {
 @Id
 private Long id;
 @Column
 private String name;
 @Column
 private List<String> tasks;
}

{
 "id": 123,
 "name": "Personal Goals",
 "tasks": ["Travel the world", "Learn a new language", "Write a book"]
}

The entity class will behave as an embeddable grouping class. This support may vary among
NoSQL providers and might require a UDT name presentation in the case of embeddable or entity.

For key-value databases, the serialization will occur through a unique blob, a process outside the
scope of the Jakarta NoSQL specification.

@Entity
public class Company {
 @Id
 private String name;

 @Column(udt= "headquarter")
 private Set<Headquarter> headquarters;
}

@Entity
// It could be Embedded, and the behavior won't change
public class Headquarter {

 @Column
 private String city;

 @Column
 private String country;

17

}

{
 "name": "Acme Inc.",
 "headquarters": [
 {"city": "New York", "country": "USA"},
 {"city": "London", "country": "UK"}
]
}

Collections within entities can accommodate various types of data, including basic types and
complex structures like lists of strings. Jakarta NoSQL provides flexibility in handling such
collections, ensuring seamless integration with the underlying NoSQL database.

2.1.7. Map Collections

Java Map collections offer a convenient way to represent associations and key-value pairs within
entities in Jakarta NoSQL. Jakarta NoSQL handles map collections, allowing developers to manage
complex data structures efficiently.

@Entity
public class Contact {
 @Id
 private String name;

 @Column
 private Map<String, String> socialMedia;
}

JSON representation:

{
 "name": "John Doe",
 "socialMedia": {
 "twitter": "@johndoe",
 "linkedin": "linkedin.com/in/johndoe"
 }
}

In the example above, the Contact entity includes a socialMedia field, represented as a Map where the
key is a string representing the social media platform, and the value is the corresponding username
or profile link.

The behavior of map collections remains consistent regardless of whether the map values are basic
types, embeddable classes, or entity classes. However, for embeddable or entity classes used as map
values, the udt attribute may be required in the @Column annotation to specify the user-defined type.

18

For instance, consider the following example:

@Entity
public class Computer {
 @Id
 private String name;

 @Column
 private Map<String, Program> programs;
}

@Embedded
public class Program {
 @Id
 private String name;

 @Column
 private Map<String, String> socialMedia;
}

JSON representation:

{
 "name": "My Computer",
 "programs": {
 "browser": {
 "socialMedia": {
 "twitter": "@browseruser",
 "instagram": "@browseruser"
 }
 },
 "editor": {
 "socialMedia": {
 "github": "github.com/editoruser",
 "linkedin": "linkedin.com/in/editoruser"
 }
 }
 }
}

The Computer entity includes a programs field, a map where the keys represent program names, and
the values are instances of the Program embeddable class. Each Program instance contains its own
socialMedia map, representing the social media profiles associated with that program.

It’s important to note that support for map collections may vary depending on the NoSQL database
and Jakarta NoSQL provider used. Developers should consult the documentation of their chosen
provider for specific details and considerations regarding map collections.

19

2.1.8. Entity Property Names

Within an entity, property names must be unique ignoring case. For simple entity properties, the
field or accessor method name serves as the entity property name. In the case of embedded classes,
entity property names are computed by concatenating the field or accessor method names at each
level, optionally joined by a delimiter.

[1] We will not consider generic programs which work with entity data via detyped representations.

20

Chapter 3. Annotations
Jakarta NoSQL introduces a comprehensive set of annotations tailored to streamline and simplify
mapping Java entities to NoSQL databases. These annotations offer:

• A standardized approach for defining entity classes, marked with @Entity, to establish the
structural blueprint of data entities within the NoSQL environment.

• Precise specification of primary keys using the @Id annotation, essential for uniquely identifying
entities within the database.

• Flexible mapping of entity properties to database fields through the @Column annotation,
ensuring seamless integration of Java objects with NoSQL data storage.

• Conversion of non-persistent object types to database-compatible formats facilitated by the
@Convert annotation, enhancing compatibility and data manipulation capabilities.

• Embedding of objects within entity structures enabled by the @Embeddable annotation, allowing
for efficient storage of complex data structures as part of owning entities.

• Abstraction of common properties and behaviors across multiple entity classes through the
@MappedSuperclass annotation, promoting code reusability and maintainability.

• Specifying inheritance strategies using the @Inheritance, @DiscriminatorValue, and
@DiscriminatorColumn annotations facilitates polymorphic data modeling within the NoSQL
environment.

Jakarta NoSQL has support for those nine types:

1. @Entity

2. @Embeddable

3. @Id

4. @Column

5. @Convert

6. @MappedSuperclass

7. @Inheritance

8. @DiscriminatorColumn

9. @DiscriminatorValue

In the realm of Jakarta NoSQL, developers wield a powerful arsenal of annotations tailored to meet
diverse data modeling needs:

• @Entity: The @Entity annotation signifies that a Java class represents a persistent entity with a
lifecycle managed by the underlying data store. By annotating a class with @Entity, developers
indicate that instances of this class are subject to CRUD (Create, Read, Update, Delete) operations
within the NoSQL database. This annotation not only defines the entity’s structure but also
denotes its existence beyond the scope of a single Java application instance. In essence, the
@Entity annotation encapsulates the notion of a domain object that persists beyond the lifetime
of a Java process, ensuring consistency and durability in data management.

21

• @Embeddable: The @Embeddable annotation is a Java feature that identifies a class that can be
embedded within another entity. It enables developers to create intricate data structures by
combining reusable components. This technique makes it possible to represent finer-grained
attributes of an entity by using an embeddable class, which encapsulates related data fields into
a single logical unit. There are two types of embedding strategies that can be used with this
annotation: flattening and grouping. In the flattening strategy, the fields of the embeddable class
are directly added to the data schema of the parent entity. In contrast, in the grouping strategy,
the fields are grouped within a structured type.

• @Id: Central to the entity model is the @Id annotation, which designates a field as the primary
key. This annotation empowers developers to define the unique identifier for each entity,
ensuring data integrity and facilitating efficient data retrieval operations.

• @Column: The @Column annotation provides fine-grained control over mapping entity properties
to database fields. By annotating fields with @Column, developers customize the storage and
retrieval of data, specifying attributes such as column names, types, and constraints.

• @Convert: With the @Convert annotation, developers can seamlessly transform entity attribute
values between Java and database types. This annotation offers flexibility in data
representation, allowing developers to adapt entity properties to suit the requirements of
different database systems.

• @MappedSuperclass: The @MappedSuperclass annotation is used to define shared attributes and
behaviors across multiple entity classes by denoting a superclass whose mappings are applied
to its subclasses.

• @Inheritance: The @Inheritance annotation facilitates modeling inheritance hierarchies
within entity classes. By default, Jakarta NoSQL supports a single inheritance strategy where
subclass information is incorporated into the data structure as a field within the parent entity.
In this default strategy, attributes of subclasses are represented as fields within the parent
entity, maintaining a denormalized data structure. However, Jakarta NoSQL allows Jakarta Data
providers to offer alternative inheritance strategies beyond the default specification.

• @DiscriminatorColumn: The @DiscriminatorColumn annotation configures the discriminator
column used in single table inheritance mappings. By annotating a field with
@DiscriminatorColumn, developers control the storage of discriminator values, ensuring accurate
and efficient retrieval of entity subclasses.

• @DiscriminatorValue: When using inheritance strategies, the @DiscriminatorValue annotation
specifies the discriminator value for entities in a single table inheritance hierarchy. This
annotation enables database systems to differentiate between subclasses based on a
discriminator column value.

In essence, Jakarta NoSQL annotations empower developers to craft sophisticated data models that
seamlessly bridge the gap between Java entities and NoSQL databases. With a rich array of
annotations at their disposal, developers can unlock the full potential of NoSQL technology,
building scalable, efficient, and maintainable applications within the Jakarta EE ecosystem.

3.1. @Entity
The @Entity annotation is the cornerstone for defining persistent entities within Jakarta NoSQL. By
annotating a Java class with @Entity, developers signify its role as a persistent entity, eligible for

22

storage and retrieval in a NoSQL database. This annotation encapsulates the lifecycle management
of entities, facilitating seamless integration with various NoSQL data stores.

3.1.1. Entity Definition Reference

First, let’s establish a reference for entity definition, denoted by Entity Classes. In Jakarta NoSQL, an
entity class is typically annotated with @Entity to indicate its persistent nature.

@Entity
public class Person {

@Id
private UUID id;
@Column
private String name;
}

In this example, the Person class is defined as an entity with an id field annotated with @Id, which
designates it as the primary key, and a name field annotated with @Column, indicating it as a persistent
attribute.

One of the notable features of Jakarta NoSQL is its support for immutable and mutable entity
classes. For immutable classes, Jakarta NoSQL provides compatibility with Java records, allowing
developers to define compact and immutable entity structures concisely.

@Entity
public record Person(@Id private UUID id, @Column private String name) {
}

In this sample, the Person class is defined as a record, capturing its immutable nature. The @Id and
@Column annotations are applied directly to the constructor parameters, indicating the primary key
and persistent attributes.

The serialization method of entity classes may vary depending on the NoSQL vendor and
configuration. Here’s a sample JSON structure representing a Person entity:

{
 "id": "550e8400-e29b-41d4-a716-446655440000",
 "name": "John Doe"
}

This JSON structure captures the serialized representation of a Person entity with its id and name
attributes. The specific serialization method may differ based on the chosen NoSQL vendor and its
corresponding serialization mechanisms.

23

3.1.2. Associating with Other Entities

One of the powerful features of Jakarta NoSQL is its ability to associate entities with each other,
enabling the creation of complex data structures. When an entity is related to another entity, it is
incorporated as an embeddable group within the parent entity, as defined by Embedded Fields and
Embeddable Classes . Let’s consider an example where a Person entity is associated with an Address
entity:

@Entity
public class Person {

 @Id
 private Long id;

 @Column
 private String name;

 @Column
 private Address address;
}

@Entity
public class Address {

 @Column
 private String street;

 @Column
 private String city;
}

In this example, the Person entity includes a field address of type Address, indicating the association
between the two entities. The address field will be represented as a nested structure within the
Person entity when serialized.

The serialization method of entity classes may vary depending on the NoSQL vendor. Here’s a
sample JSON structure representing a Person entity with an associated Address:

{
 "_id":10,
 "name":"Ada Lovelace",
 "address":{
 "city":"São Paulo",
 "street":"Av Nove de Julho"
 }
}

This JSON structure represents a serialized Person entity with id, name, and address attributes. The

24

address field is a nested structure that includes city and street attributes from the associated
Address entity.

Entities can also be associated using collection types like Iterable, such as List or Set. Let’s consider
an example where an Owner entity is associated with multiple Car entities:

@Entity
public class Owner {
 @Id
 private String name;
 @Column
 private List<Car> cars;
}

@Entity
public class Car {
 @Column
 private String make;
 @Column
 private String model;
}

In this example, the Owner entity includes a field cars of type List<Car>, indicating an association
between the two entities. The cars field will hold a collection of Car entities associated with the
Owner.

The serialization method of entity classes may vary depending on the NoSQL vendor. Here’s a
sample JSON structure representing an Owner entity with associated Car entities:

{
 "name": "marie Curie",
 "cars": [
 {
 "make": "Toyota",
 "model": "Camry"
 },
 {
 "make": "Honda",
 "model": "Accord"
 }
]
}

This JSON structure represents a serialized Owner entity with name and cars attributes. The cars field
is an array containing nested structures representing associated Car entities.

It’s important to note that not all NoSQL databases support entity associations.
Developers should verify the compatibility of association features with their

25

chosen database technology.

3.2. @Embeddable
The @Embeddable annotation in Jakarta NoSQL marks a class as embeddable, as defined by
Embedded Fields and Embeddable Classes . An embeddable class is a class whose instances are
stored as an intrinsic part of an owning entity and share the identity of the entity. Each of the
persistent properties or fields of the embedded object is mapped to the database table for the entity.

By default, the embedding strategy is FLAT, where the fields of the embedded class are directly
mapped to columns in the owning entity’s table.

In the example below:

@Embeddable
public class Address {
 @Column
 private String street;
 @Column
 private String city;
 @Column
 private String postalCode;
}

@Entity
public class Person {
 @Id
 private Long id;
 @Column
 private String name;
 @Column
 private Address address; // embedded field
}

Here’s the JSON sample for FLAT embedding:

{
 "id": 1,
 "name": "John Doe",
 "address_street": "123 Main St",
 "address_city": "Sampleville",
 "address_postalCode": "12345"
}

In addition to FLAT, the GROUPING embedding strategy is also available. In GROUPING
embedding, the fields of the embedded class are grouped together within a structured type in the
owning entity’s table.

26

To specify GROUPING embedding, use @Embeddable(GROUPING).

Here’s the JSON sample for GROUPING embedding:

{
 "id": 1,
 "name": "John Doe",
 "address": {
 "street": "123 Main St",
 "city": "Sampleville",
 "postalCode": "12345"
 }
}

3.3. @Id
The @Id annotation in Jakarta NoSQL defines the unique identifier for entities within a database.
For any entity, it is mandatory to have a field annotated with @Id to identify each instance uniquely.
According to the specification, the field annotated with @Id must be of a basic type defined by Basic
Types.

While the @Id annotation allows for a native name, it’s essential to note that some NoSQL databases
have reserved keywords for their keys. In such cases, if the native name conflicts with a database
keyword, the database might ignore it.

Jakarta NoSQL does not provide any strategy for autoincrement when the field annotated with @Id
is not filled up. The behavior varies with the NoSQL database. For instance, in a Key-Value NoSQL
database, a null value for an ID will generate a NullPointerException. In other NoSQL databases, it
might vary from generating a value to returning an exception error.

Let’s consider an example:

@Entity
public class User {

 @Id
 private String userName;

 @Column
 private String name;

 @Column
 private List<String> phones;
}

In this example, the User entity includes a field userName annotated with @Id, indicating that userName
serves as the unique identifier for instances of the User entity.

27

Here’s a generated JSON sample of this structure:

{
 "userName": "john_doe",
 "name": "John Doe",
 "phones": [
 "123456789",
 "987654321"
]
}

This JSON structure represents a serialized User entity with userName, name, and phones attributes.
The userName field acts as the unique identifier for the entity.

3.4. @Column
The @Column annotation in Jakarta NoSQL marks fields that should be mapped to database columns
within an entity, similar to the @Id annotation.

In the example below:

@Entity
public class Person {
 @Column
 private String nickname;

 @Column
 private String name;

 @Column
 private List<String> phones;

 // ignored for Jakarta NoSQL
 private String address;
}

In this example, the Person entity includes fields nickname, name, and phones annotated with @Column.
These fields are marked for persistence, indicating that they should be mapped to database
columns.

It’s important to note that fields without the @Column annotation, such as address in the example,
will be ignored for Jakarta NoSQL mapping.

Here’s a generated JSON sample of this structure:

{
 "nickname": "john_doe",

28

 "name": "John Doe",
 "phones": [
 "123456789",
 "987654321"
]
}

This JSON structure represents a serialized Person entity with nickname, name, and phones attributes.
The nickname, name, and phones fields are mapped to corresponding database columns.

When using the @Column annotation, it’s important to remember that Key-Value
databases usually only require the @Id annotation to identify unique entities. The
Jakarta NoSQL provider will determine how to serialize the object for storage,
which can be combined with other annotations, such as Jakarta JSON Binding, to
customize the serialization process. This flexibility allows developers to adapt the
serialization process to the specific requirements of their database.

If you use NoSQL databases that serialize information to JSON, A Jakarta NoSQL
provider can integrate them with Jakarta JSON Binding annotations. The Jakarta
NoSQL provider will define the integration process, ensuring a smooth and
efficient serialization of data to the JSON format.

3.5. @Convert
The @Convert annotation is used in Jakarta NoSQL to declare that a specific field in an entity class
requires conversion using a specified converter. This annotation is useful for converting non-
persistent object types to formats that are compatible with the database, which expands data
storage and manipulation capabilities.

When you use the @Convert annotation, you must provide a converter class as an argument, which
specifies the type of conversion to be performed. The converter class must implement the
AttributeConverter interface and define methods for converting the object type from and to its
database representation.

For example, consider the following entity class Employee:

@Entity
public class Employee {

 @Column
 private String name;

 @Column
 private Job job;

 @Column("money")
 @Convert(MoneyConverter.class)
 private MonetaryAmount salary;

29

}

In this example, the Employee' entity’s' salary' field is annotated with `@Convert, specifying the
MoneyConverter class as the converter. The MoneyConverter class implements the AttributeConverter
interface to convert MonetaryAmount objects to and from their database representation.

Here’s a simplified implementation of the MoneyConverter class:

public class MoneyConverter implements AttributeConverter<MonetaryAmount, String> {

 @Override
 public String convertToDatabaseColumn(MonetaryAmount appValue) {
 return appValue.toString();
 }

 @Override
 public MonetaryAmount convertToEntityAttribute(String dbValue) {
 return MonetaryAmount.parse(dbValue);
 }
}

Additionally, let’s generate a JSON format for this code:

{
 "name": "John Doe",
 "job": "Software Engineer",
 "money": "USD 5000.00"
}

In this JSON representation, the money field is stored in a database-compatible format after
conversion by the MoneyConverter class, ensuring seamless integration with the NoSQL database.

3.6. Inheritance
In Jakarta NoSQL, entities support inheritance, enabling the creation of hierarchies of classes
where subclasses inherit attributes and behaviors from their superclass. This feature allows for the
modeling of complex data structures and relationships within NoSQL databases.

Entities in Jakarta NoSQL can be both abstract and concrete classes. Abstract classes can be
annotated with the @Entity annotation and mapped as entities, allowing them to participate in
entity inheritance hierarchies and be queried for as entities. Similarly, concrete classes can also be
annotated with @Entity and serve as entities in the inheritance hierarchy.

It’s important to note that entities can extend both entity and non-entity classes. This flexibility
allows for the construction of diverse inheritance structures, accommodating various data
modeling requirements.

30

Inheritance in Jakarta NoSQL facilitates polymorphic associations and queries, allowing for more
flexible and expressive data manipulation and retrieval operations. Subclasses inherit attributes
and behaviors from their superclass, providing a mechanism for code reuse and organizational
structuring within the data model.

Overall, the support for inheritance in Jakarta NoSQL contributes to the creation of robust and
adaptable data models, empowering developers to effectively represent complex domain structures
in NoSQL databases.

Some NoSQL databases, particularly key-value databases, might not fully support
inheritance due to their schemaless nature and limited querying capabilities.
Developers should carefully consider the compatibility of their chosen database
with inheritance features when designing their data models.

3.6.1. Abstract Entity Classes

In Jakarta NoSQL, an abstract class can be specified as an entity, providing a mechanism for
defining common attributes and behaviors that are shared among multiple concrete subclasses. An
abstract entity class is annotated with the @Entity annotation, indicating its role as a mapped entity
within the data model.

Abstract entity classes in Jakarta NoSQL differ from concrete entities primarily in their inability to
be directly instantiated. Instead, abstract entities serve as templates or blueprints for concrete
subclasses, encapsulating shared functionality and defining a common interface for their
subclasses to implement.

Despite being abstract, abstract entity classes are fully mapped as entities and can participate in
data manipulation operations such as queries. Queries targeting abstract entity classes will operate
over and/or retrieve instances of their concrete subclasses, allowing for polymorphic queries that
span the entire inheritance hierarchy.

By leveraging abstract entity classes, developers can effectively organize and structure their data
model, promoting code reuse, maintainability, and scalability. Abstract entities encapsulate
common attributes and behaviors, fostering a modular and extensible design approach within
Jakarta NoSQL applications.

3.6.2. @MappedSuperclass

The @MappedSuperclass annotation designates a class whose mapping information is applied to the
entities that inherit from it. Unlike regular entities, a mapped superclass does not imply the
existence of a separate storage structure such as tables in relational databases.

In NoSQL databases, where data is often stored in a schema-less or schema-flexible manner, the
concept of inheritance may not directly correspond to table inheritance as seen in relational
databases. However, the @MappedSuperclass annotation serves a similar purpose by allowing
common mappings to be defined in a superclass and inherited by its subclasses.

For example, consider a mapped superclass Animal:

31

@Entity
public class Dog extends Animal {

 @Column
 private String name;
}

@MappedSuperclass
public class Animal {

 @Column
 private String breed;

 @Column
 private Integer age;
}

In this example, the Animal class serves as a mapped superclass where common attributes like breed
and age are defined. Subclasses, such as Dog, can then inherit these mappings, enabling a consistent
data model across entities while accommodating the flexibility of NoSQL database structures.

Here’s a JSON sample demonstrating the usage of Animal in a subclass Dog:

{
 "breed": "Golden Retriever",
 "age": 3,
 "name": "Buddy"
}

In this JSON representation, the attributes breed and age from the Animal superclass are inherited by
the Dog entity, showcasing the application of mapped superclass mappings to its subclasses.

3.6.3. @Inheritance

The @Inheritance annotation in Jakarta NoSQL enables the use of inheritance strategies within the
data model, allowing for the creation of class hierarchies where subclasses inherit attributes and
behaviors from their superclass. By applying @Inheritance to the superclass, developers can define
the inheritance strategy to be used for mapping the class hierarchy to the underlying NoSQL
database.

Consider the following example:

@Entity
@Inheritance
public abstract class Notification {
 @Id
 private Long id;

32

 @Column
 private String name;

 @Column
 private LocalDate createdOn;

 public abstract void send();
}

In Jakarta NoSQL, a unique strategy is employed where a single data structure per class hierarchy is
utilized. In this strategy, all classes in the hierarchy are mapped to a single data structure in the
database. The structure includes a "discriminator column," which serves to identify the specific
subclass to which each instance belongs. This approach facilitates polymorphic relationships
between entities and enables queries that span the entire class hierarchy.

However, this strategy does have a drawback: it requires that fields corresponding to subclass-
specific state be nullable. Despite this limitation, the @Inheritance annotation provides a powerful
mechanism for organizing and structuring data within Jakarta NoSQL applications, supporting
code reuse, maintainability, and flexibility in data modeling.

It’s important to note that the @Inheritance annotation works in conjunction with other annotations
such as @DiscriminatorValue and @DiscriminatorColumn, which further refine the inheritance
mapping strategy and specify how subclass instances are differentiated within the single data
structure.

It’s crucial to note that the @Inheritance annotation may not be fully supported in
all NoSQL databases, particularly in Key-value databases. Due to the schemaless
nature of these databases, the concept of class inheritance and table inheritance,
as seen in traditional relational databases, may not apply. Therefore, the use of
@Inheritance in such environments might lead to unexpected behavior or errors,
and the Key-value database may outright ignore this annotation.

Additionally, in cases where serialization is performed via JSON, certain NoSQL
databases may not inherently support polymorphism and inheritance. However,
Jakarta NoSQL providers may implement solutions using features from Jakarta
JSON Binding to handle polymorphic entities effectively. Developers should be
aware of these limitations and ensure compatibility with their chosen NoSQL
database and serialization mechanisms when employing the @Inheritance
annotation.

3.6.4. @DiscriminatorColumn

The @DiscriminatorColumn annotation is utilized to specify the discriminator column for the
inheritance mapping strategy within an entity class hierarchy. This annotation is typically applied
at the root of the hierarchy, although it can also be used within subhierarchies if a different
inheritance strategy is applied.

When using inheritance mapping, the discriminator column serves as a means to differentiate

33

between different subclasses of the entity. This column holds a value that identifies the specific
subclass represented by each entity instance in the database.

If the @DiscriminatorColumn annotation is not explicitly provided, and a discriminator column is
required, the default name for the column is typically "DTYPE" or "dtype", depending on the NoSQL
provider. The discriminator type is set to STRING.

It’s essential to note that the @DiscriminatorColumn annotation can be applied to both concrete and
abstract entity classes. This flexibility allows for precise control over the inheritance mapping
strategy within the entity hierarchy.

Let’s illustrate the usage of the @DiscriminatorColumn annotation with an example:

@Entity
@Inheritance
@DiscriminatorColumn("type")
public abstract class Notification {
 @Id
 private Long id;

 @Column
 private String name;

 @Column
 private LocalDate createdOn;

 public abstract void send();
}

In this example, the Notification class is marked as abstract and serves as the root of an
inheritance hierarchy. The @DiscriminatorColumn("type") annotation specifies that the discriminator
column for this hierarchy will be named "type". This column will hold values indicating the specific
subclass type for each entity instance.

3.6.5. @DiscriminatorValue

This annotation specifies the value of the discriminator column for entities of the given type.

The DiscriminatorValue annotation can only be specified on a concrete entity class. If the
DiscriminatorValue annotation is not specified, a provider-specific function will be used to generate
a value representing the entity type. By default, the discriminator value is derived from the
Class.getSimpleName().

The inheritance strategy and the discriminator column are only specified in the root of an entity
class hierarchy or subhierarchy in which a different inheritance strategy is applied. The
discriminator value, if not defaulted, should be specified for each entity class in the hierarchy.

@Entity
@DiscriminatorValue("SMS")

34

public class SmsNotification extends Notification {

 @Column
 private String phoneNumber;

 @Override
 public void send() {
 System.out.println("Sending message to sms: " + phoneNumber);
 }
}

@Entity
@DiscriminatorValue("Email")
public class EmailNotification extends Notification {

 @Column
 private String emailAddress;

 @Override
 public void send() {
 System.out.println("Sending message to email: " + emailAddress);
 }
}

@Entity
// the discriminator value is SocialMediaNotification
public class SocialMediaNotification extends Notification {
 @Column
 private String username;

 @Override
 public void send() {
 System.out.println("Sending a post to: " + username);
 }
}

This JSON structure represents three different types of notifications: SMS, Email, and Social Media.
Each notification has a unique ID, a name, a creation date, and type-specific attributes such as
phone number or username. The discriminator value "type" indicates the specific subclass of the
Notification entity.

[
 {
 "id": 1,
 "name": "Notification 1",
 "createdOn": "2024-02-14",
 "type": "SMS",
 "phoneNumber": "+1234567890"
 },
 {

35

 "id": 2,
 "name": "Notification 2",
 "createdOn": "2024-02-14",
 "type": "Email",
 "phoneNumber": "user@example.com"
 },
 {
 "id": 3,
 "name": "Notification 3",
 "createdOn": "2024-02-14",
 "type": "SocialMediaNotification",
 "username": "socialmedia_user"
 }
]

In case of querying an entity using the @Inheritance annotation as defined by @Inheritance, the
Jakarta NoSQL provider must automatically include the condition where the value from
@DiscriminatorColumn equals the value of @DiscriminatorValue.

For example, given the sample code from @Inheritance and executing the query for
SmsNotification, the generated query should include a condition such as type = 'SMS' or its
equivalent in the respective NoSQL database.

36

Chapter 4. Template Classes
The DAO (Data Access Object) pattern in Jakarta NoSQL simplifies the implementation of common
database operations by providing a basic API to the underlying persistence engine. This pattern
encapsulates the logic for interacting with the database, promoting a clean separation between the
application’s business logic and its data access code.

In the DAO pattern, each entity in the application typically has a corresponding DAO class
responsible for handling database operations related to that entity. These DAO classes abstract
away the complexity of database interactions, providing a simplified interface for performing CRUD
(Create, Read, Update, Delete) operations.

Jakarta NoSQL’s DAO feature follows this pattern closely, offering a set of template classes that
serve as the foundation for implementing DAOs. These template classes provide pre-defined
methods for common database operations, such as saving, updating, querying, and deleting entities.

Developers can extend these template classes to create custom DAOs for their application entities.
By doing so, they can focus on implementing the specific logic required for their application, while
the underlying Jakarta NoSQL framework handles the low-level database interactions.

Overall, the DAO pattern in Jakarta NoSQL promotes modularity, reusability, and maintainability in
application development by abstracting away database access details. By adhering to this pattern,
developers can create robust and scalable applications with ease, without having to deal with the
complexities of database interaction at the application level.

The provided code snippet demonstrates the usage of the Template class in Jakarta NoSQL to
perform basic CRUD operations on entities in the database using the DAO pattern.

1. Create Book Entity: An instance of the Book entity is created using the builder pattern. This
entity represents a book with attributes such as title, author, publication year, and edition.

2. Insert Operation: The insert method of the Template class is invoked to insert the Book entity
into the database. This method takes the entity as a parameter and stores it in the underlying
database.

3. Find Operation: The find method of the Template class is called to retrieve the Book entity from
the database based on its ID (id). This method returns an Optional object containing the
retrieved entity, if it exists.

4. Print Result: The retrieved Book entity is printed to the console using System.out.println. If the
entity exists in the database, it will be printed; otherwise, the output will indicate that the entity
was not found.

5. Delete Operation: Finally, the delete method of the Template class is used to delete the Book
entity from the database based on its ID. This method removes the entity from the database.

Overall, this code snippet demonstrates how to use the Template class in Jakarta NoSQL to interact
with the database, abstracting away the low-level details of database operations and providing a
simplified interface for performing CRUD operations on entities.

@Inject

37

Template template;

//1. Create Book Entity
Book book = Book.builder()
 .id(id)
 .title("Java Concurrency in Practice")
 .author("Brian Goetz")
 .year(Year.of(2006))
 .edition(1)
 .build();
//2. Insert Operation
template.insert(book);
//3. Find Operation
Optional<Book> optional = template.find(Book.class, id);
//4. Print Result
System.out.println("The result " + optional);
//5. Delete Operation
template.delete(Book.class, id);

The Template class in Jakarta NoSQL simplifies CRUD (Create, Read, Update, Delete) operations by
providing a fluent API for interacting with the underlying NoSQL database. This API allows
developers to perform advanced queries and deletion operations beyond the basic ID attribute.

@Inject
Template template;

List<Book> books = template.select(Book.class)
 .where("author")
 .eq("Joshua Bloch")
 .and("edition")
 .gt(3)
 .result();

template.delete(Book.class)
 .where("author")
 .eq("Joshua Bloch")
 .and("edition")
 .gt(3)
 .execute();

The fluent API feature for searching and removing entities provided by the Template class in Jakarta
NoSQL offers excellent flexibility and convenience for CRUD operations. However, it’s essential to
note that this feature may only be fully supported for some types of NoSQL databases, as the
capabilities of the underlying database technology may limit certain operations.

In cases where the underlying NoSQL database does not support advanced querying or deletion
beyond the basic ID attribute, attempting to use these features with the Template class will result in
an UnsupportedOperationException being thrown by Jakarta NoSQL. This exception indicates that the
current database type does not support the requested operation.

38

Some NoSQL databases may not support all filter operations, such as logical OR operations in the
fluent API. In such cases, attempting to use unsupported operations with the Template class will
result in an UnsupportedOperationException being thrown by Jakarta NoSQL. This exception
indicates that the current Jakarta NoSQL provider does not support the requested operation due to
limitations imposed by the underlying NoSQL database technology.

Developers should be aware that while Jakarta NoSQL aims to provide a unified API across
different NoSQL databases, there may be variations in support for certain operations depending on
the capabilities of the specific database provider. When encountering limitations or unsupported
operations, developers may need to adjust their application logic or consider alternative
approaches to achieve the desired functionality within the constraints of the chosen NoSQL
database technology.

4.1. Template and Inheritance classes
In case of querying an entity using the @Inheritance annotation as defined by @Inheritance, the
Jakarta NoSQL provider must automatically include the condition where the value from
@DiscriminatorColumn equals the value of @DiscriminatorValue.

For example, given the sample code from @Inheritance and executing the query for
SmsNotification, the generated query should include a condition such as type = 'SMS' or its
equivalent in the respective NoSQL database.

List<SmsNotification> notifications = template.select(SmsNotification.class);

It ensures that only entities of type SmsNotification, as indicated by the discriminator value, are
retrieved from the database.

4.2. Fluent API Query
The Template class in Jakarta NoSQL provides a fluent API for querying and deleting entities from
the underlying NoSQL database. This fluent API offers a convenient and expressive way for Java
developers to interact with their data, allowing them to construct complex queries efficiently and
perform deletion operations.

4.2.1. Importance of Fluent API Query

The fluent API query is essential for Java developers as it simplifies retrieving and manipulating
data from the NoSQL database. By providing a fluent interface, Jakarta NoSQL enables developers
to express their query logic concisely and readably, making it easier to understand and maintain
the codebase.

The fluent API query also allows developers to build dynamic queries at runtime by chaining
together various methods and conditions. This flexibility enables applications to adapt to changing
requirements and user inputs, providing a more robust and responsive user experience.

Furthermore, the fluent API query promotes code reuse and modularity by encapsulating query

39

logic within reusable components. Developers can define and combine reusable query fragments to
construct more complex queries, reducing duplication and improving code maintainability.

4.2.2. Limitations in Key-Value Databases

It is worth noting that the select and delete methods of the Template class may not be fully
compatible with key-value databases. This limitation arises because key-value databases primarily
rely on key-value pairs for data retrieval and deletion rather than complex query predicates.

The primary data access mode in key-value databases is through direct lookup by key. It is
challenging to support complex query operations like those provided by the fluent API query. As a
result, attempts to use the select and delete methods with key-value databases may throw an
UnsupportedOperationException by Jakarta NoSQL, indicating that the underlying database
technology does not support the operation.

4.2.3. Supported Methods in Other NoSQL Databases

The fluent API query offers a wide range of supported methods through the QueryMapper class for
other types of NoSQL databases, such as document-oriented or column-family databases. These
methods may include filtering, sorting, and basic querying capabilities, providing developers with
flexible data retrieval and manipulation tools.

However, it’s essential to consider that the availability of certain query methods may vary
depending on the specific NoSQL database being used. NoSQL databases that do not support certain
operations can raise UnsupportedOperationException.

Attempting to use unsupported operations with the fluent API query may result in runtime
exceptions or unexpected behavior. Developers should consult the documentation of their chosen
NoSQL database to understand its query capabilities and limitations and adjust their application
logic accordingly.

4.2.4. Query Navigation Hierarchy

In Jakarta NoSQL, the query navigation hierarchy refers to navigating through the properties of
entities and their associated classes when constructing queries. Within an entity, property names
must be unique, ignoring cases. For simple entity properties, the field or accessor method name
serves as the entity property name. In the case of embedded and association classes, entity property
names are computed by concatenating the field or accessor method names at each level, optionally
joined by a dot or period, ., delimiter.

Within a given entity or embeddable class, names assigned to persistent fields must be unique,
ignoring cases.

Furthermore, within the context of a given entity, each persistent field of an embeddable class
reachable by navigation from the entity class may be assigned a compound name. The compound
name is obtained by concatenating the names assigned to each field traversed by navigation from
the entity class to the persistent field of the embedded class, optionally joined by a delimiter.

For example, consider the following data model:

40

class Person {
 private Long id;
 private MailingAddress address;
}

class MailingAddress {
 private String zipcode;
 private String city;
}

In this scenario, querying for records based on the zip code of the MailingAddress class requires
accessing the address field of Person and the zipcode property of MailingAddress.

@Inject
Template template;

List<Book> books = template.select(Person.class)
 .where("address.zipcode")
 .eq("402-775")
 .orderBy("address.city")
 .asc()
 .result();

template.delete(Person.class)
 .where("address.zipcode")
 .eq("402-775")
 .execute();

In the above example, the fluent API query navigates through the properties of the Person entity to
access the zipcode property of the MailingAddress embedded class. The where clause specifies the
path to the zipcode property using dot notation (address.zipcode). The orderBy clause similarly
specifies the path to the city property for sorting the results by city in ascending order.

This query navigation hierarchy enables developers to construct complex queries traverse multiple
levels of entity properties, facilitating flexible and precise data retrieval and manipulation in
Jakarta NoSQL.

4.3. TTL (Time-To-Live) Support
TTL (Time-To-Live) is a feature provided by many NoSQL databases that allows developers to set an
expiration time for data stored in the database. When data reaches its TTL, it is automatically
removed from the database, freeing up resources and ensuring that it remains efficient and clutter-
free.

For Java developers, TTL support is essential for managing data lifecycle and optimizing resource
usage. It enables developers to implement caching strategies, manage temporary data, and enforce
data retention policies effectively.

41

While TTL support is valuable, not all NoSQL databases provide native support for TTL. In cases
where TTL is not supported, attempting to set a TTL on data may result in an
UnsupportedOperationException being thrown by the Jakarta NoSQL provider.

Additionally, some NoSQL providers may have limitations on the granularity of TTL values, such as
supporting only TTL values specified in certain units (e.g., hours) or rounding TTL values to the
nearest supported unit. In such cases, attempting to set a TTL value that does not align with the
provider’s limitations may result in unexpected behavior or no TTL being applied.

For example, suppose a NoSQL database only supports TTL values specified in hours. If a developer
attempts to set a TTL of 10 seconds, the Jakarta NoSQL provider may throw an
UnsupportedOperationException. Similarly, if the developer attempts to set a TTL of 3660 seconds
(which is more than one hour), the TTL value may be rounded to the nearest supported unit (i.e.,
one hour) by the provider.

@Inject
Template template;

// UnsupportedOperationException: TTL granularity not supported
template.insert(entity, Duration.ofSeconds(10L));

// Inserting data with a TTL of one hour
template.insert(entity, Duration.ofSeconds(3600));

// Inserting data with a TTL of one hour (rounded from 3660 seconds)
template.insert(entity, Duration.ofSeconds(3660));

42

Chapter 5. Jakarta NoSQL Providers
A Jakarta NoSQL provider might come as an integrated component of a Jakarta EE container or a
separate component that integrates with the Jakarta EE container via standard or proprietary SPIs.
For example, a Jakarta NoSQL provider might use a CDI portable extension to integrate with
dependency injection.

Jakarta NoSQL providers play a crucial role in the ecosystem by interpreting the annotations
provided by developers and implementing the corresponding Template interfaces. These providers
handle operations related to entities according to the rules outlined in the Jakarta NoSQL
specification.

By adhering to these rules, Jakarta NoSQL providers ensure seamless integration with the
application via dependency injection. This integration allows developers to access the functionality
provided by the Template interfaces without concerning themselves with the underlying database
implementation details.

The Jakarta NoSQL specification sets clear guidelines for Jakarta NoSQL providers, ensuring
consistency and compatibility across different providers. These rules enable multiple Jakarta Data
providers to coexist within a system without interfering or overlapping at the same injection
points. This level of standardization fosters interoperability and flexibility, empowering developers
to choose the provider that best suits their project requirements.

5.1. Configuration and Credentials
Configuration and credentials for NoSQL databases are not standardized within the Jakarta NoSQL
specification. Each Jakarta NoSQL provider is responsible for providing its own configuration
mechanism, allowing developers to configure the connection to the NoSQL database according to
their specific requirements.

The Jakarta NoSQL specification highly recommends following the Twelve-Factor App methodology,
particularly the "Store config in the environment" principle. This approach advocates for storing
configuration details such as database credentials, connection URLs, and other settings as
environment variables. This practice promotes portability, scalability, and security by separating
configuration from code and ensuring consistency across different environments.

5.2. Schema Generation
The process of creating a schema for a database is called schema generation. This process is not
included in the Jakarta NoSQL specification. While some NoSQL databases allow schema definition
and enforcement, many NoSQL databases are schemaless, which means developers can store data
without defining a schema beforehand.

Therefore, the ability to generate a schema may differ depending on the NoSQL database and the
Jakarta NoSQL provider being used. Some Jakarta NoSQL providers offer schema generation
capabilities, while others do not.

For developers working with schemaless NoSQL databases, schema generation may not be

43

necessary. This is because the database dynamically adapts to the structure of the data being stored.
In such cases, the focus should be on organizing data to suit the application’s requirements best,
rather than defining a rigid schema.

In cases where schema generation is supported, developers should be aware that the process may
vary between NoSQL databases and Jakarta NoSQL providers. Different databases may have unique
requirements or conventions for defining schemas, and Jakarta NoSQL providers may offer
different approaches or tools for schema generation.

Whether schema generation is necessary or beneficial depends on the specific use case, the NoSQL
database being used, and the development team’s preferences. Developers should consult the
documentation of their chosen NoSQL database and Jakarta NoSQL provider for guidance on
schema generation practices and considerations.

5.3. Jakarta NoSQL Providers Extensions
Jakarta NoSQL providers and NoSQL databases have the flexibility to extend the API according to
their specific requirements. This extensibility allows providers to create new annotations or
develop specialized versions of the Template API tailored to their unique features or functionalities.

However, it’s essential to note that these extensions are specific to the respective provider or
database and may not be compatible with others. As a result, there is no guarantee of compatibility
between extensions developed by different Jakarta NoSQL providers or NoSQL databases.

Despite the lack of cross-compatibility, this extensibility empowers providers to effectively innovate
and address specific use cases or requirements. By leveraging extensions, developers can harness
the full potential of Jakarta NoSQL while benefiting from the diverse capabilities offered by
different providers and databases.

5.4. Persistent Fields
A Jakarta NoSQL provider can read the annotation via runtime, for example, using reflection, or via
build-time, for example, Java Annotation Processor.

Jakarta NoSQL provider runtime accesses the persistent state of an entity via either:

• property access using style property accessors defined by the Jakarta NoSQL provider for its
respective field or

• field access, that is, direct access to instance variables.

When property access is used, the Jakarta NoSQL provider must define the conversion; the
recommendation is the method signature convention for JavaBeans read/write properties, as
determined by the JavaBeans Introspector class.

 The Column annotation should be at the field in both access types.

44

Chapter 6. Interoperability with other
Jakarta EE Specifications
This section discusses Interoperability with related Jakarta EE specifications. When operating
within a Jakarta EE product, the availability of other Jakarta EE technologies depends on whether
the Jakarta EE Core profile, Jakarta EE Web profile, or Jakarta EE Platform is used.

6.1. Jakarta Contexts and Dependency Injection
Contexts and Dependency Injection (CDI) is a foundational specification within the Jakarta EE Core
profile, offering a robust dependency injection framework for Java applications. CDI facilitates the
decoupling of components and manages their lifecycle through dependency injection, promoting
loose coupling and enabling the creation of modular, reusable code.

CDI is crucial in integrating the Jakarta NoSQL template seamlessly into applications through the
@Inject annotation in Jakarta EE environments. This integration allows developers to inject
instances of the Template class directly into their application components, enabling straightforward
access to its methods and functionalities.

With CDI and the @Inject annotation, developers can inject the Template instance and utilize its
methods effortlessly, as illustrated in the following example:

@Inject
Template template;

// ...

List<Car> cars = template.select(Car.class).where("type").eq(CarType.SPORT).result();

The Jakarta NoSQL provider should also provide CDI qualifiers to work with multiple NoSQL
databases through CDI. Developers can use these qualifiers to specify which database instance they
want to inject, enabling flexibility and compatibility with different NoSQL data stores. Jakarta
NoSQL providers typically supply annotations like @DatabaseQualifier to annotate the injection
points.

For example:

@Inject
@DatabaseQualifier
Template template;

@Inject
@DatabaseQualifier("another")
Template anotherTemplate;

The template implementation bean must have:

45

• qualifier type @Default, and

• the template interface as a bean type.

Thus, the implementation is eligible for injection to unqualified injection points typed to the
repository interface, as defined by section 2.4 of the CDI specification, version 4.0.

 This specification does not restrict the scope of the template implementation bean.

6.1.1. CDI Extensions for Jakarta Data Providers

In environments where CDI Full or CDI Lite is available, Jakarta NoSQL providers can leverage CDI
extensions to enhance the integration and discovery of entities or implementations. While Jakarta
NoSQL does not prescribe a specific type of CDI extension, it does require Jakarta NoSQL providers
to ensure that template implementations are injected into appropriate injection points, typically
interfaces, without additional qualifiers.

It’s important to note the distinction between CDI Full and CDI Lite: CDI Full, part of the Jakarta
Web profile and Jakarta Platform, includes support for jakarta.enterprise.inject.spi.Extension,
whereas CDI Lite (Jakarta Core profile) does not. However, both CDI Full and CDI Lite support
jakarta.enterprise.inject.build.compatible.spi.BuildCompatibleExtension.

To avoid conflicts between the BuildCompatibleExtension and portable Extension in CDI Full
environments, Jakarta NoSQL providers can utilize CDI’s @SkipIfPortableExtensionPresent
annotation.

CDI provides a robust foundation for integrating Jakarta NoSQL repositories into Jakarta EE
applications, offering flexibility and extensibility to meet diverse requirements and use cases.

6.2. Jakarta Bean Validation
Integrating Jakarta Bean Validation into Jakarta NoSQL ensures data consistency within the Java
layer by enforcing validation rules and constraints on data objects. By applying validation rules,
developers can maintain data integrity, improve data quality, and enhance the reliability of their
applications.

Jakarta Validation offers several advantages for Jakarta NoSQL applications:

1. It helps identify and prevent invalid or inconsistent data from being processed or persisted,
reducing the risk of data corruption.

2. Catching validation errors early in the Java layer allows developers to identify and resolve
potential issues before further processing or persistence occurs, leading to more robust and
reliable applications.

3. Jakarta Validation supports declarative validation rules, simplifying the validation logic and
promoting cleaner, more maintainable code.

In Jakarta NoSQL, template implementations are subject to method validation as specified in the
"Method and constructor validation" section of the Jakarta Validation specification. This validation
includes checking for constraints on method parameters and results. Automatic validation using

46

these constraints is done by delegating validation to the Bean Validation implementation when
inserting, updating, or deleting data through the methods.

Let’s consider an example demonstrating the usage of Jakarta Bean Validation annotations in the
Student entity class:

@Entity
public class Student {

 @Id
 private String id;

 @Column
 @NotBlank
 private String name;

 @Positive
 @Min(18)
 @Column
 private int age;
}

In this example, the name field is annotated with @NotBlank, indicating that it must not be blank. The
age field is annotated with both @Positive and @Min(18), ensuring it is a positive integer greater than
or equal to 18.

To execute validation before inserting data using Jakarta NoSQL templates, developers can simply
invoke the insert and update methods on the template instance:

@Inject
private Template template;
...
// Execute the validation before inserting the data.
template.insert(student);

6.3. Jakarta Data
Developers can seamlessly incorporate common data patterns, such as repositories, into their
codebase by integrating Jakarta NoSQL with Jakarta Data.

Jakarta NoSQL providers that support Jakarta Data typically scan interfaces marked with the
jakarta.data.repository.Repository annotation. This annotation serves as a marker for
repositories, providing a standardized way to define repository interfaces.

By embracing Jakarta Data, Jakarta NoSQL providers enable Java developers to use standardized
data patterns and techniques when defining entities and repositories. This compatibility ensures
interoperability with other technologies and frameworks, fostering a cohesive and streamlined

47

development experience.

48

	Jakarta NoSQL
	Table of Contents
	Copyright
	Eclipse Foundation Specification License - v1.1
	Disclaimers

	Chapter 1. Introduction
	1.1. Goal
	1.2. Non-Goals
	1.3. Conventions
	1.4. Jakarta NoSQL Project Team
	1.4.1. Project Lead
	1.4.2. Contributors
	1.4.3. Committers
	1.4.4. Historical Committer
	1.4.5. Mentor
	1.4.6. Full List of Contributors

	Chapter 2. Entity Classes
	2.1. Programming Model for Entity Classes
	2.1.1. Persistent Fields
	2.1.2. Basic Types
	2.1.3. Embedded Fields and Embeddable Classes
	2.1.4. Array Support
	2.1.5. Entity Associations
	2.1.6. Collections of Embeddable Classes and Basic Types
	2.1.7. Map Collections
	2.1.8. Entity Property Names

	Chapter 3. Annotations
	3.1. @Entity
	3.1.1. Entity Definition Reference
	3.1.2. Associating with Other Entities

	3.2. @Embeddable
	3.3. @Id
	3.4. @Column
	3.5. @Convert
	3.6. Inheritance
	3.6.1. Abstract Entity Classes
	3.6.2. @MappedSuperclass
	3.6.3. @Inheritance
	3.6.4. @DiscriminatorColumn
	3.6.5. @DiscriminatorValue

	Chapter 4. Template Classes
	4.1. Template and Inheritance classes
	4.2. Fluent API Query
	4.2.1. Importance of Fluent API Query
	4.2.2. Limitations in Key-Value Databases
	4.2.3. Supported Methods in Other NoSQL Databases
	4.2.4. Query Navigation Hierarchy

	4.3. TTL (Time-To-Live) Support

	Chapter 5. Jakarta NoSQL Providers
	5.1. Configuration and Credentials
	5.2. Schema Generation
	5.3. Jakarta NoSQL Providers Extensions
	5.4. Persistent Fields

	Chapter 6. Interoperability with other Jakarta EE Specifications
	6.1. Jakarta Contexts and Dependency Injection
	6.1.1. CDI Extensions for Jakarta Data Providers

	6.2. Jakarta Bean Validation
	6.3. Jakarta Data

