\
JAKARTA EE

Jakarta Annotations

Jakarta Annotations Team, https://projects.eclipse.org/projects/ee4j.ca

3.0, February 17, 2024:

Table of Contents

Eclipse Foundation Specification LICENSEttt et ettt 1
DISCLAIIMIETS . . . oottt ettt ettt e e e e e e e e e 1

1. SPECITICAtION SCOPE . . . e e e e e e e e e 2
2. INtrOdUCHION . . o oo e 3
2L GOAIS . . e 3
2.2 NON-GOAIS 3
2.3, ComPatibDILITY . ..o e e 3
60} L4 =) (U) 4 3
2.5. EXPert Group MemMDETSottt et e e e e e e e e e 3
2.6. ACKNOWIEAZEIMENES\ttt ettt ettt et e e e e e e e e e e 4

3L ANNOTATIONIS .« .ottt e e e e e e 5
3.1. General Guidelines for Inheritance of ANNOtations i i i 5
3.2, jakarta.annotation.GENETateduutttttttt ittt ettt et 7
3.3, jakarta.annotation. RESOUICE.ttt et e e et et 8
3.3.1. Field based INJeCtiono o u ittt e e 9

3.3.2. Setter Dased INJECHIONLt e 10

3.4. jakarta.annotation. RESOUICES.ttt ettt e e 11
3.5. jakarta.annotation.POSTCONSIIUCEttt e et e e e e 12
3.6. jakarta.annotation. PreDestIOY. e 13
3.7.jakarta.annotation. PriOrity 13
3.8. jakarta.annotation. NONNUIL 14
3.9. jakarta.annotation.Nullable 14
3.10. jakarta.annotation.SeCUrity.RUINASo e e e e 15
3.11. jakarta.annotation.security.ROIESAIIOWEDttt e 15
3.12.jakarta.annotation.security.PermitAll 16
3.13.jakarta.annotation.security.DenyAlL. 17
3.14. PermitAll, DenyAll and RolesAllowed INteractions.eeettetttte ettt 17
3.15. jakarta.annotation.security.DeclareROIes 17
3.16. jakarta.annotation.sql.DataSourceDefinition. i 18
3.17.jakarta.annotation.sql.DataSourceDefinitions.t i 21

R (=) =) 4 Lo AP 22

Specification: Jakarta Annotations
Version: 3.0
Status: Final Release

Release: February 17, 2024

Copyright (c) 2021, 2024 Eclipse Foundation.

Eclipse Foundation Specification License

By using and/or copying this document, or the Eclipse Foundation document from which this statement is linked, you
(the licensee) agree that you have read, understood, and will comply with the following terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document from which this
statement is linked, in any medium for any purpose and without fee or royalty is hereby granted, provided that you
include the following on ALL copies of the document, or portions thereof, that you use:

¢ link or URL to the original Eclipse Foundation document.

 All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual representation is
permitted) of the form: "Copyright (c) [$date-of-document] Eclipse Foundation, Inc. [url to this license]"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be provided in any
software, documents, or other items or products that you create pursuant to the implementation of the contents of this
document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to this license,
except anyone may prepare and distribute derivative works and portions of this document in software that
implements the specification, in supporting materials accompanying such software, and in documentation of such
software, PROVIDED that all such works include the notice below. HOWEVER, the publication of derivative works of
this document for use as a technical specification is expressly prohibited.

The notice is:

"Copyright (c) 2018 Eclipse Foundation. This software or document includes material copied from or derived from [title
and URI of the Eclipse Foundation specification document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION MAKE NO
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF
THE DOCUMENT ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL
NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT,
SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR THE PERFORMANCE OR
IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in advertising or
publicity pertaining to this document or its contents without specific, written prior permission. Title to copyright in this
document will at all times remain with copyright holders.

Chapter 1. Specification Scope

Jakarta Annotations defines a collection of annotations representing common semantic concepts that enable a
declarative style of programming that applies across a variety of Java technologies.

Chapter 2. Introduction

With the addition of JSR 175 (A Metadata Facility for the JavaTM Programming Language) in the Java platform we
envision that various technologies will use annotations to enable a declarative style of programming. It would be
unfortunate if these technologies each independently defined their own annotations for common concepts. It would be
valuable to have consistency within the Jakarta EE and Java SE component technologies, but it will also be valuable to
allow consistency between Jakarta EE and Java SE.

It is the intention of this specification to define a small set of common annotations that will be available for use within
other specifications. It is hoped that this will help to avoid unnecessary redundancy or duplication between
annotations defined in different Jakarta EE specifications. This would allow us to have the common annotations all in
one place and let the technologies refer to this specification rather than have them specified in multiple specifications.
This way all technologies can use the same version of the annotations and there will be consistency in the annotations
used across the platforms.

2.1. Goals

Define annotations for use in Jakarta EE: This spec will define annotations for use within component technologies in
Jakarta EE as well as the platform as a whole.

2.2. Non-Goals

Support for Java versions prior to J2SE 5.0
Annotations were introduced in J2SE 5.0. It is not possible to do annotation processing in versions prior to J2SE 5.0. It is

not a goal of this specification to define a way of doing annotation processing of any kind for versions prior to J2SE 5.0.

2.3. Compatibility

The annotations defined in this specification may be included individually as needed in products that make use of
them. Other Java specifications will require support for subsets of these annotations. Products that support these Java
specifications must include the required annotations.

2.4. Conventions

The keywords ‘MUST’, ‘MUST NOT’, ‘REQUIRED’, ‘SHALL, ‘SHALL NOT’, ‘SHOULD’, ‘SHOULD NOT’, ‘RECOMMENDED’,
‘MAY’ AND ‘OPTIONAL’ in this document are to be interpreted as described in RFC 2119.

Java code is formatted as shown below:

package com.wombat.hello;

public class Hello {
public static void main(String[] args) {
System.out.println("Hello world");
}

2.5. Expert Group Members

The following expert group members participated in JSR 250:

¢ Cedric Beust (individual)

* Bill Burke (JBoss)

* Wayne Carr (Intel)

* Robert Clevenger (Oracle)

* Evan Ireland (Sybase)

* Woo Jin Kim (Tmax Soft)

* Gavin King (JBoss)

* Rajiv Mordani (Oracle Corporation, Specification lead)
* Ted Neward (individual)

* Anurag Parashar (Pramati technologies)
* Michael Santos (individual)

¢ Hani Suleiman (Ironflare AB)

» Seth White (BEA)

2.6. Acknowledgements

In addition to the expert group listed above, Linda DeMichiel, Ron Monzillo, Lance Andersen and Bill Shannon all of
whom work at Oracle Corporation have provided input to this specification.

Chapter 3. Annotations

This chapter describes the standard annotations, some guidelines for annotation inheritance and the usage of these
annotations where possible.

3.1. General Guidelines for Inheritance of Annotations

The interplay of annotations and inheritance in the Java language is potentially a source of complexity for developers.
Developers will rely on some implicit assumptions when figuring out how annotations compose with other language
features. At the same time, annotation semantics are defined by individual specifications, hence the potential for
inconsistencies to arise. For instance, consider the following example:

public class Base {
(REQUIRES_NEW)
public void foo {...}

public class Derived extends Base {
(NEVER)
public void foo {...}

In keeping with the concept of method overriding, most developers will assume that in the Derived class, the effective
TransactionAttribute annotation for method foo is TransactionAttribute(NEVER) . On the other hand, it might have been
possible for the specification governing the semantics of the TransactionAttribute annotations type to require that the
effective TransactionAttribute to be the most restrictive one in the whole inheritance tree, that is, in the example above
TransactionAttribute(REQUIRES_NEW) . A motivation for these semantics might have been that the foo method in the
Derived class may call super.foo() , resulting in the execution of some code that needs a transaction to be in place. Such
a choice on the part of the specification for TransactionAttribute would have contradicted a developer’s intuition on
how method overriding works.

In order to keep the resulting complexity in control, below are some guidelines recommended for how annotations
defined in the different specifications should interact with inheritance:

1. Class-level annotations only affect the class they annotate and its members, that is, its methods and fields. They
never affect a member declared by a superclass, even if it is not hidden or overridden by the class in question.

2. In addition to affecting the annotated class, class-level annotations may act as a shorthand for member-level
annotations. If a member carries a specific member-level annotation, any annotations of the same type implied by a
class-level annotation are ignored. In other words, explicit member-level annotations have priority over member-
level annotations implied by a class-level annotation. For example, a TransactionAttribute(REQUIRED) annotation on
a class implies that all the public methods in the class that it is applied on are annotated with
TransactionAttribute(REQUIRED) . However if there is a TransactionAttribute(NEVER) annotation on a particular
method, then the TransactionAttribute(NEVER) applies for that particular method and not
TransactionAttribute(REQUIRED) .

3. The interfaces implemented by a class never contribute annotations to the class itself or any of its members.

4. Members inherited from a superclass and which are not hidden or overridden maintain the annotations they had in
the class that declared them, including member-level annotations implied by class-level ones.

5. Member-level annotations on a hidden or overridden member are always ignored.

This set of guidelines guarantees that the effects of an annotation are local to the class on, or inside, which it appears.
In order to find the effective annotation for a class member, a developer has to track down its last non-hidden and non-
overridden declaration and examine it. If the sought-for annotation is not found there, then (s)he will have to examine

5

the enclosing class declaration. If even this step fails to provide an annotation, no other source file will be consulted.

Below are some examples that explain how the guidelines defined above will be applied to the TransactionAttribute
annotation.

(REQUIRED)
class Base {
(NEVER)
public void foo() {...}

public void bar() {...}

class ABean extends Base {
public void foo() {...}
}

public class BBean extends Base {
(REQUIRES_NEW)
public void foo() {...}

(REQUIRES_NEW)
public class (Bean extends Base {
public void foo() {...}
public void bar() {...}

(REQUIRES_NEW)
public class DBean extends Base {
public void bar() {...}
}

(REQUIRES_NEW)
public class EBean extends Base {
/] ...
}

The table below shows the effective TransactionAttribute annotation in each of the cases above by applying the
guidelines specified for annotations and inheritance:

Methods in derived classes Effective TransactionAttribute value

foo() in ABean TransactionAttribute(REQUIRED). (Default
TransactionAttribute as defined by the Jakarta Enterprise
Beans specification).

bar() in ABean TransactionAttribute(REQUIRED)
foo() in BBean TransactionAttribute(REQUIRES_NEW)
bar() in BBean TransactionAttribute(REQUIRED)
foo() in CBean TransactionAttribute(REQUIRES_NEW)
bar() in CBean TransactionAttribute(REQUIRES_NEW)

foo() in DBean TransactionAttribute(NEVER) (from Base class)

bar() in DBean TransactionAttribute(REQUIRES_NEW)
foo() in EBean TransactionAttribute(NEVER) (from Base class)
bar() in EBean TransactionAttribute(REQUIRED) (from Base class)

For more details about the TransactionAttribute annotation, see the Jakarta Enterprise Beans Core Contracts
specification.

All annotations defined in this specification follow the guidelines defined above unless explicitly stated otherwise.

3.2. jakarta.annotation.Generated

The Generated annotation is used to mark source code that has been generated. It can be specified on a class, method,
or field. It can also be used to differentiate user-written code from generated code in a single file.

The value element MUST have the name of the code generator. The recommended convention is to use the fully
qualified name of the code generator. For example: com.company.package.classname .

The date element is used to indicate the date the source was generated. The date element MUST follow the ISO 8601
standard. For example the date element could have the following value:

2001-07-04T712:08:56.235-0700

which represents 2001-07-04 12:08:56 local time in the U.S. Pacific time zone.

The comments element is a place holder for any comments that the code generator may want to include in the
generated code.

package jakarta.annotation;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

({ANNOTATION_TYPE, CONSTRUCTOR, FIELD, LOCAL_VARIABLE, METHOD, PACKAGE, PARAMETER, TYPE})
(SOURCE)
public Generated {
String[] value();
String date() default "";

String comments() default "";

}
Element Description Default
value Name of the code generator
date Date source was generated. MUST
follow ISO 8601 standard
comments placeholder for comments that the

generator may want to include in the
generated code

The following example shows the usage of the annotation defined above:

("com.sun.xml.rpc.AProcessor")
public interface StockQuoteService extends java.rmi.Remote {
this.context = context;

}

3.3. jakarta.annotation.Resource

The Resource annotation is used to declare a reference to a resource. It can be specified on a class, method, or field.
When the annotation is applied on a field or method, the container will inject an instance of the requested resource
into the application when the application is initialized. If the annotation is applied to a class, the annotation declares a
resource that the application will look up at runtime. Even though this annotation is not marked Inherited , all
superclasses MUST be examined to discover all uses of this annotation. All such annotation instances specify resources
that are needed by the application. Note that this annotation may appear on private fields and methods of superclasses.
Injection of the declared resources needs to happen in these cases as well, even if a method with such an annotation is
overridden by a subclass.

The name element is the JNDI name of the resource. When the Resource annotation is applied on a field, the default
value of the name element is the field name qualified by the class name. When applied on a method, the default is the
JavaBeans property name corresponding to the method qualified by the class name. When applied on a class, there is
no default and the name MUST be specified.

The type element defines the Java type of the resource. When the Resource annotation is applied on a field, the default
value of the type element is the type of the field. When applied on a method, the default is the type of the JavaBeans
property. When applied on a class, there is no default and the type MUST be specified. When used, the type MUST be
assignment compatible.

The authenticationType element is used to indicate the authentication type to use for the resource. It can take one of
two values defined as an Enum : CONTAINER or APPLICATION . This element may be specified for resources
representing a connection factory of any supported type and MUST NOT be specified for resources of other types.

The shareable element is used to indicate whether a resource can be shared between this component and other
components. This element may be specified for resources representing a connection factory of any supported type or
ORB object instances and MUST NOT be specified for resources of other types.

The mappedName element is a product-specific name that this resource should be mapped to. The mappedName
element provides for mapping the resource reference specified by the Resource annotation to the name of a resource
known to the application server. The mapped name could be of any form. Application servers are not required to
support any particular form or type of mapped name, nor the ability to use mapped names. The mapped name is
product dependent and often installation dependent. No use of mapped name is portable.

The description element is the description of the resource. The description is expected to be in the default language of
the system on which the application is deployed. The description can be presented to help in choosing the correct
resource.

The lookup element specifies the J]NDI name of a resource that the resource being defined will be bound to. The type of
the referenced resource must be compatible with that of the resource being defined.

package jakarta.annotation;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

({TYPE, METHOD, FIELD})

(RUNTIME)
(Resources.class)

public

public enum AuthenticationType {
CONTAINER,

Resource {

APPLICATION

}

String name() default

(lass<?> type() default Object.class;

AuthenticationType authenticationType() default AuthenticationType.CONTAINER;

boolean shareable() default true;
String mappedName() default
String description() default

String lookup() default "";

Element

name

type

authenticationType

shareable

mappedName

description

lookup

3.3.1. Field based injection

Description
The JNDI name of the resource
The Java type of the resource

The authentication type to use for the
resource

Indicates whether the resource can be
shared.

A product-specific name that the
resource should map to.

Description of the resource.

the JNDI name of a resource that the
resource being defined will be bound
to

Default

nn

Object.class

CONTAINER

true

n

To access a resource a developer declares a field and annotates it as being a resource reference. If the name and type

elements are missing from the annotation they will be inferred by looking at the field declaration itself. It is an error if

the type specified by the Resource annotation and the type of the field are incompatible.

For example:

private DataSource myDB;

In the example above the effective name is com.example.class/myDB and the effective type is javax.sql.DataSource.class

(name="customerDB")
private DataSource myDB;

In the example above the name is customerDB and the effective type is javax.sql.DataSource.class .

3.3.2. Setter based injection

To access a resource a developer declares a setter method and annotates it as being a resource reference. The name
and type of resource may be inferred by inspecting the method declaration if necessary. The name of the resource, if
not declared, is the name of the JavaBeans property as determined from the name of the setter method. The setter
method MUST follow the standard JavaBeans convention—the name starts with “ set ”; the return type is void ; and
there is only one parameter. Additionally, the type of the parameter MUST be compatible with the type element of the
Resource annotation, if specified.

For example:
private void setMyDB(DataSource ds) {

myDB = ds;
}

private DataSource myDB;

In the example above the effective name is com.example.class/myDB and the type is javax.sql. DataSource.class .

(name="customerDB")
private void setMyDB(DataSource ds) {
myDB = ds;
}

private DataSource myDB;

In the example above the name is customerDB and the type is javax.sql.DataSource.class .

The table below shows the mapping from Java type to the equivalent resource type in the Jakarta EE 9 (and later)
deployment descriptors:

Java Type Equivalent Resource type
java.lang.String env-entry
java.lang.Character env-entry
java.lang.Integer env-entry
java.lang.Boolean env-entry
java.lang.Double env-entry
java.lang.Byte env-entry
java.lang.Short env-entry
java.lang.Long env-entry
java.lang.Float env-entry

10

Java Type Equivalent Resource type

jakarta.xml.ws.Service service-ref

jakarta.jws.WebService service-ref

javax.sql.DataSource resource-ref
jakarta.jms.ConnectionFactory resource-ref
jakarta.jms.QueueConnectionFactory resource-ref
jakarta.jms.TopicConnectionFactory resource-ref
jakarta.mail.Session resource-ref
java.net.URL resource-ref
jakarta.resource.cci.ConnectionFactory resource-ref

any other connection factory defined by a resource adapter resource-ref

jakarta.jms.Queue message-destination-ref
jakarta.jms.Topic message-destination-ref
jakarta.resource.cci.InteractionSpec resource-env-ref
jakarta.transaction.UserTransaction resource-env-ref
Everything else resource-env-ref

3.4. jakarta.annotation.Resources

The Resource annotation is used to declare a reference to a resource. The Resources annotation acts as a container for
multiple resource declarations.

package jakarta.annotation;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

({TYPE})
(RUNTIME)
public Resources {
Resource[] value;
}
Element Description Default
value Container for defining multiple

resources.

The following example shows the usage of the annotation defined above:

11

€
(name="myDB", type=javax.sql.DataSource),
(name="myMQ", type=jakarta.jms.ConnectionFactory)

1))

public class CalculatorBean {
/] ...
}

3.5. jakarta.annotation.PostConstruct

The PostConstruct annotation is used on a method that needs to be executed after dependency injection is done to
perform any initialization. This method MUST be invoked before the class is put into service. This annotation MUST be
supported on all classes that support dependency injection. The method annotated with PostConstruct MUST be
invoked even if the class does not request any resources to be injected. Only one method in a given class can be
annotated with this annotation. The method on which the PostConstruct annotation is applied MUST fulfill all of the
following requirements, except in cases where these requirements have been relaxed by another specification. See in
particular the Jakarta Interceptors specification.

The method MUST NOT have any para meters.
* The return type of the method MUST be void .
The method MUST NOT throw a checked exception.

* The method on which PostConstruct is applied MAY be public, protected , package private or private .

The method MUST NOT be static except for the application client.

 In general, the method MUST NOT be final. However, other specifications are permitted to relax this requirement on
a per-component basis.

« If the method throws an unchecked exception the class MUST NOT be put into service.

package jakarta.annotation;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

(METHOD)
(RUNTIME)
public PostConstruct {

}

The following example shows the usage of the annotation defined above:

private void setMyDB(DataSource ds) {
myDB = ds;
}

private void initialize() {
// Initialize the connection object from the DataSource
connection = myDB.getConnection();

}

private DataSource myDB;
private Connection connection;

12

3.6. jakarta.annotation.PreDestroy

The PreDestroy annotation is used on a method as a callback notification to signal that the instance is in the process of
being removed by the container. The method annotated with PreDestroy is typically used to release resources that the
instance has been holding. This annotation MUST be supported by all container managed objects that support
PostConstruct except the application client. The method on which the PreDestroy annotation is applied MUST fulfill all
of the following requirements, except in cases where these requirements have been relaxed by another specification.
See in particular the Jakarta Interceptors specification.

e The method MUST NOT have any para meters.

o The return type of the method MUST be void .

o The method MUST NOT throw a checked exception.

* The method on which PreDestroy is applied MAY be public, protected , package private or private .
e The method MUST NOT be static.

 In general, the method MUST NOT be final. However, other specifications are permitted to relax this requirement on
a per-component basis.

« If the method throws an unchecked exception it is ignored.

package jakarta.annotation;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

(METHOD)
(RUNTIME)
public PreDestroy {

}

The following example shows the usage of the annotation defined above:

private void setMyDB(DataSource ds) {
myDB = ds;
}

private void initialize() {
// Initialize the connection object from the DataSource
connection = myDB.getConnection();

private void cleanup() {
// Close the connection to the DataSource.
connection.close();

}

private DataSource myDB;
private Connection connection;

3.7. jakarta.annotation.Priority

The Priority annotation can be applied to any program elements to indicate in what order they should be used. The
effect of using the Priority annotation in any particular instance is defined by other specifications that define the use of
a specific class.

13

For example, the Jakarta Interceptors specification defines the use of priorities on interceptors to control the order in
which interceptors are called.

Priority values should generally be non-negative, with negative values reserved for special meanings such as
“undefined” or “not specified”. A specification that defines use of the Priority annotation may define the range of
allowed priorities and any priority values with special meaning.

package jakarta.annotation;
import java.lang.annotation.*;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

(RUNTIME)
public Priority {

// The priority value.
int value();

3.8. jakarta.annotation.Nonnull

The Nonnull annotation is used to mark elements that cannot be null.
This information can be used for validation by IDEs, static analysis tools, and runtime.
The annotation may be present on any target. This specification defines behavior on following targets:

¢ Method - return type will never be null
» Parameter - parameter must not be null

¢ Field - field cannot be null after construction of the object is completed

package jakarta.annotation;

import java.lang.annotation.Documented;
import java.lang.annotation.Retention;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

(RUNTIME)
public Nonnull {
}

The following example shows the usage of the annotation defined above:

public interface StockQuoteService {

BigDecimal quote(String marker);

3.9. jakarta.annotation.Nullable

The Nullable annotation is used to mark elements that may be null.
This information can be used for validation by IDEs, static analysis tools, and runtime.

The annotation may be present on any target. This specification defines behavior on following targets:

14

* Method - return type may be null
» Parameter - parameter may be null

¢ Field - field may be null

package jakarta.annotation;

import java.lang.annotation.Documented;
import java.lang.annotation.Retention;

import static java.lang.annotation.RetentionPolicy.RUNTIME;
(RUNTIME)

public Nullable {
}

The following example shows the usage of the annotation defined above:

public interface StockQuoteService {
BigDecimal quote(String marker, BigDecimal defaultValue);
}

3.10. jakarta.annotation.security.RunAs

The RunAs annotation defines the security role of the application during execution in a Jakarta EE container. It can be
specified on a class. This allows developers to execute an application under a particular role. The role MUST map to the
user / group information in the container’s security realm. The value element in the annotation is the name of a
security role.

package jakarta.annotation.security;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

(TYPE)
(RUNTIME)
public RunAs {
String value();
}
Element Description Default
value Security role of the application during

execution in a Jakarta EE container

The following example shows the usage of the annotation defined above:
("Admin")
public class Calculator {

/1 ...
}

3.11. jakarta.annotation.security.RolesAllowed

The RolesAllowed annotation specifies the security roles permitted to access method(s) in an application. The value
element of the RolesAllowed annotation is a list of security role names.

15

The RolesAllowed annotation can be specified on a class or on method(s). Specifying it at a class level means that it
applies to all the methods in the class. Specifying it on a method means that it is applicable to that method only. If
applied at both the class and method level, the method value overrides the class value.

package jakarta.annotation.security;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

({TYPE,METHOD})
(RUNTIME)
public RolesAllowed {
String[] value();
}
Element Description Default
value List of roles permitted to access

methods in the application

The following example shows the usage of the annotation defined above:

("Users")
public class Calculator {
("Administrator")
public void setNewRate(int rate) {
/] ...
}

3.12. jakarta.annotation.security.PermitAll

The PermitAll annotation specifies that all security roles are allowed to invoke the specified method(s), that is, that the
specified method(s) are “unchecked”. It can be specified on a class or on methods. Specifying it on the class means that
it applies to all methods of the class. If specified at the method level, it only affects that method.

package jakarta.annotation.security;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

({TYPE,METHOD})
(RUNTIME)
public PermitAll {

}

The following example shows the usage of the annotation defined above:

import jakarta.annotation.security.*;

("Users")
public class Calculator {
("Administrator")
public void setNewRate(int rate) {
/...
}

16

public long convertCurrency(long amount) {
/] ...
}

3.13. jakarta.annotation.security.DenyAll

The DenyAll annotation specifies that no security roles are allowed to invoke the specified method(s), that is, that the
method(s) are to be excluded from execution in the Jakarta EE container.

package jakarta.annotation.security;

import static java.lang.annotation.ElementType.*;
import static java.lang.annotation.RetentionPolicy.*;

({TYPE, METHOD})
(RUNTIME)
public DenyAll {

}

The following example shows the usage of the annotation defined above:

import jakarta.annotation.security.*;

("Users")
public class Calculator {
("Administrator")
public void setNewRate(int rate) {
/...
}

public long convertCurrency(long amount) {
/] ...
}

3.14. PermitAll, DenyAll and RolesAllowed interactions

The PermitAll, DenyAll and RolesAllowed annotations all define which security roles are allowed to access the methods
on which they are applied. This section describes how these annotations interact and which usages of these
annotations are valid.

If the PermitAll , DenyAll and RolesAllowed annotations are applied on methods of a class, then the method level
annotations take precedence (at the corresponding methods) over any class level annotations of type PermitAll ,
DenyAll and RolesAllowed .

3.15. jakarta.annotation.security.DeclareRoles

The DeclareRoles annotation is used to specify security roles used by the application. It can be specified on a class. It
typically would be used to define roles that could be tested (i.e., by calling isUserInRole) from within the methods of the
annotated class. It could also be used to declare roles that are not implicitly declared as the result of their use in a
RolesAllowed annotation on the class or a method of the class.

package jakarta.annotation.security;

import static java.lang.annotation.ElementType.*;

17

import static java.lang.annotation.RetentionPolicy.*;

(TYPE)
(RUNTIME)
public DeclareRoles {
String[] value();
}
Element Description Default
value List of security roles specified by the

application

The following example shows the usage of the annotation defined above:

("BusinessAdmin")
public class Calculator {
public void convertCurrency() {
if (x.isUserInRole("BusinessAdmin")) {
/] ...
}

/] ...

3.16. jakarta.annotation.sql.DataSourceDefinition

The DataSourceDefinition annotation is used to define a container DataSource to be registered with JNDI. The
DataSource may be configured by setting the annotation elements for commonly-used DataSource properties.
Additional standard and vendor-specific properties may be specified using the properties element. The data source will
be registered under the name specified in the name element. It may be defined to be in any valid Jakarta EE
namespace, which will determine the accessibility of the data source from other components. A JDBC driver
implementation class of the appropriate type, either DataSource , ConnectionPoolDataSource , or XADataSource , must
be indicated by the className element. The driver class is not required to be available at deployment but must be
available at runtime prior to any attempt to access the DataSource .

DataSource properties should not be

specified more than once. If the _url_ annotation element contains a
DataSource property that was also specified using the corresponding
annotation element or was specified in the _properties_ annotation
element, the precedence order is undefined and implementation specific.

Vendors are not required to support properties that do not normally apply to a specific data source type. For example,
specifying the transactional property to be true but supplying a value for className that implements a data source
class other than XADataSource may not be supported.

Vendor-specific properties may be combined with or used to override standard data source properties defined using
this annotation.

DataSource properties that are specified and are not supported in a given configuration or cannot be mapped to a
vendor-specific configuration property may be ignored.

Although the annotation allows you to specify a password, it is recommended not to embed passwords in production
code. The password element in the annotation is provided as a convenience for ease of development.

18

package jakarta.annotation.sql;

import java.lang.annotation.Target;

import java.lang.annotation.Retention;
import java.lang.annotation.ElementType;
import java.lang.annotation.RetentionPolicy;

({ElementType.TYPE})
(RetentionPolicy.RUNTIME)
(DataSourceDefinitions.class)
public DataSourceDefinition {

String name();

String className();

String description() default "";

String url() default "";

String user() default "";

String password() default "";

String databaseName() default "";

int portNumber() default -1;

String serverName() default "localhost";

int isolationLevel() default -1;

boolean transactional() default true;

int initialPoolSize() default -1;

int maxPoolSize() default -1;

int minPoolSize() default -1;

int maxIdleTime() default -1;

int maxStatements() default -1;

String[] properties() default \{};

int loginTimeout() default 0;

}
Element Description Default
name JNDI name by which the data source
will be registered
className DataSource implementation class
name
description Description of the data source
url A JDBC URL. If the url annotation
element contains a DataSource
property that was also specified using
the corresponding annotation element,
the precedence order is undefined and
implementation specific.
user User name for connection
authentications
password Password for connection "
authentications
databaseName Name of a database on a server
portNumber Port number where a server is

listening for requests

19

Element
serverName
isolationLevel

transactional

initialPoolSize

maxPoolSize

minPoolSize

maxlIdleTime

maxStatements

properties

loginTimeout

Examples:

Description
Database server name
Isolation level for connections.

Indicates whether a connection is
transactional or not

Number of connections that should be
created when a connection pool is
initialized

Maximum number of connections that
should be concurrently allocated for a
connection pool

Minimum number of connections that
should be allocated for a connection
pool

The number of seconds that a physical
connection should remain unused in
the pool before the connection is
closed for a connection pool

The total number of statements that a
connection pool should keep open. A
value of 0 indicates that the caching of
statements is disabled for a connection
pool

Used to specify vendor-specific
properties and less commonly used
DataSource properties. If a DataSource
property is specified in the properties
element and the annotation element
for the property is also specified, the
annotation element value takes
precedence.

The maximum time in seconds that
this data source will wait while
attempting to connect to a database. A
value of 0 specifies that the timeout is
the default system timeout if there is
one, otherwise it specifies that there is
no timeout

name="java:global/MyApp/MyDataSource",
className="com. foobar.MyDataSource",

20

Default
"localhost"
-1 (vendor specific)

true

-1 (vendor specific)

-1 (vendor specific)

-1 (vendor specific)

-1 (vendor specific)

-1 (vendor specific)

\(

portNumber=6689,
serverName="myserver.com",
user="1lance",
password="secret")

Using a URL:

@DataSourceDefinition(
name="java:global/MyApp/MyDataSource",
className="org.apache.derby.jdbc.ClientDataSource",
url="jdbc:derby://localhost:1527/myDB",
user="lance",
password="secret")

3.17. jakarta.annotation.sql.DataSourceDefinitions

The DataSourceDefinition annotation is used to declare a container DataSource
acts as a container for multiple data source declarations.

package jakarta.annotation.sql;

import java.lang.annotation.Target;

import java.lang.annotation.Retention;
import java.lang.annotation.ElementType;
import java.lang.annotation.RetentionPolicy;

@Target({ElementType.TYPE})

@Retention(RetentionPolicy.RUNTIME)

public @interface DataSourceDefinitions {
DataSourceDefinition[] value ();

}
Element Description
value Container for defining multiple data

sources.

The following example shows the usage of the annotation defined above:

@DataSourceDefinitions ({
@DataSourceDefinition(name="java:global/MyApp/MyDataSource",
className="com. foobar.MyDataSource",
portNumber=6689,
serverName="myserver.com",
user="lance",
password="secret"),

@DataSourceDefinition(name="java:global/MyApp/MyDataSource",
className="org.apache.derby.jdbc.ClientDataSource",
url="jdbc:derby://localhost:1527/myDB",
user="lance",
password="secret")

1)

public class CalculatorBean {
/...

}

. The DataSourceDefinitions annotation

Default

21

Chapter 4. References

Java SE, https://www.oracle.com/java/

JSR 175: A Metadata Facility for the Java Programming Language. http://jcp.org/en/jsr/detail?id=175
Jakarta EE Platform (Jakarta EE), https://jakarta.ee/specifications/platform/

Jakarta Enterprise Beans, https://jakarta.ee/specifications/enterprise-beans/

Jakarta Interceptors, https://jakarta.ee/specifications/interceptors/

RFC 2119. http://www.faqs.org/rfcs/rfc2119.html

22

https://www.oracle.com/java/
http://jcp.org/en/jsr/detail?id=175
https://jakarta.ee/specifications/platform/
https://jakarta.ee/specifications/enterprise-beans/
https://jakarta.ee/specifications/interceptors/
http://www.faqs.org/rfcs/rfc2119.html

	Jakarta Annotations
	Table of Contents
	Eclipse Foundation Specification License
	Disclaimers

	Chapter 1. Specification Scope
	Chapter 2. Introduction
	2.1. Goals
	2.2. Non-Goals
	2.3. Compatibility
	2.4. Conventions
	2.5. Expert Group Members
	2.6. Acknowledgements

	Chapter 3. Annotations
	3.1. General Guidelines for Inheritance of Annotations
	3.2. jakarta.annotation.Generated
	3.3. jakarta.annotation.Resource
	3.3.1. Field based injection
	3.3.2. Setter based injection

	3.4. jakarta.annotation.Resources
	3.5. jakarta.annotation.PostConstruct
	3.6. jakarta.annotation.PreDestroy
	3.7. jakarta.annotation.Priority
	3.8. jakarta.annotation.Nonnull
	3.9. jakarta.annotation.Nullable
	3.10. jakarta.annotation.security.RunAs
	3.11. jakarta.annotation.security.RolesAllowed
	3.12. jakarta.annotation.security.PermitAll
	3.13. jakarta.annotation.security.DenyAll
	3.14. PermitAll, DenyAll and RolesAllowed interactions
	3.15. jakarta.annotation.security.DeclareRoles
	3.16. jakarta.annotation.sql.DataSourceDefinition
	3.17. jakarta.annotation.sql.DataSourceDefinitions

	Chapter 4. References

