
Jakarta Authentication
Jakarta Authentication Team,

https://projects.eclipse.org/projects/ee4j.authentication

3.1, June 04, 2024: Final

Table of Contents
Eclipse Foundation Specification License - v1.1 . 2

Disclaimers . 3

Preface . 4

Notational Conventions . 4

Audience . 4

Specification Scope . 4

Abstract . 4

Acknowledgments . 5

Expert Group under the JCP . 5

Contributors under the JCP. 5

1. Overview . 6

1.1. Message Processing Model . 6

1.1.1. Authentication Modules . 6

1.1.2. Authentication Contexts . 7

1.1.3. Authentication Context Configuration . 7

1.1.4. Authentication Context Configuration Providers . 8

1.1.5. Request and Response Messages. 8

1.1.6. Message Authentication Policy . 8

1.1.7. Authentication Exchanges and State . 8

1.1.8. Callbacks for Information From the Runtime . 9

1.1.9. Subjects . 10

1.1.10. Status Values and Exceptions . 10

1.2. Typical Runtime Use Model . 11

1.2.1. Acquire AuthConfigProvider . 11

1.2.2. Acquire AuthConfig . 12

1.2.3. Acquire AuthContext Identifier. 12

1.2.4. Acquire Authentication Context . 13

1.2.5. Process Messages . 13

1.3. Terminology . 14

1.4. Assumptions . 16

1.5. Requirements . 17

1.5.1. Non Requirements . 18

2. Message Authentication . 19

2.1. Authentication . 19

2.1.1. Acquire AuthConfigProvider . 19

2.1.1.1. What the Runtime Must Do . 19

2.1.1.2. What the Factory Must Do . 20

2.1.2. Acquire AuthConfig . 20

2.1.2.1. What the Runtime Must Do . 20

2.1.2.2. What the Provider Must Do . 21

2.1.3. Acquire AuthContext Identifier. 21

2.1.3.1. What the Runtime Must Do . 21

2.1.3.2. What the Configuration Must Do . 22

2.1.4. Acquire Authentication Context . 22

2.1.4.1. What the Runtime Must Do . 22

2.1.4.2. What the Configuration Must Do . 22

2.1.5. Process Messages . 23

2.1.5.1. What the Context Must Do . 23

2.1.5.2. What the Runtime Must Do . 23

2.1.5.3. What the Modules Must Do . 28

3. Servlet Container Profile . 29

3.1. Message Layer Identifier . 29

3.2. Application Context Identifier . 29

3.3. Message Requirements . 29

3.4. Module Requirements. 30

3.5. CallbackHandler Requirements . 30

3.6. State . 30

3.7. AuthConfigProvider Requirements . 31

3.8. Authentication Context Requirements . 31

3.8.1. Authentication Context Identifiers. 31

3.8.2. getAuthContext Subject. 32

3.8.3. Module Initialization Properties. 32

3.8.4. MessagePolicy Requirements . 32

3.9. Message Processing Requirements . 32

3.9.1. MessageInfo Requirements . 33

3.9.1.1. MessageInfo Properties . 34

3.9.2. Subject Requirements . 34

3.9.3. ServerAuth Processing . 34

3.9.3.1. validateRequest Before Service Invocation . 34

3.9.3.2. validateRequest After Service Invocation. 36

3.9.3.3. secureResponse Processing . 36

3.9.3.4. Forwards and Includes by Server Authentication Modules . 36

3.9.3.5. Wrapping and UnWrapping of Requests and Responses . 36

3.9.4. Setting the Authentication Results on the HttpServletRequest . 37

3.10. Sub-profile for authenticate, login, and logout of HttpServletRequest. 38

3.10.1. Authentication Configuration Requirements . 38

3.10.2. Processing for HttpServletRequest.login . 39

3.10.3. Processing for HttpServletRequest.authenticate . 39

3.10.4. Processing for HttpServletRequest.logout . 39

3.10.5. Calls from within ServerAuthContext . 40

3.11. Interaction with other specifications . 40

3.11.1. Availability of Jakarta EE component namespaces . 40

3.11.2. Availability of CDI scopes . 41

4. SOAP Profile . 42

4.1. Message Layer Identifier . 42

4.2. Application Context Identifier . 42

4.3. Message Requirements . 42

4.4. Module Requirements. 42

4.5. CallbackHandler Requirements . 42

4.6. AuthConfigProvider Requirements . 43

4.7. Authentication Context Requirements . 43

4.7.1. Authentication Context Identifiers. 44

4.7.2. MessagePolicy Requirements . 44

4.8. Requirements for Client Runtimes. 44

4.8.1. Client-Side Application Context Identifier . 44

4.8.2. CallbackHandler Requirements . 45

4.8.3. AuthConfigProvider Requirements . 45

4.8.4. Authentication Context Requirements . 45

4.8.4.1. getAuthContext Subject . 45

4.8.4.2. Module Initialization Properties . 46

4.8.4.3. MessagePolicy Requirements. 46

4.8.5. Message Processing Requirements . 46

4.8.5.1. MessageInfo Requirements . 46

4.8.5.2. Subject Requirements . 47

4.8.5.3. secureRequest Processing. 47

4.8.5.4. validateResponse Processing . 47

4.9. Requirements for Server Runtimes . 49

4.9.1. Server-Side Application Context Identifier . 49

4.9.2. CallbackHandler Requirements . 49

4.9.3. AuthConfigProvider Requirements . 49

4.9.4. Authentication Context Requirements . 50

4.9.4.1. Module Initialization Properties . 50

4.9.4.2. MessagePolicy Requirements. 50

4.9.5. Message Processing Requirements . 51

4.9.5.1. MessageInfo Requirements . 52

4.9.5.2. Subject Requirements . 52

4.9.5.3. validateRequest Processing . 52

4.9.5.4. secureResponse Processing . 54

5. Future Profiles . 55

5.1. JMS Profile . 55

5.1.1. Message Abstraction . 55

5.1.2. Destinations . 55

5.1.3. Message Processing Model . 55

5.2. RMI/IIOP Portable Interceptor Profile. 55

5.3. Message Abstraction . 55

6. LoginModule Bridge Profile . 56

6.1. Processing Model . 56

6.2. Division of Responsibility. 56

6.3. Standard Callbacks . 57

6.4. Subjects. 57

6.5. Logout . 57

6.6. LoginExceptions . 57

Appendix A: Related Documents . 58

Appendix B: Issues. 59

B.1. Implementing getCallerPrincipal and getUserPrincipal . 59

B.2. Alternative Supported Mechanisms at an Endpoint . 59

B.3. Access by Module to Other Layer Authentication Results . 60

B.4. How Are Target Credentials Acquired by Client Authentication Modules?. 60

B.5. How Does a Module Issue a Challenge? . 60

B.6. Message Correlation for Multi-Message Dialogs . 61

B.7. Compatibility With Load-Balancing Mechanisms . 61

B.8. Use of Generics and Typesafe Enums in Interface Definition . 62

B.9. HttpServletResponse Buffering and Header Commit Semantics . 62

B.10. Reporting New Issues . 63

Appendix C: Revision History . 64

C.1. Early Draft 1 (06/06/2005). 64

C.2. Significant Changes in Public Draft (08/15/2006) . 64

C.2.1. Changes to API . 64

C.2.2. Changes to Processing Model . 64

C.2.3. Changes to Profiles. 65

C.3. Changes in Proposed Final Draft 1. 65

C.3.1. Changes to Preface. 65

C.3.2. Changes to "Overview" Chapter . 65

C.3.3. Changes to "Message Authentication" Chapter . 65

C.3.4. Changes to “Servlet Container Profile” Chapter . 65

C.3.5. Changes to “SOAP Profile” Chapter . 66

C.3.6. Changes to JMS Profile Chapter . 68

C.3.7. Changes to Appendix B, Issues . 68

C.3.8. Changes to API . 68

C.4. Changes in Proposed Final Draft 2. 69

C.4.1. Changes to License. 69

C.4.2. Changes to Servlet Container Profile. 69

C.4.3. Changes to SOAP Profile . 69

C.4.4. Changes to LoginModule Bridge Profile . 69

C.5. Changes in Final Release . 70

C.5.1. Changes to title page . 70

C.5.2. Changes to Preface. 70

C.6. Changes in Maintenance Release A . 70

C.6.1. Changes Effecting Entire Document . 70

C.6.2. Changes to “Message Authentication” Chapter. 70

C.6.3. Changes to API . 70

C.7. Changes in Maintenance Release B . 70

C.7.1. Changes Effecting Entire Document . 70

C.7.2. Changes to Preface. 70

C.7.3. Changes to Servlet Container Profile. 71

C.7.4. Changes to Appendix B, Issues . 71

C.7.5. Changes to API . 71

C.8. Changes in Jakarta Authentication 3.0 . 72

C.8.1. Changes to Servlet Container Profile. 72

Specification: Jakarta Authentication

Version: 3.1

Status: Final

Release: June 04, 2024

Copyright (c) 2018, 2024 Eclipse Foundation.

1

Eclipse Foundation Specification
License - v1.1
By using and/or copying this document, or the Eclipse Foundation document from which this
statement is linked or incorporated by reference, you (the licensee) agree that you have read,
understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation
document from which this statement is linked, in any medium for any purpose and without fee or
royalty is hereby granted, provided that you include the following on ALL copies of the document,
or portions thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a
textual representation is permitted) of the form: "Copyright (c) [$date-of-document] Eclipse
Foundation AISBL <<url to this license>> "

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution
be provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted
pursuant to this license, except anyone may prepare and distribute derivative works and portions
of this document in software that implements the specification, in supporting materials
accompanying such software, and in documentation of such software, PROVIDED that all such
works include the notice below. HOWEVER, the publication of derivative works of this document
for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) [$date-of-document] Eclipse Foundation AISBL. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document]."

2

Disclaimers
THIS DOCUMENT IS PROVIDED "AS IS," AND TO THE EXTENT PERMITTED BY APPLICABLE LAW
THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION AISBL MAKE NO REPRESENTATIONS
OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT
THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE
IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

TO THE EXTENT PERMITTED BY APPLICABLE LAW THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION AISBL WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR
CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE
PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation AISBL may NOT be
used in advertising or publicity pertaining to this document or its contents without specific, written
prior permission. Title to copyright in this document will at all times remain with copyright
holders.

3

Preface
This document is the Jakarta Authentication Specification, version 3.1.

Notational Conventions
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as
described in RFC 2119, "Key words for use in RFCs to Indicate Requirement Levels" [RFC2119].

Audience
This document is intended for developers of a Compatible Implementation and of the Technology
Compatibility Kit and for those who will be delivering implementations of this technology in their
products.

Specification Scope
Jakarta Authentication defines a general low-level SPI for authentication mechanisms, which are
controllers that interact with a caller and a container’s environment to obtain the caller’s
credentials, validate these, and pass an authenticated identity (such as name and groups) to the
container.

Jakarta Authentication consists of several profiles, with each profile telling how a specific container
(such as Jakarta Servlet) can integrate with- and adapt to this SPI.

Abstract
This specification defines a service provider interface (SPI) by which authentication providers
implementing message authentication mechanisms may be integrated in client or server message
processing containers or runtimes. Authentication providers integrated through this interface
operate on network messages provided to them by their calling container. They transform outgoing
messages such that the source of the message may be authenticated by the receiving container, and
the recipient of the message may be authenticated by the message sender. They authenticate
incoming messages and return to their calling container the identity established as a result of the
message authentication. The SPI is applicable to diverse messaging protocols (including SOAP,
Jakarta Messaging, and HTTP) and message processing runtimes (including Jakarta EE containers).

This specification extends the pluggable authentication concepts of the Java Authentication and
Authorization Service (JAAS) to the authentication of network messages. This effect is achieved by
evolving the JAAS login model to facilitate the integration of security functionality at differentiated
points within a logical message processing model and by defining corresponding authentication
interfaces that make the network messages available for processing by authentication modules.

4

https://tools.ietf.org/html/rfc2119

Acknowledgments
The authors would like to thank the original JCP JSR-196 Expert Group and Contributors.

Expert Group under the JCP

Steven Bazyl RSA Security, Inc. Shing Wai Chan Sun
Microsystems

Herb Erickson Novell, Inc.

Johan Gellner Tmax Soft, Inc. Steven Kinser Novell, Inc. Boris Koberle Sap AG.

Mikko Kolehmainen Nokia
Networks

Charlie Lai Sun Microsystems Hal Lockart BEA Systems

Thomas Maslen Quest Software Cameron Morris Novell, Inc. Larry McCay Individual

Ron Monzillo Sun Microsystems Anthony Nadalin IBM Nataraj Nagaratnam IBM

Raymond K. Ng Oracle
Corporation

Arvind Prabhakar Sun
Microsystems

Anil Saldhana JBoss, Inc.

Rajiv Shivane Pramati
Technologies

Neil Smithline BEA Systems Jeppe Sommer Trifork

Contributors under the JCP

Venu Gopal Sun Microsystems Will Hopkins Oracle America,
Inc.

V. B. Kumar Jayanti Sun
Microsystems

Manveen Kaur Sun
Microsystems

Raja Perumal Sun Microsystems Tim Quinn Oracle America, Inc.

Gursharan Singh Sun
Microsystems

Anil Tappetla Sun Microsystems Arjan Tijms

5

Chapter 1. Overview
This chapter introduces the message processing model facilitated by this specification and the
interfaces defined to integrate message authentication facilities within this model.

1.1. Message Processing Model
A typical message interaction between a client and server begins with a request from the client to
the server. The server receives the request and dispatches it to a service to perform the requested
processing. When the service completes, it may create a response that is returned back to the client.

The SPI defined by the specification is structured such that message processing runtimes can inject
security processing at four points in the typical message interaction scenario. A message processing
runtime uses the SPI at these points to delegate the corresponding message security processing to
authentication providers (that is, authentication modules) integrated into the runtime by way of the
SPI.

The following diagram depicts the four interaction points. The names of the interaction points
represent the methods of the corresponding ClientAuthModule (client authentication module) and
ServerAuthModule (server authentication module) interfaces defined by the SPI.

Client

secure Request (1) validate Request (2)

Server

Dispatch to Service

secure Response (3)validate Response (4)

Figure 1-1 Message Processing Model [1]

1.1.1. Authentication Modules

As described above, there are two types of authentication modules. A client authentication module
implements the ClientAuthModule interface and is invoked (indirectly) by a message processing
runtime at points 1 and 4 (that is, secureRequest and validateResponse) in the message processing
model. A server authentication module implements the ServerAuthModule interface and is invoked
(indirectly) by a message processing runtime at points 2 and 3 (that is, validateRequest and
secureResponse) in the message processing model.

When an authentication module is invoked at the identified message processing points, it is
provided access to the request and response messages (as appropriate to the point in the
interaction) and proceeds to secure or validate them as appropriate. For example, when
secureRequest is invoked on a client authentication module, the module may attach a user name
and password to the request message. Similarly, when validateRequest is called, the server

6

authentication module may extract a user name and password from the message and validate them
against a user database. Note that authentication modules are responsible for securing or
validating messages, while the message processing runtime remains responsible for transport of
messages and invocation of the corresponding application level processing.

A message processing runtime invokes client authentication modules by interacting with a client
authentication context object, and server authentication modules by interacting with a server
authentication context object. An authentication context object is an implementation of either the
ClientAuthContext or ServerAuthContext interface as defined by this specification. A message
processing runtime may acquire the authentication context objects that it uses to invoke
authentication modules by interacting with an authentication context configuration object. An
authentication context configuration object is an implementation of either the ClientAuthConfig or
ServerAuthConfig interface as defined by this specification.

1.1.2. Authentication Contexts

An authentication context is responsible for constructing, initializing, and coordinating the
invocation of one or more encapsulated authentication modules. If the context implementation
supports the configuration of multiple authentication modules within a context (for example, as
sufficient alternatives), the context coordinates the invocation of the authentication modules on
behalf of both the message processing runtime and the authentication modules.

A client message processing runtime interacts with an implementation of the ClientAuthContext
interface to invoke the authentication modules of the context to perform message processing at
points 1 and 4 (secureRequest and validateResponse) of the message processing model. Similarly, a
server message processing runtime interacts with an implementation of the ServerAuthContext
interface to invoke the modules of the context to perform message processing at points 2 and 3
(validateRequest and secureResponse) of the message processing model.

1.1.3. Authentication Context Configuration

An authentication context configuration object serves a message processing runtime as the source
of authentication contexts pertaining to the messages of an application at a messaging layer. The
context configuration implementation is responsible for returning authentication context objects
that encapsulate authentication module invocations sufficient to satisfy the security policy
configured for an application message. A message processing runtime may use a representation of
the message being processed to obtain the corresponding authentication context from the
appropriate authentication context configuration object.

A client authentication context configuration object implements the ClientAuthConfig interface and
provides ClientAuthContext objects for use by a message processing runtime at points 1 and 4
(secureRequest and validateResponse) in the message processing model. A server authentication
context configuration object implements the ServerAuthConfig interface and provides
ServerAuthContext objects for use by a message processing runtime at points 2 and 3
(validateRequest and secureResponse) in the message processing model.

A message processing runtime may acquire authentication context configuration objects by
interacting with a provider of authentication context configuration objects.

7

1.1.4. Authentication Context Configuration Providers

An authentication context configuration provider is an implementation of the AuthConfigProvider
interface. An authentication context configuration provider serves as a source of authentication
context configuration objects, where as noted above, each configuration object serves as the source
of authentication contexts pertaining to the messages of an application at a messaging layer.

An authentication context configuration provider embodies the implementation of a message
authentication configuration mechanism. Each such configuration mechanism encapsulates the
message authentication processing pertaining to applications in configuration objects that return
context objects that coordinate the invocation of pluggable authentication modules to perform
message authentication on behalf of the corresponding applications.

The AuthConfigFactory class serves as the catalog or registry of authentication context providers
available for use by a runtime. A message processing runtime may interact with the factory to
obtain or establish the provider registered for an application context and messaging layer.

1.1.5. Request and Response Messages

Request and response messages are Java representations of the corresponding protocol messages,
and are passed to authentication modules through an implementation of the MessageInfo interface
which provides common methods for accessing protocol specific messages.

Authentication Modules that operate on messages for a specific protocol (for example, SOAP
messages) are expected to be configured for and called from an appropriate message processing
runtime (for example, a SOAP message processing runtime).

1.1.6. Message Authentication Policy

When an authentication module is initialized within an authentication context, it is passed policy
information that specifies what authentication guarantees the module is to enforce when securing
or validating request and response messages within that context. Policy information is conveyed by
the authentication context to the authentication module in the form of MessagePolicy objects. Two
separate MessagePolicy objects are passed to the module through its initialize method: One defines
the message authentication policy to be applied to the request message, and the other defines the
message authentication policy to be applied to the response.

A message authentication policy can be targeted at specific parts of the related message or to the
message as a whole, and conveys the high level authentication guarantees that must be enforced by
the modules of a context. The policy may specify, for example, that the source of a request must be
authenticated. The mechanisms by which a module enforces the guarantees, or, in other words,
how the module enforces the guarantees is up to the module.

1.1.7. Authentication Exchanges and State

Authentication modules should be implemented such that they may be invoked concurrently and
such that they are able to apply and establish independent security identities for concurrent
invocations. To this end, modules should rely on their invocation parameters and the callbacks
supported by the CallbackHandler with which they were initialized to obtain any information

8

required to establish the invocation context for which they were invoked.

In a multi-message authentication scenario, it is the responsibility of the authentication modules
involved in the authentication to tie together or correlate the messages that comprise the
authentication exchange. In addition to message correlation to tie together the messages required
to complete an authentication, message correlation may also be employed post-authentication such
that a prior authentication result or session may be applied to a subsequent invocation. Modules
are expected to perform their message correlation function based on the parameters of their
invocation and with the benefit of any additional facilities provided by the invoking runtime (for
example, through their CallbackHandler).

To assist modules in performing their correlation function, calls made to validateResponse must be
made with the same messageInfo object used in the call to secureRequest (or validateResponse) that
elicited the response. Similarly, calls made to secureResponse must be made with the same
messagInfo object that was passed to validateRequest (for the corresponding request message).
Modules are also expected to avail themselves of persisted state management facilities (for
example, jakarta.servlet.http.HttpSession facilities) provided by the invoking runtime. The use of
such facilities prior to authentication may increase the system’s susceptibility to a denial-of-service
attack, and their use by authentication modules should be considered in that regard.

For security mechanisms or protocols where message correlation is dependent on the content of
exchanged messages, it is the responsibility of the authentication modules to ensure that the
required correlation information is inserted in the exchanged messages. For security mechanisms
where message correlation is dependent on context external to the exchanged messages, such as
the transport connection or session on which messages are received, the authentication modules
will be dependent on correlation related facilities provided by the runtime.

This version of this specification does not define the interfaces by which runtimes present
correlation facilities to authentication modules.

1.1.8. Callbacks for Information From the Runtime

Authentication modules may require security information from the message processing
environment that invoked them. For example, a ClientAuthModule may require access to the client’s
key pair to sign requests made on behalf of the client. The client’s keys would typically have been
configured as part of the client application itself. Likewise, a ServerAuthModule may require access to
the server’s key pair to sign responses from the server. The server’s keys would typically be
configured as part of the server.

To access cryptographic keys or other external security credentials configured as part of the
encompassing runtime, an authentication module is provided with a CallbackHandler (at
initialization). The CallbackHandler is provided by the encompassing runtime and serves to provide
the authentication module with access to facilities of the encompassing runtime.

The module can ask the CallbackHandler to handle requests for security information needed by the
module to perform its message authentication processing.

9

1.1.9. Subjects

When an authentication module is invoked to validate a message, it is passed a Subject object to
receive the credentials of the source of the message and a separate Subject object to represent the
credentials of the recipient of the message (such that they are available to validate the message).
When an authentication module is invoked to validate a message, it communicates the message
source or caller authentication identity to its calling runtime (for example, container) through (that
is, by modifying) the Subject associated with the source of the message.

Authentication modules may rely on the Subjects as well as the CallbackHandler, described in
Section 1.1.8, to obtain the security information necessary to secure or validate messages. When an
authentication module is invoked to secure a message, it is passed a Subject object that may convey
the credentials of the source of the message (such that they are available to secure the request).

1.1.10. Status Values and Exceptions

Authentication modules and authentication contexts return AuthStatus values to characterize the
outcome of their message processing. When an AuthStatus value is returned, its value represents
the logical result of the module processing and indicates that the module has established a
corresponding request or response message within the MessageInfo parameter exchanged with the
runtime.

Authentication modules and authentication contexts throw exceptions when their processing was
unsuccessful and when that processing did not establish a corresponding request or response
message to convey the error.

The vocabulary of AuthStatus values and exceptions returned by authentication modules, and their
mapping to the message processing points at which they may be returned, is represented in the
following table.

Table 1-1 AuthStatus and AuthException to Message Processing Point Matrix

status or exception secureRequest validateRequest secureResponse validateResponse

SUCCESS Yes Yes

FAILURE Yes Yes

SEND_SUCCESS Yes Yes Yes

SEND_FAILURE Yes Yes

SEND_CONTINU
E

Yes Yes Yes Yes

AuthException Yes Yes Yes Yes

The following table describes the high level semantics associated with the status values and
exceptions presented in the preceding table.

Table 1-2 AuthStatus and AuthException Semantics

10

status or exception semantic

SUCCESS Validation of a received message was successful and produced either
the request (validateRequest) message to be dispatched to the service,
or the response (validateResponse) message to be returned to the
client application.

FAILURE A failure occurred on the client-side (secureRequest or
validateResponse) and produced a failure response message to be
returned to the client application.

SEND_SUCCESS Processing of a request (secureRequest or validateRequest) or
response (secureResponse) message was successful and produced the
request (secureRequest) or response (validateRequest,
secureResponse) message to be sent to the peer.

SEND_FAILURE A failure occurred on the service-side (validateRequest or
secureResponse) and produced a failure response message to be sent
to the client.

SEND_CONTINU
E

Processing was incomplete. Additional message exchanges will be
required to achieve successful completion. The processing produced
the next request (secureRequest or validateResponse) or response
(validateRequest or secureResponse) message to be sent to the peer.

AuthException A failure occurred on the client-side (secureRequest or
validateResponse) or service-side (validateRequest or secureResponse)
without producing a failure response message.

The expected behavior of runtimes in response to AuthStatus return values and AuthException
exceptions is described in See What the Runtime Must Do. These behaviors may be specialized in
profiles of this specification.

1.2. Typical Runtime Use Model
In the typical use model, a runtime would perform the five steps defined in the following
subsections to secure or validate a message. In many cases, some or all of steps 1-4 will be
performed once, while step 5 would be repeated for each message to be processed.

1.2.1. Acquire AuthConfigProvider

The message processing runtime acquires a provider of authentication context configuration
objects for the relevant messaging layer and application identifier. This step is typically done once
for each application, and may be accomplished as follows:

AuthConfigFactory factory = AuthConfigFactory.getFactory();
AuthConfigProvider provider = factory.getConfigProvider(layer, appID, listener);

11

jaspic.html#a317

1.2.2. Acquire AuthConfig

The message processing runtime acquires the authentication context configuration object for the
application from the provider. This step is typically done at application deployment, and may be
accomplished as follows:

ClientAuthConfig clientConfig =
 provider.getClientAuthConfig(layer, appID, callbackHandler);

or:

ServerAuthConfig serverConfig =
 provider.getServerAuthConfig(layer, appID, callbackHandler);

The resulting authentication context configuration object encapsulates all authentication contexts
for the application at the layer. Its internal state will be kept up to date by the configuration system,
and from this point until the application is undeployed, the configuration object represents a stable
point of interaction between the runtime and the integrated authentication mechanisms for the
purpose of securing the messages of the application at the layer.

A callback handler is associated with the configuration object when it is obtained from the
provider. This callback handler will be passed to the authentication modules within the
authentication contexts acquired from the configuration object. The runtime provides the callback
handler so that the authentication modules may employ facilities of the messaging runtime (such as
keying infrastructure) in their processing of application messages.

1.2.3. Acquire AuthContext Identifier

At points (1) and (2) in the message processing model, a message processing runtime creates a
MessageInfo object and sets within it the message or messages being processed. The runtime uses
the MessageInfo to acquire the authentication context identifier corresponding to the message from
the authentication configuration object. This step is typically performed for every different [2]

request and may be accomplished by a runtime as follows:

String authContextID = clientConfig.getAuthContextID(messageInfo);

or:

String authContextID = serverConfig.getAuthContextID(messageInfo);

The authentication context identifier will be used to select the authentication context with which to
perform the message processing. In cases where the configuration system cannot determine the
context identifier [3], the value null will be returned.

12

1.2.4. Acquire Authentication Context

The authentication identifier is used to acquire an authentication context from the authentication
context configuration object. The acquired authentication context encapsulates the one or more
authentication modules that are to be invoked to process the identified messages. The
authentication context is acquired from the authentication context configuration object as follows:

ClientAuthContext clientContext =
 clientConfig.getAuthContext(authContextID, clientSubject, properties);

or:

ServerAuthContext serverContext =
 serverConfig.getAuthContext(authContextID, serviceSubject, properties);

The properties argument is used to pass additional initialization time properties to the
authentication modules encapsulated in the authentication context. Such properties might be used
to convey values specific to this use of the context by a user or with a specific service.

The Subject argument is used to make the principals and credentials of the sending entity available
during the acquisition of the authentication context. If the Subject is not null, additional principals
or credentials (pertaining to the sending entity) may be added (to the Subject) during the context
acquisition.

1.2.5. Process Messages

Appropriate to its point of processing in the messaging model, the messaging runtime uses the
MessageInfo described in Step 3 to invoke a method of the authentication context obtained in Step 4.

At point (1) in the messaging model, the`clientSubject` may contain the credentials used to secure
the request, or the modules of the context may collect the client credentials including by using the
callback handler passed through to them by the context. MessageInfo would contain a request
message about to be sent. On successful return from the context, the runtime would extract the
secured request message from messageInfo and send it.

(1) AuthStatus status = clientContext.secureRequest(messageInfo, clientSubject);

At point (2), the clientSubject receives any principals or credentials established as a result of
message validation by the authentication modules of the context. The serviceSubject may contain
the credentials of the service or the modules of the context may collect the service credentials, as
necessary, by using the callback handler passed to them by the context. MessageInfo would contain a
received request message. On successful return from the context, the runtime may use the
clientSubject to authorize and dispatch the validated request message, as appropriate.

(2) AuthStatus status = serverContext.validateRequest(messageInfo, clientSubject,

13

serviceSubject);

At point (3), the serviceSubject may contain the credentials used to secure the response, or the
modules of the context may collect the service credentials including by using the callback handler
passed through to them by the context. The MessageInfo would contain a response message about to
be sent and may also contain the corresponding request message received at point (2). On return
from the context, the runtime would send the secured response message.

(3) AuthStatus status = serverContext.secureResponse(messageInfo, serviceSubject);

At point (4), the serviceSubject receives any principals or credentials established as a result of
message validation by the authentication modules of the context. The clientSubject may contain
the credentials of the receiving client or the modules of the context may collect the client
credentials, as necessary, by using the callback handler passed to them by the context. MessageInfo
would contain a received response message and may also contain the associated request message
sent at point (1). On successful return from the context, the runtime may use the serviceSubject to
authorize the response and would return the received message to the client, as appropriate.

(4) AuthStatus status =
 clientContext.validateResponse(messageInfo, clientSubject, serviceSubject);

1.3. Terminology

authentication context

A Java Object that implements the ClientAuthContext and/or ServerAuthContext
interfaces and that is responsible for constructing, initializing, and
coordinating the invocation of one or more encapsulated authentication
modules. Authentication context objects are classified as client or server
authentication contexts.

authentication context configuration

A Java Object that implements the AuthConfig Interface and that serves as the
source of client or server authentication context objects pertaining to the
processing of messages for an application at a messaging layer.

authentication context configuration provider

A Java Object that implements the AuthConfigProvider Interface and that serves
as the source of authentication context configuration objects.

authentication module

A Java Object that implements the ClientAuthModule and/or ServerAuthModule
message authentication interfaces defined by this specification.

authentication provider

A synonym for an authentication module.

14

client authentication context

An authentication context that implements the ClientAuthContext interface
and that encapsulates client authentication modules.

client authentication context configuration

An authentication context configuration that implements the ClientAuthConfig
interface and that returns client authentication contexts.

client authentication module

A Java Object that implements the ClientAuthModule interface defined by this
specification.

message layer

The name associated within a message processing runtime with a messaging
protocol or abstraction, and which may be used in the interfaces defined by
this specification to cause the integration of security mechanisms at the
corresponding points within the messaging runtime.

message processing runtime

The process or component (for example, container) responsible for sending
and receiving, including establishing the transports used for such purposes,
the application messages to be secured using the interfaces defined by this
specification. Message processing runtimes are characterized as client, server,
or as both client and server message processing runtimes. A client message
processing runtime sends service requests and receives service responses. A
server message processing runtime receives service requests and sends
service responses.

message (layer) security

A network security mechanism that operates above the transport and below
the application messaging layers, and that typically operates by encapsulating
or associating application layer messages within a securing context that may
be independent of the transport or connection over which the messages are
communicated.

meta message

A mechanism specific message sent in addition to (for example, in an advance
of) the application messages, typically for the purpose of establishing or
modifying the context (such as security) in which application messages will be
exchanged.

server authentication context

An authentication context that implements the ServerAuthContext interface
and that encapsulates server authentication modules.

server authentication context configuration

An authentication context configuration that implements the ServerAuthConfig
interface and that encapsulates client authentication context.

15

server authentication module

A Java Object that implements the ServerAuthModule interface defined by this
specification.

1.4. Assumptions
The following assumptions apply to the interfaces defined by this specification:

1. This specification defines interfaces for integrating message layer security functionality in Java
messaging runtimes. These interfaces are intended to be employed by Jakarta Enterprise
Edition (Jakarta EE version 9 and beyond) messaging runtimes, and by any Java messaging
runtime that chooses to use them to support integration of message layer security functionality.

2. The interfaces defined by this specification have been developed for use within the message
processing runtimes of service consumers (for example, clients) and service providers (for
example, servers).

3. Interoperability between a message processing runtime that employs the interfaces defined by
this specification and any other system will depend on the formats of the exchanged messages,
not on the interfaces used to process them.

4. This specification will define profiles to establish the requirements governing the use of its
interfaces within specific messaging contexts or runtimes. Additional profiles may be defined in
futures releases of this specification, or external to it.

5. This specification promotes authentication modules as the pluggable unit of message layer
security functionality. In the typical integration scenario, a new message layer security
mechanism is integrated in a message processing runtime as the result of the configuration of a
new authentication module.

6. Mechanisms that feature or require more complex or specialized configuration functionality
may depend on integration of a corresponding configuration provider which may encapsulate
authentication module pluggability, including such that it occurs as the result of provider
configuration.

7. A message processing runtime that uses the interfaces defined by this specification will remain
responsible for sending and receiving, including establishing the transports used for such
purposes, the application messages secured through these interfaces. The integrated security
mechanism code is responsible for adding security constructs to messages to be sent, and for
interpreting security constructs contained in received messages.

8. As needed to perform its primary function (that is, to add to and validate security constructs in
messages provided to it by its messaging runtime), an authentication mechanism integrated
through the interfaces defined in this specification may use its own facilities or those of its
calling runtime to exchange additional messages with the same or with other parties.

9. Some multi-message authentication dialogs require that the sending runtime be able to delay or
retry application message transmission until after a preliminary authentication dialog has
completed. Where a sending runtime is unable to perform such functionality, effective
integration of a dependent security mechanism may require that the integrated security
facilities perform the required delay and retry functionality.

16

10. Authentication mechanisms integrated in a messaging runtime through the interfaces defined
by this specification may require access to sensitive security information (for example,
cryptographic keys) for which access may have otherwise been limited to the messaging
runtime.

11. Independent of message transformations performed by one or more integrated security
mechanisms, the client messaging runtime must remain capable of associating received
responses with sent requests.

1.5. Requirements
The interfaces defined by this specification must comply with the following:

1. Be compatible with versions of Java beginning with 1.8.

2. Be compatible with a wide range of messaging protocols and runtimes.

3. Support the integration and configuration of message security mechanisms in Java message
processing runtimes that retain responsibility for the transport of application layer messages.

4. Provide integrated authentication mechanisms with access to the application messages
transported by the messaging runtime, especially for the purpose of adding or validating
contained security credentials.

5. Define a means for an integrated security mechanism to establish (for example, application
layer) response messages as necessary to implement security mechanisms.

6. Define a means for an integrated security mechanism to effect the destination address of
outgoing messages.

7. Support the binding of received messages to configured security mechanisms at various levels
of granularity such as per messaging runtime, per messaging layer, per application, and per
message.

8. Support the integration of alternative security mechanism configuration facilities as required to
support specific security mechanisms or to integrate into standard or existing configuration
infrastructures.

9. Support the runtime binding of user or application client credentials to invocations of
authentication modules.

10. Support the establishment of Subject based authorization identities by integrated
authentication mechanisms.

11. Define a means for integrated security mechanisms to gain access to facilities (for example, key
repositories, password databases, and subject or principal interpretation interfaces) of their
calling messaging runtime.

12. Facilitate the correlation of the associated request and response processing performed by an
authentication module.

13. Support runtime parameterization of security mechanism invocation such that a single
mechanism configuration can be employed to secure commonly protected exchanges with
different service entities.

14. Support the apportionment of responsibility for creation and maintenance of stateful security

17

contexts among a messaging runtime and its integrated security mechanisms, especially such
that context invalidation (including as a result of policy modification) by either party is
appropriately detected by the other.

15. Support the portable implementation (including by third parties) of security mechanisms such
that they may be integrated in any messaging runtime which is compatible with the
corresponding interfaces of this specification.

1.5.1. Non Requirements

1. The standardization of specific principals or credentials to be added by authentication modules
to subjects.

2. The standardization of additional interfaces or callbacks to allow JAAS login modules to secure
the request and response messages exchanged by Jakarta EE containers.

3. The standardization of interfaces to interact with network authentication services, or to
represent the security credentials acquired from such services.

4. The standardization of application programming interfaces for use in establishing or
manipulating security contexts in Subjects.

[1] The dashed lines between validateRequest and validateResponse convey additional message exchanges that may occur when
message validation requires a multi-message dialog, such as would occur in challenge-response protocols.

[2] A client runtime may be able to tell when a request is the same, based on the context (for example, stub) from which the
request is made.

[3] For example, where the message content that defines the identifier is encrypted.

18

Chapter 2. Message Authentication
This chapter defines how message processing runtimes invoke authentication modules to secure or
validate request and response messages. It describes the interactions that occur between message
processing runtimes and authentication modules to cause security guarantees to be enforced on
request and response messages.

The subsections of this chapter establish the common requirements that pertain to the use of this
specification in a generic message processing context. Profiles are expected to be defined to
establish the specific requirements pertaining to the use of this specification in a particular
message processing context.

The API defined by this specification is intended to have more general applicability than the
contexts of use defined in this specification. To that end, a runtime that provides compatible Java
definitions of the interfaces defined by this specification and compatible Java implementations of
the defined classes satisfies the baseline compatibility requirements of this specification.

2.1. Authentication
As defined in Section 1.2 a message processing runtime’s interaction with the interfaces defined by
this specification is divided into the following five phases:

1. Acquire AuthConfigProvider – Runtime acquires a provider of authentication context
configuration objects for the relevant messaging layer and application identifier.

2. Acquire AuthConfig – Runtime acquires the authentication context configuration object for the
application from the provider.

3. Acquire AuthContext Identifier – Runtime acquires the authentication context identifier
corresponding to the messages to be processed.

4. Acquire Authentication Context – Runtime uses the context identifier to obtain the
corresponding authentication context.

5. Process Message(s) – Runtime uses the authentication context to process the messages.

The remaining sections of this chapter define the requirements that must be satisfied by messaging
runtimes and providers in support of each of the five interactions identified above.

2.1.1. Acquire AuthConfigProvider

2.1.1.1. What the Runtime Must Do

For a message processing runtime to be able to invoke authentication modules configured
according to this specification, the JVM of the message processing runtime must have been
configured or initialized such that it has loaded the abstract AuthConfigFactory class, and such that
the getFactory method of the abstract class (loads, as necessary, and) returns a concrete
implementation of AuthConfigFactory. When called by the messaging runtime with layer and
appContext arguments, the getConfigProvider method of the returned factory implementation must
return the corresponding (as a result of configuration or registration) AuthConfigProvider object (or

19

null if no provider is configured for the arguments).

This specification defines authorization protected configuration interfaces, and a message
processing runtime must support the granting, to applications and administration utilities, of the
permissions required to employ these configuration interfaces.

A message processing runtime that wishes to invoke authentication modules configured according
to this specification must use the AuthConfigFactory.getFactory method to obtain a factory
implementation. The runtime must invoke the getConfigProvider method of the factory to obtain
the AuthConfigProvider. The runtime must specify appropriate (non-null) layer and application
context identifiers in its call to getConfigProvider. The specified values must be as defined by the
profile of this specification being followed by the messaging runtime.

A runtime may continue to reuse a provider for as long as it wishes. However, a runtime that
wishes to be notified of changes to the factory that would cause the factory to return a different
provider for the layer and appContext arguments should include a (non-null) RegistrationListener
as an argument in the call used to acquire the provider. When a listener argument is included in
the call to acquire a provider, the factory will invoke the notify method of the listener when the
correspondence between the provider and the layer and application context for which it had been
acquired is no longer in effect. When the notify method is invoked by the factory, the runtime
should reacquire an AuthConfigProvider for the layer and application context.

2.1.1.2. What the Factory Must Do

The factory implementation must satisfy the requirements defined by the AuthConfigFactory class.
In particular, it must offer a public, zero argument constructor that supports the construction and
registration of AuthConfigProvider objects from a persistent declarative representation.

2.1.2. Acquire AuthConfig

2.1.2.1. What the Runtime Must Do

Once the runtime has obtained the appropriate (non-null) AuthConfigProvider, it must obtain from
the provider the authentication context configuration object corresponding to the messaging layer,
its role as client or server, and the application context for which it will be exchanging messages. It
does this by invoking getClientAuthConfig or getServerAuthConfig as appropriate to the role of the
runtime in the message exchange. A runtime operating at points 1 and 4 in the messaging model
must invoke getClientAuthConfig to acquire its configuration object. A runtime operating at points 2
and 3 in the messaging model must invoke getServerAuthConfig to acquire its configuration object.
The call to acquire the configuration object must specify the same values for layer and application
context identifier that were used to acquire the provider. Depending on the profile of this
specification being followed by the messaging runtime, a CallbackHandler may also be a required
argument of the call to acquire the configuration object. When a profile requires a CallbackHandler,
the profile must also specify the callbacks that must be supported by the handler.

A runtime may continue to reuse an acquired authentication context configuration object for as
long as it is acting as client or server of the corresponding application. A runtime should reacquire
an authentication context configuration object when it is notified (through a RegistrationListener)
that it must reacquire the AuthConfigProvider from which the configuration object was acquired

20

(and after having reacquired the provider).

2.1.2.2. What the Provider Must Do

The provider implementation must satisfy the requirements defined by the AuthConfigProvider
interface. In particular, it must return non-null authentication configuration objects. Moreover,
when the provider is a dynamic configuration provider, any change to the internal state of the
provider occurring as the result of a call to its refresh method must be recognized by every
authentication context configuration object obtained from the provider.

The provider implementation must provide a configuration facility that may be used to configure
the information required to initialize authentication contexts for the (one or more) authentication
context configuration scopes (defined by layer and application context) for which the provider is
registered (at the factory).

To allow for delegation of session management to authentication contexts and their contained
authentication modules, it must be possible for one or more of the authentication context
configuration scopes handled by an AuthConfigProvider to be configured such that the
getAuthContext method of the corresponding authentication context configuration objects will
return a non-null authentication context for all authentication context identifier values,
independent of whether or not the corresponding messages require protection. In this case,
contexts returned for messages for which protection is NOT required must initialize their contained
authentication modules with request and/or response MessagePolicy objects for which
isMandatory() returns false (while allowing for the case where one of either request or response
policy may be null).

A sample and perhaps typical context initialization model is described in Section 2.1.4.2. Providers
must offer a configuration facility sufficient to sustain the typical context initialization model.

2.1.3. Acquire AuthContext Identifier

2.1.3.1. What the Runtime Must Do

At points (1) and (2) in the messaging model, the message processing runtime must obtain the
authentication context identifier corresponding to the request message processing being performed
by the runtime.

The identifier may be acquired by calling the getAuthContextID method of the authentication
context configuration object (obtained in the preceding step). If the messaging runtime chooses to
obtain the context identifier by this means, it must provide a MessageInfo object as argument to the
getAuthContextID call, and the MessageInfo must have been initialized such that its getRequestMessage
method will return the request message being processed by the runtime. The type of the returned
request message must be as defined by the profile of this specification being followed by the
messaging runtime.

Alternatively and depending on the requirements relating to authentication context identifier
inherent in the profile being followed by the messaging runtime, the runtime may obtain the
identifier by other means. Where a profile defines or facilitates other means by which a messaging
runtime may acquire the identifier, the identifier acquired by any such means must be equivalent

21

to the identifier that would be acquired by calling getAuthContextID as described above.

2.1.3.2. What the Configuration Must Do

The configuration implementation must satisfy the requirements defined by the AuthConfig
interface with respect to the getAuthContextID method.

2.1.4. Acquire Authentication Context

2.1.4.1. What the Runtime Must Do

At points (1) and (2) in the messaging model, the message processing runtime must invoke the
getAuthContext method of the authentication context configuration object (obtained in step 2) to
obtain the authentication context object corresponding to the message that is to be processed. This
is accomplished by invoking getAuthContext with the authentication context identifier
corresponding to the request message and obtained as described above. If required by the profile of
this specification being followed by the runtime, the call to getAuthContext must pass a Map
containing the required property elements. The value of the Subject argument provided by the
runtime in its call to getAuthContext must correspond to the requirements of the profile of this
specification being followed by the runtime.

Once an authentication context is acquired, it may be reused to process subsequent requests of the
application for which an equivalent authentication context identifier, Subject, and properties Map
(as used in the getAuthContext) applies. Runtimes that wish to be dynamic with respect to changes in
context configuration should call getAuthContext for every request. An authentication context
configuration object may return the same authentication context object for different authentication
context identifiers for which the same module configuration and message protection policy applies.

At points (3) and (4) in the messaging model, the runtime may repeat the context acquisition
performed at point (2) and (1) respectively, or it may reuse the previously acquired context.

2.1.4.2. What the Configuration Must Do

The configuration implementation must satisfy the requirements defined by the corresponding
ClientAuthConfig or ServerAuthConfig interface with respect to the getAuthContext method. In this
regard, the configuration implementation must determine the authentication modules that are to
comprise the acquired context, and it must provide the context implementation with sufficient
information to initialize the modules of the context. The getAuthContext method must return null
when no authentication modules are to be invoked for an identified authentication context at the
layer and application context represented by the configuration object.

The interfaces by which an authentication context configuration object obtains a properly
configured or initialized authentication context object are implementation-specific. That said, it is
expected that the typical context initialization will require the following information:

• The CallbackHandler (if any) to be passed to the modules of the context

• A list of one or more module configurations (one for each module of the context), and where
each such configuration conveys (either directly or indirectly) the following information:

◦ The implementation class for the authentication module (that is, an implementation of the

22

ClientAuthModule or ServerAuthModule interface as appropriate to the type of the containing
context)

◦ The module specific initialization properties (in a form compatible with conveyance to the
module by using a Map)

◦ The request and response MessagePolicy objects for the module

◦ The context-specific control attributes to be used by the context to coordinate the invocation
of the module with respect to the other modules of the context

To sustain the above requirements, the AuthConfigProvider from which the authentication context
configuration object was acquired must provide a configuration facility by which the information
required to initialize authentication contexts may be configured and associated with one or more
authentication context identifiers within the (one or more) layer and application context scopes for
which the provider is registered (at the factory).

2.1.5. Process Messages

2.1.5.1. What the Context Must Do

Every context implementation must satisfy the requirements as defined by the corresponding
ClientAuthContext or ServerAuthContext interface.

Every context is responsible for constructing and initializing the one or more authentication
modules assigned to the context by the authentication context configuration object. The
initialization step includes passing the relevant request and response MessagePolicy objects to the
authentication modules. These policy objects may have been acquired by the authentication context
configuration object and provided as arguments through the internal interfaces used by the
configuration object to acquire the context.

Every context must delegate calls made to the methods of its corresponding ClientAuth or
ServerAuth interface to the corresponding methods of its one or more authentication modules. If a
context encapsulates multiple authentication modules, the context must embody the control logic to
determine which modules of the context are to be invoked and in what order. Contexts which
encapsulate alternative sufficient modules must ensure that the same message values are passed to
each invoked alternative of the context. If a context invokes multiple authentication modules, the
context must combine the AuthStatus values returned by the invoked authentication modules to
establish the AuthStatus value returned by the context to the messaging runtime. The context
implementation must define the logic for combining the returned AuthStatus values.

2.1.5.2. What the Runtime Must Do

If a non-null authentication context object is returned by getAuthContext, the corresponding
message processing runtime must invoke the methods of the acquired authentication context to
process the corresponding request and response messages as defined below. Otherwise, the
message processing runtime must proceed with its normal processing of the corresponding
messages and without invoking the methods of an authentication context object.

At point (1) in the message processing model:

23

• The message processing runtime must call the secureRequest method of the ClientAuthContext.

• The messageInfo argument to the call must have been initialized such that its
getRequestMessage method will return the request message being processed by the runtime.
The type of the returned request message must be as defined by the profile being followed.

• If a non-null Subject was used to acquire the ClientAuthContext, the same Subject must be
passed as the clientSubject in this call. If a non-null clientSubject is used in this call, it must not
be read-only, and the same clientSubject argument must be passed in all calls to
validateResponse made for the one or more responses processed to complete the message
exchange.

• If the call to secureRequest returns:

◦ AuthStatus.SEND_SUCCESS – The runtime should send (without calling secureRequest) the
request message acquired by calling messageInfo.getRequestMessage. After sending the
request, the runtime should proceed to point (4) in the message processing model (to receive
and validate the response).

◦ AuthStatus.SEND_CONTINUE – The module has returned, in messageInfo, an initial request
message to be sent. Moreover, the module is informing the client runtime that it will be
required to continue the message dialog by sending the message resulting from validation of
the response to the initial message. If the runtime will be unable to continue the dialog by
sending the message resulting from validation of the response, the runtime must not send
the initial request and must convey its inability by returning an error to the client
application. Otherwise, the runtime should send (without calling secureRequest) the request
message acquired by calling messageInfo.getRequestMessage.

◦ AuthStatus.FAILURE – The runtime should return an error to the client application. The
runtime should derive the returned error from the response message acquired by calling
messageInfo.getResponseMessage.

◦ Throws an AuthException – The runtime should use the exception to convey to the client
runtime that the request failed.

At point (4) in the message processing model:

• The message processing runtime must call the validateResponse method of the
ClientAuthContext.

• In the call made to validateResponse, the runtime must pass the same MessageInfo instance that
was passed to secureRequest (at the start of the message exchange). The messageInfo argument
must have been initialized such that its getResponseMessage method will return the response
message being processed by the runtime.The type of the required return messages must be as
defined by the profile being followed.

• The value of the clientSubject argument to the call must be the same as that passed in the call
to secureRequest for the corresponding request.

• The serviceSubject argument to the call may be non-null, in which it must not be read-only and
may be used by modules to store Principals and credentials determined to pertain to the source
of the response.

• If the call to validateResponse returns:

24

◦ AuthStatus.SUCCESS – The runtime should use the response message acquired by calling
messageInfo.getResponseMessage to create the value to be returned to the client.

◦ AuthStatus.SEND_CONTINUE – If the runtime is unable to process this status value, it must
return an error to the client application indicating its inability to process this status value.
To process this status value, the runtime must send (without calling secureRequest) the
(continuation) request message obtained by calling messageInfo.getRequestMessage, and it
must receive and process by using validateResponse (at least) the next corresponding
response or error (before returning a value to the client).

◦ AuthStatus.FAILURE – The runtime should return an error to the client application. The
runtime should derive the returned error from the response message acquired by calling
messageInfo.getResponseMessage.

◦ Throws an AuthException – The runtime should use the exception to convey to the client
runtime that the request failed.

Figure 2-2 State Diagram of Client Message Processing Runtime

25

At point (2) in the message processing model:

• The message processing runtime must call the validateRequest method of the ServerAuthContext.

• The messageInfo argument to the call must have been initialized such that its getRequestMessage
method will return the request message being processed by the runtime. For some profiles of
this specification, the runtime must also initialize messageInfo such that its getResponseMessage
method will return the response message being processed by the runtime. The type of the
required return messages must be as defined by the profile being followed.

• The clientSubject argument must be non-null and it must not be read-only. It is expected that
the modules of the authentication context will populate this Subject with principals and
credentials resulting from their processing of the request message.

• If a non-null Subject was used to acquire the ServerAuthContext, the same Subject must be
passed as the serviceSubject in this call. If a non-null serviceSubject is used in this call, it must
not be read-only, and the same serviceSubject must be passed in the call to secureResponse for
the corresponding response (if there is one).

• If the call to validateRequest returns:

◦ AuthStatus.SUCCESS – The runtime should proceed to authorize the request using the
clientSubject, perform the application request processing (depending on the authorization
result), and proceed to point (3) as appropriate [1]

◦ AuthStatus.SEND_SUCCESS – The runtime should send (without calling secureResponse) the
response message acquired by calling messageInfo.getResponseMessage, at which time the
processing of the application request and its corresponding response will be complete. The
runtime must NOT proceed to authorize the request or perform the application request
processing.

◦ AuthStatus.SEND_CONTINUE – The runtime should send (without calling secureResponse) the
response message acquired by calling messageInfo.getResponseMessage. The runtime must
NOT proceed to authorize the request or perform the application request processing. The
processing of the application request is not finished, and as such, its outcome is not yet
known.

◦ AuthStatus.SEND_FAILURE – The runtime must NOT proceed to authorize the request or
perform the application request processing. If the failure occurred after [2] the service
invocation, the runtime must perform whatever processing it requires to complete the
processing of a request that failed after a successful service invocation, and prior to
communicating the invocation result to the client runtime. The runtime may send (without
calling secureResponse) the response message acquired by calling
messageInfo.getResponseMessage.

◦ Throws an AuthException – The runtime must NOT proceed to authorize the request or
perform the application request processing. If the failure occurred after the service
invocation, the runtime must perform whatever processing it requires to complete the
processing of a request that failed after the service invocation, and prior to communicating
the invocation result to the client runtime. The runtime may send (without calling
secureResponse) a failure message of its choice. If a failure message is returned, it should
indicate whether the failure in request processing occurred before or after the service
invocation.

26

At point (3) in the message processing model:

• The message processing runtime must call the secureResponse method of the ServerAuthContext.
The call to secureResponse should be made independent of the result of the application request
processing.

• In the call made to secureResponse, the runtime must pass the same MessageInfo instance that
was passed to validateRequest (for the corresponding request message). The messageInfo
argument must have been initialized such that its getResponseMessage method will return the
response message being processed by the runtime. The type of the required return messages
must be as defined by the profile being followed.

• The value of the serviceSubject argument to the call must be the same as that passed in the call
to validateRequest for the corresponding request.

• If the call to secureResponse returns:

◦ AuthStatus.SEND_SUCCESS – The runtime should send (without calling secureResponse) the
response message acquired by calling messageInfo.getResponseMessage at which time the
processing of the application request and its corresponding response will be complete.

◦ AuthStatus.SEND_CONTINUE – The runtime should send (without calling secureResponse) the
response message acquired by calling messageInfo.getResponseMessage. The processing of the
response is not finished, and as such, its outcome is not yet known.

◦ AuthStatus.SEND_FAILURE – The runtime must perform whatever processing it requires to
complete the processing of a request that failed after (or during) service invocation, and
prior to communicating the invocation result to the client runtime. This may include
sending (without calling secureResponse) the response message acquired by calling
messageInfo.getResponseMessage.

◦ Throws an AuthException – The runtime must perform whatever processing it requires to
complete the processing of a request that failed after (or during) service invocation, and
prior to communicating the invocation result to the client runtime. The runtime may send
(without calling secureResponse) an appropriate response message of its choice. If a failure
message is returned, it should indicate that the failure in request processing occurred after
the service invocation.

27

Figure 2-3 State Diagram of Server Message Processing Runtime

2.1.5.3. What the Modules Must Do

The authentication module implementations within the context must satisfy the requirements as
defined by the corresponding ClientAuthModule or ServerAuthModule interface.

[1] The application request processing must not be performed if the request authorization fails. If the runtime intends to return a
response message to indicate the failed authorization, the profile of this specification being followed by the runtime must establish
whether or not secureResponse must be called prior to sending the authorization failure message.

[2] validateRequest is called to process all received messages, including security mechanism-specific messages sent by clients in
response to service response messages.

28

Chapter 3. Servlet Container Profile
This chapter defines a profile of the use of the interfaces defined in this specification by Servlet
containers to enforce the declarative authentication constraints of the Servlet container security
model.

This profile focuses on points 2 (and, to a lesser degree), 3 in the message processing model. This
profile does not specify the behavior of the corresponding client runtime (that is, points 1 and 4 in
the message processing model).

The profile-specific requirements defined in this chapter are to be considered in addition to the
generic requirements defined in Chapter 2. A compatible implementation of this profile is a servlet
container that satisfies all of the requirements that apply to this profile.

3.1. Message Layer Identifier
The message layer value used to select the AuthConfigProvider and ServerAuthConfig objects for this
profile must be "HttpServlet".

3.2. Application Context Identifier
The application context identifier (that is, the appContext parameter value) used to select the
AuthConfigProvider and ServerAuthConfig objects for a specific application shall be the String value
constructed by concatenating the host name, a blank separator character, and the decoded context
path corresponding to the web module.

AppContextID ::= hostname blank context-path

For example: "java-server /petstore"

This profile uses the term host name to refer to the name of a logical host that processes Servlet
requests. Servlet requests may be directed to a logical host using various physical or virtual host
names or addresses, and a message processing runtime may be composed of multiple logical hosts.
Systems or administrators that register AuthConfigProvider objects with specific application context
identifiers must have an ability to determine the host name for which they wish to perform the
registration.

A Jakarta Servlet container that implements a version of the Jakarta Servlet specification that
defines the getVirtualServerName method on the ServletContext interface, must construct its
application context identifiers using a value for hostname that is equivalent to the value returned by
calling getVirtualServerName on the ServletContext corresponding to the web application.

3.3. Message Requirements
The MessageInfo argument used in any call made by the message processing runtime to
validateRequest or secureResponse must have been initialized such that the non-null objects

29

returned by the getRequestMessage and getResponseMessage methods of the MessageInfo are an
instanceof HttpServletRequest and HttpServletResponse, respectively.

3.4. Module Requirements
The getSupportedMessageTypes method of all authentication modules integrated for use with this
profile must include jakarta.servlet.http.HttpServletRequest.class and
jakarta.servlet.http.HttpServeletResponse.class in its return value.

3.5. CallbackHandler Requirements
The CallbackHandler passed to ServerAuthModule.initialize is determined by the handler argument
passed in the AuthConfigProvider.getServerAuthConfig call that acquired the corresponding
authentication context configuration object. The handler argument must not be null, and the
argument handler and the CallbackHandler passed to ServerAuthModule.initialize must support the
following callbacks:

• CallerPrincipalCallback

• GroupPrincipalCallback

• PasswordValidationCallback

The CallbackHandler passed to ServerAuthModule.initialize should also support the following
callbacks, and it must be possible to configure the runtime such that the CallbackHandler passed to
ServerAuthModule.initialize supports the following callbacks in addition to those listed above.

• CertStoreCallback

• PrivateKeyCallback

• SecretKeyCallback

• TrustStoreCallback

The argument handler and the CallbackHandler passed through to the authentication modules must
be initialized with any application context required to process its supported callbacks on behalf of
the corresponding application.

3.6. State
For this profile it is RECOMMENDED that the CallbackHandler does not keep any state for a single
HTTP request or HTTP session. That is, the CallbackHandler SHOULD be considered to have an
application scope lifetime equivalent to an HttpServlet instance, and expect to handle calls
concurrently from different requests.

To that end it’s RECOMMENDED that the CallbackHandler uses the Subject that’s passed in to the
following callbacks to store per-request state:

• CallerPrincipalCallback

• GroupPrincipalCallback

30

• PasswordValidationCallback

3.7. AuthConfigProvider Requirements
The factory implementation returned by calling the getFactory method of the abstract
AuthConfigFactory class must have been configured such that it returns a non-null
AuthConfigProvider for those application contexts for which pluggable authentication modules have
been configured at the “HttpServlet” layer.

For each application context for which it is servicing requests, the runtime must call
getConfigProvider to acquire the provider object corresponding to the layer and application
context. The layer and appContext arguments to getConfigProvider must be as defined in Section 3.1,
and Section 3.2 respectively. If a non-null AuthConfigProvider is returned, the messaging runtime
must call getServerAuthConfig on the provider to obtain the authentication context configuration
object pertaining to the application context at the layer. The layer and appContext arguments of the
call to getServerAuthConfig must be the same as those used to acquire the provider, and the handler
argument must be as defined in Section 3.5.

A null return value from getConfigProvider indicates that pluggable authentication modules have
not been configured at the layer for the application context and that the messaging runtime must
proceed to perform servlet security constraint processing (for the application context) without
further reliance on this profile.

3.8. Authentication Context Requirements
When a non-null AuthConfigProvider is returned by the factory, the provider must have been
configured with the information required to initialize the authentication contexts for the (one or
more) authentication context configuration scopes (defined by layer and application context) for
which the provider is registered (at the factory). The information (typically) required to initialize
authentication contexts is described by example in Section 2.1.4.2.

When a non-null AuthConfigProvider is returned by the factory, the messaging runtime must call
getAuthContext on the authentication context configuration object (obtained from the provider). The
authContextID argument used in the call to getAuthContext must be the value as described in Section
3.8.1.

For all values of the authContextID argument that satisfy the requirements of Section 3.8.1, the call
to getAuthContext must return a non-null authentication context.

3.8.1. Authentication Context Identifiers

This profile does NOT impose any profile specific requirements on authentication context
identifiers. As defined in Section 2.1.3, the authentication context identifier used in the call to
getAuthContext must be equivalent to the value that would be acquired by calling getAuthContextID
with the MessageInfo that will be used in the call to validateRequest.

31

3.8.2. getAuthContext Subject

A null value may be passed as the Subject argument in the getAuthContext call.

3.8.3. Module Initialization Properties

If the runtime is a Jakarta Authorization compatible Jakarta Servlet container, the properties
argument passed in all calls to getAuthContext must contain the key-value pair shown in the
following table.

Table 3-3 Jakarta Authorization Compatible Module Initialization Properties

key value

jakarta.security.jacc.PolicyContex
t

The PolicyContext identifier value that the container must set to
satisfy the Jakarta Authorization authorization requirements as
described in “Setting the Policy Context” within the Jakarta
Authorization specification

When the runtime is not a Jakarta Authorization compatible Jakarta Servlet container, the
properties argument used in all calls to getAuthContext must not include a
jakarta.security.jacc.PolicyContext key-value pair, and a null value may be passed for the
properties argument.

3.8.4. MessagePolicy Requirements

Each ServerAuthContext obtained through getAuthContext must initialize its encapsulated
ServerAuthModule objects with a non-null value for requestPolicy. The encapsulated authentication
modules may be initialized with a null value for responsePolicy.

The requestPolicy used to initialize the authentication modules of the ServerAuthContext must be
constructed such that the value obtained by calling isMandatory on the requestPolicy accurately
reflects whether (that is, true return value) or not (that is, false return value) authentication is
required to access the web resource corresponding to the HttpServletRequest to which the
ServerAuthContext will be applied. The message processing runtime is responsible for determining if
authentication is required and must convey the results of its determination as described in Section
3.9.1.

Calling getTargetPolicies on the request MessagePolicy must return an array containing at least one
TargetPolicy whose ProtectionPolicy will be interpreted by the modules of the context to mean that
the source of the corresponding targets within the message is to be authenticated. To that end,
calling the getID method on the ProtectionPolicy must return one of the following values:

• ProtectionPolicy.AUTHENTICATE_SENDER

• ProtectionPolicy.AUTHENTICATE_CONTENT

3.9. Message Processing Requirements
For this profile, point (2) of the messaging processing model occurs after the runtime determines
that the connection on which the request was received satisfies the connection requirements[1] that

32

apply to the request and before the runtime enforces the authorization[2] requirements that apply
to the request. At point (2) in the message processing model, the runtime must call validateRequest
on the ServerAuthContext. The runtime must not call validateRequest if the request does not satisfy
the connection requirements that apply to the request. If the request has satisfied the connection
requirements, the message processing runtime must call validateRequest independent of whether
or not access to the resource would be authorized prior to the call to validateRequest[3] The
validateRequest method must be called for all requests (to which the Jakarta Servlet security model
applies[4] , including submits of a form-based login form.

If the call to validateRequest returns any value other than AuthStatus.SUCCESS, the runtime should
return a response and must discontinue its processing of the request.

If the call to validateRequest returns AuthStatus.SUCCESS, the runtime must establish return values
for getUserPrincipal, getRemoteUser, and getAuthType as defined in Section 3.9.4. After setting the
authentication results, the runtime must determine whether the authentication identity established
in the clientSubject is authorized to access the resource. The identity tested for authorization must
be selected based on the nature, with respect to Jakarta Authorization compatibility, of the calling
runtime. In a Jakarta Authorization compatible runtime, the identity must be comprised of exactly
the Principal objects of the clientSubject. In a non-Jakarta Authorization compatible Jakarta
Servlet runtime, the identity must include the caller Principal (established during the
validateRequest processing using the corresponding CallerPrincipalCallback) and may include any
of the Principal objects of the clientSubject. Independent of the nature of the calling runtime, if the
request is NOT authorized, the runtime must set, within the response, an HTTP status code as
required by the Jakarta Servlet specification. The request must be dispatched to the resource if the
request was determined to be authorized; otherwise it must NOT be dispatched and the runtime
must proceed to point (3) in the message processing model.

If the request is dispatched to the resource and the resource invocation throws an exception to the
runtime, the runtime must set, within the response, an HTTP status code which satisfies any
applicable requirements defined within the Jakarta Servlet specification. In this case, the runtime
should complete the processing of the request without calling secureResponse.

If invocation of the resource completes without throwing an exception, the runtime must proceed
to point (3) in the message processing model. At point (3) in the message processing model, the
runtime must call secureResponse on the same ServerAuthContext used in the corresponding call to
validateRequest and with the same MessageInfo object.

If the request is dispatched to the resource, and the resource was configured to run-as its caller,
then for invocations originating from the resource where caller propagation is required, the
identity established using the CallerPrincipalCallback must be used as the propagated identity.

3.9.1. MessageInfo Requirements

The messageInfo argument used in the call to validateRequest must have been initialized by the
runtime such that its getRequestMessage and getResponseMessage methods will return the
HttpServletRequest and HttpServletResponse objects corresponding to the messages (respectively)
being processed by the runtime. This must be the case even when the target of the request is a static
page (that is, not a Servlet).

33

3.9.1.1. MessageInfo Properties

This profile requires that the message processing runtime conditionally establish the following key-
value pair within the Map of the MessageInfo object passed in the calls to getAuthContextID,
validateRequest, and secureResponse.

Table 3-4 MessageInfo Map Properties

key value

jakarta.security.auth.message.MessagePolicy.isMandatory Any non-null String value, s, for which
Boolean.valueOf(s).booleanValue() == true

jakarta.security.auth.message.MessagePolicy.isMandatory

The MessageInfo map must contain this key and its associated value, if and only if authentication is
required to perform the resource access corresponding to the HttpServletRequest to which the
ServerAuthContext will be applied. Authentication is required if use of the HTTP method of the
HttpServletRequest at the resource identified by the HttpServletRequest is covered by a Jakarta
Servlet auth-constraint [5], or in a Jakarta Authorization compatible runtime, if the corresponding
WebResourcePermission is NOT granted[6] to an unauthenticated caller. In a Jakarta Authorization
compatible runtime, the corresponding WebResourcePermission may be constructed directly from the
HttpServletRequest as follows:

public WebResourcePermission(HttpServletRequest request);

The authentication context configuration system must use the value of this property to establish the
corresponding value within the requestPolicy passed to the authentication modules of the
ServerAuthContext acquired to process the MessageInfo.

3.9.2. Subject Requirements

A new clientSubject must be instantiated and passed in the call to validateRequest.

3.9.3. ServerAuth Processing

As described in Section 3.9, the profile requires that validateRequest be called on every request that
satisfies the corresponding connection requirements (and to which the Jakarta Servlet container
security model applies). As such, validateRequest will be called either before the service invocation
(to establish the caller identity) or after the service invocation (when a multi-message dialog is
required to secure the response). The module implementation is responsible for recording any state
and performing any processing required to differentiate these two different types of calls to
validateRequest.

3.9.3.1. validateRequest Before Service Invocation

When validateRequest is called before the service invocation on a module initialized with a
mandatory requestPolicy (as defined by the return value from requestPolicy.isMandatory()), the
module must only return AuthStatus.SUCCESS if it was able to completely satisfy the request
authentication policy. In this case, the module (or its context) must also have used the

34

CallbackHandler passed to it by the runtime to handle a CallerPrincipalCallback using the
clientSubject as argument to the callback. If more than one module of a context uses the
CallbackHandler to handle this callback, the context is responsible for coordinating the calls such
that the appropriate caller principal value is established.

If the module was not able to completely satisfy the request authentication policy, it must:

• return AuthStatus.SEND_CONTINUE – If it has established a response (available to the runtime by
calling messageInfo.getResponseMessage) that must be sent by the runtime for the request
validation to be effectively continued by the client. The module must have set the HTTP status
code of the response to a value (for example, HTTP 401 unauthorized, HTTP 303 see other, or
HTTP 307 temporary redirect) that will indicate to the client that it should retry (or continue)
the request. This, however, is solely the responsibility of the module, and the runtime must be
liberal in its acceptance of continue responses, including responses with HTTP success status
codes; such as might be returned with forms (including login forms and forms that depend on
javascript to be relayed through the browser).

• return AuthStatus.SEND_FAILURE – If the request validation failed, and when the client should not
retry or continue with its processing of the request. The module must have established a
response message (available to the runtime by calling messageInfo.getResponseMessage) that
may be sent by the runtime to inform the client that the request failed. The module must have
set the HTTP status code of the response to a value (for example, HTTP 403 forbidden or HTTP
404 not found) that will indicate to the client that it should NOT continue the request. The
runtime may choose not to send a response message, or to send a different response message
(given that it also contains an analogous HTTP status code).

• throw an AuthException – If the request validation failed, and when the client should not retry
the request, and when the module has not defined a response to be sent by the runtime. If the
runtime chooses to send a response, it must define the HTTP status code and descriptive content
(of the response). The HTTP status code of the response must indicate to the client (for example,
HTTP 403 forbidden, HTTP 404 not found, or HTTP 500 internal server error) that the request
failed and that it should NOT be retried. The descriptive content set in the response may be
obtained from the AuthException.

When validateRequest is called before the service invocation on a module that was initialized with
an optional requestPolicy (that is, requestPolicy.isMandatory() returns false), the module should
attempt to satisfy the request authentication policy, but it must do so without initiating[7] additional
message exchanges or interactions involving the client. Independent of whether the authentication
policy is satisfied, the module may return AuthStatus.SUCCESS. If the module returns
AuthStatus.SUCCESS (and the authentication policy was satisfied), the module (or its context) must
employ a CallerPrincipalCallback as described above. If the authentication policy was not satisfied,
and yet the module chooses to return AuthStatus.SUCCESS, the module (or its context) must use a
CallerPrincipalCallback to establish the container’s representation of the unauthenticated caller
within the clientSubject. If the module determines that an invalid or incomplete security context
was used to secure the request, then the module may return AuthStatus.SEND_FAILURE,
AuthStatus.SEND_CONTINUE, or throw an AuthException. If the module throws an AuthException, or
returns any value other than AuthStatus.SUCCESS, the runtime must NOT proceed to the service
invocation. The runtime must process an AuthException as described above for a request with a
mandatory requestPolicy. The runtime must process any return value other than
AuthStatus.SUCCESS as it would be processed if it were returned for a request with a mandatory

35

requestPolicy.

3.9.3.2. validateRequest After Service Invocation

When validateRequest is called after the service invocation has completed[8], the module must
return AuthStatus.SEND_SUCCESS when the module has successfully secured the application response
message and made it available through messageInfo.getResponseMessage. For the request to be
successfully completed, the runtime must send the response message returned by the module.

When securing of the application response message has failed, and the response dialog is to be
terminated, the module must return AuthStatus.SEND_FAILURE or throw an AuthException.

If the module returns AuthStatus.SEND_FAILURE, it must have established a response message in
messageInfo, and it must have set the HTTP status code within the response to HTTP 500 (internal
server error). The runtime may choose not to send a response message, or to send a different
response message (given that it also contains an HTTP 500 status code).

When the module throws an AuthException, the runtime may choose not to send a response. If the
runtime sends a response, the runtime must set the HTTP status code to HTTP 500 (internal server
error), and the runtime must define the descriptive content of the response (perhaps by obtaining it
from the AuthException).

The module must return AuthStatus.SEND_CONTINUE if the response dialog is to continue. This status
value is used to inform the calling runtime that, to successfully complete the response processing, it
must be capable of continuing the message dialog by processing at least one additional
request/response exchange (after having sent the response message returned in messageInfo). The
module must have established (in messageInfo) a response message that will cause the client to
continue the response processing (that is, retry the request). For the response processing to be
successfully completed, the runtime must send the response message returned by the module.

3.9.3.3. secureResponse Processing

The return value and AuthException semantics of secureResponse are as defined in Section 3.9.3.2.
This profile places no requirements on authentication modules with respect to interpreting
responsePolicy values.

3.9.3.4. Forwards and Includes by Server Authentication Modules

The message processing runtime must support the acquisition and use of RequestDispatcher objects
by authentication modules within their processing of validateRequest. Under the constraints
defined by RequestDispatcher, authentication modules must be able to forward and include using the
request and response objects passed in MessageInfo. In particular, an authentication module must
be able to acquire a RequestDispatcher from the request obtained from MessageInfo, and uses it to
forward the request (and response) to a login form. Authentication modules should catch and
rethrow as an AuthException any exception thrown by these methods.

3.9.3.5. Wrapping and UnWrapping of Requests and Responses

A ServerAuthModule must only call MessageInfo.setResponseMessage() to wrap or unwrap the existing
response within MessageInfo. That is, if a ServerAuthModule calls MessageInfo.setResponseMessage(),

36

the response argument must be an HtppServletResponseWrapper that wraps the HttpServletResponse
within MessageInfo, or the response argument must be an HttpServletResponse that is wrapped by
the HttpServletResponseWrapper within MessageInfo. The analogous requirements apply to
MessageInfo.setRequestMessage().

During secureResponse processing, a ServerAuthModule must unwrap the messages in MessageInfo
that it wrapped during its validateRequest processing. The unwrapped values must be established
in MessageInfo when secureResponse returns. The module should not remove wrappers for which it
is not responsible.

During validateRequest processing, a ServerAuthModule must NOT unwrap a message in MessageInfo,
and must NOT establish a wrapped message in MessageInfo unless the ServerAuthModule returns
AuthStatus.SUCCESS. For example, if during validateRequest processing a ServerAuthModule calls
MessageInfo.setResponseMessage(), the response argument must be an HttpServletResponseWrapper
that wraps the HttpServletResponse within MessageInfo.

When a ServerAuthModule returns a wrapped message in MessageInfo, or unwraps a message in
MessageInfo, the message processing runtime must ensure that the HttpServletRequest and
HttpServletResponse objects established by the ServerAuthModule are used in downstream
processing.

3.9.4. Setting the Authentication Results on the HttpServletRequest

The requirements defined in this section must be fulfilled by a message processing runtime, when
(at point (2) in the messaging model, validateRequest returns AuthStatus.SUCCESS. The requirements
must also be fulfilled by HttpServletRequest.authenticate when its call to validateRequest returns
AuthStatus.SUCCESS. In both cases, the HttpServletRequest must be modified as necessary to ensure
that the Principal returned by getUserPrincipal and the String returned by getRemoteUser
correspond, respectively, to the Principal established by validateRequest (via the
CallerPrincipalCallback) and to the String obtained by calling getName on the established Principal
footnote:Except when getUserPrincipal returns null; in which case the value returned by
getRemoteUser must be null]. Both cases, must also ensure that the value returned by calling
getAuthType on the HttpServletRequest is consistent in terms of being null or non-null with the value
returned by getUserPrincipal.

When getAuthType is to return a non-null value, the Map of the MessageInfo object used in the call to
validateRequest must be consulted to determine if it contains an entry for the key identified in
Table 3-5 . If the Map contains an entry for the key, the corresponding value must be obtained from
the Map and established as the getAuthType return value. If the Map does not contain an entry for the
key, and an auth-method is defined in the login-config element of the deployment descriptor for the
web application, the value from the auth-method must be established as the getAuthType return
value. If the Map does not contain an entry for the key, and the deployment descriptor does not
define an auth-method, a product defined default non-null value must be established as the
getAuthType return value, and the same default value need not be used for both cases.

Table 3-5 Authentication Type (Callback) Property

37

key value

jakarta.servlet.http.authType A non-null String value that identifies the
authentication mechanism

If a non-null Principal was established by validateRequest (via the CallerPrincipalCallback), the Map
of the MessageInfo object used in the call to validateRequest must be consulted to determine if it
contains an entry for the key identified in Table 3-6 . If the Map contains an entry for the key, the
authentication session machinery of the container must be used to create (or update) a container
authentication session to represent the caller Principal, authType, and the additional container
authentication state established by the call to validateRequest. The resulting container
authentication session must be bound to the HttpServletResponse such that the container will be
able to restore the caller authentication results on subsequent calls to the application.

Table 3-6 Authentication Session Registration (Callback) Property

key value

jakarta.servlet.http.registerSession Any non-null String value, s, for which
Boolean.valueOf(s).booleanValue() == true

The authentication type and session registration properties are callback properties[9] and are
intended to provide a way for an authentication module to request a corresponding service from its
encompassing runtime. As such, all authentication modules must ensure that they do not
inadvertently relay these properties should they be included in their input MessageInfo arguments.

3.10. Sub-profile for authenticate, login, and logout of
HttpServletRequest
The Servlet HttpServletRequest interface contains methods related to authentication, namely: the
authenticate, login, and logout methods. A compatible implementation of the Servlet Container
Profile must satisfy the requirements defined in this sub-profile. This sub-profile differs from the
larger profile in which it is contained, in that it describes the handling of calls that would typically
be expected to occur within the service invocation; while the focus of the larger profile, is on points
(2) and (3) in the messaging model (which occur on either side of the service invocation).

3.10.1. Authentication Configuration Requirements

When an application calls HttpServletRequest.authenticate, HttpServletRequest.login, or
HttpServletRequest.logout, the container implementation of the called method must determine (as
defined in Section 3.7) if there is an AuthConfigProvider configured for the application context and
layer. If not, the called method must proceed to perform the required authenticate, login, or logout
functionality without further reliance on this sub-profile.

If an AuthConfigProvider is determined to be configured, the called method must proceed to obtain
the corresponding ServerAuthConfig also as defined in Section 3.7.

As described in Section 2.1.1, the called method may reuse the results of a previous
AuthConfigProvider determination and ServerAuthConfig acquisition (such as that performed by the
message processing runtime) during its processing of the servlet request within which the

38

authenticate, login, or logout method is being called.

3.10.2. Processing for HttpServletRequest.login

The container implementation of login must throw a ServletException which may convey that the
exception was caused by an incompatibility between the login method and the configured
authentication mechanism.

3.10.3. Processing for HttpServletRequest.authenticate

If authenticate is called in the context of a call it made to validateRequest, it must not recall
validateRequest, but must perform the container authentication processing that it performs when it
determines that an AuthConfigProvider is not configured for the application context and layer.

Otherwise, authenticate must acquire the corresponding ServerAuthContext object as defined in
Section 3.8 (and its subsections), while satisfying the additional requirement that the authentication
context identifier used to obtain the ServerAuthContext must be the identifier that would be
acquired by calling getAuthContextID with MessageInfo as defined in Section 3.9.1 and while
satisfying the additional requirement that the MessageInfo map must unconditionally contain both
the jakarta.security.auth.message.MessagePolicy.isMandatory key (with associated true value) and
the jakarta.servlet.http.isAuthenticationRequest key (with associated true value).

Authenticate must call validateRequest on the acquired ServerAuthContext. The MessageInfo
argument to the call to validateRequest must be as defined above. The clientSubject argument must
be a non-null Subject and should be the Subject resulting from the call to validateRequest prior to
the service invocation as described in Section 3.9.3.1. If the prior Subject is not used, A new (empty)
clientSubject must be instantiated and passed in the call to validateRequest. A null value may be
used for the serviceSubject.

If the call to validateRequest returns AuthStatus.SUCCESS, the authenticate method must perform the
processing defined in Section 3.9.4. This processing includes establishing return values for
getUserPrincipal, getRemoteUser, and getAuthType and may include the registration of the
authentication results in a container authentication session[10] Following this processing, the
authenticate method must return the boolean value true, and if the calling context is configured to
run-as its caller, the results of the authentication must be reflected in the run-as identity.

If the call to validateRequest throws an AuthException, the authenticate method must catch the
AuthException and throw a ServletException.

If the call to validateRequest returns any value other than AuthStatus.SUCCESS, the authenticate
method must return false.

3.10.4. Processing for HttpServletRequest.logout

If logout is called in the context of a call it made to cleanSubject, it must not recall cleanSubject, but
it must perform the logout processing that it performs when it determines that an
AuthConfigProvider is not configured for the application context and layer.

Otherwise, logout must acquire the corresponding ServerAuthContext object as defined in Section

39

3.8 (and its subsections), while satisfying the additional requirement that the authentication context
identifier used to obtain the ServerAuthContext must be the identifier that would be acquired by
calling getAuthContextID with MessageInfo as defined in Section 3.9.1 and while satisfying the
additional requirement that the MessageInfo map must unconditionally contain the
jakarta.security.auth.message.MessagePolicy.isMandatory key (with associated true value). Logout
should attempt to satisfy the requirement of Section 3.9.1, that MessageInfo be initialized such that
its getResponseMessage will return the HttpServletResponse, but need not do so if the response is
unavailable or committed.

The container implementation of logout must call cleanSubject on the acquired ServerAuthContext.
The MessageInfo argument to the call to cleanSubject must be as defined above. The clientSubject
argument must be a non-null Subject and should be the Subject resulting from the most recent call
to validateRequest which may have occurred either as described in Section 3.9.3.1 or as described in
<<a487>. If the prior Subject is not used, a new clientSubject must be instantiated and passed in the
call.

Following the return from cleanSubject, logout must perform the logout processing that it performs
when it determines that an AuthConfigProvider is not configured for the application context and
layer, and if the calling context is configured to run-as its caller, the results of the logout must be
reflected in the run-as identity.

3.10.5. Calls from within ServerAuthContext

If HttpServletRequest.authenticate or HttpServletRequest.logout is called from within the methods
of the ServerAuthContext interface (for example, from within validateRequest, secureResponse, or
cleanSubject), it is the responsibility of the implementation of the ServerAuthContext to interpret the
results of the call and to establish appropriate ServerAuthContext return values. This profile is silent
on the details of the interpretation and mapping of return values.

3.11. Interaction with other specifications
When this profile is used as part of a Jakarta EE compatible implementation, the requirements as
stated in the sub-sections below MUST be satisfied.

When this profile is NOT used in a Jakarta EE compatible implementation, but this implementation
uses one or more of the specifications as outlined in the sub-sections below, then the requirements
as stated in the relevant sub-sections SHOULD be satisfied.

3.11.1. Availability of Jakarta EE component namespaces

The Jakarta EE JNDI component namespaces (java:global, java:app, java:module, java:comp) MUST
be made available to code running in the context of a call to validateRequest, secureResponse and
cleanSubject on the acquired ServerAuthContext.

A practical use case for this is obtaining (application scoped) data sources, which a ServerAuthModule
could use to validate credentials.

Example:

40

new InitialContext().lookup("java:app/myds")

3.11.2. Availability of CDI scopes

The CDI built-in scopes according to "2.4.1. Built-in scope types" of the CDI specification MUST be
made available to code running in the context of a call to validateRequest, secureResponse and
cleanSubject on the acquired ServerAuthContext.

A practical use case for this is obtaining application scoped identity stores, which a
ServerAuthModule could use to validate credentials.

Example:

CDI.current().select(SomeBean.class); // SomeBean is @RequestScoped

Note that it is a non-requirement that a ServerAuthModule is itself a CDI managed bean, and as such
it is not required that services such as injection using the @Inject annotation are available to a
ServerAuthModule. It is only required that programmatic lookup such as shown in the example above
works correctly.

[1] In a Jakarta Authorization environment, connection requirements are tested by checking a WebUserDataPermission constructed
with the HttpServletRequest. In a non-Jakarta Authorization environment, connection requirements are tested by comparing the
security properties of the connection on which the request was received with the permitted connection types as defined through
user-data-constraints in the corresponding web.xml.

[2] In a Jakarta Authorization environment, authorization requirements are enforced by checking if the authenticated caller
identity (such as it is) has been granted the WebResourcePermission corresponding to the HttpServletRequest. In a non-Jakarta
Authorization environment, authorization requirements are enforced by checking if the role-mappings of the authenticated caller
identity are sufficient to satisfy the auth-constraints (if any) that apply to the request as defined in the corresponding web.xml.

[3] These unconditional calls to validateRequest are necessary to allow for delegation of servle tauthentication sessionmanagement
to authentication contexts and their contained authentication modules.

[4] Note that the Jakarta Servlet security model does not apply when a servlet uses a RequestDispatcher to invoke a static resource
or servlet using a forward or an include.

[5] If the auth-constraint is an excluding auth-constraint (that is, an auth-constraint that authorizes no roles), the Servlet
Specification requires that no access be permitted independent of authentication. Runtimes should reject requests to ex- cluded
resources prior to proceeding to point (2) in the message processing model (that is, prior to the authentication processing).

[6] Jakarta Authorization compatible runtimes should also reject requests to excluded resources prior to proceeding to point (2) in
the message processing model (that is, prior to the authentication processing).

[7] The module may continue, or refresh an authentication dialog that has already been initiated (perhaps by the client) in the
request, but it must not start an authentication dialog for a request which has not yet been associated with authentication
information (as understood by the module).

[8] “After the service invocation” effectively means after the first call to secureResponse; as distinct from the case where
authenticate might call validateRequest from within the service invocation and before it completes.

[9] Unlike CallbackHandler processed Callback objects, callback properties are not acted upon until the authentication module
returns to the runtime.

[10] Note that the authenticate method must not perform the pre-dispatch container authorization check that the message
processing runtime would typically perform on successful return from validateRequest.

41

Chapter 4. SOAP Profile
This chapter defines a profile of the use of the interfaces defined in this specification to secure
SOAP message exchanges between web services client runtimes and web service endpoint
runtimes. This profile is equally applicable to SOAP versions 1.1 and 1.2.

This profile is composed of two internal profiles that partition the requirements of the profile into
those that must be satisfied by client runtimes and those that must be satisfied by server runtimes.
The profile-specific requirements defined in this chapter are to be considered in addition to the
generic requirements defined in Chapter 2. A compatible implementation of an internal profile of
this specification is an implementation that satisfies all of the requirements that apply to that
profile.

4.1. Message Layer Identifier
The message layer value used to select the AuthConfigProvider and ServerAuthConfig objects for this
profile must be “SOAP”.

4.2. Application Context Identifier
The application context identifier (that is, the appContext parameter value) used by a client runtime
to select the AuthConfigProvider and ClientAuthConfig objects pertaining to a client-side application
context configuration scope must be as defined in See Client-Side Application Context Identifier.

Similarly, the application context identifier used by a server runtime to select the
AuthConfigProvider and ClientAuthConfig objects pertaining to an server-side application context
configuration scope must be as defined in Section 4.9.1.

4.3. Message Requirements
The MessageInfo argument used in any call made by the message processing runtime to
secureRequest, validateResponse, validateRequest, or secureResponse must have been initialized
such that any non-null objects returned by the getRequestMessage and getResponseMessage
methods of the MessageInfo are an instanceof jakarta.xml.soap.SOAPMessage.

4.4. Module Requirements
The getSupportedMessageTypes method of all authentication modules integrated for use with this
profile must include jakarta.xml.soap.SOAPMessage.class in its return value.

4.5. CallbackHandler Requirements
The CallbackHandler passed to an authentication module’s initialize method is determined by the
handler argument passed in the call to AuthConfigProvider.getClientAuthConfig or
getServerAuthConfig that acquired the corresponding authentication context configuration object.

42

jaspic.html#a537

The handler argument must not be null, and the argument handler and the CallbackHandler passed
to the initialize method of all authentication modules should support the following callbacks, and it
must be possible to configure the runtime such that the CallbackHandler passed at module
initialization supports the following callbacks (in addition to any others required to be supported
by the applicable internal profile):

• CertStoreCallback

• PrivateKeyCallback

• SecretKeyCallback

• TrustStoreCallback

The argument handler and the CallbackHandler passed through to the modules must be initialized
with any application context required to process the supported callbacks on behalf of the
corresponding application.

4.6. AuthConfigProvider Requirements
The factory implementation returned by calling the getFactory method of the abstract
AuthConfigFactory class must be configured such that it returns a non-null AuthConfigProvider for
those application contexts for which pluggable authentication modules have been configured at the
“SOAP” layer.

For each application context for which it is servicing requests, the runtime must call
getConfigProvider to acquire the provider object corresponding to the layer and application
context. The layer and appContext arguments to getConfigProvider must be as defined in Section
4.1 and Section 4.2 respectively.

A null return value from getConfigProvider indicates that pluggable authentication modules have
not been configured at the layer for the application context, and that the messaging runtime must
proceed to perform its SOAP message processing (for the application context) without further
reliance on this profile.

4.7. Authentication Context Requirements
When a non-null AuthConfigProvider is returned by the factory, the provider must have been
configured with the information required to initialize the authentication contexts for the one or
more authentication context configuration scopes, defined by layer and application context, for
which the provider is registered (at the factory). The information typically required to initialize
authentication contexts is described by example in Section 2.1.4.2.

When a non-null AuthConfigProvider is returned by the factory, the messaging runtime must call
getAuthContext on the authentication context configuration object (obtained from the provider). The
authContextID argument used in the call to getAuthContext must be the value as described in
Section 4.7.1.

A null return value from getAuthContext indicates that pluggable authentication modules have not
been configured for the web service invocation within the authentication context configuration

43

scope, and that the runtime must proceed to perform its SOAP message processing for this
request/response without further reliance on this profile.

Effective integration of a session-oriented authentication mechanism for use in an authentication
context configuration scope should be expected to require configuration of the corresponding
AuthConfigProvider such that getAuthContext will return non-null authentication context objects for
all legitimate authContextID values acquired for the corresponding scope.

4.7.1. Authentication Context Identifiers

This profile does NOT impose any profile specific requirements on authentication context
identifiers. As defined in Section 2.1.3, the authentication context identifier used in the call to
getAuthContext must be equivalent to the value that would be acquired by calling
getAuthContextID with the MessageInfo that will be used in the corresponding call to
secureRequest (by a client runtime) or validateRequest (by a server runtime).

4.7.2. MessagePolicy Requirements

Each authentication context object obtained through getAuthContext must initialize its encapsulated
authentication modules with a non-null requestPolicy and/or a non-null responsePolicy, such that
at least one of requestPolicy or responsePolicy is not null.

4.8. Requirements for Client Runtimes
This section defines the requirements of this profile that must be satisfied by a runtime operating in
the client role. A runtime may operate in both the client and server roles.

4.8.1. Client-Side Application Context Identifier

The application context identifier used by a client-runtime to acquire the `AuthConfigProvider`and
ClientAuthConfig objects pertaining to the client side processing of a web service invocation shall
begin with a client scope identifier that identifies the client. If the client-runtime may host multiple
client applications, then the client scope identifier must differentiate among the client applications
deployed within the runtime. In runtimes where applications are differentiated by unambiguous
application identifiers, an application identifier may be used as the client scope identifier. Where
application identifiers are not defined or suitable, the location (for example, its file path) of the
client archive from which the invocation will originate may be used as the client scope identifier.

In addition to its client scope identifier, the application context identifier must include a client
reference to the service. If a service reference is defined for the invocation (for example, by using a
WebServiceRef annotation as defined in the Jakarta XML Web Services specifications), the client
reference to the service must be the name value of the service reference. If a service reference was
not defined for the invocation, the client reference to the service must be the web service URL.

A client application context identifier must be the String value composed by concatenating the
client scope identifier, a blank separator character, and the client reference to the service.

44

AppContextID ::= client-scope-identfier blank client-reference

The following are examples of client application context identifiers.

"petstoreAppID service/petstore/delivery-service"

"petstoreAppID http://localhost:8080/petstore/delivery-service/fish"

"/home/fishkeeper/petstore-client.jar service/petstore/delivery-service"

"/home/fishkeeper/petstore-client.jar http://localhost:8080/petstore/delivery-
service/fish"

Systems or administrators that register AuthConfigProvider objects with specific client-side
application context identifiers must have an ability to determine the client scope identifier and the
client reference for which they wish to perform the registration.

4.8.2. CallbackHandler Requirements

Unless the client runtime is embedded in a server runtime (for example, an invocation of a web
service by a servlet running in a Servlet container), the CallbackHandler passed to
ClientAuthModule.initialize must support the following callbacks:

• NameCallback

• PasswordCallback

In either event, the CallbackHandler must also support the requirements in Section 4.5

4.8.3. AuthConfigProvider Requirements

If a non-null AuthConfigProvider`is returned (by the call to getConfigProvider), the messaging
runtime must call `getClientAuthConfig on the provider to obtain the authentication context
configuration object pertaining to the application context at the layer. The layer and appContext
arguments of the call to getClientAuthConfig must be the same as those used to acquire the
provider, and the handler argument must be as defined in Section 4.8.2 for a client runtime.

4.8.4. Authentication Context Requirements

The getAuthContext calls made on the ClientAuthConfig (obtained by calling getClientAuthConfig)
must satisfy the requirements defined in the following subsections.

4.8.4.1. getAuthContext Subject

A non-null Subject corresponding to the client must be passed as the clientSubject in the
getAuthContext call.

45

4.8.4.2. Module Initialization Properties

A null value may be passed for the properties argument in all calls made to getAuthContext.

4.8.4.3. MessagePolicy Requirements

Each ClientAuthContext obtained through getAuthContext must initialize its encapsulated
ClientAuthModule objects with requestPolicy and responsePolicy objects (or null values) that are
compatible with the requirements and capabilities of the service invocation (at the service). The
requirements, preferences, and capabilities of the client may be factored in the context acquisition
and may effect the requestPolicy and responsePolicy objects passed to the authentication modules
of the context.

4.8.5. Message Processing Requirements

A client runtime, after having prepared (except for security) the SOAP request message to be sent to
the service, is operating at point (1) in the message processing model defined by this specification. A
client runtime that has received a SOAP response message, and that has not yet performed any
transformations on the response message, is operating at point (4) in the message processing model
defined by this specification.

If the client runtime obtained a non-null ClientAuthContext by using the authentication context
identifier corresponding to the request message, then at point (1) in the message processing model,
the runtime must call secureRequest on the ClientAuthContext, and at point (4) the runtime must
call validateResponse on the ClientAuthContext.

When processing a one-way application message exchange pattern, the runtime must not proceed
to point (4) unless the return value from secureRequest (or a from validateResponse) is
AuthStatus.SEND_CONTINUE.

4.8.5.1. MessageInfo Requirements

The messageInfo argument used in a call to secureRequest must have been initialized by the runtime
such that its getRequestMessage will return the SOAP request message being processed by the
runtime.

When a corresponding call is made to validateResponse, it must be made with the same messageInfo
and clientSubject arguments used in the corresponding call to secureRequest, and it must have
been initialized by the runtime such that its getResponseMessage method will return the SOAP
response message being processed by the runtime.

MessageInfo Properties

This profile requires that the message processing runtime establish the following key-value pairs
within the Map of the MessageInfo passed in the calls to secureRequest and validateResponse.

Table 4-7 Client MessageInfo Map Properties

46

key value

jakarta.xml.ws.wsdl.service The value of the qualified service name, represented as a
javax.xml.namespace.QName. specification

4.8.5.2. Subject Requirements

The clientSubject used in the call to getAuthContext must be used in the call to secureRequest and
for any corresponding calls to validateResponse.

4.8.5.3. secureRequest Processing

When secureRequest is called on a module that was initialized with a mandatory request policy (as
defined by the return value from requestPolicy.isMandatory()), the module must only return
AuthStatus.SEND_SUCCESS if it was able to completely satisfy the request policy. If the module was
not able to completely satisfy the request policy, it must:

• Return AuthStatus.SEND_CONTINUE – If it has established an initial request (available to the
runtime by calling messageInfo.getRequestMessage) that must be sent by the runtime for the
request to be effectively continued and when additional message exchanges will be required to
achieve successful completion of the secureRequest processing.

• Return AuthStatus.FAILURE – If it failed securing the request and only if it established a response
message containing a SOAP fault element (available to the runtime by calling
messageInfo.getResponseMessage) that may be returned to the application to indicate that the
request failed.

• Throw an AuthException – If it failed securing the request and did not establishing a failure
response message. The runtime may choose to return a response message containing a SOAP
fault element, in which case, the runtime must define the content of the message and of the
fault, and may do so based on the content of the AuthException.

When secureRequest is called on a module that was initialized with an optional requestPolicy (that
is, requestPolicy.isMandatory() returns false), the module may attempt to satisfy the request policy
and may return AuthStatus.SEND_SUCCESS independent of whether the policy was satisfied.

The module should NOT throw an AuthException or return AuthStatus.FAILURE. The module may
initiate a security dialog, as described above for AuthStatus.SEND_CONTINUE, but should not do so
if the client cannot accommodate the possibility of a failure of an optional security dialog.

When secureRequest is called on a module that was initialized with an undefined request policy
(that is, requestPolicy === null), the module must return AuthStatus.SEND_SUCCESS.

4.8.5.4. validateResponse Processing

validateResponse may be called either prior to the service invocation to process a response received
during the secureRequest processing (when a multi-message dialog is required to secure the
request), or after the service invocation and during the process of securing the response generated
by the service invocation. The module implementation is responsible for recording any state and
performing any processing required to differentiate these contexts.

47

validateResponse After Service Invocation

When validateResponse is called after the service invocation on a module that was initialized with
a mandatory response policy (as defined by the return value from responsePolicy.isMandatory()),
the module must only return AuthStatus.SUCCESS if it was able to completely satisfy the response
policy. If the module was not able to completely satisfy the response policy, it must:

• Return AuthStatus.SEND_CONTINUE – If it has established a request (available to the runtime by
calling messageInfo.getRequestMessage) that must be sent by the runtime for the response
validation to be effectively continued by the client.

• Return AuthStatus.FAILURE – If response validation failed and only if the module has established
a response message containing a SOAP fault element (available to the runtime by calling
messageInfo.getResponseMessage) that may be returned to the application to indicate that the
response validation failed.

• Throw an AuthException – If response validation failed without establishing a failure response
message. The runtime may choose to return a response message containing a SOAP fault
element, in which case, the runtime must define the content of the message and of the fault, and
may do so based on the content of the AuthException.

When validateResponse is called after the service invocation on a module that was initialized with
an optional responsePolicy (that is, responsePolicy.isMandatory() returns false), the module should
attempt to satisfy the response policy, but it must do so without initiating[1] additional message
exchanges or interactions involving the service. Independent of whether the response policy is
satisfied, the module may return AuthStatus.SUCCESS. If the module determines that an invalid or
incomplete security context was used to secure the response, then the module may return
AuthStatus.FAILURE, AuthStatus.SEND_CONTINUE, or throw an AuthException. The runtime must
process an AuthException as described above for a response with a mandatory responsePolicy. The
runtime must process any return value other than AuthStatus.SUCCESS as it would be processed if
it were returned for a response with a mandatory responsePolicy.

When validateResponse is called after the service invocation on a module that was initialized with
an undefined response policy (that is, responsePolicy == null), the module must return
AuthStatus.SUCCESS.

validateResponse Before Service Invocation

When validateResponse is called before the service invocation[2], the module must return
AuthStatus.SEND_CONTINUE if the request dialog is to continue. This status value is used to inform
the client runtime that, to successfully complete the request processing, it must be capable of
continuing the message dialog by processing at least one additional request/response exchange. The
module must have established (in messageInfo) a request message that will cause the service to
continue the request processing. For the request processing to be successfully completed, the
runtime must send the request message returned by the module.

If the module returns AuthStatus.FAILURE, it must have established a SOAP message containing a
SOAP fault element as the response in messageInfo and that may be returned to the application to
indicate that the request failed.

If the module throws an AuthException, the runtime may choose to return a response message

48

containing a SOAP fault element, in which case, the runtime must define the content of the message
and of the fault, and may do so based on the content of the AuthException.

4.9. Requirements for Server Runtimes
This section defines the requirements of this profile that must be satisfied by a runtime operating in
the server role. A runtime may operate in both the client and server roles.

4.9.1. Server-Side Application Context Identifier

The application context identifier used by a server-runtime to acquire the AuthConfigProvider and
ServerAuthConfig objects pertaining to the endpoint side processing of an invocation shall be the
String value constructed by concatenating a host name, a blank separator character, and the
path[3] component of the service endpoint URI corresponding to the webservice.

AppContextID ::= hostname blank service-endpoint-uri

For example: "aquarium /petstore/delivery-service/fish"

In the definition of server-side application context identifiers, this profile uses the term host name to
refer to the logical host that performs the service corresponding to a service invocation. Web
service invocations may be directed to a logical host using various physical or virtual host names
or addresses, and a message processing runtime may be composed of multiple logical hosts.
Systems or administrators that register `AuthConfigProvider`objects with specific server-side
application context identifiers must have an ability to determine the hostname for which they wish
to perform the registration.

4.9.2. CallbackHandler Requirements

The CallbackHandler passed to ServerAuthModule.initialize must support the following callbacks:

• CallerPrincipalCallback

• GroupPrincipalCallback

• PasswordValidationCallback

The CallbackHandler must also support the requirements in Section 4.5

4.9.3. AuthConfigProvider Requirements

If a non-null AuthConfigProvider is returned (by the call to getConfigProvider), the messaging
runtime must call getServerAuthConfig on the provider to obtain the authentication context
configuration object pertaining to the application context at the layer. The layer and appContext
arguments of the call to getServerAuthConfig must be the same as those used to acquire the
provider, and the handler argument must be as defined in Section 4.9.2 for a server runtime.

49

4.9.4. Authentication Context Requirements

The getAuthContext calls made on the ServerAuthConfig object (obtained by calling
getServerAuthConfig) must satisfy the requirements defined in the following subsections.

4.9.4.1. Module Initialization Properties

If the runtime is a Jakarta Authorization compatible Jakarta Enterprise Beans or Jakarta Servlet
endpoint container, the properties argument passed in all calls to getAuthContext must contain the
key-value pair shown in the following table.

Table 4-8 Jakarta Authorization Compatible Module Initialization Properties

key value

jakarta.security.jacc.PolicyContex
t

The PolicyContext identifier value that the container must set to
satisfy the Jakarta Authorization authorization requirements as
described in “Setting the Policy Context” within the Jakarta
Authorization specification

When the runtime is not a Jakarta Authorization compatible endpoint container, the properties
argument used in all calls to getAuthContext must not include a
jakarta.security.jacc.PolicyContext key-value pair, and a null value may be passed for the
properties argument.

4.9.4.2. MessagePolicy Requirements

When a non-null requestPolicy is used to initialize the authentication modules of a
ServerAuthContext, the requestPolicy must be constructed such that the value obtained by calling
isMandatory on the requestPolicy accurately reflects whether (that is, true return value) or not (that
is, false return value) message protection within the SOAP messaging layer is required to perform
the web service invocation corresponding to the MessageInfo used to acquire the
ServerAuthContext. Similarly, the value obtained by calling isMandatory on a non-null
responsePolicy must accurately reflect whether or not message protection is required (within the
SOAP messaging layer) on the response (if there is one) resulting from the corresponding web
service invocation

Calling getTargetPolicies on the requestPolicy corresponding to a web service invocation for which
a SOAP layer client identity is to be established as the caller identity must return an array
containing at least one TargetPolicy for which calling getProtectionPolicy.getID() returns one of
the following values:

• ProtectionPolicy.AUTHENTICATE_SENDER

• ProtectionPolicy.AUTHENTICATE_CONTENT

When all of the operations of a web service endpoint require client authentication, each
ServerAuthContext acquired for the endpoint must initialize its contained authentication modules
with a requestPolicy that includes a TargetPolicy as described above and that mandates client
authentication. When client authentication is required for some, but not all, operations of an
endpoint, the requestPolicy used to initialize the authentication modules of a ServerAuthContext

50

acquired for the endpoint must include a TargetPolicy as described above and should only mandate
client authentication if client authentication is required for all of the operations mapped to the
ServerAuthContext. When none of the operations mapped to a ServerAuthContext require client
authentication, the requestPolicy used to initialize the authentication modules of the
ServerAuthContext must NOT mandate client authentication.

4.9.5. Message Processing Requirements

A server runtime that has received a SOAP request message, and that has not yet performed any
transformations on the SOAP message, is operating at point (2) in the message processing model
defined by this specification. A server runtime, after having prepared (except for security) a SOAP
response message to be returned to the client, is operating at point (3) in the message processing
model defined by this specification.

When processing a one-way application message exchange pattern, the runtime must not proceed
to point (3) in the message processing model, and the runtime must only return a response message
when validateRequest returns AuthStatus.SEND_CONTINUE (in which case, the response defined by
validateRequest is to be returned).

If the server runtime obtained a non-null ServerAuthContext by using the authentication context
identifier corresponding to the request message, then at point (2) in the message processing model,
the runtime must call validateRequest on the ServerAuthContext, and at point (3) the runtime must
call secureResponse on the ServerAuthContext.

If the call to validateRequest returns AuthStatus.SUCCESS, the runtime must perform any web
service authorization processing[4] required as a prerequisite to accessing the target resource. If
authentication is required for the request to be authorized, the runtime must determine whether
the authentication identity established in the clientSubject is authorized to access the resource. In a
Jakarta Authorization compatible runtime, the identity tested for authorization must be comprised
of exactly the Principal objects of the clientSubject. If the request is NOT authorized, and the
message-exchange pattern is not one-way, the runtime must set within the response (within
messageInfo) a SOAP fault element as defined by the runtime. If the request was determined to be
authorized, it must be dispatched to the resource. Otherwise the request must NOT be dispatched
and the runtime must proceed to point (3) in the message processing model (as appropriate to the
message exchange pattern).

If the invocation of the resource results in an exception being thrown by the resource to the
runtime and the message exchange pattern is not one-way, the runtime must set within the
response (within messageInfo) a SOAP fault element as defined by the runtime. Following the
resource invocation, and if the message exchange pattern is not one-way, the runtime must proceed
to point (3) in the message processing model. At point (3) in the message processing model, the
runtime must call secureResponse on the same ServerAuthContext used in the corresponding call to
validateRequest and with the same MessageInfo object.

If the request is dispatched to the resource, and the resource was configured to run-as its caller,
then for invocations originating from the resource where caller propagation is required, the
identity established using the CallerPrincipalCallback must be used as the propagated identity.

51

4.9.5.1. MessageInfo Requirements

The messageInfo argument used in a call to validateRequest must have been initialized by the
runtime such that its getRequestMessage will return the SOAP request message being processed by
the runtime.

When a corresponding call is made to secureResponse, it must be made with the same messageInfo
and serviceSubject arguments used in the corresponding call to validateRequest, and it must have
been initialized by the runtime such that its getResponseMessage method will return the SOAP
response message being processed by the runtime.

MessageInfo Properties

This profile does not define any properties that must be included in the Map within the MessageInfo
passed in calls to validateRequest and secureResponse.

4.9.5.2. Subject Requirements

A new clientSubject must be instantiated and passed in any calls made to validateRequest.

4.9.5.3. validateRequest Processing

validateRequest may be called either before the service invocation (to validate and authorize the
request) or after the service invocation (when a multi-message dialog is required to secure the
response). The module implementation is responsible for recording any state and performing any
processing required to differentiate these contexts.

validateRequest Before Service Invocation

When validateRequest is called before the service invocation on a module initialized with a
mandatory request policy (as defined by the return value from requestPolicy.isMandatory()), the
module must only return AuthStatus.SUCCESS if it was able to completely satisfy the request policy.
If the satisfied request policy includes a TargetPolicy element with a ProtectionPolicy of
AUTHENTICATE_SOURCE or AUTHENTICATE_CONTENT, then the module (or its context) must
employ the CallbackHandler passed to it by the runtime to handle a CallerPrincipalCallback using
the clientSubject as argument to the callback. If more than one module of a context uses the
CallbackHandler to handle this callback, the context is responsible for coordinating the calls such
that the appropriate caller principal value is established.

If the module was not able to completely satisfy the request policy, it must:

• Return AuthStatus.SEND_CONTINUE – If it has established a response (available to the runtime
by calling messageInfo.getResponseMessage) that must be sent by the runtime for the request
validation to be effectively continued by the client.

• Return AuthStatus.SEND_FAILURE – If the request validation failed, and when the module has
established a SOAP message containing a fault element (available to the runtime by calling
messageInfo.getResponseMessage) that may be sent by the runtime to inform the client that the
request failed.

• Throw an AuthException – If the request validation failed, and when the module has NOT
defined a response, to be sent by the runtime. If the runtime chooses to send a response, it must

52

define a SOAP message containing a SOAP fault element, and may use the content of the
AuthException to do so.

When validateRequest is called before the service invocation on a module that was initialized with
an optional request policy (that is, requestPolicy.isMandatory() returns false), the module should
attempt to satisfy the request policy, but it must do so without initiating[5] additional message
exchanges or interactions involving the client. Independent of whether the request policy is
satisfied, the module may return AuthStatus.SUCCESS. If the module returns AuthStatus.SUCCESS,
and the request policy was satisfied (and included a TargetPolicy element as described above), then
the module (or its context) must employ the CallerPrincipalCallback as described above. If the
request policy was not satisfied (and included a TargetPolicy element as described above), and yet
the module chooses to return AuthStatus.SUCCESS, the module (or its context) must use a
CallerPrincipalCallback to establish the container’s representation of the unauthenticated caller
within the clientSubject. If the module determines that an invalid or incomplete security context
was used to secure the request, then the module may return AuthStatus.SEND_FAILURE,
AuthStatus.SEND_CONTINUE, or throw an AuthException.If the module throws an AuthException,
or returns any value other that AuthStatus.SUCCESS, the runtime must NOT proceed to the service
invocation. The runtime must process an AuthException as described above for a request with a
mandatory requestPolicy. The runtime must process any return value other than
AuthStatus.SUCCESS as it would be processed if it were returned for a request with a mandatory
requestPolicy.

When validateRequest is called before the service invocation on a module that was initialized with
an undefined request policy (that is, requestPolicy == null), the module must return
AuthStatus.SUCCESS.

validateRequest After Service Invocation

When validateRequest is called after the service invocation[6], the module must return
AuthStatus.SEND_SUCCESS when the module has successfully secured the application response
message and made it available through messageInfo.getResponseMessage. For the request to be
successfully completed, the runtime must send the response message returned by the module.

When securing of the application response message has failed, and the response dialog is to be
terminated, the module must return AuthStatus.SEND_FAILURE or throw an AuthException.

If the module returns AuthStatus.SEND_FAILURE, it must have established a SOAP message
containing a SOAP fault element as the response in messageInfo. The runtime may choose not to
send a response message, or to send a different response message.

When the module throws an AuthException, the runtime may choose not to send a response. If the
runtime sends a response, the runtime must define the content of the response.

The module must return AuthStatus.SEND_CONTINUE if the response dialog is to continue. This
status value is used to inform the calling runtime that, to successfully complete the response
processing, it will need to be capable of continuing the message dialog by processing at least one
additional request/response exchange (after having sent the response message returned in
messageInfo). The module must have established (in messageInfo) a response message that will
cause the client to continue the response processing. For the response processing to be successfully

53

completed, the runtime must send the response message returned by the module.

4.9.5.4. secureResponse Processing

When secureResponse is called on a module that was initialized with an undefined responsePolicy
(that is, responsePolicy == null), the module must return AuthStatus.SEND_SUCCESS. Otherwise, the
return value and AuthException semantics of secureResponse are as defined in "validateRequest
After Service Invocation"

[1] The module may continue, or refresh an authentication dialog that has already been initiated (perhaps by the client) in the
request, but it must not start an authentication dialog for a request which has not yet been associated with authentication
information (as understood by the module).

[2] Occurs when the module is challenged by the server during secureRequest processing.

[3] For an http or https schema, the path must be the corresponding component of the "generic URI" syntax (that is,
<scheme>://<authority><path>?<query>) described in section 3. of RFC 2396 "Uniform Resource Identifiers (URI): Generic Syntax".
If the service is implemented as a Servlet, the path must begin with the context-path.

[4] This authorization processing would NOT be expected to include the enforcement of Servlet Auth-Constraints since they are
defined at url-pattern granularity.

[5] The module may continue, or refresh an authentication dialog that has already been initiated (perhaps by the client) in the
request, but it must not start an authentication dialog for a request which has not yet been associated with authentication
information (as understood by the module).

[6] Occurs when the module is challenged by the client during secureResponse processing.

54

Chapter 5. Future Profiles
This chapter presents initial thoughts on some other profiles that are being considered.

5.1. JMS Profile
This profile would use the interfaces defined in this specification to apply pluggable security
mechanisms to JMS message exchanges.

5.1.1. Message Abstraction

This profile would employ jakarta.jms.Message as its message abstraction. Properties would be set
on the Message to convey security credentials and security results.

5.1.2. Destinations

In this profile, application contexts could be defined for JMS destinations, such that authentication
configuration providers could be registered for interactions with destinations, and such that
authentication context configuration objects could be defined for interactions with destinations.

5.1.3. Message Processing Model

A client profile could require that secureRequest be called when a Message is sent by a
MessageProducer to a Destination and that validateResponse be called when a Message is received
by a MessageConsumer from a Destination.

A server profile could require that validateRequest be called when a Destination receives a message
from a MessageProducer, and that secureResponse be called when a Destination sends a message to
a MessageConsumer.

5.2. RMI/IIOP Portable Interceptor Profile
This profile would be implemented within portable interceptors, where it could be used secure
RMI/IIOP message exchanges and to serve as security mechanism integration facility within the
portable interceptor processing framework.

5.3. Message Abstraction
The profile would employ org.omg.PortableInterceptor.ClientRequestInfo for its client-side message
abstraction, and org.omg.PortableInterceptor.ServerRequestInfo for its server-side message
abstraction.

55

Chapter 6. LoginModule Bridge Profile
This chapter defines an internal contract that specifies how a server-side message layer
authentication module (that is, an implementation of the ServerAuthModule interface as defined by
this specification) may delegate some of its security processing responsibilities to a (JAAS)
LoginModule. A LoginModule is an object that implements the javax.security.auth.spi.LoginModule
interface in the Java Platform, Standard Edition.

6.1. Processing Model
The ServerAuthModule must create an instance of a javax.security.auth.login.LoginContext. If the
options argument passed to the initialize method of the ServerAuthModule contains a non-null String
value for the String key "javax.security.auth.login.LoginContext", then the ServerAuthModule must
pass this value as the name parameter in its calls to the LoginContext constructor. If the options
argument does not contain a non-null String value for this key, the ServerAuthModule must use its
own fully qualified class name in its calls to the constructor. In either case, the administrator of the
javax.security.auth.login.Configuration system of the LoginContext is responsible for establishing
the javax.security.auth.login.AppConfigurationEntry objects (with corresponding login module
name, control flag, and initialization options) to be returned for the entry name used by the
ServerAuthModule and for the default entry name "other".

If the ServerAuthModule passes a Subject to the LoginContext constructor, it must pass its client
Subject. The ServerAuthModule must pass a CallbackHandler to the constructor and the passed
CallbackHandler must conform to the requirements of Section 6.3

A new LoginContext instance should be created for each new request, and a LoginContext instance
should not be shared across different requests. Once a LoginContext object has been created, the
LoginContext.login method may be invoked from within the ServerAuthModule.validateRequest
method to delegate security processing to the LoginModule objects configured in the LoginContext.

6.2. Division of Responsibility
A ServerAuthModule must only interact with a LoginModule in a protocol-independent fashion.
Specifically, a ServerAuthModule is the only entity that may interpret protocol-specific messages (a
SOAP request or an HTTP Servlet request, for example). A LoginModule must only perform protocol-
independent security processing (for example, verifying a username/password that was
transmitted in the request).

A LoginModule requests information from the ServerAuthModule using the ServerAuthModule provided
CallbackHandler. Since the LoginModule must only perform protocol-independent operations, it
follows that any callback it requests from the handler must also be protocol-independent. It is the
responsibility of the provided CallbackHandler implementation to return the requested protocol-
independent information to the LoginModule. The CallbackHandler is responsible for any protocol-
specific message parsing required to extract the protocol-independent information returned by the
CallbackHandler.

56

6.3. Standard Callbacks
This profile requires that the CallbackHandler provided by the ServerAuthModule to the LoginContext
constructor support the javax.security.auth.callback.NameCallback and the
javax.security.auth.callback.PasswordCallback. If the ServerAuthModule passes its client Subject to
the LoginContext constructor, the CallbackHandler provided to the LoginContext constructor must
also support the GroupPrincipalCallback. Future versions of this profile may require that additional
callbacks be supported by the handler.

6.4. Subjects
If authentication succeeds, a LoginModule may update its Subject instance with authenticated
Principal and credential objects. If the ServerAuthModule did not pass its client Subject to the
LoginContext constructor, then it must transfer the Principals and credentials from the LoginContext
Subject to the client Subject.

If the ServerAuthModule is implementing a profile of this specification that requires the module to
employ the CallerPrincipalCallback, then the ServerAuthModule must satisfy this requirement using
the CallbackHandler provided to the ServerAuthModule, and the CallerPrincipalCallback must be
constructed using the name[1] value that would be obtained by the LoginModule if it were to use its
CallbackHandler to handle a NameCallback.

6.5. Logout
When ServerAuthModule.cleanSubject is called on the client Subject, the cleanSubject method must
invoke the LoginContext.logout method.

6.6. LoginExceptions
If the LoginContext instance throws a LoginException, the ServerAuthModule must throw a
corresponding AuthException. The LoginException may be established as the cause of the
AuthException.

[1] The CallerPrincipalCallback may be constructed with a String argument containing the name value, or with a Principal
argument whose getName method returns the name value.

57

Appendix A: Related Documents
This specification refers to the following documents. The terms used to refer to the documents in
this specification are included in brackets.

S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels,” RFC 2119, Harvard
University, March 1997, [Keywords]

Jakarta EE 9 Specification [Jakarta EE 9 Specification], available at: https://github.com/eclipse-ee4j/
jakartaee-platform

Jakarta Servlet Specification, Version 5.0 [Jakarta Servlet Specification], available at:
https://github.com/eclipse-ee4j/servlet-api

Jakarta XML Web Services 3.0 [Jakarta XML Web Services Specification], available at:
https://github.com/eclipse-ee4j/jax-ws-api

Jakarta Messaging Specification Version 3.0 [Jakarta Messaging Specification], available at:
https://github.com/eclipse-ee4j/jms-api

Jakarta Enterprise Beans, Version 4.0_ [Jakarta Enterprise Beans Specification], available at:
https://github.com/eclipse-ee4j/ejb-api

Java™, Standard Edition, Version 8.0 API Specification [Java SE 8 Specification], available at:
https://docs.oracle.com/javase/8/docs/api

Java™ Authentication and Authorization Service (JAAS) [JAAS Specification], available at:
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html_

SOAP Version 1.2 Part 0: Primer, W3C Recommendation, 24 June 2003 [SOAP Specification], available
at: http://www.w3.org/TR/soap12-part0

Common Secure Interoperability, Version 2 (CSIv2),OMG standard [CSIv2 Specification], available at:
http://www.omg.org/technology/documents/formal/omg_security.htm

Portable Interceptors, OMG Standard [PI Specification], available at: https://omg.org/spec/CORBA/3.3/
Interfaces/PDF

58

https://github.com/eclipse-ee4j/jakartaee-platform
https://github.com/eclipse-ee4j/jakartaee-platform
https://github.com/eclipse-ee4j/servlet-api
https://github.com/eclipse-ee4j/jax-ws-api
https://github.com/eclipse-ee4j/jms-api
https://github.com/eclipse-ee4j/ejb-api
https://docs.oracle.com/javase/8/docs/api
https://docs.oracle.com/javase/8/docs/technotes/guides/security/jaas/JAASRefGuide.html_
http://www.w3.org/TR/soap12-part0
http://www.omg.org/technology/documents/formal/omg_security.htm
https://omg.org/spec/CORBA/3.3/Interfaces/PDF
https://omg.org/spec/CORBA/3.3/Interfaces/PDF

Appendix B: Issues
The following sections document the more noteworthy issues that have historically been discussed
by the Expert Group under the JCP. The expectation is that standardization of the interfaces defined
by this specification will depend on satisfactory resolution of these issues.

B.1. Implementing getCallerPrincipal and
getUserPrincipal
Jakarta EE containers and other messaging runtimes are required to support various forms of these
methods. When the authentication identity is provided to the container as a bag of principals in a
Subject, the container needs some way to recognize which of the principals in the subject should be
returned as the caller or user Principal.

Resolution - Defined the CallerPrincipalCallback and GroupPrincipalCallback. The container
provided CallbackHandler will handle these callbacks by distinguishing (in some container specific
way) the Principals identified in the corresponding Callback within a Subject passed in the
Callback.

B.2. Alternative Supported Mechanisms at an Endpoint
How does one use this SPI to configure and invoke alternative “sufficient” providers, such that
satisfying any alternative within the context results in a successful outcome as seen by the calling
container or runtime?

Resolution (Partial) - The getAuthContext method of ClientAuthConfig and ServerAuthConfig was
modified to include the credentials of the client or service subject respectively so that they may be
applied in the context acquisition. The presence of the credentials during context selection will
allow the acquired context to be matched to the credentials, which will eliminate one of the
reasons, that is, support for alternative credential types, why a context might need to support
alternative (sufficient) modules.AuthContext objects could achieve transactional semantics by
passing message copies to modules, or they could pass properties requiring transaction behavior of
modules. There seems to be consensus within the EG that we should facilitate the use of single
module contexts by empowering the config layer to select an appropriate context (containing a
single module).

59

B.3. Access by Module to Other Layer Authentication
Results
How does an authentication module gain access to authentication results established at a “lower”
authentication layer? For example, acceptance of an identity assertion for subject S conveyed
within the message at layer Y may be dependent on being able to authenticate at some lower layer
(for example, SSL or perhaps message layer X), the entity (perhaps other than S) providing or
making the identity assertion.

Resolution (Partial) - The ServletRequest object includes attributes that define the security
properties of the transport connection on which a protected request arrived at the Servlet
container. For the Servlet profile of this specification, we would expect the existing attribute
mechanism to be employed. The general issue remains open, and may be resolved by the definition
of one or more new Callback objects (for example, getTransportProtection and/or getLayerSubject)
to be handled by the container or runtime.

B.4. How Are Target Credentials Acquired by Client
Authentication Modules?
When a client must obtain a short-lived, service-targeted security token (such as a Kerberos Service
Ticket), how are such tokens acquired, and how might the SPI defined by this specification be
applied to secure any network interactions required for token acquisition? If the client
authentication module is to perform token acquisition directly, it must be provided with sufficient
information to acquire a suitable token. If token acquisition is done by the runtime (perhaps) in
advance of the authentication module invocation (for example, during name context
interpretation), the authentication module must be provided with a means to obtain a suitable
token from the runtime.

Resolution - Extended the AuthConfig SPI to provide for the communication of properties such as
service name at module initialization. Message exchanges required to acquire security tokens may
be encapsulated in any of the AuthConfig, AuthContext, or AuthModule elements of the processing
model. Also added Subject parameter to getAuthContext call such that the acquired credential can
be passed back to the runtime.

B.5. How Does a Module Issue a Challenge?
How does an authentication module return a message to inform its network peer that it must do
some additional security processing as required by the network authentication mechanism being
implemented by the module?

60

Resolution (Partial) - Defined AuthStatus.SEND_CONTINUE and related semantics. Improved the
overview and message authentication chapters to describe multi-message exchanges.

B.6. Message Correlation for Multi-Message Dialogs
How are the messages that comprise a multi-message authentication dialog correlated, and where
is any state relating to the authentication kept?

Resolution (Partial) - Based on the premise that message-specific knowledge is held within the
authentication modules and that authentication modules are responsible for control of the dialog, it
is assumed that authentication modules are responsible for tying together or correlating the
messages that comprise the multi-message authentication dialog. Modules are expected to record
and recover any necessary state, and may do so using the facilities of the containing runtime (for
example, persisted sessions). It is also recognized that there are security mechanisms where
message correlation is dependent on context external to the exchanged messages, such as the
transport connection or session on which the messages were received, and that in such cases
authentication modules will be dependent on correlation related facilities provided by the runtime.
This draft of the specification does not standardize such facilities. The expert group discussed two
alternatives for providing such facilities: 1) provide one or more callbacks to allow a module to set
and get state associated with the current transport session; 2) define a module return value to be
used to signal the runtime when it must record and reuse the same (stateful) messageInfo parameter
when it calls the module to process the next message on the same transport session.

B.7. Compatibility With Load-Balancing Mechanisms
In a load-balanced environment, must the messages that comprise a multi-message authentication
dialog (for example, the messages of a challenge-response dialog) be processed by the same
authentication module instance, and if so how will that be accomplished?

Resolution (Partial) - Modules may choose to persist any state required to complete the dialog in a
centralized repository. In other cases, such modules may choose to employ persisted session
facilities of the runtime (for example, HttpSession) that have already been reconciled with load
balancing. In other cases, it may be feasible to extend train the load-balancer to recognize security-
mechanisms specific correlation identifiers in messages.

61

B.8. Use of Generics and Typesafe Enums in Interface
Definition
Should the SPI be modified to use new Java language features, specifically generics and typesafe
enums, introduced in Java SE 5?

Resolution (Partial) - There is a requirement that the SPI be used in J2SE 1.4 environments, and an
interest has been expressed in using the SPI in J2ME environments. As such, the specification does
not employ these language features. There has been discussion regarding the use of these features
in the SPI definition, while allowing for implementations matched to Java environments where
these features are not available.

B.9. HttpServletResponse Buffering and Header
Commit Semantics
The Servlet Specification defines buffering of the HttpServletResponse body such that filling the
response body[1] (for the first time) can cause the response status code, HTTP response headers, and
first buffer’s worth of response body to be sent. Similarly, during processing of an
HttpServletRequest, methods may be called on the corresponding HttpServletResponse (for example,
sendRedirect or flushbuffer) that will cause the analogous content to be sent. In all such cases, the
response has effectively been committed with respect to the status code, headers, and first response
body buffer that will be returned to the client. After a response has committed, subsequent changes
are not permitted to the status code or headers, and change to the response body is only permitted
to the extent that more content may be appended. As such, when response buffering triggers a
commit, for example during processing within the servlet, a call to secureResponse, following return
from the servlet, will be unable to effect the response status code, the response headers, or any
response body content that has already been sent (any or all of which may be necessary to secure
the response).

Resolution - The Jakarta Servlet Specification defines the HttpServletResponseWrapper class, which
can be used to extend the buffering capacity of the response, and thereby delay commit until the
response is complete. When a ServerAuthModule requires that responses be buffered until they are
explicitly completed, the module’s validateRequest method should install a response wrapper when
it returns AuthStatus.SUCCESS. Just prior to its return, the secureResponse method of the
ServerAuthModule should write the completed message to the wrapped response and remove the
wrapper.

62

B.10. Reporting New Issues

The maintenance project for this specification is located on the web at: http://github.com/eclipse-
ee4j/authentication where you will find the technology issue tracker at: https://github.com/eclipse-
ee4j/authentication/issues

[1] Some HttpServletResponse implementations extend the buffering methodology to the response headers, such that the status
code and the first buffers worth of response headers are sent when when the header buffer is full. This does not, strictly speaking,
cause the response to be committed, but instead creates a situation where attempts to change the status code, or to replace an
existing header, would not be expected to succeed.

63

http://github.com/eclipse-ee4j/authentication
http://github.com/eclipse-ee4j/authentication
https://github.com/eclipse-ee4j/authentication/issues
https://github.com/eclipse-ee4j/authentication/issues

Appendix C: Revision History

C.1. Early Draft 1 (06/06/2005)

C.2. Significant Changes in Public Draft (08/15/2006)

C.2.1. Changes to API

1. The classes and interfaces of the API were divided into four packages, message, config, callback,
and module.

2. The MessageLayer Interface was removed. Message layers are represented as a String.

3. The use of the URI type to identify applications (and other things) was replaced by String.

4. The AuthParam interface was replaced by the MessageInfo interface, and concrete message-
specific implementations of the AuthParam interface were removed from the SPI.

5. The disposeSubject methods were renamed cleanSubject.

6. The sharedMap arguments were removed. MessageInfo is now used to convey such context.

7. The parameter names corresponding to subjects were modified to correspond to the service
role of the corresponding party (i.e., client or server) as opposed to the message sending role.

8. The ModuleProperties interface was removed, and the responsibility for implementing
transactional semantics was transferred to the authentication context (if it supports multiple
sufficient alternatives).

9. The PendingException and FailureException classes were removed and a new return value type,
AuthStatus, was defined to convey the related semantics. A general return value model was
provided by the AuthStatus class.

10. The AuthConfigProvider interface was created to facilitate the integration of alternative module
conversation systems, and facilities were added to the AuthConfigFactory to support the
registration of AuthConfigProviders. The RegistrationListener interface we defined to support
live replacement of configuration systems.

11. The authentication context configuration layer was formalized and methods to acquire
authentication contexts (i.e, getAuthContext) were moved to the authentication context
configuration layer. Subject arguments were added to the getAuthContext methods to support
both the acquisition of credentials by the config system, and to allow the Subject and its content
to factor in the context acquisition.

12. new callbacks were defined (i.e. CallerPrincipalCallback and GroupPrincipalCallback).

C.2.2. Changes to Processing Model

1. The AuthStatus return model was described and the message processing model of the Overview
and Message Authentication chapters was evolved to describe the processing by runtimes of the
returned AuthStatus values, especially in the case of a multi-message authentication dialog.

64

C.2.3. Changes to Profiles

1. The Jakarta Servlet, SOAP, and Jakarta Messages profiles were added.

C.3. Changes in Proposed Final Draft 1

C.3.1. Changes to Preface

1. Changed Status and Audience to reflect transition to PFD.

2. Added paragraphs to describe relationship to JAAS

C.3.2. Changes to "Overview" Chapter

1. Changed Section 1.2.3 and Section 1.2.4 to reflect change in AuthConfig interface from
getOperation to getAuthContextID.

2. Added definition of “message processing runtime” to Section 1.3

C.3.3. Changes to "Message Authentication" Chapter

1. Changed sections Section 2.1, Section 2.1.2.2, Section 2.1.3, Section 2.1.4 to reflect change in
AuthConfig interface from getOperation to getAuthContextID.

2. To Section 2.1.1.1, added a requirement that runtimes support the granting to applications and
administration utilities of the permissions required to employ the configuration interfaces of
the SPI.

3. In subsection “at point (1) in the message processing model:” of Section 2.1.5.2, clarified
clientSubject requirements, and indicated that a non-null clientSubject must not be read-only.

4. In subsection “at point (4) in the message processing model:” of Section 2.1.5.2, clarified
serviceSubject requirements, and indicated that a non-null serviceSubject must not be read-
only.

5. Added “Fig 2.1: State Diagram of Client Message Processing Runtime”

6. In subsection “at point (2) in the message processing model:” of Section 2.1.5.2, clarified
serviceSubject requirements, and indicated that a non-null serviceSubject must not be read-
only.

7. In subsection “at point (3) in the message processing model:” of Section 2.1.5.2, clarified that the
call to secureResponse should be made independent of the outcome of the application request
processing.

8. Added “Fig 2.2: State Diagram of Server Message Processing Runtime”.

C.3.4. Changes to “Servlet Container Profile” Chapter

1. Added last sentence to introductory paragraph to clarify what is required to be a compatible
implementation of the profile.

2. In Section 3.2, extended identifier format to include the logical hostname along with he context
path.

65

3. In Section 3.5, added requirement that the handler argument (passed by the runtime) must not
be null.

4. Changed section Section 3.8 to reflect change in AuthConfig interface from getOperation to
getAuthContextID.

5. Changed Section 3.8.1, to remove requirements for a specific identifier format.

6. Changed Section 3.8.3,to require that the runtime set the PolicyContext in the module
initialization properties passed to getAuthContext call.

7. In Section 3.8.4, removed requirements relating to responsePolicy. Also moved responsibility for
determining when (client) authentication is required from the AuthConfig subsystem to the
message processing runtime.

8. In Section 3.9, clarified the points within the servlet processing model that corresponding to
points 2 and 3 of the message module. Added explicit statement to ensure that validateRequest
is called on all requests including requests to a login form. Moved the comment regarding
“delegation of session management” to a footnote. Changed the processing when there is an
authorization failure to require that secureResponse be called. Changed the prohibition on
calling secureResponse when the application throws an exception to a recommendation. Added
last sentence to require the use of the principal established using the CallerPrincipalCallback
where identity propagation is configured.

9. Changed Section 3.9.1, to conditionally require the inclusion of a property within the
MessageInfo map when client authentication is required. Also placed new requirement on the
authentication context configuration system that is use this value to establish the requestPolicy.

10. Added initial sentence to Section 3.9.3, to reiterate that validateRequest be called on every
request that satisfies the applicable connection requirements.

11. In Section 3.9.3.1, moved responsibility for coordinating disparate uses of the
CallerPrincipalCallback to the context. Relaxed prohibition on returning SEND_CONTINUE from
modules initialized with an optional requestPolicy by allowing modules to continue a multi-
message authentication dialog as long as it was initiated by the client. Added requirement that
modules initialized with an optional requestPolicy, use the CallerPrincipalCallback to
established an unauthenticated caller identity (if they return AuthStatus.SUCCESS without having
satisfied the TargetPolicy).

12. In Section 3.9.3.2, removed requirement that the module set the HTTP 200 (OK) status code.

13. In Section 3.9.3.3, removed requirements dependent on responsePolicy.

14. Replaced section “Dealing with Servlet Commit Semantics” with a new Section 3.9.3.5.

C.3.5. Changes to “SOAP Profile” Chapter

1. Added last sentence to introductory paragraph to clarify what is required to be a compatible
implementation of the profile.

2. Changed Section 4.2, to refer to subsections within the sub-profiles where the corresponding
identifiers are defined.

3. In Section 4.5, added requirement that the handler argument (passed by the runtime) must not
be null.

66

4. In Section 4.7, added clarification of what it means when getAuthContext returns a null value,
and how the value returned by getAuthContext impacts support for a session oriented
authentication mechanism.

5. Changed Section 4.7.1, to remove requirements for a specific identifier format.

6. Added new Section 4.8.1, to describe the identifier format as the concatenation of a client scope
identifier and a client reference to the service. For client scope identifiers, recommended the
use of application identifiers where they are available and suggested the use of the archive URI
where application identifiers are not available. Required that the service-ref name be used (if
available) for the client reference to the service. Otherwise the service URL is to be used.
Included examples, and added a last paragraph indicating that registration would require an
ability to predict the client scope identifier and client service reference associated by the
runtime with a client invocation.

7. Removed requirements from Section 4.8.4, that were already stated in Section 4.7.

8. In Section 4.8.5, to account for one-way application message exchange patterns, limited the
circumstances under which a runtime may proceed to point (4) in the message processing
model.

9. In Section 4.8.5.1, changed the description of the value of the javax.xml.ws.wsdl.service
property such that it must be a QName containing the service name. Removed statement of
relationship of value to client authentication context identifier.

10. In Section 4.8.5.3, corrected cut an paste errors (i.e., s/response/request/). Relaxed prohibition on
returning SEND_CONTINUE from secureRequest on modules initialized with an optional
requestPolicy. Added requirement that a module must return AuthStatus.SEND_SUCCESS (from
secureRequest) if it was initialized with a null requestPolicy.

11. In [a590], on modules initialized with and optional responsePolicy, relaxed prohibition on
returning SEND_CONTINUE from validateResponse and clarified the handling of AuthException and
the various AuthStatus return values.

12. Added new Section 4.9.1, to describe the identifier format as the concatenation of the logical
hostname of the virtual server, and the service endpoint URI. Also included an example.

13. Removed requirements from Section 4.9.4 that were already stated in Section 4.7.

14. Changed Section 4.9.4.1 to require that PolicyContext be set in the module initialization
properties (passed to getAuthContext call) if the server runtime is a Jakarta Authorization
compatible container.

15. In Section 4.9.4.2 removed paragraphs defining when message protection is required by an
Jakarta Enterprise Beans web service container. Added requirement for a specific TargetPolicy
within requestPolicy when the CallerPrincipalCallback is to be used by the authentication
module(s) of the context. Added a requirement that the requestPolicy must be mandatory and
must include a specific TargetPolicy when all the operations of an endpoint require client
authentication. Added recommended return values for isMandatory, when not all of the
operations of an endpoint require client authentication.

16. In Section 4.9.5, to account for one-way application message exchange patterns, limited the
circumstances under which a runtime may proceed to point (3) in the message processing
model. Moved the comment regarding “delegation of session management” to a footnote.
Changed the processing to require that secureResponse be called when there is an authorization

67

failure. Changed the prohibition on calling secureResponse when the application throws an
exception to a requirement that secureResponse be called. Added last sentence to require the use
of the principal established using the CallerPrincipalCallback where identity propagation is
configured.

17. In [a642] removed the requirement that the service name property be set in the MessageInfo
Map.

18. In [a648], moved responsibility for coordinating disparate uses of the CallerPrincipalCallback
to the context. Relaxed prohibition on returning SEND_CONTINUE from modules initialized with an
optional requestPolicy by allowing modules to continue a multi-message authentication dialog
as long as it was initiated by the client. Added requirement that modules initialized with an
optional requestPolicy, containing a prescribed TargetPolicy, use the CallerPrincipalCallback to
established an unauthenticated caller identity (if they return AuthStatus.SUCCESS without having
satisfied the TargetPolicy).

in Section 4.9.5.4, corrected the required return value when responsePolicy == null to be
AuthStatus.SEND_SUCCESS.

C.3.6. Changes to JMS Profile Chapter

1. Renamed chapter to "Future Profiles”.

2. Changed chapter to be strictly informative; serving to capture suggestions for additional
profiles.

3. Added Section 5.2.

C.3.7. Changes to Appendix B, Issues

1. Added new issue, Section B.9, with resolution which was factored into the Servlet Profile (see
Section 3.9.3.5).

C.3.8. Changes to API

1. In javax.security.auth.message.MessagePolicy, changed name of method “isManadatory” to
“isMandatory”.

2. In javax.security.auth.message.config.AuthConfig, changed the name of method “getOperation”
to “getAuthContextID” and changed the method definition to indicate that it returns the
authentication context identifier corresponding to the request and response objects in the
messageInfo argument.

3. In javax.security.auth.message.config.AuthConfigFactory, changed description of the typical
sequence of calls to reflect change of “getOperation” to “getAuthContextID”. Also changed
description to differentiate registration and self-registration. Added comment to definition of
the setFactory method to make it clear that listeners are NOT notified of the change to the
registered factory. Added a second form of registerConfigProvider that takes an
AuthConfigProvider object (in lieu of an implementation class and properties Map) and that
performs an in-memory registration as apposed to a persisted registration. Added support for
null registrations. Added the isPersistent method to the AuthConfigFactory.RegistrationContext
interface.

68

4. In javax.security.auth.message.config.AuthConfigProvider, changed description of the typical
sequence of calls to reflect change of “getOperation” to “getAuthContextID”. Changed
requirement for a “public one argument constructor” to a “public two argument constructor”,
where the 2nd argument may be used to pass an AuthConfigFactory to the AuthConfigProvider
to allow the provider to self-register with the factory.

5. In javax.security.auth.message.config.ClientAuthConfig, changed method and parameter
descriptions to reflect change of “getOperation” to “getAuthContextID”.

6. In javax.security.auth.message.config.ServerAuthConfig, changed method and parameter
descriptions to reflect change of “getOperation” to “getAuthContextID”.

7. In javax.security.auth.message.callback.PasswordValidationCallback, added a Subject parameter
to the constructor, and a getSubject method to make the Subject available to the
CallbackHandler. Also added a sentence describing the expected use of the
PasswordValidationCallback.

8. In javax.security.auth.message.callback.PrivateKeyCallback, added
PrivateKeyCallback.DigestRequest so that private keys may be requested by certificate digest (or
thumbprint). Added a sentence describing the expected use of the PrivateKeyCallback.

9. In javax.security.auth.message.callback.SecretKeyCallback, improved description of the
expected use of the SecretKeyCallback.

C.4. Changes in Proposed Final Draft 2

C.4.1. Changes to License

1. Revised date to May 5, 2007

C.4.2. Changes to Servlet Container Profile

1. In Section 3.9, added reference to new section, Section 3.9.4 to describe requirements for setting
the authentication results.

2. Added Section 3.9.4 to capture requirements for setting the user principal, remote user, and
authentication type on the HttpServletRequest.

C.4.3. Changes to SOAP Profile

1. Corrected reference (chapter number) to “Message Authentication” chapter appearing in the
chapter introduction.

2. Corrected ambiguity in Section 4.3, to make it clear that the profile does not require that
MessageInfo contain only non-null request and response objects.

C.4.4. Changes to LoginModule Bridge Profile

1. In Section 6.1, revised the method by which a ServerAuthModule chooses the entry name passed
to the LoginContext constructor. This change allows a single module implementation to be
configured to use different entry names, and thus different login modules.

2. In Section 6.3, added requirement that GroupPrincipalCallback be supported when LoginContext

69

is constructed with Subject.

3. In Section 6.4, added requirement that ServerAuthModule employ CallerPrincipalCallback using
same value as that available to LoginModule via NameCallback.

C.5. Changes in Final Release

C.5.1. Changes to title page

1. Corrected JCP version to 2.6

C.5.2. Changes to Preface

1. Changed Status and Audience to reflect transition to Final Release

C.6. Changes in Maintenance Release A

C.6.1. Changes Effecting Entire Document

Changed document Identifier to Maintenance Release A. Version identifier remains unchanged at
1.0.

C.6.2. Changes to “Message Authentication” Chapter

Clarified definition of baseline compatibility requirements to more explicitly convey that the API is
intended to have more general applicability than the specific contexts of its use defined within the
specification.

C.6.3. Changes to API

In javax.security.auth.message.callback.CallerPrincipalCallback, modified callback definition to
allow for principal mapping to occur during the handling of the callback by the CallbackHandler.

C.7. Changes in Maintenance Release B

C.7.1. Changes Effecting Entire Document

1. Changed document Identifier to Maintenance Release B, and Version identifier changed to 1.1.

2. Updated JCP version to 2.7

3. Updated the license

4. Replaced Sun logo with Oracle logo

5. Removed paragraph tags from PDF bookmarks

C.7.2. Changes to Preface

1. Changed Status to Maintenance Release B version 1.1

70

2. Added Will Hopkins, Tim Quinn, Arjan Tijms, and Yi Wang to the list of contributors

C.7.3. Changes to Servlet Container Profile

1. In Section 3.2, described use of ServletContext.getVirtualServerName in application context
identifier.

2. In Section 3.9 and Section 3.9.3, clarified that validateRequest must be called on every request
for which the Servlet security model applies. Also included footnote whose text describes that
the security model does not apply to forwards and includes.

3. In Section 3.9.3.1, added clarification to description of processing for SEND_CONTINUE, especially to
allow for forwards to a login page within an authentication module.

4. In Section 3.9.3.1, clarified description of processing for SEND_FAILURE to indicate that this return
status is returned when the validation failed and the client should not continue or retry the
request.

5. Added footnote on header of Section 3.9.3.2 to clarify that “after the service invocation”
effectively means after the call to secureResponse, so as to remain distinct from the case where
a call to authenticate from within the application results in a call to validateRequest during the
service invocation.

6. Added Section 3.9.3.4, to make it clear that authentication modules must be able to use a
RequestDispatcher to forward to a login page (for example).

7. In Section 3.9.4, amended description to make this section suitable for describing both the case
where validateRequest is called prior to a request, and the case where validateRequest is
(presumably) being called during the processing of the request

8. In Section 3.9.4, added Table 3-6 to define the name of the session registration callback
property. Also added description of the processing of the property.

9. Added Section 3.10 to define the use of the Jakarta Authentication SPI under
HttpServletRequest.authenticate, login, and logout.

C.7.4. Changes to Appendix B, Issues

1. Added Section B.10 with links to java.net project and JIRA issue tracker.

C.7.5. Changes to API

1. In abstract AuthConfigFactory class, made public the static permissions that are used to protect
the static getFactory and setFactory methods, and improved documentation so users of the SPI
can know which permissions are used. Also added an additional public
providerRegistrationSecurityPermission and required that it be used by factory
implementations to protect methods like registerConfigProvider. Removed incorrect assertion
from javadoc of getFactory, both forms of registerConfigProvider, and refresh, that checked
AuthException could be thrown (by these methods). Changed the javadoc of these four methods
to indicate that the conditions for which they were expected to throw an AuthException should
instead be handled within their existing declarations of throwing an (unchecked)
SecurityException. Regenerated (mif) javadocs (embedded in spec) from html javadocs, which
corrected definition for layer and appContext`parameters of

71

`getConfigProvider(java.lang.String layer, java.lang.String appContext,
RegistrationListener listener).

2. In AuthConfig, and AuthConfigProvider interfaces, removed incorrect assertion from javadoc of
refresh method that checked AuthException could be thrown, and changed javadoc to indicate
that the conditions for which refresh was expected to throw an AuthException should instead be
handled within its existing declaration of throwing an (unchecked) SecurityException.

C.8. Changes in Jakarta Authentication 3.0

C.8.1. Changes to Servlet Container Profile

1. Added the jakarta.servlet.http.isAuthenticationRequest key, so modules can distinguish
between being called at the very start of a request and in the middle of it following a call to
HttpServletRequest.authenticate. This could be needed to determine if certain contexts are
effectively active (such as the Faces context in Jakarta Faces).

2. Added requirements regarding the interaction of a ServerAuthModule with other specifications.
This allows such ServerAuthModule to programmatically obtain references to data sources, EJB
beans, CDI beans, etc.

72

	Jakarta Authentication
	Table of Contents
	Eclipse Foundation Specification License - v1.1
	Disclaimers
	Preface
	Notational Conventions
	Audience
	Specification Scope
	Abstract
	Acknowledgments
	Expert Group under the JCP
	Contributors under the JCP

	Chapter 1. Overview
	1.1. Message Processing Model
	1.1.1. Authentication Modules
	1.1.2. Authentication Contexts
	1.1.3. Authentication Context Configuration
	1.1.4. Authentication Context Configuration Providers
	1.1.5. Request and Response Messages
	1.1.6. Message Authentication Policy
	1.1.7. Authentication Exchanges and State
	1.1.8. Callbacks for Information From the Runtime
	1.1.9. Subjects
	1.1.10. Status Values and Exceptions

	1.2. Typical Runtime Use Model
	1.2.1. Acquire AuthConfigProvider
	1.2.2. Acquire AuthConfig
	1.2.3. Acquire AuthContext Identifier
	1.2.4. Acquire Authentication Context
	1.2.5. Process Messages

	1.3. Terminology
	1.4. Assumptions
	1.5. Requirements
	1.5.1. Non Requirements

	Chapter 2. Message Authentication
	2.1. Authentication
	2.1.1. Acquire AuthConfigProvider
	2.1.1.1. What the Runtime Must Do
	2.1.1.2. What the Factory Must Do

	2.1.2. Acquire AuthConfig
	2.1.2.1. What the Runtime Must Do
	2.1.2.2. What the Provider Must Do

	2.1.3. Acquire AuthContext Identifier
	2.1.3.1. What the Runtime Must Do
	2.1.3.2. What the Configuration Must Do

	2.1.4. Acquire Authentication Context
	2.1.4.1. What the Runtime Must Do
	2.1.4.2. What the Configuration Must Do

	2.1.5. Process Messages
	2.1.5.1. What the Context Must Do
	2.1.5.2. What the Runtime Must Do
	2.1.5.3. What the Modules Must Do

	Chapter 3. Servlet Container Profile
	3.1. Message Layer Identifier
	3.2. Application Context Identifier
	3.3. Message Requirements
	3.4. Module Requirements
	3.5. CallbackHandler Requirements
	3.6. State
	3.7. AuthConfigProvider Requirements
	3.8. Authentication Context Requirements
	3.8.1. Authentication Context Identifiers
	3.8.2. getAuthContext Subject
	3.8.3. Module Initialization Properties
	3.8.4. MessagePolicy Requirements

	3.9. Message Processing Requirements
	3.9.1. MessageInfo Requirements
	3.9.1.1. MessageInfo Properties

	3.9.2. Subject Requirements
	3.9.3. ServerAuth Processing
	3.9.3.1. validateRequest Before Service Invocation
	3.9.3.2. validateRequest After Service Invocation
	3.9.3.3. secureResponse Processing
	3.9.3.4. Forwards and Includes by Server Authentication Modules
	3.9.3.5. Wrapping and UnWrapping of Requests and Responses

	3.9.4. Setting the Authentication Results on the HttpServletRequest

	3.10. Sub-profile for authenticate, login, and logout of HttpServletRequest
	3.10.1. Authentication Configuration Requirements
	3.10.2. Processing for HttpServletRequest.login
	3.10.3. Processing for HttpServletRequest.authenticate
	3.10.4. Processing for HttpServletRequest.logout
	3.10.5. Calls from within ServerAuthContext

	3.11. Interaction with other specifications
	3.11.1. Availability of Jakarta EE component namespaces
	3.11.2. Availability of CDI scopes

	Chapter 4. SOAP Profile
	4.1. Message Layer Identifier
	4.2. Application Context Identifier
	4.3. Message Requirements
	4.4. Module Requirements
	4.5. CallbackHandler Requirements
	4.6. AuthConfigProvider Requirements
	4.7. Authentication Context Requirements
	4.7.1. Authentication Context Identifiers
	4.7.2. MessagePolicy Requirements

	4.8. Requirements for Client Runtimes
	4.8.1. Client-Side Application Context Identifier
	4.8.2. CallbackHandler Requirements
	4.8.3. AuthConfigProvider Requirements
	4.8.4. Authentication Context Requirements
	4.8.4.1. getAuthContext Subject
	4.8.4.2. Module Initialization Properties
	4.8.4.3. MessagePolicy Requirements

	4.8.5. Message Processing Requirements
	4.8.5.1. MessageInfo Requirements
	4.8.5.2. Subject Requirements
	4.8.5.3. secureRequest Processing
	4.8.5.4. validateResponse Processing

	4.9. Requirements for Server Runtimes
	4.9.1. Server-Side Application Context Identifier
	4.9.2. CallbackHandler Requirements
	4.9.3. AuthConfigProvider Requirements
	4.9.4. Authentication Context Requirements
	4.9.4.1. Module Initialization Properties
	4.9.4.2. MessagePolicy Requirements

	4.9.5. Message Processing Requirements
	4.9.5.1. MessageInfo Requirements
	4.9.5.2. Subject Requirements
	4.9.5.3. validateRequest Processing
	4.9.5.4. secureResponse Processing

	Chapter 5. Future Profiles
	5.1. JMS Profile
	5.1.1. Message Abstraction
	5.1.2. Destinations
	5.1.3. Message Processing Model

	5.2. RMI/IIOP Portable Interceptor Profile
	5.3. Message Abstraction

	Chapter 6. LoginModule Bridge Profile
	6.1. Processing Model
	6.2. Division of Responsibility
	6.3. Standard Callbacks
	6.4. Subjects
	6.5. Logout
	6.6. LoginExceptions

	Appendix A: Related Documents
	Appendix B: Issues
	B.1. Implementing getCallerPrincipal and getUserPrincipal
	B.2. Alternative Supported Mechanisms at an Endpoint
	B.3. Access by Module to Other Layer Authentication Results
	B.4. How Are Target Credentials Acquired by Client Authentication Modules?
	B.5. How Does a Module Issue a Challenge?
	B.6. Message Correlation for Multi-Message Dialogs
	B.7. Compatibility With Load-Balancing Mechanisms
	B.8. Use of Generics and Typesafe Enums in Interface Definition
	B.9. HttpServletResponse Buffering and Header Commit Semantics
	B.10. Reporting New Issues

	Appendix C: Revision History
	C.1. Early Draft 1 (06/06/2005)
	C.2. Significant Changes in Public Draft (08/15/2006)
	C.2.1. Changes to API
	C.2.2. Changes to Processing Model
	C.2.3. Changes to Profiles

	C.3. Changes in Proposed Final Draft 1
	C.3.1. Changes to Preface
	C.3.2. Changes to "Overview" Chapter
	C.3.3. Changes to "Message Authentication" Chapter
	C.3.4. Changes to “Servlet Container Profile” Chapter
	C.3.5. Changes to “SOAP Profile” Chapter
	C.3.6. Changes to JMS Profile Chapter
	C.3.7. Changes to Appendix B, Issues
	C.3.8. Changes to API

	C.4. Changes in Proposed Final Draft 2
	C.4.1. Changes to License
	C.4.2. Changes to Servlet Container Profile
	C.4.3. Changes to SOAP Profile
	C.4.4. Changes to LoginModule Bridge Profile

	C.5. Changes in Final Release
	C.5.1. Changes to title page
	C.5.2. Changes to Preface

	C.6. Changes in Maintenance Release A
	C.6.1. Changes Effecting Entire Document
	C.6.2. Changes to “Message Authentication” Chapter
	C.6.3. Changes to API

	C.7. Changes in Maintenance Release B
	C.7.1. Changes Effecting Entire Document
	C.7.2. Changes to Preface
	C.7.3. Changes to Servlet Container Profile
	C.7.4. Changes to Appendix B, Issues
	C.7.5. Changes to API

	C.8. Changes in Jakarta Authentication 3.0
	C.8.1. Changes to Servlet Container Profile

