Table of Contents

Eclipse Foundation Specification License .. 1
 Disclaimers ... 2
1. Introduction .. 3
 1.1. Target Audience .. 3
 1.2. Acknowledgments ... 3
2. Goals and Design Principles .. 4
3. Architectural Overview .. 6
 3.1. Jakarta Mail Layered Architecture ... 6
 3.2. Jakarta Mail Class Hierarchy ... 7
 3.3. The Jakarta Mail Framework ... 8
 3.4. Major Jakarta Mail API Components ... 9
 3.4.1. The `Message` Class ... 9
 3.4.2. Message Storage and Retrieval ... 9
 3.4.3. Message Composition and Transport 9
 3.4.4. The `Session` Class ... 10
 3.5. The Jakarta Mail Event Model .. 10
 3.6. Using the Jakarta Mail API ... 10
4. The Message Class .. 12
 4.1. The `Part` Interface ... 14
 4.1.1. Message Attributes .. 14
 4.1.2. The `ContentType` Attribute ... 14
 4.2. The `Address` Class .. 15
 4.3. The `BodyPart` Class ... 15
 4.4. The `Multipart` Class .. 18
 4.5. The `Flags` Class .. 19
 4.6. Message Creation And Transmission .. 19
5. The Mail Session ... 20
 5.1. The Provider Registry .. 21
 5.1.1. Resource Files ... 21
 5.1.1.1. javamail.providers and javamail.default.providers 22
 5.1.1.2. javamail.address.map and javamail.default.address.map 23
 5.1.2. Provider ... 23
 5.1.3. Protocol Selection and Defaults ... 23
 5.1.4. Example Scenarios ... 23
 5.2. Managing Security .. 26
 5.3. Store and Folder URLs ... 27
Appendix B: Examples Using the Jakarta Mail API

Appendix A: Environment Properties
Copyright (c) 2019, 2020 Eclipse Foundation.

Eclipse Foundation Specification License

By using and/or copying this document, or the Eclipse Foundation document from which this statement is linked, you (the licensee) agree that you have read, understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document from which this statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, provided that you include the following on ALL copies of the document, or portions thereof, that you use:

- link or URL to the original Eclipse Foundation document.
- All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual representation is permitted) of the form: "Copyright (c) [date-of-document] Eclipse Foundation, Inc. [url to this license]"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be provided in any software, documents, or other items or products that you create pursuant to the implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to this license, except anyone may prepare and distribute derivative works and portions of this document in software that implements the specification, in supporting materials accompanying such software, and in documentation of such software, PROVIDED that all such works include the notice below. HOWEVER, the publication of derivative works of this document for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) 2018 Eclipse Foundation. This software or document includes material copied from or derived from [title and URI of the Eclipse Foundation specification document]."
Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in advertising or publicity pertaining to this document or its contents without specific, written prior permission. Title to copyright in this document will at all times remain with copyright holders.
Chapter 1. Introduction

In the years since its first release, the Java programming language has matured to become a platform. The Java platform has added functionality, including distributed computing with RMI and CORBA, and a component architecture (JavaBeans). Java applications have also matured, and many need an addition to the Java platform: a mail and messaging framework. The Jakarta Mail API described in this specification satisfies that need.

The Jakarta Mail API provides a set of abstract classes defining objects that comprise a mail system. The API defines classes like Message, Store and Transport. The API can be extended and can be subclassed to provide new protocols and to add functionality when necessary.

In addition, the API provides concrete subclasses of the abstract classes. These subclasses, including MimeMessage and MimeBodyPart, implement widely used Internet mail protocols and conform to specifications RFC822 and RFC2045. They are ready to be used in application development.

1.1. Target Audience

The Jakarta Mail API is designed to serve several audiences:

- Client, server, or middleware developers interested in building mail and messaging applications using the Java programming language.
- Application developers who need to “mail-enable” their applications.
- Service Providers who need to implement specific access and transfer protocols. For example; a telecommunications company can use the Jakarta Mail API to implement a PAGER Transport protocol that sends mail messages to alphanumeric pagers.

1.2. Acknowledgments

The authors of this specification are John Mani, Bill Shannon, Max Spivak, Kapono Carter and Chris Cotton.

We would like to acknowledge the following people for their comments and feedback on the initial drafts of this document:

- Terry Cline, John Russo, Bill Yeager and Monica Gaines: Sun Microsystems.
- Arn Perkins and John Ragan: Novell, Inc.
- Nick Shelness: Lotus Development Corporation.
- Juerg von Kaenel: IBM Corporation.
- Prasad Yendluri, Jamie Zawinski, Terry Weissman and Gena Cunanan: Netscape Communications Corporation.
Chapter 2. Goals and Design Principles

The Jakarta Mail API is designed to make adding electronic mail capability to simple applications easy, while also supporting the creation of sophisticated user interfaces. It includes appropriate convenience classes which encapsulate common mail functions and protocols. It fits with other packages for the Java platform in order to facilitate its use with other Java APIs, and it uses familiar programming models.

The Jakarta Mail API is therefore designed to satisfy the following development and runtime requirements:

• Simple, straightforward class design is easy for a developer to learn and implement.
• Use of familiar concepts and programming models support code development that interfaces well with other Java APIs.
 ◦ Uses familiar exception-handling and JDK 1.1 event-handling programming models.
 ◦ Uses features from the Jakarta Activation to handle access to data based on data-type and to facilitate the addition of data types and commands on those data types. The Jakarta Mail API provides convenience functions to simplify these coding tasks.
• Lightweight classes and interfaces make it easy to add basic mail-handling tasks to any application.
• Supports the development of robust mail-enabled applications, that can handle a variety of complex mail message formats, data types, and access and transport protocols.

The Jakarta Mail API draws heavily from IMAP, MAPI, CMC, c-client and other messaging system APIs: many of the concepts present in these other systems are also present in the Jakarta Mail API. It is simpler to use because it uses features of the Java programming language not available to these other APIs, and because it uses the Java programming language’s object model to shelter applications from implementation complexity.

The Jakarta Mail API design is driven by the needs of the applications it supports—but it is also important to consider the needs of API implementors. It is critically important to enable the implementation of messaging systems written using the Java programming language that interoperate with existing messaging systems—especially Internet mail. It is also important to anticipate the development of new messaging systems. The Jakarta Mail API conforms to current standards while not being so constrained by current standards that it stifles future innovation.

The Jakarta Mail API supports many different messaging system implementations—different message stores, different message formats, and different message transports. The Jakarta Mail API provides a set of base classes and interfaces that define the API for client applications. Many simple applications will only need to interact with the messaging system through these base classes and interfaces.

Jakarta Mail subclasses can expose additional messaging system features. For instance, the MimeMessage subclass exposes and implements common characteristics of an Internet mail message, as defined by RFC822 and MIME standards. Developers can subclass Jakarta Mail classes to provide the
implementations of particular messaging systems, such as IMAP4, POP3, and SMTP.

The base Jakarta Mail classes include many convenience APIs that simplify use of the API, but don't add any functionality. The implementation subclasses are not required to implement those convenience methods. The implementation subclasses must implement only the core classes and methods that provide functionality required for the implementation.

Alternately, a messaging system can choose to implement all of the Jakarta Mail API directly, allowing it to take advantage of performance optimizations, perhaps through use of batched protocol requests. The IMAP4 protocol implementation takes advantage of this approach.

The Jakarta Mail API uses the Java programming language to good effect to strike a balance between simplicity and sophistication. Simple tasks are easy, and sophisticated functionality is possible.
Chapter 3. Architectural Overview

This section describes the Jakarta Mail architecture, defines major classes and interfaces comprising that architecture, and lists major functions that the architecture implements.

Jakarta Mail provides elements that are used to construct an interface to a messaging system, including system components and interfaces. While this specification does not define any specific implementation, Jakarta Mail does include several classes that implement RFC822 and MIME Internet messaging standards. These classes are delivered as part of the Jakarta Mail class package.

3.1. Jakarta Mail Layered Architecture

The Jakarta Mail architectural components are layered as shown below:

- The Abstract Layer declares classes, interfaces and abstract methods intended to support mail handling functions that all mail systems support. API elements comprising the Abstract Layer are intended to be subclassed and extended as necessary in order to support standard data types, and to interface with message access and message transport protocols as necessary.

- The internet implementation layer implements part of the abstract layer using internet standards - RFC822 and MIME.

- Jakarta Mail uses Jakarta Activation in order to encapsulate message data, and to handle commands intended to interact with that data. Interaction with message data should take place via JAF-aware JavaBeans, which are not provided by the Jakarta Mail API.

Jakarta Mail clients use the Jakarta Mail API and Service Providers implement the Jakarta Mail API. The layered design architecture allows clients to use the same Jakarta Mail API calls to send, receive and store a variety of messages using different data-types from different message stores and using different message transport protocols.
3.2. Jakarta Mail Class Hierarchy

The figure below shows major classes and interfaces comprising the Jakarta Mail API. See Major Jakarta Mail API Components for brief descriptions of all components shown on this diagram.
3.3. The Jakarta Mail Framework

The Jakarta Mail API is intended to perform the following functions, which comprise the standard mail handling process for a typical client application:

• Create a mail message consisting of a collection of header attributes and a block of data of some known data type as specified in the Content-Type header field. Jakarta Mail uses the Part interface and the Message class to define a mail message. It uses the JAF-defined DataHandler object to contain data placed in the message.

• Create a Session object, which authenticates the user, and controls access to the message store and transport.

• Send the message to its recipient list.

• Retrieve a message from a message store.

• Execute a high-level command on a retrieved message. High-level commands like view and print are intended to be implemented via Activation-Aware JavaBeans.

The Jakarta Mail framework does not define mechanisms that support message delivery, security, disconnected operation, directory services or filter functionality.

This figure illustrates the Jakarta Mail message-handling process.
3.4. Major Jakarta Mail API Components

This section reviews major components comprising the Jakarta Mail architecture.

3.4.1. The Message Class

The Message class is an abstract class that defines a set of attributes and a content for a mail message. Attributes of the Message class specify addressing information and define the structure of the content, including the content type. The content is represented as a DataHandler object that wraps around the actual data.

The Message class implements the Part interface. The Part interface defines attributes that are required to define and format data content carried by a Message object, and to interface successfully to a mail system. The Message class adds From, To, Subject, Reply-To, and other attributes necessary for message routing via a message transport system. When contained in a folder, a Message object has a set of flags associated with it. Jakarta Mail provides Message subclasses that support specific messaging implementations.

The content of a message is a collection of bytes, or a reference to a collection of bytes, encapsulated within a Message object. Jakarta Mail has no knowledge of the data type or format of the message content. A Message object interacts with its content through an intermediate layer - Jakarta Activation. This separation allows a Message object to handle any arbitrary content and to transmit it using any appropriate transmission protocol by using calls to the same API methods. The message recipient usually knows the content data type and format and knows how to handle that content.

The Jakarta Mail API also supports multipart Message objects, where each Bodypart defines its own set of attributes and content.

3.4.2. Message Storage and Retrieval

Messages are stored in Folder objects. A Folder object can contain subfolders as well as messages, thus providing a tree-like folder hierarchy. The Folder class declares methods that fetch, append, copy and delete messages. A Folder object can also send events to components registered as event listeners.

The Store class defines a database that holds a folder hierarchy together with its messages. The Store class also specifies the access protocol that accesses folders and retrieves messages stored in folders. The Store class also provides methods to establish a connection to the database, to fetch folders and to close a connection. Service providers implementing Message Access protocols (IMAP4, POP3, etc.) start off by subclassing the Store class. A user typically starts a session with the mail system by connecting to a particular Store implementation.

3.4.3. Message Composition and Transport

A client creates a new message by instantiating an appropriate Message subclass. It sets attributes like the recipient addresses and the subject, and inserts the content into the Message object. Finally, it sends the Message by invoking the Transport.send method.
The Transport class models the transport agent that routes a message to its destination addresses. This class provides methods that send a message to a list of recipients. Invoking the Transport.send method with a Message object identifies the appropriate transport based on its destination addresses.

3.4.4. The Session Class

The Session class defines global and per-user mail-related properties that define the interface between a mail-enabled client and the network. Jakarta Mail system components use the Session object to set and get specific properties. The Session class also provides a default authenticated session object that desktop applications can share. The Session class is a final concrete class. It cannot be subclassed.

The Session class also acts as a factory for Store and Transport objects that implement specific access and transport protocols. By calling the appropriate factory method on a Session object, the client can obtain Store and Transport objects that support specific protocols.

3.5. The Jakarta Mail Event Model

The Jakarta Mail event model conforms to the JDK 1.1 event-model specification, as described in the JavaBeans Specification. The Jakarta Mail API follows the design patterns defined in the JavaBeans Specification for naming events, event methods and event listener registration.

All events are subclassed from the MailEvent class. Clients listen for specific events by registering themselves as listeners for those events. Events notify listeners of state changes as a session progresses. During a session, a Jakarta Mail component generates a specific event-type to notify objects registered as listeners for that event-type. The Jakarta Mail Store, Folder, and Transport classes are event sources. This specification describes each specific event in the section that describes the class that generates that event.

3.6. Using the Jakarta Mail API

This section defines the syntax and lists the order in which a client application calls some Jakarta Mail methods in order to access and open a message located in a folder:

1. A Jakarta Mail client typically begins a mail handling task by obtaining a Jakarta Mail Session object.

   ```java
   Session session = Session.getInstance(props, authenticator);
   ```

2. The client uses the Session object's getStore method to connect to the default store. The getStore method returns a Store object subclass that supports the access protocol defined in the user properties object, which will typically contain per-user preferences.
3. If the connection is successful, the client can list available folders in the Store, and then fetch and view specific Message objects.

```java
// get the INBOX folder
Folder inbox = store.getFolder("INBOX");

// open the INBOX folder
inbox.open(Folder.READ_WRITE);

Message m = inbox.getMessage(1); // get Message # 1
String subject = m.getSubject(); // get Subject
Object content = m.getContent(); // get content
...
```

4. Finally, the client closes all open folders, and then closes the store.

```java
inbox.close(); // Close the INBOX
store.close(); // Close the Store
```

See [Examples Using the Jakarta Mail API](#) for a more complete example.
Chapter 4. The Message Class

The Message class defines a set of attributes and a content for a mail message. Message attributes specify message addressing information and define the structure of the content, including the content type. The content is represented by a DataHandler object that wraps around the actual data. The Message class is an abstract class that implements the Part interface.

Subclasses of the Message classes can implement several standard message formats. For example, the Jakarta Mail API provides the MimeMessage class, that extends the Message class to implement the RFC822 and MIME standards. Implementations can typically construct themselves from byte streams and generate byte streams for transmission.

A Message subclass instantiates an object that holds message content, together with attributes that specify addresses for the sender and recipients, structural information about the message, and the content type of the message body. Messages placed into a folder also have a set of flags that describe the state of the message within the folder.

The figure below illustrates the structure of the Message class.

The Message object has no direct knowledge of the nature or semantics of its content. This separation of structure from content allows the message object to contain any arbitrary content.

Message objects are either retrieved from a Folder object or constructed by instantiating a new Message object of the appropriate subclass. Messages stored within a Folder object are sequentially numbered, starting at one. An assigned message number can change when the folder is expunged, since the expunge operation removes deleted messages from the folder and also renumbers the
remaining messages.

A Message object can contain multiple parts, where each part contains its own set of attributes and content. The content of a multipart message is a Multipart object that contains BodyPart objects representing each individual part. The Part interface defines the structural and semantic similarity between the Message class and the BodyPart class.

The figure below illustrates a Message instance hierarchy, where the message contains attributes, a set of flags, and content. See MimeMessage Object Hierarchy for an illustration of the MimeMessage object hierarchy.

The Message class provides methods to perform the following tasks:

- Get, set and create its attributes and content:

```java
public String getSubject() throws MessagingException;
public void setSubject(String subject) throws MessagingException;
public String[] getHeader(String name) throws MessagingException;
public void setHeader(String name, String value) throws MessagingException;
public Object getContent() throws MessagingException;
public void setContent(Object content, String type) throws MessagingException
```
4.1. The **Part** Interface

The Part interface defines a set of standard headers common to most mail systems, specifies the data-type assigned to data comprising a content block, and defines set and get methods for each of these members. It is the basic data component in the Jakarta Mail API and provides a common interface for both the Message and BodyPart classes. See the Jakarta Mail API (Javadoc) documentation for details.

A Message object can not be contained directly in a Multipart object, but must be embedded in a BodyPart first.

4.1.1. Message Attributes

The Message class adds its own set of standard attributes to those it inherits from the Part interface. These attributes include the sender and recipient addresses, the subject, flags, and sent and received dates. The Message class also supports non-standard attributes in the form of headers. See the Jakarta Mail API (Javadoc) Documentation for the list of standard attributes defined in the Message class. Not all messaging systems will support arbitrary headers, and the availability and meaning of particular header names is specific to the messaging system implementation.

4.1.2. The **ContentType** Attribute

The contentType attribute specifies the data type of the content, following the MIME typing specification (RFC 2045). A MIME type is composed of a primary type that declares the general type of the content, and a subtype that specifies a specific format for the content. A MIME type also includes an optional set of type-specific parameters.

Jakarta Mail API components can access content via these mechanisms:
4.2. The Address Class

The Address class represents email addresses. The Address class is an abstract class. Subclasses provide implementation-specific semantics.

4.3. The BodyPart Class

The BodyPart class is an abstract class that implements the Part interface in order to define the attribute and content body definitions that Part declares. It does not declare attributes that set From, To, Subject, ReplyTo, or other address header fields, as a Message object does.

A BodyPart object is intended to be inserted into a Multipart container, later accessed via a multipart message.

4.4. The Multipart Class

The Multipart class implements multipart messages. A multipart message is a Message object where the content-type specifier has been set to multipart. The Multipart class is a container class that contains objects of type Bodypart. A Bodypart object is an instantiation of the Part interface—it
contains either a new Multipart container object, or a DataHandler object.

The figure below illustrates the structure and content of a multipart message:

Note that Multipart objects can be nested to any reasonable depth within a multipart message, in order to build an appropriate structure for data carried in DataHandler objects. Therefore, it is important to check the ContentType header for each BodyPart element stored within a Multipart container. The figure below illustrates a typical nested Multipart message.
Typically, the client calls the getContentType method to get the content type of a message. If getContentType returns a MIME-type whose primary type is multipart, then the client calls getContent to get the Multipart container object.

The Multipart object supports several methods that get, create, and remove individual BodyPart objects.

```java
public int getCount() throws MessagingException;

public Body getBodyPart(int index) throws MessagingException;

public void addBodyPart(BodyPart part) throws MessagingException;

public void removeBodyPart(BodyPart body) throws MessagingException;

public void removeBodyPart(int index) throws MessagingException;
```

The Multipart class implements the `jakarta.activation.DataSource` interface. It can act as the `DataSource` object for `jakarta.activation.DataHandler` and `jakarta.activation.DataContentHandler` objects. This allows message-aware content handlers to handle multipart data sources more efficiently, since the data has already been parsed into individual parts.

This diagram illustrates the structure of a multipart message, and shows calls from the associated Message and Multipart objects, for a typical call sequence returning a BodyPart containing text/plain content.
In this figure, the `ContentType` attribute of a Message object indicates that it holds a multipart content. Use the `getContent` method to obtain the Multipart object.

This code sample below shows the retrieval of a Multipart object. See [Examples Using the Jakarta Mail API](https://jakarta.apache.org/) for examples that traverse a multipart message and examples that create new multipart messages.

```java
Multipart mp = (Multipart)message.getContent();

int count = mp.getCount();
BodyPart body_part;

for (int i = 0; i < count; i++)
    body_part = mp.getBodyPart(i);
```

4.5. The **Flags** Class

Flags objects carry flag settings that describe the state of a Message object within its containing folder. The `Message.getFlags` method returns a Flags object that holds all the flags currently set for that message.

The `setFlags(Flags f, boolean set)` method sets the specified flags for that message. The `add(Flags.Flag f)` method on a Flags object sets the specified flag; the `contains(Flags.Flag f)` method returns whether the specified flag is set.

Answered
Clients set this flag to indicate that this message has been answered.
4.6. Message Creation And Transmission

The Message class is abstract, so an appropriate subclass must be instantiated to create a new Message object. A client creates a message by instantiating an appropriate Message subclass.

For example, the MimeMessage subclass handles Internet email messages. Typically, the client application creates an email message by instantiating a MimeMessage object, and passing required attribute values to that object. In an email message, the client defines Subject, From, and To attributes. The client then passes message content into the MimeMessage object by using a suitably configured DataHandler object. See Message Composition for details.

After the Message object is constructed, the client calls the Transport.send method to route it to its specified recipients. See Transport Protocols and Mechanisms for a discussion of the transport process.
Chapter 5. The Mail Session

A mail `Session` object manages the configuration options and user authentication information used to interact with messaging systems.

The Jakarta Mail API supports simultaneous multiple sessions. Each session can access multiple message stores and transports. Any desktop application that needs to access the current primary message store can share the default session. Typically the mail-enabled application establishes the default session, which initializes the authentication information necessary to access the user's Inbox folder. Other desktop applications then use the default session when sending or accessing mail on behalf of the user. When sharing the session object, all applications share authentication information, properties, and the rest of the state of the object.

For example,

- To create a `Session` using a static factory method:

  ```java
  Session session = Session.getInstance(props, authenticator);
  ```

- To create the default shared session, or to access the default shared session:

  ```java
  Session defaultSession = Session.getDefaultInstance(props, authenticator);
  ```

The `Properties` object that initializes the `Session` contains default values and other configuration information. It is expected that clients using the APIs set the values for the listed properties, especially `mail.host`, `mail.user`, and `mail.from`, since the defaults are unlikely to work in all cases. See Environment Properties for a list of properties used by the Jakarta Mail APIs and their defaults.

Some messaging system implementations can use additional properties. Typically the properties object contains user-defined customizations in addition to system-wide defaults. Mail-enabled application logic determines the appropriate set of properties. Lacking a specific requirement, the application can use the system properties object retrieved from the `System.getProperties` method.

The `Authenticator` object controls security aspects for the `Session` object. The messaging system uses it as a callback mechanism to interact with the user when a password is required to login to a messaging system. It indirectly controls access to the default session, as described below.

Clients using Jakarta Mail can register `PasswordAuthentication` objects with the `Session` object for use later in the session or for use by other users of the same session. Because `PasswordAuthentication` objects contain passwords, access to this information must be carefully controlled. Applications that create `Session` objects must restrict access to those objects appropriately. In addition, the `Session` class shares some responsibility for controlling access to the default session object.

The first call to the `getDefaultInstance` method creates a new `Session` object and associates it with the
An `Authenticator` object. Subsequent calls to the `getDefaultInstance` method compare the `Authenticator` object passed in with the `Authenticator` object saved in the default session. Access to the default session is allowed if both objects have been loaded by the same class loader. Typically, this is the case when both the default session creator and the program requesting default session access are in the same "security domain." Also, if both objects are `null`, access is allowed. Using `null` to gain access is discouraged, because this allows access to the default session from any security domain.

A mail-enabled client uses the `Session` object to retrieve a `Store` or `Transport` object in order to read or send mail. Typically, the client retrieves the default `Store` or `Transport` object based on properties loaded for that session:

```java
Store store = session.getStore();
```

The client can override the session defaults and access a `Store` or `Transport` object that implements a particular protocol.

```java
Store store = session.getStore("imap");
```

See [The Provider Registry](#) for details.

Implementations of `Store` and `Transport` objects will be told the session to which they have been assigned. They can then make the `Session` object available to other objects contained within this `Store` or `Transport` objects using application-dependent logic.

5.1. The Provider Registry

The Provider Registry allows providers to register their protocol implementations to be used by Jakarta Mail APIs. It provides a mechanism for discovering available protocol, for registering new protocols, and for specifying default implementations.

5.1.1. Resource Files

The providers for Jakarta Mail APIs are configured using the following files:

- `javamail.providers` and `javamail.default.providers`
- `javamail.address.map` and `javamail.default.address.map`

Each `javamail.X` resource file is searched in the following order:

1. `java.home/lib/javamail.X`
2. `META-INF/javamail.X`
3. `META-INF/javamail.default.X`
The first method allows the user to include their own version of the resource file by placing it in the lib directory where the java.home property points. The second method allows an application that uses the Jakarta Mail APIs to include their own resource files in their application’s or jar file’s META-INF directory. The javamail.default.* default files are part of the Jakarta Mail mail.jar file.

File location depends upon how the ClassLoader.getResource method is implemented. Usually, the getResource method searches through CLASSPATH until it finds the requested file and then stops. JDK 1.2 and newer allows all resources of a given name to be loaded from all elements of the CLASSPATH. However, this only affects method two, above; method one is loaded from a specific location (if allowed by the SecurityManager) and method three uses a different name to ensure that the default resource file is always loaded successfully.

The ordering of entries in the resource files matters. If multiple entries exist, the first entries take precedence over the latter entries as the initial defaults. For example, the first IMAP provider found will be set as the default IMAP implementation until explicitly changed by the application.

The user- or system-supplied resource files augment, they do not override, the default files included with the Jakarta Mail APIs. This means that all entries in all files loaded will be available.

5.1.1.1. javamail.providers and javamail.default.providers

These resource files specify the stores and transports that are available on the system, allowing an application to "discover" what store and transport implementations are available. The protocol implementations are listed one per line. The file format defines four attributes that describe a protocol implementation. Each attribute is an "="-separated name-value pair with the name in lowercase. Each name-value pair is semi-colon (";") separated.

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>protocol</td>
<td>Name assigned to protocol. For example, 'smtp' for Transport.</td>
</tr>
<tr>
<td>type</td>
<td>Valid entries are “store” and “transport”.</td>
</tr>
<tr>
<td>class</td>
<td>Class name that implements this protocol.</td>
</tr>
<tr>
<td>vendor</td>
<td>Optional string identifying the vendor.</td>
</tr>
<tr>
<td>version</td>
<td>Optional string identifying the version.</td>
</tr>
</tbody>
</table>

Table 1. Protocol Attributes

Here’s an example of META-INF/javamail.default.providers file contents:

```plaintext
protocol=imap; type=store; class=com.sun.mail.imap.IMAPStore; vendor=Sun;
protocol=smtp; type=transport; class=com.sun.mail.smtp.SMTPTransport;
```
5.1.1.2. javamail.address.map and javamail.default.address.map

These resource files map transport address types to the transport protocol. The jakarta.mail.Address.getType() method returns the address type. The javamail.address.map file maps the transport type to the protocol. The file format is a series of name-value pairs. Each key name should correspond to an address type that is currently installed on the system; there should also be an entry for each jakarta.mail.Address implementation that is present if it is to be used. For example, jakarta.mail.internet.InternetAddress.getType() returns rfc822. Each referenced protocol should be installed on the system. For the case of news, below, the client should install a Transport provider supporting the nntp protocol.

Here are the typical contents of a javamail.address.map file.

```
rfc822=smtp
news=nntp
```

5.1.2. Provider

Provider is a class that describes a protocol implementation. The values come from the javamail.providers and javamail.default.providers resource files.

5.1.3. Protocol Selection and Defaults

The constructor for the Session object initializes the appropriate variables from the resource files. The order of the protocols in the resource files determines the initial defaults for protocol implementations. The methods, getProviders(), getProvider() and setProvider() allow the client to discover the available (installed) protocol implementations, and to set the protocols to be used by default.

At runtime, an application may set the default implementation for a particular protocol. It can set the mail.protocol.class property when it creates the Session object. This property specifies the class to use for a particular protocol. The getProvider() method consults this property first.

The code can also call setProviders() passing in a Provider that was returned by the discovery methods. A Provider object in not normally explicitly created; it is usually retrieved using the getProviders() method.

In either case, the provider specified is one of the ones configured in the resource files. An application may also instantiate a Provider object to configure a new implementation.

5.1.4. Example Scenarios

Scenario 1: The client application invokes the default protocols:
class Application1 {
 init() {
 // application properties include the Jakarta Mail
 // required properties: mail.store.protocol,
 // mail.transport.protocol, mail.host, mail.user
 Properties props = loadApplicationProps();
 Session session = Session.getInstance(props, null);

 // get the store implementation of the protocol
 // defined in mail.store.protocol; the implementation
 // returned will be defined by the order of entries in
 // javamail.providers & javamail.default.providers
 try {
 Store store = session.getStore();
 store.connect();
 } catch (MessagingException mex) {
 ...
 }
 }
}

Scenario 2: The client application presents available implementations to the user and then sets the
user's choice as the default implementation:
```java
class Application2 {
    init() {
        // application properties include the Jakarta Mail
        // properties: mail.store.protocol,
        // mail.transport.protocol, mail.host, mail.user
        Properties props = loadApplicationProps();
        Session session = Session.getInstance(props, null);

        // find out which implementations are available
        Provider[] providers = session.getProviders();

        // ask the user which implementations to use
        // user’s response may include a number of choices,
        // i.e. imap & nntp store providers & smtp transport
        Provider[] userChosenProviders =
            askUserWhichProvidersToUse(providers);

        // set the defaults based on users response
        for (int i = 0; i < userChosenProviders.length; i++)
            session.setProvider(userChosenProviders[i]);

        // get the store implementation of the protocol
        // defined in mail.store.protocol; the implementation
        // returned will be the one configured previously
        try {
            Store store = session.getStore();
            store.connect();
        } catch (MessagingException mex) {} ...
    }
}
```

Scenario 3: Application wants to specify an implementation for a given protocol:
class Application3 {
 init() {
 // application properties include the Jakarta Mail
 // required properties: mail.store.protocol,
 // mail.transport.protocol, mail.host, mail.user
 Properties props = loadApplicationProps();

 // hard-code an implementation to use
 // "com.acme.SMTPTRANSPORT"

 props.put("mail.smtp.class", "com.acme.SMTPTRANSPORT");
 Session session = Session.getInstance(props, null);

 // get the smtp transport implementation; the
 // implementation returned will be com.acme.SMTPTRANSPORT
 // if it was correctly configured in the resource files.
 // If com.acme.SMTPTRANSPORT can’t be loaded, a
 // MessagingException is thrown.
 try {
 Transport transport = session.getTransport("smtp");
 } catch (MessagingException mex) {
 quit();
 }
 }
}

5.2. Managing Security

The Session class allows messaging system implementations to use the Authenticator object that was registered when the session was created. The Authenticator object is created by the application and allows interaction with the user to obtain a user name and password. The user name and password is returned in a PasswordAuthentication object. The messaging system implementation can ask the session to associate a user name and password with a particular message store using the setPasswordAuthentication method. This information is retrieved using the getPasswordAuthentication method. This avoids the need to ask the user for a password when reconnecting to a Store that has disconnected, or when a second application sharing the same session needs to create its own connection to the same Store.

Messaging system implementations can register PasswordAuthentication objects with the Session object for use later in the session or for use by other users of the same session. Because PasswordAuthentication objects contain passwords, access to this information must be carefully controlled. Applications that create Session objects must restrict access to those objects appropriately. In addition, the Session class shares some responsibility for controlling access to the default Session object.
The first call to `getDefaultInstance` creates a new Session object and associates the Authenticator object with the Session object. Later calls to `getDefaultInstance` compare the Authenticator object passed in, to the Authenticator object saved in the default session. If both objects have been loaded by the same class loader, then `getDefaultInstance` will allow access to the default session. Typically, this is the case when both the creator of the default session and the code requesting access to the default session are in the same "security domain." Also, if both objects are null, access is allowed. This last case is discouraged because setting objects to `null` allows access to the default session from any security domain.

In the future, JDK security Permissions could control access to the default session. Note that the Authenticator and PasswordAuthentication classes and their use in Jakarta Mail is similar to the classes with the same names provided in the `java.net` package in the JDK. As new authentication mechanisms are added to the system, new methods can be added to the Authenticator class to request the needed information. The default implementations of these new methods will fail, but new clients that understand these new authentication mechanisms can provide implementations of these methods. New classes other than PasswordAuthentication could be needed to contain the new authentication information, and new methods could be needed in the Session class to store such information. Jakarta Mail design evolution will be patterned after the corresponding JDK classes.

5.3. Store and Folder URLs

To simplify message folder naming and to minimize the need to manage Store and Transport objects, folders can be named using URLNames. URLNames are similar to URLs except they only include the parsing of the URL string. The Session class provides methods to retrieve a Folder object given a URLName:

```java
Folder f = session.getFolder(URLName);
```

or

```java
Store s = session.getStore(URLName);
```
Chapter 6. Message Storage And Retrieval

This section describes Jakarta Mail message storage facilities supported by the Store and Folder classes.

Messages are contained in Folders. New messages are usually delivered to folders by a transport protocol or a delivery agent. Clients retrieve messages from folders using an access protocol.

6.1. The Store Class

The Store class defines a database that holds a Folder hierarchy and the messages within. The Store also defines the access protocol used to access folders and retrieve messages from folders. Store is an abstract class. Subclasses implement specific message databases and access protocols.

Clients gain access to a Message Store by obtaining a Store object that implements the database access protocol. Most message stores require the user to be authenticated before they allow access. The connect method performs that authentication.

For many message stores, a host name, user name, and password are sufficient to authenticate a user. The Jakarta Mail API provides a connect method that takes this information as input parameters. Store also provides a default connect method. In either case, the client can obtain missing information from the Session object’s properties, or by interacting with the user by accessing the Session’s Authenticator object.

The default implementation of the connect method in the Store class uses these techniques to retrieve all needed information and then calls the protocolConnect method. The messaging system must provide an appropriate implementation of this method. The messaging system can also choose to directly override the connect method.

By default, Store queries the following properties for the user name and host name:

- `mail.user` property, or `user.name` system property (if `mail.user` is not set)
- `mail.host`

These global defaults can be overridden on a per-protocol basis by the properties:

- `mail.protocol.user`
- `mail.protocol.host`

Note that passwords can not be specified using properties.

The Store presents a default namespace to clients. Store implementations can also present other namespaces. The getDefaultFolder method on Store returns the root folder for the default namespace.

Clients terminate a session by calling the close method on the Store object. Once a Store is closed (either explicitly using the close method; or externally, if the Mail server fails), all Messaging...
components belonging to that Store become invalid. Typically, clients will try to recover from an unexpected termination by calling connect to reconnect to the Store object, and then fetching new Folder objects and new Message objects.

6.1.1. **Store Events**

Store sends the following events to interested listeners:

<table>
<thead>
<tr>
<th>Event Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ConnectionEvent</td>
<td>Generated when a connection is successfully made to the Store, or when an existing connection is terminated or disconnected.</td>
</tr>
<tr>
<td>StoreEvent</td>
<td>Communicates alerts and notification messages from the Store to the end user. The getMessageType method returns the event type, which can be one of: ALERT or NOTICE. The client must display ALERT events in some fashion that calls the user’s attention to the message.</td>
</tr>
<tr>
<td>FolderEvent</td>
<td>Communicates changes to any folder contained within the Store. These changes include creation of a new Folder, deletion of an existing Folder, and renaming of an existing Folder.</td>
</tr>
</tbody>
</table>

6.2. **The Folder Class**

The Folder class represents a folder containing messages. Folders can contain subfolders as well as messages, thus providing a hierarchical structure. The getType method returns whether a Folder can hold subfolders, messages, or both. Folder is an abstract class. Subclasses implement protocol-specific Message Folders.

The getDefaultFolder method for the corresponding Store object returns the root folder of a user’s default folder hierarchy. The list method for a Folder returns all the subfolders under that folder. The getFolder (String name) method for a Folder object returns the named subfolder. Note that this subfolder need not exist physically in the store. The exists method in a folder indicates whether this folder exists. A folder is created in the store by invoking its create method.

A closed Folder object allows certain operations, including deleting the folder, renaming the folder, listing subfolders, creating subfolders and monitoring for new messages. The open method opens a Folder object. All Folder methods except open, delete, and renameTo are valid on an open Folder object. Note that the open method is applicable only on Folder objects that can contain messages.

The messages within a Folder are sequentially numbered, from 1 through the total number of messages. This ordering is referred to as the “mailbox order” and is usually based on the arrival time of the messages in the folder. As each new message arrives into a folder, it is assigned a sequence number that is one higher than the previous number of messages in that folder. The getMessageNumber method on a Message object returns its sequence number.

The sequence number assigned to a Message object is valid within a session, but only as long as it retains its relative position within the Folder. Any change in message ordering can change the Message object’s sequence number. Currently this occurs when the client calls expunge to remove deleted
messages and renumber messages remaining in the folder.

A client can reference a message stored within a Folder either by its sequence number, or by the corresponding Message object itself. Since a sequence number can change within a session, it is preferable to use Message objects rather than sequence numbers as cached references to messages. Clients extending Jakarta Mail are expected to provide light-weight Message objects that get filled ‘on-demand’, so that calling the `getMessages` method on a Folder object is an in expensive operation, both in terms of CPU cycles and memory. For instance, an IMAP implementation could return Message objects that contain only the corresponding IMAP UIDs.

6.2.1. The FetchProfile Method

The Message objects returned by a Folder object are expected to be light-weight objects. Invoking `getxxx` methods on a Message cause the corresponding data items to be loaded into the object on demand. Certain Store implementations support batch fetching of data items for a range of Messages. Clients can use such optimizations, for example, when filling the header-list window for a range of messages. The FetchProfile method allows a client to list the items it will fetch in a batch for a certain message range.

The following code illustrates the use of FetchProfile when fetching Messages from a Folder. The client fills its header-list window with the Subject, From, and X-mailer headers for all messages in the folder.

```java
Message[] msgs = folder.getMessages();
FetchProfile fp = new FetchProfile();
fp.add(FetchProfile.Item.ENVELOPE);
fp.add("X-mailer");
folder.fetch(msgs, fp);
for (int i = 0; i < folder.getMessageCount(); i++) {
    display(msgs[i].getFrom());
    display(msgs[i].getSubject());
    display(msgs[i].getHeader("X-mailer"));
}
```

6.2.2. Folder Events

Folders generate events to notify listeners of any change in either the folder or in its Messages list. The client can register listeners to a closed Folder, but generates a notification event only after that folder is opened.

Folder supports the following events:
ConnectionEvent

This event is generated when a Folder is opened or closed.

When a Folder closes (either because the client has called `close` or from some external cause), all Messaging components belonging to that Folder become invalid. Typically, clients will attempt to recover by reopening that Folder, and then fetching Message objects.

FolderEvent

This event is generated when the client creates, deletes or renames this folder. Note that the Store object containing this folder can also generate this event.

MessageCountEvent

This event notifies listeners that the message count has changed. The following actions can cause this change:

- *Addition* of new Messages into the Folder, either by a delivery agent or because of an `append` operation. The new Message objects are included in the event.

- *Removal* of existing messages from this Folder. Removed messages are referred to as *expunged* messages. The `isExpunged` method returns true for removed Messages and the `getMessageNumber` method returns the original sequence number assigned to that message. All other Message methods throw a `MessageRemovedException`. See The Folder Class for a discussion of removing deleted messages in shared folders. The expunged Message objects are included in the event. An expunged message is invalid and should be pruned from the client's view as early as possible. See The Expunge Process for details on the expunge method.

6.3. The Expunge Process

Deleting messages from a Folder is a two-phase operation. Setting the DELETED flag on messages marks them as deleted, but it does not remove them from the Folder. The deleted messages are removed only when the client invokes the expunge method on that Folder object. The Folder object then notifies listeners by firing an appropriate MessageEvent. The MessageEvent object contains the expunged Message objects. Note that the expunge method also returns the expunged Message objects. The Folder object also renumbers the messages falling after the expunged messages in the message list. Thus, when the _ expunge method returns, the sequence number of those Message objects will change. Note, however, that the expunged messages still retain their original sequence numbers.

Since expunging a folder can remove some messages from the folder and renumber others, it is important that the client synchronize itself with the expunged folder as early as possible. The next sections describe a set of recommendations for clients wanting to expunge a Folder:

- Expunge the folder; close it; and then reopen and refetch messages from that Folder. This ensures that the client was notified of the updated folder state. In fact, the client can just issue the `close` method with the `expunge` parameter set to true to force an expunge of the Folder during the close operation, thus even avoiding the explicit call to `expunge`.

The content is from Jakarta Mail, Version 3.1, © 2002-2020 Apache Software Foundation.
• The previous solution might prove to be too simple or too drastic in some circumstances. This paragraph describes the scenario of a more complex client expunging a single access folder; for example, a folder that allows only one read-write connection at a time. The recommended steps for such a client after it issues the `expunge` command on the folder are:
 ◦ Update its message count, either by decrementing it by the number of expunged messages, or by invoking the `getMessageCount` method on the Folder.
 ◦ If the client uses sequence numbers to reference messages, it must account for the renumbering of Message objects subsequent to the expunged messages. Thus if a folder has 5 messages as shown below, (sequence numbers are within parenthesis), and if the client is notified that messages A and C are removed, it should account for the renumbering of the remaining messages as shown in the second figure.

```
<table>
<thead>
<tr>
<th>A (1)</th>
<th>B (2)</th>
<th>C (3)</th>
<th>D (4)</th>
<th>E (5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B (1)</td>
<td>D (2)</td>
<td>E (3)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

• The client should prune expunged messages from its internal storage as early as possible.

• The expunge process becomes complex when dealing with a shared folder that can be edited. Consider the case where two clients are operating on the same folder. Each client possesses its own Folder object, but each Folder object actually represents the same physical folder.

If one client expunges the shared folder, any deleted messages are physically removed from the folder. The primary client can probably deal with this appropriately since it initiated this process and is ready to handle the consequences. However, secondary clients are not guaranteed to be in a state where they can handle an unexpected Message removed event— especially if the client is heavily multithreaded or if it uses sequence numbers.

To allow clients to handle such situations gracefully, the Jakarta Mail API applies following restrictions to Folder implementations:
A Folder can remove and renumber its Messages only when it is explicitly expunged using the \textit{expunge} method. When the folder is implicitly expunged, it marks any expunged messages as \textit{expunged}, but it still maintains access to those Message objects. This means that the following state is maintained when the Folder is implicitly expunged:

\begin{itemize}
\item \textit{getMessages} returns expunged Message objects together with valid message objects. However; an expunged message can throw the \text{MessageExpungedException} if direct access is attempted.
\item The messages in the Folder should not be renumbered.
\item The implicit expunge operation can not change the total Folder message count.
\end{itemize}

A Folder can notify listeners of “implicit” expunges by generating appropriate MessageEvents. However, the removed field in the event must be set to false to indicate that the message is still in the folder. When this Folder is explicitly expunged, then the Folder must remove all expunged messages, renumber it’s internal Message cache, and generate MessageEvents for all the expunged messages, with each removed flag set to true.

The recommended set of actions for a client under the above situation is as follows:

\begin{itemize}
\item Multithreaded clients that expect to handle shared folders are advised not to use sequence numbers.
\item If a client receives a MessageEvent indicating message removal, it should check the removed flag. If the flag is false, this indicates that another client has removed the message from this folder. This client might want to issue an \textit{expunge} request on the folder object to synchronize it with the physical folder (but note the caveats in the previous section about using a shared folder). Alternatively, this client might want to close the Folder object (without expunging) and reopen it to synchronize with the physical folder (but note that all message objects would need to be refreshed in this case). The client may also mark the expunged messages in order to notify the end user.
\item If the \textit{removed} flag was set to true, the client should follow earlier recommendations on dealing with explicit expunges.
\end{itemize}

6.4. The Search Process

Search criteria are expressed as a tree of search-terms, forming a parse tree for the search expression. The SearchTerm class represents search terms. This is an abstract class with a single method:

\begin{verbatim}
public boolean match(Message msg);
\end{verbatim}

Subclasses implement specific matching algorithms by implementing the \textit{match} method. Thus new search terms and algorithms can be easily introduced into the search framework by writing the required code using the Java programming language.

The search package provides a set of standard search terms that implement specific match criteria on Message objects. For example, SubjectTerm pattern-matches the given String with the subject header of
public final class SubjectTerm extends StringTerm {
 public SubjectTerm(String pattern);
 public boolean match(Message m);
}

The search package also provides a set of standard logical operator terms that can be used to compose complex search terms. These include AndTerm, OrTerm, and NotTerm.

public boolean match(Message msg) {
 // The AND operator
 for (int i = 0; i < terms.length; i++)
 if (!terms[i].match(msg))
 return false;
 return true;
}

The Folder class supports searches on messages through these search method versions:

public Message[] search(SearchTerm term)
public Message[] search(SearchTerm term, Message[] msgs)

These methods return the Message objects matching the specified search term. The default implementation applies the search term on each Message object in the specified range. Other implementations may optimize this; for example, the IMAP Folder implementation maps the search term into an IMAP SEARCH command that the server executes.
Chapter 7. Jakarta Activation

Jakarta Mail relies heavily on Jakarta Activation to determine the MIME data type, to determine the commands available on that data, and to provide a software component corresponding to a particular behavior.

This section explains how the Jakarta Mail and Jakarta Activation APIs work together to manage message content. It describes how clients using Jakarta Mail can access and operate on the content of Messages and BodyParts. This discussion assumes you are familiar with the Jakarta Activation specification posted at https://jakarta.ee/specifications/activation.

7.1. Accessing the Content

For a client using Jakarta Mail, arbitrary data is introduced to the system in the form of mail messages. The jakarta.mail.Part interface allows the client to access the content. Part consists of a set of attributes and a "content". The Part interface is the common base interface for Messages and BodyParts. A typical mail message has one or more body parts, each of a particular MIME type.

Anything that deals with the content of a Part will use the Part's DataHandler. The content is available through the DataHandlers either as an InputStream or as an object in the Java programming language. The Part also defines convenience methods that call through to the DataHandler. For example: the Part.getContent method is the same as calling Part.getDataHandler().getContent() and the Part.getInputStream method is the same as Part.getDataHandler().getInputStream().

The content returned (either via an InputStream or an object in the Java programming language) depends on the MIME type. For example: a Part that contains textual content returns the following:

- The Part.getContentType method returns text/plain
- The Part.getInputStream method returns an InputStream containing the bytes of the text
- The Part.getContent method returns a java.lang.String object

Content is returned either as an input stream, or as an object in the Java programming language.

- When an InputStream is returned, any mail-specific encodings are decoded before the stream is returned.
- When an object in the Java programming language is returned using the getContent method, the type of the returned object depends upon the content itself. In the Jakarta Mail API, any Part with a main content type set to “multipart/” (any kind of multipart) should return a jakarta.mail.Multipart object from the getContent method. A Part with a content type of message/rfc822 returns a jakarta.mail.Message object from the getContent method.

7.1.1. Example: Message Output

This example shows how you can traverse Parts and display the data contained in a message.
public void printParts(Part p) {
 Object o = p.getContent();
 if (o instanceof String) {
 System.out.println("This is a String");
 System.out.println((String)o);
 } else if (o instanceof Multipart) {
 System.out.println("This is a Multipart");
 Multipart mp = (Multipart)o;
 int count = mp.getCount();
 for (int i = 0; i < count; i++) {
 printParts(mp.getBodyPart(i));
 }
 } else if (o instanceof InputStream) {
 System.out.println("This is just an input stream");
 InputStream is = (InputStream)o;
 int c;
 while ((c = is.read()) != -1)
 System.out.write(c);
 }
}

7.2. Operating on the Content

The DataHandler allows clients to discover the operations available on the content of a Message, and to instantiate the appropriate JavaBeans to perform those operations. The most common operations on Message content are view, edit, and print.

7.2.1. Example: Viewing a Message

Consider a Message “Viewer” Bean that presents a user interface that displays a mail message. This example shows how a viewer bean can be used to display the content of a message (that usually is text/plain, text/html, or multipart/mixed).

```
// message passed in as parameter
void setMessage(Message msg) {
    DataHandler dh = msg.getDataHandler();
    CommandInfo cinfo = dh.getCommand("view");
    Component comp = (Component)
        dh.getBean(cinfo);
    this.setMainViewer(comp);
}
```
7.2.2. Example: Showing Attachments

In this example, the user has selected an attachment and wishes to display it in a separate dialog. The client locates the correct viewer object as follows.

```java
// Retrieve the BodyPart from the current attachment
BodyPart bp = getSelectedAttachment();

DataHandler dh = bp.getDataHandler();
CommandInfo cinfo = dh.getCommand("view");
Component comp = (Component) dh.getBean(cinfo);

// Add viewer to dialog Panel
MyDialog myDialog = new MyDialog();
myDialog.add(comp);

// display dialog on screen
myDialog.show();
```

See Setting Message Content for examples that construct a message for a send operation.

7.3. Adding Support for Content Types

Support for commands acting on message data is an implementation task left to the client. Jakarta Mail and Jakarta Activation APIs intend for this support to be provided by an Activation-Aware JavaBean. Almost all data will require edit and view support.

Currently, the Jakarta Mail API does not provide viewer JavaBeans.

Developers writing a Jakarta Mail client need to write additional viewers that support some of the basic content types — specifically message/rfc822, multipart/mixed, and text/plain. These are the usual content-types encountered when displaying a Message, and they provide the look and feel of the application.

Content developers providing additional data types should refer to the Jakarta Activation specification, that discusses how to create DataContentHandlers and Beans that operate on those contents.
Chapter 8. Message Composition

This section describes the process used to instantiate a message object, add content to that message, and send it to its intended list of recipients.

The Jakarta Mail API allows a client program to create a message of arbitrary complexity. Messages are instantiated from the Message subclass. The client program can manipulate any message as if it had been retrieved from a Store.

8.1. Building a Message Object

To create a message, a client program instantiates a Message object, sets appropriate attributes, and then inserts the content.

- The attributes specify the message address and other values necessary to send, route, receive, decode and store the message. Attributes also specify the message structure and data content type.
- Message content is carried in a DataHandler object, that carries either data or a Multipart object. A DataHandler carries the content body and provides methods the client uses to handle the content. A Multipart object is a container that contains one or more Bodypart objects, each of which can in turn contain DataHandler objects.

8.2. Message Creation

jakarta.mail.Message is an abstract class that implements the Part interface. Therefore, to create a message object, select a message subclass that implements the appropriate message type.

For example, to create a Mime message, a Jakarta Mail client instantiates an empty jakarta.mail.internet.MimeMessage object passing the current Session object to it:

```java
Message msg = new MimeMessage(session);
```

8.3. Setting Message Attributes

The Message class provides a set of methods that specify standard attributes common to all messages. The MimeMessage class provides additional methods that set MIME-specific attributes. The client program can also set non-standard attributes (custom headers) as name-value pairs.

The methods for setting standard attributes are listed below:
public class Message {
 public void setFrom(Address addr);
 public void setFrom(); // retrieves from system
 public void setRecipients(RecipientType type, Address[] addrs);
 public void setReplyTo(Address[] addrs);
 public void setSentDate(Date date);
 public void setSubject(String subject);
 ...
}

The Part interface specifies the following method, that sets custom headers:

public void setHeader(String name, String value)

The setRecipients method takes a RecipientType as its first parameter, which specifies which recipient field to use. Currently, Message.RecipientType.TO, Message.RecipientType.CC, and Message.RecipientType.BCC are defined. Additional RecipientTypes may be defined as necessary.

The Message class provides two versions of the setFrom method:

- setFrom(Address addr) specifies the sender explicitly from an Address object parameter.
- setFrom() retrieves the sender's username from the local system.

The code sample below sets attributes for the MimeMessage just created. First, it instantiates Address objects to be used as To and From addresses. Then, it calls set methods, which equate those addresses to appropriate message attributes:

toAddrs[] = new InternetAddress[1];
toAddrs[0] = new InternetAddress("luke@rebellion.gov");
Address fromAddr = new InternetAddress("han.solo@smuggler.com");

msg.setFrom(fromAddr);
msg.setRecipients(Message.RecipientType.TO, toAddrs);
msg.setSubject("Takeoff time.");
msg.setSentDate(new Date());

8.4. Setting Message Content

The Message object carries content data within a DataHandler object. To add content to a Message, a client creates content, instantiates a DataHandler object, places content into that DataHandler object, and places that object into a Message object that has had its attributes defined.

The Jakarta Mail API provides two techniques that set message content. The first technique uses the
8.4. Setting Message Content

setDataHandler method. The second technique uses the setContent method.

Typically, clients add content to a DataHandler object by calling `setDataHandler(DataHandler)` on a `Message` object. The `DataHandler` is an object that encapsulates data. The data is passed to the `DataHandler`'s constructor as either a `DataSource` (a stream connected to the data) or as an object in the Java programming language. The `InputStream` object creates the `DataSource`. See Jakarta Activation for additional information.

```java
public class DataHandler {
    DataHandler(DataSource dataSource);
    DataHandler(Object data, String mimeType);
}
```

The code sample below shows how to place text content into an `InternetMessage`. First, create the text as a string object. Then, pass the string into a `DataHandler` object, together with its MIME type. Finally, add the `DataHandler` object to the `message` object:

```java
// create brief message text
String content = "Leave at 300.";

// instantiate the DataHandler object
DataHandler data = new DataHandler(content, "text/plain");

// Use setDataHandler() to insert data into the
// new Message object
msg.setDataHandler(data);
```

Alternately, `setContent` implements a simpler technique that takes the data object and its MIME type. `setContent` creates the `DataHandler` object automatically:

```java
// create the message text
String content = "Leave at 300.";

// call setContent to pass content and content type
// together into the message object
msg.setContent(content, "text/plain");
```

When the client calls `Transport.send()` to send this message, the recipient will receive the message below, using either technique:
8.5. Building a MIME Multipart Message

Follow these steps to create a MIME Multipart Message:

1. Instantiate a new MimeMultipart object, or a subclass.

2. Create MimeBodyParts for the specific message parts. Use the setContent method or the setDataHandler method to create the content for each Bodypart, as described in the previous section.

 The default subtype for a MimeMultipart object is mixed. It can be set to other subtypes as required. MimeMultipart subclasses might already have their subtype set appropriately.

3. Insert the Multipart object into the Message object by calling setContent(Multipart) within a newly-constructed Message object.

 The example below creates a Multipart object and then adds two message parts to it. The first message part is a text string, “Spaceport Map,” and the second contains a document of type “application/postscript.” Finally, this multipart object is added to a MimeMessage object of the type described above.
After all message parts are created and inserted, call the `saveChanges` method to ensure that the client writes appropriate message headers. This is identical to the process followed with a single part message. Note that the Jakarta Mail API calls the `saveChanges` method implicitly during the `send` process, so invoking it is unnecessary and expensive if the message is to be sent immediately.
Chapter 9. Transport Protocols and Mechanisms

The Transport abstract class defines the message submission and transport protocol. Subclasses of the Transport class implement SMTP and other transport protocols.

9.1. Obtaining the Transport Object

The Transport object is seldom explicitly created. The getTransport method obtains a Transport object from the Session factory. The Jakarta Mail API provides three versions of the getTransport method:

```java
public class Session {
    public Transport getTransport(Address address);
    public Transport getTransport(String protocol);
    public Transport getTransport();
}
```

- `getTransport(Address address)` returns the implementation of the transport class based on the address type. A user-extensible map defines which transport type to use for a particular address. For example, if the address is an InternetAddress, and InternetAddress is mapped to a protocol that supports SMTP then SMTPTransport can be returned.

- The client can also call `getTransport("smtp")` to request SMTP, or another transport implementation protocol.

- `getTransport()` returns the transport specified in the `mail.transport.protocol` property.

See The Mail Session for details.

9.1.1. Transport Methods

The Transport class provides the connect and protocolConnect methods, which operate similarly to those on the Store class. See The Store Class for details.

A Transport object generates a ConnectionEvent to notify its listeners of a successful or a failed connection. A Transport object can throw an IOException if the connection fails.

Transport implementations should ensure that the message specified is of a known type. If the type is known, then the Transport object sends the message to its specified destinations. If the type is not known, then the Transport object can attempt to reformat the Message object into a suitable version using gatewaying techniques, or it can throw a MessagingException, indicating failure. For example, the SMTP transport implementation recognizes MimeMessages. It invokes the writeTo method on a MimeMessage object to generate a RFC822 format byte stream that is sent to the SMTP host.
The message is sent using the `Transport.send` static method or the `sendMessage` instance method. The `Transport.send` method is a convenience method that instantiates the transports necessary to send the message, depending on the recipients' addresses, and then passes the message to each transport's `sendMessage` method. Alternatively, the client can get the transport that implements a particular protocol itself and send the message using the `sendMessage` method. This adds the benefit of being able to register as event listeners on the individual transports.

Note that the Address[] argument passed to the send and `sendMessage` methods do not need to match the addresses provided in the message headers. Although these arguments usually will match, the end-user determines where the messages are actually sent. This is useful for implementing the Bcc: header, and other similar functions.

9.2. Transport Events

Clients can register as listeners for events generated by transport implementations. (Note that the abstract Transport class doesn't fire any events, only particular protocol implementations generate events). There are two events generated: `ConnectionEvent` and `TransportEvent`.

9.2.1. ConnectionEvent

If the transport connects successfully, it will fire the ConnectionEvent with the type set to OPENED. If the connection times out or is closed, ConnectionEvent with type CLOSED is generated.

9.2.2. TransportEvent

The `sendMessage` method generates a TransportEvent to its listeners. That event contains information about the method's success or failure. There are three types of TransportEvent: `MESSAGE_DELIVERED`, `MESSAGE_NOT_DELIVERED`, `MESSAGE_PARTIALLY_DELIVERED`. The event contains three arrays of addresses: validSent[], validUnsent[], and invalid[] that list the valid and invalid addresses for this message and protocol.

<table>
<thead>
<tr>
<th>Transport Event</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>MESSAGE_DELIVERED</code></td>
<td>When the message has been successfully sent to all recipients by this transport. <code>validSent[]</code> contains all the addresses. <code>validUnsent[]</code> and <code>invalid[]</code> are null.</td>
</tr>
<tr>
<td><code>MESSAGE_NOT_DELIVERED</code></td>
<td>When <code>ValidSent[]</code> is null, the message was not successfully sent to any recipients. <code>validUnsent[]</code> may have addresses that are valid. <code>invalidSent[]</code> may contain invalid addresses.</td>
</tr>
<tr>
<td><code>MESSAGE_PARTIALLY_DELIVERED</code></td>
<td>Message was successfully sent to some recipients but not to all. <code>ValidSent[]</code> holds addresses of recipients to whom the message was sent. <code>validUnsent[]</code> holds valid addresses but the message wasn't sent to them. <code>invalid[]</code> holds invalid addresses.</td>
</tr>
</tbody>
</table>
9.3. Using The Transport Class

The code segment below sends a MimeMessage using a Transport class implementing the SMTP protocol. The client creates two InternetAddress objects that specify the recipients and retrieves a Transport object from the default Session that supports sending messages to Internet addresses. Then the Session object uses a Transport object to send the message.

```java
// Get a session
Session session = Session.getInstance(props, null);

// Create an empty MimeMessage and its part
Message msg = new MimeMessage(session);
... add headers and message parts as before

// create two destination addresses
Address[] addrs = {
    new InternetAddress("mickey@disney.com"),
    new InternetAddress("goofy@disney.com")};

// get a transport that can handle sending message to
// InternetAddresses. This will probably map to a transport
// that supports SMTP.
Transport trans = session.getTransport(addrs[0]);

// add ourselves as ConnectionEvent and TransportEvent listeners
trans.addConnectionListener(this);
trans.addTransportListener(this);

// connect method determines what host to use from the
// session properties
trans.connect();

// send the message to the addresses we specified above
trans.sendMessage(msg, addrs);
```
Chapter 10. Internet Mail

The Jakarta Mail specification does not define any implementation. However, the API does include a set of classes that implement Internet Mail standards. Although not part of the specification, these classes can be considered part of the Jakarta Mail package. They show how to adapt an existing messaging architecture to the Jakarta Mail framework.

These classes implement the Internet Mail Standards defined by the RFCs listed below:

- RFC822 (Standard for the Format of Internet Text Messages)
- RFC2045, RFC2046, RFC2047 (MIME)

RFC822 describes the structure of messages exchanged across the Internet. Messages are viewed as having a header and contents. The header is composed of a set of standard and optional header fields. The header is separated from the content by a blank line. The RFC specifies the syntax for all header fields and the semantics of the standard header fields. It does not however, impose any structure on the message contents.

The MIME RFCs 2045, 2046 and 2047 define message content structure by defining structured body parts, a typing mechanism for identifying different media types, and a set of encoding schemes to encode data into mail-safe characters.

The Internet Mail package allows clients to create, use and send messages conforming to the standards listed above. It gives service providers a set of base classes and utilities they can use to implement Stores and Transports that use the Internet mail protocols. See MimeMessage Object Hierarchy for a Mime class and interface hierarchy diagram.

The Jakarta Mail MimePart interface models an entity as defined in RFC2045, Section 2.4. MimePart extends the Jakarta Mail Part interface to add MIME-specific methods and semantics. The MimeMessage and MimeBodyPart classes implement the MimePart interface. The following figure shows the class hierarchy of these classes.
10.1. The **MimeMessage** Class

The MimeMessage class extends Message and implements MimePart. This class implements an email message that conforms to the RFC822 and MIME standards.

The MimeMessage class provides a default constructor that creates an empty MimeMessage object. The client can fill in the message later by invoking the *parse* method on an RFC822 input stream. Note that the *parse* method is protected, so that only this class and its subclasses can use this method. Service providers implementing 'light-weight' Message objects that are filled in on demand can generate the appropriate byte stream and invoke the *parse* method when a component is requested from a message. Service providers that can provide a separate byte stream for the message body (distinct from the message header) can override the *getContentStream* method.

The client can also use the default constructor to create new MimeMessage objects for sending. The client sets appropriate attributes and headers, inserts content into the message object, and finally calls the *send* method for that MimeMessage object.

This code sample creates a new MimeMessage object for sending. See Message Composition and Transport Protocols and Mechanisms for details.
MimeMessage m = new MimeMessage(session);
// Set FROM:
m.setFrom(new InternetAddress("jmk@Sun.COM"));
// Set TO:
InternetAddress a[] = new InternetAddress[1];
a[0] = new InternetAddress("javamail@Sun.COM");
m.setRecipients(Message.RecipientType.TO, a);
// Set content
m.setContent(data, "text/plain");
// Send message
Transport.send(m);

The MimeMessage class also provides a constructor that uses an input stream to instantiate itself. The constructor internally invokes the parse method to fill in the message. The InputStream object is left positioned at the end of the message body.

MimeMessage m = new MimeMessage(session, in);

MimeMessage implements the writeTo method by writing an RFC822-formatted byte stream of its headers and body. This is accomplished in two steps: First, the MimeMessage object writes out its headers; then it delegates the rest to the DataHandler object representing the content.

10.2. The MimeBodyPart Class

The MimeBodyPart class extends BodyPart and implements the MimePart interface. This class represents a Part inside a Multipart. MimeBodyPart implements a Body Part as defined by RFC2045, Section 2.5.

The getBodyPart(int index) returns the MimeBodyPart object at the given index. MimeMultipart also allows the client to fetch MimeBodyPart objects based on their Content-IDs.

The addBodyPart method adds a new MimeBodyPart object to a MimeMultipart as a step towards constructing a new multipart MimeMessage.
10.3. The MimeMultipart Class

The MimeMultipart class extends Multipart and models a MIME multipart content within a message or a body part.

A MimeMultipart is obtained from a MimePart containing a ContentType attribute set to multipart, by invoking that part's getContent method.

The client creates a new MimeMultipart object by invoking its default constructor. To create a new multipart MimeMessage, create a MimeMultipart object (or its subclass); use set methods to fill in the appropriate MimeBodyParts; and finally, use setContent(Multipart) to insert it into the MimeMessage.

MimeMultipart also provides a constructor that takes an input stream positioned at the beginning of a MIME multipart stream. This class parses the input stream and creates the child body parts.

The getSubType method returns the multipart message MIME subtype. The subtype defines the relationship among the individual body parts of a multipart message. More semantically complex multipart subtypes are implemented as subclasses of MimeMultipart, providing additional methods that expose specific functionality.

Note that a multipart content object is treated like any other content. When parsing a MIME Multipart stream, the Jakarta Mail implementation uses the Jakarta Activation framework to locate a suitable DataContentHandler for the specific subtype and uses that handler to create the appropriate Multipart instance. Similarly, when generating the output stream for a Multipart object, the appropriate DataContentHandler is used to generate the stream.

10.4. The MimeUtility Class

MimeUtility is a utility class that provides MIME-related functions. All methods in this class are static methods. These methods currently perform the functions listed below:

10.4.1. Content Encoding and Decoding

Data sent over RFC 821/822-based mail systems are restricted to 7-bit US-ASCII bytes. Therefore, any non-US-ASCII content needs to be encoded into the 7-bit US-ASCII (mail-safe) format. MIME (RFC 2045) specifies the “base64” and “quoted-printable” encoding schemes to perform this encoding. The following methods support content encoding:

- The getEncoding method takes a DataSource object and returns the Content-Transfer-Encoding that should be applied to the data in that DataSource object to make it mail-safe.
- The encode method wraps an encoder around the given output stream based on the specified Content-Transfer-Encoding. The decode method decodes the given input stream, based on the specified Content-Transfer-Encoding.
10.4.2. Header Encoding and Decoding

RFC 822 restricts the data in message headers to 7bit US-ASCII characters. MIME (RFC 2047) specifies a mechanism to encode non 7bit US-ASCII characters so that they are suitable for inclusion in message headers. This section describes the methods that enable this functionality.

The header-related methods (getHeader, setHeader) in Part and Message operate on Strings. String objects contain (16 bit) Unicode characters.

Since RFC 822 prohibits non US-ASCII characters in headers, clients invoking the setHeader() methods must ensure that the header values are appropriately encoded if they contain non US-ASCII characters.

The encoding process (based on RFC 2047) consists of two steps:

1. Convert the Unicode String into an array of bytes in another charset. This step is required because Unicode is not yet a widely used charset. Therefore, a client must convert the Unicode characters into a charset that is more palatable to the recipient.

2. Apply a suitable encoding format that ensures that the bytes obtained in the previous step are mail-safe.

The encodeText method combines the two steps listed above to create an encoded header. Note that as RFC 2047 specifies, only “unstructured” headers and user-defined extension headers can be encoded. It is prudent coding practice to run such header values through the encoder to be safe. Also note that the encodeText method encodes header values only if they contain non US-ASCII characters.

The reverse of this process (decoding) needs to be performed when handling header values obtained from a MimeMessage or MimeBodyPart using the getHeader set of methods, since those headers might be encoded as per RFC 2047. The decodeText method takes a header value, applies RFC 2047 decoding standards, and returns the decoded value as a Unicode String. Note that this method should be invoked only on “unstructured” or user-defined headers. Also note that decodeText attempts decoding only if the header value was encoded in RFC 2047 style. It is advised that you always run header values through the decoder to be safe.

10.5. The ContentType Class

The ContentType class is a utility class that parses and generates MIME content-type headers.

To parse a MIME content-Type value, create a ContentType object and invoke the toString method.

The ContentType class also provides methods that match Content-Type values.

The following code fragment illustrates the use of this class to extract a MIME parameter.
This code sample uses this class to construct a MIME Content-Type value:

```java
ContentType cType = new ContentType();
cType.setPrimaryType("application");
cType.setSubType("x-foobar");
cType.setParameter("color", "red");

String contentType = cType.toString();
```
Appendix A: Environment Properties

This section lists some of the environment properties that are used by the Jakarta Mail APIs. The Jakarta Mail javadocs contain additional information on properties supported by Jakarta Mail.

Note that Applets can not determine some defaults listed in this Appendix. When writing an applet, you must specify the properties you require.

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
<th>Default Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>mail.store.protocol</td>
<td>Specifies the default Message Access Protocol. The Session.getStore() method returns a Store object that implements this protocol. The client can override this property and explicitly specify the protocol with the Session.getStore(String protocol) method.</td>
<td>The first appropriate protocol in the config files</td>
</tr>
<tr>
<td>mail.transport.protocol</td>
<td>Specifies the default Transport Protocol. The Session.getTransport() method returns a Transport object that implements this protocol. The client can override this property and explicitly specify the protocol by using Session.getTransport(String protocol) method.</td>
<td>The first appropriate protocol in the config files</td>
</tr>
<tr>
<td>mail.host</td>
<td>Specifies the default Mail server. The Store and Transport object's connect methods use this property, if the protocol-specific host property is absent, to locate the target host.</td>
<td>The local machine</td>
</tr>
<tr>
<td>mail.user</td>
<td>Specifies the username to provide when connecting to a Mail server. The Store and Transport object's connect methods use this property, if the protocol-specific username property is absent, to obtain the username.</td>
<td>user.name</td>
</tr>
<tr>
<td>mail.protocol.host</td>
<td>Specifies the protocol-specific default Mail server. This overrides the mail.host property.</td>
<td>mail.host</td>
</tr>
<tr>
<td>Property</td>
<td>Description</td>
<td>Default Value</td>
</tr>
<tr>
<td>------------------</td>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>mail.protocol.user</td>
<td>Specifies the protocol-specific default username for connecting to the Mail server. This overrides the mail.user property.</td>
<td>mail.user</td>
</tr>
<tr>
<td>mail.from</td>
<td>Specifies the return address of the current user. Used by the InternetAddress.getLocalAddress method to specify the current user’s email address.</td>
<td>username@host</td>
</tr>
<tr>
<td>mail.debug</td>
<td>Specifies the initial debug mode. Setting this property to true will turn on debug mode, while setting it to false turns debug mode off. Note that the Session.setDebug method also controls the debug mode.</td>
<td>false</td>
</tr>
</tbody>
</table>
Appendix B: Examples Using the Jakarta Mail API

Following are some example programs that illustrate the use of the Jakarta Mail APIs. These examples are also included in the Jakarta Mail downloads.

B.1. Example: Showing a Message

```java
import java.util.*;
import java.io.*;
import jakarta.mail.*;
import jakarta.mail.event.*;
import jakarta.mail.internet.*;

/*
 * Demo app that exercises the Message interfaces.
 * Show information about and contents of messages.
 *
 * @author John Mani
 * @author Bill Shannon
 */

public class msgshow {

    static String protocol;
    static String host = null;
    static String user = null;
    static String password = null;
    static String mbox = null;
    static String url = null;
    static int port = -1;
    static boolean verbose = false;
    static boolean debug = false;
    static boolean showStructure = false;
    static boolean showMessage = false;
    static boolean showAlert = false;
    static boolean saveAttachments = false;
    static int attnum = 1;

    public static void main(String argv[]) {
        int optind;
        InputStream msgStream = System.in;
```
for (optind = 0; optind < argv.length; optind++) {
 if (argv[optind].equals("-T")) {
 protocol = argv[++optind];
 } else if (argv[optind].equals("-H")) {
 host = argv[++optind];
 } else if (argv[optind].equals("-U")) {
 user = argv[++optind];
 } else if (argv[optind].equals("-P")) {
 password = argv[++optind];
 } else if (argv[optind].equals("-v")) {
 verbose = true;
 } else if (argv[optind].equals("-D")) {
 debug = true;
 } else if (argv[optind].equals("-f")) {
 mbox = argv[++optind];
 } else if (argv[optind].equals("-L")) {
 url = argv[++optind];
 } else if (argv[optind].equals("-p")) {
 port = Integer.parseInt(argv[++optind]);
 } else if (argv[optind].equals("-s")) {
 showStructure = true;
 } else if (argv[optind].equals("-S")) {
 saveAttachments = true;
 } else if (argv[optind].equals("-m")) {
 showMessage = true;
 } else if (argv[optind].equals("-a")) {
 showAlert = true;
 } else if (argv[optind].equals("--")) {
 optind++;
 break;
 } else if (argv[optind].startsWith("-")) {
 System.out.println("\"[-P password] [-f mailbox] [msgnum ...] [-v] [-D] [-s] [-S] [-a]\"");
 System.out.println("or msgshow -m [-v] [-D] [-s] [-S] [-f msg-file]\"");
 System.exit(1);
 } else {
 break;
 }
}

try {
 // Get a Properties object
 Properties props = System.getProperties();

 // Get a Session object
Session session = Session.getInstance(props, null);
session.setDebug(debug);

if (showMessage) {
 MimeMessage msg;
 if (mbox != null)
 msg = new MimeMessage(session,
 new BufferedInputStream(new FileInputStream(mbox)));
 else
 msg = new MimeMessage(session, msgStream);
 dumpPart(msg);
 System.exit(0);
}

// Get a Store object
Store store = null;
if (url != null) {
 URLName urln = new URLName(url);
 store = session.getStore(urln);
 if (showAlert) {
 store.addStoreListener(new StoreListener()
 {
 public void notification(StoreEvent e) {
 String s;
 if (e.getMessageType() == StoreEvent.ALERT)
 s = "ALERT: ";
 else
 s = "NOTICE: ";
 System.out.println(s + e.getMessage());
 }
 });
 }
 store.connect();
} else {
 if (protocol != null)
 store = session.getStore(protocol);
 else
 store = session.getStore();

 // Connect
 if (host != null || user != null || password != null)
 store.connect(host, port, user, password);
 else
 store.connect();
}

// Open the Folder
Folder folder = store.getDefaultFolder();
if (folder == null) {
 System.out.println("No default folder");
 System.exit(1);
}

if (mbox == null)
 mbox = "INBOX";
folder = folder.getFolder(mbox);
if (folder == null) {
 System.out.println("Invalid folder");
 System.exit(1);
}

// try to open read/write and if that fails try read-only
try {
 folder.open(Folder.READ_WRITE);
} catch (MessagingException ex) {
 folder.open(Folder.READ_ONLY);
}
int totalMessages = folder.getMessageCount();

if (totalMessages == 0) {
 System.out.println("Empty folder");
 folder.close(false);
 store.close();
 System.exit(1);
}

if (verbose) {
 int newMessages = folder.getNewMessageCount();
 System.out.println("Total messages = " + totalMessages);
 System.out.println("New messages = " + newMessages);
 System.out.println("-----------------------------");
}

if (optind >= argv.length) {
 // Attributes & Flags for all messages ..
 Message[] msgs = folder.getMessages();

 // Use a suitable FetchProfile
 FetchProfile fp = new FetchProfile();
 fp.add(FetchProfile.Item.ENVELOPE);
 fp.add(FetchProfile.Item.FLAGS);
 fp.add("X-Mailer");
 folder.fetch(msgs, fp);

 for (int i = 0; i < msgs.length; i++) {

B.1. Example: Showing a Message

```java
System.out.println("--------------------------");
System.out.println("MESSAGE #" + (i + 1) + ":");
dumpEnvelope(msgs[i]);
// dumpPart(msgs[i]);
}
} else {
    while (optind < argv.length) {
        int msgnum = Integer.parseInt(argv[optind++]);
        System.out.println("Getting message number: " + msgnum);
        Message m = null;

        try {
            m = folder.getMessage(msgnum);
            dumpPart(m);
        } catch (IndexOutOfBoundsException iex) {
            System.out.println("Message number out of range");
        }
    }
}

folder.close(false);
store.close();
} catch (Exception ex) {
    System.out.println("Oops, got exception! " + ex.getMessage());
ex.printStackTrace();
System.exit(1);
} System.exit(0);
}

public static void dumpPart(Part p) throws Exception {
    if (p instanceof Message)
        dumpEnvelope((Message)p);

    /** Dump input stream ..
    InputStream is = p.getInputStream();
    // If "is" is not already buffered, wrap a BufferedInputStream
    // around it.
    if (!(is instanceof BufferedInputStream))
        is = new BufferedInputStream(is);
    int c;
    while ((c = is.read()) != -1)
        System.out.write(c);
    /**/

    String ct = p.getContentType();
```
try {
 pr("CONTENT-TYPE: " + (new ContentType(ct)).toString());
} catch (ParseException pex) {
 pr("BAD CONTENT-TYPE: " + ct);
}

String filename = p.getFileName();
if (filename != null)
 pr("FILENAME: " + filename);

/*
 * Using isMimeType to determine the content type avoids
 * fetching the actual content data until we need it.
 */
if (p.isMimeType("text/plain")) {
 pr("This is plain text");
 pr("------------------------");
 if (!showStructure && !saveAttachments)
 System.out.println((String)p.getContent());
} else if (p.isMimeType("multipart/*")) {
 pr("This is a Multipart");
 pr("------------------------");
 Multipart mp = (Multipart)p.getContent();
 level++;
 int count = mp.getCount();
 for (int i = 0; i < count; i++)
 dumpPart(mp.getBodyPart(i));
 level--;
} else if (p.isMimeType("message/rfc822")) {
 pr("This is a Nested Message");
 pr("------------------------");
 level++;
 dumpPart((Part)p.getContent());
 level--;
} else {
 if (!showStructure && !saveAttachments) {
 /*
 * If we actually want to see the data, and it's not a
 * MIME type we know, fetch it and check its Java type.
 */
 Object o = p.getContent();
 if (o instanceof String) {
 pr("This is a string");
 pr("------------------------");
 System.out.println((String)o);
 } else if (o instanceof InputStream) {
 pr("This is just an input stream");
 pr("------------------------");
 InputStream is = (InputStream)o;
 } else {
 pr("Unknown content type");
 pr("------------------------");
 }
 }
}
```java
int c;
while ((c = is.read()) != -1)
    System.out.write(c);
} else {
    pr("This is an unknown type");
    pr("--------------------------");
    pr(o.toString());
}
} else {
    // just a separator
    pr("--------------------------");
}

/**
 * If we're saving attachments, write out anything that
 * looks like an attachment into an appropriately named
 * file. Don't overwrite existing files to prevent
 * mistakes.
 */
if (saveAttachments && level != 0 && p instanceof MimeBodyPart && !p.isMimeType("multipart/*") ) {
    String disp = p.getDisposition();
    // many mailers don't include a Content-Disposition
    if (disp == null || disp.equalsIgnoreCase(Part.ATTACHMENT)) {
        if (filename == null)
            filename = "Attachment" + attnum++;
        pr("Saving attachment to file " + filename);
        try {
            File f = new File(filename);
            if (f.exists())
                // XXX - could try a series of names
                throw new IOException("file exists");
            ((MimeBodyPart)p).saveFile(f);
        } catch (IOException ex) {
            pr("Failed to save attachment: " + ex);
        }
        pr("--------------------------");
    }
}

public static void dumpEnvelope(Message m) throws Exception {
    pr("This is the message envelope");
    pr("--------------------------");
    Address[] a;
    // FROM
    if ((a = m.getFrom()) != null) {
        for (Address addr : a) {
            pr(addr);
        }
    }
    // TO
    if ((a = m.getTo()) != null) {
        for (Address addr : a) {
            pr(addr);
        }
    }
    // CC
    if ((a = m.getCc()) != null) {
        for (Address addr : a) {
            pr(addr);
        }
    }
    // BCC
    if ((a = m.getBcc()) != null) {
        for (Address addr : a) {
            pr(addr);
        }
    }
    // Subject
    pr("Subject: " + m.getMessageId());
    // Date
    pr("Date: " + m.getReceived());
    // From
    pr("From: " + m.getFrom());
    // To
    pr("To: " + m.getTo());
    // CC
    pr("Cc: " + m.getCc());
    // BCC
    pr("Bcc: " + m.getBcc());
    // Size
    pr("Content Size: " + m.getSize());
    // Attachment names
    if (p instanceof MimeBodyPart)
```

B.1. Example: Showing a Message
```java
for (int j = 0; j < a.length; j++)
    pr("FROM: " + a[j].toString());

// REPLY TO
if ((a = m.getReplyTo()) != null) {
    for (int j = 0; j < a.length; j++)
        pr("REPLY TO: " + a[j].toString());
}

// TO
if ((a = m.getRecipients(Message.RecipientType.TO)) != null) {
    for (int j = 0; j < a.length; j++) {
        pr("TO: " + a[j].toString());
        InternetAddress ia = (InternetAddress)a[j];
        if (ia.isGroup()) {
            InternetAddress[] aa = ia.getGroup(false);
            for (int k = 0; k < aa.length; k++)
                pr(" GROUP: " + aa[k].toString());
    }
}
}

// SUBJECT
pr("SUBJECT: " + m.getSubject());

// DATE
Date d = m.getSentDate();
pr("SendDate: " +
    (d != null ? d.toString() : "UNKNOWN");

// FLAGS
Flags flags = m.getFlags();
StringBuffer sb = new StringBuffer();
Flags.Flag[] sf = flags.getSystemFlags(); // get the system flags

boolean first = true;
for (int i = 0; i < sf.length; i++) {
    String s;
    Flags.Flag f = sf[i];
    if (f == Flags.Flag.ANSWERED)
        s = "\Answered";
    else if (f == Flags.Flag.DELETED)
        s = "\Deleted";
    else if (f == Flags.Flag.DRAFT)
        s = "\Draft";
    else if (f == Flags.Flag.FLAGGED)
        s = "\Flagged";

    // do something with s
}
```
else if (f == Flags.Flag.RECENT)
 s = "\Recent";
else if (f == Flags.Flag.SEEN)
 s = "\Seen";
else
 continue; // skip it
if (first)
 first = false;
else
 sb.append(' ');
 sb.append(s);
}

String[] uf = flags.getUserFlags(); // get the user flag strings
for (int i = 0; i < uf.length; i++) {
 if (first)
 first = false;
 else
 sb.append(' ');
 sb.append(uf[i]);
}
pr("FLAGS: " + sb.toString());

// X-MAILER
String[] hdrs = m.getHeader("X-Mailer");
if (hdrs != null)
 pr("X-Mailer: " + hdrs[0]);
else
 pr("X-Mailer NOT available");
}

static String indentStr = "
static int level = 0;

/**
 * Print a, possibly indented, string.
 */
public static void pr(String s) {
 if (showStructure)
 System.out.print(indentStr.substring(0, level * 2));
 System.out.println(s);
 }
import java.util.Properties;
import jakarta.mail.*;
import com.sun.mail.imap.*;

/**
 * Demo app that exercises the Message interfaces.
 * List information about folders.
 *
 * @author John Mani
 * @author Bill Shannon
 */

public class folderlist {
 static String protocol = null;
 static String host = null;
 static String user = null;
 static String password = null;
 static String url = null;
 static String root = null;
 static String pattern = "%";
 static boolean recursive = false;
 static boolean verbose = false;
 static boolean debug = false;

 public static void main(String argv[]) throws Exception {
 int optind;
 for (optind = 0; optind < argv.length; optind++) {
 if (argv[optind].equals("-T")) {
 protocol = argv[++optind];
 } else if (argv[optind].equals("-H")) {
 host = argv[++optind];
 } else if (argv[optind].equals("-U")) {
 user = argv[++optind];
 } else if (argv[optind].equals("-P")) {
 password = argv[++optind];
 } else if (argv[optind].equals("-L")) {
 url = argv[++optind];
 } else if (argv[optind].equals("-R")) {
 root = argv[++optind];
 } else if (argv[optind].equals("-r")) {
 recursive = true;
 } else if (argv[optind].equals("-v")) {
 verbose = true;
 }
 }
 }
}
```java
if (argv[optind].equals("-D")) {
    debug = true;
} else if (argv[optind].equals("--")) {
    optind++;
    break;
} else if (argv[optind].startsWith("-")) {
    System.out.println("\t[-R root] [-r] [-v] [-D] [pattern]");
    System.exit(1);
} else {
    break;
}
if (optind < argv.length)
    pattern = argv[optind];

// Get a Properties object
Properties props = System.getProperties();

// Get a Session object
Session session = Session.getInstance(props, null);
session.setDebug(debug);

// Get a Store object
Store store = null;
Folder rf = null;
if (url != null) {
    URLName urln = new URLName(url);
    store = session.getStore(urln);
    store.connect();
} else {
    if (protocol != null)
        store = session.getStore(protocol);
    else
        store = session.getStore();

    // Connect
    if (host != null || user != null || password != null)
        store.connect(host, user, password);
    else
        store.connect();
}

// List namespace
if (root != null)
    rf = store.getFolder(root);
```
else
 rf = store.getDefaultFolder();

dumpFolder(rf, false, "");
if ((rf.getType() & Folder.HOLDS_FOLDERS) != 0) {
 Folder[] f = rf.list(pattern);
 for (int i = 0; i < f.length; i++)
 dumpFolder(f[i], recursive, " ");
}

store.close();

static void dumpFolder(Folder folder, boolean recurse, String tab)
 throws Exception {
 System.out.println(tab + "Name: " + folder.getName());
 System.out.println(tab + "Full Name: " + folder.getFullName());
 System.out.println(tab + "URL: " + folder.getURLName());

 if (verbose){
 if (!folder.isSubscribed())
 System.out.println(tab + "Not Subscribed");

 if ((folder.getType() & Folder.HOLDS_MESSAGES) != 0) {
 if (folder.hasNewMessages())
 System.out.println(tab + "Has New Messages");
 System.out.println(tab + "Total Messages: " +
 folder.getMessageCount());
 System.out.println(tab + "New Messages: " +
 folder.getNewMessageCount());
 System.out.println(tab + "Unread Messages: " +
 folder.getUnreadMessageCount());
 }
 if ((folder.getType() & Folder.HOLDS_FOLDERS) != 0)
 System.out.println(tab + "Is Directory");
 }

 /*
 * Demonstrate use of IMAP folder attributes
 * returned by the IMAP LIST response.
 */
 if (folder instanceof IMAPFolder) {
 IMAPFolder f = (IMAPFolder)folder;
 String[] attrs = f.getAttributes();
 if (attrs != null && attrs.length > 0) {
 System.out.println(tab + "IMAP Attributes:");
 for (int i = 0; i < attrs.length; i++)
 System.out.println(tab + " " + attrs[i]);
 }
 }
B.2. Example: Listing Folders

```java
System.out.println();

if ((folder.getType() & Folder.HOLDS_FOLDERS) != 0) {
    if (recurse) {
        Folder[] f = folder.list();
        for (int i = 0; i < f.length; i++)
            dumpFolder(f[i], recurse, tab + "  ");
    }
}
```
import java.util.*;
import java.io.*;
import jakarta.mail.*;
import jakarta.mail.internet.*;
import jakarta.mail.search.*;
import jakarta.activation.*;

/*
 * Search the given folder for messages matching the given
 * criteria.
 *
 * @author John Mani
 */

public class search {

 static String protocol = "imap";
 static String host = null;
 static String user = null;
 static String password = null;
 static String mbox = "INBOX";
 static String url = null;
 static boolean debug = false;

 public static void main(String argv[]) {
 int optind;

 String subject = null;
 String from = null;
 boolean or = false;
 boolean today = false;
 int size = -1;

 for (optind = 0; optind < argv.length; optind++) {
 if (argv[optind].equals("-T")) {
 protocol = argv[++optind];
 } else if (argv[optind].equals("-H")) {
 host = argv[++optind];
 } else if (argv[optind].equals("-U")) {
 user = argv[++optind];
 } else if (argv[optind].equals("-P")) {
 password = argv[++optind];
 } else if (argv[optind].equals("-or")) {
 or = true;
 }

 ...
} else if (argv[optind].equals("-D")) {
 debug = true;
} else if (argv[optind].equals("-f")) {
 mbox = argv[++optind];
} else if (argv[optind].equals("-L")) {
 url = argv[++optind];
} else if (argv[optind].equals("-subject")) {
 subject = argv[++optind];
} else if (argv[optind].equals("-from")) {
 from = argv[++optind];
} else if (argv[optind].equals("-today")) {
 today = true;
} else if (argv[optind].equals("-size")) {
 size = Integer.parseInt(argv[++optind]);
} else if (argv[optind].equals("-")) {
 optind++;
 break;
} else if (argv[optind].startsWith("-")) {
 System.out.println(
 "[-U user] [-P password] [-f mailbox] " +
 "[-subject subject] [-from from] [-or] [-today]";
 System.exit(1);
} else {
 break;
}
}

try {
 if ((subject == null) && (from == null) && !today && size < 0) {
 System.out.println(
 "Specify either -subject, -from, -today, or -size";
 System.exit(1);
 }

 // Get a Properties object
 Properties props = System.getProperties();

 // Get a Session object
 Session session = Session.getInstance(props, null);
 session.setDebug(debug);

 // Get a Store object
 Store store = null;
 if (url != null) {
 URLName urln = new URLName(url);
 store = session.getStore(urln);
store.connect();
} else {
 if (protocol != null)
 store = session.getStore(protocol);
 else
 store = session.getStore();

 // Connect
 if (host != null || user != null || password != null)
 store.connect(host, user, password);
 else
 store.connect();
}

// Open the Folder
Folder folder = store.getDefaultFolder();
if (folder == null) {
 System.out.println("Can't find default namespace");
 System.exit(1);
}
folder = folder.getFolder(mbox);
if (folder == null) {
 System.out.println("Invalid folder");
 System.exit(1);
}
folder.open(Folder.READ_ONLY);
SearchTerm term = null;
if (subject != null)
 term = new SubjectTerm(subject);
if (from != null) {
 FromStringTerm fromTerm = new FromStringTerm(from);
 if (term != null) {
 if (or)
 term = new OrTerm(term, fromTerm);
 else
 term = new AndTerm(term, fromTerm);
 }
 else
 term = fromTerm;
}
if (today) {
 Calendar c = Calendar.getInstance();
c.set(Calendar.HOUR, 0);
c.set(Calendar.MINUTE, 0);
c.set(Calendar.SECOND, 0);
c.set(Calendar.MILLISECOND, 0);
c.set(Calendar.AM_PM, Calendar.AM);

ReceivedDateTerm startDateTerm =
 new ReceivedDateTerm(ComparisonTerm.GE, c.getTime());
c.add(Calendar.DATE, 1); // next day

ReceivedDateTerm endDateTerm =
 new ReceivedDateTerm(ComparisonTerm.LT, c.getTime());

SearchTree dateTerm =
 new AndTerm(startDateTerm, endDateTerm);

if (term != null) {
 if (or)
 term = new OrTerm(term, dateTerm);
 else
 term = new AndTerm(term, dateTerm);
} else
 term = dateTerm;

if (size >= 0) {
 SizeTerm sizeTerm = new SizeTerm(ComparisonTerm.GT, size);
 if (term != null) {
 if (or)
 term = new OrTerm(term, sizeTerm);
 else
 term = new AndTerm(term, sizeTerm);
 } else
 term = sizeTerm;
}

Message[] msgs = folder.search(term);
System.out.println("FOUND " + msgs.length + " MESSAGES");
if (msgs.length == 0) // no match
 System.exit(1);

// Use a suitable FetchProfile
FetchProfile fp = new FetchProfile();
fp.add(FetchProfile.Item.ENVELOPE);
folder.fetch(msgs, fp);

for (int i = 0; i < msgs.length; i++) {
 System.out.println("--------------------------");
 System.out.println("MESSAGE #" + (i + 1) + ":");
 dumpPart(msgs[i]);
}
folder.close(false);
store.close();
} catch (Exception ex) {
 System.out.println("Oops, got exception! " + ex.getMessage());
 ex.printStackTrace();
}

System.exit(1);
}

public static void dumpPart(Part p) throws Exception {
 if (p instanceof Message) {
 Message m = (Message)p;
 Address[] a;
 // FROM
 if ((a = m.getFrom()) != null) {
 for (int j = 0; j < a.length; j++)
 System.out.println("FROM: " + a[j].toString());
 }
 // TO
 if ((a = m.getRecipients(Message.RecipientType.TO)) != null) {
 for (int j = 0; j < a.length; j++)
 System.out.println("TO: " + a[j].toString());
 }
 // SUBJECT
 System.out.println("SUBJECT: " + m.getSubject());
 // DATE
 Date d = m.getSentDate();
 System.out.println("SendDate: " +
 (d != null ? d.toLocaleString() : "UNKNOWN"));
 // FLAGS:
 Flags flags = m.getFlags();
 StringBuffer sb = new StringBuffer();
 Flags.Flag[] sf = flags.getSystemFlags(); // get the system flags
 boolean first = true;
 for (int i = 0; i < sf.length; i++) {
 String s;
 Flags.Flag f = sf[i];
 if (f == Flags.Flag.ANSWERED)
 s = "\Answered";
 else if (f == Flags.Flag.DELETED)
 s = "\Deleted";
 else if (f == Flags.Flag.DRAFT)
 s = "\Draft";
 if (!first)
 sb.append("");
 sb.append(s);
 first = false;
 }
 System.out.println("Flags: " + sb.toString());
 } else {
 // Handle other types of parts
 }
}
B.3. Example: Search a Folder for a Message

```java
s = "Draft";
else if (f == Flags.Flag.FLAGGED)
    s = "Flagged";
else if (f == Flags.Flag.RECENT)
    s = "Recent";
else if (f == Flags.Flag.SEEN)
    s = "Seen";
else
    continue;    // skip it
if (first)
    first = false;
else
    sb.append(' ');
    sb.append(s);

String[] uf = flags.getUserFlags();    // get the user flag strings
for (int i = 0; i < uf.length; i++) {
    if (first)
        first = false;
    else
        sb.append(' ');
        sb.append(uf[i]);
}
System.out.println("FLAGS = " + sb.toString());
}

System.out.println("CONTENT-TYPE: " + p.getContentType());

/* Dump input stream */
InputStream is = ((MimeMessage)m).getInputStream();
int c;
while ((c = is.read()) != -1)
    System.out.write(c);
*/

Object o = p.getContent();
if (o instanceof String) {
    System.out.println("This is a String");
    System.out.println((String)o);
} else if (o instanceof Multipart) {
    System.out.println("This is a Multipart");
    Multipart mp = (Multipart)o;
    int count = mp.getCount();
    for (int i = 0; i < count; i++)
        dumpPart(mp.getBodyPart(i));
} else if (o instanceof InputStream) {
    System.out.println("This is just an input stream");
```

Jakarta Mail
B.3. Example: Search a Folder for a Message

```java
InputStream is = (InputStream)o;
int c;
while ((c = is.read()) != -1)
    System.out.write(c);
```

import java.util.*;
import java.io.*;
import jakarta.mail.*;
import jakarta.mail.event.*;
import jakarta.activation.*;
import com.sun.mail.imap.*;

/* Monitors given mailbox for new mail */

public class monitor {

 public static void main(String argv[]) {
 if (argv.length != 5) {
 System.out.println("Usage: monitor <host> <user> <password> <mbox> <freq> ");
 System.exit(1);
 }
 System.out.println("\nTesting monitor\n");

 try {
 Properties props = System.getProperties();

 // Get a Session object
 Session session = Session.getInstance(props, null);
 // session.setDebug(true);

 // Get a Store object
 Store store = session.getStore("imap");

 // Connect
 store.connect(argv[0], argv[1], argv[2]);

 // Open a Folder
 Folder folder = store.getFolder(argv[3]);
 if (folder == null || !folder.exists()) {
 System.out.println("Invalid folder");
 System.exit(1);
 }

 folder.open(Folder.READ_WRITE);

 // Add messageCountListener to listen for new messages
 folder.addMessageCountListener(new MessageCountAdapter() {

 }}
 }
}
public void messagesAdded(MessageCountEvent ev) {
 Message[] msgs = ev.getMessages();
 System.out.println("Got " + msgs.length + " new messages");

 // Just dump out the new messages
 for (int i = 0; i < msgs.length; i++) {
 try {
 System.out.println("-----");
 System.out.println("Message "+
 msgs[i].getMessageNumber() + ":");
 msgs[i].writeTo(System.out);
 } catch (IOException ioex) {
 ioex.printStackTrace();
 } catch (MessagingException mex) {
 mex.printStackTrace();
 }
 }
}

// Check mail once in "freq" MILLIseconds
int freq = Integer.parseInt(argv[4]);
boolean supportsIdle = false;
try {
 if (folder instanceof IMAPFolder) {
 IMAPFolder f = (IMAPFolder)folder;
 f.idle();
 supportsIdle = true;
 }
} catch (FolderClosedException fex) {
 throw fex;
} catch (MessagingException mex) {
 supportsIdle = false;
}
for (;;) {
 if (supportsIdle && folder instanceof IMAPFolder) {
 IMAPFolder f = (IMAPFolder)folder;
 f.idle();
 System.out.println("IDLE done");
 } else {
 Thread.sleep(freq); // sleep for freq milliseconds

 // This is to force the IMAP server to send us
 // EXISTS notifications.
 folder.getMessageCount();
 }
}
B.4. Example: Monitoring a Mailbox

```java
} catch (Exception ex) {
    ex.printStackTrace();
}
```
import java.util.*;
import java.io.*;
import jakarta.mail.*;
import jakarta.mail.internet.*;
import jakarta.activation.*;

/**
 * msgmultisendsample creates a simple multipart/mixed message and sends it.
 * Both body parts are text/plain.
 * <p>
 * usage: <code>java msgmultisendsample <i>to from smtp true|false</i></code>
 * where <i>to</i> and <i>from</i> are the destination and
 * origin email addresses, respectively, and <i>smtp</i>
 * is the hostname of the machine that has smtp server
 * running. The last parameter either turns on or turns off
 * debugging during sending.
 * <p>
 * @author Max Spivak
 */

public class msgmultisendsample {
 static String msgText1 = "This is a message body.\nHere's line two."
 static String msgText2 = "This is the text in the message attachment."

 public static void main(String[] args) {
 if (args.length != 4) {
 System.out.println("usage: java msgmultisend <to> <from> <smtp> true|false");
 return;
 }

 String to = args[0];
 String from = args[1];
 String host = args[2];
 boolean debug = Boolean.valueOf(args[3]).booleanValue();

 // create some properties and get the default Session
 Properties props = new Properties();
 props.put("mail.smtp.host", host);

 Session session = Session.getInstance(props, null);
 session.setDebug(debug);

 try {
 // create a message
 MimeMessage msg = new MimeMessage(session);

 // create a multipart/mixed message
 MimeMultipart mp = new MimeMultipart();

 // create the first text/plain body part
 BodyPart bp1 = new BodyPart(msgText1);
 bp1.setHeader("Content-Type", "text/plain");
 mp.addBodyPart(bp1);

 // create the second text/plain body part
 BodyPart bp2 = new BodyPart(msgText2);
 bp2.setHeader("Content-Type", "text/plain");
 mp.addBodyPart(bp2);

 // add the message body
 msg.addBodyPart(mp);

 // open the connection
 Transport transport = session.getConnection();
 transport.sendMessage(msg, msg.getAllRecipients());
 transport.close();
 }
 }
}
msg.setFrom(new InternetAddress(from));
InternetAddress[] address = {new InternetAddress(to)};
msg.setRecipients(Message.RecipientType.TO, address);
msg.setSubject("Jakarta Mail APIs Multipart Test");
msg.setSentDate(new Date());

// create and fill the first message part
MimeBodyPart mbp1 = new MimeBodyPart();
mbp1.setText(msgText1);

// create and fill the second message part
MimeBodyPart mbp2 = new MimeBodyPart();
// Use setText(text, charset), to show it off!
mbp2.setText(msgText2, "us-ascii");

// create the Multipart and its parts to it
Multipart mp = new MimeMultipart();
mp.addBodyPart(mbp1);
mp.addBodyPart(mbp2);

// add the Multipart to the message
msg.setContent(mp);

// send the message
Transport.send(msg);

} catch (MessagingException mex) {
 mex.printStackTrace();
 Exception ex = null;
 if ((ex = mex.getNextException()) != null) {
 ex.printStackTrace();
 }
}
}
Appendix C: Message Security

C.1. Overview

This is not a full specification of how Message Security will be integrated into the Jakarta Mail system. This is a description of implementation strategy. The purpose of this section is to declare that it is possible to integrate message security, not to define how it will be integrated. The final design for Message Security will change based on feedback and finalization of the S/MIME IETF specification.

This section discusses encrypting/decrypting messages, and signing/verifying signatures. It will not discuss how Security Restrictions on untrusted or signed applets will work, nor will it discuss a general authentication model for Stores (For example; a GSS API in the Java platform.)

C.1.1. Displaying an Encrypted/Signed Message

Displaying an encrypted or signed message is the same as displaying any other message. The client uses the DataHandler for that encrypted message together with the "view" command. This returns a bean that displays the data. There will be both a multipart/signed and multipart/encrypted viewer bean (can be the same bean). The beans will need to be aware of the MultiPartSigned/MultiPartEncrypted classes.

C.1.2. MultiPartEncrypted/Signed Classes

The Jakarta Mail API will probably add two new content classes: MultiPartEncrypted and MultiPartSigned. They subclass the MultiPart class and handle the MIME types multipart/encrypted and multipart/signed. There are many possible "protocols" that specify how a message has been encrypted and/or signed. The MPE/MPS classes will find all the installed protocols. The ContentType's protocol parameter determines which protocol class to use. There needs to be a standard registration of protocol objects or a way to search for valid packages and instantiate a particular class. The MultiPart classes will hand off the control information, other parameters, and the data to be manipulated (either the signed or encrypted block) through some defined Protocol interface.

C.1.3. Reading the Contents

There will be times when an applet/application needs to retrieve the content of the message without displaying it. The code sample below shows one possible technique with a message containing encrypted content:
C.1. Overview

The `getContent` method returns a `MultiPartEncrypted` object. There will be methods on this class to decrypt the content. The decryption could either determine which keys needed to be used, use the defaults (maybe the current user's keys) or explicitly pass which keys/certificates to use.

C.1.4. Verifying Signatures

Applications/applets will need to verify the validity of a signature. The code sample below shows how this might be done:

```java
Message msg = // message gotten from some folder
if (msg.isMimeType("multipart/signed")) {
    Object o = msg.getContent();
    if (o instanceof MultiPartSigned) {
        MultiPartSigned mps = (MultiPartSigned) o;
        boolean validsig = mps.verifySignature();
        // could already get the other blocks
        // even if it wasn't a valid signature
    }
}
```

If the signature is invalid, the application can still access the data. There will be methods in `MultiPartSigned` that allow the setting of which keys or certificates to use when verifying the signature.

C.1.5. Creating a Message

There are two methods for creating an Encrypted/Signed message. Users will probably see an editor bean for the content types multipart/signed and multipart/encrypted. These beans would handle the UI components to allow the user to select how they want to encrypt/sign the message. The beans could be
integrated into an application’s Message Composition window.

C.1.6. Encrypted/Signed

The non-GUI method of creating the messages involves using the MultiPartEncrypted/Signed classes. The classes can be created and used as the content for a message. The following code shows how might work:

```java
MultiPartEncrypted mpe = new MultiPartEncrypted();
// Can setup parameters for how you want to encrypt the message; otherwise, it will use the user's preferences.
// Set the content you wish to encrypt (to encrypt multiple contents a multipart/mixed block should be used)
String ourContent = "Please encrypt me!";
mpe.setContent(ourContent);

MimeMessage m = new MimeMessage(session);
m.setContent(mpe);
```

The message will be encrypted when the message is sent. There will be other methods that allow the setting of which encryption scheme shall be used, and the keys involved.

Creating a Multipart Signed message is very similar to creating a Multipart Encrypted message, except that a Multipart Signed object is created instead.
Appendix D: Part and Multipart Class Diagram

This appendix illustrates relationships between Part interfaces and Message classes.
Appendix E: MimeMessage Object Hierarchy

This appendix illustrates the object hierarchy.

![Diagram of MimeMessage Object Hierarchy]