Jakarta EE Tutorial

v10

2025-05-03

o This section is currently a draft, and is subject to change.

Legal

This documentation and the accompanying materials are made available under the terms of the
Eclipse Public License v. 2.0, which is available at https://www.eclipse.org/legal/epl-2.0.

SPDX-License-Identifier: EPL-2.0

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be
trademarks of their respective owners.

About this Tutorial

This tutorial explains how to use the features of the Jakarta EE Platform to build cloud-native
applications, such as microservices, "right sized" services, and server-based web applications.

Prerequisites

Jakarta EE applications use the Java Platform, and are usually written in the Java programming
language. All the examples in this tutorial are written in Java. If you’re new to Java, spend some
time getting up to speed on the language and platform; a good place to start is dev.java/learn.

Each topic in this tutorial provides some background information, but in general, we assume you
have a basic understanding of the technologies each Jakarta EE feature works with. For example, in
the Jakarta Persistence chapter, we assume you have a basic understanding of relational databases.

Conventions

Throughout this tutorial, we use the following typographic conventions:

Convention Meaning Example

Boldface Boldface type indicates a term defined A cache is a copy stored locally.
in text or graphical user interface
elements associated with an action. From the File menu, choose Open

Project.
Monospace Monospace type indicates the names Edit your .login file.
of files and directories, commands
within a paragraph, URLSs, code in Use 1s -a to list all files.
examples, text that appears on the
screen, or text that you enter. machine_name% you have mail.

https://www.eclipse.org/legal/epl-2.0
https://dev.java/learn/

Convention Meaning

Italic Italic type indicates book titles,

emphasis, or placeholder variables for

which you supply particular values.

Example

Read Chapter 6 in the User’s Guide.
Do not save the file.

The command to remove a file is rm
filename.

Default Paths and File Names

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet

been updated.

The following table describes the default paths and file names that are used in this book.

Placeholder Description

as-install Represents the base installation
directory for GlassFish Server.

as-install-parent Represents the parent of the base
installation directory for GlassFish
Server.

jakartaee-examples Represents the base installation
directory for the Jakarta EE Tutorial
examples project after you download
or clone it.

domain-dir Represents the directory in which a
domain’s configuration is stored.

Default Value

Installations on the Linux, UNIX, or
macOS:

userls-home-
directory/glassfishb/glassfish

Windows, all installations:

SystemDrive:\glassfishb\glassfish

Installations on UNIX/Linux/macOS:
userfs-home-directory/qlassfishé

Windows:

SystemDrive:\glassfishb

userfs-home-directory/jakartaee-
examples

as-install/domains/domain

Introduction

Overview
0 This section is currently a draft, and is subject to change.

This chapter explains what Jakarta EE is, what features it provides, common terms, and how
Jakarta EE applications are structured.

Jakarta EE 10 Platform Highlights

Jakarta EE 10 is the first feature release of the platform since it moved to the Eclipse Foundation in
2017. The key emphasis of this release is better alignment with Java SE and creation of a new
lightweight Core profile, which can be easily consumed by other standards such as MicroProfile.

Here are some highlights:

* CDI Alignment
o @Asynchronous in Jakarta Concurrency
o Better CDI support in Jakarta Batch
* Java SE Alignment
o Support for Java SE 11 and 17
o CompletionStage, ForkJoinPool, parallel streams in Jakarta Concurrency
o Bootstrap APIs for Jakarta REST
* Closing standardization gaps
o OpenID Connect support in Jakarta Security
o UUID as entity keys, more SQL support in Jakarta Persistence queries
o Multipart/form-data support in Jakarta REST
o @ClientWindowScoped and Facelet pure Java views in Jakarta Faces

o New Core Profile that includes Jakarta CDI Light to enable next generation cloud native
runtimes; used by MicroProfile

o Jakarta Concurrency has moved to the Web Profile
* Deprecation/removal

o @Context annotation in Jakarta REST

- EJB Entity Beans

- Embeddable EJB container

- Deprecated features in Jakarta Servlet, Jakarta Faces, and Jakarta CDI

https://microprofile.io/

What is Jakarta EE?

Jakarta EE is a collection of services that help you write enterprise applications that run on the Java
Platform. It provides the infrastructure often required for these applications so that you can focus
on core features and business logic.

Enterprise applications support the high levels of security, scalability, and reliability that large
organizations typically require. They can be web services, web applications, batch processes, and so
on.

The Java Platform consists of the Java Virtual Machine, compiler, standard APIs, and several tools
that help you build, deploy, and debug Java applications. Java is the primary programming
language, although the Java Platform supports several others, including Kotlin and Scala. Most
Jakarta EE applications, however, are written in Java. The Java Platform is also called Java
Standard Edition (SE).

With Jakarta EE, you can pick and choose which services you need, and you use them with or
without other frameworks and libraries. One framework commonly used with Jakarta EE is
MicroProfile, which provides additional features commonly used in microservices.

A key benefit of Jakarta EE is that it’s a set of open source standards supported by multiple vendors.
Each vendor has their own implementation of the standards, and the vendors work together to
update the standards over time. This means that you aren’t locked into a particular vendor, and
each standard is well-thought-out and based on existing patterns and practices.

Jakarta EE is stable and mature, and used in tens of thousands of mission-critical enterprises
applications worldwide; yet it has evolved over time to keep up with modern computing trends,
such as cloud computing.

Jakarta EE Services

Jakarta EE provides a wide range of services, organized into three main categories. Each category is
implemented by one of three profiles. The Core profile contains the foundational services. The Web
profile contains the Core profile plus services for writing web applications. The Platform contains
the Core and Web profiles, plus additional services for mail, batch processing, and messaging, and
more.

Services, Specificiations and Profiles lists each high-level service, the specification that provides it,
and the profile that contains it:

Services, Specificiations and Profiles

Service Specification Profile

Dependency injection Jakarta Contexts and Core
Dependency Injection (CDI) Lite

RESTful web services Jakarta REST (formerly JAX-RS) Core
JSON processing Jakarta JSON Binding (JSON-B) Core
and Jakarta JSON Processing
(JSON-P)

https://microprofile.io

Service

Advanced dependency injection

Validation

Security
HTTP request handling

Server-side web applications

WebSocket request handling

Relational data persistence

Application components

Transactions
Managed concurrency
Email handling
Messaging

Batch processing

Specification

Jakarta Contexts and

Dependency Injection (CDI) Full

Jakarta Validation (Bean
Validation)

Jakarta Security
Jakarta Servlet

Jakarta Faces (formerly
JavaServer Faces, or JSF)

Jakarta WebSocket

Jakarta Persistence (formerly
JPA)

Jakarta Enterprise Beans Lite
(formerly EJB Lite)

Jakarta Transactions
Jakarta Concurrency
Jakarta Mail

Jakarta Messaging

Jakarta Batch

Profile
Web

Web

Web
Web
Web

Web
Web

Web

Web
Web
Platform
Platform

Platform

As you work with Jakarta EE, you’ll encounter other services that support the ones listed above.

Each service is provided by one or more APIs, which are defined in Jakarta EE specifications. The
specifications provide details for users and implementors of the service. You can find a full list of
the Jakarta EE specifications on the Jakarta EE site.

Jakarta EE Containers and Servers

The services we discussed in the Jakarta EE Services section are provided by container'. A Jakarta
EE Server is software that runs the container, deploys applications into it, and provides
administration and additional features. Jakarta EE Servers run stand-alone, but many
implementations also support the ability to generate a single "fat", executable Java Archive (JAR)
file that includes all the code necessary to run the application.

Jakarta EE Containers vs Docker Containers

Container is a commonly used term in computing, but it basically means "that which holds
something". In the case of Jakarta EE, the container "holds," or more accurately, executes your
code and provides low-level application services, such as dependency injection, transactions,
HTTP request handling, REST support, and so on. In the case of Docker container (which is
technically an Open Container Initiative, or OCI container) your application is executed inside
it, but the container provides operating system services, such as disk and network I/0.

https://jakarta.ee/specifications/
https://jakarta.ee/specifications/

While the two container types are different, it’s entirely possible (and common) to run a
Jakarta EE application inside a Docker container.

Figure 1, “Relationship between Code, Container, and Server” shows how the application code,
container, and Jakarta EE Server are related:

Cont]ag}gg Lerpr...

Figure 1. Relationship between Code, Container, and Server

In a simple case, an application might look like this:

Client...

Cont]aggg Lterpr...

Data Store

Text is NOCSSEISERNG display

Figure 2. A Simple Jakarta EE Application

However, a single Jakarta EE Server can run multiple applications, and applications can
communicate with each other remotely. So you can create more complicated scenarios, as shown in
Figure 3, “A More Complex Jakarta EE Application”:

ontalp erp CO“E?AR!

Data Store

__

Data Store Messaging Server

is not SVG - can

Figure 3. A More Complex Jakarta EE Application

Even though the figures above show communication between multiple Jakarta EE
o applications, they can and often do communicate with non-Jakarta EE applications
via messaging or streaming servers, REST, and so on.

Regardless of how simple or complicated your system architecture is, a key benefit of Jakarta EE is
that container services are configurable. This means the same component can behave differently
based on where it’s deployed. The container also manages non-configurable services, such as the
lifecycle of components, database connection resource pooling, data persistence, and access to the
Jakarta EE APIs.

Jakarta EE Components

Jakarta EE applications are made up of components. A Jakarta EE component is a self-contained
functional unit that makes use of one or more container services. That usage could be as simple as
injecting a single dependency or responding to REST requests, or as complicated as injecting
multiple dependencies, querying a database, firing an event, and participating in distributed
transactions.

Jakarta EE supports the following components:
* Web componentsm interact with web standards (HTTPS, HTML, WebSocket, and so on) using

Jakarta Servlet, Jakarta Faces, Jakarta WebSocket, and related technologies.

* Business components implement logic necessary to support the business domain using either
Enterprise bean components (enterprise beans)” or CDI managed beans.

o For new applications, business components should be implemented using CDI managed
beans, unless you need Enterprise bean-specific features such as transactions, role-based
security, messaging driven beans, or remote execution. The two technologies play well
together.

All of these components run on the server'’, and are ordinary Java classes written with Jakarta EE
annotations (or optionally, external configuration files called deployment descriptors).

Usage of Java Standard Edition (SE) APIs

In addition to many of the core Java programming language APIs, there are a couple of key APIs
you may encounter when working with Jakarta EE: Java Database Connectivity (JDBC) and Java
Naming and Directory Interface (JNDI).

Java Database Connectivity API

The Java Database Connectivity (JDBC) API lets you work with SQL databases. You can use the J]DBC
API directly from within a Jakarta EE component, but most Jakarta EE applications use Jakarta
Persistence to map between objects and database tables. Jakarta EE servers also support managed
JDBC data sources, which can be configured for one or more applications.

Java Naming and Directory Interface API

The Java Naming and Directory Interface (JNDI) API allows you to work with multiple naming and

directory services, such as LDAP, DNS, and NIS. The API has methods for performing standard
directory operations, such as associating attributes with objects and searching for objects using
their attributes. Using JNDI, a Jakarta EE application can store and retrieve any type of named Java
object, allowing Jakarta EE applications to coexist with many legacy applications and systems.

Jakarta EE servers provide a naming environment for Jakarta EE components. This environment
allows a component to be customized without the need to access or change the component’s source
code. A container implements the component’s environment and provides it to the component as a
JNDI naming context.

The naming environment provides four logical namespaces: java:comp, java:module, java:app, and
java:global for objects available to components, modules, or applications or shared by all deployed
applications. A Jakarta EE component can access named system-provided and user-defined objects.
The names of some system-provided objects, such as a default JDBC DataSource object, a default
Messaging connection factory, and a Transactions UserTransaction object, are stored in the
java:comp namespace.

You can also create your own objects, such as enterprise beans, environment entries, JDBC
DataSource objects, and messaging destinations.

How do I get Jakarta EE?

Since Jakarta EE is an open-source industry standard, there are multiple implementations. A good
place to start is the Jakarta EE Starter, which lets you quickly generate a sample starter app using
one of the supported Jakarta EE servers. You can also find the most recent list of servers on the
Jakarta EE website.

If you are working with a Open Container Initiative (OCI)-compliant (i.e., Docker-compatible)
containers, most of these vendors also provide images.

If you are using a cloud provider, you may also want to check to see if they have additional support,
guides, or managed Jakarta EE servers.

Further Reading

» Jakarta EE Home Page
 Jakarta EE Specification Process

* Jakarta EE Specifications

Using the Tutorial Examples

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

This chapter tells you everything you need to know to install, build, and run the tutorial examples.

For additional samples, see the GlassFish samples at https://github.com/eclipse-ee4j/glassfish-
samples/tree/master/ws/jakartaee9

10

https://start.jakarta.ee/
https://jakarta.ee/compatibility/
https://jakarta.ee/
https://jakarta.ee/about/jesp/
https://jakarta.ee/specifications/
https://github.com/eclipse-ee4j/glassfish-samples/tree/master/ws/jakartaee9
https://github.com/eclipse-ee4j/glassfish-samples/tree/master/ws/jakartaee9

Required Software
The following software is required to run the examples:

* Java Platform, Standard Edition

* Eclipse Glassfish Server

Jakarta EE Tutorial Examples
* Apache NetBeans IDE

* Apache Maven

Java Platform, Standard Edition

To build, deploy, and run the examples, you need a copy of the Java Platform, Standard Edition
Development Kit (JDK). You must use JDK 8 Update 20 or above. You can download JDK software
from https://www.oracle.com/technetwork/java/javase/downloads/index.html.

Eclipse Glassfish Server

GlassFish Server 6.0 is targeted as the build and runtime environment for the tutorial examples. To
build, deploy, and run the examples, you need a copy of GlassFish Server and, optionally, NetBeans
IDE. You can download GlassFish Server from https://glassfish.org/download.

GlassFish Server Installation Tips

GlassFish Server is installed from a ZIP file. It sets the default administration user name as admin
with no required password. The Admin Port is set to 4848, and the HTTP Port is set to 8080.

This tutorial refers to as-install-parent, the directory where you install GlassFish Server. For
example, the default installation directory on Microsoft Windows is C:\glassfish6, so as-install-
parent is C:\glassfish6. GlassFish Server itself is installed in as-install, the glassfish directory
under as-install-parent. So on Microsoft Windows, as-install is C:\glassfishb\glassfish.

After you install GlassFish Server, add the following directories to your PATH to avoid having to

specify the full path when you use commands:

as-install-parent/bin
as-install/bin

Jakarta EE Tutorial Examples

The tutorial example codes are located at https://github.com/eclipse-ee4j/jakartaee-examples

Clone or download this repository to your preferred location, this path is referenced in the tutorial
as the jakartaee-examples directory.

Apache NetBeans IDE

The NetBeans integrated development environment (IDE) is a free, open-source IDE for developing

11

https://www.oracle.com/technetwork/java/javase/downloads/index.html
https://glassfish.org/download
https://github.com/eclipse-ee4j/jakartaee-examples

Java applications, including enterprise applications. NetBeans IDE supports the Jakarta EE
platform. You can build, package, deploy, and run the tutorial examples from within NetBeans IDE.

To run the tutorial examples, you need the latest version of NetBeans IDE. You can download
NetBeans IDE from https://netbeans.apache.org/download/index.html.

To Add GlassFish Server as a Server Using NetBeans IDE

To run the tutorial examples in NetBeans IDE, you must add your GlassFish Server as a server in
NetBeans IDE. Follow these instructions to add GlassFish Server to NetBeans IDE.

. From the Tools menu, choose Servers.
. In the Servers wizard, click Add Server.

. Under Choose Server, select GlassFish Server and click Next.

1
2
3
4, Under Server Location, browse to the GlassFish Server installation and click Next.
5. Under Domain Location, select Register Local Domain.

6

. Click Finish.

Apache Maven

Maven is a Java technology-based build tool developed by the Apache Software Foundation and is
used to build, package, and deploy the tutorial examples. To run the tutorial examples from the
command line, you need Maven 3.0 or higher. If you do not already have Maven, you can install it
from:

https://maven.apache.org
Be sure to add the maven-install/bin directory to your path.

If you are using NetBeans IDE to build and run the examples, it includes a copy of Maven.

Starting and Stopping GlassFish Server

You can start and stop GlassFish Server using either NetBeans IDE or the command line.

To Start GlassFish Server Using NetBeans IDE

1. Click the Services tab.
2. Expand Servers.

3. Right-click the GlassFish Server instance and select Start.

To Stop GlassFish Server Using NetBeans IDE

To stop GlassFish Server using NetBeans IDE, right-click the GlassFish Server instance and select
Stop.

12

https://netbeans.apache.org/download/index.html
https://maven.apache.org

To Start GlassFish Server Using the Command Line

To start GlassFish Server from the command line, open a terminal window or command prompt
and execute the following:

asadmin start-domain --verbose

A domain is a set of one or more GlassFish Server instances managed by one administration server.
The following elements are associated with a domain:

* The GlassFish Server port number: The default is 8080.
* The administration server’s port number: The default is 4848.

* An administration user name and password: The default user name is admin, and by default no
password is required.

You specify these values when you install GlassFish Server. The examples in this tutorial assume
that you chose the default ports as well as the default user name and lack of password.

With no arguments, the start-domain command initiates the default domain, which is domain1. The
--verbose flag causes all logging and debugging output to appear on the terminal window or
command prompt. The output also goes into the server log, which is located in domain-
dir/logs/server.log.

To Stop GlassFish Server Using the Command Line

To stop GlassFish Server, open a terminal window or command prompt and execute:

asadmin stop-domain domaini

Starting the Administration Console

To administer GlassFish Server and manage users, resources, and Jakarta EE applications, use the
Administration Console tool. GlassFish Server must be running before you invoke the
Administration Console. To start the Administration Console, open a browser at
http://1ocalhost:4848/.

To Start the Administration Console Using NetBeans IDE

1. Click the Services tab.
2. Expand Servers.

3. Right-click the GlassFish Server instance and select View Domain Admin Console.

0 NetBeans IDE uses your default web browser to open the Administration Console.

13

http://localhost:4848/

Starting and Stopping Apache Derby

GlassFish Server includes Apache Derby.

To Start Derby Using Command Line
To start Derby from the command line, open a terminal window or command prompt, change to

the as-install/bin directory, and execute:

asadmin start-database

To Stop Derby Using Command Line
To stop Derby from the command line, open a terminal window or command prompt, change to the
as-install/bin directory, and execute:

asadmin stop-database

For information about Apache Derby included with GlassFish Server, see the Release Notes that are
located in the as-install/javadb/ directory.

To Start Derby Using NetBeans IDE

When you start GlassFish Server using NetBeans IDE, the database server starts automatically. If
you ever need to start the server manually, however, follow these steps.

1. Click the Services tab.
2. Expand Databases.

3. Right-click Java DB and select Start Server.

To Stop Derby Using NetBeans IDE

To stop the database using NetBeans IDE, right-click Java DB and select Stop Server.

Building the Examples

The tutorial examples are distributed with a configuration file for either NetBeans IDE or Maven.
Either NetBeans IDE or Maven may be used to build, package, deploy, and run the examples.
Directions for building the examples are provided in each chapter.

Tutorial Example Directory Structure

To facilitate iterative development and keep application source files separate from compiled files,
the tutorial examples use the Maven application directory structure.

Each application module has the following structure:

14

e pom.xml: Maven build file

* src/main/java: Java source files for the module

* src/main/resources: configuration files for the module, with the exception of web applications

* src/main/webapp: web pages, style sheets, tag files, and images (web applications only)

* src/main/webapp/WEB-INF: configuration files for web applications (web applications only)
When an example has multiple application modules packaged into an EAR file, its submodule
directories use the following naming conventions:

» example-name-app-client: application clients

» example-name-ejb: enterprise bean JAR files

* example-name-war: web applications

* example-name-ear: enterprise applications

» example-name-common: library JAR containing components, classes, and files used by other

modules

The Maven build files (pom.xml) distributed with the examples contain goals to compile and
assemble the application into the target directory and deploy the archive to GlassFish Server.

Jakarta EE Maven Archetypes in the Tutorial

Some of the chapters have instructions on how to build an example application using Maven
archetypes. Archetypes are templates for generating a particular Maven project. The Tutorial
includes several Maven archetypes for generating Jakarta EE projects.

Installing the Tutorial Archetypes

You must install the included Maven archetypes into your local Maven repository before you can
create new projects based on the archetypes. You can install the archetypes using NetBeans IDE or
Maven.

Installing the Tutorial Archetypes Using NetBeans IDE

1. From the File menu, choose Open Project.

2. In the Open Project dialog box, navigate to:
jakartaee-examples/tutorial

1. Select the archetypes folder.
2. Click Open Project.

3. In the Projects tab, right-click the archetypes project and select Build.

15

Installing the Tutorial Archetypes Using Maven

1. In a terminal window, go to:
jakartaee-examples/tutorial/archetypes/
1. Enter the following command:

mvn install

Debugging Jakarta EE Applications

This section explains how to determine what is causing an error in your application deployment or
execution.

Using the Server Log

One way to debug applications is to look at the server log in domain-dir/logs/server.log. The log
contains output from GlassFish Server and your applications. You can log messages from any Java
class in your application with System.out.println and the Java Logging APIs (documented at
https://docs.oracle.com/javase/8/docs/technotes/guides/logging/index.html) and from web
components with the ServletContext.log method.

If you use NetBeans IDE, logging output appears in the Output window as well as the server log.

If you start GlassFish Server with the --verbose flag, all logging and debugging output will appear
on the terminal window or command prompt and the server log. If you start GlassFish Server in the
background, debugging information is available only in the log. You can view the server log with a
text editor or with the Administration Console log viewer.

To Use the Administration Console Log Viewer

1. Select the GlassFish Server node.

2. Click View Log Files.
The log viewer opens and displays the last 40 entries.

3. To display other entries, follow these steps:
a. Click Modify Search.
b. Specify any constraints on the entries you want to see.

c. Click Search at the top of the log viewer.

Using a Debugger

GlassFish Server supports the Java Platform Debugger Architecture (JPDA). With JPDA, you can
configure GlassFish Server to communicate debugging information using a socket.

16

https://docs.oracle.com/javase/8/docs/technotes/guides/logging/index.html

To Debug an Application Using a Debugger

1. Follow these steps to enable debugging in GlassFish Server using the Administration Console:
a. Expand the Configurations node, then expand the server-config node.

b. Select the JVM Settings node. The default debug options are set to:
-agentlib:jdwp=transport=dt_socket,server=y,suspend=n,address=9009

As you can see, the default debugger socket port is 9009. You can change it to a port not in
use by GlassFish Server or another service.

c. Select the Debug Enabled check box.
d. Click Save.

2. Stop GlassFish Server and then restart it.

[1] Technically, there are multiple containers (Web, CDI, Enterprise Beans), but the distinction about which container is providing
the services isn’t terribly important. Jakarta EE also supports an Application Client container for Java clients, but this is rarely
used.

[2] Not to be confused with the web browser standard, Web Components, or user interface widgets in general, which are often
called UI components.

[3] Enterprise Beans previously supported persistence via Entity Beans, but that has been deprecated in favor of Jakarta
Persistence

[4] Application Clients are technically supported as well, although they are rarely used.

17

https://developer.mozilla.org/en-US/docs/Web/API/Web_Components

Platform Basics

Resource Creation

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

A resource is a program object that provides connections to such systems as database servers and
messaging systems. Jakarta EE components can access a wide variety of resources, including
databases, mail sessions, Jakarta Messaging objects, and URLs. The Jakarta EE platform provides
mechanisms that allow you to access all these resources in a similar manner. This chapter
examines several types of resources and explains how to create them.

Resources and JNDI Naming

In a distributed application, components need to access other components and resources, such as
databases. For example, a servlet might invoke remote methods on an enterprise bean that
retrieves information from a database. In the Jakarta EE platform, the Java Naming and Directory
Interface (JNDI) naming service enables components to locate other components and resources.

A resource is a program object that provides connections to systems, such as database servers and
messaging systems. A Java Database Connectivity resource is sometimes referred to as a data
source. Each resource object is identified by a unique, people-friendly name, called the JNDI name.
For example, the JNDI name of the preconfigured JDBC resource for Apache Derby shipped with
GlassFish Server is java:comp/DefaultDataSource.

An administrator creates resources in a JNDI namespace. In GlassFish Server, you can use either
the Administration Console or the asadmin command to create resources. Applications then use
annotations to inject the resources. If an application uses resource injection, GlassFish Server
invokes the JNDI API, and the application is not required to do so. However, it is also possible for an
application to locate resources by making direct calls to the JNDI API.

A resource object and its JNDI name are bound together by the naming and directory service. To
create a new resource, a new name/object binding is entered into the JNDI namespace. You inject
resources by using the @Resource annotation in an application.

You can use a deployment descriptor to override the resource mapping that you specify in an
annotation. Using a deployment descriptor allows you to change an application by repackaging it
rather than by both recompiling the source files and repackaging. However, for most applications a
deployment descriptor is not necessary.

DataSource Objects and Connection Pools

To store, organize, and retrieve data, most applications use a relational database. Jakarta EE
components may access relational databases through the JDBC API. For information on this API, see
https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/.

In the JDBC API, databases are accessed by using DataSource objects. A DataSource has a set of

18

https://docs.oracle.com/javase/8/docs/technotes/guides/jdbc/

properties that identify and describe the real-world data source that it represents. These properties
include such information as the location of the database server, the name of the database, the
network protocol to use to communicate with the server, and so on. In GlassFish Server, a data
source is called a JDBC resource.

Applications access a data source by using a connection, and a DataSource object can be thought of
as a factory for connections to the particular data source that the DataSource instance represents. In
a basic DataSource implementation, a call to the getConnection method returns a connection object
that is a physical connection to the data source.

A DataSource object may be registered with a JNDI naming service. If so, an application can use the
JNDI API to access that DataSource object, which can then be used to connect to the data source it
represents.

DataSource objects that implement connection pooling also produce a connection to the particular
data source that the DataSource class represents. The connection object that the getConnection
method returns is a handle to a PooledConnection object rather than a physical connection. An
application uses the connection object in the same way that it uses a connection. Connection
pooling has no effect on application code except that a pooled connection, like all connections,
should always be explicitly closed. When an application closes a connection that is pooled, the
connection is returned to a pool of reusable connections. The next time getConnection is called, a
handle to one of these pooled connections will be returned if one is available. Because connection
pooling avoids creating a new physical connection every time one is requested, applications can
run significantly faster.

A JDBC connection pool is a group of reusable connections for a particular database. Because
creating each new physical connection is time consuming, the server maintains a pool of available
connections to increase performance. When it requests a connection, an application obtains one
from the pool. When an application closes a connection, the connection is returned to the pool.

Applications that use Jakarta Persistence specify the DataSource object they are using in the jta-
data-source element of the persistence.xml file:

<jta-data-source>jdbc/MyOrderDB</jta-data-source>

This is typically the only reference to a JDBC object for a persistence unit. The application code does
not refer to any JDBC objects.

Creating Resources Administratively

Before you deploy or run many applications, you may need to create resources for them. An
application can include a glassfish-resources.xml file that can be used to define resources for that
application and others. You can then use the asadmin command, specifying as the argument a file
named glassfish-resources.xml, to create the resources administratively, as shown here:

asadmin add-resources glassfish-resources.xml

19

The glassfish-resources.xml file can be created in any project using NetBeans IDE or by hand. Some
of the Jakarta Messaging examples use this approach to resource creation. A file for creating the
resources needed for the Messaging simple producer example can be found in the
jms/simple/producer/src/main/setup directory.

You could also use the asadmin create-jms-resource command to create the resources for this
example. When you are done using the resources, you would use the asadmin list-jms-resources
command to display their names, and the asadmin delete-jms-resource command to remove them,
regardless of the way you created the resources.

Injection

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

This chapter provides an overview of injection in Jakarta EE and describes the two injection
mechanisms provided by the platform: resource injection and dependency injection.

Jakarta EE provides injection mechanisms that enable your objects to obtain references to
resources and other dependencies without having to instantiate them directly. You declare the
required resources and other dependencies in your classes by decorating fields or methods with
one of the annotations that mark the field as an injection point. The container then provides the
required instances at runtime. Injection simplifies your code and decouples it from the
implementations of its dependencies.

Resource Injection

Resource injection enables you to inject any resource available in the JNDI namespace into any
container-managed object, such as a servlet, an enterprise bean, or a managed bean. For example,
you can use resource injection to inject data sources, connectors, or custom resources available in
the JNDI namespace.

The type you use for the reference to the injected instance is usually an interface, which decouples
your code from the implementation of the resource.

For example, the following code injects a data source object that provides connections to the default
Apache Derby database shipped with Eclipse GlassFish Server:

public class MyServlet extends HttpServlet {
@Resource(name="java:comp/DefaultDataSource")
private javax.sql.DataSource dsc;

In addition to field-based injection as in the preceding example, you can inject resources using
method-based injection:

20

public class MyServlet extends HttpServlet {
private javax.sql.DataSource dsc;

@Resource(name="java:comp/DefaultDataSource")
public void setDsc(java.sql.DataSource ds) {
dsc = ds;

}

To use method-based injection, the setter method must follow the JavaBeans conventions for
property names: The method name must begin with set, have a void return type, and have only one
parameter.

The @Resource annotation is in the jakarta.annotation package and is defined in the Jakarta
Annotations spec. Resource injection resolves by name, so it is not typesafe: the type of the resource
object is not known at compile time, so you can get runtime errors if the types of the object and its
reference do not match.

Dependency Injection

Dependency injection enables you to turn regular Java classes into managed objects and to inject
them into any other managed object. Using dependency injection, your code can declare
dependencies on any managed object. The container automatically provides instances of these
dependencies at the injection points at runtime, and it also manages the lifecycle of these instances
for you.

Dependency injection in Jakarta EE defines scopes, which determine the lifecycle of the objects that
the container instantiates and injects. For example, a managed object that is only needed to
respond to a single client request (such as a currency converter) has a different scope than a
managed object that is needed to process multiple client requests within a session (such as a
shopping cart).

You can define managed objects (also called managed beans) that you can later inject by assigning a
scope to a regular class:

@jakarta.enterprise.context.RequestScoped
public class CurrencyConverter { ... }

Use the jakarta.inject.Inject annotation to inject managed beans; for example:

public class MyServlet extends HttpServlet {
@Inject CurrencyConverter cc;

As opposed to resource injection, dependency injection is typesafe because it resolves by type. To

21

decouple your code from the implementation of the managed bean, you can reference the injected
instances using an interface type and have your managed bean implement that interface.

For more information about dependency injection, see Introduction to Jakarta Contexts and
Dependency Injection and the Jakarta Contexts and Dependency Injection spec.

The Main Differences between Resource Injection and Dependency
Injection

Differences between Resource Injection and Dependency Injection lists the main differences
between resource injection and dependency injection.

Differences between Resource Injection and Dependency Injection

Injection Mechanism CanInjectJNDI Can Inject Resolves By Typesafe
Resources Regular Classes
Directly Directly
Resource Injection Yes No Resource name No
Dependency Injection No Yes Type Yes

Packaging

This chapter describes packaging. A Jakarta EE application is packaged into one or more standard
units for deployment to any Jakarta EE platform-compliant system. Each unit contains a functional
component or components, such as an enterprise bean, web page, servlet, or applet, and an
optional deployment descriptor that describes its content.

We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

Packaging Applications

A Jakarta EE application is delivered in a Java Archive (JAR) file, a Web Archive (WAR) file, or an
Enterprise Archive (EAR) file. A WAR or EAR file is a standard JAR (.jar) file with a .war or .ear
extension. Using JAR, WAR, and EAR files and modules makes it possible to assemble a number of
different Jakarta EE applications using some of the same components. No extra coding is needed; it
is only a matter of assembling (or packaging) various Jakarta EE modules into Jakarta EE JAR, WAR,
or EAR files.

An EAR file (see Figure 4, “EAR File Structure”) contains Jakarta EE modules and, optionally,
deployment descriptors. A deployment descriptor, an XML document with an .xml extension,
describes the deployment settings of an application, a module, or a component. Because
deployment descriptor information is declarative, it can be changed without the need to modify the
source code. At runtime, the Jakarta EE server reads the deployment descriptor and acts upon the
application, module, or component accordingly.

Deployment information is most commonly specified in the source code by annotations.
Deployment descriptors, if present, override what is specified in the source code.

22

Assembly Root

META-INF Web Application Resource EJB
Module Client Module Adapter Module Module
application.xml
glassfish-application.xml
(optional)

Figure 4. EAR File Structure

The two types of deployment descriptors are Jakarta EE and runtime. A Jakarta EE deployment
descriptor is defined by a Jakarta EE specification and can be used to configure deployment settings
on any Jakarta EE-compliant implementation. A runtime deployment descriptor is used to configure
Jakarta EE implementation-specific parameters. For example, the GlassFish Server runtime
deployment descriptor contains such information as the context root of a web application as well as
GlassFish Server implementation-specific parameters, such as caching directives. The GlassFish
Server runtime deployment descriptors are named glassfish-moduleType.xml and are located in the
same META-INF directory as the Jakarta EE deployment descriptor.

A Jakarta EE module consists of one or more Jakarta EE components for the same container type
and, optionally, one component deployment descriptor of that type. An enterprise bean module
deployment descriptor, for example, declares transaction attributes and security authorizations for
an enterprise bean. A Jakarta EE module can be deployed as a stand-alone module.

Jakarta EE modules are of the following types:

* Enterprise bean modules, which contain class files for enterprise beans and, optionally, an
enterprise bean deployment descriptor. Enterprise bean modules are packaged as JAR files with
a .jar extension.

* Web modules, which contain servlet class files, web files, supporting class files, GIF and HTML
files, and, optionally, a web application deployment descriptor. Web modules are packaged as
JAR files with a .war (web archive) extension.

* Application client modules, which contain class files and, optionally, an application client
deployment descriptor. Application client modules are packaged as JAR files with a .jar
extension.

* Resource adapter modules, which contain all Java interfaces, classes, native libraries, and,
optionally, a resource adapter deployment descriptor. Together, these implement the Connector
architecture (see Jakarta Connectors) for a particular EIS. Resource adapter modules are
packaged as JAR files with an .rar (resource adapter archive) extension.

23

Packaging Enterprise Beans

This section explains how enterprise beans can be packaged in enterprise bean JAR or WAR
modules. It includes the following sections:
* Packaging Enterprise Beans in enterprise bean JAR Modules

» Packaging Enterprise Beans in WAR Modules

Packaging Enterprise Beans in enterprise bean JAR Modules

An enterprise bean JAR file is portable and can be used for various applications.

To assemble a Jakarta EE application, package one or more modules, such as enterprise bean JAR
files, into an EAR file, the archive file that holds the application. When deploying the EAR file that
contains the enterprise bean’s JAR file, you also deploy the enterprise bean to GlassFish Server. You
can also deploy an enterprise bean JAR that is not contained in an EAR file. Figure 5, “Structure of
an Enterprise Bean JAR” shows the contents of an enterprise bean JAR file.

Assembly Root

META-INF

All .class files
for this module

ejb-jar.xml MANIFEST.MF
glassfish-ejb-jar.xml

(optional)

Figure 5. Structure of an Enterprise Bean JAR

Packaging Enterprise Beans in WAR Modules

Enterprise beans often provide the business logic of a web application. In these cases, packaging
the enterprise bean within the web application’s WAR module simplifies deployment and
application organization. Enterprise beans may be packaged within a WAR module as Java
programming language class files or within a JAR file that is bundled within the WAR module.

To include enterprise bean class files in a WAR module, the class files should be in the WEB-
INF/classes directory.

To include a JAR file that contains enterprise beans in a WAR module, add the JAR to the WEB-
INF/11b directory of the WAR module.

WAR modules that contain enterprise beans do not require an ejb-jar.xml deployment descriptor.
If the application uses ejb-jar.xml, it must be located in the WAR module’s WEB-INF directory.

JAR files that contain enterprise bean classes packaged within a WAR module are not considered
enterprise bean JAR files, even if the bundled JAR file conforms to the format of an enterprise bean

24

JAR file. The enterprise beans contained within the JAR file are semantically equivalent to
enterprise beans located in the WAR module’s WEB-INF/classes directory, and the environment
namespace of all the enterprise beans are scoped to the WAR module.

For example, suppose that a web application consists of a shopping cart enterprise bean, a credit
card-processing enterprise bean, and a Java servlet front end. The shopping cart bean exposes a
local, no-interface view and is defined as follows:

package com.example.cart;

@Stateless
public class CartBean { ... }

The credit card—processing bean is packaged within its own JAR file, cc.jar, exposes a local, no-
interface view, and is defined as follows:

package com.example.cc;

@Stateless
public class CreditCardBean { ... }

The servlet, com.example.web.StoreServlet, handles the web front end and uses both CartBean and
CreditCardBean. The WAR module layout for this application is as follows:

WEB-INF/classes/com/example/cart/CartBean.class
WEB-INF/classes/com/example/web/StoreServlet
WEB-INF/1ib/cc.jar

WEB-INF/ejb-jar.xml

WEB-INF/web.xml

Packaging Web Archives

In the Jakarta EE architecture, a web module is the smallest deployable and usable unit of web
resources. A web module contains web components and static web content files, such as images,
which are called web resources. A Jakarta EE web module corresponds to a web application as
defined in the Jakarta Servlet specification.

In addition to web components and web resources, a web module can contain other files:

* Server-side utility classes, such as shopping carts

* Client-side classes, such as utility classes

A web module has a specific structure. The top-level directory of a web module is the document
root of the application. The document root is where XHTML pages, client-side classes and archives,
and static web resources, such as images, are stored.

25

The document root contains a subdirectory named WEB-INF, which can contain the following files
and directories:

* classes, a directory that contains server-side classes: servlets, enterprise bean class files, utility
classes, and JavaBeans components

* lib, a directory that contains JAR files that contain enterprise beans, and JAR archives of
libraries called by server-side classes

* Deployment descriptors, such as web.xml (the web application deployment descriptor) and ejb-
jar.xml (an enterprise bean deployment descriptor)

A web module needs a web.xml file if it uses Jakarta Faces technology, if it must specify certain kinds
of security information, or if you want to override information specified by web component
annotations.

You can also create application-specific subdirectories (that is, package directories) in either the
document root or the WEB-INF/classes/ directory.

A web module can be deployed as an unpacked file structure or can be packaged in a JAR file
known as a Web Archive (WAR) file. Because the contents and use of WAR files differ from those of
JAR files, WAR file names use a .war extension. The web module just described is portable; you can
deploy it into any web container that conforms to the Jakarta Servlet specification.

You can provide a runtime deployment descriptor (DD) when you deploy a WAR on GlassFish
Server, but it is not required under most circumstances. The runtime DD is an XML file that may
contain such information as the context root of the web application, the mapping of the portable
names of an application’s resources to GlassFish Server resources, and the mapping of an
application’s security roles to users, groups, and principals defined in GlassFish Server. The
GlassFish Server web application runtime DD, if used, is named glassfish-web.xml and is located in
the WEB-INF directory. The structure of a web module that can be deployed on GlassFish Server is
shown in Figure 6, “Web Module Structure”.

Assembly Root
WEB-INF
lib classes Web pages
web.xml
glassfish-web.xml

(optional)

Library All server-side

archive files .class files for

this web module

Figure 6. Web Module Structure

26

Packaging Resource Adapter Archives

A Resource Adapter Archive (RAR) file stores XML files, Java classes, and other objects for Jakarta
EE Connector applications. A resource adapter can be deployed on any Jakarta EE server, much like
a Jakarta EE application. A RAR file can be contained in an Enterprise Archive (EAR) file, or it can
exist as a separate file.

The RAR file contains

* AJAR file with the implementation classes of the resource adapter
* An optional META-INF/ directory that can store an ra.xml file and/or an application

server-specific deployment descriptor used for configuration purposes

A RAR file can be deployed on the application server as a standalone component or as part of a
larger application. In both cases, the adapter is available to all applications using a lookup
procedure.

27

Jakarta EE Core Profile

Jakarta CDI Lite

Introduction to Jakarta Contexts and Dependency Injection

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

This chapter describes Jakarta Contexts and Dependency Injection (CDI) which is one of several
Jakarta EE features that help to knit together the web tier and the transactional tier of the Jakarta
EE platform.

Getting Started

Contexts and Dependency Injection (CDI) enables your objects to have their dependencies provided
to them automatically, instead of creating them or receiving them as parameters. CDI also manages
the lifecycle of those dependencies for you.

For example, consider the following servlet:

@WebServlet("/cdiservlet")
public class NewServlet extends HttpServlet {
private Message message;

@Override
public void init() {
message = new MessageB();

}

@0verride
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException {
response.getWriter().write(message.get());

This servlet needs an instance of an object that implements the Message interface:

public interface Message {
public String get();
}

The servlet creates itself an instance of the following object:
public class MessageB implements Message {

28

public MessageB() { }

@0verride
public String get() {
return "message B";

}

Using CDI, this servlet can declare its dependency on a Message instance and have it injected
automatically by the CDI runtime. The new servlet code is the following:

@WebServlet("/cdiservlet")
public class NewServlet extends HttpServlet {
@Inject private Message message;

@0verride
public void doGet(HttpServletRequest request, HttpServletResponse response)
throws IOException {
response.getWriter().write(message.get());

The CDI runtime looks for classes that implement the Message interface, finds the MessageB class,
creates a new instance of it, and injects it into the servlet at runtime. To manage the lifecycle of the
new instance, the CDI runtime needs to know what the scope of the instance should be. In this
example, the servlet only needs the instance to process an HTTP request; the instance can then be
garbage collected. This is specified using the jakarta.enterprise.context.RequestScoped annotation:

@RequestScoped
public class MessageB implements Message { ... }

For more information on scopes, see Using Scopes.

The MessageB class is a CDI bean. CDI beans are classes that CDI can instantiate, manage, and inject
automatically to satisfy the dependencies of other objects. Almost any Java class can be managed
and injected by CDI. For more information on beans, see About Beans. A JAR or WAR file that
contains a CDI bean is a bean archive. For more information on packaging bean archives, see
Configuring a CDI Application in this chapter and Packaging CDI Applications in [cdi:cdi-adv::cdi-
adv:::_jakarta_contexts_and_dependency_injection_advanced_topics].

In this example, MessageB is the only class that implements the Message interface. If an application
has more than one implementation of an interface, CDI provides mechanisms that you can use to
select which implementation to inject. For more information, see Using Qualifiers in this chapter
and Using Alternatives in CDI Applications in [cdi:cdi-adv::cdi-
adv:::_jakarta_contexts_and_dependency_injection_advanced_topics].

29

Overview of CDI

CDI is a set of services that, used together, make it easy for developers to use enterprise beans along
with Jakarta Faces technology in web applications. Designed for use with stateful objects, CDI also
has many broader uses, allowing developers a great deal of flexibility to integrate various kinds of
components in a loosely coupled but typesafe way.

CDI 3.0 is specified in a Jakarta EE specification. Related specifications that CDI uses include the
following:
» Jakarta Dependency Injection

* The Managed Beans specification, an offshoot of the Jakarta EE platform specification
The most fundamental services provided by CDI are as follows.
* Contexts: This service enables you to bind the lifecycle and interactions of stateful components

to well-defined but extensible lifecycle contexts.

* Dependency injection: This service enables you to inject components into an application in a
typesafe way and to choose at deployment time which implementation of a particular interface
to inject.

In addition, CDI provides the following services:
* Integration with the Expression Language (EL), which allows any component to be used directly
within a Jakarta Faces page or a Jakarta Server Pages page
* The ability to decorate injected components
» The ability to associate interceptors with components using typesafe interceptor bindings

e An event-notification model

* A web conversation scope in addition to the three standard scopes (request, session, and
application) defined by the Jakarta Servlet specification

* A complete Service Provider Interface (SPI) that allows third-party frameworks to integrate
cleanly in the Jakarta EE environment
A major theme of CDI is loose coupling. CDI does the following:
* Decouples the server and the client by means of well-defined types and qualifiers, so that the
server implementation may vary
* Decouples the lifecycles of collaborating components by
o Making components contextual, with automatic lifecycle management
- Allowing stateful components to interact like services, purely by message passing
* Completely decouples message producers from consumers, by means of events

* Decouples orthogonal concerns by means of Jakarta EE interceptors
Along with loose coupling, CDI provides strong typing by

 Eliminating lookup using string-based names for wiring and correlations so that the compiler

30

will detect typing errors

» Allowing the use of declarative Java annotations to specify everything, largely eliminating the
need for XML deployment descriptors, and making it easy to provide tools that introspect the
code and understand the dependency structure at development time

CDI Lite vs CDI Full

As of CDI version 4.0 in Jakarta EE version 10, the Core CDI functionality has been split into two
parts: CDI Lite and CDI Full.

CDI Lite provides a subset of the CDI Full functionality with an emphasis on build-time
implementations. By leaving out the additional components from CDI Full such as those dealing
with runtime reflection, CDI Lite is able to execute in lighter and more restricted environments.

Jakarta EE-compliant application servers will still implement the CDI Full functionality so this
change will benefit those developers working in alternate (e.g. cloud-based) environments without
affecting those working in a standard Jakarta EE environment.

Functionality available only in CDI Full includes the following:

* Binding interceptors using @Interceptors

» Explicit bean archives

* Declaring interceptors on classes using @AroundInvoke
* Decorator classes

* Portable extensions

* Serialization via passivation/activation

 Session scope, conversation scope

» Specialization using @Alternative and @Specializes

Please see the Further Information about CDI section of this chapter for links to the latest
specification.

o The remainder of this chapter deals with the CDI Lite profile. The tutorial chapter
on CDI Full can be found here.
About Beans

CDI redefines the concept of a bean beyond its use in other Java technologies, such as the JavaBeans
and Jakarta Enterprise Beans technologies. In CDI, a bean is a source of contextual objects that
define application state or logic. A Jakarta EE component is a bean if the lifecycle of its instances
may be managed by the container according to the lifecycle context model defined in the CDI
specification.

More specifically, a bean has the following attributes:

* A (nonempty) set of bean types

31

* A (nonempty) set of qualifiers (see Using Qualifiers)
* A scope (see Using Scopes)

* Optionally, a bean EL name (see Giving Beans EL. Names)

A set of interceptor bindings
* A bean implementation

A bean type defines a client-visible type of the bean. Almost any Java type may be a bean type of a
bean.

* A bean type may be an interface, a concrete class, or an abstract class and may be declared final
or have final methods.
* A bean type may be a parameterized type with type parameters and type variables.

* A bean type may be an array type. Two array types are considered identical only if the element
type is identical.

* A bean type may be a primitive type. Primitive types are considered to be identical to their
corresponding wrapper types in java.lang.

* A bean type may be a raw type.

About CDI Managed Beans

A managed bean is implemented by a Java class, which is called its bean class. A top-level Java class
is a managed bean if it is defined to be a managed bean by any other Jakarta EE technology
specification, such as the Jakarta Faces technology specification, or if it meets all the following
conditions.

* Itis not a nonstatic inner class.

e It is a concrete class or is annotated @Decorator.

* It is not annotated with an enterprise bean component-defining annotation or declared as an
enterprise bean class in ejb-jar.xml.

It has an appropriate constructor. That is, one of the following is the case.
o The class has a constructor with no parameters.

o The class declares a constructor annotated @Inject.

No special declaration, such as an annotation, is required to define a managed bean.

Beans as Injectable Objects

The concept of injection has been part of Java technology for some time. Since the Java EE 5
platform was introduced, annotations have made it possible to inject resources and some other
kinds of objects into container-managed objects. CDI makes it possible to inject more kinds of
objects and to inject them into objects that are not container-managed.

The following kinds of objects can be injected:

* Almost any Java class

32

e Session beans

Jakarta EE resources: data sources, Messaging topics, queues, connection factories, and the like

* Persistence contexts (Jakarta Persistence EntityManager objects)

Producer fields
* Objects returned by producer methods
* Web service references

* Remote enterprise bean references

For example, suppose that you create a simple Java class with a method that returns a string:

package greetings;

public class Greeting {
public String greet(String name) {

return "Hello, " + name + ".";

}

This class becomes a bean that you can then inject into another class. This bean is not exposed to
the EL in this form. Giving Beans EL Names explains how you can make a bean accessible to the EL.

Using Qualifiers

You can use qualifiers to provide various implementations of a particular bean type. A qualifier is
an annotation that you apply to a bean. A qualifier type is a Java annotation defined as
@Target({METHOD, FIELD, PARAMETER, TYPE}) and @Retention(RUNTIME).

For example, you could declare an @Informal qualifier type and apply it to another class that
extends the Greeting class. To declare this qualifier type, use the following code:

package greetings;

import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.TYPE;

import static java.lang.annotation.RetentionPolicy.RUNTIME;

import java.lang.annotation.Retention;
import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Target;

import jakarta.inject.Qualifier;

@Qualifier
©@Retention(RUNTIME)

33

@Target({TYPE, METHOD, FIELD, PARAMETER})
public @interface Informal {}

You can then define a bean class that extends the Greeting class and uses this qualifier:

package greetings;

@Informal
public class InformalGreeting extends Greeting {
public String greet(String name) {

return "Hi, " + name + "!";

I

}

Both implementations of the bean can now be used in the application.

If you define a bean with no qualifier, then the bean automatically has the qualifier @Default. The
unannotated Greeting class could be declared as follows:

package greetings;
import jakarta.enterprise.inject.Default;

@Default
public class Greeting {
public String greet(String name) {
return "Hello, " + name + ".";

I

}

Injecting Beans
To use the beans you create, you inject them into yet another bean that can then be used by an

application, such as a Jakarta Faces application. For example, you might create a bean called
Printer into which you would inject one of the Greeting beans:

import jakarta.inject.Inject;
public class Printer {

@Inject Greeting greeting;

This code injects the @Default Greeting implementation into the bean. The following code injects the
@Informal implementation:

34

import jakarta.inject.Inject;
public class Printer {

@Inject @Informal Greeting greeting;

More is needed for the complete picture of this bean. Its use of scope needs to be understood. In
addition, for a Jakarta Faces application, the bean needs to be accessible through the EL.

Now that you can identify the target of the injection, it is important to understand what can be
injected and in what context. Faces 2.3 and above provides producers that enable most important
Faces artifacts to be injected. For detailed information, see the package javadoc for
jakarta.faces.annotation.

Using Scopes

For a web application to use a bean that injects another bean class, the bean needs to be able to
hold state over the duration of the user’s interaction with the application. The way to define this
state is to give the bean a scope. You can give an object any of the scopes described in Scopes,
depending on how you are using it.

Scopes
Scope Annotation Duration
Request @RequestScoped A user’s interaction with a web application in a
single HTTP request.
Session @SessionScoped A user’s interaction with a web application
across multiple HTTP requests.
Application @ApplicationScoped Shared state across all users' interactions with a
web application.
Dependent @Dependent The default scope if none is specified; it means
that an object exists to serve exactly one client
(bean) and has the same lifecycle as that client
(bean).
Conversation @ConversationScoped A user’s interaction with a servlet, including

Jakarta Faces applications. The conversation
scope exists within developer-controlled
boundaries that extend it across multiple
requests for long-running conversations. All
long-running conversations are scoped to a
particular HTTP servlet session and may not
cross session boundaries.

The first three scopes are defined by both Jakarta Context and Dependency Injection and the

35

https://jakarta.ee/specifications/faces/3.0/apidocs/

Jakarta Faces specification. The last two are defined by Jakarta Context and Dependency Injection.

All predefined scopes except @Dependent are contextual scopes. CDI places beans of contextual scope
in the context whose lifecycle is defined by the Jakarta EE specifications. For example, a session
context and its beans exist during the lifetime of an HTTP session. Injected references to the beans
are contextually aware. The references always apply to the bean that is associated with the context
for the thread that is making the reference. The CDI container ensures that the objects are created
and injected at the correct time as determined by the scope that is specified for these objects.

You can also define and implement custom scopes, but that is an advanced topic. Custom scopes are
likely to be used by those who implement and extend the CDI specification.

A scope gives an object a well-defined lifecycle context. A scoped object can be automatically
created when it is needed and automatically destroyed when the context in which it was created
ends. Moreover, its state is automatically shared by any clients that execute in the same context.

Jakarta EE components, such as servlets and enterprise beans, and JavaBeans components do not
by definition have a well-defined scope. These components are one of the following:

 Singletons, such as enterprise singleton beans, whose state is shared among all clients

« Stateless objects, such as servlets and stateless session beans, which do not contain client-visible
state

* Objects that must be explicitly created and destroyed by their client, such as JavaBeans
components and stateful session beans, whose state is shared by explicit reference passing
between clients

However, if you create a Jakarta EE component that is a managed bean, then it becomes a scoped
object, which exists in a well-defined lifecycle context.

The web application for the Printer bean will use a simple request and response mechanism, so the
managed bean can be annotated as follows:

import jakarta.enterprise.context.RequestScoped;
import jakarta.inject.Inject;

@RequestScoped
public class Printer {

@Inject @Informal Greeting greeting;

Beans that use session, application, or conversation scope must be serializable, but beans that use
request scope do not have to be serializable.

Giving Beans EL Names

To make a bean accessible through the EL, use the @Named built-in qualifier:

36

import jakarta.enterprise.context.RequestScoped;
import jakarta.inject.Inject;
import jakarta.inject.Named;

@Named
@RequestScoped
public class Printer {

@Inject @Informal Greeting greeting;

The @Named qualifier allows you to access the bean by using the bean name, with the first letter in
lowercase. For example, a Facelets page would refer to the bean as printer.

You can specify an argument to the @Named qualifier to use a nondefault name:

@Named("MyPrinter")

With this annotation, the Facelets page would refer to the bean as MyPrinter.

Adding Setter and Getter Methods

To make the state of the managed bean accessible, add setter and getter methods for that state. The
createSalutation method calls the bean’s greet method, and the getSalutation method retrieves the
result.

Once the setter and getter methods have been added, the bean is complete. The final code looks like
this:

package greetings;

import jakarta.enterprise.context.RequestScoped;

import jakarta.inject.Inject;
import jakarta.inject.Named;

@Named
@RequestScoped
public class Printer {

@Inject @Informal Greeting greeting;

private String name;
private String salutation;

public void createSalutation() {

this.salutation = greeting.greet(name);

}

37

public String getSalutation() {
return salutation;

}

public void setName(String name) {
this.name = name;

}

public String getName() {
return name;

}

Using a Managed Bean in a Facelets Page

To use the managed bean in a Facelets page, create a form that uses user interface elements to call
its methods and to display their results. The following example provides a button that asks the user
to type a name, retrieves the salutation, and then displays the text in a paragraph below the button:

<h:form id="greetme">
<p><h:outputlabel value="Enter your name: " for="name"/>
<h:inputText id="name" value="#{printer.name}"/></p>
<p><h:commandButton value="Say Hello"
action="#{printer.createSalutation}"/></p>
<p><h:outputText value="#{printer.salutation}"/></p>
</h:form>

Injecting Objects by Using Producer Methods

Producer methods provide a way to inject objects that are not beans, objects whose values may
vary at runtime, and objects that require custom initialization. For example, if you want to initialize
a numeric value defined by a qualifier named @MaxNumber, then you can define the value in a
managed bean and then define a producer method, getMaxNumber, for it:

private int maxNumber = 100;

@Produces @MaxNumber int getMaxNumber() {
return maxNumber;

}

When you inject the object in another managed bean, the container automatically invokes the
producer method, initializing the value to 100:

@Inject @MaxNumber private int maxNumber;

38

If the value can vary at runtime, then the process is slightly different. For example, the following
code defines a producer method that generates a random number defined by a qualifier called
@Random:

private java.util.Random random =
new java.util.Random(System.currentTimeMillis());

java.util.Random getRandom() {
return random;

}

@Produces @Random int next() {
return getRandom().nextInt(maxNumber);

When you inject this object in another managed bean, you declare a contextual instance of the
object:

@Inject @Random Instance<Integer> randomInt;

You then call the get method of the Instance:

this.number = randomInt.get();

Configuring a CDI Application

When your beans are annotated with a scope type, the server recognizes the application as a bean
archive and no additional configuration is required. The possible scope types for CDI beans are
listed in Using Scopes.

CDI uses an optional deployment descriptor named beans.xml. Like other Jakarta EE deployment
descriptors, the configuration settings in beans.xml are used in addition to annotation settings in
CDI classes. The settings in beans.xml override the annotation settings if there is a conflict. An
archive must contain the beans.xml deployment descriptor only in certain limited situations,
described in [cdi:cdi-adv::cdi-adv:::_jakarta_contexts_and_dependency_injection_advanced_topics].

For a web application, the beans.xml deployment descriptor, if present, must be in the WEB-INF
directory. For EJB modules or JAR files, the beans.xml deployment descriptor, if present, must be in
the META-INF directory.

Using the @PostConstruct and @PreDestroy Annotations with CDI Managed Bean Classes

CDI managed bean classes and their superclasses support the annotations for initializing and for
preparing for the destruction of a bean. These annotations are defined in Jakarta Annotations
(https://jakarta.ee/specifications/annotations/2.0/).

39

https://jakarta.ee/specifications/annotations/2.0/

To Initialize a Managed Bean Using the @PostConstruct Annotation

Initializing a managed bean specifies the lifecycle callback method that the CDI framework should
call after dependency injection but before the class is put into service.

1. In the managed bean class or any of its superclasses, define a method that performs the
initialization that you require.
2. Annotate the declaration of the method with the jakarta.annotation.PostConstruct annotation.

When the managed bean is injected into a component, CDI calls the method after all injection has
occurred and after all initializers have been called.

As mandated in Jakarta Annotations, if the annotated method is declared in a
o superclass, the method is called unless a subclass of the declaring class overrides
the method.

The UserNumberBean managed bean in The guessnumber-cdi CDI Example uses @PostConstruct to
annotate a method that resets all bean fields:

@PostConstruct

public void reset () {
this.minimum = 0;
this.userNumber = 0;
this.remainingGuesses = 0;
this.maximum = maxNumber;
this.number = randomInt.get();

To Prepare for the Destruction of a Managed Bean Using the @PreDestroy Annotation

Preparing for the destruction of a managed bean specifies the lifecycle call back method that
signals that an application component is about to be destroyed by the container.

1. In the managed bean class or any of its superclasses, prepare for the destruction of the
managed bean.

In this method, perform any cleanup that is required before the bean is destroyed, such as
releasing a resource that the bean has been holding.

2. Annotate the declaration of the method with the jakarta.annotation.PreDestroy annotation.

CDI calls this method before starting to destroy the bean.

Further Information about CDI

For more information about CDI, see

 Jakarta Contexts and Dependency Injection specification:
https://jakarta.ee/specifications/cdi/4.0/

40

https://jakarta.ee/specifications/cdi/4.0/

* Weld - CDI Implementation:
https://docs.jboss.org/weld/reference/latest/en-US/html/

* Jakarta Dependency Injection specification:
https://jakarta.ee/specifications/dependency-injection/2.0/

Running the Basic Contexts and Dependency Injection Examples

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

This chapter describes in detail how to build and run simple examples that use CDI.

Building and Running the CDI Samples

The examples are in the jakartsee-examples/tutorial/cdi/ directory.
To build and run the examples, you will do the following:

1. Use NetBeans IDE or the Maven tool to compile and package the example.
2. Use NetBeans IDE or the Maven tool to deploy the example.
3. Run the example in a web browser.

See [intro:usingexamples::usingexamples:::_using_the_tutorial_examples], for basic information on
installing, building, and running the examples.

The simplegreeting CDI Example

The simplegreeting example illustrates some of the most basic features of CDI: scopes, qualifiers,
bean injection, and accessing a managed bean in a Jakarta Faces application. When you run the
example, you click a button that presents either a formal or an informal greeting, depending on
how you edited one of the classes. The example includes four source files, a Facelets page and
template, and configuration files.

The simplegreeting Source Files

The four source files for the simplegreeting example are:

* The default Greeting class, shown in Beans as Injectable Objects

* The @Informal qualifier interface definition and the InformalGreeting class that implements the
interface, both shown in Using Qualifiers

* The Printer managed bean class, which injects one of the two interfaces, shown in full in
Adding Setter and Getter Methods

The source files are located in the jakartaee-
examples/tutorial/cdi/simplegreeting/src/main/java/jakarta/tutorial/simplegreeting directory.

41

https://docs.jboss.org/weld/reference/latest/en-US/html/
https://jakarta.ee/specifications/dependency-injection/2.0/

The Facelets Template and Page

To use the managed bean in a simple Facelets application:
1. Use a very simple template file and index.xhtml page.

The template page, /WEB-INF/templates/template.xhtml, looks like this:

<!DOCTYPE html>
<html lang="en"
xmlns:h="jakarta.faces.html"
xmlns:ui="jakarta.faces.facelets">
<h:head>
<title><ui:insert name="title">Default Title</ui:insert></title>
<h:outputStylesheet name="css/default.css" />

</h:head>
<h:body>
<main>
<header>
<h1>
<ui:insert name="head">
<ui:insert name="title">Default Header</ui:insert>
</ui:insert>
</h1>
</header>
<article>
<ui:insert name="content" />
</article>
</main>
</h:body>
</html>

2. To create the Facelets page, redefine the title and head, then add a small form to the content:

<ui:composition template="/WEB-INF/templates/template.xhtml"
xmlns:ui="jakarta.faces.facelets"
xmlns:h="jakarta.faces.html">
<ui:define name="title">Simple Greeting</ui:define>
<ui:define name="content">
<h:form id="simpleGreetingForm">
<div class="input">
<h:outputlLabel for="name" value="Enter your name" />
<h:inputText id="name" value="#{printer.name}"/>
</div>
<div class="actions">
<h:commandButton id="createSalutation"
value="Say Hello"
action="#{printer.createSalutation}">
<f:ajax execute="@form" render="salutation" />

42

</h:commandButton>
</div>
<div class="output">
<p>
<h:outputText id="salutation"
value="#{printer.salutation}" />
</p>
</div>
</h:form>
</ui:define>
</ui:composition>

The form asks the user to enter a name. The button is labeled Say Hello, and the action defined
for it is to call the createSalutation method of the Printer managed bean. This method in turn
calls the greet method of the defined Greeting class.

The output text for the form is the value of the greeting returned by the setter method.
Depending on whether the default or the @Informal version of the greeting is injected, this is one
of the following, where name is the name entered by the user:

Hello, name.

Hi, name!

The Facelets page and template are located in the jakartaee-
examples/tutorial/cdi/simplegreeting/src/main/webapp/ directory:.

The simple CSS file that is used by the Facelets page is in the following location:

jakartaee-
examples/tutorial/cdi/simplegreeting/src/main/webapp/resources/css/default.css

Running the simplegreeting Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the simplegreeting
application.

To Build, Package, and Run the simplegreeting Example Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/cdi

4. Select the simplegreeting folder.

43

5. Click Open Project.

6. To modify the Printer.java file, perform these steps:
a. Expand the Source Packages node.
b. Expand the greetings node.
c. Double-click the Printer.java file.

d. In the editor, comment out the @Informal annotation:

@Inject
//@Informal
Greeting greeting;

e. Save the file.

7. In the Projects tab, right-click the simplegreeting project and select Build.

This command builds and packages the application into a WAR file, simplegreeting.war, located
in the target directory, and then deploys it to GlassFish Server.

To Build, Package, and Deploy the simplegreeting Example Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. In a terminal window, go to:

jakartaee-examples/tutorial/cdi/simplegreeting/

3. Enter the following command to deploy the application:

mvn install

This command builds and packages the application into a WAR file, simplegreeting.war, located
in the target directory, and then deploys it to GlassFish Server.

To Run the simplegreeting Example

1. In a web browser, enter the following URL:

http://localhost:8080/simplegreeting

The Simple Greeting page opens.
2. Enter a name in the field.
For example, suppose that you enter Duke.

3. Click Say Hello.

44

If you did not modify the Printer.java file, then the following text string appears below the
button:

Hi, Duke!

If you commented out the @Informal annotation in the Printer.java file, then the following text
string appears below the button:

Hello, Duke.

The guessnumber-cdi CDI Example

The guessnumber-cdi example, somewhat more complex than the simplegreeting example, illustrates
the use of producer methods and of session and application scope. The example is a game in which
you try to guess a number in fewer than ten attempts. It is similar to the quessnumber-faces example
described in [web:faces-facelets::faces-facelets:::_introduction_to_facelets], except that you can keep
guessing until you get the right answer or until you use up your ten attempts.

The example includes four source files, a Facelets page and template, and configuration files. The
configuration files and the template are the same as those used for the simplegreeting example.

The guessnumber-cdi Source Files

The four source files for the guessnumber-cdi example are:

The @MaxNumber qualifier interface

The @Random qualifier interface

* The Generator managed bean, which defines producer methods

The UserNumberBean managed bean

The source files are located in the jakartaee-examples/tutorial/cdi/quessnumber-
cdi/src/main/java/jakarta/tutorial/quessnumber directory.

The @MaxNumber and @Random Qualifier Interfaces

The eMaxNumber qualifier interface is defined as follows:

package guessnumber;

import java.lang.annotation.Documented;

import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.TYPE;

import java.lang.annotation.Retention;

import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Target;

45

import jakarta.inject.Qualifier;

@Target({TYPE, METHOD, PARAMETER, FIELD})
@Retention(RUNTIME)

@Documented

@Qualifier

public @interface MaxNumber {

}

The @Random qualifier interface is defined as follows:

package guessnumber;

import java.lang.annotation.Documented;

import static java.lang.annotation.ElementType.FIELD;
import static java.lang.annotation.ElementType.METHOD;
import static java.lang.annotation.ElementType.PARAMETER;
import static java.lang.annotation.ElementType.TYPE;

import java.lang.annotation.Retention;

import static java.lang.annotation.RetentionPolicy.RUNTIME;
import java.lang.annotation.Target;

import jakarta.inject.Qualifier;

@Target({TYPE, METHOD, PARAMETER, FIELD})
©@Retention(RUNTIME)

@Documented

@Qualifier

public @interface Random {

}

The Generator Managed Bean

The Generator managed bean contains the two producer methods for the application. The bean has
the @ApplicationScoped annotation to specify that its context extends for the duration of the user’s
interaction with the application:

package guessnumber;
import java.io.Serializable;
import jakarta.enterprise.context.ApplicationScoped;

import jakarta.enterprise.inject.Produces;

@ApplicationScoped
public class Generator implements Serializable {

private static final long serialVersionUID = 1L;

private final java.util.Random random =
new java.util.Random(System.currentTimeMillis());

46

private final int maxNumber = 100;

java.util.Random getRandom() {
return random;

}

@©Produces @Random int next() {
return getRandom().nextInt(maxNumber + 1);

}

@Produces @MaxNumber int getMaxNumber() {
return maxNumber;

}

The UserNumberBean Managed Bean

The UserNumberBean managed bean, the managed bean for the Jakarta Faces application, provides
the basic logic for the game. This bean does the following:

* Implements setter and getter methods for the bean fields
* Injects the two qualifier objects
* Provides a reset method that allows you to begin a new game after you complete one

* Provides a check method that determines whether the user has guessed the number

* Provides a validateNumberRange method that determines whether the user’s input is correct

The bean is defined as follows:

package guessnumber;

import java.io.Serializable;

import jakarta.annotation.PostConstruct;
import jakarta.faces.view.ViewScoped;

import jakarta.enterprise.inject.Instance;
import jakarta.faces.application.FacesMessage;
import jakarta.faces.component.UIComponent;
import jakarta.faces.component.UIInput;

import jakarta.faces.context.FacesContext;
import jakarta.inject.Inject;

import jakarta.inject.Named;

@Named
@ViewScoped

public class UserNumberBean implements Serializable {

private static final long serialVersionUID = 1L;

47

private int number;

private Integer userNumber;
private int minimum;

private int remainingGuesses;

@MaxNumber
@Inject
private int maxNumber;

private int maximum;

@Random
@Inject
Instance<Integer> randomInt;

@PostConstruct

public void init() {
minimum = @;
userNumber = 0;
remainingGuesses = 10;
maximum = maxNumber;
number = randomInt.get();

}

public void check() {

if (userNumber > number) {
maximum = userNumber - 1;

}

if (userNumber < number) {
minimum = userNumber + 1;

}

if (userNumber == number) {
FacesContext.getCurrentInstance().addMessage(null,

new FacesMessage("Correct!"));
}
remainingGuesses--;

}

public void reset() {
init();
}

public void validateNumberRange(FacesContext context,
UIComponent toValidate,
Object value) {
int input = (Integer) value;

if (input < minimum || input > maximum) {
throw new ValidatorException(new FacesMessage("Invalid quess"));

}

}

public void setUserNumber(Integer userNumber) {
this.userNumber = userNumber;

}

public Integer getUserNumber() {
return userNumber;

}

public int getMaximum() {
return maximum;

}

public int getMinimum() {
return minimum;

}

public int getRemainingGuesses() {
return remainingGuesses;

}

The Facelets Page

This example uses the same template that the simplegreeting example uses. The index.xhtml file,
however, is more complex.

<ui:composition template="/WEB-INF/templates/template.xhtml"
xmlns:ui="jakarta.faces.facelets"
xmlns:h="jakarta.faces.html">
<ui:define name="title">Guess My Number</ui:define>
<ui:define name="content">
<h:form id="quessMyNumberForm">
<p>
I'm thinking of a number from #{userNumberBean.minimum}
to #{userNumberBean.maximum}. You have
<h:outputText id="remainingGuesses"
value="#{userNumberBean.remainingGuesses}" />
guesses.
</p>
<div class="input">
<h:outputlLabel for="userNumber" value="Number" />
<h:inputText id="userNumber"
value="#{userNumberBean.userNumber}"
required="true" size="3"
disabled="#{
userNumberBean.remainingGuesses le 0
or

49

userNumberBean.number eq userNumberBean.userNumber
3
validator="#{userNumberBean.validateNumberRange}" />
</div>
<div class="actions">
<h:commandButton id="check" value="Guess"
action="#{userNumberBean.check}"
disabled="#{
userNumberBean.remainingGuesses le 0
or
userNumberBean.number eq userNumberBean.userNumber
>
<f:ajax execute="@form"
render="@this remainingGuesses userNumber output messages"

/>
</h:commandButton>
<h:commandButton id="reset" value="Reset"
action="#{userNumberBean.reset}">
<f:ajax execute="@this"
render="@this remainingGuesses userNumber output messages"
/>

</h:commandButton>
</div>
<h:panelGroup id="output" layout="block">
<h:outputText value="Higher!" rendered="#{
userNumberBean.userNumber ne @
and
userNumberBean.number gt userNumberBean.userNumber
/>
<h:outputText value="Lower!" rendered="#{
userNumberBean.userNumber ne @
and
userNumberBean.number 1t userNumberBean.userNumber
/s
</h:panelGroup>
<h:messages id="messages" />
</h:form>
</ui:define>
</ui:composition>

The Facelets page presents the user with the minimum and maximum values and the number of
guesses remaining. The user’s interaction with the game takes place within the panelGrid table,
which contains an input field, Guess and Reset buttons, and a field that appears if the guess is
higher or lower than the correct number. Every time the wuser clicks Guess, the
userNumberBean.check method is called to reset the maximum or minimum value or, if the guess is
correct, to generate a FacesMessage to that effect. The method that determines whether each guess is
valid is userNumberBean.validateNumberRange.

50

Running the guessnumber-cdi Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the guessnumber-cdi
application.

To Build, Package, and Deploy the guessnumber-cdi Example Using NetBeans IDE

—

. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/cdi

4. Select the guessnumber-cdi folder.
5. Click Open Project.

6. In the Projects tab, right-click the guessnumber-cdi project and select Build.

This command builds and packages the application into a WAR file, guessnumber-cdi.war, located
in the target directory, and then deploys it to GlassFish Server.

To Build, Package, and Deploy the guessnumber-cdi Example Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. In a terminal window, change to the following directory:

jakartaee-examples/tutorial/cdi/quessnumber-cdi/

3. Enter the following command to deploy the application:

mvn install

This command builds and packages the application into a WAR file, guessnumber-cdi.war, located
in the target directory, and then deploys it to GlassFish Server.

To Run the guessnumber Example

1. In a web browser, enter the following URL:

http://localhost:8080/quessnumber-cdi

The Guess My Number page opens.
2. On the Guess My Number page, enter a number in the Number field and click Guess.

The minimum and maximum values are modified, along with the remaining number of guesses.

31

3. Keep guessing numbers until you get the right answer or run out of guesses.

If you get the right answer or run out of guesses, the input field and Guess button are grayed
out.

4. Click Reset to play the game again with a new random number.

Using Jakarta EE Interceptors

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

This chapter discusses how to create interceptor classes and methods that interpose on method
invocations or lifecycle events on a target class.

Overview of Interceptors

Interceptors are used in conjunction with Jakarta EE managed classes to allow developers to invoke
interceptor methods on an associated target class, in conjunction with method invocations or
lifecycle events. Common uses of interceptors are logging, auditing, and profiling.

You can use interceptors with session beans, message-driven beans, and CDI managed beans. In all
of these cases, the interceptor target class is the bean class.

An interceptor can be defined within a target class as an interceptor method, or in an associated
class called an interceptor class. Interceptor classes contain methods that are invoked in
conjunction with the methods or lifecycle events of the target class.

Interceptor classes and methods are defined using metadata annotations, or in the deployment
descriptor of the application that contains the interceptors and target classes.

o Applications that use the deployment descriptor to define interceptors are not
portable across Jakarta EE servers.

Interceptor methods within the target class or in an interceptor class are annotated with one of the
metadata annotations defined in Interceptor Metadata Annotations.

Interceptor Metadata Annotations

Interceptor Description
Metadata
Annotation

jakarta.intercepto Designates the method as an interceptor method that
r.AroundConstruct receives a callback after the target class is constructed

jakarta.intercepto Designates the method as an interceptor method
r.AroundInvoke

jakarta.intercepto Designates the method as a timeout interceptor for

r.AroundTimeout : : ; ;
interposing on timeout methods for enterprise bean
timers

32

Interceptor Description
Metadata
Annotation

jakarta.annotation Designates the method as an interceptor method for post-
-PostConstruct construct lifecycle events

jakarta.annotation Designates the method as an interceptor method for pre-
-PreDestroy destroy lifecycle events

Interceptor Classes

Interceptor classes may be designated with the optional jakarta.interceptor.Interceptor
annotation, but interceptor classes are not required to be so annotated. An interceptor class must
have a public, no-argument constructor.

The target class can have any number of interceptor classes associated with it. The order in which
the interceptor classes are invoked is determined by the order in which the interceptor classes are
defined in the jakarta.interceptor.Interceptors annotation. However, this order can be overridden
in the deployment descriptor.

Interceptor classes may be targets of dependency injection. Dependency injection occurs when the
interceptor class instance is created, using the naming context of the associated target class, and
before any @PostConstruct callbacks are invoked.

Interceptor Lifecycle

Interceptor classes have the same lifecycle as their associated target class. When a target class
instance is created, an interceptor class instance is also created for each declared interceptor class
in the target class. That is, if the target class declares multiple interceptor classes, an instance of
each class is created when the target class instance is created. The target class instance and all
interceptor class instances are fully instantiated before any @PostConstruct callbacks are invoked,
and any @PreDestroy callbacks are invoked before the target class and interceptor class instances
are destroyed.

Interceptors and CDI

Jakarta Contexts and Dependency Injection (CDI) builds on the basic functionality of Jakarta EE
interceptors. For information on CDI interceptors, including a discussion of interceptor binding
types, see Using Interceptors in CDI Applications.

Using Interceptors

To define an interceptor, use one of the interceptor metadata annotations listed in Interceptor
Metadata Annotations within the target class, or in a separate interceptor class. The following code
declares an @AroundTimeout interceptor method within a target class:

@Stateless
public class TimerBean {

@Schedule(minute="*/1", hour="*")

33

public void automaticTimerMethod() { ... }

@AroundTimeout
public void timeoutInterceptorMethod(InvocationContext ctx) { ... }

If you are using interceptor classes, use the jakarta.interceptor.Interceptors annotation to declare
one or more interceptors at the class or method level of the target class. The following code declares
interceptors at the class level:

@Stateless
@Interceptors({PrimaryInterceptor.class, SecondaryInterceptor.class})
public class OrderBean { ... }

The following code declares a method-level interceptor class:

@Stateless
public class OrderBean {

@Interceptors(OrderInterceptor.class)
public void placeOrder(Order order) { ... }

Intercepting Method Invocations

Use the @AroundInvoke annotation to designate interceptor methods for managed object methods.
Only one around-invoke interceptor method per class is allowed. Around-invoke interceptor
methods have the following form:

@AroundInvoke
visibility Object method-name(InvocationContext) throws Exception { ... }

For example:

@AroundInvoke
public void interceptOrder(InvocationContext ctx) { ... }

Around-invoke interceptor methods can have public, private, protected, or package-level access,
and must not be declared static or final.

An around-invoke interceptor can call any component or resource that is callable by the target
method on which it interposes, can have the same security and transaction context as the target
method, and can run in the same Java virtual machine call stack as the target method.

54

Around-invoke interceptors can throw runtime exceptions and any exception allowed by the throws
clause of the target method. They may catch and suppress exceptions, and then recover by calling
the InvocationContext.proceed method.

Using Multiple Method Interceptors

Use the @Interceptors annotation to declare multiple interceptors for a target method or class:

@Interceptors({PrimaryInterceptor.class, SecondaryInterceptor.class,
LastInterceptor.class})
public void updateInfo(String info) { ... }

The order of the interceptors in the @Interceptors annotation is the order in which the interceptors
are invoked.

You can also define multiple interceptors in the deployment descriptor. The order of the
interceptors in the deployment descriptor is the order in which the interceptors will be invoked:

<interceptor-binding>
<target-name>myapp.0OrderBean</target-name>
<interceptor-class>myapp.PrimaryInterceptor.class</interceptor-class>
<interceptor-class>myapp.SecondaryInterceptor.class</interceptor-class>
<interceptor-class>myapp.LastInterceptor.class</interceptor-class>
<method-name>updateInfo</method-name>

</interceptor-binding>

To explicitly pass control to the next interceptor in the chain, call the InvocationContext.proceed
method.

Data can be shared across interceptors.

* The same InvocationContext instance is passed as an input parameter to each interceptor
method in the interceptor chain for a particular target method. The InvocationContext instance’s
contextData property is used to pass data across interceptor methods. The contextData property
is a java.util.Map<String, Object> object. Data stored in contextData is accessible to interceptor
methods further down the interceptor chain.

* The data stored in contextData is not sharable across separate target class method invocations.
That is, a different InvocationContext object is created for each invocation of the method in the
target class.

Accessing Target Method Parameters from an Interceptor Class

You can use the InvocationContext instance passed to each around-invoke method to access and
modify the parameters of the target method. The parameters property of InvocationContext is an
array of Object instances that corresponds to the parameter order of the target method. For
example, for the following target method, the parameters property, in the InvocationContext instance

55

passed to the around-invoke interceptor method in PrimaryInterceptor, is an Object array
containing two String objects (firstName and lastName) and a Date object (date):

@Interceptors(PrimaryInterceptor.class)
public void updateInfo(String firstName, String lastName, Date date) { ... }

You can access and modify the parameters by using the InvocationContext.getParameters and
InvocationContext.setParameters methods, respectively.

Intercepting Lifecycle Callback Events

Interceptors for lifecycle callback events (around-construct, post-construct, and pre-destroy) may
be defined in the target class or in interceptor classes. The jakarta.interceptor.AroundConstruct
annotation designates the method as an interceptor method that interposes on the invocation of the
target class’s constructor. The jakarta.annotation.PostConstruct annotation is used to designate a
method as a post-construct lifecycle event interceptor. The jakarta.annotation.PreDestroy
annotation is used to designate a method as a pre-destroy lifecycle event interceptor.

Lifecycle event interceptors defined within the target class have the following form:

void method-name() { ... }

For example:

@PostConstruct
void initialize() { ... }

Lifecycle event interceptors defined in an interceptor class have the following form:

void method-name(InvocationContext) { ... }

For example:

@PreDestroy
void cleanup(InvocationContext ctx) { ... }

Lifecycle interceptor methods can have public, private, protected, or package-level access, and must
not be declared static or final. Lifecycle interceptors may throw runtime exceptions but cannot
throw checked exceptions.

Lifecycle interceptor methods are called in an unspecified security and transaction context. That is,
portable Jakarta EE applications should not assume the lifecycle event interceptor method has
access to a security or transaction context. Only one interceptor method for each lifecycle event
(post-create and pre-destroy) is allowed per class.

36

Using AroundConstruct Interceptor Methods

@AroundConstruct methods are interposed on the invocation of the target class’s constructor.
Methods decorated with @AroundConstruct may only be defined within interceptor classes or
superclasses of interceptor classes. You may not use @AroundConstruct methods within the target
class.

The @AroundConstruct method is called after dependency injection has been completed for all
interceptors associated with the target class. The target class is created and the target class’s
constructor injection is performed after all associated @AroundConstruct methods have called the
Invocation.proceed method. At that point, dependency injection for the target class is completed,
and then any @PostConstruct callback methods are invoked.

@AroundConstruct methods can access the constructed target instance after calling
Invocation.proceed by calling the InvocationContext.getTarget method.

Calling methods on the target instance from an @AroundConstruct method is
dangerous because dependency injection may not have completed on the target
instance.

@AroundConstruct methods must call Invocation.proceed in order to create the target instance. If an
@AroundConstruct method does not call Invocation.proceed, the target instance will not be created.

Using Multiple Lifecycle Callback Interceptors

You can define multiple lifecycle interceptors for a target class by specifying the interceptor classes
in the @Interceptors annotation:

@Interceptors({PrimaryInterceptor.class, SecondaryInterceptor.class,
LastInterceptor.class})

@Stateless

public class OrderBean { ... }

Data stored in the contextData property of InvocationContext is not sharable across different
lifecycle events.

Intercepting Timeout Events

You can define interceptors for Enterprise Bean timer service timeout methods by using the
@AroundTimeout annotation on methods in the target class or in an interceptor class. Only one
@AroundTimeout method per class is allowed.

Timeout interceptors have the following form:

Object method-name(InvocationContext) throws Exception { ... }

For example:

57

@AroundTimeout
protected void timeoutInterceptorMethod(InvocationContext ctx) { ... }

Timeout interceptor methods can have public, private, protected, or package-level access, and must
not be declared static or final.

Timeout interceptors can call any component or resource callable by the target timeout method,
and are invoked in the same transaction and security context as the target method.

Timeout interceptors may access the timer object associated with the target timeout method
through the InvocationContext instance’s getTimer method.

Using Multiple Timeout Interceptors

You can define multiple timeout interceptors for a given target class by specifying the interceptor
classes containing @AroundTimeout interceptor methods in an @Interceptors annotation at the class
level.

If a target class specifies timeout interceptors in an interceptor class, and also has an @AroundTimeout
interceptor method within the target class itself, the timeout interceptors in the interceptor classes
are called first, followed by the timeout interceptors defined in the target class. For example, in the
following example, assume that both the PrimaryInterceptor and SecondaryInterceptor classes have
timeout interceptor methods:

@Interceptors({PrimaryInterceptor.class, SecondaryInterceptor.class})
@Stateful
public class OrderBean {

©@AroundTimeout
private void last(InvocationContext ctx) { ... }

The timeout interceptor in PrimaryInterceptor will be called first, followed by the timeout
interceptor in SecondaryInterceptor, and finally the 1ast method defined in the target class.

Binding Interceptors to Components

Interceptor binding types are annotations that may be applied to components to associate them
with a particular interceptor. Interceptor binding types are typically custom runtime annotation
types that specify the interceptor target. Use the jakarta.interceptor.InterceptorBinding annotation
on the custom annotation definition and specify the target by using @Target, setting one or more of
TYPE (class-level interceptors), METHOD (method-level interceptors), CONSTRUCTOR (around-construct
interceptors), or any other valid target:

@InterceptorBinding
@Target({TYPE, METHOD})
@Retention(RUNTIME)

38

@Inherited
pubic @interface Logged { ... }

Interceptor binding types may also be applied to other interceptor binding types:

@Logged

@InterceptorBinding
@Target({TYPE, METHOD})
@Retention(RUNTIME)

@Inherited

public @interface Secured { ... }

Declaring the Interceptor Bindings on an Interceptor Class

Annotate the interceptor class with the interceptor binding type and @Interceptor to associate the
interceptor binding with the interceptor class:

@Logged
@Interceptor
public class LoggingInterceptor {
@AroundInvoke
public Object logInvocation(InvocationContext ctx) throws Exception { ... }

An interceptor class may declare multiple interceptor binding types, and more than one interceptor
class may declare an interceptor binding type.

If the interceptor class intercepts lifecycle callbacks, it can only declare interceptor binding types
with Target(TYPE), or in the case of @AroundConstruct lifecycle callbacks, Target (CONSTRUCTOR).

Binding a Component to an Interceptor

Add the interceptor binding type annotation to the target component’s class, method, or
constructor. Interceptor binding types are applied using the same rules as @Interceptor
annotations:

@Logged
public class Message {

@Secured
public void getConfidentialMessage() { ... }

If the component has a class-level interceptor binding, it must not be final or have any non-static,
non-private final methods. If a non-static, non-private method has an interceptor binding applied

39

to it, it must not be final, and the component class cannot be final.

Ordering Interceptors

The order in which multiple interceptors are invoked is determined by the following rules.

* Default interceptors are defined in a deployment descriptor, and are invoked first. They may
specify the invocation order or override the order specified using annotations. Default
interceptors are invoked in the order in which they are defined in the deployment descriptor.

* The order in which the interceptor classes are listed in the @Interceptors annotation defines the
order in which the interceptors are invoked. Any @Priority settings for interceptors listed
within an @Interceptors annotation are ignored.

» If the interceptor class has superclasses, the interceptors defined on the superclasses are
invoked first, starting with the most general superclass.

* Interceptor classes may set the priority of the interceptor methods by setting a value within a
jakarta.annotation.Priority annotation.

» After the interceptors defined within interceptor classes have been invoked, the target class’s
constructor, around-invoke, or around-timeout interceptors are invoked in the same order as
the interceptors within the @Interceptors annotation.

« If the target class has superclasses, any interceptors defined on the superclasses are invoked
first, starting with the most general superclass.

The @Priority annotation requires an int value as an element. The lower the number, the higher
the priority of the associated interceptor.

o The invocation order of interceptors with the same priority value is
implementation-specific.

The jakarta.interceptor.Interceptor.Priority class defines the priority constants listed in
Interceptor Priority Constants.

Interceptor Priority Constants

Priority Value Description

Constant

PLATFORM_BEFO o Interceptors defined by the Jakarta EE Platform and intended to be
RE

invoked early in the invocation chain should use the range between
PLATFORM_BEFORE and LIBRARY_BEFORE. These interceptors have the

highest priority.

LIBRARY_BEFOR 1000 Interceptors defined by extension libraries that should be invoked

E early in the interceptor chain should use the range between
LIBRARY_BEFORE and APPLICATION.

APPLICATION 2000 Interceptors defined by applications should use the range between
APPLICATION and LIBRARY_AFTER.

LIBRARY_AFTER 3000 Low priority interceptors defined by extension libraries should use

the range between LIBRARY_AFTER and PLATFORM_AFTER.

60

Priority Value Description

Constant
PLATFORM_AFTE 4000 Low priority interceptors defined by the Jakarta EE Platform should
R have values higher than PLATFORM_AFTER.
o Negative priority values are reserved by the Interceptors specification for future
use, and should not be used.

The following code snippet shows how to use the priority constants in an application-defined
interceptor:

@Interceptor
@Priority(Interceptor.Priority.APPLICATION+200)
public class MyInterceptor { ... }

The interceptor Example Application

The interceptor example demonstrates how to use an interceptor class, containing an @AroundInvoke
interceptor method, with a stateless session bean.

The HelloBean stateless session bean is a simple enterprise bean with two business methods, getName
and setName, to retrieve and modify a string. The setName business method has an @Interceptors
annotation that specifies an interceptor class, HelloInterceptor, for that method:

@Interceptors(HelloInterceptor.class)
public void setName(String name) {
this.name = name;

}

The HelloInterceptor class defines an @AroundInvoke interceptor method, modifyGreeting, that
converts the string passed to HelloBean.setName to lowercase:

@AroundInvoke
public Object modifyGreeting(InvocationContext ctx) throws Exception {
Object[] parameters = ctx.getParameters();
String param = (String) parameters[@];
param = param.tolLowerCase();
parameters[@] = param;
ctx.setParameters(parameters);
try {
return ctx.proceed();
} catch (Exception e) {
logger.warning("Error calling ctx.proceed in modifyGreeting()");
return null;

61

The parameters to HelloBean.setName are retrieved and stored in an Object array by calling the
InvocationContext.getParameters method. Because setName only has one parameter, it is the first and
only element in the array. The string is set to lowercase and stored in the parameters array, then
passed to InvocationContext.setParameters. To return control to the session bean,
InvocationContext.proceed is called.

The user interface of interceptor is a JavaServer Faces web application that consists of two Facelets
views: index.xhtml, which contains a form for entering the name, and response.xhtml, which
displays the final name.

Running the interceptor Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the interceptor
example.

To Run the interceptor Example Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/ejb

4. Select the interceptor folder and click Open Project.

5. In the Projects tab, right-click the interceptor project and select Run.

This will compile, deploy, and run the interceptor example, opening a web browser to the
following URL:

http://localhost:8080/interceptor/

6. Enter a name into the form and click Submit.

The name will be converted to lowercase by the method interceptor defined in the
HelloInterceptor class.

To Run the interceptor Example Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. Go to the following directory:

jakartaee-examples/tutorial/ejb/interceptor/

3. To compile the source files and package the application, use the following command:

62

mvn install
This command builds and packages the application into a WAR file, interceptor.war, located in
the target directory. The WAR file is then deployed to GlassFish Server.

4. Open the following URL in a web browser:
http://localhost:8080/interceptor/

5. Enter a name into the form and click Submit.

The name will be converted to lowercase by the method interceptor defined in the
HelloInterceptor class.

Jakarta REST

Building RESTful Web Services with Jakarta REST

This chapter describes the REST architecture, RESTful web services, and the Jakarta RESTful Web
Services.

Jakarta REST makes it easy for developers to build RESTful web services using the Java
programming language.

What Are RESTful Web Services?

RESTful web services are loosely coupled, lightweight web services that are particularly well suited
for creating APISs for clients spread out across the internet. Representational State Transfer (REST) is
an architectural style of client-server application centered around the transfer of representations of
resources through requests and responses. In the REST architectural style, data and functionality
are considered resources and are accessed using Uniform Resource Identifiers (URIs), typically
links on the Web. The resources are represented by documents and are acted upon by using a set of
simple, well-defined operations.

For example, a REST resource might be the current weather conditions for a city. The
representation of that resource might be an XML document, an image file, or an HTML page. A
client might retrieve a particular representation, modify the resource by updating its data, or delete
the resource entirely.

The REST architectural style is designed to use a stateless communication protocol, typically HTTP.
In the REST architecture style, clients and servers exchange representations of resources by using a
standardized interface and protocol.

The following principles encourage RESTful applications to be simple, lightweight, and fast:

* Resource identification through URI: A RESTful web service exposes a set of resources that
identify the targets of the interaction with its clients. Resources are identified by URIs, which

63

provide a global addressing space for resource and service discovery. See The @Path Annotation
and URI Path Templates for more information.

* Uniform interface: Resources are manipulated using a fixed set of four create, read, update,
delete operations: PUT, GET, POST, and DELETE. PUT creates a new resource, which can be then
deleted by using DELETE. GET retrieves the current state of a resource in some representation.
POST transfers a new state onto a resource. See Responding to HTTP Methods and Requests for
more information.

* Self-descriptive messages: Resources are decoupled from their representation so that their
content can be accessed in a variety of formats, such as HTML, XML, plain text, PDF, JPEG, JSON,
and other document formats. Metadata about the resource is available and used, for example, to
control caching, detect transmission errors, negotiate the appropriate representation format,
and perform authentication or access control. See Responding to HTTP Methods and Requests
and Using Entity Providers to Map HTTP Response and Request Entity Bodies for more
information.

« Stateful interactions through links: Every interaction with a resource is stateless; that is, request
messages are self-contained. Stateful interactions are based on the concept of explicit state
transfer. Several techniques exist to exchange state, such as URI rewriting, cookies, and hidden
form fields. State can be embedded in response messages to point to valid future states of the
interaction. See Using Entity Providers to Map HTTP Response and Request Entity Bodies and
Extracting Request Parameters in the Jakarta REST Overview document for more information.

Creating a RESTful Root Resource Class

Root resource classes are "plain old Java objects" (POJOs) that are either annotated with @Path or
have at least one method annotated with @Path or a request method designator, such as @GET, @PUT,
@POST, or @DELETE. Resource methods are methods of a resource class annotated with a request
method designator. This section explains how to use Jakarta REST to annotate Java classes to create
RESTful web services.

Developing RESTful Web Services with Jakarta REST

Jakarta REST is a Java programming language API designed to make it easy to develop applications
that use the REST architecture.

The Jakarta REST API uses Java programming language annotations to simplify the development of
RESTful web services. Developers decorate Java programming language class files with Jakarta
REST annotations to define resources and the actions that can be performed on those resources.
Jakarta REST annotations are runtime annotations; therefore, runtime reflection will generate the
helper classes and artifacts for the resource. A Jakarta EE application archive containing Jakarta
REST resource classes will have the resources configured, the helper classes and artifacts
generated, and the resource exposed to clients by deploying the archive to a Jakarta EE server.

Summary of Jakarta REST Annotations lists some of the Java programming annotations that are
defined by Jakarta REST, with a brief description of how each is used. Further information on the
Jakarta REST APIs can be viewed at https://jakarta.ee/specifications/platform/9/apidocs/.

Summary of Jakarta REST Annotations

64

https://jakarta.ee/specifications/platform/9/apidocs/

Annotat Description

ion

@Path

@GET

@POST

@PUT

@DELETE

@HEAD

@OPTIONS

@PATCH

@PathPar

am

@QueryPa
ram

@Consume
S

The @Path annotation’s value is a relative URI path indicating where the Java class will
be hosted: for example, /helloworld. You can also embed variables in the URIs to make a
URI path template. For example, you could ask for the name of a user and pass it to the
application as a variable in the URI: /helloworld/{username}.

The @GET annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method designator
will process HTTP GET requests. The behavior of a resource is determined by the HTTP
method to which the resource is responding.

The @POST annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method designator
will process HTTP POST requests. The behavior of a resource is determined by the HTTP
method to which the resource is responding.

The @PUT annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method designator
will process HTTP PUT requests. The behavior of a resource is determined by the HTTP
method to which the resource is responding.

The @DELETE annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method designator
will process HTTP DELETE requests. The behavior of a resource is determined by the
HTTP method to which the resource is responding.

The @HEAD annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method designator
will process HTTP HEAD requests. The behavior of a resource is determined by the
HTTP method to which the resource is responding.

The @OPTIONS annotation is a request method designator and corresponds to the
similarly named HTTP method. The Java method annotated with this request method
designator will process HTTP OPTIONS requests. The behavior of a resource is
determined by the HTTP method to which the resource is responding.

The @PATCH annotation is a request method designator and corresponds to the similarly
named HTTP method. The Java method annotated with this request method designator
will process HTTP PATCH requests. The behavior of a resource is determined by the
HTTP method to which the resource is responding.

The @PathParam annotation is a type of parameter that you can extract for use in your
resource class. URI path parameters are extracted from the request URI, and the
parameter names correspond to the URI path template variable names specified in the
@Path class-level annotation.

The @QueryParam annotation is a type of parameter that you can extract for use in your
resource class. Query parameters are extracted from the request URI query parameters.

The @Consumes annotation is used to specify the MIME media types of representations a
resource can consume that were sent by the client.

65

Annotat
ion
@Produce
S

@Provide
c

@Applica
tionPath

Description

The @Produces annotation is used to specify the MIME media types of representations a
resource can produce and send back to the client: for example, "text/plain”.

The @Provider annotation is used for anything that is of interest to the Jakarta REST
runtime, such as MessageBodyReader and MessageBodyWriter. For HTTP requests, the
MessageBodyReader is used to map an HTTP request entity body to method parameters.
On the response side, a return value is mapped to an HTTP response entity body by
using a MessageBodyWriter. If the application needs to supply additional metadata, such
as HTTP headers or a different status code, a method can return a Response that wraps
the entity and that can be built using Response.ResponseBuilder.

The @ApplicationPath annotation is used to define the URL mapping for the application.
The path specified by @ApplicationPath is the base URI for all resource URIs specified by
@Path annotations in the resource class. You may only apply @ApplicationPath to a
subclass of jakarta.ws.rs.core.Application.

Overview of a Jakarta REST Application

The following code sample is a very simple example of a root resource class that uses Jakarta REST
annotations:

package

import
import
import
import
import
import
import

/**
* Root
*/
@Path("
public
@Co
pri

/**

pub
}

/**

*

ee.jakarta.tutorial.hello;

jakarta.ws.rs.Consumes;
jakarta.ws.rs.GET;
jakarta.ws.rs.PUT;
jakarta.ws.rs.Path;
jakarta.ws.rs.Produces;
jakarta.ws.rs.core.Context;
jakarta.ws.rs.core.Urilnfo;

resource (exposed at "helloworld" path)

helloworld")

class HelloWorld {
ntext

vate UriInfo context;

Creates a new instance of HelloWorld */
lic HelloWorld() {

Retrieves representation of an instance of helloWorld.HelloWorld

* @return an instance of java.lang.String

*/
@GE

66

I

@Produces("text/html")
public String getHtml() {

return "<html lang=\"en\"><body><h1>Hello, World!!</h1></body></html>";
}

The following sections describe the annotations used in this example.

* The @Path annotation’s value is a relative URI path. In the preceding example, the Java class will
be hosted at the URI path /helloworld. This is an extremely simple use of the @Path annotation,
with a static URI path. Variables can be embedded in the URIs. URI path templates are URIs with
variables embedded within the URI syntax.

* The @GET annotation is a request method designator, along with @POST, @PUT, @DELETE, and @HEAD,
defined by Jakarta REST and corresponding to the similarly named HTTP methods. In the
example, the annotated Java method will process HTTP GET requests. The behavior of a
resource is determined by the HTTP method to which the resource is responding.

* The @Produces annotation is used to specify the MIME media types a resource can produce and
send back to the client. In this example, the Java method will produce representations identified
by the MIME media type "text/html".

* The @Consumes annotation is used to specify the MIME media types a resource can consume that
were sent by the client. The example could be modified to set the message returned by the
getHtml method, as shown in this code example:

@POST

@Consumes("text/plain")

public void postHtml(String message) {
// Store the message

}

The @Path Annotation and URI Path Templates

The @Path annotation identifies the URI path template to which the resource responds and is
specified at the class or method level of a resource. The @Path annotation’s value is a partial URI
path template relative to the base URI of the server on which the resource is deployed, the context
root of the application, and the URL pattern to which the Jakarta REST runtime responds.

URI path templates are URIs with variables embedded within the URI syntax. These variables are
substituted at runtime in order for a resource to respond to a request based on the substituted URI.
Variables are denoted by braces ({ and }). For example, look at the following @Path annotation:

@Path("/users/{username}")

In this kind of example, a user is prompted to type his or her name, and then a Jakarta REST web
service configured to respond to requests to this URI path template responds. For example, if the
user types the user name "Galileo," the web service responds to the following URL:

67

http://example.com/users/Galileo

To obtain the value of the user name, the @PathParam annotation may be used on the method
parameter of a request method, as shown in the following code example:

@Path("/users/{username}")
public class UserResource {

@GET
@Produces("text/xml")
public String getUser(@PathParam("username") String userName) {

}

By default, the URI variable must match the regular expression "[7/]+?". This variable may be
customized by specifying a different regular expression after the variable name. For example, if a
user name must consist only of lowercase and uppercase alphanumeric characters, override the
default regular expression in the variable definition:

@Path("users/{username: [a-zA-Z][a-zA-Z_0-9]*}")

In this example, the username variable will match only user names that begin with one uppercase or
lowercase letter and zero or more alphanumeric characters and the underscore character. If a user
name does not match that template, a 404 (Not Found) response will be sent to the client.

A @Path value isn’t required to have leading or trailing slashes (/). The Jakarta REST runtime parses
URI path templates the same way, whether or not they have leading or trailing slashes.

A URI path template has one or more variables, with each variable name surrounded by braces: { to
begin the variable name and } to end it. In the preceding example, username is the variable name. At
runtime, a resource configured to respond to the preceding URI path template will attempt to
process the URI data that corresponds to the location of {username} in the URI as the variable data
for username.

For example, if you want to deploy a resource that responds to the URI path template
http://example.com/myContextRoot/resources/{name1}/{name2}/, you must first deploy the application
to a Jakarta EE server that responds to requests to the http://example.com/myContextRoot URI and
then decorate your resource with the following @Path annotation:

@Path("/{name1}/{name2}/")
public class SomeResource {

}

68

In this example, the URL pattern for the Jakarta REST helper servlet, specified in web.xml, is the
default:

<servlet-mapping>
<servlet-name>jakarta.ws.rs.core.Application</servlet-name>
<url-pattern>/resources/*</url-pattern>

</servlet-mapping>

A variable name can be used more than once in the URI path template.

If a character in the value of a variable would conflict with the reserved characters of a URI, the
conflicting character should be substituted with percent encoding. For example, spaces in the value
of a variable should be substituted with %20.

When defining URI path templates, be careful that the resulting URI after substitution is valid.

Examples of URI Path Templates lists some examples of URI path template variables and how the
URIs are resolved after substitution. The following variable names and values are used in the
examples:

* namel: james

* name2: gatz

* name3:

* location: Main%20Street

e question: why
0 The value of the name3 variable is an empty string.

Examples of URI Path Templates
URI Path Template URI After Substitution
http://example.com/{namel}/{name2}/ http://example.com/james/gatz/

http://example.com/{question}/{questi http://example.com/why/why/why/
on}/{question}/

http://example.com/maps/{location} http://example.com/maps/Main%20Str
eet

http://example.com/{name3}/home/ http://example.com//home/

Responding to HTTP Methods and Requests

The behavior of a resource is determined by the HTTP methods (typically, GET, POST, PUT, or
DELETE) to which the resource is responding.

The Request Method Designator Annotations

Request method designator annotations are runtime annotations, defined by Jakarta REST, that

69

correspond to the similarly named HTTP methods. Within a resource class file, HTTP methods are
mapped to Java programming language methods by using the request method designator
annotations. The behavior of a resource is determined by which HTTP method the resource is
responding to. Jakarta REST defines a set of request method designators for the common HTTP
methods GET, POST, PUT, DELETE, and HEAD; you can also create your own custom request method
designators. Creating custom request method designators is outside the scope of this document.

The following example shows the use of the PUT method to create or update a storage container:

@PUT
public Response putContainer() {
System.out.println("PUT CONTAINER " + container);

URI uri = wurilnfo.getAbsolutePath();
Container ¢ = new Container(container, uri.toString());

Response r;
if (!MemoryStore.MS.hasContainer(c)) {
r = Response.created(uri).build();
} else {
r = Response.noContent().build();

MemoryStore.MS.createContainer(c);
return r;

By default, the Jakarta REST runtime will automatically support the methods HEAD and OPTIONS if
not explicitly implemented. For HEAD, the runtime will invoke the implemented GET method, if
present, and ignore the response entity, if set. For OPTIONS, the Allow response header will be set to
the set of HTTP methods supported by the resource. In addition, the Jakarta REST runtime will
return a Web Application Definition Language (WADL) document describing the resource; see
https://www.w3.org/Submission/wadl/ for more information.

Methods decorated with request method designators must return void, a Java programming
language type, or a jakarta.ws.rs.core.Response object. Multiple parameters may be extracted from
the URI by using the @PathParam or @QueryParam annotations, as described in Extracting Request
Parameters. Conversion between Java types and an entity body is the responsibility of an entity
provider, such as MessageBodyReader or MessageBodyWriter. Methods that need to provide additional
metadata with a response should return an instance of the Response class. The ResponseBuilder class
provides a convenient way to create a Response instance using a builder pattern. The HTTP PUT and
POST methods expect an HTTP request body, so you should use a MessageBodyReader for methods
that respond to PUT and POST requests.

Both @PUT and @POST can be used to create or update a resource. POST can mean anything, so when
using POST, it is up to the application to define the semantics. PUT has well-defined semantics.
When using PUT for creation, the client declares the URI for the newly created resource.

PUT has very clear semantics for creating and updating a resource. The representation the client

70

https://www.w3.org/Submission/wadl/

sends must be the same representation that is received using a GET, given the same media type.
PUT does not allow a resource to be partially updated, a common mistake when attempting to use
the PUT method. A common application pattern is to use POST to create a resource and return a 201
response with a location header whose value is the URI to the newly created resource. In this
pattern, the web service declares the URI for the newly created resource.

Using Entity Providers to Map HTTP Response and Request Entity Bodies

Entity providers supply mapping services between representations and their associated Java types.
The two types of entity providers are MessageBodyReader and MessageBodyWriter. For HTTP requests,
the MessageBodyReader is used to map an HTTP request entity body to method parameters. On the
response side, a return value is mapped to an HTTP response entity body by using a
MessageBodyWriter. If the application needs to supply additional metadata, such as HTTP headers or
a different status code, a method can return a Response that wraps the entity and that can be built
by using Response.ResponseBuilder.

Types Supported for HTTP Request and Response Entity Bodies shows the standard types that are
supported automatically for HTTP request and response entity bodies. You need to write an entity
provider only if you are not choosing one of these standard types.

Types Supported for HTTP Request and Response

Entity Bodies
Java Type Supported Media
Types
byte[] All media types (*/*)
java.lang.String All text media types
(text/*)

java.io.InputStream All media types (*/*)
java.io.Reader All media types (*/*)
java.io.File All media types (*/*)

jakarta.activation.Dat All media types (*/*)

aSource

javax.xml.transform.So XML media types

urce (text/xml,
application/xml, and
application/*+xml)

jakarta.xml.bind.JAXBE XML media types
lement and application- (text/xml,

supplied Jakarta XML application/xml, and
Binding classes application/*+xml)
MultivaluedMap<String, Form content
String> (application/x-www-
form-urlencoded)

71

Java Type Supported Media
Types

StreamingOutput All media types (/),
MessageBodyWriter only

The following example shows how to use MessageBodyReader with the @Consumes and @Provider
annotations:

@Consumes("application/x-www-form-urlencoded")
@Provider
public class FormReader implements MessageBodyReader<NameValuePair> { }

The following example shows how to use MessageBodyWriter with the @Produces and @Provider
annotations:

@Produces("text/html")

@Provider

public class FormWriter implements
MessageBodyWriter<Hashtable<String, String>> { }

The following example shows how to use ResponseBuilder:

@GET
public Response getItem() {
System.out.println("GET ITEM " + container + " " + item);

Item i = MemoryStore.MS.getItem(container, item);
if (i == null)
throw new NotFoundException("Item not found");
Date lastModified = i.getlLastModified().qgetTime();
EntityTag et = new EntityTag(i.qgetDigest());
ResponseBuilder rb = request.evaluatePreconditions(lastModified, et);
if (rb !'= null)
return rb.build();

byte[] b = MemoryStore.MS.getItemData(container, item);
return Response.ok(b, i.getMimeType()).
lastModified(lastModified).tag(et).build();

Using @Consumes and @Produces to Customize Requests and Responses

The information sent to a resource and then passed back to the client is specified as a MIME media
type in the headers of an HTTP request or response. You can specify which MIME media types of
representations a resource can respond to or produce by using the following annotations:

72

* jakarta.ws.rs.Consumes
* jakarta.ws.rs.Produces

By default, a resource class can respond to and produce all MIME media types of representations
specified in the HTTP request and response headers.

The @Produces Annotation

The @Produces annotation is used to specify the MIME media types or representations a resource
can produce and send back to the client. If @Produces is applied at the class level, all the methods in
a resource can produce the specified MIME types by default. If applied at the method level, the
annotation overrides any @Produces annotations applied at the class level.

If no methods in a resource are able to produce the MIME type in a client request, the Jakarta REST
runtime sends back an HTTP "406 Not Acceptable" error.

The value of @Produces is an array of String of MIME types or a comma-separated list of MediaType
constants. For example:
@Produces({"image/jpeg, image/png"})

The following example shows how to apply @Produces at both the class and method levels:

@Path("/myResource")
@Produces("text/plain")
public class SomeResource {

@GET

public String doGetAsPlainText() {

}

@GET
@Produces("text/html")
public String doGetAsHtml() {

}

The doGetAsPlainText method defaults to the MIME media type of the @Produces annotation at the
class level. The doGetAsHtml method’s @Produces annotation overrides the class-level @Produces
setting and specifies that the method can produce HTML rather than plain text.

@Produces can also use the constants defined in the jakarta.ws.rs.core.MediaType class to specify the
media type. For example, specifying MediaType.APPLICATION_XML is equivalent to specifying
"application/xml".

@Produces(MediaType.APPLICATION_XML)

73

@GET
public Customer getCustomer() { ... }

If a resource class is capable of producing more than one MIME media type, the resource method
chosen will correspond to the most acceptable media type as declared by the client. More
specifically, the Accept header of the HTTP request declares what is most acceptable. For example, if
the Accept header is Accept: text/plain, the doGetAsPlainText method will be invoked. Alternatively,
if the Accept header is Accept: text/plain;g=0.9, text/html, which declares that the client can
accept media types of text/plain and text/html but prefers the latter, the doGetAsHtml method will
be invoked.

More than one media type may be declared in the same @Produces declaration. The following code

example shows how this is done:

@Produces({"application/xml", "application/json"})
public String doGetAsXmlOrJson() {

}

The doGetAsXmlOrJson method will get invoked if either of the media types application/xml or
application/json is acceptable. If both are equally acceptable, the former will be chosen because it
occurs first. The preceding examples refer explicitly to MIME media types for clarity. It is possible
to refer to constant values, which may reduce typographical errors. For more information, see the
API documentation for the constant field values of jakarta.ws.rs.core.MediaType.

The @Consumes Annotation

The @Consumes annotation is used to specify which MIME media types of representations a resource
can accept, or consume, from the client. If @Consumes is applied at the class level, all the response
methods accept the specified MIME types by default. If applied at the method level, @Consumes
overrides any @Consumes annotations applied at the class level.

If a resource is unable to consume the MIME type of a client request, the Jakarta REST runtime
sends back an HTTP 415 ("Unsupported Media Type") error.

The value of @Consumes is an array of String of acceptable MIME types, or a comma-separated list of
MediaType constants. For example:

@Consumes({"text/plain,text/html"})

This is the equivalent of:

@Consumes({MediaType.TEXT_PLAIN,MediaType.TEXT_HTML})

The following example shows how to apply @Consumes at both the class and method levels:

74

@Path("/myResource")
@Consumes("multipart/related")
public class SomeResource {
@POST
public String doPost(MimeMultipart mimeMultipartData) {

}

@POST
@Consumes("application/x-www-form-urlencoded")
public String doPost2(FormURLEncodedProperties formData) {

}

The doPost method defaults to the MIME media type of the @Consumes annotation at the class level.
The doPost2 method overrides the class level @Consumes annotation to specify that it can accept URL-
encoded form data.

If no resource methods can respond to the requested MIME type, an HTTP 415 ("Unsupported
Media Type") error is returned to the client.

The HelloWorld example discussed previously in this section can be modified to set the message by
using @Consumes, as shown in the following code example:

@POST

@Consumes("text/html")

public void postHtml(String message) {
// Store the message

}

In this example, the Java method will consume representations identified by the MIME media type
text/plain. Note that the resource method returns void. This means that no representation is
returned and that a response with a status code of HTTP 204 ("No Content") will be returned.

Extracting Request Parameters

Parameters of a resource method may be annotated with parameter-based annotations to extract
information from a request. A previous example presented the use of the @PathParam parameter to
extract a path parameter from the path component of the request URL that matched the path
declared in @Path.

You can extract the following types of parameters for use in your resource class:

* Query
* URI path

e Form

75

¢ Cookie
» Header

e Matrix

Query parameters are extracted from the request URI query parameters and are specified by using
the jakarta.ws.rs.QueryParam annotation in the method parameter arguments. The following
example demonstrates using @QueryParam to extract query parameters from the Query component of
the request URL:

@Path("smooth")

@GET

public Response smooth(
@DefaultValue("2") @QueryParam("step") int step,
@DefaultValue("true") @QueryParam("min-m") boolean hasMin,
@DefaultValue("true") @QueryParam("max-m") boolean hasMax,
@DefaultValue("true") @QueryParam("last-m") boolean haslast,
@DefaultValue("blue") @QueryParam("min-color") ColorParam minColor,
@DefaultValue("green") @QueryParam("max-color") ColorParam maxColor,
@DefaultValue("red") @QueryParam("last-color") ColorParam lastColor
) { ...}

If the query parameter step exists in the query component of the request URI, the value of step will
be extracted and parsed as a 32-bit signed integer and assigned to the step method parameter. If
step does not exist, a default value of 2, as declared in the @DefaultValue annotation, will be
assigned to the step method parameter. If the step value cannot be parsed as a 32-bit signed integer,
an HTTP 400 ("Client Error") response is returned

User-defined Java programming language types may be used as query parameters. The following
code example shows the ColorParam class used in the preceding query parameter example:

public class ColorParam extends Color {
public ColorParam(String s) {
super (getRGB(s));
}

private static int getRGB(String s) {
if (s.charAt(0) == "#') {
try {
Color c¢ = Color.decode("@x" + s.substring(1));
return c.getRGB();
} catch (NumberFormatException e) {
throw new WebApplicationException(400);
}
} else {
try {
Field f = Color.class.getField(s);
return ((Color)f.get(null)).getRGB();
} catch (Exception e) {

76

throw new WebApplicationException(400);

The constructor for ColorParam takes a single String parameter.
Both @QueryParam and @PathParam can be used only on the following Java types.

 All primitive types except char.

» All wrapper classes of primitive types except Character.

* Any class with a constructor that accepts a single String argument.

* Any class with the static method named valueOf(String) that accepts a single String argument.

o List<T>, Set<T>, or SortedSet<T>, where T matches the already listed criteria. Sometimes,
parameters may contain more than one value for the same name. If this is the case, these types
may be used to obtain all values.

If @DefaultValue is not used in conjunction with @QueryParam, and the query parameter is not present
in the request, the value will be an empty collection for List, Set, or SortedSet; null for other object
types; and the default for primitive types.

URI path parameters are extracted from the request URI, and the parameter names correspond to
the URI path template variable names specified in the @Path class-level annotation. URI parameters
are specified using the jakarta.ws.rs.PathParam annotation in the method parameter arguments.
The following example shows how to use @Path variables and the @PathParam annotation in a
method:

@Path("/{username}")
public class MyResourceBean {

@GET
public String printUsername(@PathParam("username") String userId) {

}

In the preceding snippet, the URI path template variable name username is specified as a parameter
to the printUsername method. The @PathParam annotation is set to the variable name username. At
runtime, before printUsername is called, the value of username is extracted from the URI and cast to a
String. The resulting String is then available to the method as the userId variable.

If the URI path template variable cannot be cast to the specified type, the Jakarta REST runtime
returns an HTTP 400 ("Bad Request") error to the client. If the @PathParam annotation cannot be cast
to the specified type, the Jakarta REST runtime returns an HTTP 404 ("Not Found") error to the
client.

77

The @PathParam parameter and the other parameter-based annotations (@MatrixParam, @HeaderParam,
@CookieParam, and @FormParam) obey the same rules as @QueryParam.

Cookie parameters, indicated by decorating the parameter with jakarta.ws.rs.CookieParam, extract
information from the cookies declared in cookie-related HTTP headers. Header parameters,
indicated by decorating the parameter with jakarta.ws.rs.HeaderParam, extract information from
the HTTP headers. Matrix parameters, indicated by decorating the parameter with
jakarta.ws.rs.MatrixParam, extract information from URL path segments.

Form parameters, indicated by decorating the parameter with jakarta.ws.rs.FormParam, extract
information from a request representation that is of the MIME media type application/x-www-form-
urlencoded and conforms to the encoding specified by HTML forms, as described in
https://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1. This parameter is very useful for
extracting information sent by POST in HTML forms.

The following example extracts the name form parameter from the POST form data:

@POST

@Consumes("application/x-www-form-urlencoded")

public void post(@FormParam("name") String name) {
// Store the message

}

To obtain a general map of parameter names and values for query and path parameters, use the
following code:

@GET

public String get(@Context Urilnfo ui) {
MultivaluedMap<String, String> queryParams = ui.getQueryParameters();
MultivaluedMap<String, String> pathParams = ui.getPathParameters();

The following method extracts header and cookie parameter names and values into a map:

@GET

public String get(@Context HttpHeaders hh) {
MultivaluedMap<String, String> headerParams = hh.getRequestHeaders();
Map<String, Cookie> pathParams = hh.getCookies();

In general, @Context can be used to obtain contextual Java types related to the request or response.

For form parameters, it is possible to do the following:

@POST
@Consumes("application/x-www-form-urlencoded")
public void post(MultivaluedMap<String, String> formParams) {

78

https://www.w3.org/TR/html401/interact/forms.html#h-17.13.4.1

// Store the message

Configuring Jakarta REST Applications

A Jakarta REST application consists of at least one resource class packaged within a WAR file. The
base URI from which an application’s resources respond to requests can be set one of two ways:

 Using the @ApplicationPath annotation in a subclass of jakarta.ws.rs.core.Application packaged
within the WAR

* Using the servlet-mapping tag within the WAR’s web.xml deployment descriptor

Configuring a Jakarta REST Application Using a Subclass of Application

Create a subclass of jakarta.ws.rs.core.Application to manually configure the environment in
which the REST resources defined in your resource classes are run, including the base URI. Add a
class-level @ApplicationPath annotation to set the base URIL.

@ApplicationPath("/webapi")
public class MyApplication extends Application { ... }

In the preceding example, the base URI is set to /webapi, which means that all resources defined
within the application are relative to /webapi.

By default, all the resources in an archive will be processed for resources. Override the getClasses
method to manually register the resource classes in the application with the Jakarta REST runtime.

@0verride

public Set<Class<?>> getClasses() {
final Set<Class<?>> classes = new HashSet<>();
// register root resource
classes.add(MyResource.class);
return classes;

Configuring the Base URI in weh.xml

The base URI for a Jakarta REST application can be set using a servlet-mapping tag in the web.xml
deployment descriptor, using the Application class name as the servlet.

<servlet-mapping>
<servlet-name>jakarta.ws.rs.core.Application</servlet-name>
<url-pattern>/webapi/*</url-pattern>

</servlet-mapping>

This setting will also override the path set by @ApplicationPath when using an Application subclass.

79

<servlet-mapping>
<servlet-name>com.example.rest.MyApplication</servlet-name>
<url-pattern>/services/*</url-pattern>

</servlet-mapping>

Example Applications for Jakarta REST

This section provides an introduction to creating, deploying, and running your own Jakarta REST
applications. This section demonstrates the steps that are needed to create, build, deploy, and test a
very simple web application that uses Jakarta REST annotations.

Creating a Simple RESTful Web Service

This section explains how to use NetBeans IDE to create a RESTful web service using a Maven
archetype. The archetype generates a skeleton for the application, and you simply need to
implement the appropriate method.

You can find a version of this application at jakartaee-examples/tutorial/rest/hello/.

To Create a RESTful Web Service Using NetBeans IDE

1. Ensure you have installed the tutorial archetypes as described in Installing the Tutorial
Archetypes.

2. In NetBeans IDE, create a simple web application using the jaxrs-service-archetype Maven
archetype. This archetype creates a very simple "Hello, World" web application.

a. From the File menu, choose New Project.

b. From Categories, select Maven. From Projects, select Project From Archetype. Click Next.

c. Under Search enter rest-service, select the rest-service-archetype, and click Next.

d. Under Project Name enter HelloWorldApplication, set the Project Location, and set the
Package name to ee.jakarta.tutorial.hello, and click Finish.

The project is created.

3. In HelloWorld.java, find the getHtml() method. Replace the //T0D0 comment with the following
text, so that the finished product resembles the following method:

@GET
@Produces("text/html")
public String getHtml() {
return "<html lang=\"en\"><body><h1>Hello, World!!</body></h1></htm1>";

}

o Because the MIME type produced is HTML, you can use HTML tags in your
return statement.

4. Right-click the HelloWor1dApplication project in the Projects pane and select Run.

80

This will build and deploy the application to GlassFish Server.

5. In a browser, open the following URL:
http://localhost:8080/HelloWor1dApplication/HelloWor1ldApplication

A browser window opens and displays the return value of Hello, World!!

For other sample applications that demonstrate deploying and running Jakarta REST applications
using NetBeans IDE, see The rsvp Example Application and Your First Cup: An Introduction to the
Jakarta EE Platform at https://eclipse-ee4j.github.io/jakartaee-firstcup/toc.html. You may also look at
the tutorials on the NetBeans IDE tutorial site, such as the one titled "Getting Started with RESTful
Web Services" at https://netbeans.apache.org/kb/docs/websvc/rest.html. This tutorial includes a
section on creating a CRUD application from a database. Create, read, update, and delete (CRUD) are
the four basic functions of persistent storage and relational databases.

The rsvp Example Application

The rsvp example application, located in the jakartaee-examples/tutorial/rest/rsvp/ directory,
allows invitees to an event to indicate whether they will attend. The events, people invited to the
event, and the responses to the invite are stored in Apache Derby using Jakarta Persistence. The
Jakarta REST resources in rsvp are exposed in a stateless session enterprise bean.

Components of the rsvp Example Application

The three enterprise beans in the rsvp example application are rsvp.ejb.ConfigBean,
rsvp.ejb.StatusBean, and rsvp.ejb.ResponseBean.

ConfigBean is a singleton session bean that initializes the data in the database.
StatusBean exposes a Jakarta REST resource for displaying the current status of all invitees to an

event. The URI path template is declared first on the class and then on the getEvent method:

@Stateless

@Named

@Path("/status")

public class StatusBean {

©GET
@Produces({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})

@Path("{eventId}/")
public Event getEvent(@PathParam("eventId") Long eventId) {

}

The combination of the two @Path annotations results in the following URI path template:

81

https://eclipse-ee4j.github.io/jakartaee-firstcup/toc.html
https://netbeans.apache.org/kb/docs/websvc/rest.html

@Path("/status/{eventId}/")

The URI path variable eventId is a @PathParam variable in the getEvent method, which responds to
HTTP GET requests and has been annotated with @GET. The eventId variable is used to look up all the
current responses in the database for that particular event.

ResponseBean exposes a Jakarta REST resource for setting an invitee’s response to a particular event.
The URI path template for ResponseBean is declared as follows:

@Path("/{eventId}/{inviteld}")

Two URI path variables are declared in the path template: eventId and inviteId. As in StatusBean,
eventId is the unique ID for a particular event. Each invitee to that event has a unique ID for the
invitation, and that is the inviteId. Both of these path variables are used in two Jakarta REST
methods in ResponseBean: getResponse and putResponse. The getResponse method responds to HTTP
GET requests and displays the invitee’s current response and a form to change the response.

The ee.jakarta.tutorial.rsvp.rest.RsvpApplication class defines the root application path for the
resources by applying the jakarta.ws.rs.ApplicationPath annotation at the class level.

@ApplicationPath("/webapi")
public class RsvpApplication extends Application {
}

An invitee who wants to change his or her response selects the new response and submits the form
data, which is processed as an HTTP POST request by the putResponse method. The new response is
extracted from the HTTP POST request and stored as the userResponse string. The putResponse
method uses userResponse, eventId, and inviteld to update the invitee’s response in the database.

The events, people, and responses in rsvp are encapsulated in Jakarta Persistence entities. The
rsvp.entity.Event, rsvp.entity.Person, and rsvp.entity.Response entities respectively represent
events, invitees, and responses to an event.

The rsvp.util.ResponseEnum class declares an enumerated type that represents all the possible
response statuses an invitee may have.

The web application also includes two CDI managed beans, StatusManager and EventManager, which
use the Jakarta REST Client API to call the resources exposed in StatusBean and ResponseBean. For
information on how the Client API is used in rsvp, see The Client API in the rsvp Example
Application.

Running the rsvp Example Application

Both NetBeans IDE and Maven can be used to deploy and run the rsvp example application.

82

To Run the rsvp Example Application Using NetBeans IDE

1.

If the database server is not already running, start it by following the instructions in Starting
and Stopping Apache Derby.

Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
From the File menu, choose Open Project.

In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/rest

Select the rsvp folder.
Click Open Project.

In the Projects tab, right-click the rsvp project and select Run.

The project will be compiled, assembled, and deployed to GlassFish Server. A web browser
window will open to the following URL:

http://localhost:8080/rsvp/index.xhtml

In the web browser window, click the Event status link for the Duke’s Birthday event.
You’ll see the current invitees and their responses.

Click the current response of one of the invitees in the Status column of the table, select a new
response, and click Update your status.

The invitee’s new status should now be displayed in the table of invitees and their response
statuses.

To Run the rsvp Example Application Using Maven

1

If the database server is not already running, start it by following the instructions in Starting
and Stopping Apache Derby.

Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

In a terminal window, go to:

jakartaee-examples/tutorial/rest/rsvp/

Enter the following command:

mvn install

This command builds, assembles, and deploys rsvp to GlassFish Server.

83

5. Open a web browser window to the following URL:
http://localhost:8080/rsvp/

6. In the web browser window, click the Event status link for the Duke’s Birthday event.
You’ll see the current invitees and their responses.

7. Click the current response of one of the invitees in the Status column of the table, select a new
response, and click Update your status.

The invitee’s new status should now be displayed in the table of invitees and their response
statuses.

Real-World Examples

Most blog sites use RESTful web services. These sites involve downloading XML files, in RSS or
Atom format, that contain lists of links to other resources. Other websites and web applications that
use REST-like developer interfaces to data include Twitter and Amazon S3 (Simple Storage Service).
With Amazon S3, buckets and objects can be created, listed, and retrieved using either a REST-style
HTTP interface or a SOAP interface. The examples that ship with Jersey include a storage service
example with a RESTful interface.

Further Information about Jakarta REST

For more information about RESTful web services and Jakarta REST, see
 "Fielding Dissertation: Chapter 5: Representational State Transfer (REST)":
https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

* RESTful Web Services, by Leonard Richardson and Sam Ruby, available from O’Reilly Media at
https://www.oreilly.com/library/view/restful-web-services/9780596529260/

* Jakarta RESTful Web Services 3.0 specification:
https://jakarta.ee/specifications/restful-ws/3.0/

* Jersey project:
https://eclipse-ee4j.github.io/jersey/

Accessing REST Resources with the Jakarta REST Client API

This chapter describes the Jakarta REST Client API and includes examples of how to access REST
resources using the Java programming language.

Jakarta REST provides a client API for accessing REST resources from other Java applications.

Overview of the Client API

The Jakarta REST Client API provides a high-level API for accessing any REST resources, not just
Jakarta REST services. The Client API is defined in the jakarta.ws.rs.client package.

84

https://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm
https://www.oreilly.com/library/view/restful-web-services/9780596529260/
https://jakarta.ee/specifications/restful-ws/3.0/
https://eclipse-ee4j.github.io/jersey/

Creating a Basic Client Request Using the Client API

The following steps are needed to access a REST resource using the Client API.

1. Obtain an instance of the jakarta.ws.rs.client.Client interface.
2. Configure the Client instance with a target.

3. Create a request based on the target.

4. Invoke the request.

The Client API is designed to be fluent, with method invocations chained together to configure and
submit a request to a REST resource in only a few lines of code.

Client client = ClientBuilder.newClient();

String name = client.target("http://example.com/webapi/hello")
.request(MediaType.TEXT_PLAIN)
.get(String.class);

In this example, the <client instance is first created by calling the
jakarta.ws.rs.client.ClientBuilder.newClient method. Then, the request is configured and invoked
by chaining method calls together in one line of code. The (lient.target method sets the target
based on a URIL The jakarta.ws.rs.client.WebTarget.request method sets the media type for the
returned entity. The jakarta.ws.rs.client.Invocation.Builder.get method invokes the service using
an HTTP GET request, setting the type of the returned entity to String.

Obtaining the Client Instance

The (Client interface defines the actions and infrastructure a REST client requires to consume a
RESTful web service. Instances of Client are obtained by calling the ClientBuilder.newClient
method.

Client client = ClientBuilder.newClient();

Use the close method to close Client instances after all the invocations for the target resource have
been performed:

Client client = ClientBuilder.newClient();

client.close();

(lient instances are heavyweight objects. For performance reasons, limit the number of (Client
instances in your application, as the initialization and destruction of these instances may be
expensive in your runtime environment.

Setting the Client Target

The target of a client, the REST resource at a particular UR], is represented by an instance of the

85

jakarta.ws.rs.client.WebTarget interface. You obtain a WebTarget instance by calling the
(lient.target method and passing in the URI of the target REST resource.

Client client = ClientBuilder.newClient();
WebTarget myResource = client.target("http://example.com/webapi");

For complex REST resources, it may be beneficial to create several instances of WebTarget. In the
following example, a base target is used to construct several other targets that represent different
services provided by a REST resource.

Client client = ClientBuilder.newClient();

WebTarget base = client.target("http://example.com/webapi");
// WebTarget at http://example.com/webapi/read

WebTarget read = base.path("read");

// WebTarget at http://example.com/webapi/write

WebTarget write = base.path("write");

The WebTarget.path method creates a new WebTarget instance by appending the current target URI
with the path that was passed in.

Setting Path Parameters in Targets

Path parameters in client requests can be specified as URI template parameters, similar to the
template parameters used when defining a resource URI in a Jakarta REST service. Template
parameters are specified by surrounding the template variable with braces ({}). Call the
resolveTemplate method to substitute the {username}, and then call the queryParam method to add
another variable to pass.

WebTarget myResource = client.target("http://example.com/webapi/read")
.path("{userName}")
.resolveTemplate("userName", "janedoe")
.queryParam("chapter", "1");

// http://example.com/webapi/read/janedoe?chapter=1

Response response = myResource.request(...).get();

Invoking the Request

After setting and applying any configuration options to the target, call one of the WebTarget.request
methods to begin creating the request. This is usually accomplished by passing to WebTarget.request
the accepted media response type for the request either as a string of the MIME type or using one of
the constants in jakarta.ws.rs.core.MediaType. The WebTarget.request method returns an instance of
jakarta.ws.rs.client.Invocation.Builder, a helper object that provides methods for preparing the
client request.

Client client = ClientBuilder.newClient();
WebTarget myResource = client.target("http://example.com/webapi/read");

86

Invocation.Builder builder = myResource.request(MediaType.TEXT_PLAIN);

Using a MediaType constant is equivalent to using the string defining the MIME type.

Invocation.Builder builder = myResource.request("text/plain");

After setting the media type, invoke the request by calling one of the methods of the
Invocation.Builder instance that corresponds to the type of HTTP request the target REST resource
expects. These methods are:

* get()
* post()
delete()

* put()
* head()

e options()

For example, if the target REST resource is for an HTTP GET request, call the Invocation.Builder.get
method. The return type should correspond to the entity returned by the target REST resource.

Client client = ClientBuilder.newClient();

WebTarget myResource = client.target("http://example.com/webapi/read");

String response = myResource.request(MediaType.TEXT_PLAIN)
.get(String.class);

If the target REST resource is expecting an HTTP POST request, call the Invocation.Builder.post
method.

Client client = ClientBuilder.newClient();

StoreOrder order = new StoreOrder(...);

WebTarget myResource = client.target("http://example.com/webapi/write");

TrackingNumber trackingNumber = myResource.request(MediaType.APPLICATION_XML)
.post(Entity.xml(order), TrackingNumber.class);

In the preceding example, the return type is a custom class and is retrieved by setting the type in
the Invocation.Builder.post(Entity<?> entity, Class<T> responseType) method as a parameter

If the return type is a collection, use jakarta.ws.rs.core.GenericType<T> as the response type

parameter, where T is the collection type:

List<StoreOrder> orders = client.target("http://example.com/webapi/read")
.path("all0Orders")
.request(MediaType.APPLICATION_XML)

87

.get(new GenericType<List<StoreOrder>>() {});

This preceding example shows how methods are chained together in the Client API to simplify how
requests are configured and invoked

Using the Client API in the Jakarta REST Example Applications

The rsvp and customer examples use the Client API to call Jakarta REST services. This section
describes how each example application uses the Client APIL.

The Client API in the rsvp Example Application

The rsvp application allows users to respond to event invitations using Jakarta REST resources, as
explained in The rsvp Example Application. The web application uses the Client API in CDI backing
beans to interact with the service resources, and the Facelets web interface displays the results.

The StatusManager CDI backing bean retrieves all the current events in the system. The client
instance used in the backing bean is obtained in the constructor:

public StatusManager() {
this.client = ClientBuilder.newClient();
}

The StatusManager.getEvents method returns a collection of all the current events in the system by
calling the resource at http://localhost:8080/rsvp/webapi/status/all, which returns an XML document
with entries for each event. The Client API automatically unmarshals the XML and creates a
List<Event> instance.

public List<Event> getEvents() {
List<Event> returnedEvents = null;

try {
returnedEvents = client.target(baselri)
.path("all")
.request(MediaType.APPLICATION_XML)
.get(new GenericType<List<Event>>() {
b

if (returnedEvents == null) {
logger.log(Level.SEVERE, "Returned events null.");
} else {
logger.log(Level.INFO, "Events have been returned.");
}
} catch (WebApplicationException ex) {
throw new WebApplicationException(Response.Status.NOT_FOUND);
}

return returnedEvents;

88

http://localhost:8080/rsvp/webapi/status/all

The StatusManager.changeStatus method is used to update the attendee’s response. It creates an
HTTP POST request to the service with the new response. The body of the request is an XML
document.

public String changeStatus(ResponseEnum userResponse,
Person person, Event event) {
String navigation;
try {
logger.log(Level.INFO,
"changing status to {0} for {1} {2} for event ID {3}.",
new Object[]{userResponse,
person.getFirstName(),
person.getLastName(),
event.getId().toString()});
client.target(baselri)
.path(event.qgetId().toString())
.path(person.getId().toString())
.request(MediaType.APPLICATION_XML)
.post(Entity.xml(userResponse.getLabel()));
navigation = "changedStatus";
} catch (ResponseProcessingException ex) {
logger.log(Level.WARNING, "couldn''t change status for {0} {1}",
new Object[]{person.getFirstName(),
person.getLastName()});
logger.log(Level.WARNING, ex.getMessage());
navigation = "error";
}

return navigation;

The Client API in the customer Example Application

The customer example application stores customer data in a database and exposes the resource as
XML, as explained in The customer Example Application. The service resource exposes methods
that create customers and retrieve all the customers. A Facelets web application acts as a client for
the service resource, with a form for creating customers and displaying the list of customers in a
table.

The CustomerBean stateless session bean uses the Jakarta REST Client API to interface with the
service resource. The CustomerBean.createCustomer method takes the Customer entity instance
created by the Facelets form and makes a POST call to the service URI.

public String createCustomer(Customer customer) {
if (customer == null) {
logger.log(Level .WARNING, "customer is null.");
return "customerError";
}
String navigation;
Response response =

89

client.target("http://1localhost:8080/customer/webapi/Customer")
.request(MediaType.APPLICATION_XML)
.post(Entity.entity(customer, MediaType.APPLICATION_XML),
Response.class);
if (response.getStatus() == Status.CREATED.getStatusCode()) {
navigation = "customerCreated";
} else {
logger.log(Level.WARNING,
"couldn''t create customer with id {@}. Status returned was {1}",
new Object[]{customer.getId(), response.getStatus()});
FacesContext context = FacesContext.getCurrentInstance();
context.addMessage(null,
new FacesMessage("Could not create customer."));
navigation = "customerError";

}

return navigation;

The XML request entity is created by calling the Invocation.Builder.post method, passing in a new
Entity instance from the Customer instance, and specifying the media type as
MediaType.APPLICATION_XML

The CustomerBean.retrieveCustomer method retrieves a Customer entity instance from the service by
appending the customer’s ID to the service URI.

public String retrieveCustomer(String id) {

String navigation;

Customer customer =
client.target("http://localhost:8080/customer/webapi/Customer")
.path(id)
.request(MediaType.APPLICATION_XML)
.get(Customer.class);

if (customer == null) {

navigation = "customerError";
} else {
navigation = "customerRetrieved";

}

return navigation;

The CustomerBean.retrieveAllCustomers method retrieves a collection of customers as a
List<Customer> instance. This list is then displayed as a table in the Facelets web application.

public List<Customer> retrieveAllCustomers() {

List<Customer> customers =
client.target("http://localhost:8080/customer/webapi/Customer")
.path("all")

.request(MediaType.APPLICATION_XML)

90

.get(new GenericType<List<Customer>>() {

H;

return customers;

Because the response type is a collection, the Invocation.Builder.get method is called by passing in
a new instance of GenericType<List<Customer>>.

Advanced Features of the Client API

This section describes some of the advanced features of the Jakarta REST Client API.

Configuring the Client Request

Additional configuration options may be added to the client request after it is created but before it
is invoked.

Setting Message Headers in the Client Request

You can set HTTP headers on the request by calling the Invocation.Builder.header method.

Client client = ClientBuilder.newClient();
WebTarget myResource = client.target("http://example.com/webapi/read");
String response = myResource.request(MediaType.TEXT_PLAIN)

.header ("myHeader", "The header value")

.get(String.class);

If you need to set multiple headers on the request, call the Invocation.Builder.headers method and
pass in a jakarta.ws.rs.core.MultivaluedMap instance with the name-value pairs of the HTTP
headers. Calling the headers method replaces all the existing headers with the headers supplied in
the MultivaluedMap instance.

Client client = ClientBuilder.newClient();
WebTarget myResource = client.target("http://example.com/webapi/read");
MultivaluedMap<String, Object> myHeaders =
new MultivaluedMap<>("myHeader", "The header value");
myHeaders.add(...);
String response = myResource.request(MediaType.TEXT_PLAIN)
.headers(myHeaders)
.get(String.class);

The MultivaluedMap interface allows you to specify multiple values for a given key.

MultivaluedMap<String, Object> myHeaders =

new MultivaluedMap<String, Object>();
List<String> values = new ArraylList<>();
values.add(...);

91

myHeaders.add("myHeader", values);

Setting Cookies in the Client Request

You can add HTTP cookies to the request by calling the Invocation.Builder.cookie method, which
takes a name-value pair as parameters.

Client client = ClientBuilder.newClient();
WebTarget myResource = client.target("http://example.com/webapi/read");
String response = myResource.request(MediaType.TEXT_PLAIN)
.cookie("myCookie", "The cookie value")
.get(String.class);

The jakarta.ws.rs.core.Cookie class encapsulates the attributes of an HTTP cookie, including the
name, value, path, domain, and RFC specification version of the cookie. In the following example,
the Cookie object is configured with a name-value pair, a path, and a domain.

Client client = ClientBuilder.newClient();
WebTarget myResource = client.target("http://example.com/webapi/read");
Cookie myCookie = new Cookie("myCookie", "The cookie value",
"/webapi/read", "example.com");
String response = myResource.request(MediaType.TEXT_PLAIN)
.cookie(myCookie)
.get(String.class);

Adding Filters to the Client

You can register custom filters with the client request or the response received from the target
resource. To register filter classes when the (Client instance is created, call the Client.register
method.

Client client = ClientBuilder.newClient().register(MyLoggingFilter.class);

In the preceding example, all invocations that use this Client instance have the MylLoggingFilter
filter registered with them.

You can also register the filter classes on the target by calling WebTarget.register.

Client client = ClientBuilder.newClient().register(MyLoggingFilter.class);
WebTarget target = client.target("http://example.com/webapi/secure")
.register(MyAuthenticationFilter.class);

In the preceding example, both the MyLoggingFilter and MyAuthenticationFilter filters are attached
to the invocation.

Request and response filter classes implement the jakarta.ws.rs.client.ClientRequestFilter and

92

jakarta.ws.rs.client.ClientResponseFilter interfaces, respectively. Both of these interfaces define a
single method, filter. All filters must be annotated with jakarta.ws.rs.ext.Provider.

The following class is a logging filter for both client requests and client responses.

@Provider
public class MylLoggingFilter implements ClientRequestFilter,
ClientResponseFilter {
static final Logger logger = Logger.getlogger(...);

// implement the ClientRequestFilter.filter method
@0verride
public void filter(ClientRequestContext requestContext)
throws IOException {
logger.log(...);

}

// implement the ClientResponseFilter.filter method
@0verride
public void filter(ClientRequestContext requestContext,
ClientResponseContext responseContext) throws IOException {
logger.log(...);

If the invocation must be stopped while the filter is active, call the context object’s abortWith
method, and pass in a jakarta.ws.rs.core.Response instance from within the filter.

@0verride
public void filter(ClientRequestContext requestContext) throws IOException {

Response response = new Response();
response.status(500);
requestContext.abortWith(response);

Asynchronous Invocations in the Client API

In networked applications, network issues can affect the perceived performance of the application,
particularly in long-running or complicated network calls. Asynchronous processing helps prevent
blocking and makes better use of an application’s resources.

In the Jakarta REST Client API, the Invocation.Builder.async method is used when constructing a
client request to indicate that the call to the service should be performed asynchronously. An
asynchronous invocation returns control to the caller immediately, with a return type of
java.util.concurrent.Future<T> (part of the Java SE concurrency API) and with the type set to the

93

https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/Future.html?is-external=true

return type of the service call. Future<T> objects have methods to check if the asynchronous call has
been completed, to retrieve the final result, to cancel the invocation, and to check if the invocation
has been cancelled

The following example shows how to invoke an asynchronous request on a resource.

Client client = ClientBuilder.newClient();
WebTarget myResource = client.target("http://example.com/webapi/read");
Future<String> response = myResource.request(MediaType.TEXT_PLAIN)
.async()
.get(String.class);

Using Custom Callbacks in Asynchronous Invocations

The InvocationCallback interface defines two methods, completed and failed, that are called when
an asynchronous invocation either completes successfully or fails, respectively. You may register an
InvocationCallback instance on your request by creating a new instance when specifying the
request method.

The following example shows how to register a callback object on an asynchronous invocation.

Client client = ClientBuilder.newClient();
WebTarget myResource = client.target("http://example.com/webapi/read");
Future<Customer> fCustomer = myResource.request(MediaType.TEXT_PLAIN)
.async()
.get(new InvocationCallback<Customer>() {
@0verride
public void completed(Customer customer) {
// Do something with the customer object
+
@0verride
public void failed(Throwable throwable) {
// handle the error
}
b

Using Reactive Approach in Asynchronous Invocations

Using custom callbacks in asynchronous invocations is easy in simple cases and when there are
many independent calls to make. In nested calls, using custom callbacks becomes very difficult to
implement, debug, and maintain.

Jakarta REST defines a new type of invoker called as RxInvoker and a default implementation of this
type is CompletionStageRxInvoker. The new rx method is used as in the following example:

CompletionStage<String> csf = client.target("forecast/{destination}")

.resolveTemplate("destination", "mars")
.request().rx().get(String.class);

94

csf.thenAccept(System.out::println);

In the example, an asynchronous processing of the interface CompletionStage<String> is created and
waits till it is completed and the result is displayed. The CompletionStage that is returned can then
be used only to retrieve the result as shown in the above example or can be combined with other
completion stages to ease and improve the processing of asynchronous tasks.

Using Server-Sent Events

Server-sent Events (SSE) technology is used to asynchronously push notifications to the client over
standard HTTP or HTTPS protocol. Clients can subscribe to event notifications that originate on a
server. Server generates events and sends these events back to the clients that are subscribed to
receive the notifications. The one-way communication channel connection is established by the
client. Once the connection is established, the server sends events to the client whenever new data
is available.

The communication channel established by the client lasts till the client closes the connection and it
is also re-used by the server to send multiple events from the server.

Overview of the SSE API

The SSE API is defined in the jakarta.ws.rs.sse package that includes the interfaces SseEventSink,
SseEvent, Sse, and SseEventSource. To accept connections and send events to one or more clients,
inject an SseEventSink in the resource method that produces the media type text/event-stream.

The following example shows how to accept the SSE connections and to send events to the clients:

@GET

@Path("eventStream")

@Produces(MediaType.SERVER_SENT_EVENTS)

public void eventStream(@Context SseEventSink eventSink, @Context Sse sse) {

executor.execute(() -> {
try (SseEventSink sink = eventSink) {

eventSink.send(sse.newEvent("event1"));
eventSink.send(sse.newEvent("event2"));
eventSink.send(sse.newEvent("event3"));

)

The SseEventsink is injected into the resource method and the underlying client connection is kept
open and used to send events. The connection persists until the client disconnects from the server.
The method send returns an instance of CompletionStage<T> which indicates the action of
asynchronously sending a message to a client is enabled.

The events that are streamed to the clients can be defined with the details such as event, data, id,
retry, and comment.

95

Broadcasting Using SSE

Broadcasting is the action of sending events to multiple clients simultaneously. Jakarta REST SSE
API provides SseBroadcaster to register all SseEventSink instances and send events to all registered
event outputs. The life-cycle and scope of an SseBroadcaster is fully controlled by applications and
not the Jakarta REST runtime. The following example show the use of broadcasters:

@Path("/")

@Singleton

public class SseResource {
@Context
private Sse sse;

private volatile SseBroadcaster sseBroadcaster;

@PostConstruct
public init() {
this.sseBroadcaster = sse.newBroadcaster();

}

@GET

@Path("register")

@Produces(MediaType.SERVER_SENT_EVENTS)
public void register(@Context SseEventSink eventSink) {
eventSink.send(sse.newEvent("welcome!"));
sseBroadcaster.register(eventSink);

@POST

@Path("broadcast")

@Consumes(MediaType.MULTIPART_FORM_DATA)

public void broadcast(@FormParam("event") String event) {
sseBroadcaster.broadcast(sse.newEvent(event));

}

@Singleton annotation is defined for the resource class restricting the creation of multiple instances
of the class. The register method on a broadcaster is used to add a new SseEventSink; the broadcast
method is used to send an SSE event to all registered clients.

Listening and Receiving Events

Jakarta REST SSE provides the SseEventSource interface for the client to subscribe to notifications.
The client can get asynchronously notified about incoming events by invoking one of the subscribe
methods in jakarta.ws.rs.sse.SseEventSource.

The following example shows how to use the SseEventSource API to open an SSE connection and
read some of the messages for a period:

96

WebTarget target = client.target("http://...");

try (SseEventSource source = SseEventSource.target(target).build()) {
source.register(System.out::println);
source.open();
Thread.sleep(500); // Consume events for just 500 ms
source.close();

} catch (InterruptedException e) {
// falls through

}

Jakarta REST: Advanced Topics and an Example

Jakarta RESTful Web Services (Jakarta REST) is designed to make it easy to develop applications that
use the REST architecture. This chapter describes advanced features of Jakarta REST. If you are new
to Jakarta REST, see [websvcs:rest::rest:::_building_restful_web_services_with_jakarta_rest] before
you proceed with this chapter.

Jakarta REST is integrated with Jakarta Contexts and Dependency Injection (CDI), Jakarta Enterprise
Beans technology, and Jakarta Servlet technology.

Annotations for Field and Bean Properties of Resource Classes

Jakarta REST annotations for resource classes let you extract specific parts or values from a
Uniform Resource Identifier (URI) or request header.

Jakarta REST provides the annotations listed in Advanced Jakarta REST Annotations.

Advanced Jakarta REST Annotations

An Description
not

ati

on

@Co Injects information into a class field, bean property, or method parameter
nte

xt

@Co Extracts information from cookies declared in the cookie request header
oki

ePa
ram

@Fo Extracts information from a request representation whose content type is application/x-

rmP www-form-urlencoded
ara

@He Extracts the value of a header
ade

rPa
ram

97

An Description
not

ati

on

@Ma Extracts the value of a URI matrix parameter
tri

xPa
ram

OPa Extracts the value of a URI template parameter
thpP

dara
m

@Qu Extracts the value of a URI query parameter
ery

Par

am

Extracting Path Parameters

URI path templates are URIs with variables embedded within the URI syntax. The @PathParam
annotation lets you use variable URI path fragments when you call a method.

The following code snippet shows how to extract the last name of an employee when the

employee’s email address is provided:

@Path("/employees/{firstname}.{lastname}@{domain}.com")
public class EmpResource {

@GET
@Produces("text/xml")
public String getEmployeelastname(@PathParam("lastname") String lastName) {

}

In this example, the @Path annotation defines the URI variables (or path parameters) {firstname},
{lastname}, and {domain}. The @PathParam in the method parameter of the request method extracts
the last name from the email address.

If your HTTP request is GET /employees/john.doe@example.com, the value “doe” is injected into
{lastname}.

You can specify several path parameters in one URIL.

You can declare a regular expression with a URI variable. For example, if it is required that the last
name must consist only of lowercase and uppercase characters, you can declare the following
regular expression:

98

@Path("/employees/{firstname}.{lastname[a-zA-Z]*}@{domain}.com")

If the last name does not match the regular expression, a 404 response is returned.

Extracting Query Parameters

Use the @QueryParam annotation to extract query parameters from the query component of the
request URL

For instance, to query all employees who have joined within a specific range of years, use a method
signature like the following:

@Path("/employees/")
@GET
public Response getEmployees(
@DefaultValue("2003") @QueryParam("minyear") int minyear,
@DefaultValue("2013") @QueryParam("maxyear") int maxyear)
{...}

This code snippet defines two query parameters, minyear and maxyear. The following HTTP request
would query for all employees who have joined between 2003 and 2013:

GET /employees?maxyear=2013&minyear=2003

The @DefaultValue annotation defines a default value, which is to be used if no values are provided
for the query parameters. By default, Jakarta REST assigns a null value for Object values and zero
for primitive data types. You can use the @DefaultValue annotation to eliminate null or zero values
and define your own default values for a parameter.

Extracting Form Data

Use the @FormParam annotation to extract form parameters from HTML forms. For example, the
following form accepts the name, address, and manager’s name of an employee:

<FORM action="http://example.com/employees/" method="post">
<p>
<fieldset>
Employee name: <INPUT type="text" name="empname" tabindex="1">
Employee address: <INPUT type="text" name="empaddress" tabindex="2">
Manager name: <INPUT type="text" name="managername" tabindex="3">
</fieldset>
</p>
</FORM>

Use the following code snippet to extract the manager name from this HTML form:

99

@POST
@Consumes("application/x-www-form-urlencoded")

public void post(@FormParam("managername”) String managername) {
// Store the value

To obtain a map of form parameter names to values, use a code snippet like the following:

@POST

@Consumes("application/x-www-form-urlencoded")

public void post(MultivaluedMap<String, String> formParams) {
// Store the message

}

Extracting the Java Type of a Request or Response

The jakarta.ws.rs.core.Context annotation retrieves the Java types related to a request or response.

The jakarta.ws.rs.core.Urilnfo interface provides information about the components of a request

URL The following code snippet shows how to obtain a map of query and path parameter names to
values:

@GET

public String getParams(@Context UriInfo ui) {
MultivaluedMap<String, String> queryParams = ui.getQueryParameters();
MultivaluedMap<String, String> pathParams = ui.getPathParameters();

The jakarta.ws.rs.core.HttpHeaders interface provides information about request headers and

cookies. The following code snippet shows how to obtain a map of header and cookie parameter
names to values:

@GET

public String getHeaders(@Context HttpHeaders hh) {
MultivaluedMap<String, String> headerParams = hh.getRequestHeaders();
MultivaluedMap<String, Cookie> pathParams = hh.getCookies();

Validating Resource Data with Bean Validation

Jakarta REST supports Bean Validation to verify Jakarta REST resource classes. This support consists
of:

* Adding constraint annotations to resource method parameters

100

* Ensuring entity data is valid when the entity is passed in as a parameter

Using Constraint Annotations on Resource Methods

Bean Validation constraint annotations may be applied to parameters for a resource. The server
will validate the parameters and either pass or throw a jakarta.validation.ValidationException.

@POST

@Path("/createUser")

@Consumes(MediaType.APPLICATION_FORM_URLENCODED)

public void createUser(@NotNull @FormParam("username") String username,
@NotNull @FormParam("firstName") String firstName,
@NotNull @FormParam("lastName") String lastName,
@Email @FormParam("email") String email) {

In the preceding example, the built-in constraint @NotNull is applied to the username, firstName, and
lastName form fields. Another built-in constraint @Email validates that the email address supplied by
the email form field is correctly formatted.

The constraints may also be applied to fields within a resource class.

@Path("/createUser")

public class CreateUserResource {
@NotNull
@FormParam("username")
private String username;

@NotNull
@FormParam("firstName")
private String firstName;

@NotNull
@FormParam("1lastName")
private String lastName;

@Email
@FormParam("email")
private String email;

In the preceding example, the same constraints that were applied to the method parameters in the
previous example are applied to the class fields. The behavior is the same in both examples.

Constraints may also be applied to a resource class’s JavaBeans properties by adding the constraint
annotations to the getter method.

101

@Path("/createuser")
public class CreateUserResource {
private String username;

@FormParam("username")
public void setUsername(String username) {
this.username = username;

}

@NotNull
public String getUsername() {
return username;

}

Constraints may also be applied at the resource class level. In the following example, @PhoneRequired
is a user-defined constraint that ensures that a user enters at least one phone number. That is,
either homePhone or mobilePhone can be null, but not both.

@Path("/createlUser")
@PhoneRequired
public class CreateUserResource {
@FormParam("homePhone")
private Phone homePhone;

@FormParam("mobilePhone")
private Phone mobilePhone;

Validating Entity Data

Classes that contain validation constraint annotations may be used in method parameters in a
resource class. To validate these entity classes, use the @Valid annotation on the method parameter.
For example, the following class is a user-defined class containing both standard and user-defined
validation constraints.

@PhoneRequired

public class User {
@NotNull
private String username;

private Phone homePhone;

private Phone mobilePhone;

102

This entity class is used as a parameter to a resource method.

@Path("/createlUser")
public class CreateUserResource {

@POST
@Consumers(MediaType.APPLICATION_XML)
public void createUser(@Valid User user) {

}

The @Valid annotation ensures that the entity class is validated at runtime. Additional user-defined
constraints can also trigger validation of an entity.

@Path("/createUser")
public class CreateUserResource {

@POST
@Consumers(MediaType.APPLICATION_XML)
public void createUser(@ActiveUser User user) {

}

In the preceding example, the user-defined @ActiveUser constraint is applied to the User class in
addition to the @PhoneRequired and @NotNull constraints defined within the entity class.

If a resource method returns an entity class, validation may be triggered by applying the @Valid or
any other user-defined constraint annotation to the resource method.

@Path("/getUser")
public class GetUserResource {
@GET
@Path("{username}")
@Produces(MediaType.APPLICATION_XML)
@ActiveUser
@Valid
public User getUser(@PathParam("username") String username) {

// find the User
return user;

}

103

As in the previous example, the @ActiveUser constraint is applied to the returned entity class as well
as the @PhoneRequired and @NotNull constraints defined within the entity class.

Validation Exception Handling and Response Codes

If a jakarta.validation.ValidationException or any subclass of ValidationException except
ConstraintValidationException is thrown, the Jakarta REST runtime will respond to the client
request with a 500 (Internal Server Error) HTTP status code.

If a ConstraintValidationException is thrown, the Jakarta REST runtime will respond to the client
with one of the following HTTP status codes:
* 500 (Internal Server Error) if the exception was thrown while validating a method return type

* 400 (Bad Request) in all other cases

Subresources and Runtime Resource Resolution

You can use a resource class to process only a part of the URI request. A root resource can then
implement subresources that can process the remainder of the URI path.

A resource class method that is annotated with @Path is either a subresource method or a
subresource locator.

* A subresource method is used to handle requests on a subresource of the corresponding
resource.

* A subresource locator is used to locate subresources of the corresponding resource.

Subresource Methods

A subresource method handles an HTTP request directly. The method must be annotated with a
request method designator, such as @GET or @P0ST, in addition to @Path. The method is invoked for
request URIs that match a URI template created by concatenating the URI template of the resource
class with the URI template of the method.

The following code snippet shows how a subresource method can be used to extract the last name

of an employee when the employee’s email address is provided:

@Path("/employeeinfo")
public class EmployeeInfo {

public employeeinfo() {}
@GET
@Path("/employees/{firstname}.{lastname}@{domain}.com")

@Produces("text/xml")
public String getEmployeelastName(@PathParam("lastname") String lastName) {

104

The getEmployeelastName method returns doe for the following GET request:

GET /employeeinfo/employees/john.doe@example.com

Subresource Locators

A subresource locator returns an object that will handle an HTTP request. The method must not be
annotated with a request method designator. You must declare a subresource locator within a
subresource class, and only subresource locators are used for runtime resource resolution.

The following code snippet shows a subresource locator:

// Root resource class
@Path("/employeeinfo")
public class Employeelnfo {

// Subresource locator: obtains the subresource Employee

// from the path /employeeinfo/employees/{empid}

@Path("/employees/{empid}")

public Employee getEmployee(@PathParam("empid") String id) {
// Find the Employee based on the id path parameter
Employee emp = ...;

return emp;
}

// Subresource class
public class Employee {

// Subresource method: returns the employee's last name
@GET

@Path("/lastname")

public String getEmployeelastName() {

return lastName;

In this code snippet, the getEmployee method is the subresource locator that provides the Employee
object, which services requests for lastname.

If your HTTP request is GET /employeeinfo/employees/as209/, the getEmployee method returns an
Employee object whose id is as209. At runtime, Jakarta REST sends a GET

105

/employeeinfo/employees/as209/1lastname request to the getEmployeelastName method. The
getEmployeelastName method retrieves and returns the last name of the employee whose id is as209.

Integrating Jakarta REST with Jakarta Enterprise Beans Technology and CDI

Jakarta REST works with Jakarta Enterprise Beans technology and Jakarta Contexts and
Dependency Injection (CDI).

In general, for Jakarta REST to work with enterprise beans, you need to annotate the class of a bean
with @Path to convert it to a root resource class. You can use the @Path annotation with stateless
session beans and singleton POJO beans.

The following code snippet shows a stateless session bean and a singleton bean that have been
converted to Jakarta REST root resource classes.

@Stateless
@Path("stateless-bean")
public class StatelessResource {...}

@Singleton
@Path("singleton-bean")
public class SingletonResource {...}

Session beans can also be used for subresources.

Jakarta REST and CDI have slightly different component models. By default, Jakarta REST root
resource classes are managed in the request scope, and no annotations are required for specifying
the scope. CDI managed beans annotated with @RequestScoped or @ApplicationScoped can be
converted to Jakarta REST resource classes.

The following code snippet shows a Jakarta REST resource class.

@Path("/employee/{id}")
public class Employee {

public Employee(@PathParam("id") String id) {...}
}

@Path("{lastnamel}")
public final class EmpDetails {...}

The following code snippet shows this Jakarta REST resource class converted to a CDI bean. The
beans must be proxyable, so the Employee class requires a nonprivate constructor with no
parameters, and the EmpDetails class must not be final.

@Path("/employee/{id}")

@RequestScoped

public class Employee {
public Employee() {...}

106

@Inject
public Employee(@PathParam("id") String id) {...}
+

@Path("{lastname}")
@RequestScoped
public class EmpDetails {...}

Conditional HTTP Requests

Jakarta REST provides support for conditional GET and PUT HTTP requests. Conditional GET requests
help save bandwidth by improving the efficiency of client processing.

A GET request can return a Not Modified (304) response if the representation has not changed since
the previous request. For example, a website can return 304 responses for all its static images that
have not changed since the previous request.

A PUT request can return a Precondition Failed (412) response if the representation has been
modified since the last request. The conditional PUT can help avoid the lost update problem.

Conditional HTTP requests can be used with the Last-Modified and ETag headers. The Last-Modified
header can represent dates with granularity of one second.

@Path("/employee/{joiningdate}")
public class Employee {

Date joiningdate;

@GET

@Produces("application/xml")

public Employee(@PathParam("joiningdate") Date joiningdate,
@Context Request req,
@Context UriInfo ui) {

this.joiningdate = joiningdate;

this.tag = computeEntityTag(ui.getRequestUri());
if (req.getMethod().equals("GET")) {
Response.ResponseBuilder rb = req.evaluatePreconditions(tag);
if (rb !'= null) {
throw new WebApplicationException(rb.build());
+

In this code snippet, the constructor of the Employee class computes the entity tag from the request
URI and calls the request.evaluatePreconditions method with that tag. If a client request returns an

107

If-none-match header with a value that has the same entity tag that was computed,
evaluate.Preconditions returns a pre-filled-out response with a 304 status code and an entity tag set
that may be built and returned.

Runtime Content Negotiation

The @Produces and @Consumes annotations handle static content negotiation in Jakarta REST. These
annotations specify the content preferences of the server. HTTP headers such as Accept, Content-
Type, and Accept-Language define the content negotiation preferences of the client.

For more details on the HTTP headers for content negotiation, see HTTP/1.1 - Content Negotiation
(https://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html).

The following code snippet shows the server content preferences:

@Produces("text/plain")
@Path("/employee")
public class Employee {

@GET
public String getEmployeeAddressText(String address) {...}

@Produces("text/xml")
@GET
public String getEmployeeAddressXml(Address address) {...}

The getEmployeeAddressText method is called for an HTTP request that looks like the following:

GET /employee
Accept: text/plain

This will produce the following response:

500 Oracle Parkway, Redwood Shores, CA

The getEmployeeAddressXml method is called for an HTTP request that looks like the following:

GET /employee
Accept: text/xml

This will produce the following response:

<address street="500 Oracle Parkway, Redwood Shores, CA" country="USA"/>

108

https://www.w3.org/Protocols/rfc2616/rfc2616-sec12.html

With static content negotiation, you can also define multiple content and media types for the client
and server.

@Produces("text/plain", "text/xml")

In addition to supporting static content negotiation, Jakarta REST also supports runtime content
negotiation using the jakarta.ws.rs.core.Variant class and Request objects. The Variant class
specifies the resource representation of content negotiation. Each instance of the Variant class may
contain a media type, a language, and an encoding. The Variant object defines the resource
representation that is supported by the server. The Variant.VariantListBuilder class is used to build
a list of representation variants.

The following code snippet shows how to create a list of resource representation variants:

List<Variant> vs = Variant.mediatypes("application/xml", "application/json")
.languages("en", "fr").build();

This code snippet calls the build method of the VariantListBuilder class. The VariantListBuilder
class is invoked when you call the mediatypes, languages, or encodings methods. The build method
builds a series of resource representations. The Variant list created by the build method has all
possible combinations of items specified in the mediatypes, languages, and encodings methods.

In this example, the size of the vs object as defined in this code snippet is 4, and the contents are as
follows:

[["application/xml","en"], ["application/json","en"],
["application/xml","fr"],["application/json","fr"]]

The jakarta.ws.rs.core.Request.selectVariant method accepts a list of Variant objects and chooses
the Variant object that matches the HTTP request. This method compares its list of Variant objects
with the Accept, Accept-Encoding, Accept-Language, and Accept-Charset headers of the HTTP request.

The following code snippet shows how to use the selectVariant method to select the most
acceptable Variant from the values in the client request:

@GET
public Response get(@Context Request r) {
List<Variant> vs = ...;
Variant v = r.selectVariant(vs);
if (v == null) {
return Response.notAcceptable(vs).build();
} else {
Object rep = selectRepresentation(v);
return Response.ok(rep, v);

109

The selectVariant method returns the Variant object that matches the request or null if no matches
are found. In this code snippet, if the method returns null, a Response object for a nonacceptable
response is built. Otherwise, a Response object with an OK status and containing a representation in
the form of an Object entity and a Variant is returned.

Using Jakarta REST with Jakarta XML Binding

Jakarta XML Binding is an XML-to-Java binding technology that simplifies the development of web
services by enabling transformations between schema and Java objects and between XML instance
documents and Java object instances. An XML schema defines the data elements and structure of
an XML document. You can use Jakarta XML Binding APIs and tools to establish mappings between
Java classes and XML schema. Jakarta XML Binding technology provides the tools that enable you to
convert your XML documents to and from Java objects.

By using Jakarta XML Binding, you can manipulate data objects in the following ways.

* You can start with an XML schema definition (XSD) and use xjc, the Jakarta XML Binding
schema compiler tool, to create a set of Jakarta XML Binding annotated Java classes that map to
the elements and types defined in the XSD schema.

* You can start with a set of Java classes and use schemagen, the Jakarta XML Binding schema
generator tool, to generate an XML schema.

* Once a mapping between the XML schema and the Java classes exists, you can use the Jakarta
XML Binding runtime to marshal and unmarshal your XML documents to and from Java objects
and use the resulting Java classes to assemble a web services application.

XML is a common media format that RESTful services consume and produce. To deserialize and
serialize XML, you can represent requests and responses by Jakarta XML Binding annotated objects.
Your Jakarta REST application can use the Jakarta XML Binding objects to manipulate XML data.
Jakarta XML Binding objects can be used as request entity parameters and response entities. The
Jakarta REST runtime environment includes standard MessageBodyReader and MessageBodyWriter
provider interfaces for reading and writing Jakarta XML Binding objects as entities.

With Jakarta REST, you enable access to your services by publishing resources. Resources are just
simple Java classes with some additional Jakarta REST annotations. These annotations express the
following:

» The path of the resource (the URL you use to access it)

* The HTTP method you use to call a certain method (for example, the GET or POST method)

* The MIME type with which a method accepts or responds
As you define the resources for your application, consider the type of data you want to expose. You
may already have a relational database that contains information you want to expose to users, or
you may have static content that does not reside in a database but does need to be distributed as

resources. Using Jakarta REST, you can distribute content from multiple sources. RESTful web
services can use various types of input/output formats for request and response. The customer

110

example, described in The customer Example Application, uses XML.

Resources have representations. A resource representation is the content in the HTTP message that
is sent to, or returned from, the resource using the URI. Each representation a resource supports
has a corresponding media type. For example, if a resource is going to return content formatted as
XML, you can use application/xml as the associated media type in the HTTP message.Depending on
the requirements of your application, resources can return representations in a preferred single
format or in multiple formats. Jakarta REST provides @Consumes and @Produces annotations to
declare the media types that are acceptable for a resource method to read and write.

Jakarta REST also maps Java types to and from resource representations using entity providers. A
MessageBodyReader entity provider reads a request entity and deserializes the request entity into a
Java type. A MessageBodyWriter entity provider serializes from a Java type into a response entity. For
example, if a String value is used as the request entity parameter, the MessageBodyReader entity
provider deserializes the request body into a new String. If a Jakarta XML Binding type is used as
the return type on a resource method, the MessageBodyWriter serializes the Jakarta XML Binding
object into a response body.

By default, the Jakarta REST runtime environment attempts to create and use a default JAXBContext
class for Jakarta XML Binding classes. However, if the default JAXBContext class is not suitable, then
you can supply a JAXBContext class for the application using a Jakarta REST ContextResolver
provider interface.

The following sections explain how to use Jakarta XML Binding with Jakarta REST resource
methods.

Using Java Objects to Model Your Data

If you do not have an XML schema definition for the data you want to expose, you can model your
data as Java classes, add Jakarta XML Binding annotations to these classes, and use Jakarta XML
Binding to generate an XML schema for your data. For example, if the data you want to expose is a
collection of products and each product has an ID, a name, a description, and a price, you can
model it as a Java class as follows:

@XmlRootElement (name="product")
@XmlAccessorType(XmlAccessType.FIELD)
public class Product {

@XmlElement(required=true)
protected int 1id;
@XmlElement(required=true)
protected String name;
@XmlElement(required=true)
protected String description;
@XmlElement(required=true)
protected int price;

public Product() {}

// Getter and setter methods

111

/] ...

Run the Jakarta XML Binding schema generator on the command line to generate the
corresponding XML schema definition:

schemagen Product.java

This command produces the XML schema as an .xsd file:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<xs:schema version="1.0" xmlns:xs="http://www.w3.0rg/2001/XMLSchema">

<xs:element name="product" type="product"/>

<xs:complexType name="product">
<xs:sequence>
<xs:element name="1id" type="xs:int"/>
<xs:element name="name" type="xs:string"/>
<xs:element name="description" type="xs:string"/>
<xs:element name="price" type="xs:int"/>
</Xs:sequence>
<xs:complexType>
</xs:schema>

Once you have this mapping, you can create Product objects in your application, return them, and
use them as parameters in Jakarta REST resource methods. The Jakarta REST runtime uses Jakarta
XML Binding to convert the XML data from the request into a Product object and to convert a
Product object into XML data for the response. The following resource class provides a simple
example:

@Path("/product")
public class ProductService {
@GET
@Path("/get")
@Produces("application/xml")
public Product getProduct() {
Product prod = new Product();
prod.setId(1);
prod.setName("Mattress");
prod.setDescription("Queen size mattress");
prod.setPrice(500);
return prod;

}

@POST
@Path("/create")

112

@Consumes("application/xml")

public Response createProduct(Product prod) {
// Process or store the product and return a response
/] ...

Some IDEs, such as NetBeans IDE, will run the schema generator tool automatically during the
build process if you add Java classes that have Jakarta XML Binding annotations to your project. For
a detailed example, see The customer Example Application. The customer example contains a more
complex relationship between the Java classes that model the data, which results in a more
hierarchical XML representation.

Starting from an Existing XML Schema Definition

If you already have an XML schema definition in an .xsd file for the data you want to expose, use
the Jakarta XML Binding schema compiler tool. Consider this simple example of an . xsd file:

<xs:schema targetNamespace="http://xml.product"”
xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
elementFormDefault="qualified"
xmlns:myco="http://xml.product">
<xs:element name="product" type="myco:Product"/>
<xs:complexType name="Product">
<xs:sequence>
<xs:element name="id" type="xs:int"/>
<xs:element name="name" type="xs:string"/>
<xs:element name="description" type="xs:string"/>
<xs:element name="price" type="xs:int"/>
</xs:sequence>
</xs:complexType>
</xs:schema>

Run the schema compiler tool on the command line as follows:

xjc Product.xsd

This command generates the source code for Java classes that correspond to the types defined in
the .xsd file. The schema compiler tool generates a Java class for each complexType defined in the
.xsd file. The fields of each generated Java class are the same as the elements inside the
corresponding complexType, and the class contains getter and setter methods for these fields.

In this case, the schema compiler tool generates the classes product.xml.Product and
product.xml.ObjectFactory. The Product class contains Jakarta XML Binding annotations, and its
fields correspond to those in the . xsd definition:

@XmlAccessorType(XmlAccessType.FIELD)

113

@Xm1Type(name = "Product", propOrder = {
"id",
"name",
"description”,
“price"

})

public class Product {
protected int 1id;
@XmlElement(required = true)
protected String name;
@XmlElement(required = true)
protected String description;
protected int price;

// Setter and getter methods
/] ...

You can create instances of the Product class from your application (for example, from a database).
The generated class product.xml.ObjectFactory contains a method that allows you to convert these
objects to Jakarta XML Binding elements that can be returned as XML inside Jakarta REST resource
methods:

@XmLElementDecl(namespace = "http://xml.product”, name = "product")
public JAXBElement<Product> createProduct(Product value) {

return new JAXBElement<Product>(_Product QNAME, Product.class, null, value);
ks

The following code shows how to use the generated classes to return a Jakarta XML Binding
element as XML in a Jakarta REST resource method:

@Path("/product")
public class ProductService {
@GET
@Path("/get")
@Produces("application/xml")
public JAXBElement<Product> getProduct() {
Product prod = new Product();
prod.setId(1);
prod.setName("Mattress");
prod.setDescription("Queen size mattress");
prod.setPrice(500);
return new ObjectFactory().createProduct(prod);

For @POST and @PUT resource methods, you can use a Product object directly as a parameter. Jakarta
REST maps the XML data from the request into a Product object.

114

@Path("/product")

public class ProductService {
@GET
/] ...

@POST

@Path("/create")

@Consumes("application/xml")

public Response createProduct(Product prod) {
// Process or store the product and return a response
/] ...

Using JSON with Jakarta REST and Jakarta XML Binding

Jakarta REST can automatically read and write XML using Jakarta XML Binding, but it can also
work with JSON data. JSON is a simple text-based format for data exchange derived from
JavaScript. For the preceding examples, the XML representation of a product is

<?xml version="1.0" encoding="UTF-8"7>
<product>
<id>1</1id>
<name>Mattress</name>
<description>Queen size mattress</description>
<price>500</price>
</product>

The equivalent JSON representation is

{
"id":"1",
"name":"Mattress",
"description":"Queen size mattress",
"price":500

}

You can add the format application/json or MediaType.APPLICATION_JSON to the @Produces annotation
in resource methods to produce responses with JSON data:

@GET

@Path("/get")
@Produces({"application/xml","application/json"})
public Product getProduct() { ... }

In this example, the default response is XML, but the response is a JSON object if the client makes a

115

GET request that includes this header:

Accept: application/json

The resource methods can also accept JSON data for Jakarta XML Binding annotated classes:

@POST

@Path("/create")
@Consumes({"application/xml","application/json"})
public Response createProduct(Product prod) { ... }

The client should include the following header when submitting JSON data with a POST request:

Content-Type: application/json

The customer Example Application

This section describes how to build and run the customer example application. This application is a
RESTful web service that uses Jakarta XML Binding to perform the create, read, update, delete
(CRUD) operations for a specific entity.

The customer sample application is in the jakartaee-examples/tutorial/rest/customer/ directory. See
[intro:usingexamples::usingexamples:::_using_the_tutorial_examples], for basic information on
building and running sample applications.

Overview of the customer Example Application

The source files of this application are at jakartaee-
examples/tutorial/rest/customer/src/main/java/. The application has three parts.

» The Customer and Address entity classes. These classes model the data of the application and
contain Jakarta XML Binding annotations.

* The CustomerService resource class. This class contains Jakarta REST resource methods that
perform operations on Customer instances represented as XML or JSON data using Jakarta XML
Binding. See The CustomerService Class for details.

» The CustomerBean session bean that acts as a backing bean for the web client. CustomerBean uses
the Jakarta REST client API to call the methods of CustomerService.

The customer example application shows you how to model your data entities as Java classes with
Jakarta XML Binding annotations.

The Customer and Address Entity Classes

The following class represents a customer’s address:

@Entity

116

@Table(name="CUSTOMER_ADDRESS")
@Xm1lRootElement(name="address")
@XmlAccessorType(XmlAccessType.FIELD)
public class Address {
@Id
@GeneratedValue(strategy = GenerationType.AUTO)
private Long 1id;

@XmLElement(required=true)
protected int number;

@XmlElement(required=true)
protected String street;

@XmlElement(required=true)
protected String city;

@XmlElement(required=true)
protected String province;

@XmLElement(required=true)
protected String zip;

@XmlElement(required=true)
protected String country;

public Address() { }

// Getter and setter methods
// ...

The @XmlRootElement(name="address") annotation maps this class to the address XML element. The
@XmlAccessorType(XmlAccessType.FIELD) annotation specifies that all the fields of this class are bound
to XML by default. The @XmlElement(required=true) annotation specifies that an element must be
present in the XML representation.

The following class represents a customer:

@Entity
@Table(name="CUSTOMER_CUSTOMER")
@NamedQuery (
name="findA11Customers",
query="SELECT ¢ FROM Customer c " +
"ORDER BY c.id"
)
@XmlRootElement(name="customer")
@XmlAccessorType(XmlAccessType.FIELD)
public class Customer {
eId

117

@GeneratedValue(strategy = GenerationType.AUTO)
@XmlAttribute(required=true)
protected int 1id;

@XmlElement(required=true)
protected String firstname;

@XmlElement(required=true)
protected String lastname;

@XmlElement(required=true)
@0neToOne
protected Address address;

@XmlElement(required=true)
protected String email;

@XmlElement (required=true)
protected String phone;

public Customer() {...}

// Getter and setter methods

/...

The Customer class contains the same Jakarta XML Binding annotations as the previous class, except
for the @XmlAttribute(required=true) annotation, which maps a property to an attribute of the XML

element representing the class.

The Customer class contains a property whose type is another entity, the Address class. This
mechanism allows you to define in Java code the hierarchical relationships between entities

without having to write an . xsd file yourself.

Jakarta XML Binding generates the following XML schema definition for the two preceding classes:

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<xs:schema version="1.0" xmlns:xs="http://www.w3.0rg/20@01/XMLSchema">

<xs:element name="address" type="address"/>
<xs:element name="customer" type="customer"/>

<xs:complexType
<Xs:sequence>

<XS:
<XS.
<XS:
<XS.
<XS:
<XS:

118

element
element
element
element
element
element

name="address">

name="1id" type="xs:long" minOccurs="0"/>
name="number" type="xs:int"/>
name="street" type="xs:string"/>
name="city" type="xs:string"/>
name="province" type="xs:string"/>
name="zip" type="xs:string"/>

<xs:element name="country" type="xs:string"/>
</Xs:sequence>
</xs:complexType>

<xs:complexType name="customer">
<XS:sequence>
<xs:element name="firstname" type="xs:string"/>
<xs:element name="lastname" type="xs:string"/>
<xs:element ref="address"/>
<xs:element name="email" type="xs:string"/>
<xs:element name="phone" type="xs:string"/>
</Xs:sequence>
<xs:attribute name="1id" type="xs:int" use="required"/>
</xs:complexType>
</xs:schema>

The CustomerService Class

The CustomerService class has a createCustomer method that creates a customer resource based on
the Customer class and returns a URI for the new resource.

@Stateless
@Path("/Customer")
public class CustomerService {
public static final Logger logger =
Logger.getLogger (CustomerService.class.getCanonicalName());
@PersistenceContext
private EntityManager em;
private CriteriaBuilder cb;

@PostConstruct
private void init() {
cb = em.qgetCriteriaBuilder();
}
@POST
@Consumes({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})
public Response createCustomer(Customer customer) {

try {
long customerId = persist(customer);
return Response.created(URI.create("/" + customerId)).build();
} catch (Exception e) {
logger.log(Level.SEVERE,
"Error creating customer for customerId {0}. {1}",
new Object[]{customer.getId(), e.getMessage()});
throw new WebApplicationException(e,
Response.Status.INTERNAL_SERVER_ERROR);

119

private long persist(Customer customer) {
try {
Address address = customer.getAddress();
em.persist(address);
em.persist(customer);
} catch (Exception ex) {
logger.warning("Something went wrong when persisting the customer");

}

return customer.getId();

The response returned to the client has a URI to the newly created resource. The return type is an
entity body mapped from the property of the response with the status code specified by the status
property of the response. The WebApplicationException is a RuntimeException that is used to wrap the
appropriate HTTP error status code, such as 404, 406, 415, or 500.

The @Consumes ({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON}) and
@Produces({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON}) annotations set the request
and response media types to use the appropriate MIME client. These annotations can be applied to
a resource method, a resource class, or even an entity provider. If you do not use these annotations,
Jakarta REST allows the use of any media type ("*/*").

The following code snippet shows the implementation of the getCustomer and findbyId methods. The
getCustomer method uses the @Produces annotation and returns a Customer object, which is converted
to an XML or JSON representation depending on the Accept: header specified by the client.

@GET

@Path("{id}")

@Produces({MediaType.APPLICATION_XML, MediaType.APPLICATION_JSON})

public Customer getCustomer(@PathParam("id") String customerId) {
Customer customer = null;

try {
customer = findById(customerId);
} catch (Exception ex) {
logger.log(Level.SEVERE,
"Error calling findCustomer() for customerId {0}. {1}",
new Object[]{customerId, ex.getMessage()});
}
return customer;

}

private Customer findById(String customerId) {
Customer customer = null;
try {
customer = em.find(Customer.class, customerId);
return customer;

120

} catch (Exception ex) {
logger.log(Level.WARNING,
"Couldn't find customer with ID of {0}", customerId);
}

return customer;

Using the Jakarta REST Client in the CustomerBean Classes

Use the Jakarta REST Client API to write a client for the customer example application.

The CustomerBean enterprise bean class calls the Jakarta REST Client API to test the CustomerService
web service:

@Named
@Stateless
public class CustomerBean {
protected Client client;
private static final Logger logger =
Logger.getLogger (CustomerBean.class.getName());

@PostConstruct
private void init() {

client = ClientBuilder.newClient();
}

@PreDestroy
private void clean() {
client.close();

}

public String createCustomer(Customer customer) {
if (customer == null) {
logger.log(Level.WARNING, "customer is null.");
return "customerError";

}

String navigation;

Response response =
client.target("http://localhost:8080/customer/webapi/Customer")
.request(MediaType.APPLICATION_XML)
.post(Entity.entity(customer, MediaType.APPLICATION_XML),

Response.class);

if (response.getStatus() == Status.CREATED.getStatusCode()) {

navigation = "customerCreated";

} else {

logger.log(Level.WARNING, "couldn''t create customer with " +
"id {0}. Status returned was {1}",
new Object[]{customer.getId(), response.getStatus()});
navigation = "customerError";

121

return navigation;

}

public String retrieveCustomer(String id) {

String navigation;

Customer customer =
client.target("http://localhost:8080/customer/webapi/Customer")
.path(id)
.request(MediaType.APPLICATION_XML)
.get(Customer.class);

if (customer == null) {

navigation = "customerError";
} else {

navigation = "customerRetrieved";
}
return navigation;

}

public List<Customer> retrieveAllCustomers() {

List<Customer> customers =
client.target("http://1localhost:8080/customer/webapi/Customer")
.path("all")

.request(MediaType.APPLICATION_XML)
.get(new GenericType<List<Customer>>() {});
return customers;

This client uses the POST and GET methods.

All of these HTTP status codes indicate success: 201 for POST, 200 for GET, and 204 for DELETE. For
details about the meanings of HTTP status codes, see https://www.w3.org/Protocols/rfc2616/rfc2616-

sec10.html.

Running the customer Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the customer

application.

To Build, Package, and Deploy the customer Example Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/rest

4, Select the customer folder.

122

https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
https://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

5. Click Open Project.

6. In the Projects tab, right-click the customer project and select Build.

This command builds and packages the application into a WAR file, customer.war, located in the
target directory. Then, the WAR file is deployed to GlassFish Server.

7. Open the web client in a browser at the following URL:
http://localhost:8080/customer/

The web client allows you to create and view customers.

To Build, Package, and Deploy the customer Example Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. In a terminal window, go to:
jakartaee-examples/tutorial/rest/customer/
3. Enter the following command:
mvn install

This command builds and packages the application into a WAR file, customer .war, located in the
target directory. Then, the WAR file is deployed to GlassFish Server.

4. Open the web client in a browser at the following URL:
http://localhost:8080/customer/

The web client allows you to create and view customers.

Jakarta JSON

JSON Binding
o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

This chapter describes the Jakarta JSON Binding. JSON is a data exchange format widely used in
web services and other connected applications. For a brief overview of JSON, see Introduction to
JSON.

The Jakarta JSON Binding specification provides a standard binding layer (metadata and runtime)

123

https://jakarta.ee/specifications/jsonb/

between Java classes and JSON documents. One Jakarta JSON Binding reference implementation is
Yasson, which is developed through Eclipse.org and is included as part of GlassFish Server.

You can learn more about Yasson at https://projects.eclipse.org/projects/ee4j.yasson.

JSON Binding in the Jakarta EE Platform

Jakarta EE includes support for the Jakarta JSON Binding spec, which provides an API that can
serialize Java objects to JSON documents and deserialize JSON documents to Java objects. Jakarta
JSON Binding contains the following packages:

The jakarta.json.bind package contains the binding interface, the builder interface, and a
configuration class. Main Classes and Interfaces in jakarta.json.bind lists the main classes and
interfaces in this package.

The jakarta.json.bind.adapter package contains the JsonbAdapter interface, which provides
methods for binding custom Java types by converting them to known types.

The jakarta.json.bind.annotation package defines annotations that can be used to customize
default binding behavior. Annotations can be used for field, JavaBean property, type, or package
elements.

The jakarta.json.bind.config package interfaces and classes for customizing default binding
behavior. Main Classes and Interfaces in jakarta.json.bind.config lists the main classes and
interfaces in this package.

The jakarta.json.bind.serializer package contains interfaces that are used to create
serialization and deserialization routines for custom types that cannot be easily mapped using
the JsonbAdapter methods. Main Classes and Interfaces in jakarta.json.bind.serializer lists the
main interfaces in this package.

The jakarta.json.bind.spi package contains a Service Provider Interface (SPI) for creating JSON
Binding implementations. This package contains the JsonbProvider class, which contains the
methods that a service provider implements.

Main Classes and Interfaces in jakarta.json.bind

Class or Interface Description

Jsonb Contains the JSON binding methods for serializing Java objects to JSON
and deserailizing JSON to Java objects.

JsonBuilder Used by clients to create Jsonb instances.

JsonbConfig Used to set configuration properties on Jsonb instances. Properties

include binding strategies and properties for configuring custom
serializers and deserializers.

JsonbException Indicates that a problem occurred during JSON binding.

Main Classes and Interfaces in jakarta.json.bind.config

Class or Interface Description

PropertyNamingStrategy Used to set how property names are translated.

124

https://projects.eclipse.org/projects/ee4j.yasson

Class or Interface Description

PropertyVisibilityStra Used to set whether fields and methods should be considered properties
tegy overriding the default scope and field access behavior.

BinaryDataStrategy Used to set binary encoding.

PropertyOrderStrategy Used to set how properties are ordered during serialization.

Main Classes and Interfaces in jakarta.json.bind.serializer

Class or Interface Description
JsonbDeserializer Used to create a deserialization routine for a custom type.
JsonbSerializer Used to create a serialization routine for a custom type.

Overview of the JSON Binding API

This section provides basic instructions for using the Jakarta JSON Binding client API. The
instructions provide a basis for understanding the Running the jsonbbasics Example Application.
Refer to the Jakarta JSON Binding project page for API documentation and a more detailed User
Guide.

Creating a jasonb Instance

A jsonb instance provides access to methods for binding objects to JSON. A single jsonb instance is
required for most applications. A jsonb instance is created using the JsonbBuilder interface, which
is a client’s entry point to the JSON Binding API. For example:

Jsonb jsonb = JsonbBuilder.create();

Using the Default Mapping

Jakarta JSON Binding provides default mappings for serializing and deserializing basic Java and
Java SE types as well Java date and time classes. To use the default mappings and mapping
behavior, create a josnb instance and use the toJson method to serialize to JSON and the fromJson
method to deserialize back to an object. The following example binds a simple Person object that
contains a single name field.

Jsonb jsonb = JsonbBuilder.create();

Person person = new Person();
person.name = "Fred";

Jsonb jsonb = JsonbBuilder.create();

// serialize to JSON
String result = jsonb.toJson(person);

// deserialize from JSON

125

http://json-b.net/index.html

person = jsonb.fromJson("{name:\"joe\"}", Person.class);

Using Customizations

Jakarta JSON Binding supports many ways to customize the default mapping behavior. For runtime
customizations, a JsonbConfig configuration object is used when creating the jsonbinstance. The
JsonbConfig class supports many configuration options and also includes advanced options for
binding custom types. For advanced options, see the JsonbAdapter interface and the JsonbSerializer
and JsonbDeserializer interfaces.

The following example creates a configuration object that sets the FORMATTING property to specify

whether or not the serialized JSON data is formatted with linefeeds and indentation.

JsonbConfig config = new JsonbConfig()
.withFormatting(true);

Jsonb jsonb = JsonbBuilder.create(config);

Using Annotations

Jakarta JSON Binding includes many annotations that can be used at compile time to customize the
default mapping behavior. The following example uses the @JsonbProperty annotation to change the
name field to person-name when the object is serialized to JSON.

public class Person {
@JsonbProperty("person-name")
private String name;

The resulting JSON document is written as:

"person-name": "Fred",

Running the jsonbbasics Example Application

This section describes how to build and run the jsonbbasics example application. This example is a
web application that demonstrates how to serialize an object to JSON and how to deserialize JSON
to an object.

The jsonbbasics example application is in the jakartaee-examples/tutorial/web/jsonb/jsonbbasics
directory.

126

Components of the jsonbbasics Example Application

The jsonbbasics example application contains the following files.

* Two Jakarta Faces pages.
o The index.xhtml page contains a form to collect data that is used to create a Person object.
> The jsongenerated.xhtml page contains a text area that displays the data in JSON format.

* The JsonbBean.java managed bean, which is a session-scoped managed bean that stores the data
from the form and directs the navigation between the Facelets pages. This file contains code
that uses the JSON Binding API.

Running the jsonbbasics Example Application

This section describes how to run the jsonbbasics example application from the command line
using Maven.

To run the jsonbbasics example application using Maven:

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. In a terminal window, go to:

jakartaee-examples/tutorial/web/jsonb/jsonbbasics

3. Enter the following command to deploy the application:

mvn install

4. Open a web browser window and enter the following address:

http://localhost:8080/jsonbbasics/

5. Enter data on form and click Serialize to JSON to submit the form. The following page shows the
JSON format of the object data.

6. Click Deserialize JSON. The index page displays and contains the fields populated from the
object data.

Further Information about the Jakarta JSON Binding

For more information on Jakarta JSON Binding, see:
» Jakarta JSON Binding 3.0 spec:
https://jakarta.ee/specifications/jsonb/3.0/

 Specification project:
https://github.com/eclipse-ee4j/jsonb-api

* Yasson (Implementation):

127

https://jakarta.ee/specifications/jsonb/3.0/
https://github.com/eclipse-ee4j/jsonb-api

https://projects.eclipse.org/projects/ee4j.yasson

JSON Processing
o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

This chapter describes Jakarta JSON Processing. JSON is a data exchange format widely used in web
services and other connected applications. Jakarta JSON Processing provides an API to parse,
transform, and query JSON data using the object model or the streaming model.

Introduction to JSON

JSON is a text-based data exchange format derived from JavaScript that is used in web services and
other connected applications. The following sections provide an introduction to JSON syntax, an
overview of JSON uses, and a description of the most common approaches to generate and parse
JSON.

JSON Syntax

JSON defines only two data structures: objects and arrays. An object is a set of name-value pairs,
and an array is a list of values. JSON defines seven value types: string, number, object, array, true,
false, and null.

The following example shows JSON data for a sample object that contains name-value pairs. The
value for the name "phoneNumbers"” is an array whose elements are two objects.

{
"firstName": "Duke",
"lastName": "Java",
"age": 18,
"streetAddress": "100 Internet Dr",
"city": "JavaTown",
"state": "JA",
"postalCode": "12345",
"phoneNumbers": [
{ "Mobile": "111-111-1111" },
{ "Home": "222-222-2222" }
]
}

JSON has the following syntax.

* Objects are enclosed in braces ({}), their name-value pairs are separated by a comma (,), and
the name and value in a pair are separated by a colon (:). Names in an object are strings,
whereas values may be of any of the seven value types, including another object or an array.

* Arrays are enclosed in brackets ([]), and their values are separated by a comma (,). Each value
in an array may be of a different type, including another array or an object.

128

https://projects.eclipse.org/projects/ee4j.yasson

* When objects and arrays contain other objects or arrays, the data has a tree-like structure.

Uses of JSON

JSON is often used as a common format to serialize and deserialize data in applications that
communicate with each other over the Internet. These applications are created using different
programming languages and run in very different environments. JSON is suited to this scenario
because it is an open standard, it is easy to read and write, and it is more compact than other
representations.

RESTful web services use JSON extensively as the format for the data inside requests and responses.
The HTTP header used to indicate that the content of a request or a response is JSON data is

Content-Type: application/json

JSON representations are usually more compact than XML representations because JSON does not
have closing tags. Unlike XML, JSON does not have a widely accepted schema for defining and
validating the structure of JSON data.

Generating and Parsing JSON Data

For generating and parsing JSON data, there are two programming models, which are similar to
those used for XML documents.

* The object model creates a tree that represents the JSON data in memory. The tree can then be
navigated, analyzed, or modified. This approach is the most flexible and allows for processing
that requires access to the complete contents of the tree. However, it is often slower than the
streaming model and requires more memory. The object model generates JSON output by
navigating the entire tree at once.

* The streaming model uses an event-based parser that reads JSON data one element at a time.
The parser generates events and stops for processing when an object or an array begins or ends,
when it finds a key, or when it finds a value. Each element can be processed or discarded by the
application code, and then the parser proceeds to the next event. This approach is adequate for
local processing, in which the processing of an element does not require information from the
rest of the data. The streaming model generates JSON output to a given stream by making a
function call with one element at a time.

There are many JSON generators and parsers available for different programming languages and
environments. JSON Processing in the Jakarta EE Platform describes the functionality provided by
Jakarta JSON Processing.

JSON Processing in the Jakarta EE Platform

Jakarta EE includes support for the Jakarta JSON Processing spec, which provides an API to parse,
transform, and query JSON data using the object model or the streaming model described in
Generating and Parsing JSON Data. Jakarta JSON Processing contains the following packages:

* The jakarta.json package contains a reader interface, a writer interface, a model builder
interface for the object model, and utility classes and Java types for JSON elements. This

129

package also includes several classes that implement other JSON-related standards: JSON
Pointer, JSON Patch, and JSON Merge Patch. These standards are used to retrieve, transform or
manipulate values in an object model.
[web:jsonp::jsonp:::_main_classes_and_interfaces_in_jakarta.json] lists the main classes and
interfaces in this package.

The jakarta.json.stream package contains a parser interface and a generator interface for the
streaming model. [web:jsonp::jsonp:::_main_classes_and_interfaces_in_jakarta.json.stream] lists
the main classes and interfaces in this package.

The jakarta.json.spi package contains a Service Provider Interface (SPI) to plug in
implementations for JSON processing objects. This package contains the JsonProvider class,
which contains the methods that a service provider implements.

Main Classes and Interfaces in jakarta.json

Class or Interface

Json

JsonReader

JsonObjectBuilder,
JsonArrayBuilder

JsonWriter

JsonValue

JsonStructure

JsonObject, JsonArray

JsonPointer

JsonPatch

JsonMergePatch

JsonString, JsonNumber

JsonException

Description

Contains static methods to create instances of JSON parsers, builders,
and generators. This class also contains methods to create parser,
builder, and generator factory objects.

Reads JSON data from a stream and creates an object model in memory.

Create an object model or an array model in memory by adding
elements from application code.

Writes an object model from memory to a stream.

Represents an element (such as an object, an array, or a value) in JSON
data.

Represents an object or an array in JSON data. This interface is a subtype
of JsonValue.

Represent an object or an array in JSON data. These two interfaces are
subtypes of JsonStructure.

Contains methods for operating on specific targets within JSON
documents. The targets can be JsonValue, JsonObject, or JsonArray
objects.

An interface for supporting a sequence of operations to be applied to a
target JSON resource. The operations are defined within a JSON patch
document.

An interface for supporting updates to target JSON resources. A JSON
patch document is compared with the target resource to determine the
specific set of change operations to be applied.

Represent data types for elements in JSON data. These two interfaces are
subtypes of JsonValue.

Indicates that a problem occurred during JSON processing.

Main Classes and Interfaces in jakarta.json.stream

130

https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc6901
https://tools.ietf.org/html/rfc6902
https://tools.ietf.org/html/rfc7396

Class or Interface Description

JsonParser Represents an event-based parser that can read JSON data from a stream
or from an object model.

JsonGenerator Writes JSON data to a stream one element at a time.

Using the Object Model API

This section describes four use cases of the object model API: creating an object model from JSON
data, creating an object model from application code, navigating an object model, and writing an
object model to a stream.

Creating an Object Model from JSON Data

The following code demonstrates how to create an object model from JSON data in a text file:

import java.io.FileReader;

import jakarta.json.Json;

import jakarta.json.JsonReader;
import jakarta.json.JsonStructure;

JsonReader reader = Json.createReader(new FileReader("jsondata.txt"));
JsonStructure jsonst = reader.read();

The object reference jsonst can be either of type JsonObject or of type JsonArray, depending on the
contents of the file. JsonObject and JsonArray are subtypes of JsonStructure. This reference
represents the top of the tree and can be used to navigate the tree or to write it to a stream as JSON
data.

Creating an Object Model from Application Code

The following code demonstrates how to create an object model from application code:

import jakarta.json.Json;
import jakarta.json.JsonObject;

JsonObject model = Json.createObjectBuilder()
.add("firstName", "Duke")
.add("1lastName", "Java")
.add("age", 18)
.add("streetAddress", "100 Internet Dr")
.add("city", "JavaTown")
.add("state", "JA")
.add("postalCode", "12345")
.add("phoneNumbers", Json.createArrayBuilder()
.add(Json.createObjectBuilder()
.add("type", "mobile")
.add("number", "111-111-1111"))
.add(Json.createObjectBuilder()

131

.add("type", "home")
.add("number", "222-222-2222")))

.build();

The object reference model represents the top of the tree, which is created by nesting calls to the add
methods and built by calling the build method. The JsonObjectBuilder class contains the following
add methods:

JsonObjectBuilder
JsonObjectBuilder
JsonObjectBuilder
JsonObjectBuilder
JsonObjectBuilder
JsonObjectBuilder
JsonObjectBuilder
JsonObjectBuilder
JsonObjectBuilder
JsonObjectBuilder
JsonObjectBuilder

add(String
add(String
add(String
add(String
add(String
add(String
add(String
add(String
add(String
add(String
addNul1(St

name, BigDecimal value)

name, BigInteger value)

name, boolean value)

name, double value)

name, int value)

name, JsonArrayBuilder builder)
name, JsonObjectBuilder builder)
name, JsonValue value)

name, long value)

name, String value)

ring name)

The JsonArrayBuilder class contains similar add methods that do not have a name (key) parameter.
You can nest arrays and objects by passing a new JsonArrayBuilder object or a new
JsonObjectBuilder object to the corresponding add method, as shown in this example.

The resulting tree represents the JSON data from JSON Syntax.

Navigating an Object Model

The following code demonstrates a simple approach to navigating an object model:

import jakarta.json.JsonValu
import jakarta.json.JsonObje
import jakarta.json.JsonArra
import jakarta.json.JsonNumb
import jakarta.json.JsonStri

S
ct;
Yy,
er;
ng;

public static void navigateTree(JsonValue tree, String key) {
if (key != null)

System.out.print("Key

switch(tree.getValueType()) {

case OBJECT:

+ key + ll: Il);

System.out.println("0BJECT");
JsonObject object = (JsonObject) tree;

for (Stri

ng name :

object.keySet())

navigateTree(object.get(name), name);

break;
case ARRAY:

System.out.println("ARRAY");
JsonArray array = (JsonArray) tree;

132

for (JsonValue val : array)
navigateTree(val, null);

break;

case STRING:
JsonString st = (JsonString) tree;
System.out.println("STRING " + st.getString());
break;

case NUMBER:
JsonNumber num = (JsonNumber) tree;
System.out.println("NUMBER " + num.toString());
break;

case TRUE:

case FALSE:

case NULL:
System.out.println(tree.getValueType().toString());
break;

The method navigateTree can be used with the models built in Creating an Object Model from JSON
Data and Creating an Object Model from Application Code as follows:

navigateTree(model, null);

The navigateTree method takes two arguments: a JSON element and a key. The key is used only to
help print the key-value pairs inside objects. Elements in a tree are represented by the JsonValue
type. If the element is an object or an array, a new call to this method is made for every element
contained in the object or array. If the element is a value, it is printed to the standard output.

The JsonValue.getValueType method identifies the element as an object, an array, or a value. For
objects, the JsonObject.keySet method returns a set of strings that contains the keys in the object,
and the JsonObject.qget(String name) method returns the value of the element whose key is name. For
arrays, JsonArray implements the List<JsonValue> interface. You can use enhanced for loops with
the Set<String> instance returned by JsonObject.keySet and with instances of JsonArray, as shown
in this example.

The navigateTree method for the model built in Creating an Object Model from Application Code
produces the following output:

0BJECT
Key firstName: STRING Duke
Key lastName: STRING Java
Key age: NUMBER 18
Key streetAddress: STRING 100 Internet Dr
Key city: STRING JavaTown
Key state: STRING JA
Key postalCode: STRING 12345
Key phoneNumbers: ARRAY

133

OBJECT

Key type: STRING mobile

Key number: STRING 111-111-1111
OBJECT

Key type: STRING home

Key number: STRING 222-222-2222

Writing an Object Model to a Stream

The object models created in Creating an Object Model from JSON Data and Creating an Object
Model from Application Code can be written to a stream using the JsonlWiriter class as follows:

import java.io.StringWriter;
import jakarta.json.JsonWriter;

StringWriter stWriter = new StringWriter();
JsonWriter jsonWriter = Json.createWriter(stWriter);
jsonWriter.writeObject(model);

jsonWriter.close();

String jsonData = stWriter.toString();
System.out.println(jsonData);

The Json.createliriter method takes an output stream as a parameter. The JsonWriter.writeObject
method writes the object to the stream. The JsonWriter.close method closes the underlying output
stream.

The following example uses try-with-resources to close the JSON writer automatically:
StringWriter stWriter = new StringWriter();
try (JsonWriter jsonWriter = Json.createWriter(stWriter)) {

jsonWriter.writeObject(model);

}

String jsonData = stWriter.toString();
System.out.println(jsonData);

Using the Streaming API

This section describes two use cases of the streaming API.

Reading JSON Data Using a Parser

The streaming API is the most efficient approach for parsing JSON text. The following code
demonstrates how to create a JsonParser object and how to parse JSON data using events:

import jakarta.json.Json;
import jakarta.json.stream.JsonParser;

134

JsonParser parser = Json.createParser(new StringReader(jsonData));
while (parser.hasNext()) {
JsonParser.Event event = parser.next();
switch(event) {
case START_ARRAY:
case END_ARRAY:
case START_OBJECT:
case END _OBJECT:
case VALUE_FALSE:
case VALUE _NULL:
case VALUE TRUE:
System.out.println(event.toString());
break;
case KEY_NAME:
System.out.print(event.toString() + +
parser.getString() + " - ");

break;
case VALUE STRING:
case VALUE_NUMBER:
System.out.println(event.toString() +
parser.getString());

+

break;

This example consists of three steps.

1. Obtain a parser instance by calling the Json.createParser static method.

2. Iterate over the parser events with the JsonParser.hasNext and the JsonParser.next methods.

3. Perform local processing for each element.
The example shows the ten possible event types from the parser. The parser’s next method
advances it to the next event. For the event types KEY_NAME, VALUE_STRING, and VALUE_NUMBER, you can
obtain the content of the element by calling the method JsonParser.getString. For VALUE_NUMBER
events, you can also use the following methods:

* JsonParser.isIntegralNumber

* JsonParser.getInt

* JsonParser.getlong

* JsonParser.getBigDecimal

See the Jakarta EE API reference for the jakarta.json.stream.JsonParser interface for more
information.

The output of this example is the following:

START_OBJECT

135

KEY_NAME firstName - VALUE_STRING Duke
KEY_NAME lastName - VALUE_STRING Java
KEY_NAME age - VALUE_NUMBER 18

KEY_NAME streetAddress - VALUE _STRING 100 Internet Dr
KEY_NAME city - VALUE_STRING JavaTown
KEY_NAME state - VALUE_STRING JA

KEY_NAME postalCode - VALUE_STRING 12345
KEY_NAME phoneNumbers - START_ARRAY
START_OBJECT

KEY_NAME type - VALUE_STRING mobile
KEY_NAME number - VALUE_STRING 111-111-1111
END_OBJECT

START _OBJECT

KEY_NAME type - VALUE_STRING home

KEY_NAME number - VALUE_STRING 222-222-2222
END_OBJECT

END_ARRAY

END_OBJECT

Writing JSON Data Using a Generator

The following code demonstrates how to write JSON data to a file using the streaming API:

FileWriter writer = new FileWriter("test.txt");
JsonGenerator gen = Json.createGenerator(writer);
gen.writeStartObject()
write("firstName", "Duke")
.write("lastName", "Java")
write("age", 18)
write("streetAddress", "100 Internet Dr")
write("city", "JavaTown")
write("state", "JA")
write("postalCode", "12345")
.writeStartArray("phoneNumbers")
.writeStartObject()
write("type", "mobile")
write("number”, "111-111-1111")
writeEnd()
.writeStartObject()
write("type", "home")
write("number", "222-222-2222")
.writeEnd()
.writeEnd()
writeEnd();
gen.close();

This example obtains a JSON generator by calling the Json.createGenerator static method, which
takes a writer or an output stream as a parameter. The example writes JSON data to the test.txt
file by nesting calls to the write, writeStartArray, writeStartObject, and writeEnd methods. The

136

JsonGenerator.close method closes the underlying writer or output stream.

JSON in Jakarta EE RESTful Web Services

This section explains how the Jakarta JSON Processing is related to other Jakarta EE packages that
provide JSON support for RESTful web services. See
[websvces:rest::rest:::_building_restful_web_services_with_jakarta_rest] for more information on
RESTful web services.

Jersey, the Jakarta RESTful Web Services implementation included in GlassFish Server, provides
support for binding JSON data from RESTful resource methods to Java objects using Jakarta XML
Binding, as described in Using Jakarta REST with Jakarta XML Binding in [websvcs:rest-
advanced::rest-advanced:::_jakarta_rest_advanced_topics_and_an_example]. However, JSON
support is not part of Jakarta RESTful Web Services or Jakarta XML Binding, so that procedure may
not work for Jakarta EE implementations other than GlassFish Server.

You can still use the Jakarta JSON Processing with Jakarta RESTful Web Services resource methods.
For more information, see the sample code for JSON Processing included with the Jakarta EE
tutorial examples.

The jsonpmodel Example Application

This section describes how to build and run the jsonpmodel example application. This example is a
web application that demonstrates how to create an object model from form data, how to parse
JSON data, and how write JSON data using the object model API.

The jsonpmodel example application is in the jakartaee-examples/tutorial/web/jsonp/jsonpmodel
directory.

Components of the jsonpmodel Example Application

The jsonpmodel example application contains the following files.

* Three Jakarta Faces pages.
o The index.xhtml page contains a form to collect information.
o The modelcreated.xhtml page contains a text area that displays JSON data.
o The parsejson.xhtml page contains a table that shows the elements of the object model.

* The ObjectModelBean.java managed bean, which is a session-scoped managed bean that stores
the data from the form and directs the navigation between the Facelets pages. This file also
contains code that uses the JSON object model API.

The code used in ObjectModelBean.java to create an object model from the data in the form is similar
to the example in Creating an Object Model from Application Code. The code to write JSON output
from the model is similar to the example in Writing an Object Model to a Stream. The code to
navigate the object model tree is similar to the example in Navigating an Object Model.

Running the jsonpmodel Example Application

This section describes how to run the jsonpmodel example application using NetBeans IDE and from

137

the

command line.

To Run the jsonpmodel Example Application Using NetBeans IDE

1
2.
3.

Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
From the File menu, choose Open Project.

In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/jsonp

Select the jsonpmodel folder.

Click Open Project.

In the Projects tab, right-click the jsonpmodel project and select Run.

This command builds and packages the application into a WAR file (jsonpmodel.war) located in

the target directory, deploys it to the server, and opens a web browser window with the
following URL:

http://localhost:8080/jsonpmodel/

Edit the data on the page and click Create a JSON Object to submit the form. The following page
shows a JSON object that contains the data from the form.

Click Parse JSON. The following page contains a table that lists the nodes of the object model
tree.

To Run the jsonpmodel Example Application Using Maven

1
2.

138

Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

In a terminal window, go to:

jakartaee-examples/tutorial/web/jsonp/jsonpmodel

Enter the following command to deploy the application:

mvn install

Open a web browser window and enter the following address:

http://1localhost:8080/jsonpmodel/

Edit the data on the page and click Create a JSON Object to submit the form. The following page
shows a JSON object that contains the data from the form.

6. Click Parse JSON. The following page contains a table that lists the nodes of the object model
tree.

The jsonpstreaming Example Application

This section describes how to build and run the jsonpstreaming example application. This example
is a web application that demonstrates how to create JSON data from form data, how to parse JSON
data, and how to write JSON output using the streaming API.

The jsonpstreaming example application is in the jakartaee-
examples/tutorial/web/jsonp/jsonpstreaming directory.

Components of the jsonpstreaming Example Application

The jsonpstreaming example application contains the following files.

» Three Jakarta Faces pages.
> The index.xhtml page contains a form to collect information.
o The filewritten.xhtml page contains a text area that displays JSON data.
o The parsed.xhtml page contains a table that lists the events from the parser.

* The StreamingBean.java managed bean, a session-scoped managed bean that stores the data
from the form and directs the navigation between the Facelets pages. This file also contains
code that uses the JSON streaming API.

The code used in StreamingBean.java to write JSON data to a file is similar to the example in Writing
JSON Data Using a Generator. The code to parse JSON data from a file is similar to the example in
Reading JSON Data Using a Parser.

Running the jsonpstreaming Example Application

This section describes how to run the jsonpstreaming example application using NetBeans IDE and
from the command line.

To Run the jsonpstreaming Example Application Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/jsonp

4. Select the jsonpstreaming folder.
5. Click Open Project.

6. In the Projects tab, right-click the jsonpstreaming project and select Run.

This command builds and packages the application into a WAR file (jsonpstreaming.war) located

139

in the target directory, deploys it to the server, and opens a web browser window with the
following URL:

http://localhost:8080/jsonpstreaming/

7. Edit the data on the page and click Write a JSON Object to a File to submit the form and write a
JSON object to a text file. The following page shows the contents of the text file.

8. Click Parse JSON from File. The following page contains a table that lists the parser events for
the JSON data in the text file.

To Run the jsonpstreaming Example Application Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. In a terminal window, go to:

jakartaee-examples/tutorial/web/jsonp/jsonpstreaming/

3. Enter the following command to deploy the application:

mvn install

4. Open a web browser window and enter the following URL:

http://localhost:8080/jsonpstreaming/

5. Edit the data on the page and click Write a JSON Object to a File to submit the form and write a

JSON object to a text file. The following page shows the contents of the text file.

6. Click Parse JSON from File. The following page contains a table that lists the parser events for
the JSON data in the text file.

Further Information about the Jakarta JSON Processing

For more information on JSON processing in Jakarta EE, see the Jakarta JSON Processing
specification:

https://jakarta.ee/specifications/jsonp/2.1/

140

https://jakarta.ee/specifications/jsonp/2.1/

Jakarta EE Web Profile

Jakarta CDI Full

Jakarta Contexts and Dependency Injection: Advanced Topics

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

This chapter describes more advanced features of Jakarta Contexts and Dependency Injection.
Specifically, it covers additional features CDI provides to enable loose coupling of components with
strong typing, in addition to those described in Overview of CDI.

Packaging CDI Applications

When you deploy a Jakarta EE application, CDI looks for beans inside bean archives. A bean archive
is any module that contains beans that the CDI runtime can manage and inject. There are two kinds
of bean archives: explicit bean archives and implicit bean archives.

An explicit bean archive is an archive that contains a beans.xml deployment descriptor, which can
be an empty file, contain no version number, or contain the version number 3.0 with the bean-
discovery-mode attribute set to all. For example:

<?xml version="1.0" encoding="UTF-8"7>
<beans xmlns="https://jakarta.ee/xml/ns/jakartaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee
https://jakarta.ee/xml/ns/jakartaee/beans_3_0.xsd"
version="3.0" bean-discovery-mode="all">

</beans>
CDI can manage and inject any bean in an explicit archive, except those annotated with @Vetoed.

An implicit bean archive is an archive that contains some beans annotated with a scope type,
contains no beans.xml deployment descriptor, or contains a beans.xml deployment descriptor with
the bean-discovery-mode attribute set to annotated.

In an implicit archive, CDI can only manage and inject beans annotated with a scope type.

For a web application, the beans.xml deployment descriptor, if present, must be in the WEB-INF
directory. For enterprise bean modules or JAR files, the beans.xml deployment descriptor, if present,
must be in the META-INF directory.

Using Alternatives in CDI Applications

When you have more than one version of a bean that you use for different purposes, you can

141

choose between them during the development phase by injecting one qualifier or another, as
shown in The simplegreeting CDI Example.

Instead of having to change the source code of your application, however, you can make the choice
at deployment time by using alternatives.

Alternatives are commonly used for purposes such as the following:

* To handle client-specific business logic that is determined at runtime

* To specify beans that are valid for a particular deployment scenario (for example, when
country-specific sales tax laws require country-specific sales tax business logic)

* To create dummy (mock) versions of beans to be used for testing
To make a bean available for lookup, injection, or EL resolution using this mechanism, give it a

jakarta.enterprise.inject.Alternative annotation and then use the alternatives element to specify
it in the beans. xml file.

For example, you might want to create a full version of a bean and also a simpler version that you
use only for certain kinds of testing. The example described in The encoder Example: Using
Alternatives contains two such beans, CoderImpl and TestCoderImpl. The test bean is annotated as
follows:

@Alternative
public class TestCoderImpl implements Coder { ... }

The full version is not annotated:

public class CoderImpl implements Coder { ... }

The managed bean injects an instance of the Coder interface:

@Inject
Coder coder;

The alternative version of the bean is used by the application only if that version is declared as
follows in the beans. xml file:

<beans ...>
<alternatives>
<class>ee.jakarta.tutorial.encoder.TestCoderImpl</class>
</alternatives>
</beans>

If the alternatives element is commented out in the beans. xml file, the CoderImpl class is used.

142

You can also have several beans that implement the same interface, all annotated @Alternative. In
this case, you must specify in the beans.xml file which of these alternative beans you want to use. If
CoderImpl were also annotated @Alternative, one of the two beans would always have to be
specified in the beans. xml file.

The alternatives that you specify in the beans.xml file apply only to classes in the same archive. Use
the @Priority annotation to specify alternatives globally for an application that consists of multiple
modules, as in the following example:

@Alternative
@Priority(Interceptor.Priority.APPLICATION+10)
public class TestCoderImpl implements Coder { ... }

The alternative with higher priority value is selected if several alternative beans that implement
the same interface are annotated with @Priority. You do not need to specify the alternative in the
beans.xml file when you use the @Priority annotation.

Using Specialization

Specialization has a function similar to that of alternatives in that it allows you to substitute one
bean for another. However, you might want to make one bean override the other in all cases.
Suppose you defined the following two beans:

@Default @Asynchronous

public class AsynchronousService implements Service { ... }
@Alternative
public class MockAsynchronousService extends AsynchronousService { ... }

If you then declared MockAsynchronousService as an alternative in your beans.xml file, the following
injection point would resolve to MockAsynchronousService:

@Inject Service service;

The following, however, would resolve to AsynchronousService rather than MockAsynchronousService,
because MockAsynchronousService does not have the @Asynchronous qualifier:

@Inject @Asynchronous Service service;

To make sure that MockAsynchronousService was always injected, you would have to implement all
bean types and bean qualifiers of AsynchronousService. However, if AsynchronousService declared a
producer method or observer method, even this cumbersome mechanism would not ensure that
the other bean was never invoked. Specialization provides a simpler mechanism.

Specialization happens at development time as well as at runtime. If you declare that one bean
specializes another, it extends the other bean class, and at runtime the specialized bean completely

143

replaces the other bean. If the first bean is produced by means of a producer method, you must also
override the producer method.

You specialize a bean by giving it the jakarta.enterprise.inject.Specializes annotation. For
example, you might declare a bean as follows:

@Specializes
public class MockAsynchronousService extends AsynchronousService { ... }

In this case, the MockAsynchronousService class will always be invoked instead of the
AsynchronousService class.

Usually, a bean marked with the @Specializes annotation is also an alternative and is declared as an
alternative in the beans.xml file. Such a bean is meant to stand in as a replacement for the default
implementation, and the alternative implementation automatically inherits all qualifiers of the
default implementation as well as its EL name, if it has one.

Using Producer Methods, Producer Fields, and Disposer Methods in CDI Applications

A producer method generates an object that can then be injected.Typically, you use producer
methods in the following situations:

* When you want to inject an object that is not itself a bean

* When the concrete type of the object to be injected may vary at runtime

* When the object requires some custom initialization that the bean constructor does not perform
For more information on producer methods, see Injecting Objects by Using Producer Methods.

A producer field is a simpler alternative to a producer method; it is a field of a bean that generates
an object. It can be used instead of a simple getter method. Producer fields are particularly useful
for declaring Jakarta EE resources such as data sources, JMS resources, and web service references.

A producer method or field is annotated with the jakarta.enterprise.inject.Produces annotation.

Using Producer Methods

A producer method can allow you to select a bean implementation at runtime instead of at
development time or deployment time. For example, in the example described in The
producermethods Example: Using a Producer Method to Choose a Bean Implementation, the
managed bean defines the following producer method:

©Produces

@Chosen

@RequestScoped

public Coder getCoder() {

switch (coderType) {
case TEST:

144

return new TestCoderImpl();
case SHIFT:

return new CoderImpl();
default:

return null;

Here, getCoder becomes in effect a getter method, and when the coder property is injected with the
same qualifier and other annotations as the method, the selected version of the interface is used.

@Inject
@Chosen
@RequestScoped
Coder coder;

Specifying the qualifier is essential: It tells CDI which Coder to inject. Without it, the CDI
implementation would not be able to choose between CoderImpl, TestCoderImpl, and the one
returned by getCoder and would cancel deployment, informing the user of the ambiguous
dependency.

Using Producer Fields to Generate Resources

A common use of a producer field is to generate an object such as a JDBC DataSource or a Jakarta
Persistence EntityManager (see [persist:persistence-intro::persistence-
intro:::_introduction_to_jakarta_persistence], for more information). The object can then be
managed by the container. For example, you could create a @UserDatabase qualifier and then
declare a producer field for an entity manager as follows:

©Produces

@UserDatabase
@PersistenceContext
private EntityManager em;

The @eUserDatabase qualifier can be used when you inject the object into another bean, RequestBean,
elsewhere in the application:

@Inject
@UserDatabase
EntityManager em;

The producerfields Example: Using Producer Fields to Generate Resources shows how to use
producer fields to generate an entity manager. You can use a similar mechanism to inject @Resource,
@EJB, or @WebServiceRef objects.

145

To minimize the reliance on resource injection, specify the producer field for the resource in one
place in the application, and then inject the object wherever in the application you need it.

Using a Disposer Method

You can use a producer method or a producer field to generate an object that needs to be removed
when its work is completed. If you do, you need a corresponding disposer method, annotated with a
@Disposes annotation. For example, you can close the entity manager as follows:

public void close(@Disposes @UserDatabase EntityManager em) {
em.close();

The disposer method is called automatically when the context ends (in this case, at the end of the
conversation, because RequestBean has conversation scope), and the parameter in the close method
receives the object produced by the producer field.

Using Predefined Beans in CDI Applications

Jakarta EE provides predefined beans that implement the following interfaces.

* jakarta.transaction.UserTransaction: A Jakarta Transactions user transaction.

* java.security.Principal: The abstract notion of a principal, which represents any entity, such as
an individual, a corporation, or a login ID. Whenever the injected principal is accessed, it
always represents the identity of the current caller. For example, a principal is injected into a
field at initialization. Later, a method that uses the injected principal is called on the object into
which the principal was injected. In this situation, the injected principal represents the identity
of the current caller when the method is run.

* jakarta.validation.Validator: A validator for bean instances. The bean that implements this
interface enables a Validator object for the default bean validation object ValidatorFactory to be
injected.

* jakarta.validation.ValidatorFactory: A factory class for returning initialized Validator
instances. The bean that implements this interface enables the default bean validation
ValidatorFactory object to be injected.

* jakarta.servlet.http.HttpServletRequest: An HTTP request from a client. The bean that
implements this interface enables a servlet to obtain all the details of a request.

* jakarta.servlet.http.HttpSession: An HTTP session between a client and a server. The bean
that implements this interface enables a servlet to access information about a session and to
bind objects to a session.

* jakarta.servlet.ServletContext: A context object that servlets can use to communicate with the

servlet container.

To inject a predefined bean, create an injection point to obtain an instance of the bean by using the
jakarta.annotation.Resource annotation for resources or the jakarta.inject.Inject annotation for
CDI beans. For the bean type, specify the class name of the interface the bean implements.

146

Injection of Predefined Beans

Predefined Bean Resource or CDI Injection Example

Bean

UserTransaction Resource ©Resource UserTransaction
transaction;

Principal Resource @Resource Principal principal;
Validator Resource ©Resource Validator validator;
ValidatorFactory Resource ©Resource ValidatorFactory factory;
HttpServletRequest CDI bean @Inject HttpServletRequest req;
HttpSession CDI bean @Inject HttpSession session;
ServletContext CDI bean @Inject ServletContext context;

Predefined beans are injected with dependent scope and the predefined default qualifier @Default.
For more information about injecting resources, see Resource Injection.

The following code snippet shows how to use the @Resource and @Inject annotations to inject
predefined beans. This code snippet injects a user transaction and a context object into the servlet
class TransactionServlet. The user transaction is an instance of the predefined bean that
implements the jakarta.transaction.UserTransaction interface. The context object is an instance of
the predefined bean that implements the jakarta.servlet.ServletContext interface.

import jakarta.annotation.Resource;

import jakarta.inject.Inject;

import jakarta.servlet.http.HttpServlet;
import jakarta.transaction.UserTransaction;

public class TransactionServlet extends HttpServlet {
@Resource UserTransaction transaction;
@Inject ServletContext context;

Using Events in CDI Applications

Events allow beans to communicate without any compile-time dependency. One bean can define an
event, another bean can fire the event, and yet another bean can handle the event. In addition,
events can be fired asynchronously. The beans can be in separate packages and even in separate
tiers of the application.

Defining Events

An event consists of the following:

* The event object, a Java object

» Zero or more qualifier types, the event qualifiers

147

For example, in the billpayment example described in The billpayment Example: Using Events and
Interceptors, a PaymentEvent bean defines an event using three properties, which have setter and
getter methods:

public String paymentType;
public BigDecimal value;
public Date datetime;

public PaymentEvent() {
}

The example also defines qualifiers that distinguish between two kinds of PaymentEvent. Every event
also has the default qualifier EAny.

Using Observer Methods to Handle Events
An event handler uses an observer method to consume events.

Each observer method takes as a parameter an event of a specific event type that is annotated with
the @Observes annotation and with any qualifiers for that event type. The observer method is
notified of an event if the event object matches the event type and if all the qualifiers of the event
match the observer method event qualifiers.

The observer method can take other parameters in addition to the event parameter. The additional
parameters are injection points and can declare qualifiers.

The event handler for the billpayment example, PaymentHandler, defines two observer methods, one
for each type of PaymentEvent:

public void creditPayment(@0bserves @Credit PaymentEvent event) {
}
public void debitPayment(@0bserves @Debit PaymentEvent event) {

}

Conditional and Transactional Observer Methods

Observer methods can also be conditional or transactional:

* A conditional observer method is notified of an event only if an instance of the bean that
defines the observer method already exists in the current context. To declare a conditional
observer method, specify notifyObserver=IF_EXISTS as an argument to @0bserves:

@0bserves(notifyObserver=IF_EXISTS)

148

To obtain the default unconditional behavior, you can specify @0bserves(notifyObserver=ALWAYS).

* A transactional observer method is notified of an event during the before-completion or after-
completion phase of the transaction in which the event was fired. You can also specify that the
notification is to occur only after the transaction has completed successfully or unsuccessfully.
To specify a transactional observer method, use any of the following arguments to @0bserves:

@0bserves(during=BEFORE_COMPLETION)
@0bserves(during=AFTER_COMPLETION)
@0bserves(during=AFTER_SUCCESS)

@0bserves(during=AFTER_FAILURE)

To obtain the default nontransactional behavior, specify @0bserves(during=IN_PROGRESS).

An observer method that is called before completion of a transaction may call the
setRollbackOnly method on the transaction instance to force a transaction rollback.

Observer methods may throw exceptions. If a transactional observer method throws an exception,
the exception is caught by the container. If the observer method is nontransactional, the exception
terminates processing of the event, and no other observer methods for the event are called.

Observer Method Ordering

Before a certain observer event notification is generated, the container determines the order in
which observer methods for that event are invoked. Observer method order is established through
the declaration of the @Priority annotation on an event parameter of an observer method, as in the
following example:

void afterLogin(@Observes
@Priority(jakarta.interceptor.Interceptor.Priority.APPLICATION) LoggedInEvent event) {

.}

Note the following:

« If the @Priority annotation is not specified, the default value is
jakarta.interceptor.Interceptor.Priority.APPLICATION + 500.

 If two or more observer methods are assigned the same priority, the order in which they are
invoked is undefined and is therefore unpredictable.

Firing Events

Beans fire events by implementing an instance of the jakarta.enterprise.event.Event interface.
Events can be fired synchronously or asynchronously.

149

Firing Events Synchronously

To activate an event synchronously, call the jakarta.enterprise.event.Event.fire method. This
method fires an event and notifies any observer methods.

In the billpayment example, a managed bean called PaymentBean fires the appropriate event by using
information it receives from the user interface. There are actually four event beans, two for the
event object and two for the payload. The managed bean injects the two event beans. The pay
method uses a switch statement to choose which event to fire, using new to create the payload.

@Inject
@Credit
Event<PaymentEvent> creditEvent;

@Inject
@Debit
Event<PaymentEvent> debitEvent;

private static final int DEBIT = 1;
private static final int CREDIT = 2;
private int paymentOption = DEBIT;

@Logged
public String pay() {

switch (paymentOption) {

case DEBIT:
PaymentEvent debitPayload = new PaymentEvent();
// populate payload ...
debitEvent.fire(debitPayload);
break;

case CREDIT:
PaymentEvent creditPayload = new PaymentEvent();
// populate payload ...
creditEvent.fire(creditPayload);
break;

default:
logger.severe("Invalid payment option!");

The argument to the fire method is a PaymentEvent that contains the payload. The fired event is then
consumed by the observer methods.

Firing Events Asynchronously

To activate an event asynchronously, call the jakarta.enterprise.event.Event.fireAsync method.
This method calls all resolved asynchronous observers in one or more different threads.

150

@Inject Event<LoggedInEvent> loggedInEvent;
public void login() {

loggedInEvent.fireAsync(new LoggedInEvent(user));

The invocation of the fireAsync() method returns immediately.

When events are fired asynchronously, observer methods are notified asynchronously.
Consequently, observer method ordering cannot be guaranteed, because observer method
invocation and the firing of asynchronous events occur on separate threads.

Using Interceptors in CDI Applications

An interceptor is a class used to interpose in method invocations or lifecycle events that occur in an
associated target class. The interceptor performs tasks, such as logging or auditing, that are
separate from the business logic of the application and are repeated often within an application.
Such tasks are often called cross-cutting tasks. Interceptors allow you to specify the code for these
tasks in one place for easy maintenance. When interceptors were first introduced to the Jakarta EE
platform, they were specific to enterprise beans. On the Jakarta EE platform, you can use them with
Jakarta EE managed objects of all kinds, including managed beans.

For information on Jakarta EE interceptors, see
[supporttechs:interceptors::interceptors:::_using_jakarta_ee_interceptors].

An interceptor class often contains a method annotated @AroundInvoke, which specifies the tasks the
interceptor will perform when intercepted methods are invoked. It can also contain a method
annotated @PostConstruct, @PreDestroy, @PrePassivate, or @PostActivate, to specify lifecycle callback
interceptors, and a method annotated @AroundTimeout, to specify enterprise bean timeout
interceptors. An interceptor class can contain more than one interceptor method, but it must have
no more than one method of each type.

Along with an interceptor, an application defines one or more interceptor binding types, which are
annotations that associate an interceptor with target beans or methods. For example, the
billpayment example contains an interceptor binding type named @Logged and an interceptor
named LoggedInterceptor. The interceptor binding type declaration looks something like a qualifier
declaration, but it is annotated with jakarta.interceptor.InterceptorBinding:

@Inherited
@InterceptorBinding
@Retention(RUNTIME)
@Target({METHOD, TYPE})
public @interface Logged {
}

An interceptor binding also has the java.lang.annotation.Inherited annotation, to specify that the
annotation can be inherited from superclasses. The @Inherited annotation also applies to custom

151

scopes (not discussed in this tutorial) but does not apply to qualifiers.
An interceptor binding type may declare other interceptor bindings.

The interceptor class is annotated with the interceptor binding as well as with the @Interceptor
annotation. For an example, see The LoggedInterceptor Interceptor Class.

Every @AroundInvoke method takes a jakarta.interceptor.InvocationContext argument, returns a
java.lang.0Object, and throws an Exception. It can call InvocationContext methods. The @AroundInvoke
method must call the proceed method, which causes the target class method to be invoked.

Once an interceptor and binding type are defined, you can annotate beans and individual methods
with the binding type to specify that the interceptor is to be invoked either on all methods of the
bean or on specific methods. For example, in the billpayment example, the PaymentHandler bean is
annotated @Logged, which means that any invocation of its business methods will cause the
interceptor’s @AroundInvoke method to be invoked:

@Logged
@SessionScoped
public class PaymentHandler implements Serializable {...}

However, in the PaymentBean bean, only the pay and reset methods have the @Logged annotation, so
the interceptor is invoked only when these methods are invoked:

@Logged
public String pay() {...}

@Logged
public void reset() {...}

In order for an interceptor to be invoked in a CDI application, it must, like an alternative, be
specified in the beans.xml file. For example, the LoggedInterceptor class is specified as follows:

<interceptors>
<class>ee.jakarta.tutorial.billpayment.interceptors.LoggedInterceptor</class>
</interceptors>

If an application uses more than one interceptor, the interceptors are invoked in the order specified
in the beans.xml file.

The interceptors that you specify in the beans.xml file apply only to classes in the same archive. Use
the @Priority annotation to specify interceptors globally for an application that consists of multiple
modules, as in the following example:

@Logged
@Interceptor
@Priority(Interceptor.Priority.APPLICATION)

152

public class LoggedInterceptor implements Serializable { ... }

Interceptors with lower priority values are called first. You do not need to specify the interceptor in
the beans.xml file when you use the @Priority annotation.

Using Decorators in CDI Applications

A decorator is a Java class that is annotated jakarta.decorator.Decorator and that has a
corresponding decorators element in the beans.xml file.

A decorator bean class must also have a delegate injection point, which is annotated
jakarta.decorator.Delegate. This injection point can be a field, a constructor parameter, or an
initializer method parameter of the decorator class.

Decorators are outwardly similar to interceptors. However, they actually perform tasks
complementary to those performed by interceptors. Interceptors perform cross-cutting tasks
associated with method invocation and with the lifecycles of beans, but cannot perform any
business logic. Decorators, on the other hand, do perform business logic by intercepting business
methods of beans. This means that instead of being reusable for different kinds of applications, as
are interceptors, their logic is specific to a particular application.

For example, instead of using an alternative TestCoderImpl class for the encoder example, you could
create a decorator as follows:

@Decorator
public abstract class CoderDecorator implements Coder {

@Inject
@Delegate
@Any

Coder coder;

public String codeString(String s, int tval) {
int len = s.length();
return "\"" + s + "\" becomes "
+ Il\ll, n + 1en + n

+ "\"" + coder.codeString(s, tval)
characters in length";

See The decorators Example: Decorating a Bean for an example that uses this decorator.

This simple decorator returns more detailed output than the encoded string returned by the
CoderImpl.codeString method. A more complex decorator could store information in a database or
perform some other business logic.

A decorator can be declared as an abstract class so that it does not have to implement all the
business methods of the interface.

153

In order for a decorator to be invoked in a CDI application, it must, like an interceptor or an
alternative, be specified in the beans.xml file. For example, the CoderDecorator class is specified as
follows:

<decorators>
<class>ee.jakarta.tutorial.decorators.CoderDecorator</class>
</decorators>

If an application uses more than one decorator, the decorators are invoked in the order in which
they are specified in the beans.xml file.

If an application has both interceptors and decorators, the interceptors are invoked first. This
means, in effect, that you cannot intercept a decorator.

The decorators that you specify in the beans.xml file apply only to classes in the same archive. Use
the @Priority annotation to specify decorators globally for an application that consists of multiple
modules, as in the following example:

@Decorator
@Priority(Interceptor.Priority.APPLICATION)
public abstract class CoderDecorator implements Coder { ... }

Decorators with lower priority values are called first. You do not need to specify the decorator in
the beans.xml when you use the @Priority annotation.

Using Stereotypes in CDI Applications

A stereotype is a kind of annotation, applied to a bean, that incorporates other annotations.
Stereotypes can be particularly useful in large applications in which you have a number of beans
that perform similar functions. A stereotype is a kind of annotation that specifies the following:

* A default scope

* Zero or more interceptor bindings

* Optionally, a @Named annotation, guaranteeing default EL. naming

* Optionally, an @Alternative annotation, specifying that all beans with this stereotype are

alternatives

A bean annotated with a particular stereotype will always use the specified annotations, so you do
not have to apply the same annotations to many beans.

For example, you might create a stereotype named Action, using the

jakarta.enterprise.inject.Stereotype annotation:

@RequestScoped
@Secure
@Transactional

154

@Named

@Stereotype

@Target(TYPE)
@Retention(RUNTIME)

public @interface Action {}

All beans annotated @Action will have request scope, use default EL naming, and have the
interceptor bindings @Transactional and @Secure.

You could also create a stereotype named Mock:

@Alternative

@Stereotype

@Target(TYPE)
@Retention(RUNTIME)
public @interface Mock {}

All beans with this annotation are alternatives.

It is possible to apply multiple stereotypes to the same bean, so you can annotate a bean as follows:

@Action
@Mock
public class MockLoginAction extends LoginAction { ... }

It is also possible to override the scope specified by a stereotype, simply by specifying a different
scope for the bean. The following declaration gives the MockLoginAction bean session scope instead
of request scope:

@SessionScoped

@Action

@Mock

public class MockLoginAction extends LoginAction { ... }

CDI makes available a built-in stereotype called Model, which is intended for use with beans that
define the model layer of a model-view-controller application architecture. This stereotype specifies
that a bean is both @Named and @RequestScoped:

@Named

@RequestScoped

@Stereotype

@Target({TYPE, METHOD, FIELD})
@Retention(RUNTIME)

public @interface Model {}

155

Using the Built-In Annotation Literals

The following built-in annotations define a Literal static nested class, which can be used as a
convenience feature for creating instances of annotations:

* jakarta.enterprise.inject.Any

* jakarta.enterprise.inject.Default

* jakarta.enterprise.inject.New

* jakarta.enterprise.inject.Specializes

* jakarta.enterprise.inject.Vetoed

* jakarta.enterprise.util.Nonbinding

* jakarta.enterprise.context.Initialized

* jakarta.enterprise.context.Destroyed

* jakarta.enterprise.context.RequestScoped

* jakarta.enterprise.context.SessionScoped

* jakarta.enterprise.context.ApplicationScoped

* jakarta.enterprise.context.Dependent

* jakarta.enterprise.context.ConversationScoped

» jakarta.enterprise.inject.Alternative

* jakarta.enterprise.inject.Typed

For example:

Default defaultLiteral = new Default.Literal();
RequestScoped requestScopedlLiteral = RequestScoped.Literal.INSTANCE;

Initialized initializedForApplicationScoped = new
Initialized.Literal(ApplicationScoped.class);

Initialized initializedForRequestScoped = Initialized.Literal.of(RequestScoped.class);

Using the Configurators Interfaces

The CDI 2.0 specification defines the following Configurators interfaces, which are used for
dynamically defining and modifying CDI objects:

156

Interface Description

AnnotatedTypeConfigurator = Helps create and configure the following type metadata:
SPI
AnnotatedType

AnnotatedField
AnnotatedConstructor

AnnotatedMethod

AnnotatedParameter

InjectionPointConfigurator Helps configure an existing InjectionPoint instance
interface

BeanAttributesConfigurator Helps configure a new BeanAttributes instance
interface

BeanConfigurator interface Helps configure a new Bean instance

ObserverMethodConfigurator Helps configure an ObserverMethod instance
interface

ProducerConfigurator Helps configure a Producer instance
interface

Bootstrapping a CDI Container in Java SE

This chapter explains how to use the API for bootstrapping a CDI container in Java SE. This
capability allows you to run CDI applications on Java SE and obtain beans, independently of an
application server or any Jakarta EE APIs.

For more information about bootstrapping a CDI container in Java SE, see the Weld Reference Guide
at https://weld.cdi-spec.org/documentation,/.

The Bootstrap API

The API for bootstrapping a CDI container in Java SE consists of the following entities:
* jakarta.enterprise.inject.se.SeContainerInitializer class — Allows you to configure and
bootstrap the CDI container. This class includes the following key methods:

o newInstance() obtains a SeContainerInitializer instance, which allows you to configure the
container prior to bootstrapping it.

o initialize() bootstraps the container.

* jakarta.enterprise.inject.se.SeContainer interface — Provides access to the BeanManager
instance for programmatic lookup, as defined in the SeContainer interface, which is described at
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html#se_container.

157

https://weld.cdi-spec.org/documentation/
https://jakarta.ee/specifications/cdi/3.0/jakarta-cdi-spec-3.0.html#se_container

Configuring the CDI Container

The configuration of the SeContainerInitializer instance allows the explicit addition of elements
into an internal synthetic bean archive. The synthetic bean archive represents the set of beans
that have been loaded while initializing the container. The contents of the synthetic bean archive
depend on whether discovery is enabled:

« If discovery is enabled, the synthetic bean archive is created using standard bean discovery
rules and contains a superset of all JAR files on the classpath. Archives that do not include a
beans.xml file are excluded.

 If discovery is disabled, and beans are added programmatically, the synthetic bean archive
contains only the beans that have been programmatically added.

Running the Advanced Contexts and Dependency Injection Examples

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

This chapter describes in detail how to build and run several advanced examples that use CDI.

Building and Running the CDI Advanced Examples

The examples are in the jakartaee-examples/tutorial/cdi/ directory. To build and run the
examples, you will do the following.

1. Use NetBeans IDE or the Maven tool to compile, package, and deploy the example.

2. Run the example in a web browser.

See [intro:usingexamples::usingexamples:::_using_the_tutorial_examples], for basic information on
installing, building, and running the examples.

The encoder Example: Using Alternatives

The encoder example shows how to use alternatives to choose between two beans at deployment
time, as described in Using Alternatives in CDI Applications. The example includes an interface and
two implementations of it, a managed bean, a Facelets page, and configuration files.

The source files are located in the jakartaee-
examples/tutorial/cdi/encoder/src/main/java/jakarta/tutorial/encoder/ directory.

The Coder Interface and Implementations

The Coder interface contains just one method, codeString, that takes two arguments: a string, and an
integer value that specifies how the letters in the string should be transposed.

public interface Coder {

public String codeString(String s, int tval);

158

The interface has two implementation classes, CoderImpl and TestCoderImpl. The implementation of
codeString in CoderImpl shifts the string argument forward in the alphabet by the number of letters
specified in the second argument; any characters that are not letters are left unchanged. (This
simple shift code is known as a Caesar cipher because Julius Caesar reportedly used it to
communicate with his generals.) The implementation in TestCoderImpl merely displays the values of
the arguments. The TestCoderImpl implementation is annotated @Alternative:

import jakarta.enterprise.inject.Alternative;

@Alternative
public class TestCoderImpl implements Coder {

@0verride
public String codeString(String s, int tval) {
return ("input string is " + s + ", shift value is " + tval);

}

The beans.xml file for the encoder example contains an alternatives element for the TestCoderImpl
class, but by default the element is commented out:

<beans ...>
<!--<alternatives>
<class>ee.jakarta.tutorial.encoder.TestCoderImpl</class>

</alternatives>-->
</beans>

This means that by default, the TestCoderImpl class, annotated @Alternative, will not be used.
Instead, the CoderImpl class will be used.

The encoder Facelets Page and Managed Bean

The simple Facelets page for the encoder example, index.xhtml, asks the user to enter the string and
integer values and passes them to the managed bean, CoderBean, as coderBean.inputString and
coderBean.transVal:

<html lang="en"
xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="jakarta.faces.html">
<h:head>
<h:outputStylesheet library="css" name="default.css"/>
<title>String Encoder</title>
</h:head>
<h:body>
<h2>String Encoder</h2>

159

<p>Type a string and an integer, then click Encode.</p>
<p>Depending on which alternative is enabled, the coder bean
will either display the argument values or return a string that
shifts the letters in the original string by the value you
specify. The value must be between @ and 26.</p>
<h:form id="encodeit">
<p><h:outputlLabel value="Enter a string: " for="inputString"/>
<h:inputText id="inputString"
value="#{coderBean.inputString}"/>
<h:outputlLabel value="Enter the number of letters to shift by:
for="transVal"/>
<h:inputText id="transVal" value="#{coderBean.transVal}"/></p>
<p><h:commandButton value="Encode"
action="#{coderBean.encodeString()}"/></p>
<p><h:outputlLabel value="Result: " for="outputString"/>
<h:outputText id="outputString"
value="#{coderBean.codedString}"
style="color:blue"/></p>
<p><h:commandButton value="Reset"
action="#{coderBean.reset}"/></p>

</h:form>

</h:body>
</html>

When the user clicks the Encode button, the page invokes the managed bean’s encodeString method
and displays the result, coderBean.codedString, in blue. The page also has a Reset button that clears
the fields.

The managed bean, CoderBean, is a @RequestScoped bean that declares its input and output
properties. The transVal property has three Bean Validation constraints that enforce limits on the
integer value, so that if the user enters an invalid value, a default error message appears on the
Facelets page. The bean also injects an instance of the Coder interface:

@Named
@RequestScoped
public class CoderBean {

private String inputString;
private String codedString;
@Max(26)

@Min(0)

@NotNull

private int transVal;

@Inject
Coder coder;

160

In addition to simple getter and setter methods for the three properties, the bean defines the
encodeString action method called by the Facelets page. This method sets the codedString property
to the value returned by a call to the codeString method of the Coder implementation:

public void encodeString() {
setCodedString(coder.codeString(inputString, transVal));
+

Finally, the bean defines the reset method to empty the fields of the Facelets page:

public void reset() {
setInputString("");
setTransVal(Q);

Running the encoder Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the encoder
application.

To Build, Package, and Deploy the encoder Example Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/cdi

4. Select the encoder folder.
5. Click Open Project.

6. In the Projects tab, right-click the encoder project and select Build.

This command builds and packages the application into a WAR file, encoder.war, located in the
target directory, and then deploys it to GlassFish Server.

To Run the encoder Example Using NetBeans IDE

1. In a web browser, enter the following URL:

http://1localhost:8080/encoder

2. On the String Encoder page, enter a string and the number of letters to shift by, and then click
Encode.

The encoded string appears in blue on the Result line. For example, if you enter Java and 4, the

161

result is Neze.

3. Now, edit the beans.xml file to enable the alternative implementation of Coder.

a. In the Projects tab, under the encoder project, expand the Web Pages node, then expand the
WEB-INF node.

b. Double-click the beans.xml file to open it.

c. Remove the comment characters that surround the alternatives element, so that it looks like
this:

<alternatives>
<class>ee.jakarta.tutorial.encoder.TestCoderImpl</class>
</alternatives>

d. Save the file.
4. Right-click the encoder project and select Clean and Build.
5. In the web browser, reenter the URL to show the String Encoder page for the redeployed
project:

http://localhost:8080/encoder/

6. Enter a string and the number of letters to shift by, and then click Encode.

This time, the Result line displays your arguments. For example, if you enter Java and 4, the
result is:

Result: input string is Java, shift value is 4

To Build, Package, and Deploy the encoder Example Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. In a terminal window, go to:

jakartaee-examples/tutorial/cdi/encoder/

3. Enter the following command to deploy the application:

mvn install

This command builds and packages the application into a WAR file, encoder.war, located in the
target directory, and then deploys it to GlassFish Server.

162

To Run the encoder Example Using Maven

1. In a web browser, enter the following URL:

http://localhost:8080/encoder/

The String Encoder page opens.
2. Enter a string and the number of letters to shift by, and then click Encode.

The encoded string appears in blue on the Result line. For example, if you enter Java and 4, the
result is Neze.

3. Now, edit the beans.xml file to enable the alternative implementation of Coder.

a. In a text editor, open the following file:

jakartaee-examples/tutorial/cdi/encoder/src/main/webapp/WEB-INF/beans.xml

b. Remove the comment characters that surround the alternatives element, so that it looks like
this:

<alternatives>
<class>ee.jakarta.tutorial.encoder.TestCoderImpl</class>
</alternatives>

c. Save and close the file.

4. Enter the following command:

mvn clean install

5. In the web browser, reenter the URL to show the String Encoder page for the redeployed
project:

http://localhost:8080/encoder

6. Enter a string and the number of letters to shift by, and then click Encode.

This time, the Result line displays your arguments. For example, if you enter Java and 4, the
result is:

Result: input string is Java, shift value is 4

163

The producermethods Example: Using a Producer Method to Choose a Bean Implementation

The producermethods example shows how to use a producer method to choose between two beans at
runtime, as described in Using Producer Methods, Producer Fields, and Disposer Methods in CDI
Applications. It is very similar to the encoder example described in The encoder Example: Using
Alternatives. The example includes the same interface and two implementations of it, a managed
bean, a Facelets page, and configuration files. It also contains a qualifier type. When you run it, you
do not need to edit the beans.xml file and redeploy the application to change its behavior.

Components of the producermethods Example

The components of producermethods are very much like those for encoder, with some significant
differences.

Neither implementation of the Coder bean is annotated @Alternative, and there is no beans.xml file,
because it is not needed.

The Facelets page and the managed bean, CoderBean, have an additional property, coderType, that
allows the user to specify at runtime which implementation to use. In addition, the managed bean
has a producer method that selects the implementation using a qualifier type, @Chosen.

The bean declares two constants that specify whether the coder type is the test implementation or
the implementation that actually shifts letters:

private final static int TEST = 1;
private final static int SHIFT = 2;
private int coderType = SHIFT; // default value

The producer method, annotated with @Produces and @Chosen as well as @RequestScoped (so that it
lasts only for the duration of a single request and response), returns one of the two
implementations based on the coderType supplied by the user.

©OProduces

@Chosen

@RequestScoped

public Coder getCoder() {

switch (coderType) {
case TEST:
return new TestCoderImpl();
case SHIFT:
return new CoderImpl();
default:
return null;

Finally, the managed bean injects the chosen implementation, specifying the same qualifier as that

164

returned by the producer method to resolve ambiguities:

@Inject
@Chosen
@RequestScoped
Coder coder;

The Facelets page contains modified instructions and a pair of options whose selected value is
assigned to the property coderBean.coderType:

<h2>String Encoder</h2>
<p>Select Test or Shift, type a string and an integer, then click
Encode.</p>
<p>If you select Test, the TestCoderImpl bean will display the
argument values.</p>
<p>If you select Shift, the CoderImpl bean will return a string that
shifts the letters in the original string by the value you specify.
The value must be between @ and 26.</p>
<h:form id="encodeit">
<h:selectOneRadio id="coderType"
required="true"
value="#{coderBean.coderType}">
<f:selectItem
itemValue="1"
itemLabel="Test"/>
<f:selectItem
itemValue="2"
itemLabel="Shift Letters"/>
</h:selectOneRadio>

Running the producermethods Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the producermethods
application.

To Build, Package, and Deploy the producermethods Example Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/cdi

4. Select the producermethods folder.

5. Click Open Project.

165

6. In the Projects tab, right-click the producermethods project and select Build.

This command builds and packages the application into a WAR file, producermethods.war, located
in the target directory, and then deploys it to GlassFish Server.

To Build, Package, and Deploy the producermethods Example Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. In a terminal window, go to:

jakartaee-examples/tutorial/cdi/producermethods/

3. Enter the following command to deploy the application:

mvn install

This command builds and packages the application into a WAR file, producermethods.war, located
in the target directory, and then deploys it to GlassFish Server.

To Run the producermethods Example

1. In a web browser, enter the following URL:

http://localhost:8080/producermethods

2. On the String Encoder page, select either the Test or Shift Letters option, enter a string and the
number of letters to shift by, and then click Encode.

Depending on your selection, the Result line displays either the encoded string or the input
values you specified.

The producerfields Example: Using Producer Fields to Generate Resources

The producerfields example, which allows you to create a to-do list, shows how to use a producer
field to generate objects that can then be managed by the container. This example generates an
EntityManager object, but resources such as JDBC connections and datasources can also be
generated this way.

The producerfields example is the simplest possible entity example. It also contains a qualifier and
a class that generates the entity manager. It also contains a single entity, a stateful session bean, a
Facelets page, and a managed bean.

The source files are located in the jakartaee-
examples/tutorial/cdi/producerfields/src/main/java/jakarta/tutorial/producerfields/ directory.

166

The Producer Field for the producerfields Example

The most important component of the producerfields example is the smallest, the
db.UserDatabaseEntityManager class, which isolates the generation of the EntityManager object so it
can easily be used by other components in the application. The class uses a producer field to inject
an EntityManager annotated with the @UserDatabase qualifier, also defined in the db package:

@Singleton
public class UserDatabaseEntityManager {

@Produces
@PersistenceContext
@UserDatabase

private EntityManager em;

The class does not explicitly produce a persistence unit field, but the application has a
persistence.xml file that specifies a persistence wunit. The class is annotated
jakarta.inject.Singleton to specify that the injector should instantiate it only once.

The db.UserDatabaseEntityManager class also contains commented-out code that uses create and
close methods to generate and remove the producer field:

/*
@PersistenceContext
private EntityManager em;

@Produces

@UserDatabase

public EntityManager create() {
return em;

}
*/

public void close(@Disposes @UserDatabase EntityManager em) {
em.close();

}

You can remove the comment indicators from this code and place them around the field
declaration to test how the methods work. The behavior of the application is the same with either
mechanism.

The advantage of producing the EntityManager in a separate class rather than simply injecting it into
an enterprise bean is that the object can easily be reused in a typesafe way. Also, a more complex
application can create multiple entity managers using multiple persistence units, and this
mechanism isolates this code for easy maintenance, as in the following example:

167

@Singleton
public class JPAResourceProducer {
@Produces
@PersistenceUnit(unitName="pu3")
@TestDatabase
EntityManagerFactory customerDatabasePersistenceUnit;

@Produces

@PersistenceContext(unitName="pu3")
@TestDatabase

EntityManager customerDatabasePersistenceContext;

@Produces

@PersistenceUnit(unitName="pu4")

©@Documents

EntityManagerFactory customerDatabasePersistenceUnit;

@Produces
@PersistenceContext(unitName="pu4")
©@Documents

EntityManager docDatabaseEntityManager;

The EntityManagerFactory declarations also allow applications to use an application-managed entity
manager.

The producerfields Entity and Session Bean

The producerfields example contains a simple entity class, entity.ToDo, and a stateful session bean,
ejb.RequestBean, that uses it.

The entity class contains three fields: an autogenerated id field, a string specifying the task, and a
timestamp.

@Entity
public class ToDo implements Serializable {

eId

@GeneratedValue(strategy = GenerationType.AUTO)
private Long id;

protected String taskText;

protected LocalDateTime timeCreated;

public ToDo() {
}

public ToDo(Long id, String taskText, LocalDateTime timeCreated) {
this.id = id;

168

this.taskText = taskText;
this.timeCreated = timeCreated;

The remainder of the ToDo class contains the usual getters, setters, and other entity methods.

The RequestBean class injects the EntityManager generated by the producer method, annotated with
the @UserDatabase qualifier:

@ConversationScoped
@Stateful
public class RequestBean {

@Inject
@UserDatabase
EntityManager em;

It then defines two methods, one that creates and persists a single ToDo list item, and another that
retrieves all the ToDo items created so far by creating a query:

public ToDo createToDo(String inputString) {
try {
ToDo toDo = new ToDo();
toDo.setTaskText(inputString);
toDo.setTimeCreated(LocalDateTime.now());
em.persist(toDo);
return toDo;
} catch (Exception e) {
throw new EJBException(e);
}
+

public List<ToDo> getToDos() {
try {
List<ToDo> toDos =
(List<ToDo>) em.createQuery(
"SELECT t FROM ToDo t ORDER BY t.timeCreated")
.getResultList();
return toDos;
} catch (Exception e) {
throw new EJBException(e.getMessage());
}

169

The producerfields Facelets Pages and Managed Bean

The producerfields example has two Facelets pages, index.xhtml and todolist.xhtml. The simple
form on the index.xhtml page asks the user only for the task. When the user clicks the Submit
button, the listBean.createTask method is called. When the user clicks the Show Items button, the
action specifies that the todolist.xhtml file should be displayed:

<h:body>
<h2>To Do List</h2>
<p>Enter a task to be completed.</p>
<h:form id="todolist">
<p><h:outputlLabel value="Enter a string: " for="inputString"/>
<h:inputText id="inputString"
value="#{1listBean.inputString}"/></p>
<p><h:commandButton value="Submit"
action="#{listBean.createTask()}"/></p>
<p><h:commandButton value="Show Items"
action="todolist"/></p>
</h:form>

</h:body>

The managed bean, web.ListBean, injects the ejb.RequestBean session bean. It declares the
entity.ToDo entity and a list of the entity along with the input string that it passes to the session
bean. The inputString is annotated with the @NotNull Bean Validation constraint, so an attempt to
submit an empty string results in an error.

@Named
@ConversationScoped
public class ListBean implements Serializable {

@EJB

private RequestBean request;
@NotNull

private String inputString;
private ToDo toDo;

private List<ToDo> toDos;

The createTask method called by the Submit button calls the createToDo method of RequestBean:

public void createTask() {

this.toDo = request.createToDo(inputString);
+

170

The getToDos method, which is called by the todolist.xhtml page, calls the getToDos method of
RequestBean:

public List<ToDo> getToDos() {
return request.getToDos();

}

To force the Facelets page to recognize an empty string as a null value and return an error, the
web. xml file sets the context parameter
jakarta.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL to true:

<context-param>
<param-name>jakarta.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL</param-
name>
<param-value>true</param-value>
</context-param>

The todolist.xhtml page is a little more complicated than the index.html page. It contains a
dataTable element that displays the contents of the ToDo list. The body of the page looks like this:

<body>
<h2>To Do List</h2>
<h:form id="showlist">
<h:dataTable var="toDo"
value="#{1istBean.toDos}"
rules="all"
border="1"
cellpadding="5">
<h:column>
<f:facet name="header">
<h:outputText value="Time Stamp" />
</f:facet>
<h:outputText value="#{toDo.timeCreated}" />
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="Task" />
</f:facet>
<h:outputText value="#{toDo.taskText}" />
</h:column>
</h:dataTable>
<p><h:commandButton id="back" value="Back" action="index" /></p>
</h:form>
</body>

The value of the dataTable is listBean.toDos, the list returned by the managed bean’s getToDos
method, which in turn calls the session bean’s getToDos method. Each row of the table displays the

171

timeCreated and taskText fields of the individual task. Finally, a Back button returns the user to the
index.xhtml page.

Running the producerfields Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the producerfields
application.

To Build, Package, and Deploy the producerfields Example Using NetBeans IDE

1
2.

Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

If the database server is not already running, start it by following the instructions in Starting
and Stopping Apache Derby.

From the File menu, choose Open Project.

In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/cdi

Select the producerfields folder.
Click Open Project.
In the Projects tab, right-click the producerfields project and select Build.

This command builds and packages the application into a WAR file, producerfields.war, located
in the target directory, and then deploys it to GlassFish Server.

To Build, Package, and Deploy the producerfields Example Using Maven

Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

If the database server is not already running, start it by following the instructions in Starting
and Stopping Apache Derby.
In a terminal window, go to:
jakartaee-examples/tutorial/cdi/producerfields/
Enter the following command to deploy the application:

mvn install

This command builds and packages the application into a WAR file, producerfields.war, located
in the target directory, and then deploys it to GlassFish Server.

To Run the producerfields Example

1.

172

In a web browser, enter the following URL:

http://localhost:8080/producerfields

2. On the Create To Do List page, enter a string in the field and click Submit.

You can enter additional strings and click Submit to create a task list with multiple items.
3. Click Show Items.

The To Do List page opens, showing the timestamp and text for each item you created.
4. Click Back to return to the Create To Do List page.

On this page, you can enter more items in the list.

The billpayment Example: Using Events and Interceptors

The billpayment example shows how to use both events and interceptors.

The source files are located in the jakartaee-
examples/tutorial/cdi/billpayment/src/main/java/jakarta/tutorial/billpayment/ directory.

Overview of the billpayment Example

The example simulates paying an amount using a debit card or credit card. When the user chooses
a payment method, the managed bean creates an appropriate event, supplies its payload, and fires
it. A simple event listener handles the event using observer methods.

The example also defines an interceptor that is set on a class and on two methods of another class.

The PaymentEvent Event Class

The event class, event.PaymentEvent, is a simple bean class that contains a no-argument constructor.
It also has a toString method and getter and setter methods for the payload components: a String
for the payment type, a BigDecimal for the payment amount, and a Date for the timestamp.

public class PaymentEvent implements Serializable {

public String paymentType;
public BigDecimal value;
public Date datetime;

public PaymentEvent() {
}

@0verride
public String toString() {
return this.paymentType
+ " = $" + this.value.toString()
+ " at " + this.datetime.toString();

173

The event class is a simple bean that is instantiated by the managed bean using new and then
populated. For this reason, the CDI container cannot intercept the creation of the bean, and hence it
cannot allow interception of its getter and setter methods.

The PaymentHandler Event Listener

The event listener, listener.PaymentHandler, contains two observer methods, one for each of the two
event types:

@Logged
@SessionScoped
public class PaymentHandler implements Serializable {

public void creditPayment(@0Observes @Credit PaymentEvent event) {
logger.log(Level.INFO, "PaymentHandler - Credit Handler: {0}",
event.toString());

// call a specific Credit handler class...

}

public void debitPayment(@0Observes @Debit PaymentEvent event) {
logger.log(Level.INFO, "PaymentHandler - Debit Handler: {@0}",
event.toString());

// call a specific Debit handler class...

Each observer method takes as an argument the event, annotated with @0bserves and with the
qualifier for the type of payment. In a real application, the observer methods would pass the event
information on to another component that would perform business logic on the payment.

The qualifiers are defined in the payment package, described in The billpayment Facelets Pages and
Managed Bean.

The PaymentHandler bean is annotated @Logged so that all its methods can be intercepted.

The bhillpayment Facelets Pages and Managed Bean

The billpayment example contains two Facelets pages, index.xhtml and the very simple
response.xhtml. The body of index.xhtml looks like this:

<h:body>
<h3>Bill Payment Options</h3>

174

<p>Enter an amount, select Debit Card or Credit Card,
then click Pay.</p>
<h:form>
<p>
<h:outputlLabel value="Amount: $" for="amt"/>
<h:inputText id="amt" value="#{paymentBean.value}"
required="true"
requiredMessage="An amount is required."
maxlength="15" />
</p>
<h:outputlLabel value="Options:" for="opt"/>
<h:selectOneRadio id="opt" value="#{paymentBean.paymentOption}">
<f:selectItem id="debit" itemLabel="Debit Card"
itemValue="1"/>
<f:selectItem id="credit" itemLabel="Credit Card"
itemValue="2" />
</h:selectOneRadio>
<p><h:commandButton id="submit" value="Pay"
action="#{paymentBean.pay}" /></p>
<p><h:commandButton value="Reset"
action="#{paymentBean.reset}" /></p>
</h:form>

</h:body>

The input field takes a payment amount, passed to paymentBean.value. Two options ask the user to
select a Debit Card or Credit Card payment, passing the integer value to paymentBean.paymentOption.
Finally, the Pay command button’s action is set to the method paymentBean.pay, and the Reset
button’s action is set to the paymentBean.reset method.

The payment.PaymentBean managed bean uses qualifiers to differentiate between the two kinds of
payment event:

@Named
@SessionScoped
public class PaymentBean implements Serializable {

@Inject
@Credit
Event<PaymentEvent> creditEvent;

@Inject
@Debit
Event<PaymentEvent> debitEvent;

The qualifiers, @Credit and @Debit, are defined in the payment package along with PaymentBean.

175

Next, the PaymentBean defines the properties it obtains from the Facelets page and will pass on to the
event:

public static final int DEBIT = 1;
public static final int CREDIT = 2;
private int paymentOption = DEBIT;

@Digits(integer = 10, fraction = 2, message = "Invalid value")
private BigDecimal value;

private Date datetime;

The paymentOption value is an integer passed in from the option component; the default value is
DEBIT. The value is a BigDecimal with a Bean Validation constraint that enforces a currency value
with a maximum number of digits. The timestamp for the event, datetime, is a Date object initialized
when the pay method is called.

The pay method of the bean first sets the timestamp for this payment event. It then creates and
populates the event payload, using the constructor for the PaymentEvent and calling the event’s
setter methods, using the bean properties as arguments. It then fires the event.

@Logged
public String pay() {
this.setDatetime(LocalDateTime.now());
switch (paymentOption) {

case DEBIT:
PaymentEvent debitPayload = new PaymentEvent();
debitPayload.setPaymentType("Debit");
debitPayload.setValue(value);
debitPayload.setDatetime(datetime);
debitEvent.fire(debitPayload);
break;

case CREDIT:
PaymentEvent creditPayload = new PaymentEvent();
creditPayload.setPaymentType("Credit");
creditPayload.setValue(value);
creditPayload.setDatetime(datetime);
creditEvent.fire(creditPayload);
break;

default:
logger.severe("Invalid payment option!");

}

return "response"”;

The pay method returns the page to which the action is redirected, response.xhtml.

The PaymentBean class also contains a reset method that empties the value field on the index.xhtml

176

page and sets the payment option to the default:

@Logged

public void reset() {
setPaymentOption(DEBIT);
setValue(BigDecimal.ZERO);

In this bean, only the pay and reset methods are intercepted.

The response.xhtml page displays the amount paid. It uses a rendered expression to display the
payment method:

<h:body>
<h:form>
<h2>Bill Payment: Result</h2>
<h3>Amount Paid with
<h:outputText id="debit" value="Debit Card: "
rendered="#{paymentBean.paymentOption eq 1}" />
<h:outputText id="credit" value="Credit Card: "
rendered="#{paymentBean.paymentOption eq 2}" />
<h:outputText id="result" value="#{paymentBean.value}">
<f:convertNumber type="currency"/>
</h:outputText>
</h3>
<p><h:commandButton id="back" value="Back" action="index" /></p>
</h:form>
</h:body>

The LoggedInterceptor Interceptor Class

The interceptor class, LoggedInterceptor, and its interceptor binding, Logged, are both defined in the
interceptor package. The Logged interceptor binding is defined as follows:

@Inherited
@InterceptorBinding
@Retention(RUNTIME)
@Target({METHOD, TYPE})
public @interface Logged {
}

The LoggedInterceptor class looks like this:

@Logged
@Interceptor
public class LoggedInterceptor implements Serializable {

177

public LoggedInterceptor() {
}

@AroundInvoke
public Object logMethodEntry(InvocationContext invocationContext)
throws Exception {
System.out.println("Entering method:
+ invocationContext.getMethod().getName() + " in class
+ invocationContext.getMethod().getDeclaringClass().getName());

return invocationContext.proceed();

The class is annotated with both the gLogged and the @Interceptor annotations. The @AroundInvoke
method, logMethodEntry, takes the required InvocationContext argument and calls the required
proceed method. When a method is intercepted, logMethodEntry displays the name of the method
being invoked as well as its class.

To enable the interceptor, the beans.xml file defines it as follows:

<interceptors>
<class>ee.jakarta.tutorial.billpayment.interceptor.LoggedInterceptor</class>
</interceptors>

In this application, the PaymentEvent and PaymentHandler classes are annotated @Logged, so all their
methods are intercepted. In PaymentBean, only the pay and reset methods are annotated @Logged, so
only those methods are intercepted.

Running the billpayment Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the billpayment
application.

To Build, Package, and Deploy the billpayment Example Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/cdi

4. Select the billpayment folder.
5. Click Open Project.

178

6.

In the Projects tab, right-click the billpayment project and select Build.

This command builds and packages the application into a WAR file, billpayment.war, located in
the target directory, and then deploys it to GlassFish Server.

To Build, Package, and Deploy the billpayment Example Using Maven

1.
2.

Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

In a terminal window, go to:

jakartaee-examples/tutorial/cdi/billpayment/

Enter the following command to deploy the application:

mvn install

This command builds and packages the application into a WAR file, billpayment.war, located in
the target directory, and then deploys it to GlassFish Server.

To Run the billpayment Example

1

In a web browser, enter the following URL:

http://localhost:8080/billpayment

On the Bill Payment Options page, enter a value in the Amount field.

The amount can contain up to 10 digits and include up to two decimal places. For example:

9876.54

Select Debit Card or Credit Card and click Pay.

The Bill Payment: Result page opens, displaying the amount paid and the method of payment:

Amount Paid with Credit Card: $9,876.34

Click Back to return to the Bill Payment Options page.
You can also click Reset to return to the initial page values.
Examine the server log output.

In NetBeans IDE, the output is visible in the GlassFish Server Output tab. Otherwise, view
domain-dir/logs/server.loqg.

179

The output from each interceptor appears in the log, followed by the additional logger output
defined by the constructor and methods:

INFO: Entering method: pay in class billpayment.payment.PaymentBean

INFO: PaymentHandler created.

INFO: Entering method: debitPayment in class billpayment.listener.PaymentHandler
INFO: PaymentHandler - Debit Handler: Debit = $1234.56 at Tue Dec 14 14:50:28 EST
2010

The decorators Example: Decorating a Bean

The decorators example, which is yet another variation on the encoder example, shows how to use a
decorator to implement additional business logic for a bean.

The source files are located in the jakartaee-
examples/tutorial/cdi/decorators/src/main/java/jakarta/tutorial/decorators/ directory.

Overview of the decorators Example

Instead of having the user choose between two alternative implementations of an interface at
deployment time or runtime, a decorator adds some additional logic to a single implementation of
the interface.

The example includes an interface, an implementation of it, a decorator, an interceptor, a managed
bean, a Facelets page, and configuration files.

Components of the decorators Example

The decorators example is very similar to the encoder example described in The encoder Example:
Using Alternatives. Instead of providing two implementations of the Coder interface, however, this
example provides only the CoderImpl class. The decorator class, CoderDecorator, rather than simply
return the coded string, displays the input and output strings' values and length.

The CoderDecorator class, like CoderImpl, implements the business method of the Coder interface,
codeString:

@Decorator
public abstract class CoderDecorator implements Coder {

@Inject
@Delegate
@Any

Coder coder;

public String codeString(String s, int tval) {
int len = s.length();
return "\"" + s + "\" becomes "
+ II\II, n + 1en + n

+ "\"" + coder.codeString(s, tval)
characters in length";

180

The decorator’s codeString method calls the delegate object’s codeString method to perform the
actual encoding.

The decorators example includes the Logged interceptor binding and LoggedInterceptor class from
the billpayment example. For this example, the interceptor is set on the CoderBean.encodeString
method and the CoderImpl.codeString method. The interceptor code is unchanged; interceptors are
usually reusable for different applications.

Except for the interceptor annotations, the CoderBean and CoderImpl classes are identical to the
versions in the encoder example.

The beans. xml file specifies both the decorator and the interceptor:

<decorators>
<class>ee.jakarta.tutorial.decorators.CoderDecorator</class>

</decorators>

<interceptors>
<class>ee.jakarta.tutorial.decorators.LoggedInterceptor</class>

</interceptors>

Running the decorators Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the decorators
application.

To Build, Package, and Deploy the decorators Example Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/cdi

4. Select the decorators folder.
5. Click Open Project.

6. In the Projects tab, right-click the decorators project and select Build.

This command builds and packages the application into a WAR file, decorators.war, located in
the target directory, and then deploys it to GlassFish Server.

To Build, Package, and Deploy the decorators Example Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

181

2. In a terminal window, go to:
jakartaee-examples/tutorial/cdi/decorators/

3. Enter the following command to deploy the application:
mvn install

This command builds and packages the application into a WAR file, decorators.war, located in
the target directory, and then deploys it to GlassFish Server.

To Run the decorators Example

1. In a web browser, enter the following URL:
http://localhost:8080/decorators

2. On the Decorated String Encoder page, enter a string and the number of letters to shift by, and
then click Encode.

The output from the decorator method appears in blue on the Result line. For example, if you
entered Java and 4, you would see the following:

"Java" becomes "Neze", 4 characters in length

3. Examine the server log output.

In NetBeans IDE, the output is visible in the GlassFish Server Output tab. Otherwise, view
domain-dir/logs/server.logq.

The output from the interceptors appears:

INFO: Entering method: encodeString in class
ee.jakarta.tutorial.decorators.CoderBean
INFO: Entering method: codeString in class ee.jakarta.tutorial.decorators.CoderImpl

Jakarta Validation

Introduction to Jakarta Bean Validation

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

This chapter describes Jakarta Bean Validation available as part of the Jakarta EE platform and the

182

facility for validating objects, object members, methods, and constructors.

Overview of Jakarta Bean Validation

Validating input received from the user to maintain data integrity is an important part of
application logic. Validation of data can take place at different layers in even the simplest of
applications, as shown in Developing a Simple Facelets Application: The guessnumber-jsf Example
Application. The guessnumber-faces example application validates the user input (in the h:inputText
tag) for numerical data at the presentation layer and for a valid range of numbers at the business
layer.

Jakarta Bean Validation provides a facility for validating objects, object members, methods, and
constructors. In Jakarta EE environments, Jakarta Bean Validation integrates with Jakarta EE
containers and services to allow developers to easily define and enforce validation constraints.
Jakarta Bean Validation is available as part of the Jakarta EE platform.

Using Jakarta Bean Validation Constraints

The Jakarta Bean Validation model is supported by constraints in the form of annotations placed on
a field, method, or class of a JavaBeans component, such as a managed bean.

Constraints can be built in or user defined. User-defined constraints are called custom constraints.
Several built-in constraints are available in the jakarta.validation.constraints package. Built-In
Jakarta Bean Validation Constraints lists all the built-in constraints. See Creating Custom
Constraints for information on creating custom constraints.

Built-In Jakarta Bean Validation Constraints

Constraint Description Example
@AssertFalse The value of the field or property must be false.
@AssertFals
e
boolean
isUnsupport
ed;
@AssertTrue The value of the field or property must be true.
@AssertTrue
boolean
isActive;
@DecimalMax The value of the field or property must be a decimal _
value lower than or equal to the number in the value @E)emma}Max
element. (_3@'0Q)
BigDecimal
discount;

183

Constraint

@DecimalMin

@Digits

@Email

@Future

@FutureOrPresent

@Max

@Min

184

Description

The value of the field or property must be a decimal
value greater than or equal to the number in the value
element.

The value of the field or property must be a number
within a specified range. The integer element specifies
the maximum integral digits for the number, and the
fraction element specifies the maximum fractional digits
for the number.

The value of the field or property must be a valid email
address.

The value of the field or property must be a date in the
future.

The value of the field or property must be a date or time
in present or future.

The value of the field or property must be an integer
value lower than or equal to the number in the value
element.

The value of the field or property must be an integer
value greater than or equal to the number in the value
element.

Example

@DecimalMin
("5.00")
BigDecimal
discount;

@Digits(int
eger=6,
fraction=2)
BigDecimal
price;

@Email
String
emailaddres
S;

@Future
Date
eventDate;

@FutureOrPr
esent

Time
travelTime;

@Max(10)
int
quantity;

eMin(5)
int
quantity;

Constraint

@Negative

@NegativeOrZero

@NotBlank

@NotEmpty

@NotNull

@Null

@Past

Description

The value of the field or property must be a negative
number.

The value of the field or property must be negative or
zZero.

The value of the field or property must contain atleast
one non-white space character.

The value of the field or property must not be empty. The
length of the characters or array, and the size of a
collection or map are evaluated.

The value of the field or property must not be null.

The value of the field or property must be null.

The value of the field or property must be a date in the
past.

Example

@Negative
int
basementFlo
or;

@NegativeOr
lero

int
debtValue;

@NotBlank
String
message;

@NotEmpty
String
message;

@NotNull
String
username;

@Null
String
unusedStrin

9,

@Past
Date
birthday;

185

Constraint

@PastOrPresent

@Pattern

@Positive

@PositiveOrZero

@Size

Description

The value of the field or property must be a date or time
in the past or present.

The value of the field or property must match the regular
expression defined in the regexp element.

The value of the field or property must be a positive
number.

The value of the field or property must be a positive
number or zero

The size of the field or property is evaluated and must
match the specified boundaries. If the field or property is
a String, the size of the string is evaluated. If the field or
property is a Collection, the size of the Collectionis
evaluated. If the field or property is a Map, the size of the
Map is evaluated. If the field or property is an array, the
size of the array is evaluated. Use one of the optional max
or min elements to specify the boundaries.

Example

@PastOrPres
ent

Date
travelDate;

@Pattern(re
gexp="\\(\\
d{31\\)\\d{
3}-\\d{4}")
String

phoneNumber

’

@Positive
BigDecimal
area;

@Positivelr
lero

int
totalGoals;

@Size(min=2
, max=240)
String
briefMessag
e,

In the following example, a constraint is placed on a field using the built-in @NotNull constraint:

public class Name {

@NotNull

private String firstname;

@NotNull

private String lastname;

186

You can also place more than one constraint on a single JavaBeans component object. For example,
you can place an additional constraint for size of field on the firstname and the lastname fields:

public class Name {
@NotNull
@Size(min=1, max=16)
private String firstname;

@NotNull
@Size(min=1, max=16)
private String lastname;

The following example shows a method with a user-defined constraint that checks user-defined
constraint that checks for a predefined phone number pattern, such as a country specific phone
number:

©@USPhoneNumber
public String getPhone() {
return phone;

}

For a built-in constraint, a default implementation is available. A user-defined or custom constraint
needs a validation implementation. In the preceding example, the @USPhoneNumber custom constraint
needs an implementation class.

Repeating Annotations

From Bean Validation 2.0 onwards, you can specify the same constraint several times on a
validation target using repeating annotation:

public class Account {

@Max (value = 2000, groups = Default.class, message = "max.value")
@Max (value = 5000, groups = GoldCustomer.class, message = "max.value")
private long withdrawalAmount;

All in-built constraints from jakarta.validation.constraints package support repeatable
annotations. Similarly, custom constraints can use @Repeatable annotation. In the following sample,
depending on whether the group is PeakHour or NonPeakHour, the car instance is validated as either
two passengers or three passengers based car, and then listed as eligible in the car pool lane:

187

/**

* Validate whether a car is eligible for car pool lane

*/

@Documented

@Constraint(validatedBy = CarPoolValidator.class)

@Target({ METHOD, FIELD, ANNOTATION_TYPE, CONSTRUCTOR, PARAMETER, TYPE_USE })
@Retention(RUNTIME)

@Repeatable(List.class)

public @interface CarPool {

String message() default "{CarPool.message}";
Class<?>[] groups() default {};
int value();

(lass<? extends Payload>[] payload() default {};

/**
* Defines several @CarPool annotations on the same element
* @see (@link CarPool}
*/
@Target({ METHOD, FIELD, ANNOTATION_TYPE, CONSTRUCTOR, PARAMETER, TYPE_USE })
©ORetention(RUNTIME)
@Documented
@interface List {
CarPool[] value();
}

}
public class Car{

private String registrationNumber;

@CarPool(value = 2, group = NonPeakHour.class)
@CarPool(value = 3, group = {Default.class, PeakHour.class})
private int totalPassengers;

Any validation failures are gracefully handled and can be displayed by the h:messages tag.

Any managed bean that contains Bean Validation annotations automatically gets validation
constraints placed on the fields on a Jakarta Faces application’s web pages.

For more information on using validation constraints, see the following:

¢ [beanvalidation:bean-validation-advanced::bean-validation-
advanced:::_bean_validation_advanced_topics]

* Validating Resource Data with Bean Validation

» Validating Persistent Fields and Properties

188

Validating Null and Empty Strings

The Java programming language distinguishes between null and empty strings. An empty string is a
string instance of zero length, whereas a null string has no value at all.

nmn

An empty string is represented as "". It is a character sequence of zero characters. A null string is
represented by null. It can be described as the absence of a string instance.

Managed bean elements represented as a Jakarta Faces text component such as inputText are
initialized with the value of the empty string by the Jakarta Faces implementation. Validating these
strings can be an issue when user input for such fields is not required. Consider the following
example, in which the string testString is a bean variable that will be set using input entered by
the user. In this case, the user input for the field is not required.

if (testString==null) {
doSomething();

} else {
doAnotherThing();

By default, the doAnotherThing method is called even when the user enters no data, because the
testString element has been initialized with the value of an empty string.

In order for the Bean Validation model to work as intended, you must set the context parameter
jakarta.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL to true in the web deployment
descriptor file, web.xm1:

<context-param>
<param-name>jakarta.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL</param-
name>
<param-value>true</param-value>
</context-param>

This parameter enables the Jakarta Faces implementation to treat empty strings as null.

Suppose, on the other hand, that you have a @NotNull constraint on an element, meaning that input
is required. In this case, an empty string will pass this validation constraint. However, if you set the
context parameter jakarta.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL to true, the
value of the managed bean attribute is passed to the Jakarta Bean Validation runtime as a null
value, causing the @NotNull constraint to fail.

Validating Constructors and Methods

Jakarta Bean Validation constraints may be placed on the parameters of nonstatic methods and
constructors and on the return values of nonstatic methods. Static methods and constructors will
not be validated.

public class Employee {

189

public Employee (@NotNull String name) { ... }

public void setSalary(
@NotNull
@Digits(integer=6, fraction=2) BigDecimal salary,
@NotNull
@ValidCurrency
String currencyType) {

In this example, the Employee class has a constructor constraint requiring a name and has two sets
of method parameter constraints. The amount of the salary for the employee must not be null,
cannot be greater than six digits to the left of the decimal point, and cannot have more than two
digits to the right of the decimal place. The currency type must not be null and is validated using a
custom constraint.

If you add method constraints to classes in an object hierarchy, special care must be taken to avoid
unintended behavior by subtypes. See Using Method Constraints in Type Hierarchies for more
information.

Cross-Parameter Constraints

Constraints that apply to multiple parameters are called cross-parameter constraints, and may be
applied at the method or constructor level.

@ConsistentPhoneParameters
@NotNull
public Employee (String name, String officePhone, String mobilePhone) {

In this example, a custom cross-parameter constraint, @ConsistentPhoneParameters, validates that
the format of the phone numbers passed into the constructor match. The @NotNull constraint
applies to all the parameters in the constructor.

Cross-parameter constraint annotations are applied directly to the method or

constructor. Return value constraints are also applied directly to the method or

constructor. To avoid confusion as to where the constraint applies, parameter or

return value, choose a name for any custom constraints that identifies where the
(’7 constraint applies. For instance, the preceding example applies a custom
constraint, @ConsistentPhoneParameters, that indicates that it applies to the
parameters of the method or constructor.

When you create a custom constraint that applies to both method parameters and

190

return values, the validationAppliesTo element of the constraint annotation may
be set to ConstraintTarget.RETURN_VALUE or ConstraintTarget.PARAMETERS to
explicitly set the target of the validation constraint.

Validating Type Arguments of Parameterized Types

From Bean Validation 2.0 onwards, you can apply constraints to the type arguments of
parameterized types. For example: List<@NotNull Long> numbers; Constraints can be applied to
elements of container types such as List, Map, Optional, and others.

List<@Email String> emails;
public Map<@NotNull String, @USPhoneNumber String> getAddressesByType() { }

In this sample, @Email is an in-built constraint supported by Bean Validation, and @USPhoneNumber is a
user-defined constraint. See Using the Built-In Constraints to Make a New Constraint.

@USPhoneNumber has ElementType.TYPE_USE as one of its @Target, and therefore it is possible to use
@USPhoneNumber constraint for validating type arguments of parameterized types.

Identifying Parameter Constraint Violations

If a ConstraintViolationException occurs during a method call, the Bean Validation runtime returns
a parameter index to identify which parameter caused the constraint violation. The parameter
index is in the form argPARAMETER_INDEX, where PARAMETER INDEX is an integer that starts at 0 for
the first parameter of the method or constructor.

Adding Constraints to Method Return Values

To validate the return value for a method, you can apply constraints directly to the method or
constructor declaration.

@NotNull
public Employee getEmployee() { ... }

Cross-parameter constraints are also applied at the method level. Custom constraints that could be
applied to both the return value and the method parameters have an ambiguous constraint target.
To avoid this ambiguity, add a validationAppliesTo element to the constraint annotation definition
with the default set to either ConstraintTarget.RETURN_VALUE or ConstraintTarget.PARAMETERS to
explicitly set the target of the validation constraint.

@Manager(validationAppliesTo=ConstraintTarget.RETURN_VALUE)
public Employee getManager(Employee employee) { ... }

See Removing Ambiguity in Constraint Targets for more information.

191

Further Information about Jakarta Bean Validation

For more information on Jakarta Bean Validation, see

+ Jakarta Bean Validation 3.0 Specification:
https://jakarta.ee/specifications/bean-validation/3.0/

» Bean Validation Specification website:
https://beanvalidation.org/

Bean Validation: Advanced Topics

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

This chapter describes how to create custom constraints, custom validator messages, and constraint
groups using the Jakarta Bean Validation (Bean Validation).

Creating Custom Constraints

Jakarta Bean Validation defines annotations, interfaces, and classes to allow developers to create
custom constraints.

Using the Built-In Constraints to Make a New Constraint

Jakarta Bean Validation includes several built-in constraints that can be combined to create new,
reusable constraints. This can simplify constraint definition by allowing developers to define a
custom constraint made up of several built-in constraints that may then be applied to component
attributes with a single annotation.

@Pattern.List({
/* A number of format 0+1-NNN-NNN-NNNNO */
@Pattern(regexp = "\\+1-\\d{3}-\\d{3}-\\d{4}")
1)
@Constraint(validatedBy = {})
@Documented
@Target({ElementType.METHOD,
ElementType.FIELD,
ElementType.ANNOTATION_TYPE,
ElementType.CONSTRUCTOR,
ElementType.PARAMETER,
ElementType.TYPE_USE})
@Retention(RetentionPolicy.RUNTIME)
@Repeatable(List.class)
public @interface USPhoneNumber {

String message() default "Not a valid US Phone Number";

Class<?>[] groups() default {};

192

https://jakarta.ee/specifications/bean-validation/3.0/
https://beanvalidation.org/

Class<? extends Payload>[] payload() default {};

@Target({ElementType.METHOD,
ElementType.FIELD,
ElementType.ANNOTATION_TYPE,
ElementType.CONSTRUCTOR,
ElementType.PARAMETER,
ElementType.TYPE_USE })

@Retention(RetentionPolicy.RUNTIME)

@Documented

@interface List {

USPhoneNumber[] value();

}
}

You can also implement a Constraint Validator to validate the constraint @USPhoneNumber. For more
information about using Constraint Validator, see jakarta.validation.ConstraintValidator.

@USPhoneNumber
protected String phone;

Removing Ambiguity in Constraint Targets

Custom constraints that can be applied to both return values and method parameters require a
validationAppliesTo element to identify the target of the constraint.

@Constraint(validatedBy=MyConstraintValidator.class)
@Target({ METHOD, FIELD, TYPE, ANNOTATION_TYPE, CONSTRUCTOR, PARAMETER })
@Retention(RUNTIME)
public @interface MyConstraint {
String message() default "{com.example.constraint.MyConstraint.message}";
Class<?>[] groups() default {};
ConstraintTarget validationAppliesTo() default ConstraintTarget.PARAMETERS;

This constraint sets the validationAppliesTo target by default to the method parameters.

@MyConstraint(validationAppliesTo=ConstraintTarget.RETURN_TYPE)
public String doSomething(String paraml, String param2) { ... }

In the preceding example, the target is set to the return value of the method.

Implementing Temporal Constraints Using ClockProvider

From Bean Validation 2.0 onwards, a Clock instance is available for validator implementations to

193

validate any temporal date or time based constraints.

ValidatorFactory validatorFactory = Validation.buildDefaultValidatorFactory();
ClockProvider clockProvider = validatorFactory.getClockProvider();
java.time.Clock Clock = clockProvider.getClock();

You can also register a custom ClockProvider with a ValidatorFactory:

//Register a custom clock provider implementation with validator factory
ValidatorFactory factory = Validation
.byDefaultProvider().configure()
.clockProvider(new CustomClockProvider())
.buildValidatorFactory();

//Retrieve and use the custom Clock Provider and Clock in the Validator implementation
public class CustomConstraintValidator implements
ConstraintValidator<CustomConstraint, Object> {

public boolean isValid(Object value, ConstraintValidatorContext context){
java.time.Clock clock = context.getClockProvider().getClock();

See ClockProvider in https://jakarta.ee/specifications/platform/9/apidocs/.

Custom Constraints

Consider an employee in a firm located in U.S.A. When you register the phone number of an
employee or modify the phone number, the phone number needs to be validated to ensure that the
phone number conforms to US phone number pattern.

public class Employee extends Person {

@USPhoneNumber
protected String phone;

public Employee(String name, String phone, int age){
super(name, age);
this.phone = phone;

}

public String getPhone() {
return phone;

}

194

https://jakarta.ee/specifications/platform/9/apidocs/

public void setPhone(String phone) {
this.phone = phone;
}
}

The constraint definition @USPhoneNumber is define in the sample listed under Using the Built-In
Constraints to Make a New Constraint. In the sample, another constraint @Pattern is used to validate
the phone number.

Using In-Built Value Extractors in Custom Containers

Cascading validation

Bean Validation supports cascading validation for various entities. You can specify @Valid on a
member of the object that is validated to ensure that the member is also validated in a cascading
fashion. You can validate type arguments, for example, parameterized types and its members if
the members have the specified @Valid annotation.

public class Department {
private List<@Valid Employee> employeeslList;
}

By specifying @Valid on a parameterized type, when an instance of Department is validated, all
elements such as Employee in the employeeslList are also validated. In this example, each employee’s
"phone" is validated against the constraint @USPhoneNumber.

For more information see https://jakarta.ee/specifications/platform/9/apidocs/

Value Extractor

While validating the object or the object graph, it may be necessary to validate the constraints in
the parameterized types of a container as well. To validate the elements of the container, the
validator must extract the values of these elements in the container. For example, in order to
validate the element values of List against one or more constraints such as List<@NotOnVacation
Employee> or to apply cascading validation to List<@Valid Employee>, you need a value extractor
for the container List.

Jakarta Bean validation provides in-built value extractors for most commonly used container types
such as List, Iterable, and others. However, it is also possible to implement and register value-
extractor implementations for custom container types or override the in-built value-extractor
implementations.

Consider a Statistics Calculator for a group of Person entity and Employee is one of the sub-type of the
entity Person.

public class StatsCalculator<T extends Person> {

/* Cascading validation as well as @NotNull constraint */
private List<@NotNull @Valid T> members = new ArrayList<T>();

195

https://jakarta.ee/specifications/platform/9/apidocs/

public void addMember (T member) {
members.add(member);

}

public boolean removeMember (T member) {
return members.remove(member);

}
public int getAverageAge() {

if (members.size() == 0)
return 0;

short sum = 0;
for (T member : members) {
if(member != null) {
sum += member.getAge();
}
}

return sum / members.size();

}

public int getOldest() {
int oldest = -1;

for (T member : members) {
if(member != null) {
if (member.getAge() > oldest) {
oldest = member.getAge();
}
}
¥

return oldest;
}
}

When the StatsCalculator is validated, the "members" field is also validated. The in-built value
extractor for List is used to extract the values of List to validate the elements in List. In the case of
an employee based List, each "Employee" element is validated. For example, an employee’s "phone”
is validated using the @USPhoneNumber constraint.

In the following example, let us consider a StatisticsPrinter that prints the statistics or displays the
statistics on screen.

public class StatisticsPrinter {
private StatsCalculator<@Valid Employee> calculator;

public StatisticsPrinter(StatsCalculator<Employee> statsCalculator){

196

this.calculator = statsCalculator;

}

public void displayStatistics(){
//Use StatsCalculator, get stats, format and display them.
}

public void printStatistics(){
//Use StatsCalculator, get stats, format and print them.
}
}

The container StatisticsPrinter uses StatisticsCalculator. When StatisticsPrinter is validated,
the StatisticsCalculator is also validated by using the cascading validation such as @Valid
annotation. However, in order to retrieve the values of StatsCalculator container type, a value
extractor is required. An implementation of ValueExtractor for StatsCalculator is as follows:

public class ExtractorForStatsCalculator implements
ValueExtractor<StatsCalculator<@ExtractedValue ?>> {

@0verride

public void extractValues(StatsCalculator<@ExtractedValue ?> statsCalculator,
ValueReceiver valueReceiver) {
/* Simple value retrieval is done here.

It is possible to adapt or unwrap the value if required.*/
valueReceijver.value("<extracted value>", statsCalculator);
}
}

There are multiple mechanisms to register the ValueExtractor with Jakarta Bean Validation. See,
“Registering ValueExtractor” implementations section in the Jakarta Bean Validation specification
https://jakarta.ee/specifications/bean-validation/3.0/. One of the mechanisms is to register the value
extractor with Jakarta Bean Validation Context.

ValidatorFactory validatorFactory = Validation
.buildDefaultValidatorFactory();

ValidatorContext context = validatorFactory.
usingContext()
.addValueExtractor(new ExtractorForStatsCalculator());

Validator validator = context.getValidator();

Using this validator, StatsisticsPrinter is validated in the following sequence of operations:

1. StatisticsPrinter is validated.

197

https://jakarta.ee/specifications/bean-validation/3.0/

a. The members of StatisticsPrinter that need cascading validation are validated.

b. For container types, value extractor is determined. In the case of StatsCalculator,
ExtractorForStatsCalculator is found and then values are retrieved for validation.

c. StatsCalculator and its members such as List are validated.

d. In-built ValueExtractor for java.util.List is used to retrieve the values of elements of the list
and the validated. In this case, Employee and the field "phone" that is annotated with
@USPhoneNumber constraint is validated.

Customizing Validator Messages

Jakarta Bean Validation includes a resource bundle of default messages for the built-in constraints.
These messages can be customized and can be localized for non-English-speaking locales.

The ValidationMessages Resource Bundle

The ValidationMessages resource bundle and the locale variants of this resource bundle contain
strings that override the default validation messages. The ValidationMessages resource bundle is
typically a properties file, ValidationMessages.properties, in the default package of an application.

Localizing Validation Messages

Locale variants of ValidationMessages.properties are added by appending an underscore and the
locale prefix to the base name of the file. For example, the Spanish locale variant resource bundle
would be ValidationMessages_es.properties.

Grouping Constraints

Constraints may be added to one or more groups. Constraint groups are used to create subsets of
constraints so that only certain constraints will be validated for a particular object. By default, all
constraints are included in the Default constraint group.

Constraint groups are represented by interfaces.

public interface Employee {}

public interface Contractor {}

Constraint groups can inherit from other groups.

public interface Manager extends Employee {}

When a constraint is added to an element, the constraint declares the groups to which that
constraint belongs by specifying the class name of the group interface name in the groups element
of the constraint.

@NotNull(groups=Employee.class)

198

Phone workPhone;

Multiple groups can be declared by surrounding the groups with braces ({ and }) and separating
the groups' class names with commas.

@NotNull(groups={ Employee.class, Contractor.class })
Phone workPhone;

If a group inherits from another group, validating that group results in validating all constraints
declared as part of the supergroup. For example, validating the Manager group results in the
workPhone field being validated, because Employee is a superinterface of Manager.

Customizing Group Validation Order

By default, constraint groups are validated in no particular order. There are cases in which some
groups should be validated before others. For example, in a particular class, basic data should be
validated before more advanced data.

To set the validation order for a group, add a jakarta.validation.GroupSequence annotation to the
interface definition, listing the order in which the validation should occur.

@GroupSequence({Default.class, ExpensiveValidationGroup.class})
public interface FullValidationGroup {}

When validating FullValidationGroup, first the Default group is validated. If all the data passes
validation, then the ExpensiveValidationGroup group is validated. If a constraint is part of both the
Default and the ExpensiveValidationGroup groups, the constraint is validated as part of the Default
group and will not be validated on the subsequent ExpensiveValidationGroup pass.

Using Method Constraints in Type Hierarchies

If you add validation constraints to objects in an inheritance hierarchy, take special care to avoid
unintended errors when using subtypes.

For a given type, subtypes should be able to be substituted without encountering errors. For
example, if you have a Person class and an Employee subclass that extends Person, you should be able
to use Employee instances wherever you might use Person instances. If Employee overrides a method
in Person by adding method parameter constraints, code that works correctly with Person objects
may throw validation exceptions with Employee objects.

The following code shows an incorrect use of method parameter constraints within a class
hierarchy:

public class Person {

public void setPhone(String phone) { ... }
}

199

public class Employee extends Person {

@0verride
public void setPhone(@Verified String phone) { ... }

}

By adding the @Verified constraint to Employee.setPhone, parameters that were valid with
Person.setPhone will not be valid with Employee.setPhone. This is called strengthening the
preconditions (that is, the method parameters) of a subtype’s method. You may not strengthen the
preconditions of subtype method calls.

Similarly, the return values from method calls should not be weakened in subtypes. The following
code shows an incorrect use of constraints on method return values in a class hierarchy:

public class Person {

@Verified
public USPhoneNumber getPhone() { ... }
}

public class Employee extends Person {

@0verride
public USPhoneNumber getPhone() { ... }

}

In this example, the Employee.getPhone method removes the @Verified constraint on the return
value. Return values that would be not pass validation when calling Person.getEmail are allowed
when calling Employee.getPhone. This is called weakening the postconditions (that is, return values)
of a subtype. You may not weaken the postconditions of a subtype method call.

If your type hierarchy strengthens the preconditions or weakens the postconditions of subtype
method calls, a jakarta.validation.ConstraintDeclarationException will be thrown by the Jakarta
Bean Validation runtime.

Classes that implement several interfaces that each have the same method signature, known as
parallel types, need to be aware of the constraints applied to the interfaces that they implement to
avoid strengthening the preconditions. For example:

public interface PaymentService {
void processOrder(Order order, double amount);

}

public interface CreditCardPaymentService {
void processOrder (@NotNull Order order, @NotNull double amount);

200

public class MyPaymentService implements PaymentService,
CreditCardPaymentService {

@0verride
public void processOrder(Order order, double amount) { ... }

In this case, MyPaymentService has the constraints from the processOrder method in
CreditCardPaymentService, but client code that calls PaymentService.processOrder doesn’t expect
these constraints. This is another example of strengthening the preconditions of a subtype and will
result in a ConstraintDeclarationException.

Rules for Using Method Constraints in Type Hierarchies

The following rules define how method validation constraints should be used in type hierarchies.

* Do not add method parameter constraints to overridden or implemented methods in a subtype.

* Do not add method parameter constraints to overridden or implemented methods in a subtype
that was originally declared in several parallel types.

* You may add return value constraints to an overridden or implemented method in a subtype.

Jakarta Security

Jakarta Security is the overarching security API in Jakarta EE. Overarching here means that it
strives to address the security needs of all other APIs in Jakarta EE in a holistic way.

Due to historical and political reasons, a number of security features are still distributed among
several other APIs in Jakarta EE. Sometimes they overlap, and sometimes such features are only
accessible from these other APIs. In this chapter, we’ll focus primarily on explaining Jakarta
Security, but we’ll mention when other APIs are needed to accomplish a certain task.

Overview
Before we look at some practical examples, let’s quickly go through some basics.
Some of the guiding principles in Jakarta Security are:

1. It should work directly out of the box, without requiring vendor-specific configuration.

2. It leverages Jakarta CDI as much as possible. Most artifacts are CDI beans, and many features
are done via CDI interceptors.

3. The difference between framework-provided artifacts and custom (user provided) artifacts is
minimal or non-existent.

4. It fully integrates with security features from other Jakarta EE APIs and proprietary (vendor-
specific) artifacts.

201

Jakarta Security defines several distinct artifacts that play an important role in the security process:

1. Authentication Mechanism
2. Identity Store

3. Permission Store
The first two of these are used in the authentication process:

An authentication mechanism is somewhat like a controller in the well-known MVC pattern; it is the
entity that interacts with the caller (typically a human), via some kind of view to collect credentials,
and with the model (business logic) to validate these credentials. An authentication mechanism
knows about the environment this caller uses to communicate with the server. An authentication
mechanism for HTTP knows about URLs to redirect or forward to, or about response headers to
send to the client. It also knows about the data coming back, such as cookies, request headers, and
post data. Examples of authentication mechanisms are Form authentication and Basic
authentication.

An identity store is more like the model in the MVC pattern. This entity strictly performs a business /
data operation where credentials go in, and an identity comes out. The identity contains logic to
validate said credentials, and embeds or contacts a database. This "database" contains usernames,
along with their credentials and (typically) roles. An identity store therefore knows nothing about
the environment that this caller uses to communicate with the server; for example, it doesn’t know
about HTTP or headers and more. Some examples of identity stores are services that contact SQL or
NoSQL databases, LDAP servers, files on the file-system, and more.

Figure 7, “Mechanism Store in MVC” shows the authentication mechanism and identity store in an
MVC-like structure.

uthentication Mecha,

Credentials...

Login Form/Dialog... Identity Store...

is not SVG - cannot dig

Figure 7. Mechanism Store in MVC

The third one is used for the authorization process:

A permission store is another kind of model that stores permissions, typically either globally, or per
role (role-based permissions). This entity then performs a business / data operation where a query
and an identity go in, and a yes/no answer goes out. For instance, a query such as "can access
/foo/bar?" along with the identity for user "John" with roles "bar" and "kaz" would return "yes" if
that identity is authorized to access "/foo/bar"”, and "no" if not authorized. Examples of permission
stores are the Jakarta Authorization usage of the Policy class, or the internal data structure where a
Servlet Container such as Tomcat or Jetty stores the security constraints an application defined.

202

https://jakarta.ee/specifications/security/3.0/jakarta-security-spec-3.0.html#authentication-mechanism
https://jakarta.ee/specifications/security/3.0/jakarta-security-spec-3.0.html#identity-store
https://en.wikipedia.org/wiki/Model–view–controller

Provided authentication mechanisms and identity stores

Jakarta Security provides a number of built-in authentication mechanisms and identity stores. We’ll
enumerate them here first, and will look at them in more detail below.

Authentication mechanisms:

1. Basic
2. Form
3. Custom Form

4. Open ID Connect (OIDC)
Identity stores:

1. Database

2. LDAP

Custom authentication mechanisms and identity stores

When the provided authentication mechanisms and identity stores aren’t sufficient, we can easily
define custom ones. Both provided and custom ones use the same interfaces, and the system doesn’t
distinguish between them.

Authentication mechanisms and identity stores from other APIs

The Servlet specification defines the exact same Form and Basic authentication mechanisms.
Authenticating with them will have the same result as authenticating with a Jakarta Security
authentication mechanism. (Role checks will work the same independent on which API was used to
authenticate.)

A Servlet authentication mechanism, however, will not necessarily consult a Jakarta Security
identity store. This is server dependent. The identity store that is called is server dependent as well.
Calling this server-dependent identity store is possible from Jakarta Security, but as an advanced
feature.

Likewise, programmatic role checks can be done from various APIs, including Jakarta Security,
Jakarta REST, and Jakarta Servlet. These all return the same outcome, independent of whether
authentication took place with a Jakarta Security Authentication Mechanism or a Servlet
Authentication Mechanism. Within a Jakarta EE environment the usage of Jakarta Security for this
is encouraged, and the usage of those other APIs is discouraged.

Programmatic role checks in Jakarta REST, Jakarta Servlet and various other APIs

o are not being deprecated for the time being, as those APIs are also used stand-
alone (outside Jakarta EE). Future versions of those APIs may contain warnings
about their usage within Jakarta EE.

203

https://jakarta.ee/specifications/security/3.0/jakarta-security-spec-3.0.html#basic-annotation
https://jakarta.ee/specifications/security/3.0/jakarta-security-spec-3.0.html#form-annotation
https://jakarta.ee/specifications/security/3.0/jakarta-security-spec-3.0.html#custom-form-annotation
https://jakarta.ee/specifications/security/3.0/jakarta-security-spec-3.0.html#openid-connect-annotation
https://jakarta.ee/specifications/security/3.0/jakarta-security-spec-3.0.html#database-annotation
https://jakarta.ee/specifications/security/3.0/jakarta-security-spec-3.0.html#ldap-annotation
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/identitystore
https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html
https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#form-based-authentication
https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#http-basic-authentication

Securing an endpoint with Basic authentication
In the following example, we’ll be securing a REST endpoint using Basic authentication.
You’ll learn how to:

1. Define security constraints
2. Set a provided authentication mechanism
3. Define (and implicitly set) a custom identity store

4. Use the Jakarta Security SecurityContext

Write the application

Let’s start with defining a simple REST resource class for a /rest/resource endpoint:

@Path("/resource")
@RequestScoped
public class Resource {

@Inject
private SecurityContext securityContext;

@GET
@Produces(TEXT_PLAIN)
public String getCallerAndRole() {
return
securityContext.getCallerPrincipal().getName() + " : " +
securityContext.isCallerInRole("user");

This resource uses the injected Jakarta EE SecurityContext to obtain access to the current
authenticated caller, which is represented by a Principal instance.

If this resource were available to unauthenticated callers, getCallerPrincipal() would return null
for unauthenticated requests, so we’d have to check for null. Our example, however, requires
authentication for this resource, so we can skip that check.

There is a Jakarta REST-specific type that is also named SecurityContext and has
o similar methods as the ones we used here. From the Jakarta EE perspective, that is
a discouraged type and the Jakarta Security version is to be preferred.

Declare the security constraints

Next we’ll define the security constraints in web.xml, which tell the security system that access to a
given URL or URL pattern is protected, and hence authentication is required:

204

https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#specifying-security-constraints
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext
https://jakarta.ee/specifications/restful-ws/3.1/apidocs/jakarta.ws.rs/jakarta/ws/rs/core/securitycontext

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="https://jakarta.ee/xml/ns/jakartaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee

https://jakarta.ee/xml/ns/jakartaee/web-app_6_0.xsd"
version="6.0">

<security-constraint>
<web-resource-collection>
<web-resource-name>protected</web-resource-name>
<url-pattern>/rest/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>user</role-name>
</auth-constraint>
</security-constraint>

</web-app>

This XML essentially says that to access any URL that starts with "/rest” requires the caller to have
the role "user". Roles are opaque strings; merely identifiers. It’s fully up to the application how
broad or fine-grained they are.

In Jakarta EE, internally these XML constraints are transformed into Permission
o instances and made available via a specific type of permission store. Knowledge
about this transformation is only needed for very advanced use cases.

The observant reader may wonder if XML is really the only option here, given the
strong feelings that exist in parts of the community around XML. The answer is yes
and no. Jakarta EE does define the @RolesAllowed annotation that could be used to
replace the XML shown above, but only the legacy Enterprise Beans has specified a

o behaviour for this when put on an Enterprise Bean. Jakarta REST has done no such
thing, although the JWT API in MicroProfile has defined this for REST resources. In
Jakarta EE, however, this remains a vendor-specific extension. There are also a
number of annotations and APIs in Jakarta EE to set these kinds of constraints for
individual Servlets, but those won’t help us much either here.

Declare the authentication mechanism

@ApplicationScoped
@BasicAuthenticationMechanismDefinition(realmName = "basicAuth")
@DeclareRoles({ "user", "caller" })

@ApplicationPath("/rest")

public class ApplicationConfig extends Application {

}

205

https://jakarta.ee/specifications/annotations/2.1/annotations-spec-2.1.html#jakarta-annotation-security-rolesallowed
https://microprofile.io/project/eclipse/microprofile-jwt-auth/spec/src/main/asciidoc/configuration.asciidoc
https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#programmatic-security-policy-configuration

To declare the wusage of a specific authentication mechanism, Jakarta EE provides
[XYZ]MechanismDefinition annotations. Such an annotation is picked up by the security system, and
in response to it a CDI bean that implements the HttpAuthenticationMechanism is enabled for it.

The annotation can be put on any bean, but in a REST application it fits particularly well on the
Application subclass because it also declares the path for REST resources.

Define the identity store

Finally, let’s define a simple identity store that the security system can use to validate provided
credentials for Basic authentication:

@ApplicationScoped
public class TestIdentityStore implements IdentityStore {

public CredentialValidationResult validate(UsernamePasswordCredential
usernamePasswordCredential) {
if (usernamePasswordCredential.compareTo("john", "secret1")) {
return new CredentialValidationResult("john", Set.of("user", "caller"));

}

return INVALID RESULT;

This identity store only validates the single identity (user) "john", with password "secret1" and roles
"user" and "caller". Defining this kind of identity store is often the simplest way to get started.

Jakarta Security doesn’t provide a simple identity store out of the box. The reason
o is that everything in Jakarta Security promotes best practices, and it’s not clear if a
simple identity store fits in with those best practices.

The identity store is installed and used by the security system just by the virtue of being there; it
picks up all enabled CDI beans that implement IdentityStore. Such beans can be enabled by the
security system itself (following some configuration annotation), or can be programmatically added
using the appropriate CDI APIs. Where the bean comes from doesn’t matter for Jakarta Security,
only the fact that it’s there.

Test the application

I’s now time to test our application. A ready-to-test version is available from the Jakarta EE
Examples project at https://github.com/eclipse-ee4j/jakartaee-examples.

Download or clone this repo, then cd into the focused folder and execute:

mvn clean install -pl :restBasicAuthCustomStore

206

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/httpauthenticationmechanism
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/identitystore
https://github.com/eclipse-ee4j/jakartaee-examples

This will run a test associated with the project, printing something like the following:

john : true

[INFO] Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: 6.414 s - in
jakartaee.examples.focused.security.restbasicauthcustomstore.RestBasicAuthCustomStorel
T

Let’s take a quick look at the actual test:

@RunWith(Arquillian.class)
©@RunAsClient
public class RestBasicAuthCustomStorelIT extends ITBase {

/**

* Stores the base URL.
*/
@ArquillianResource
private URL baselrl;

/**

* Test the call to a protected REST service

*

* @throws Exception when a serious error occurs.

*/

@RunAsClient

@Test

public void testRestCall() throws Exception {
DefaultCredentialsProvider credentialsProvider = new

DefaultCredentialsProvider();

credentialsProvider.addCredentials("john", "secret1");

webClient.setCredentialsProvider(credentialsProvider);

TextPage page = web(lient.getPage(baseUrl + "/rest/resource");
String content = page.getContent();

System.out.println(content);

The test starts a server and deploys the output of the build process (a .war file) to it. The test runs in
the integration test phase, rather than the unit test phase, to make sure this build output is
available when it runs. The test then sends a request to the server using the provided HtmlUnit
webClient. Note that the webClient can be used for any other HTTP requests your test requires.

If you want to inspect the app yourself, you can manually deploy the WAR file
(security/restBasicAuthCustomStore/target/restBasicAuthCustomStore.war) to the server of your
choice (e.g. GlassFish 7), and request the URL via a browser or a commandline util such as curl.

207

https://projects.eclipse.org/projects/ee4j.glassfish

The DefaultCredentialsProvider used here makes sure that the headers for Basic authentication are
added to the request. The Basic authentication mechanism that we defined for our applications
reads those headers, extracts the username and password from them, and consults our identity
store with them.

Securing an Endpoint with Basic Authentication and a Database Identity
Store

In the following example, we’ll secure a REST endpoint using Basic authentication and the database
identity store that is provided by Jakarta Security.

You’ll learn how to:

Define security constraints
Use the provided BasicAuthenticationMechanismDefinition
Use the provided DatabaseldentityStoreDefinition

Populate and configure the identity store

ik W M P

Use the Jakarta Security SecurityContext

Write the application

Let’s start with defining a simple REST resource class for a /rest/resource endpoint:

@Path("/resource")
@RequestScoped
public class Resource {

@Inject
private SecurityContext securityContext;

@GET
@Produces(TEXT_PLAIN)
public String getCallerAndRole() {
return
securityContext.getCallerPrincipal().getName() + " : " +
securityContext.isCallerInRole("user");

This resource uses the injected Jakarta EE SecurityContext to obtain access to the current
authenticated caller, which is represented by a Principal instance.

If this resource were available to unauthenticated callers, getCallerPrincipal() would return null
for unauthenticated requests, so we’d have to check for null. Our example, however, requires
authentication for this resource, so we can skip that check.

208

https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#specifying-security-constraints
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/basicauthenticationmechanismdefinition
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/databaseidentitystoredefinition
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext

There is a Jakarta REST-specific type that is also named SecurityContext and has
similar methods as the ones we used here. From the Jakarta EE perspective, that is
a discouraged type and the Jakarta Security version is to be preferred.

Declare the authentication mechanism and identity store

@ApplicationScoped
@BasicAuthenticationMechanismDefinition(
realmName = "basicAuth"

)
@DatabaseldentityStoreDefinition(

callerQuery = "select password from basic_auth_user where username = ?",

groupsQuery = "select name from basic_auth_group where username = ?",

hashAlgorithmParameters = {
"Pbkdf2PasswordHash.Iterations=3072",
"Pbkdf2PasswordHash.Algorithm=PBKDF2WithHmacSHA512",
"Pbkdf2PasswordHash.SaltSizeBytes=64"

}

)

@DeclareRoles("user")
@ApplicationPath("/rest")
public class ApplicationConfig extends Application {

To declare the wusage of a specific authentication mechanism, Jakarta EE provides
[XYZ]MechanismDefinition annotations. Such an annotation is picked up by the security system, and
in response to it a CDI bean that implements the HttpAuthenticationMechanism is enabled for it.

The annotation can be put on any bean, but in a REST application it fits particularly well on the
Application subclass because it also declares the path for REST resources.

Likewise, to declare the usage of a specific identity store, Jakarta EE provides [XYZ]StoreDefinition
annotations.

The annotations can be put on any bean, but in a REST application it fits particularly well on the
Application subclass that also declares the path for REST resources.

You can use the provided DatabaseIdentityStoreDefinition with any authentication mechanism that
validates username/password credentials. It requires at least two SQL queries:

1. A query that returns a password for the username part of credentials. The returned password is
compared with the password part of those credentials. If they match (of more typically, their
hashes match) the credential is considered valid.

2. A query that returns a number of roles given that same username part of the credentials

Although not required, it’s a good practice to provide some parameters for the hash algorithm.
Passwords should never be stored in plain-text in a database.

209

https://jakarta.ee/specifications/restful-ws/3.1/apidocs/jakarta.ws.rs/jakarta/ws/rs/core/securitycontext
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/httpauthenticationmechanism

Populating the identity store

In order to use the identity store, we need to put some data in a database. The following code shows
one way how to do that:

@ApplicationScoped
@BasicAuthenticationMechanismDefinition(
realmName = "basicAuth"
)
@DatabaseIdentityStoreDefinition(
callerQuery = "select password from basic_auth_user where username = ?",
groupsQuery = "select name from basic_auth_group where username = ?",
hashAlgorithmParameters = {
"Pbkdf2PasswordHash.Iterations=3072",
"Pbkdf2PasswordHash.Algorithm=PBKDF2WithHmacSHA512",
"Pbkdf2PasswordHash.SaltSizeBytes=64"

}
)

@DeclareRoles("user")
@ApplicationPath("/rest")
public class ApplicationConfig extends Application {

/**

* Id of the one and only user we populate in out DB.
*/

private static final BigInteger USER_ID = ONE;

/**

* Id of the one and only group we populate in out DB.
*/

private static final BigInteger GROUP_ID = ONE;

@PersistenceContext
private EntityManager entityManager;

@Inject
private Pbkdf2PasswordHash passwordHash;

@Transactional
public void onStart(@0Observes @Initialized(ApplicationScoped.class) Object
applicationContext) {
passwordHash.initialize(Map.of(
"Pbkdf2PasswordHash.Iterations", "3072",
"Pbkdf2PasswordHash.Algorithm", "PBKDF2WithHmacSHA512",
"Pbkdf2PasswordHash.SaltSizeBytes", "64"));

if (entityManager.find(User.class, USER_ID) == null) {
var user = new User();
user.id = USER_ID;
user.username = "john";
user.password = passwordHash.generate("secret1".toCharArray());

210

entityManager.persist(user);

}

if (entityManager.find(Group.class, GROUP_ID) == null) {
var group = new Group();
group.id = GROUP_ID;
group.name = "user";
group.username = "john";
entityManager.persist(group);

}

@Entity
@Table(name = "basic_auth_user")
class User {

@Id

BigInteger id;

@Column(name = "password")
String password;

@Column(name = "username", unique = true)
String username;

}

@Entity
@Table(name = "basic_auth_group")
class Group {

@Column(name = "id")

@Id

BigInteger id;

@Column(name = "name")
String name;

@Column(name = "username")
String username;

The code above uses Jakarta Persistence, which generates SQL from Java types. Jakarta Persistence
is discussed in detail in its own chapter. Since we haven’t specified a datasource, the
@DatabaseldentityStoreDefinition annotation will use the default datasource defined in Jakarta EE,
so you don’t have to explicitly install and configure an external database such as Postgres or
MySQL. However, if necessary, you can configure a different one using the dataSourcelookup
attribute.

211

Test the application

I’s now time to test our application. A ready-to-test version is available from the Jakarta EE
Examples project at https://github.com/eclipse-ee4j/jakartaee-examples.

Download or clone this repo, then cd into the focused folder and execute:
mvn clean install -pl :restBasicAuthDBStore
This will run a test associated with the project, printing something like the following:

john : true
[INFO] Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: 8.307 s - in
jakartaee.examples.focused.security.restbasicauthdbstore.RestBasicAuthDBStorelIT

The test itself is basically the same as that for the Securing an endpoint with Basic authentication
example.

Securing an endpoint with Basic authentication and multiple identity stores

In the following example, we’ll be securing a REST endpoint using Basic authentication and two
identity stores: the database identity store that is provided by Jakarta Security and a custom
identity store.

You’ll learn how to:

Define security constraints
Use the provided BasicAuthenticationMechanismDefinition
Use the provided DatabaseldentityStoreDefinition

Create a custom identity store

SR A A

Use the Jakarta Security SecurityContext

Write the application

Let’s start with defining a simple REST resource class for a /rest/resource endpoint:

@Path("/resource")
@RequestScoped
public class Resource {

@Inject
private SecurityContext securityContext;

@GET

@©Produces(TEXT_PLAIN)

public String getCallerAndRole() {
return

212

https://github.com/eclipse-ee4j/jakartaee-examples
https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#specifying-security-constraints
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/basicauthenticationmechanismdefinition
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/databaseidentitystoredefinition
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/package-summary.html
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext

securityContext.getCallerPrincipal().getName() + " : " +
securityContext.isCallerInRole("user");

This resource uses the injected Jakarta EE SecurityContext to obtain access to the current
authenticated caller, which is represented by a Principal instance.

If this resource were available to unauthenticated callers, getCallerPrincipal() would return null
for unauthenticated requests, so we’d have to check for null. Our example, however, requires
authentication for this resource, so we can skip that check.

There is a Jakarta REST-specific type that is also named SecurityContext and has
similar methods as the ones we used here. From the Jakarta EE perspective, that is
a discouraged type and the Jakarta Security version is to be preferred.

Declare the authentication mechanism and identity store

@ApplicationScoped
@BasicAuthenticationMechanismDefinition(
realmName = "basicAuth"
)
@DatabaseldentityStoreDefinition(
callerQuery = "select password from basic_auth_user where username = ?",
groupsQuery = "select name from basic_auth_group where username = ?",
hashAlgorithmParameters = {
"Pbkdf2PasswordHash.Iterations=3072",
"Pbkdf2PasswordHash.Algorithm=PBKDF2WithHmacSHA512",
"Pbkdf2PasswordHash.SaltSizeBytes=64"
}
)

@DeclareRoles("user")
@ApplicationPath("/rest")
public class ApplicationConfig extends Application {

@ApplicationScoped
public class CustomIdentityStore implements IdentityStore {

public CredentialValidationResult validate(UsernamePasswordCredential
usernamePasswordCredential) {
if (usernamePasswordCredential.compareTo("pete", "secret2")) {
return new CredentialValidationResult("pete", Set.of("user", "caller"));

}

return INVALID_RESULT;

213

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext
https://jakarta.ee/specifications/restful-ws/3.1/apidocs/jakarta.ws.rs/jakarta/ws/rs/core/securitycontext

In this example we have two enabled CDI beans implementing the IdentityStore interface. One of
them will be implicitly enabled via the @DatabaseldentityStoreDefinition annotation, while the
other one is defined explicitly via the CustomIdentityStore class. As with a single identity store, it
doesn’t matter how or where the CDI beans are defined, only that multiple enabled ones exist.

When multiple identity stores are present, the security system will try them in order of their
priority. We didn’t set a priority here, so the order will be undefined. If the default validation
algorithm is used, a successful validation wins over a failed validation. For example, let’s say we
have multiple identity stores that know about the user "pete". If "pete" fails validation in one store,
but passes validation in another store, the end result is still that validation passed.

In the two stores above, however only one store knows about "pete" and that’s the
CustomIdentityStore. The store created from @DatabaseldentityStoreDefinition doesn’t know about
"pete" at all, and will simply not validate it.

Populating the identity store

In order to use the identity store, we need to put some data in a database. This is done in the same
as in Securing an Endpoint with Basic Authentication and a Database Identity Store.

Test the application

I’s now time to test our application. A ready-to-test version is available from the Jakarta EE
Examples project at https://github.com/eclipse-ee4j/jakartaee-examples.

Download or clone this repo, then cd into the focused folder and execute:

mvn clean install -pl :restBasicAuthDBStoreAndCustomStore

This will run a test associated with the project, printing something like the following:

john : true

pete : true

[INFO] Tests run: 2, Failures: @, Errors: @, Skipped: @, Time elapsed: 9.239 s - in
jakartaee.examples.focused.security.restbasicauthdbstoreandcustomstore.RestBasicAuthDB
StoreAndCustomStorelT

Let’s take a quick look at the actual test again:

@RunWith(Arquillian.class)
@RunAsClient
public class RestBasicAuthDBStoreAndCustomStoreIT extends ITBase {

@ArquillianResource
private URL baselrl;

214

https://github.com/eclipse-ee4j/jakartaee-examples

/**

* Test the call to a protected REST service

*

* <p>

* This will use the "john" credentials, which should be validated by the DB store
*

* @throws Exception when a serious error occurs.

*/
@RunAsClient
@Test

public void testRestCalll() throws Exception {
DefaultCredentialsProvider credentialsProvider = new
DefaultCredentialsProvider();
credentialsProvider.addCredentials("john", "secret1");

webClient.setCredentialsProvider(credentialsProvider);

TextPage page = webClient.getPage(baseUrl + "/rest/resource");
String content = page.getContent();

System.out.println(content);

}
/**

* Test the call to a protected REST service

*

* <p>

* This will use the "pete" credentials, which should be validated by the custom

store
*

* @throws Exception when a serious error occurs.
*/
@RunAsClient
@Test
public void testRestCall2() throws Exception {
DefaultCredentialsProvider credentialsProvider = new
DefaultCredentialsProvider();
credentialsProvider.addCredentials("pete", "secret2");

webClient.setCredentialsProvider(credentialsProvider);

TextPage page = webClient.getPage(baseUrl + "/rest/resource");
String content = page.getContent();

System.out.println(content);

The test starts a server and deploys the output of the build process (a .war file) to it. The test runs in

215

the integration test phase, rather than the unit test phase, to make sure this build output is
available when it runs. The test then sends a request to the server using the provided HtmlUnit
webClient. Note that the webClient can be used for any other HTTP requests your test requires.

If you want to inspect the app yourself, you can manually deploy the WAR file
(security/restBasicAuthDBStoreAndCustomStore/target/restBasicAuthDBStoreAndCustomStore.war) to
the server of your choice (e.g. GlassFish 7), and request the URL via a browser or a commandline
util such as curl.

We have two tests here: in one test we try to authenticate as "john", in the other test as "pete". As
we’ve seen, each identity store only validates one of them. The fact that both tests pass
demonstrates that each store will validate the right user, and that not recognizing a username by
any of them will not fail the overall validation.

Securing an endpoint with Form authentication
In the following example, we’ll secure a REST endpoint using Form authentication.
You’ll learn how to:

1. Define security constraints
2. Use the Form authentication mechanism
3. How to define (and implicitly set) a custom identity store

4. Use the Jakarta Security SecurityContext

Write the application

Let’s start with defining a simple REST resource class for a /rest/resource endpoint:

@Path("/resource")
@RequestScoped
public class Resource {

@Inject
private SecurityContext securityContext;

@GET
@Produces(TEXT_PLAIN)
public String getCallerAndRole() {
return
securityContext.getCallerPrincipal().getName() + " : " +
securityContext.isCallerInRole("user");

This resource uses the injected Jakarta EE SecurityContext to obtain access to the current
authenticated caller, which is represented by a Principal instance.

216

https://projects.eclipse.org/projects/ee4j.glassfish
https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#specifying-security-constraints
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/formauthenticationmechanismdefinition
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/package-summary.html
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext

If this resource were available to unauthenticated callers, getCallerPrincipal() would return null
for unauthenticated requests, so we’d have to check for null. Our example, however, requires
authentication for this resource, so we can skip that check.

There is a Jakarta REST-specific type that is also named SecurityContext and has
o similar methods as the ones we used here. From the Jakarta EE perspective, that is
a discouraged type and the Jakarta Security version is to be preferred.

Declare the security constraints

Next we’ll define the security constraints in web.xml, which tell the security system that access to a
given URL or URL pattern is protected, and hence authentication is required:

<?xml version="1.0" encoding="UTF-8"7>

<web-app xmlns="https://jakarta.ee/xml/ns/jakartaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee

https://jakarta.ee/xml/ns/jakartaee/web-app_6_0.xsd"
version="6.0">

<security-constraint>
<web-resource-collection>
<web-resource-name>protected</web-resource-name>
<url-pattern>/rest/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>user</role-name>
</auth-constraint>
</security-constraint>

</web-app>

This XML essentially says that to access any URL that starts with "/rest" requires the caller to have
the role "user". Roles are opaque strings; merely identifiers. It’s fully up to the application how
broad or fine-grained they are.

In Jakarta EE, internally these XML constraints are transformed into Permission
o instances and made available via a specific type of permission store. Knowledge
about this transformation is only needed for very advanced use cases.

The observant reader may wonder if XML is really the only option here, given the
strong feelings that exist in parts of the community around XML. The answer is yes
and no. Jakarta EE does define the @RolesAllowed annotation that could be used to
o replace the XML shown above, but only the legacy Enterprise Beans has specified a
behaviour for this when put on an Enterprise Bean. Jakarta REST has done no such
thing, although the JWT API in MicroProfile has defined this for REST resources. In
Jakarta EE, however, this remains a vendor-specific extension. There are also a
number of annotations and APIs in Jakarta EE to set these kinds of constraints for

217

https://jakarta.ee/specifications/restful-ws/3.1/apidocs/jakarta.ws.rs/jakarta/ws/rs/core/securitycontext
https://jakarta.ee/specifications/annotations/2.1/annotations-spec-2.1.html#jakarta-annotation-security-rolesallowed
https://microprofile.io/project/eclipse/microprofile-jwt-auth/spec/src/main/asciidoc/configuration.asciidoc
https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#programmatic-security-policy-configuration

individual Servlets, but those won’t help us much either here.

Declare the authentication mechanism

@ApplicationScoped
@FormAuthenticationMechanismDefinition(
loginToContinue = @LoginToContinue(
loginPage="/1ogin.html",
errorPage="/1login-error.html"

)

@DeclareRoles({ "user", "caller" })
@ApplicationPath("/rest")

public class ApplicationConfig extends Application {

}

To declare the wusage of a specific authentication mechanism, Jakarta EE provides
[XYZ]MechanismDefinition annotations. Such an annotation is picked up by the security system, and
in response to it a CDI bean that implements the HttpAuthenticationMechanism is enabled for it.

The annotation can be put on any bean, but in a REST application it fits particularly well on the
Application subclass because it also declares the path for REST resources.

Contrary to the Basic HTTP authentication mechanism, the Form authentication mechanism allows
us to customize the login dialog (the process between the caller and the authentication mechanism)
and to keep track of the authenticated session on the server (using a cookie). This also allows us to
logout, something that for unknown reasons has never been specified for Basic HTTP
authentication.

To use this authentication method, we need to designate two paths to resources that are relative to
our application. One path is for the login page, which the user will be directed to when attempting
to access a protected resource. The other path is for when login fails, such as when the user enters
incorrect login credentials. If the paths are the same, a request parameter can be used to
distinguish between them. Paths can point to anything our server can respond to; a static HTML
file, a REST resource, or anything else. For simplicity, we’ll use two static HTML files here:

<IDOCTYPE html>
<html lang="en">
<head><title>Login to continue</title></head>
<body>
<h1>Login to continue</h1>
<form method="post" action="j_security_check">
<div>
<label>Username: <input type="text" name="j_username"></label>
</div>
<div>
<label>Password: <input type="password" name="j_password"></label>
</div>

218

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/httpauthenticationmechanism

<div>
<input type="submit" value="Submit">
</div>
</form>
</body>
</html>

<!DOCTYPE html>
<html lang="en">
<head><title>Login failed!</title></head>

<body>
<h1>Login failed!</h1>
<div>
Try again
</div>
</body>
</html>

Define the identity store

Finally, let’s define a basic identity store that the security system can use to validate provided
credentials for Form authentication:

@ApplicationScoped
public class CustomIdentityStore implements IdentityStore {

public CredentialValidationResult validate(UsernamePasswordCredential
usernamePasswordCredential) {
if (usernamePasswordCredential.compareTo("john", "secret1")) {
return new CredentialValidationResult("john", Set.of("user", "caller"));

}

return INVALID_RESULT;

This identity store only validates the single identity (user) "john", with password "secret1l" and roles
"user" and "caller". Defining this kind of identity store is often the simplest way to get started. Note
that Jakarta Security doesn’t define a simple identity store out of the box, because there are
questions about whether that would promote security best practices.

The identity store is installed and used by the security system just by the virtue of being there; it
picks up all enabled CDI beans that implement IdentityStore. Such beans can be enabled by the
security system itself (following some configuration annotation), or can be programmatically added
using the appropriate CDI APIs. Where the bean comes from doesn’t matter for Jakarta Security,
only the fact that it’s there.

219

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/identitystore

Test the application

I’s now time to test our application. A ready-to-test version is available from the Jakarta EE
Examples project at https://github.com/eclipse-ee4j/jakartaee-examples.

Download or clone this repo, then cd into the focused folder and execute:

mvn clean install -pl :restBasicAuthCustomStore

This will run a test associated with the project, printing something like the following:

john : true
[INFO] Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: 5.24 s - in
jakartaee.examples.focused.security.restformauthcustomstore.RestFormAuthCustomStoreIT

Let’s take a quick look at the actual test:

@RunWith(Arquillian.class)
©@RunAsClient
public class RestFormAuthCustomStorelIT extends ITBase {

@ArquillianResource
private URL baselrl;

/**

* Test the call to a protected REST service

*

* @throws Exception when a serious error occurs.
*/
@RunAsClient
@Test
public void testRestCall() throws Exception {
HtmlPage loginPage = webClient.getPage(baseUrl + "/rest/resource");
System.out.println(loginPage.asXml());

HtmlForm form = loginPage.getForms()
.get(0);

form.getInputByName("j_username")
.setValueAttribute("john");

form.getInputByName("j_password")
.setValueAttribute("secret1");

TextPage page = form.getInputByValue("Submit")
.click();

System.out.println(page.getContent());

220

https://github.com/eclipse-ee4j/jakartaee-examples

The test starts a server and deploys the output of the build process (a .war file) to it. The test runs in
the integration test phase, rather than the unit test phase, to make sure this build output is
available when it runs. The test then sends a request to the server using the provided HtmlUnit
webClient. Note that the webClient can be used for any other HTTP requests your test requires.

If you want to inspect the app yourself, you can manually deploy the WAR file
(security/restBasicAuthCustomStore/target/restBasicAuthCustomStore.war) to the server of your
choice (e.g. GlassFish 7), and request the URL via a browser or a commandline util such as curl.

The test first sends a request here to the protected resource, and the server responds with the
HTML form we defined above. Using the HtmlUnit API, it’s easy to navigate the HTML DOM, fill out
the username and password in the form, and programmatically click the Submit button. The form
posts back to a special "j_security_check" URL, where the authentication mechanism receives the
request and retrieves the username and password from the POST data, much like the Basic
authentication mechanism retrieves them from the HTTP headers.

Securing an endpoint with Basic authentication and a custom algorithm for
handling multiple identity stores

In the following example, we’ll be securing a REST endpoint using Basic authentication and two
identity stores: the database identity store that is provided by Jakarta Security and a custom
identity store. Instead of relying on the default algorithm provided by Jakarta Security to handle
multiple identity stores we’ll be using a custom algoritm.

You’ll learn how to:

. Define security constraints
. Use the provided BasicAuthenticationMechanismDefinition

. Use the provided DatabaseldentityStoreDefinition

1

2

3

4. Create a custom identity store

5. Create a custom identity store handler
6

. Use the Jakarta Security SecurityContext

Write the application

We’ll use a slightly modified resource and security constraints compared to the ones we used for
the Securing an endpoint with Basic authentication example.

The REST resource is now as follows:

@Path("/resource")
@RequestScoped
public class Resource {

221

https://projects.eclipse.org/projects/ee4j.glassfish
https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#specifying-security-constraints
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/basicauthenticationmechanismdefinition
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/databaseidentitystoredefinition
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/package-summary.html
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/identitystorehandler
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext

@Inject
private SecurityContext securityContext;

@GET
@Produces(TEXT _PLAIN)
public String getCallerAndRole() {
return
securityContext.getCallerPrincipal().getName() + " : " +

securityContext.isCallerInRole("user") + "," +

securityContext.isCallerInRole("caller1") + "," +
securityContext.isCallerInRole("caller2");

As can be seen, the difference is quite small; we’re now printing out the results of two extra role
checks.

web.xml on its turn looks as follows now:

<web-app xmlns="https://jakarta.ee/xml/ns/jakartaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee

https://jakarta.ee/xml/ns/jakartaee/web-app_6_0.xsd"
version="6.0">

<security-constraint>
<web-resource-collection>
<web-resource-name>protected</web-resource-name>
<url-pattern>/rest/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>user</role-name>
<role-name>caller2</role-name>
</auth-constraint>
</security-constraint>
<security-role>
<role-name>caller1</role-name>
</security-role>

</web-app>

Compared to the example in Securing an endpoint with Basic authentication we have now added
an extra role to the <auth-constraint> section. The semantics of that are that a caller needs to have
both of these roles in order to be authorised to access the resource under /rest/*.

Although it’s customary to explicitly declare all roles in the application using <security-role>, it’s
technically not needed. As long as the role name appears in some XML fragment or annotation
attribute the Jakarta EE requirement to declare all roles upfront is satisfied. As we can see in the

222

fragment above, the role names "user" and "caller2" already appear in the <auth-constraint>
section, so they don’t have to be repeated.

The reason it’s deemed good practice to list all roles in the <security-role> element

o in web.xml (or alternatively in an @DeclareRoles annotation) even when not really
needed is to have a single place where all roles are listed, instead of them being
scattered throughout the application.

Declare the authentication mechanism and identity store

@ApplicationScoped
@BasicAuthenticationMechanismDefinition(
realmName = "basicAuth"
)
@DatabaseldentityStoreDefinition(
callerQuery = "select password from basic_auth_user where username = ?",
groupsQuery = "select name from basic_auth_group where username = ?",
hashAlgorithmParameters = {
"Pbkdf2PasswordHash.Iterations=3072",
"Pbkdf2PasswordHash.Algorithm=PBKDF2WithHmacSHA512",
"Pbkdf2PasswordHash.SaltSizeBytes=64"
}
)

@DeclareRoles("user")
@ApplicationPath("/rest")
public class ApplicationConfig extends Application {

@ApplicationScoped
public class CustomIdentityStore implements IdentityStore {

public CredentialValidationResult validate(UsernamePasswordCredential
usernamePasswordCredential) {
if (usernamePasswordCredential.compareTo("john", "secret1")) {
return new CredentialValidationResult("john", Set.of("caller1",
"caller2"));
}

return INVALID_RESULT;

In this example we have two enabled CDI beans implementing the IdentityStore interface. One of
them will be implicitly enabled via the @DatabaseIdentityStoreDefinition annotation, while the
other one is defined explicitly via the CustomIdentityStore class. As with a single identity store, it
doesn’t matter how or where the CDI beans are defined, only that multiple enabled ones exist.

When multiple identity stores are present, an identity store handler (of type IdentityStoreHandler)

223

is consulted. Jakara Security provides a default one as explained in Securing an endpoint with Basic
authentication and multiple identity stores. This default handler can be overridden however to
provide custom semantics. We’ll use a custom handler to enforce a caller authenticates with both
identity stores, and we’ll combine the roles returned by both in the final result.

Populating the identity store

In order to use the identity store, we need to put some data in a database. This is done in the same
as in Securing an Endpoint with Basic Authentication and a Database Identity Store.

e In the custom identity store defined above and in the database identity store here
we both use name "john' and password "secret1".

Writing the identity store handler

We’ll now write the identity store handler:

@Alternative @

@Priority(APPLICATION) @

@ApplicationScoped

public class CustomIdentityStoreHandler implements IdentityStoreHandler {

@Inject
Instance<IdentityStore> identityStores; ®

@0verride

public CredentialValidationResult validate(Credential credential) {
CredentialValidationResult result = null;
Set<String> groups = new HashSet<>();

for (IdentityStore identityStore : identityStores) {
result = identityStore.validate(credential);
if (result.getStatus() == NOT_VALIDATED) {
// ldentity store probably doesn't handle our credential type
continue;

}

if (result.getStatus() == INVALID) {
// Identity store handled our credential type and determined its
// invalid. End the loop.
return INVALID_RESULT;

}

groups.addAll(result.getCallerGroups());
}

return new CredentialValidationResult(
result.getCallerPrincipal(), groups);

224

@ Since we’re overriding an existing CDI bean (the default IdentityStoreHandler provided by
Jakarta Security), we have to annotate our custom IdentityStoreHandler with @Alternative.

@ To make @EAlternative actually work, we additionally have to annotate with
@Priority(APPLICATION)

® With @Inject Instance<IdentityStore> identityStores CDI will give us a collection of all identity
stores in the application. In the case of this example that will be the store behind
@DatabaseldentityStoreDefinition and our CustomIdentityStore. We can the iterate over those
stores in our code, and offer the credentials (the username and password in this example) to
each of them.

There are various result outcomes possible.

NOT_VALIDATED means the store did not try to validate the credentials at all. In most situations that
status is set when the store in question doesnt’t handle a given credential. I.e. it only handles say
JWTCredentials and not UsernamePasswordCredential.

INVALID means the store tried to validate the credentials, and validation failed. For example the
username and password were wrong.

In our custom handler code here we return an INVALID_RESULT for the first store that fails, as we
want all stores to validate successfully here. If validation does succeed (the outcome is VALID then)
we grab the groups it returned and store in a set.

o Identity stores also have a capability to query it for roles directly, without
validating credentials. We haven’t used that feature here.

Eventually we return a result based on the CallerPrincipal from the last successful validation
result, and all the collected groups.

In our example it doesn’t matter from which validation result we grab the

o CallerPrincipal asit’s all the one with name "pete" here. In general identity stores
may transform the name from the input credential (for example "pete") to
something else (for example "Pete Anderson").

Test the application

It’s now time to test our application. A ready-to-test version is available from the Jakarta EE
Examples project at https://github.com/eclipse-ee4j/jakartaee-examples.

Download or clone this repo, then cd into the focused folder and execute:
mvn clean install -pl :restBasicAuthCustomStoreHandler

This will run a test associated with the project, printing something like the following:

225

https://github.com/eclipse-ee4j/jakartaee-examples

john : true,true,true

[INFO] Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: 7.634 s - in
jakartaee.examples.focused.security.restbasicauthcustomstorehandler.RestBasicAuthCusto
mStoreHandlerIT

The resource that we defined above required only two roles to access it (user and caller2), but our
custom identity store also returned callerl. The resource we created tests for this, and as it
appears, we indeed had this role.

o If we hadn’t declared caller1 in web.xml (or via an annotation), the test for caller1
might have returned false. This is however server dependent.

Securing an endpoint with a custom authentication mechanism and a
custom identity store

In the following example, we’ll be securing a REST endpoint using a custom authentication
mechanism. A custom authentication mechanism is one we provide ourselves, instead of using one
provided by Jakarta Security (such as the Basic HTTP authentication mechanism).

You’ll learn how to:

1. Define security constraints
2. Define (and implicitly set) a custom authentication mechanism
3. Define (and implicitly set) a custom identity store

4. Use the Jakarta Security SecurityContext

Write the application

Let’s start with defining a simple REST resource class for a /rest/resource endpoint:

@Path("/resource")
@RequestScoped
public class Resource {

@Inject
private SecurityContext securityContext;

@GET
@Produces(TEXT_PLAIN)
public String getCallerAndRole() {
return
securityContext.getCallerPrincipal().getName() +
securityContext.isCallerInRole("user");

+

226

https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#specifying-security-constraints
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext

This resource uses the injected Jakarta EE SecurityContext to obtain access to the current
authenticated caller, which is represented by a Principal instance.

If this resource were available to unauthenticated callers, getCallerPrincipal() would return null
for unauthenticated requests, so we’d have to check for null. Our example, however, requires
authentication for this resource, so we can skip that check.

There is a Jakarta REST-specific type that is also named SecurityContext and has
o similar methods as the ones we used here. From the Jakarta EE perspective, that is
a discouraged type and the Jakarta Security version is to be preferred.

Define the authentication mechanism

Let’s now define a simple authentication mechanism that the security system can use to interact
with the caller who tries to access a resource:

@ApplicationScoped
public class CustomAuthenticationMechanism implements HttpAuthenticationMechanism {

@Inject
private IdentityStoreHandler identityStoreHandler;

@0verride
public AuthenticationStatus validateRequest(
HttpServletRequest request,
HttpServletResponse response,
HttpMessageContext httpMessageContext) throws AuthenticationException {

var callerName = request.getHeader("callername"); @
var password = request.getHeader("callerpassword");

if (callerName == null || password == null) { @
return httpMessageContext.doNothing();
}

var result = identityStoreHandler.validate(@
new UsernamePasswordCredential(callerName, password)); ®

if (result.getStatus() != VALID) {
return httpMessageContext.responseUnauthorized();

}

return httpMessageContext.notifyContainerAboutLogin(®
result.getCallerPrincipal(),
result.getCallerGroups());

227

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext
https://jakarta.ee/specifications/restful-ws/3.1/apidocs/jakarta.ws.rs/jakarta/ws/rs/core/securitycontext

This custom authentication mechanism interacts with the caller by grabbing two headers from the
request: callername and callerpassword. (1) In case any of them are null, we return a special status;
the "do nothing" status. (2) This means there has been no request or attempt to do authentication. If
the resource the caller is trying to access is not protected, the caller can access it anonymously. If it
is proteced, the caller will not be able to access it.

When the two required headers are provided by the caller, we create a UsernamePasswordCredential
out of their values (3) and pass that into the injected IdentityStoreHandler. (4) We saw how this type
of handler worked in the example Securing an endpoint with Basic authentication and a custom
algorithm for handling multiple identity stores.

An authentication mechanism in Jakarta Security is not strictly required to
delegate the credential validation to the identity store handler. However not doing

o so is considered bad practice, as it would restrict developers from things like
inserting extra identity stores into the chain that can do things like adding extra
groups.

If the credentials validated correctly, we use the HttpMessageContext to communicate the details of
the authenticated caller to the container. (5)

In Jakarta Security the two basic items that make up an "authenticated identity"
are just a caller principal (of type Principal) and a set of groups (of type String).

o Via a Service Provider Interface a specific Jakarta EE product (such as WildFly or
GlassFish) is able to receive these two items and then stores it internally in some
way.

The authentication mechanism is installed and used by the security system just by the virtue of
being there; it picks up all enabled CDI beans that implement HttpAuthenticationMechanism. Such
beans can be enabled by the security system itself (following some configuration annotation), or
can be programmatically added using the appropriate CDI APIs. Where the bean comes from
doesn’t matter for Jakarta Security, only the fact that it’s there.

Define the identity store

Finally, let’s define a simple identity store that the security system can use to validate provided
credentials for Basic authentication:

@ApplicationScoped
public class TestIdentityStore implements IdentityStore {

public CredentialValidationResult validate(UsernamePasswordCredential
usernamePasswordCredential) {
if (usernamePasswordCredential.compareTo("john", "secret1")) {
return new CredentialValidationResult("john", Set.of("user", "caller"));

}

return INVALID_RESULT;

228

https://en.wikipedia.org/wiki/Service_provider_interface
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/httpauthenticationmechanism

This identity store only validates the single identity (user) "john", with password "secret1l" and roles
"user" and "caller". Defining this kind of identity store is often the simplest way to get started.

Jakarta Security doesn’t provide a simple identity store out of the box. The reason
o is that everything in Jakarta Security promotes best practices, and it’s not clear if a
simple identity store fits in with those best practices.

The identity store is installed and used by the security system just by the virtue of being there; it
picks up all enabled CDI beans that implement IdentityStore. Such beans can be enabled by the
security system itself (following some configuration annotation), or can be programmatically added
using the appropriate CDI APIs. Where the bean comes from doesn’t matter for Jakarta Security,
only the fact that it’s there.

Test the application

I’s now time to test our application. A ready-to-test version is available from the Jakarta EE
Examples project at https://github.com/eclipse-ee4j/jakartaee-examples.

Download or clone this repo, then cd into the focused folder and execute:
mvn clean install -pl :restCustomAuthCustomStore
This will run a test associated with the project, printing something like the following:

john : true

[INFO] Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: 4.591 s - in
jakartaee.examples.focused.security.restcustomauthcustomstore.RestCustomAuthCustomStor
elT

Let’s take a quick look at the actual test:

@RunWith(Arquillian.class)
@RunAsClient
public class RestCustomAuthCustomStorelIT extends ITBase {

@ArquillianResource
private URL baselrl;

/**

* Test the call to a protected REST service

*

* @throws Exception when a serious error occurs.
*/

©@RunAsClient

@Test

229

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/identitystore
https://github.com/eclipse-ee4j/jakartaee-examples

public void testRestCall() throws Exception {
webClient.addRequestHeader("callername”, "john");
webClient.addRequestHeader("callerpassword", "secret1");

TextPage page = webClient.getPage(baseUrl + "rest/resource");
String content = page.getContent();

System.out.println(content);

The test starts a server and deploys the output of the build process (a .war file) to it. The test runs in
the integration test phase, rather than the unit test phase, to make sure this build output is
available when it runs. The test then sends a request to the server using the provided HtmlUnit
webClient. Note that the webClient can be used for any other HTTP requests your test requires.

If you want to inspect the app yourself, you can manually deploy the WAR file
(security/restCustomAuthCustomStore/target/restCustomAuthCustomStore.war) to the server of your
choice (e.g. GlassFish 7), and request the URL via a browser or a commandline util such as curl.

The webClient.addRequestHeader() calls used here make sure that the headers for our custom
authentication mechanism are added to the request. The authentication mechanism that we
defined for our applications reads those headers, extracts the username and password from them,
and consults our identity store with them.

Securing an endpoint with Form authentication and remember-me

In the following example, we’ll secure a REST endpoint using Form authentication and remember-
me.

Remember-me is a facility where an authenticated identity can be remembered beyond the scope
of an HTTP session. This happens via a separate cookie that has a longer life-time than the cookie
used for the HTTP session (and the session itself on the server).

You’ll learn how to:

[

. Define security constraints

Use the Form authentication mechanism

Enable the remember-me feature

How to define (and implicitly set) a custom remember-me identity store

How to define (and implicitly set) a custom identity store

S

Use the Jakarta Security SecurityContext

Write the application

Let’s start with defining a simple REST resource class for a /rest/resource endpoint:

230

https://projects.eclipse.org/projects/ee4j.glassfish
https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#specifying-security-constraints
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/formauthenticationmechanismdefinition
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/rememberme
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/remembermeidentitystore
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/package-summary.html
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext

@Path("/resource")
@RequestScoped
public class Resource {

@Inject
private SecurityContext securityContext;

@GET
@Produces(TEXT_PLAIN)
public String getCallerAndRole() {
return
securityContext.getCallerPrincipal().getName() + " : " +
securityContext.isCallerInRole("user");

This resource uses the injected Jakarta EE SecurityContext to obtain access to the current
authenticated caller, which is represented by a Principal instance.

If this resource were available to unauthenticated callers, getCallerPrincipal() would return null
for unauthenticated requests, so we’d have to check for null. Our example, however, requires
authentication for this resource, so we can skip that check.

There is a Jakarta REST-specific type that is also named SecurityContext and has
o similar methods as the ones we used here. From the Jakarta EE perspective, that is
a discouraged type and the Jakarta Security version is to be preferred.

Declare the security constraints

Next we’ll define the security constraints in web.xml, which tell the security system that access to a
given URL or URL pattern is protected, and hence authentication is required:

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="https://jakarta.ee/xml/ns/jakartaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee

https://jakarta.ee/xml/ns/jakartaee/web-app_6_0.xsd"
version="6.0">

<security-constraint>
<web-resource-collection>
<web-resource-name>protected</web-resource-name>
<url-pattern>/rest/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>user</role-name>
</auth-constraint>
</security-constraint>

231

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext
https://jakarta.ee/specifications/restful-ws/3.1/apidocs/jakarta.ws.rs/jakarta/ws/rs/core/securitycontext

</web-app>

This XML essentially says that to access any URL that starts with "/rest" requires the caller to have
the role "user". Roles are opaque strings; merely identifiers. It’s fully up to the application how
broad or fine-grained they are.

In Jakarta EE, internally these XML constraints are transformed into Permission
o instances and made available via a specific type of permission store. Knowledge
about this transformation is only needed for very advanced use cases.

The observant reader may wonder if XML is really the only option here, given the
strong feelings that exist in parts of the community around XML. The answer is yes
and no. Jakarta EE does define the @RolesAllowed annotation that could be used to
replace the XML shown above, but only the legacy Enterprise Beans has specified a

o behaviour for this when put on an Enterprise Bean. Jakarta REST has done no such
thing, although the JWT API in MicroProfile has defined this for REST resources. In
Jakarta EE, however, this remains a vendor-specific extension. There are also a
number of annotations and APIs in Jakarta EE to set these kinds of constraints for
individual Servlets, but those won’t help us much either here.

Declare the authentication mechanism

We’ll use the same authentication mechanism declaration as we used for Securing an endpoint with
Form authentication

Enable remember-me

In Jakarta Security, there are several services available through CDI Interceptors " one of which is
the remember-me service. Remember-me can be transparently applied to basically every
authentication mechanism. In CD], it’s trivial to add Interceptors to beans that we define ourselves,
but a little less trivial to add to provided beans. In this section we explain how to do this via a CDI
extension.

For this example, we’ll add the CDI extension interface (1) to our application config class:

@ApplicationScoped
@FormAuthenticationMechanismDefinition(
loginToContinue = @LoginToContinue(
loginPage="/1ogin.html",
errorPage="/1login-error.html"

)

@ApplicationPath("/rest")

public class ApplicationConfig extends Application
implements BuildCompatibleExtension { @

©Enhancement(

232

https://jakarta.ee/specifications/annotations/2.1/annotations-spec-2.1.html#jakarta-annotation-security-rolesallowed
https://microprofile.io/project/eclipse/microprofile-jwt-auth/spec/src/main/asciidoc/configuration.asciidoc
https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#programmatic-security-policy-configuration

types = HttpAuthenticationMechanism.class,
withSubtypes = true) @
public void addRememberMe(ClassConfig httpAuthenticationMechanism) {
httpAuthenticationMechanism.addAnnotation(
RememberMe.Literal.INSTANCE); ®

CDI allows us to enhance classes using a method annotated with the @Enhancement annotation and as
attribute the class we’re seeking to enhance. For our example that will be a sub-type of the
HttpAuthenticationMechanism interface (we know the bean enabled by
FormAuthenticationMechanismDefinition will implement the HttpAuthenticationMechanism interface),
hence we set the withSubtypes attribute to true. (2)

Within the method we can then programmatically add the @RememberMe annotation used to bind the
remember-me interceptor to a class. In the example here we use the default instance (which has all
attributes set to their defaults). There are attributes for setting various aspects of the cookie, such as
its name, whether it should be secure and http only, and perhaps most importantly the max age of
the cookie (default is one day).

Define the remember-me identity store

For remember-me to work a token has to be created that is used as a credential to authenticate
right away instead of invoking the authentication mechanism that is being intercepted. Jakarta
Security uses a special identity store for this; the RememberMeIdentityStore. This type of identity store
is exclusively used by the remember-me feature, hence it’s a different type from IdentityStore.

Jakarta Security does not ship with any provided remember-me identity store, but for
demonstration purposes we can easily create one ourselves.

The following shows an example:

@ApplicationScoped
public class CustomRememberMeIdentityStore implements RememberMeIdentityStore {

private final Map<String, CredentialValidationResult> tokenTolIdentityMap =
new ConcurrentHashMap<>();

@0verride

public String generatelLoginToken(
CallerPrincipal callerPrincipal, Set<String> groups) { @
var token = UUID.randomUUID().toString();

tokenToIdentityMap.put(
token,

new CredentialValidationResult(callerPrincipal, groups));

return token;

233

@0verride
public CredentialValidationResult validate(
RememberMeCredential credential) { @
if (tokenToIdentityMap.containsKey(credential.getToken())) {
return tokenToIdentityMap.get(credential.getToken());

}

return INVALID_RESULT;
}
@0verride

public void removelLoginToken(String token) { ®
tokenToIdentityMap.remove(token);
}

The RememberMeIdentityStore needs to perform 3 tasks.

It first needs to generate a token representing a caller principal and a set of groups. The caller
principal and the set of groups are the ones set by the authentication mechanism right after the
caller successfully authenticated. In our example (1) here we’re generating a random UUID that’s
used as a key in an application scoped map.

Storing the authenticated identity (principal and groups) in an application scoped

o map is just an example. Other options could be storing it in a database or key-
value store, encrypting the principal and groups, or generating some kind of JSON
Web Token (JWT).
o When storing the Principal, care must be taken that the Principal could be an
elaborate custom Principal containing many more fields than just name.

The next thing that must be done is essentially similar to what a normal identity store does:
validating a Credential. For a RememberMeIdentityStore this will always be of type
RememberMeCredential with getToken() returning a token of the kind that was generated in
generatelLoginToken(). In our example (2) we’re just using the token as key in our map.

Finally we can provide behaviour to remove the login token (and essentially invalidate it) via the
removeLoginToken method. This method is called when a caller explicitly logs out. In our example (3)
we just remove the token from our map.

When storing the principal and groups in a token that we send to the client we
can’t always easily invalidate it when the caller logs out; the caller can always keep
the token and send it again.

Define the identity store

Finally, let’s define a simple identity store that the security system can use to validate provided
credentials for Basic authentication:

234

@ApplicationScoped
public class TestIdentityStore implements IdentityStore {

public CredentialValidationResult validate(UsernamePasswordCredential
usernamePasswordCredential) {
if (usernamePasswordCredential.compareTo("john", "secret1")) {
return new CredentialValidationResult("john", Set.of("user", "caller"));

}

return INVALID_RESULT;

This identity store only validates the single identity (user) "john", with password "secretl" and roles
"user" and "caller". Defining this kind of identity store is often the simplest way to get started.

Jakarta Security doesn’t provide a simple identity store out of the box. The reason
o is that everything in Jakarta Security promotes best practices, and it’s not clear if a
simple identity store fits in with those best practices.

The identity store is installed and used by the security system just by the virtue of being there; it
picks up all enabled CDI beans that implement IdentityStore. Such beans can be enabled by the
security system itself (following some configuration annotation), or can be programmatically added
using the appropriate CDI APIs. Where the bean comes from doesn’t matter for Jakarta Security,
only the fact that it’s there.

Test the application

I’s now time to test our application. A ready-to-test version is available from the Jakarta EE
Examples project at https://github.com/eclipse-ee4j/jakartaee-examples.

Download or clone this repo, then cd into the focused folder and execute:
mvn clean install -pl :restFormAuthCustomStoreRememberMe
This will run a test associated with the project, printing something like the following:

john : true

john : true

[INFO] Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: 5.702 s - in
jakartaee.examples.focused.security.restformauthcustomatorerememberme.RestFormAuthCust
omStorelT

Let’s take a quick look at the actual test:

235

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/identitystore
https://github.com/eclipse-ee4j/jakartaee-examples

@RunWith(Arquillian.class)
@RunAsClient
public class RestFormAuthCustomStoreRememberMeIT extends ITBase {

@ArquillianResource
private URL baselrl;

/**

* Test the call to a protected REST service
*
* @throws Exception when a serious error occurs.
*/
@RunAsClient
@Test
public void testRestCall() throws Exception {
// Initial request
HtmlPage loginPage = webClient.getPage(baseUrl + "/rest/resource");
System.out.println(loginPage.asXml());

// Response is login form, so we can authenticate
HtmlForm form = loginPage.getForms()
.9et(0);

form.getInputByName("j_username")
.setValueAttribute("john");

form.getInputByName("j_password")
.setValueAttribute("secret1");

// After logging in, we should get the actual resource response
TextPage page = form.getInputByValue("Submit")
.click();

System.out.println(page.getContent());

// Remove all cookies (specially the JSESSONID), except for the
// JREMEMBERMEID cookie which carries the token to login again
for (Cookie cookie : webClient.getCookieManager().getCookies()) {
if (!"JREMEMBERMEID".equals(cookie.getName())) {
webClient.getCookieManager().removeCookie(cookie);
}
}

// Should get the resource response, and not the login form
TextPage pageAgain = webClient.getPage(baseUrl + "/rest/resource");

System.out.println(pageAgain.getContent());

236

The test starts a server and deploys the output of the build process (a .war file) to it. The test runs in
the integration test phase, rather than the unit test phase, to make sure this build output is
available when it runs. The test then sends a request to the server using the provided HtmlUnit
webClient. Note that the webClient can be used for any other HTTP requests your test requires.

If you want to inspect the app yourself, you can manually deploy the WAR file
(security/restFormAuthCustomStoreRememberMe/target/restFormAuthCustomStoreRememberMe.war) to the
server of your choice (e.g. GlassFish 7), and request the URL via a browser or a commandline util
such as curl.

The test first sends a request here to the protected resource, and the server responds with the
HTML form we defined above. Using the HtmlUnit API, it’s easy to navigate the HTML DOM, fill out
the username and password in the form, and programmatically click the Submit button. The form
posts back to a special "j_security_check" URL, where the authentication mechanism receives the
request and retrieves the username and password from the POST data, much like the Basic
authentication mechanism retrieves them from the HTTP headers.

Then we delete all cookies, specifically the JSESSIONID cookie that keeps the session that the form
authentication mechanism uses to remember the authenticated identity. The test then does another
request, and this time the value from the JREMEMBERMEID cookie is used to login.

Securing an endpoint with a custom authentication mechanism, a custom
identity store and remember-me

In the following example, we’ll secure a REST endpoint using custom authentication and
remember-me.

Remember-me is a facility where an authenticated identity can be remembered beyond the scope
of an HTTP session. This happens via a separate cookie that has a longer life-time than the cookie
used for the HTTP session (and the session itself on the server).

You’ll learn how to:

. Define security constraints

. Define (and implicitly set) a custom authentication mechanism with remember-me

1
2
3. How to define (and implicitly set) a custom remember-me identity store
4. Define (and implicitly set) a custom identity store

5

. Use the Jakarta Security SecurityContext

Write the application

Let’s start with defining a simple REST resource class for a /rest/resource endpoint:

@Path("/resource")
@RequestScoped
public class Resource {

@Inject

237

https://projects.eclipse.org/projects/ee4j.glassfish
https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#specifying-security-constraints
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext

private SecurityContext securityContext;

@GET
@Produces(TEXT_PLAIN)
public String getCallerAndRole() {
return
securityContext.getCallerPrincipal().getName() +
securityContext.isCallerInRole("user");

+

This resource uses the injected Jakarta EE SecurityContext to obtain access to the current
authenticated caller, which is represented by a Principal instance.

If this resource were available to unauthenticated callers, getCallerPrincipal() would return null
for unauthenticated requests, so we’d have to check for null. Our example, however, requires
authentication for this resource, so we can skip that check.

There is a Jakarta REST-specific type that is also named SecurityContext and has
similar methods as the ones we used here. From the Jakarta EE perspective, that is
a discouraged type and the Jakarta Security version is to be preferred.

Define the authentication mechanism

Let’s now define a simple authentication mechanism that the security system can use to interact
with the caller who tries to access a resource and specifically make sure the RememberMe feature
is used:

@RememberMe ®
@ApplicationScoped
public class CustomAuthenticationMechanism implements HttpAuthenticationMechanism {

@Inject
private IdentityStoreHandler identityStoreHandler;

@0verride
public AuthenticationStatus validateRequest(
HttpServletRequest request,
HttpServletResponse response,
HttpMessageContext httpMessageContext) throws AuthenticationException {

var callerName = request.getHeader("callername"); @
var password = request.getHeader("callerpassword");

if (callerName == null || password == null) { @
return httpMessageContext.doNothing();
}

238

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext
https://jakarta.ee/specifications/restful-ws/3.1/apidocs/jakarta.ws.rs/jakarta/ws/rs/core/securitycontext

var result = identityStoreHandler.validate(@
new UsernamePasswordCredential(callerName, password)); ®

if (result.getStatus() != VALID) {
return httpMessageContext.responseUnauthorized();

return httpMessageContext.notifyContainerAboutlogin(®
result.getCallerPrincipal(),
result.getCallerGroups());

This is the same custom authentication mechanism that was used in Securing an
endpoint with a custom authentication mechanism and a custom identity store,
but with the @RememberMe annotation added.

This custom authentication mechanism interacts with the caller by grabbing two headers from the
request: callername and callerpassword. (1) In case any of them are null, we return a special status;
the "do nothing" status. (2) This means there has been no request or attempt to do authentication. If
the resource the caller is trying to access is not protected, the caller can access it anonymously. If it
is proteced, the caller will not be able to access it.

When the two required headers are provided by the caller, we create a UsernamePasswordCredential
out of their values (3) and pass that into the injected IdentityStoreHandler. (4) We’ve seen how such
handler worked in the example Securing an endpoint with Basic authentication and a custom
algorithm for handling multiple identity stores.

An authentication mechanism in Jakarta Security is not strictly required to
delegate the credential validation to the identity store handler. However not doing

o so is considered bad practice, as it would restrict developers from things like
inserting extra identity stores into the chain that can do things like adding extra
groups.

If the credentials validated correctly, we use the HttpMessageContext to communicate the details of
the authenticated caller to the container. (5)

In Jakarta Security the two basic items that make up an "authenticated identity"
are just a caller principal (of type Principal) and a set of groups (of type String).

o Via a Service Provider Interface a specific Jakarta EE product (such as WildFly or
GlassFish) is able to receive these two items and then stores it internally in some
way.

We annotate our custom authentication mechanism with the @RememberMe annotation to enable the
remember-me feature for use with this authentication mechanism. In the example here we don’t
set any attributes (all of them have default values). There are attributes for setting various aspects
of the cookie used for remember-me, such as its name, whether it should be secure and http only,

239

https://en.wikipedia.org/wiki/Service_provider_interface

and perhaps most importantly the max age of the cookie (default is one day).

Instead of using the @RememberMe annotation here, we could also have used the

e same extension that was used in Securing an endpoint with Form authentication
and remember-me to enable the remember-me feature. The annotation however is
a little bit easier to use.

The authentication mechanism is installed and used by the security system just by the virtue of
being there; it picks up all enabled CDI beans that implement HttpAuthenticationMechanism. Such
beans can be enabled by the security system itself (following some configuration annotation), or
can be programmatically added using the appropriate CDI APIs. Where the bean comes from
doesn’t matter for Jakarta Security, only the fact that it’s there.

Define the identity store

Finally, let’s define a simple identity store that the security system can use to validate provided
credentials for Basic authentication:

@ApplicationScoped
public class TestIdentityStore implements IdentityStore {

public CredentialValidationResult validate(UsernamePasswordCredential
usernamePasswordCredential) {
if (usernamePasswordCredential.compareTo("john", "secret1")) {
return new CredentialValidationResult("john", Set.of("user", "caller"));

}

return INVALID_RESULT;

This identity store only validates the single identity (user) "john", with password "secret1l" and roles
"user" and "caller". Defining this kind of identity store is often the simplest way to get started.

Jakarta Security doesn’t provide a simple identity store out of the box. The reason
is that everything in Jakarta Security promotes best practices, and it’s not clear if a
simple identity store fits in with those best practices.

The identity store is installed and used by the security system just by the virtue of being there; it
picks up all enabled CDI beans that implement IdentityStore. Such beans can be enabled by the
security system itself (following some configuration annotation), or can be programmatically added
using the appropriate CDI APIs. Where the bean comes from doesn’t matter for Jakarta Security,
only the fact that it’s there.

Define the remember-me identity store

We’ll use the same remember-me identity store as we used for the Securing an endpoint with Form

240

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/httpauthenticationmechanism
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/identitystore

authentication and remember-me example.

Test the application

I’s now time to test our application. A ready-to-test version is available from the Jakarta EE
Examples project at https://github.com/eclipse-ee4j/jakartaee-examples.

Download or clone this repo, then cd into the focused folder and execute:

mvn clean install -pl :restCustomAuthCustomStoreRememberMe

This will run a test associated with the project, printing something like the following:

john : true

john : true

[INFO] Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: 5.287 s - in
jakartaee.examples.focused.security.restcustomauthcustomstorerememberme.RestCustomAuth
CustomStoreRememberMeIT

Let’s take a quick look at the actual test:

@RunWith(Arquillian.class)
@RunAsClient
public class RestFormAuthCustomStoreRememberMeIT extends ITBase {

@ArquillianResource
private URL baselrl;

/**

* Test the call to a protected REST service

*

* @throws Exception when a serious error occurs.

*/

@RunAsClient

@Test

public void testRestCall() throws Exception {
// Initial request
HtmlPage loginPage = webClient.getPage(baseUrl + "/rest/resource");
System.out.println(loginPage.asXml());

// Response is login form, so we can authenticate
HtmlForm form = loginPage.getForms()
.get(0);

form.getInputByName("j_username")
.setValueAttribute("john");

form.getInputByName("j_password")

241

https://github.com/eclipse-ee4j/jakartaee-examples

.setValueAttribute("secret1");

// After logging in, we should get the actual resource response
TextPage page = form.getInputByValue("Submit")
.click();

System.out.println(page.getContent());

// Remove all cookies (specially the JSESSONID), except for the
// JREMEMBERMEID cookie which carries the token to login again
for (Cookie cookie : webClient.getCookieManager().getCookies()) {
if (!"JREMEMBERMEID".equals(cookie.getName())) {
webClient.getCookieManager().removeCookie(cookie);
}
}

// Should get the resource response, and not the login form
TextPage pageAgain = web(Client.getPage(baseUrl + "/rest/resource");

System.out.println(pageAgain.getContent());

The test starts a server and deploys the output of the build process (a .war file) to it. The test runs in
the integration test phase, rather than the unit test phase, to make sure this build output is
available when it runs. The test then sends a request to the server using the provided HtmlUnit
webClient. Note that the webClient can be used for any other HTTP requests your test requires.

If you want to inspect the app yourself, you can manually deploy the WAR file
(security/restCustomAuthCustomStoreRememberMe/target/restCustomAuthCustomStoreRememberMe.war) to
the server of your choice (e.g. GlassFish 7), and request the URL via a browser or a commandline
util such as curl.

The webClient.addRequestHeader() calls used here make sure that the headers for our custom
authentication mechanism are added to the request. The authentication mechanism that we
defined for our applications reads those headers, extracts the username and password from them,
and consults our identity store with them.

The test sends a request here to the protected resource along with the headers we mentioned
above, and the server responds with the right content.

Then we delete all cookies, except for the JREMEMBERMEID cookie, and we unset all headers that we
used before. The test then does another request, and this time the value from the JREMEMBERMEID
cookie is used to login.

Securing an endpoint with OpenID Connect authentication
In the following example, we’ll be securing a REST endpoint using OpenID Connect authentication.

With OpenID Connect authentication a caller is redirected to a third party server, typically a public

242

https://projects.eclipse.org/projects/ee4j.glassfish
https://en.wikipedia.org/wiki/OpenID

one such as Google, Facebook, Linkedin, Apple, and more, but it can be a private one as well. The
caller authenticates with that third party server, and is then redirected back along with a token.
Our server than validates that token, and if it’s valid the caller is considered authenticated.

You’ll learn how to:

1. Define security constraints
2. Use the OpenID Connect authentication mechanism
3. Define (and implicitly set) a custom identity store used for authorization only

4. Use the Jakarta Security SecurityContext

Write the application

Let’s start with defining a simple REST resource class for a /rest/resource endpoint:

@Path("/resource")
@RequestScoped
public class Resource {

@Inject
private SecurityContext securityContext;

@GET
@Produces(TEXT_PLAIN)
public String getCallerAndRole() {
return
securityContext.getCallerPrincipal().getName() + " : " +
securityContext.isCallerInRole("user");

This resource uses the injected Jakarta EE SecurityContext to obtain access to the current
authenticated caller, which is represented by a Principal instance.

If this resource were available to unauthenticated callers, getCallerPrincipal() would return null
for unauthenticated requests, so we’d have to check for null. Our example, however, requires
authentication for this resource, so we can skip that check.

There is a Jakarta REST-specific type that is also named SecurityContext and has
similar methods as the ones we used here. From the Jakarta EE perspective, that is
a discouraged type and the Jakarta Security version is to be preferred.

Declare the security constraints

Next we’ll define the security constraints in web.xml, which tell the security system that access to a
given URL or URL pattern is protected, and hence authentication is required:

243

https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#specifying-security-constraints
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/openidauthenticationmechanismdefinition
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext
https://jakarta.ee/specifications/restful-ws/3.1/apidocs/jakarta.ws.rs/jakarta/ws/rs/core/securitycontext

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="https://jakarta.ee/xml/ns/jakartaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee

https://jakarta.ee/xml/ns/jakartaee/web-app_6_0.xsd"
version="6.0">

<security-constraint>
<web-resource-collection>
<web-resource-name>protected</web-resource-name>
<url-pattern>/rest/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>user</role-name>
</auth-constraint>
</security-constraint>

</web-app>

This XML essentially says that to access any URL that starts with "/rest” requires the caller to have
the role "user". Roles are opaque strings; merely identifiers. It’s fully up to the application how
broad or fine-grained they are.

In Jakarta EE, internally these XML constraints are transformed into Permission
o instances and made available via a specific type of permission store. Knowledge
about this transformation is only needed for very advanced use cases.

The observant reader may wonder if XML is really the only option here, given the
strong feelings that exist in parts of the community around XML. The answer is yes
and no. Jakarta EE does define the @RolesAllowed annotation that could be used to
replace the XML shown above, but only the legacy Enterprise Beans has specified a

0 behaviour for this when put on an Enterprise Bean. Jakarta REST has done no such
thing, although the JWT API in MicroProfile has defined this for REST resources. In
Jakarta EE, however, this remains a vendor-specific extension. There are also a
number of annotations and APIs in Jakarta EE to set these kinds of constraints for
individual Servlets, but those won’t help us much either here.

Declare the authentication mechanism

@0penIdAuthenticationMechanismDefinition(
providerURI = "https://localhost:8443/openid-connect-server-webapp", @
clientId = "client", @
clientSecret = "secret", ®
redirectToOriginalResource = true @
)
@ApplicationScoped
@ApplicationPath("/rest")

244

https://jakarta.ee/specifications/annotations/2.1/annotations-spec-2.1.html#jakarta-annotation-security-rolesallowed
https://microprofile.io/project/eclipse/microprofile-jwt-auth/spec/src/main/asciidoc/configuration.asciidoc
https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#programmatic-security-policy-configuration

public class ApplicationConfig extends Application {

}

To declare the wusage of a specific authentication mechanism, Jakarta EE provides
[XYZ]MechanismDefinition annotations. Such an annotation is picked up by the security system, and
in response to it a CDI bean that implements the HttpAuthenticationMechanism is enabled for it.

The annotation can be put on any bean, but in a REST application it fits particularly well on the
Application subclass because it also declares the path for REST resources.

Contrary to the Basic HTTP authentication mechanism and the Form authentication mechanism,
the OpenID Connect authentication mechanism requires a third party server that performs the
actual authentication. Such third party server is called the OpenID Connect Provider (OIDC
provider or OpenID Provider are also used). After authentication this provider handles user
consent and and issues a token. The client requesting a user’s authentication is called a Relying
Party. In the case of Jakarta EE and Jakarta Security, the Jakarta EE server running the OpenID
Connect authentication mechanism is a Relying Party.

To use this authentication mechanism, Jakarta Security provides the
@0penIdAuthenticationMechanismDefinition annotation, for which we typically need 3 mandatory
configuration items as shown in the example code above.

The first is the providerURI (1), which points to the third party OpenID Connect Provider. In this
example we use https://localhost:8443/openid-connect-server-webapp, which is the URL on which
the example code has installed and started a local OpenID Connect provider called "Mitre".
Whenever a caller accesses a protected resource, that caller is redirected to that OpenID Connect
Provider.

The Openld authentication mechanism needs to identify itself to the OpenID Connect Provider via a
username/password (called clientId (2) and clientSecret (3)). We use "client" respectively "secret"
here for those, which are the credentials for a default client that is available in Mitre.

After a caller successfully authenticates with the OpenID Connect Provider, that caller is redirected
back to a URL on the Relying Party (our Jakarta EE server). This is called the "callback URL" and can
be set via the redirectURI attribute. The default value is ${baseURL}/Callback, where ${baseURL}
expands to the context-root of the application that uses Jakarta Security, for example
https://localhost:8080/openid-client in our example. This exact URI must be known to Mitre.
Mitre (and any OpenID Connect Provider in general) never redirects to unknown URIs.

By default, after the caller is redirected back to the Relying Party (our Jakarta EE server), the
resource behind /Callback is invoked. When the attribute redirectToOriginalResource (4) is set to
true however, the caller is once again redirected to the URL originally requested and which
triggered the authentication process.

When redirectToOriginalResource is set to to true it’s not necessary to actually map
anything to the callback URL (for example a Servlet or a REST resource). The
o authentication mechanism is invoked before the resource mapped to the callback
URL is invoked, so if the authentication mechanism always redirects it never

245

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/httpauthenticationmechanism
https://localhost:8443/openid-connect-server-webapp
https://localhost:8080/openid-client

invokes this resource and the resource therefore doesn’t need to actually exist.

Define the identity store

In many cases the OpenID Connect Provider has no knowledge of the application for which it
authenticates the caller, and therefore does not normally provide any logical groups for the
authenticated user. Those groups are application specific after all. We therefore define an
additional identity store that does provide those groups for a caller.

Despite not being typical, Jakarta Security supports getting the groups via the
claimsDefinition attribute of the @0OpenIdAuthenticationMechanismDefinition

o annotation. This can be used to set a claim name (default is "groups"). Jakarta
Security then tries to find this name in the AccessToken, IdentityToken, or in the
info returned by the /userinfo endpoint of the Openld Connect Provider. Providers
often need special configuration to return group claims.

@ApplicationScoped
public class AuthorizationIdentityStore implements IdentityStore {

private Map<String, Set<String>> groupsPerCaller =
Map.of("user", Set.of("user")); @

@0verride

public Set<ValidationType> validationTypes() {
return EnumSet.of(PROVIDE _GROUPS); @™

}

@0verride
public Set<String> getCallerGroups(
CredentialValidationResult validationResult) { ®
return groupsPerCaller.get(validationResult.getCallerPrincipal().getName());

This identity store is set to PROVIDE_GROUPS (1) only, which means the default IdentityStoreHandler
will consult this identity store for groups after another identity store has successfully validated the
credentials. For our example here we create a Map (2) with as key the caller principal name, and as
value the set of groups. When the IdentityStoreHandler comes asking for the groups (3) of caller
"user", a set with just the group "user" is returned.

As validation of the IdentityToken that’s returned by the OpenID Connect Provider
is integral to the OpenID Connect flow and not application specific, developers
o don’t have to provide or define an identity store explicitly for this. Such a store is
provided by Jakarta Security as an implementation detail, and automatically
activated when the OpenID Connect authentication mechanism is activated.

The identity store is installed and used by the security system just by the virtue of being there; it

246

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/openidauthenticationmechanismdefinition#claimsDefinition()
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/openid/accesstoken
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/openid/identitytoken

picks up all enabled CDI beans that implement IdentityStore. Such beans can be enabled by the
security system itself (following some configuration annotation), or can be programmatically added
using the appropriate CDI APIs. Where the bean comes from doesn’t matter for Jakarta Security,
only the fact that it’s there.

Install and configure Mitre

Installing and configuring the OpenID Connect provider Mitre is outside the scope of Jakarta
Security itself, but for completeness sake we’ll briefly discuss it by illustration of Maven pom
fragments.

<plugin>

Ll ==
Unpack and install Tomcat + Mitre

Mitre is a Spring based OpenID Connect Server that best runs on a javax based
Tomcat.
-->
<artifactId>maven-dependency-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>unpack</goal>
</goals>
<confiquration>
<artifactItems>
<artifactItem>
<groupld>org.apache.tomcat</groupIld>
<artifactId>tomcat</artifactId>
<version>9.0.76</version>
<type>zip</type>
<outputDirectory>${tomcat.root}</outputDirectory>
</artifactItem>
<artifactItem>
<groupId>org.mitre</groupld>
<artifactId>openid-connect-server-webapp</artifactId>
<version>1.3.4</version>
<type>war</type>
<outputDirectory>${tomcat.dir}/webapps/openid-connect-server-
webapp</outputDirectory>
</artifactItem>
</artifactItems>
</confiquration>
</execution>

Mitre is a Spring application that uses the javax.* namespace. We therefore need a Tomcat from the
9.x series, which is available as a zip file from the Maven coordinates
org.apache.tomcat:tomcat:9.0.76. Likewise, Mitre is available from org.mitre:openid-connect-

247

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/identitystore

server-webapp:1.3.4. We simply need to unzip Tomcat, and unzip Mitre into its webapps folder. We
also need to update Tomcat with the JAXB standalone libraries (see full example code).

<l--
Configure Tomcat to use HTTPS, as Open ID Connect strictly speaking requires this.
Some servers may refuse to use Open ID Connect if not running on a secure
connection.

Also configure Mitre to use the callback of our client.

Then start Tomcat and with it Mitre.
-->
<plugin>
<artifactId>maven-antrun-plugin</artifactId>
<executions>
<execution>
<goals>
<goal>run</goal>
</goals>
<confiquration>
<target>
<echo level="info">Replacing in ${tomcat.dir}</echo>

<!-- Configure Mitre to let it know its running on HTTPS -->
<replace token="http://localhost:8080"
value="https://localhost:8443" dir="${tomcat.dir}/webapps/openid-connect-server-
webapp/WEB-INF" summary="yes">
<include name="server-config.xml" />
</replace>

<!-- Configure Mitre to let it know where the Open ID callback
needs to go to -->

<replace token="http://localhost/"
value="http://localhost:8080/openid-client/Callback"
dir="${tomcat.dir}/webapps/openid-connect-server-webapp/WEB-INF/classes/db/hsql"
summary="yes">

<include name="clients.sql" />
</replace>

<!-- Configure Tomcat using our pre-configured server.xml (which
sets https) -->

<copy file="src/test/resources/server.xml"
todir="${tomcat.dir}/conf"/>

<copy file="src/test/resources/localhost-rsa.jks"
todir="${tomcat.dir}/conf"/>

<chmod dir="${tomcat.dir}/bin" perm="ugo+rx" includes="*" />
<!-- Start Tomcat and Mitre -->

<exec executable="${tomcat.dir}/bin/startup.sh"

248

dir="${tomcat.dir}" >
<env key="CATALINA_PID" value="${tomcat.pidfile}" />
</exec>
</target>

</configuration>

</execution>
</executions>
</plugin>

Out of the box Mitre runs on HTTP, but since we’re using HTTPS instead we need to configure it to
run on HTTPS using the server-config.xml file. We also need to tell it about the exact callback URL
that we discussed above (http://localhost:8080/openid-client/Callback), which can be done in
clients.sql. Tomcat has to be configured to run on HTTPS as well, which requires updating
server.xml and providing it with a keystore.

Tomcat, and with it Mitre, can be started by executing [tomcat dir]/bin/startup.sh.

Test the application

It’s now time to test our application. A ready-to-test version is available from the Jakarta EE
Examples project at https://github.com/eclipse-ee4j/jakartaee-examples.

Download or clone this repo, then cd into the focused folder and execute:

mvn clean install -pl :restOpenIdConnectAuth

This will run a test associated with the project, printing something like the following:

user : true
[INFO] Tests run: 1, Failures: @, Errors: @, Skipped: 0, Time elapsed: 22.324 s - in
jakartaee.examples.focused.security.restopenidconnectauth.RestOpenIdConnectAuthIT

Let’s take a quick look at the actual test:

@RunWith(Arquillian.class)
©RunAsClient
public class RestOpenIdConnectAuthIT extends ITBase {

@ArquillianResource
private URL baselrl;

/*'k

* Test the call to a protected REST service

*

* @throws Exception when a serious error occurs.
*/
@RunAsClient
@Test

249

http://localhost:8080/openid-client/Callback
https://github.com/eclipse-ee4j/jakartaee-examples

public void testRestCall() throws Exception {
HtmlPage page = webClient.getPage(baseUrl + "/rest/resource"); @

// Authenticate with the OpenId Provider using the

// username and password for a default user

page.getElementById("j_username")
.setAttribute("value", "user");

page.getElementById("j_password")
.setAttribute("value", "password"); @

// Submit
HtmlPage confirmationPage
page.getElementByName ("submit")

.click(); ®

// Confirm
TextPage originalResource
confirmationPage.getElementByName("authorize")

.click(); @

System.out.println(originalResource.getContent());

The test starts a server and deploys the output of the build process (a .war file) to it. The test runs in
the integration test phase, rather than the unit test phase, to make sure this build output is
available when it runs. The test then sends a request to the server using the provided HtmlUnit
webClient. Note that the webClient can be used for any other HTTP requests your test requires.

If you want to inspect the app yourself, you can manually deploy the WAR file
(security/restOpenIdConnectAuth/target/restOpenIdConnectAuth.war) to the server of your choice
(e.g. GlassFish 7), and request the URL via a browser or a commandline util such as curl.

After the test requests our protected resource at "/rest/resource” (1), the OpenID Connect
authentication mechanism redirects to Mitre, which will respond with a login page. The test
programmically sets the fields j_username and j_password, (2) and then clicks submits (3). After
confirming (4), Mitre will redirect the test code back to the /Callback URL, which will redirect back
to the original resource at "/rest/resource".

Securing an endpoint with Basic authentication and an LDAP identity store

In the following example, we’ll secure a REST endpoint using Basic authentication and the LDAP
identity store that is provided by Jakarta Security.

You’ll learn how to:

1. Define security constraints

2. Use the provided BasicAuthenticationMechanismDefinition

250

https://projects.eclipse.org/projects/ee4j.glassfish
https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#specifying-security-constraints
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/basicauthenticationmechanismdefinition

3. Use the provided LdapldentityStoreDefinition
4. Populate and configure the identity store

5. Use the Jakarta Security SecurityContext

Write the application

Let’s start with defining a simple REST resource class for a /rest/resource endpoint:

@Path("/resource")
@RequestScoped
public class Resource {

@Inject
private SecurityContext securityContext;

@GET
@Produces(TEXT _PLAIN)
public String getCallerAndRole() {
return
securityContext.getCallerPrincipal().getName() + " : " +
securityContext.isCallerInRole("user");

This resource uses the injected Jakarta EE SecurityContext to obtain access to the current
authenticated caller, which is represented by a Principal instance.

If this resource were available to unauthenticated callers, getCallerPrincipal() would return null
for unauthenticated requests, so we’d have to check for null. Our example, however, requires
authentication for this resource, so we can skip that check.

There is a Jakarta REST-specific type that is also named SecurityContext and has
o similar methods as the ones we used here. From the Jakarta EE perspective, that is
a discouraged type and the Jakarta Security version is to be preferred.

Declare the authentication mechanism and identity store

@ApplicationScoped
@BasicAuthenticationMechanismDefinition(
realmName = "basicAuth"
)
@LdapIdentityStoreDefinition(
url = "ldap://localhost:40000",
callerBaseDn = "ou=caller,dc=jakartaee",
groupSearchBase = "ou=group,dc=jakartaee",
groupSearchFilter = "(&(member=%s)(objectclass=groupofnames))"

251

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/ldapidentitystoredefinition
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext
https://jakarta.ee/specifications/restful-ws/3.1/apidocs/jakarta.ws.rs/jakarta/ws/rs/core/securitycontext

@ApplicationPath("/rest")
public class ApplicationConfig extends Application {

To declare the wusage of a specific authentication mechanism, Jakarta EE provides
[XYZ]MechanismDefinition annotations. Such an annotation is picked up by the security system, and
in response to it a CDI bean that implements the HttpAuthenticationMechanism is enabled for it.

The annotation can be put on any bean, but in a REST application it fits particularly well on the
Application subclass because it also declares the path for REST resources.

Likewise, to declare the usage of a specific identity store, Jakarta EE provides [XYZ]StoreDefinition
annotations.

The annotations can be put on any bean, but in a REST application it fits particularly well on the
Application subclass that also declares the path for REST resources.

You can use the provided @LdapIdentityStoreDefinition with any authentication mechanism that
validates username/password credentials. LDAP structures are very open-ended, and there’s a lot of
possible ways to model callers, their passwords, and their groups. We’ll present one way here,
where we’ll define a caller.jakartaee object, that contains the caller name and password, and a
group.jakartaee object that contains the group name and a list of all callers in that group.

For this structure we need 3 attributes to be defined:

1. callerBaseDn - Used for credential validation using "direct binding", with the default caller name
being "uid".
2. groupSearchBase - The object root used to search for groups of the caller

3. groupSearchFilter - The subtree to search for groups

Populating the identity store

In order to use the identity store, we need to put some data in an LDAP server. The following code
shows one way how to do that:

@ApplicationScoped
@BasicAuthenticationMechanismDefinition(
realmName = "basicAuth"
)
@LdapIdentityStoreDefinition(
url = "ldap://localhost:40000",
callerBaseDn = "ou=caller,dc=jakartaee",
groupSearchBase = "ou=group,dc=jakartaee",
groupSearchFilter = "(&(member=%s)(objectclass=groupofnames))’

)

@DeclareRoles("user")
@ApplicationPath("/rest")
public class ApplicationConfig extends Application {

private InMemoryDirectoryServer directoryServer;

252

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/httpauthenticationmechanism

public void onStart(@0Observes @Initialized(ApplicationScoped.class) Object
applicationContext) {
try {

InMemoryDirectoryServerConfig config = new
InMemoryDirectoryServerConfig("dc=jakartaee");

config.setListenerConfigs(

new InMemoryListenerConfig("myListener", null, 40000, null, null,

null));

directoryServer = new InMemoryDirectoryServer(config);

directoryServer.importFromLDIF(true,
new LDIFReader(new ByteArrayInputStream(

Define caller.jakartaee and group.jakartaee structure

dn: dc=jakartaee
objectclass: top
objectclass: dcObject
objectclass: organization
dc: jakartaee

0: jakartaee

dn: ou=caller,dc=jakartaee
objectclass: top

objectclass: organizationalUnit
ou: caller

dn: ou=group,dc=jakartaee
objectclass: top

objectclass: organizationalUnit
ou: group

Add caller john:secret1 and group user with member john

dn: uid=john,ou=caller,dc=jakartaee
objectclass: top

objectclass: uidObject

objectclass: person

uid: john

cn: John Smith

sn: John

userPassword: secret]

dn: cn=user,ou=group,dc=jakartaee
objectclass: top

objectclass: groupOfNames

cn: user

member: uid=john,ou=caller,dc=jakartaee

253

""".getBytes())));

directoryServer.startListening();
} catch (LDAPException e) {
throw new I1legalStateException(e);

}

The code above uses an in-memory LDAP server called Unboundid that we start on port 40000. We
populate it using embedded LDIF, which is a popular format to configure LDAP servers.

In-depth explanation of LDAP itself is beyond the scope of this tutorial, but we’ll briefly explain the
process here. When a caller authenticates with username "john" and password "secret1”, our LDAP
identity store will construct the full name "uid=john,ou=caller,dc=jakartaee” wusing
callerNameAttribute ("uid" as a default), and callerBaseDn ("ou=caller,dc=jakartaee" here). The store
then uses the LDAP 'Bind' operation and directly attempts to "log in" as that user to the LDAP server.
Unlike the Database identity store, the LDAP store doesn’t look up and compare the passwords. If
the aforementioned login succeeds, the credentials are assumed to be correct.

The LDAP store will then search for groups using the javax.naming.directory.DirContext.search()
method, with the groupSearchBase value ("ou=group,dc=jakartaee") and the formatted value from
groupSearchFilter ("(&(member=uid=john,ou=caller,dc=jakartaee)(objectclass=groupofnames))") as
parameters. The LDAP server will subsequently return "cn=user,ou=group,dc=jakartaee" for our
example. From this the value of groupNameAttribute (defaults to "cn") is taken, which resolves to
"user" here.

Test the application

I’s now time to test our application. A ready-to-test version is available from the Jakarta EE
Examples project at https://github.com/eclipse-ee4j/jakartaee-examples.

Download or clone this repo, then cd into the focused folder and execute:

mvn clean install -pl :restBasicAuthLdapStore

This will run a test associated with the project, printing something like the following:

john : true
[INFO] Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: 8.247 s - in
jakartaee.examples.focused.security.restBasicAuthLdapStore.RestBasicAuthLdapStorelIT

The test itself is basically the same as that for the Securing an endpoint with Basic authentication
example.

254

https://github.com/eclipse-ee4j/jakartaee-examples

Securing an endpoint with Custom Form authentication
In the following example, we’ll secure a REST endpoint using Custom Form authentication.
You’ll learn how to:

. Define security constraints

. Use the Custom Form authentication mechanism

1
2
3. Use Jakarta Faces and Jakarta Validation to customize the Form used for Form authentication
4. How to define (and implicitly set) a custom identity store

5

. Use the Jakarta Security SecurityContext

Write the application

Let’s start with defining a simple REST resource class for a /rest/resource endpoint:

@Path("/resource")
@RequestScoped
public class Resource {

@Inject
private SecurityContext securityContext;

@GET
@Produces(TEXT_PLAIN)
public String getCallerAndRole() {
return
securityContext.getCallerPrincipal().getName() +
securityContext.isCallerInRole("user");

This resource uses the injected Jakarta EE SecurityContext to obtain access to the current
authenticated caller, which is represented by a Principal instance.

If this resource were available to unauthenticated callers, getCallerPrincipal() would return null
for unauthenticated requests, so we’d have to check for null. Our example, however, requires
authentication for this resource, so we can skip that check.

There is a Jakarta REST-specific type that is also named SecurityContext and has
similar methods as the ones we used here. From the Jakarta EE perspective, that is
a discouraged type and the Jakarta Security version is to be preferred.

Declare the security constraints

Next we’ll define the security constraints in web.xml, which tell the security system that access to a
given URL or URL pattern is protected, and hence authentication is required:

255

https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#specifying-security-constraints
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/customformauthenticationmechanismdefinition
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/package-summary.html
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext
https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/securitycontext
https://jakarta.ee/specifications/restful-ws/3.1/apidocs/jakarta.ws.rs/jakarta/ws/rs/core/securitycontext

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="https://jakarta.ee/xml/ns/jakartaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee

https://jakarta.ee/xml/ns/jakartaee/web-app_6_0.xsd"
version="6.0">

<security-constraint>
<web-resource-collection>
<web-resource-name>protected</web-resource-name>
<url-pattern>/rest/*</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>user</role-name>
</auth-constraint>
</security-constraint>

</web-app>

This XML essentially says that to access any URL that starts with "/rest” requires the caller to have
the role "user". Roles are opaque strings; merely identifiers. It’s fully up to the application how
broad or fine-grained they are.

In Jakarta EE, internally these XML constraints are transformed into Permission
o instances and made available via a specific type of permission store. Knowledge
about this transformation is only needed for very advanced use cases.

The observant reader may wonder if XML is really the only option here, given the
strong feelings that exist in parts of the community around XML. The answer is yes
and no. Jakarta EE does define the @RolesAllowed annotation that could be used to
replace the XML shown above, but only the legacy Enterprise Beans has specified a

0 behaviour for this when put on an Enterprise Bean. Jakarta REST has done no such
thing, although the JWT API in MicroProfile has defined this for REST resources. In
Jakarta EE, however, this remains a vendor-specific extension. There are also a
number of annotations and APIs in Jakarta EE to set these kinds of constraints for
individual Servlets, but those won’t help us much either here.

Declare the authentication mechanism

@ApplicationScoped
@CustomFormAuthenticationMechanismDefinition(
loginToContinue = @LoginToContinue(
loginPage="/1ogin.xhtml",
errorPage=""
)
)

@DeclareRoles({ "user", "caller" })

256

https://jakarta.ee/specifications/annotations/2.1/annotations-spec-2.1.html#jakarta-annotation-security-rolesallowed
https://microprofile.io/project/eclipse/microprofile-jwt-auth/spec/src/main/asciidoc/configuration.asciidoc
https://jakarta.ee/specifications/servlet/6.0/jakarta-servlet-spec-6.0.html#programmatic-security-policy-configuration

@FacesConfig
@ApplicationPath("/rest")
public class ApplicationConfig extends Application {

To declare the wusage of a specific authentication mechanism, Jakarta EE provides
[XYZ]MechanismDefinition annotations. Such an annotation is picked up by the security system, and
in response to it a CDI bean that implements the HttpAuthenticationMechanism is enabled for it.

The annotation can be put on any bean, but in a REST application it fits particularly well on the
Application subclass because it also declares the path for REST resources.

Contrary to the Basic HTTP authentication mechanism, the Form authentication mechanism allows
us to customize the login dialog (the process between the caller and the authentication mechanism)
and to keep track of the authenticated session on the server (using a cookie). This also allows us to
logout, something that for unknown reasons has never been specified for Basic HTTP
authentication.

Contrary to the regular Form authentication mechanism, the Custom Form authentication
mechanism lets us customize the login dialog even more by having the ability to execute custom
code between the postback of a login form and the form authentication mechanism taking the
provided credentials.

To use this authentication method, we need to designate a path to a resource that is relative to our
application. The authentication mechanism will redirect the caller to this resource when
authentication is required. The resource can be anything, but a postback should eventually lead to
some code being executed that continues the authentication dialog. For example a plain .html file
or .jsp file combined with a Filter, or a Faces view with a backing bean.

Define the authentication mechanism’s view and backing code

For this example we’ll use a Faces view with a backing bean:

<!DOCTYPE html>
<html lang="en" xmlns:h="jakarta.faces.html">
<h:head>
<title>Login to continue</title>
</h:head>
<h:body>
<h1>Login to continue</h1>

<h:messages />

<h:form id="form">
<div>
<h:outputlLabel for="username" value="Username" />
<h:inputText id="username" value="#{loginBacking.username}"/>
</div>
<div>

257

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/authentication/mechanism/http/httpauthenticationmechanism

<h:outputlLabel for="password" value="Password" />
<h:inputSecret id="password" value="#{loginBacking.password}"/>
</div>
<div>
<h:commandButton value="Login" type="submit"

action="#{loginBacking.login}" />

</div>
</h:form>
</h:body>

</html>

@Named
@RequestScoped
public class LoginBacking {

@Inject
private SecurityContext securityContext;

@Inject
private FacesContext facesContext;

@NotNull
@Size(min = 3, max = 15, message="Username must be between 3 and 15 characters")
private String username;

@NotNull
@Size(min = 5, max = 50, message="Password must be between 5 and 50 characters")
private String password;

public void login() {
switch (
// Continue the authentication dialog manually by invoking the

authenticate()

// method. The form authentication picks this up, just like a post to

j_security does.

securityContext.authenticate(
getRequest(),
getResponse(),
withParams()
.credential(new UsernamePasswordCredential(username, new

Password(password))))) {

258

case SEND CONTINUE:

// Authentication mechanism has send a redirect, should not
// send anything to response from Faces now.
facesContext.responseComplete();

return;

case SEND_FAILURE:

addError("Login failed");
return;

default:

// getters/setters + utility methods omitted

The view itself is quite similar to the HTML page we used for the form in Securing an endpoint with
Form authentication. The main difference is bindings of the form fields to a (CDI) backing bean. The
bean side of the binding has Jakarta Validation constraints applied to it; this allows for fine-grained
validation of some general requirements of the credentials without actually attempting
authentication.

If this initial validation passes, we arrive in the 1ogin() method. For our example the only thing we
need to do here is signaling that we want to continue the authentication dialog (the process or
interaction between the caller and the authentication mechanism), and when doing so provide the
credentials that we earlier obtained in a custom way.

We have two important outcomes to handle. SEND_CONTINUE effectively means the credentials were
validated successfully, and the caller is therefore directed to the resource that was originally
requested. SEND_FAILURE means the opposite; the credentials were not validated successfully. By just
returning from our callback method in the last case the form will be redisplayed, albeit with the
error message added.

NOT_DONE and SUCCESS are two other outcomes, but we don’t have to handle them

o here. NOT_DONE only applies to pre-emptive authentication, but we’re doing explicit
(forced, mandatory) authentication here. SUCCESS means we can go ahead and
render the page, which is exactly what happens if we don’t do anything.

See [web:webapp::webapp:::_getting_started_with_web_applications] for more information on
running .xhtml files and their backing beans.

Define the identity store

Finally, let’s define a basic identity store that the security system can use to validate provided
credentials for Form authentication:

@ApplicationScoped
public class CustomIdentityStore implements IdentityStore {

public CredentialValidationResult validate(UsernamePasswordCredential
usernamePasswordCredential) {
if (usernamePasswordCredential.compareTo("john", "secret1")) {
return new CredentialValidationResult("john", Set.of("user", "caller"));

}

259

return INVALID_RESULT;

This identity store only validates the single identity (user) "john", with password "secret1" and roles
"user" and "caller". Defining this kind of identity store is often the simplest way to get started. Note
that Jakarta Security doesn’t define a simple identity store out of the box, because there are
questions about whether that would promote security best practices.

The identity store is installed and used by the security system just by the virtue of being there; it
picks up all enabled CDI beans that implement IdentityStore. Such beans can be enabled by the
security system itself (following some configuration annotation), or can be programmatically added
using the appropriate CDI APIs. Where the bean comes from doesn’t matter for Jakarta Security,
only the fact that it’s there.

Test the application

It’s now time to test our application. A ready-to-test version is available from the Jakarta EE
Examples project at https://github.com/eclipse-ee4j/jakartaee-examples.

Download or clone this repo, then cd into the focused folder and execute:

mvn clean install -pl :restCustomFormAuthCustomStore

This will run a test associated with the project, printing something like the following:

john : true

[INFO] Tests run: 1, Failures: @, Errors: @, Skipped: @, Time elapsed: 9.272 s - in
jakartaee.examples.focused.security.restCustomFormAuthCustomStore.RestCustomFormAuthCu
stomStorelT

Let’s take a quick look at the actual test:

@RunWith(Arquillian.class)
©@RunAsClient
public class RestCustomFormAuthCustomStoreIT extends ITBase {

@ArquillianResource
private URL baselrl;

/**

* Test the call to a protected REST service

*

* @throws Exception when a serious error occurs.
*/

260

https://jakarta.ee/specifications/security/3.0/apidocs/jakarta.security/jakarta/security/enterprise/identitystore/identitystore
https://github.com/eclipse-ee4j/jakartaee-examples

©@RunAsClient

@Test

public void testRestCall() throws Exception {
HtmlPage loginPage = web(Client.getPage(baseUrl + "/rest/resource");
System.out.println(loginPage.asXml());

HtmlForm form = loginPage.getForms()
.get(0);

form.getInputByName("form:username")
.setValueAttribute("john");

form.getInputByName("form:password")
.setValueAttribute("secret1");

TextPage page = form.getInputByValue("Login")
.click();

System.out.println(page.getContent());

The test starts a server and deploys the output of the build process (a .war file) to it. The test runs in
the integration test phase, rather than the unit test phase, to make sure this build output is
available when it runs. The test then sends a request to the server using the provided HtmlUnit
webClient. Note that the webClient can be used for any other HTTP requests your test requires.

If you want to inspect the app yourself, you can manually deploy the WAR file
(security/restCustomFormAuthCustomStore/target/restCustomFormAuthCustomStore.war) to the server
of your choice (e.g. GlassFish 7), and request the URL via a browser or a commandline util such as
curl.

The test first sends a request here to the protected resource, and the server responds with the
rendered version of the Faces view form we defined above. Using the HtmlUnit APIL it’s easy to
navigate the HTML DOM, fill out the username and password in the form, and programmatically
click the Login button. The form posts back to the same URL it was requested from. Faces will detect
this postback and will orchestrate the validation using Jakarta Validation and invoking the CDI
based backing bean.

Jakarta Servlets

Getting Started with Web Applications

The Web Profile allows you to get started developing Java web applications, which typically use
Jakarta Servlet API as corner stone.

Web Applications

A web application, also known as a web app, is a software application that runs on one or more

261

https://projects.eclipse.org/projects/ee4j.glassfish

web servers. It is typically accessed through a web browser over a network, such as the Internet.
The advantage over desktop and mobile applications is being platform-independent, as it can be
accessed and used on different devices. Web applications are of the following types:

Presentation-oriented

A presentation-oriented web application (also called a "website") generates dynamic web pages
in response to HTTP requests. The response is usually represented as a HTML document along
with assets, such as Cascading Style Sheets (CSS), JavaScript (JS) and images. Presentation-
oriented applications are often directly used by humans. Development of presentation-oriented
web applications is covered in "Building Web Services with Jakarta XML Web Services"
(available in a previous version of the tutoriall) through Jakarta Servlet Technology

Service-oriented

A service-oriented web application (also called a "service") generates dynamic data structures in
response to HTTP requests. The response is usually represented as a JSON object or as a XML
document or even as plain text. Service-oriented applications are often directly used by
presentation-oriented web applications or other service-oriented applications. Development of
service-oriented web applications is covered in "Building Web Services with Jakarta XML Web
Services" (available in a previous version of the tutorialll)

In the Jakarta EE platform, web applications are represented by web components as seen in Jakarta
Web Application Request Handling. A web component can be represented by Jakarta Servlet,
Jakarta Faces or Jakarta REST.

—]
HttpServlet -_—
—@—HTTP Request —® e quest Web <—@—>*
Components L
Database
Web
Client
—_—
HttpServlet 4—(:)
l@— HTTP Response —@—— R efp - Beans -. ’
Database

Figure 8. Jakarta Web Application Request Handling

1. The client sends an HTTP request to the web server.

2. The web server module that supports Jakarta Servlet-based web components is called a servlet
container.

3. The servlet container converts the HTTP request into an HttpServletRequest object and prepares
the HttpServletResponse object.

4. These objects are delivered to a web component, which can interact with beans or a database to
generate dynamic content.

5. The web component can fill the HttpServletResponse object with the generated dynamic content
or can pass the object to another web component to fill it.

6. The servlet container ultimately converts the HttpServletResponse object to an HTTP response
and the web server returns it to the client.

262

https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/websvcs/jaxws/jaxws.html#_building_web_services_with_jakarta_xml_web_services
https://jakarta.ee/learn/docs/jakartaee-tutorial/9.1/websvcs/jaxws/jaxws.html#_building_web_services_with_jakarta_xml_web_services

Jakarta Servlet can be used to build both presentation and service-oriented web applications. It
intends to reduce the boilerplate code needed to convert the HTTP request into a Java object and to
offer a Java object as an HTTP response, and to manage all the lifecycle around them.

Jakarta Faces is a component-based MVC framework that can be executed on a servlet container
and act as a presentation-oriented web application. It intends to reduce the boilerplate code needed
to collect the request parameters, convert and validate them, update bean properties with them,
invoke bean methods, and generate HTML output as response. It is designed to run in servlet and
non-servlet environments such as a portlet container.”

Jakarta REST is a RESTful web service framework that can be executed on a servlet container and
act as a service-oriented web application. It intends to reduce the boilerplate code needed to
convert the request parameters to a bean and further convert it to the desired response such as
JSON or XML. It is designed to run in servlet and non-servlet environments such as a
microservice.”

A servlet container can be part of a Jakarta runtime such as an application server. Certain aspects
of web component behavior can be configured when the web application is installed, or deployed,
to a servlet container. The configuration information can be specified using annotations or can be
maintained in a XML file called a deployment descriptor. A deployment descriptor file must comply
to the schema described in the specification associated with the web component. When the same
configuration is specified using annotations and in a deployment descriptor file, then the
configuration in the deployment descriptor file will always have precedence.

This chapter gives a brief overview of the activities involved in developing Jakarta Servlet-based
web applications. It explains how to compile, package, deploy, and run Jakarta Servlet-based web
applications in a servlet container.

The Web Application Archive

A Jakarta Servlet-based web application can contain one or more of the following parts:
* One or more web components, which can be represented by Jakarta Servlet, Jakarta Faces or
Jakarta REST.

» Assets (also called static resource files), such as Cascading Style Sheets (CSS), JavaScript (JS) and
images.

* Dependencies (also called helper libraries, third party libraries, "JARs").
* Deployment descriptor files.
The process for creating, deploying, and executing a Jakarta Servlet-based web application is
different from that of Java classes which are packaged and executed as a Java application archive
(JAR). It can be summarized as follows:
1. Develop the web component code.
2. Develop the deployment descriptor files, if necessary.

3. Compile the web component code against the libraries of the servlet container and the helper
libraries, if any.

263

4. Package the compiled code along with helper libraries, assets and deployment descriptor files, if
any, into a deployable unit, called a web application archive (WAR).

5. Deploy the WAR into a servlet container.
6. Run the web application by accessing a URL that references the web component.
Developing the web component code and deployment descriptor files is covered in the later
chapters. Steps 3 through 6 are expanded on in the following sections and illustrated with two web
applications, in Hello World-style. The web applications take a name as an HTTP request
parameter, generate the greeting and return it as an HTTP response. This chapter discusses the
following simple web applications:
* hello-servlet, a Jakarta Servlet-based service-oriented web application
* hello-faces, a Jakarta Faces-based presentation-oriented web application

They are used to illustrate tasks involved in compiling, packaging, deploying, and running a Jakarta
Servlet-based web application that contains web component code.

Building, Deploying and Running The Example Projects

This describes steps 3 through 6. You need Maven and a servlet container.

Building The Example Projects

This describes steps 3 and 4. Maven is used to build the example projects. Download and install it as
per instructions in maven.apache.org. A Maven WAR project has the following basic structure; not
all mentioned resources are required, only the pom.xml is required and the rest is optional:

|-- src

| ‘-~ main

| |-- java

| | ‘-~ com

| | ‘-~ example

| | |-- controller

| | | ‘-- Servlet.java

| | ‘-~ model

| | ‘-- Bean.java

| |-- resources

| | Y-~ com

| | ‘-~ example

| | ‘-- 118n

| | |-- text.properties
| | |-- text_en.properties
| | ‘-- text_es.properties
| ‘-~ webapp

| |-- META-INF

| | “-- MANIFEST.MNF

| |-- resources

I | |-- css

| |

| ‘-- style.css

264

https://maven.apache.org/

|-~ img
| ‘-~ Tlogo.svg

-- index.xhtml

| I

| I

I | - s

| | ‘-- script.js

| |-- WEB-INF

| | |-- beans.xml

| | |-- faces-config.xml
| | “-- web.xml

| |-- favicon.ico

| \

-- pom.xml

In a terminal window, go to the folder containing the pom.xml and execute the following command:

mvn install

This command compiles and packages the code as described in steps 3 and 4. After the build, the
resulting WAR file will be present in the automatically created target folder. The WAR file is
recognizable by having the .war extension.

Deploying The Example Projects

This describes step 5. You need at least a servlet container in order to deploy a WAR file. The Jakarta
EE Compatible Products page lists several Jakarta runtimes having a servlet container. At least
those compatible with "Web Profile" and "Jakarta EE Platform" have a servlet container. Examples
are Eclipse GlassFish, IBM Open Liberty and Red Hat WildFly. They are available in both "Web
Profile" and "Jakarta EE Platform" flavors.

There are also partial Jakarta runtimes having a servlet container. Partial as in, they do not fully
implement "Web Profile". One example is Apache Tomcat. It does implement Jakarta Servlet,
Jakarta Pages, Jakarta Expression Language, Jakarta WebSocket, and Jakarta Security. But it does
not implement Jakarta REST, Jakarta CDI, Jakarta Faces nor Jakarta Tags.

Deploying a WAR file is generally done by placing the WAR file in the runtime-specific folder
dedicated for (automatic) deployments. The exact location depends on the runtime used:

* In case of Eclipse GlassFish that’s the glassfish/domains/domain1/autodeploy folder.

In case of IBM Open Liberty that’s the config/dropins folder.

In case of Red Hat WildFly that’s the standalone/deployments folder.

* In case of Apache Tomcat that’s the webapps folder.
Refer to the documentation for your runtime for the most recent information.
Undeploying a WAR file is generally done by removing the WAR file from the folder.

Some runtimes offer a graphical user interface (GUI) for administration tasks such as selecting,
uploading and a deploying a WAR file. For this you’ll need to start the server first and then open a
specific URL in your web browser representing the location of the admin console:

265

https://jakarta.ee/compatibility/
https://jakarta.ee/compatibility/

In case of Eclipse GlassFish that’s reachable via http://localhost:4848
* In case of IBM Open Liberty that’s reachable via https://localhost:9443
* In case of Red Hat WildFly that’s reachable via http://localhost:9990

In case of Apache Tomcat that’s reachable via http://localhost:8080/manager
Refer to the documentation for your runtime for the most recent information.

You can also use an integrated development environment (IDE) to manage runtimes and
deployments. Examples are Eclipse IDE, Intelli] IDEA and Apache NetBeans. They can also
automatically build the projects for you.

Running The Example Projects

This describes step 6. You’ll need to start the server first and then open a specific URL in your web
browser representing the location of the WAR deployment. By default, the URL has the following
form:

http(s)://host:port/context-path

By default, the context-path is represented by the base file name of the WAR file, without the
extension. If there is no web component listening on the root of the context path, then you could
face an HTTP 404 'Not Found' error page. In that case you would need to use a more specific URL,
depending on the configuration of the desired web component. This will be detailed in Mapping
URLSs to Web Components.

Hello World Web Application Using Jakarta Servlet

The hello-servlet application is a web application that uses Jakarta Servlet take a name as an HTTP
request parameter, generate the greeting and return it as an HTTP response. As a service-oriented
web application, the response is in this minimal example represented as plain text.

The source code for this application is in the jakartaee-examples/tutorial/web/servlet/hello-
servlet/ directory.

The Servlet

In a typical Jakarta Servlet-based web application, the class must extend
jakarta.servlet.http.HttpServlet and override one of the doXxx() methods where Xxx represents
the HTTP method of interest. Such a class is in the Jakarta Servlet world called a Servlet.

For this Hello World web application, the
src/main/java/jakarta/tutorial/web/servlet/Greeting.java servlet listens on HTTP GET requests
and extracts the name request parameter as input and creates the greeting as output.

package jakarta.tutorial.web.servlet;

import java.io.IOException;

266

http://localhost:4848
https://localhost:9443
http://localhost:9990
http://localhost:8080/manager

import jakarta.
import jakarta.
import jakarta.
import jakarta.
import jakarta.

servlet.ServletException;
servlet.annotation.WebServlet;
servlet.http.HttpServlet;
servlet.http.HttpServletRequest;
servlet.http.HttpServletResponse;

@WebServlet("/greeting")
public class Greeting extends HttpServlet {

@0verride

public void doGet
(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

var name = request.getParameter("name");

if (name == null || name.isBlank()) {
response.sendError (HttpServletResponse.SC_BAD_REQUEST);
return;

}

var greeting = "Hello, " + name +

n wyn,
L

response.setContentType("text/plain");
response.getWriter().write(greeting);

Mapping URLs to Web Components

When the servlet container receives a request, it must determine which web component should
handle the request. The servlet container does so by mapping the URL contained in the request to a

web component. A URL contains the context path and, optionally, a URL pattern:

http(s)://host:

port/context-path[/url-pattern]

You can set the URL pattern for a servlet by using the @WebServlet annotation in the servlet source
file or by using <servlet-mapping> entry in the Jakarta Servlet deployment descriptor file, the
src/main/webapp/WEB-INF/web.xml. In the Greeting servlet example the @WebServlet annotation
indicates that the URL pattern is /greeting. Therefore, when the servlet is deployed to a local server
listening on http://localhost:8080 with the context path set to hello-servlet, it is accessed with the

following URL:

http://localhost:8080/hello-servlet/greeting

The Hello World example will return an HTTP 400 error as response indicating a 'Bad Request'.
When specifying the name as a request parameter in the following URL:

267

http://localhost:8080

http://localhost:8080/hello-servlet/greeting?name=Duke

Then it will return the response Hello, Duke!.
Running the hello-servlet example application
Build and deploy as instructed in Building, Deploying and Running The Example Projects.

In a web browser, open the following URL:

http://localhost:8080/hello-servlet/greeting?name=Duke

It will return the response Hello, Duke!.You can edit the name parameter into something else to get
a different response.

http://localhost:8080/hello-servlet/greeting?name=Joe

This will return the response Hello, Joe!.

Hello World Web Application Using Jakarta Faces

The hello-faces application is a web application that uses Jakarta Faces take a name as an HTTP
request parameter, generate the greeting and return it as an HTTP response. As a presentation-
oriented web application, the response is represented as a HTML document.

The source code for this application is in the jakartaee-examples/tutorial/web/faces/hello-faces/
directory.

Jakarta Faces is a component-based MVC framework that provides its own servlet as controller (the
"C" part of MVC), the FacesServlet. The model and the view are usually provided by you, the web
developer.

The Model

In a typical Jakarta Faces application, the model (the "M" part of MVC) is represented by a bean
class. Such a bean class is in the Jakarta Faces world called a Backing Bean.

For this Hello World web application, the src/main/java/jakarta/tutorial/web/faces/Hello.java
backing bean defines a name property along with a getter and setter, a greeting property along with
a getter, and a submit action method which creates the greeting as output-based on name as input.

package jakarta.tutorial.web.faces;

import jakarta.enterprise.context.RequestScoped;
import jakarta.inject.Named;

@Named

268

@RequestScoped
public class Hello {

private String name;
private String greeting;

public void submit() {

greeting = "Hello, " + name + ;

}

public String getName() {
return name;

}

public void setName(String name) {
this.name = name;

}

public String getGreeting() {
return greeting;

}

Note that a getter is required for output and that a setter is only required for input.

In a typical Jakarta Faces application, CDI is used to manage the backing beans. We’ll briefly go
through the CDI annotations that are used here:

* @Named — gives the backing bean a managed bean name, which is primarily used to reference it
in Expression Language (EL). Without any attributes this defaults to the simple class name with
the first letter in lowercase. This backing bean will thus be available as a managed bean via
#{hello} in EL.

* @RequestScoped —gives the backing bean a managed bean scope, which essentially represents its
lifespan. In this case that lifespan is the duration of an HTTP request. When the HTTP request
ends, then the managed bean instance is destroyed

The View

In a typical Jakarta Faces application, the view (the "V" part of MVC) is represented by a XHTML file.
Such a XHTML file is in the Jakarta Faces world called a Facelets File or just Facelet. In Jakarta Faces,
the view technology is pluggable and Facelets is used as the default view technology. XHTML
markup is being used because it allows the framework to easily use a XML parser to find Jakarta
Faces tags of interest and to generate HTML output.

For this Hello World web application, the src/main/webapp/hello.xhtml Facelet defines a form with
an input field, a command button and an output field.

<!DOCTYPE html>
<html lang="en"

269

xmlns:f="jakarta.faces.core"
xmlns:h="jakarta.faces.html">

<h:head>
<title>Jakarta Faces Hello World</title>
</h:head>
<h:body>
<h1>Hello, what's your name?</h1>
<h:form>

<h:inputText value="#{hello.name}" required="true" />
<h:commandButton value="Submit" action="#{hello.submit}">
<f:ajax execute="@form" render=":greeting" />

</h:commandButton>
<h:messages />

</h:form>

<h:outputText id="greeting" value="#{hello.greeting}" />

</h:body>
</html>

We’ll briefly go through the Jakarta Faces-specific XHTML tags that are used here.

* <h:head>— generates the HTML <head>. It gives Jakarta Faces the opportunity to automatically
include any necessary JS and CSS files in the generated HTML head.

* <h:body>— generates the HTML <body>. It gives Jakarta Faces the opportunity to automatically
include any necessary JS files in the end of the generated HTML body.

» <h:form>— generates the HTML <form>. It gives Jakarta Faces the opportunity to automatically
include a hidden field representing the view state.

* <h:inputText>—generates the HTML <input>. It gives Jakarta Faces the opportunity to
automatically get and set the value as a managed bean property specified in the value attribute,
as well as to perform any conversion and validation on it.

* <h:commandButton>—generates the HTML <input type="submit">. It gives Jakarta Faces the
opportunity to automatically invoke the backing bean method specified in the action attribute.

* <h:messages>—generates the HTML or <div> or <table> depending on state and
configuration. It gives you the opportunity to declare the place where any conversion and
validation messages will be displayed.

» <f:ajax>—generates the necessary JavaScript code for Ajax behavior. If gives you the
opportunity to configure the form submit to be performed asynchronously using Ajax.

* <h:outputText>—generates the HTML . This is the one being updated on completion of
the Ajax submit and it will display the current value of the managed bean property specified in
the value attribute.

The <h:---> tags define standard HTML components. The <f:---> tags define behavior.

The input value is via EL value expression #{hello.name} connected to the name property of the Hello
backing bean via its getter and setter. The output value is via EL value expression #{hello.greeting}
connected to the greeting property of the Hello backing bean via its getter. The command button is
via EL method expression #{hello.submit} connected to the submit method of the Hello backing

270

bean.

Note that for EL value expressions the physical field representing the property doesn’t need to have
exactly the same name nor that it needs to exist at all. EL. only looks for the getter and setter
methods, not for the field.

The Controller

In a typical Jakarta Faces application, the controller (the "C" part of MVC) is registered in the Jakarta
Servlet deployment descriptor file, the src/main/webapp/WEB-INF/web.xml.

<?xml version="1.0" encoding="UTF-8"7>
<web-app xmlns="https://jakarta.ee/xml/ns/jakartaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee
https://jakarta.ee/xml/ns/jakartaee/web-app_6_0.xsd"
version="6.0">
<servlet>
<servlet-name>facesServlet</servlet-name>
<servlet-class>jakarta.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>facesServlet</servlet-name>
<url-pattern>*.xhtml</url-pattern>
</servlet-mapping>
</web-app>

It Dbasically instructs the servlet container to create an instance of
jakarta.faces.webapp.FacesServlet as facesServlet during startup and to execute it when the URL
pattern of the HTTP request matches *.xhtml.

Running the hello-faces example application

Build and deploy as instructed in Building, Deploying and Running The Example Projects.

In a web browser, open the following URL:

http://localhost:8080/hello-faces/hello.xhtml

It will show a web page with a form asking for your name. Enter your name in the input field of the
form, for example 'Duke’, and click Submit. This will show the text Hello, Duke! below the form.

Jakarta Servlet Deployment Descriptor

This section describes the following tasks involved with configuring Jakarta Servlet-based web
applications:

* Preparing deployment descriptor

271

* Setting context parameters
* Declaring welcome files
* Mapping errors to error screens

 Declaring resource references

Preparing Deployment Descriptor

The Jakarta Servlet deployment descriptor is represented by the WEB-INF/web.xml file which is in a
Maven-based project placed in src/main/webapp folder. It must be a XML file with a <web-app> root
element conform the web-app_X_Y.xsd XML schema of the https://jakarta.ee/xml/ns/jakartaee
namespace.

<?xml version="1.0" encoding="UTF-8"?>

<web-app xmlns="https://jakarta.ee/xml/ns/jakartaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee

https://jakarta.ee/xml/ns/jakartaee/web-app_6_0.xsd"
version="6.0">

<!-- Put configuration here -->

</web-app>

Setting Context Parameters

The web components in a web application share an object that represents their application context,
the jakarta.servlet.ServletContext. You define context-wide initialization parameters in the
web. xml file.

<context-param>
<param-name>com.example.THEME</param-name>
<param-value>blue</param-value>
</context-param>

You can obtain them in application code via getInitParameter(String name) method of the
ServletContext instance.

String theme = servletContext.getInitParameter("com.example.THEME");

These context parameters can be used to configure (default) application-wide variables, such as the
web application’s project stage, the path to save uploaded files, the path to a more specific
configuration file, the maximum size of a cache, the expiration time of a cacheable resource, the
name of the tenant/theme/scheme, or even helper library specific parameters, etcetera, but never
passwords. It are those variables which you’d normally define as constants in a Java class, but then
without the need to recompile Java classes whenever you’d like to edit them.

272

https://jakarta.ee/xml/ns/jakartaee

Declaring Welcome Files

The welcome files mechanism allows you to specify a list of files that the servlet container can
return as a default resource when any folder is requested which does not map to an existing web
component. For example, suppose that you define two welcome files index.xhtml and index.html. So,
if for example the / folder is requested, and it does not map to a web component, then it’ll search
for /index.xhtml and /index.html files and return the first found one. Or if there is none, then the
servlet container will continue to perform the default behavior, which is usually displaying an
HTTP 404 error page. Note that this also applies to sub folders, so if for example the /foo folder is
requested, then it'll search for /foo/index.xhtml and /foo/index.html files and return the first found
one. You specify welcome files in the web. xml file.

<welcome-file-list>
<welcome-file>index.xhtml</welcome-file>
<welcome-file>index.html</welcome-file>
</welcome-file-1list>

A specified welcome file must not have a leading slash (/) as it is interpreted independently of the
requested folder.

Mapping Errors to Error Pages

When an error occurs during execution of a web application, you can have the application display
a specific error page according to the type of error. In particular, you can specify a mapping
between the status code returned in an HTTP response or a Java programming language exception
returned by any web component and any type of error page. You specify error pages in the web.xml
file.

<error-page>
<error-code>401</error-code>
<location>/WEB-INF/error-pages/unauthorized.xhtml</location>
</error-page>
<error-page>
<error-code>403</error-code>
<location>/WEB-INF/error-pages/unauthenticated.xhtml</location>
</error-page>
<error-page>
<error-code>404</error-code>
<location>/WEB-INF/error-pages/not-found.xhtml</location>
</error-page>
<error-page>
<error-code>500</error-code>
<location>/WEB-INF/error-pages/general-error.html</location>
</error-page>
<error-page>
<exception-type>jakarta.faces.application.ViewExpiredException</exception-type>
<location>/WEB-INF/error-pages/view-expired.html</location>
</error-page>
<error-page>

273

<!-- No error-code or exception-type, i.e. this will match any other HTTP status
than defined above -->

<location>/WEB-INF/error-pages/unknown-error.html</location>
</error-page>

A specified location must have a leading slash (/) as it is interpreted as an absolute path within the
context of the web application deployment. The error page being placed in /WEB-INF folder is not
technically required, but it is the best practice as it will prevent the client from being able to
request or even bookmark them individually.

Declaring Resource References

If your web application uses external resources, such as data sources or mail sessions, then you can
specify it in web.xml and use the @javax.annotation.Resource annotation to inject it into a container-
managed object of your web application.

The @Resource annotation can be specified on a class, a method, or a field. The container is
responsible for instantiating and injecting references to resources declared by the @Resource
annotation in container-managed objects and mapping it to the proper JNDI resources.

Container-managed objects are primarily those objects which you do not explicitly instantiate
yourself as in new ContainerManagedObject() but basically let the container do. For example CDI
managed beans in case of a CDI container, and web components in case of a servlet container. CDI
managed beans are recognizable as classes having a CDI scope annotation such as @RequestScoped or
@Dependent. Web components are recognizable as classes that extend or implement a class or
interface of the jakarta.servlet. package, and are registered via an annotation of the
jakarta.servlet.annotation. package or an entry in the web.xml file.

Declaring Data Source References

If your web application uses data sources, then you can specify it in web.xml and use the @Resource
annotation to inject it into a container-managed object of your web application as a
javax.sql.DataSource instance. The below example specifies a H2 data source listening on JNDI
resource name of java:global/YourDataSourceName, using the org.h2.jdbcx.JdbcDataSource as
javax.sql.DataSource implementation.

<data-source>
<name>java:global/YourDataSourceName</name>
<class-name>org.h2.jdbcx.JdbcDataSource</class-name>
<url>jdbc:h2:mem:test</url>

</data-source>

If you have only one data source reference specified, then you can inject it as a @Resource of
javax.sql.DataSource type without an explicit JNDI resource name.

@Resource
private DataSource dataSource;

274

public Connection getConnection() {
return dataSource.getConnection();

}

If you have more than one data source reference specified, then you need to explicitly specify the
JNDI resource name.

@Resource(name="java:global/YourDataSourceName")
private DataSource dataSource;

public Connection getConnection() {
return dataSource.getConnection();

}

Do note that javax.sql.DataSource is not part of Jakarta EE but of Java SE and hence it has still the
javax as root package.

Declaring Mail Session References

If your web application uses mail sessions, then you can specify it in web.xml and use the @Resource
annotation to inject it into a container-managed object of your web application as a
jakarta.mail.Session instance. The below example specifies a SMTP mail session listening on JNDI
name of java:global/YourMailSessionName, wusing the smtp.example.com host to create
jakarta.mail.Session for.

<mail-session>
<name>java:global/YourMailSessionName</name>
<host>smtp.example.com</host>
<user>user@example.com</user>
</mail-session>

If you have only one mail session reference specified, then you can inject it as a @Resource of
jakarta.mail.Session type without an explicit JNDI resource name.

@Resource
private Session session;

public void sendMail(YourMail mail) throws MessagingException {
Message message = new MimeMessage(session);
/...

If you have more than one mail session reference specified, then you need to explicitly specify the
JNDI resource name.

@Resource(name="java:global/YourMailSessionName")

275

private Session session;

public void sendMail(YourMail mail) throws MessagingException {
Message message = new MimeMessage(session);
/] ...

Further Information about Web Applications

For more information on web applications, see

* Jakarta Servlet 6.0 specification:
https://jakarta.ee/specifications/servlet/6.0/

* Jakarta Faces 4.0 specification:
https://jakarta.ee/specifications/faces/4.0/

Jakarta Servlet

Jakarta Servlet is a corner stone web framework that can act as a presentation-oriented as well as a
service-oriented web application. Jakarta Servlet intends to reduce the boilerplate code needed to
convert the HTTP request into a Java object and to offer a Java object as an HTTP response, and to
manage all the lifecycle around them.

What Is a Servlet?

A servlet is a Java programming language class that directly or indirectly implements the
jakarta.servlet.Servlet interface. The jakarta.servlet and jakarta.servlet.http packages provide
interfaces and classes for writing servlets. All servlets must implement the jakarta.servlet.Servlet
interface, which defines lifecycle methods such as init, service, and destroy. When implementing a
generic service, you can extend the jakarta.servlet.GenericServlet class which already implements
the Servlet interface. When implementing an HTTP service, you can extend the
jakarta.servlet.http.HttpServlet class which already extends the GenericServlet class.

In a typical Jakarta Servlet based web application, the class must extend
jakarta.servlet.http.HttpServlet and override one of the doXxx methods where Xxx represents the
HTTP method of interest.

Servlet Lifecycle

The lifecycle of a servlet is controlled by the servlet container in which the servlet has been
deployed. When a request is mapped to a servlet, the servlet container performs the following
steps:
1. If an instance of the servlet does not exist, the servlet container:
a. Loads the servlet class
b. Creates an instance of the servlet class

c. Initializes the servlet instance by calling the init method

276

https://jakarta.ee/specifications/servlet/6.0/
https://jakarta.ee/specifications/faces/4.0/

2. The servlet container invokes the service method, passing request and response objects.

Initialization is covered in Creating and Initializing a Servlet. Service methods are discussed in
Writing Service Methods.

If it needs to remove the servlet, the servlet container finalizes the servlet by calling the servlet’s
destroy method. For more information, see Finalizing a Servlet.

Sharing Information

Web components, like most objects, usually work with data to accomplish their tasks. Web
components can store this information in a data store or in a scoped bean, among others.

Using CDI Managed Beans

CDI can be used to define scoped beans which can be injected in any container-managed objects
such as web components. These scoped beans can then be used to store and transfer information.

CDI defines three basic scopes which can be used for this:

@jakarta.enterprise.context.RequestScoped

In a servlet container, this is mapped to the jakarta.servlet.ServletRequest. It lives from the
time that the client has sent the request until it has retrieved the corresponding response. It is
not shared elsewhere.

@jakarta.enterprise.context.SessionScoped

In a servlet container, this is mapped to the jakarta.servlet.http.HttpSession. It lives for as long
as the client is interacting with the web application with the same browser instance, and the
session hasn’t timed out at the server side. It is shared among all requests in the same session.

@jakarta.enterprise.context.ApplicationScoped

In a servlet container, this is mapped to the jakarta.servlet.ServletContext. It lives for as long as
the web application lives. It is shared among all requests in all sessions.

The below example illustrates how CDI @SessionScoped can be used to define a session scoped bean

which stores the user preferences.

@Named

@SessionScoped

public class UserPreferences implements Serializable {
private Locale language;

private Zoneld timeZone;
private boolean darkMode;

I woo

It can be injected in any web component. The below example illustrates how a servlet can be used

277

to take a time zone offset in minutes and update the user preferences with it.

@WebServlet("/timeZoneHandler")
public class TimeZoneHandler extends HttpServlet {

@Inject
private UserPreferences userPreferences;

@0verride
public void doPost
(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

var offsetInMinutes = request.getParameter("offsetInMinutes");

if (offsetInMinutes == null || !offsetInMinutes.matches("\\-?[0-9]{1,3}")) {
response.sendError (HttpServletResponse.SC_BAD_REQUEST);
return;

}

var offsetInSeconds =
TimeUnit.MINUTES.toSeconds(Long.valueOf(offsetInMinutes));

Zoneld timeZone = ZoneOffset.ofTotalSeconds((int) offsetInSeconds);

userPreferences.setTimeZone(timeZone);

response.setStatus(HttpServietResponse.SC_NO_CONTENT);

For example JavaScript’s new Date().getTimeZoneOffset() returns the local (negative) time zone
offset in minutes. This servlet can then be invoked as follows in JavaScript in order to inform the
server about the client’s time zone:

fetch("/context-path/timeZoneHandler", {
method: "POST",
body: new URLSearchParams({
offsetInMinutes: -new Date().getTimezoneOffset()
b
3

Using Scope Objects Directly

If CDI is not available, an alternative is to use Jakarta Servlet’s own scope objects directly. You can
use getAttribute and setAttribute methods of the Jakarta Servlet class representing the scope.
Scope Objects lists the scope objects.

Scope Objects

Scope Object Class Accessible From

278

Application ~ jakarta.servlet.Servle Web components within the web application.

tContext See Accessing the Web Context.
Session jakarta.servlet.http.H web components handling a request that
ttpSession belongs to the session. See Maintaining Client
State.
Request jakarta.servlet.Servle Web components handling the request.
tRequest

The below example illustrates how the previously shown servlet needs to be adjusted to manually
manage the UserPreferences bean.

@WebServlet("/timeZoneHandler")
public class TimeZoneHandler extends HttpServlet {

@0verride
public void doPost
(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

var offsetInMinutes = request.getParameter("offsetInMinutes");

if (offsetInMinutes == null || !offsetInMinutes.matches("\\-?[0-91{1,3}")) {
response.sendError (HttpServletResponse.SC_BAD_REQUEST);
return;

}

var offsetInSeconds =
TimeUnit.MINUTES.toSeconds(Long.valueOf(offsetInMinutes));

Zoneld timeZone = ZoneOffset.ofTotalSeconds((int) offsetInSeconds);

HttpSession session = request.getSession();

UserPreferenes userPreferences = session.getAttribute("userPreferences");

if (userPreferences == null) {
userPreferences = new UserPreferences();
session.setAttribute("userPreferences", userPreferences);

}

userPreferences.setTimeZone(timeZone);
response.setStatus(HttpServletResponse.SC_NO_CONTENT);

Controlling Concurrent Access to Shared Resources

In a multithreaded server, shared resources can be accessed concurrently. In addition to scope
object attributes, shared resources include in-memory data, such as instance or class variables, and
external objects, such as files, database connections, and network connections.

Concurrent access can arise in several situations.

279

* Multiple web components accessing objects stored in the application scope.
* Multiple web components accessing objects stored in the session scope.

* Multiple threads within a web component accessing instance variables.

A web container will typically create a thread to handle each request. When resources can be
accessed concurrently, they can be used in an inconsistent fashion. First step is to ensure that the
variable representing the resource has the correct scope and use a as narrow as possible scope. For
example, request scoped information should not be stored in a session scoped bean nor be assigned
as an instance variable of a servlet, and session scoped information should not be stored in an
application scoped bean.

If concurrent access is inevitable, then you prevent this by using synchronized or atomic objects
such as wrapping a Map in Collections.synchronizedMap() before assigning it to a property of a
session scoped bean.

Creating and Initializing a Servlet

e We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

Use the @WebServlet annotation to define a servlet component in a web application. This annotation
is specified on a class and contains metadata about the servlet being declared. The annotated
servlet must specify at least one URL pattern. This is done by using the urlPatterns or value
attribute on the annotation. All other attributes are optional, with default settings. Use the value
attribute when the only attribute on the annotation is the URL pattern; otherwise, use the
urlPatterns attribute when other attributes are also used.

Classes annotated with @WebServlet must extend the jakarta.servlet.http.HttpServlet class. For
example, the following code snippet defines a servlet with the URL pattern /report:

import jakarta.servlet.annotation.WebServlet;
import jakarta.servlet.http.HttpServlet;

@WebServlet("/report")
public class MoodServlet extends HttpServlet {

The web container initializes a servlet after loading and instantiating the servlet class and before
delivering requests from clients. To customize this process to allow the servlet to read persistent
configuration data, initialize resources, and perform any other one-time activities, you can either
override the init method of the Servlet interface or specify the initParams attribute of the
@WebServlet annotation. The initParams attribute contains a @WebInitParam annotation. If it cannot
complete its initialization process, a servlet throws an UnavailableException.

Use an initialization parameter to provide data needed by a particular servlet. By contrast, a
context parameter provides data that is available to all components of a web application.

280

Writing Service Methods

The service provided by a servlet is implemented in the service method of a GenericServlet, in the
doMethod methods (Where Method can take the value Get, Delete, Options, Post, Put, or Trace) of an
HttpServlet object, or in any other protocol-specific methods defined by a class that implements the
Servlet interface. The term service method is used for any method in a servlet class that provides a
service to a client.

The general pattern for a service method is to extract information from the request, access external
resources, and then populate the response, based on that information. For HTTP servlets, the
correct procedure for populating the response is to do the following:

1. Retrieve an output stream from the response.

2. Fill in the response headers.

3. Write any body content to the output stream.
Response headers must always be set before the response has been committed. The web container

will ignore any attempt to set or add headers after the response has been committed. The next two
sections describe how to get information from requests and generate responses.

Getting Information from Requests

A request contains data passed between a client and the servlet. All requests implement the
ServletRequest interface. This interface defines methods for accessing the following information:
* Parameters, which are typically used to convey information between clients and servlets

* Object-valued attributes, which are typically used to pass information between the web
container and a servlet or between collaborating servlets

* Information about the protocol used to communicate the request and about the client and
server involved in the request

* Information relevant to localization

You can also retrieve an input stream from the request and manually parse the data. To read
character data, use the BufferedReader object returned by the request’s getReader method. To read
binary data, use the ServletInputStream returned by getInputStream.

HTTP servlets are passed an HTTP request object, HttpServletRequest, which contains the request
URL, HTTP headers, query string, and so on. An HTTP request URL contains the following parts:

http://[host]:[port][request-path]?[query-string]

The request path is further composed of the following elements.

* Context path: A concatenation of a forward slash (/) with the context root of the servlet’s web
application.

» Servlet path: The path section that corresponds to the component alias that activated this
request. This path starts with a forward slash (/).

281

» Path info: The part of the request path that is not part of the context path or the servlet path.

You can use the getContextPath, getServletPath, and getPathInfo methods of the HttpServletRequest
interface to access this information. Except for URL encoding differences between the request URI
and the path parts, the request URI is always comprised of the context path plus the servlet path
plus the path info.

Query strings are composed of a set of parameters and values. Individual parameters are retrieved
from a request by using the getParameter method. There are two ways to generate query strings.

* A query string can explicitly appear in a web page.

* A query string is appended to a URL when a form with a GET HTTP method is submitted.

Constructing Responses

A response contains data passed between a server and the client. All responses implement the
ServletResponse interface. This interface defines methods that allow you to do the following.

* Retrieve an output stream to use to send data to the client. To send character data, use the
PrintWriter returned by the response’s getWriter method. To send binary data in a
Multipurpose Internet Mail Extensions (MIME) body response, use the ServletOutputStream
returned by getOutputStream. To mix binary and text data, as in a multipart response, use a
ServletOutputStream and manage the character sections manually.

 Indicate the content type (for example, text/html) being returned by the response with the
setContentType(String) method. This method must be called before the response is committed. A
registry of content type names is kept by the Internet Assigned Numbers Authority (IANA) at
https://www.iana.org/assignments/media-types/.

* Indicate whether to buffer output with the setBufferSize(int) method. By default, any content
written to the output stream is immediately sent to the client. Buffering allows content to be
written before anything is sent back to the client, thus providing the servlet with more time to
set appropriate status codes and headers or forward to another web resource. The method must
be called before any content is written or before the response is committed.

* Set localization information, such as locale and character encoding. See

[web:webil8n::webil8n:::_internationalizing_and_localizing_web_applications] for details.

HTTP response objects, jakarta.servlet.http.HttpServletResponse, have fields representing HTTP
headers, such as the following.

 Status codes, which are used to indicate the reason a request is not satisfied or that a request
has been redirected.

* Cookies, which are used to store application-specific information at the client. Sometimes,
cookies are used to maintain an identifier for tracking a user’s session (see Session Tracking).

Handling Servlet Lifecycle Events

You can monitor and react to events in a servlet’s lifecycle by defining listener objects whose
methods get invoked when lifecycle events occur. To use these listener objects, you must define and
specify the listener class.

282

https://www.iana.org/assignments/media-types/

Defining the Listener Class

You define a listener class as an implementation of a listener interface. Servlet Lifecycle Events lists
the events that can be monitored and the corresponding interface that must be implemented. When
a listener method is invoked, it is passed an event that contains information appropriate to the
event. For example, the methods in the HttpSessionListener interface are passed an
HttpSessionEvent, which contains an HttpSession

Servlet Lifecycle Events

Object

Web context

Web context

Session

Session

Request

Request

Event Listener Interface and Event Class
Initialization and jakarta.servlet.ServletContextListener
destruction and ServletContextEvent

Attribute added, removed, Jjakarta.servlet.ServletContextAttributeli

or replaced stener and ServletContextAttributeEvent
Creation, invalidation, jakarta.servlet.http.HttpSessionlListener,
activation, passivation, and jakarta.servlet.http.HttpSessionActivatio
timeout nListener, and HttpSessionEvent

Attribute added, removed, jakarta.servlet.http.HttpSessionAttribute
or replaced Listener and HttpSessionBindingEvent

A servlet request has started jakarta.servlet.ServletRequestListener
being processed by web and ServletRequestEvent
components

Attribute added, removed, jakarta.servlet.ServletRequestAttributeli
or replaced stener and ServletRequestAttributeEvent

Use the @WebListener annotation to define a listener to get events for various operations on the
particular web application context. Classes annotated with @WebListener must implement one of the
following interfaces:

jakarta.
jakarta.
jakarta.
jakarta.
jakarta.
jakarta.

servlet
servlet
servlet
servlet
servlet
servlet

.ServletContextListener
.ServletContextAttributelistener
.ServletRequestListener
.ServletRequestAttributelistener
..http.HttpSessionListener
..http.HttpSessionAttributelistener

For example, the following code snippet defines a listener that implements two of these interfaces:

import jakarta.servlet.ServletContextAttributelistener;
import jakarta.servlet.ServletContextListener;
import jakarta.servlet.annotation.WebListener;

@WebListener()
public class SimpleServletListener implements ServletContextListener,

ServletContextAttributelListener {

283

Handling Servlet Errors

Any number of exceptions can occur when a servlet executes. When an exception occurs, the web
container generates a default page containing the following message:

A Servlet Exception Has Occurred

But you can also specify that the container should return a specific error page for a given
exception.

Filtering Requests and Responses

A filter is an object that can transform the header and content (or both) of a request or response.
Filters differ from web components in that filters usually do not themselves create a response.
Instead, a filter provides functionality that can be "attached" to any kind of web resource.
Consequently, a filter should not have any dependencies on a web resource for which it is acting as
a filter; this way, it can be composed with more than one type of web resource.

The main tasks that a filter can perform are as follows.

* Query the request and act accordingly.

Block the request-and-response pair from passing any further.

Modify the request headers and data. You do this by providing a customized version of the
request.

Modify the response headers and data. You do this by providing a customized version of the
response.

e Interact with external resources.

Applications of filters include authentication, logging, image conversion, data compression,
encryption, tokenizing streams, XML transformations, and so on.

You can configure a web resource to be filtered by a chain of zero, one, or more filters in a specific
order. This chain is specified when the web application containing the component is deployed and
is instantiated when a web container loads the component.

Programming Filters

The filtering API is defined by the Filter, FilterChain, and FilterConfig interfaces in the
jakarta.servlet package. You define a filter by implementing the Filter interface.

Use the @WebFilter annotation to define a filter in a web application. This annotation is specified on
a class and contains metadata about the filter being declared. The annotated filter must specify at
least one URL pattern. This is done by using the urlPatterns or value attribute on the annotation. All
other attributes are optional, with default settings. Use the value attribute when the only attribute

284

on the annotation is the URL pattern; use the urlPatterns attribute when other attributes are also
used.

Classes annotated with the @WebFilter annotation must implement the jakarta.servlet.Filter
interface.

To add configuration data to the filter, specify the initParams attribute of the @WebFilter annotation.
The initParams attribute contains a @WebInitParam annotation. The following code snippet defines a
filter, specifying an initialization parameter:

import jakarta.servlet.Filter;
import jakarta.servlet.annotation.WebFilter;
import jakarta.servlet.annotation.WebInitParam;

@WebFilter(filterName = "TimeOfDayFilter", urlPatterns = {"/*"},
initParams = {@WebInitParam(name = "mood", value = "awake")})
public class TimeOfDayFilter implements Filter {

The most important method in the Filter interface is doFilter, which is passed request, response,
and filter chain objects. This method can perform the following actions.

* Examine the request headers.

* Customize the request object if the filter wishes to modify request headers or data.

» Customize the response object if the filter wishes to modify response headers or data.

* Invoke the next entity in the filter chain. If the current filter is the last filter in the chain that
ends with the target web component or static resource, the next entity is the resource at the end
of the chain; otherwise, it is the next filter that was configured in the WAR. The filter invokes
the next entity by calling the doFilter method on the chain object, passing in the request and
response it was called with or the wrapped versions it may have created. Alternatively, the filter
can choose to block the request by not making the call to invoke the next entity. In the latter
case, the filter is responsible for filling out the response.

» Examine response headers after invoking the next filter in the chain.

* Throw an exception to indicate an error in processing.

In addition to doFilter, you must implement the init and destroy methods. The init method is
called by the container when the filter is instantiated. If you wish to pass initialization parameters
to the filter, you retrieve them from the FilterConfig object passed to init.

Programming Customized Requests and Responses

There are many ways for a filter to modify a request or a response. For example, a filter can add an
attribute to the request or can insert data in the response.

A filter that modifies a response must usually capture the response before it is returned to the
client. To do this, you pass a stand-in stream to the servlet that generates the response. The stand-in

285

stream prevents the servlet from closing the original response stream when it completes and allows
the filter to modify the servlet’s response.

To pass this stand-in stream to the servlet, the filter creates a response wrapper that overrides the
getWriter or getOutputStream method to return this stand-in stream. The wrapper is passed to the
doFilter method of the filter chain. Wrapper methods default to calling through to the wrapped
request or response object.

To override request methods, you wrap the request in an object that extends either
ServletRequestWrapper or HttpServletRequestWrapper. To override response methods, you wrap the
response in an object that extends either ServletResponseWlrapper or HttpServletResponselirapper.

Specifying Filter Mappings

A web container uses filter mappings to decide how to apply filters to web resources. A filter
mapping matches a filter to a web component by name or to web resources by URL pattern. The
filters are invoked in the order in which filter mappings appear in the filter mapping list of a WAR.
You specify a filter mapping list for a WAR in its deployment descriptor by either using NetBeans
IDE or coding the list by hand with XML.

If you want to log every request to a web application, you map the hit counter filter to the URL
pattern /*.

You can map a filter to one or more web resources, and you can map more than one filter to a web
resource. This is illustrated in Figure 9, “Filter-to-Servlet Mapping”, in which filter F1 is mapped to
servlets S1, S2, and S3; filter F2 is mapped to servlet S2; and filter F3 is mapped to servlets S1 and
S2.

F1 EF3

F2

%y

Figure 9. Filter-to-Servlet Mapping

Recall that a filter chain is one of the objects passed to the doFilter method of a filter. This chain is
formed indirectly by means of filter mappings. The order of the filters in the chain is the same as
the order in which filter mappings appear in the web application deployment descriptor.

When a filter is mapped to servlet S1, the web container invokes the doFilter method of F1. The
doFilter method of each filter in S1’s filter chain is invoked by the preceding filter in the chain by
means of the chain.doFilter method. Because S1’s filter chain contains filters F1 and F3, F1’s call to
chain.doFilter invokes the doFilter method of filter F3. When F3’s doFilter method completes,
control returns to F1’s doFilter method.

286

To Specify Filter Mappings Using NetBeans IDE

. Expand the application’s project node in the Project tab.
. Expand the Web Pages and WEB-INF nodes under the project node.
. Double-click web. xm1.

. Click Filters at the top of the editor window.

. Click Add Filter Element to map the filter to a web resource by name or by URL pattern.

1

2

3

4

5. Expand the Servlet Filters node in the editor window.

6

7. In the Add Servlet Filter dialog box, enter the name of the filter in the Filter Name field.
8

. Click Browse to locate the servlet class to which the filter applies.
You can include wildcard characters so that you can apply the filter to more than one servlet.

9. Click OK.

10. To constrain how the filter is applied to requests, follow these steps:

a. Expand the Filter Mappings node.

b. Select the filter from the list of filters.

c. Click Add.

d. In the Add Filter Mapping dialog box, select one of the following dispatcher types:

REQUEST Only when the request comes directly from the client
ASYNC Only when the asynchronous request comes from the client

FORWARD Only when the request has been forwarded to a component (see
Transferring Control to Another Web Component)

INCLUDE Only when the request is being processed by a component that has been
included (see Including Other Resources in the Response)

ERROR Only when the request is being processed with the error page mechanism
(see Handling Servlet Errors)

You can direct the filter to be applied to any combination of the preceding situations by
selecting multiple dispatcher types. If no types are specified, the default option is REQUEST.

Invoking Other Web Resources

Web components can invoke other web resources both indirectly and directly. A web component
indirectly invokes another web resource by embedding a URL that points to another web
component in content returned to a client. While it is executing, a web component directly invokes
another resource by either including the content of another resource or forwarding a request to
another resource.

To invoke a resource available on the server that is running a web component, you must first
obtain a RequestDispatcher object by using the getRequestDispatcher ("URL") method. You can get a

287

RequestDispatcher object from either a request or the web context; however, the two methods have
slightly different behavior. The method takes the path to the requested resource as an argument. A
request can take a relative path (that is, one that does not begin with a /), but the web context
requires an absolute path. If the resource is not available or if the server has not implemented a
RequestDispatcher object for that type of resource, getRequestDispatcher will return null. Your
servlet should be prepared to deal with this condition.

Including Other Resources in the Response

It is often useful to include another web resource, such as banner content or copyright information,
in the response returned from a web component. To include another resource, invoke the include
method of a RequestDispatcher object:

include(request, response);

If the resource is static, the include method enables programmatic server-side includes. If the
resource is a web component, the effect of the method is to send the request to the included web
component, execute the web component, and then include the result of the execution in the
response from the containing servlet. An included web component has access to the request object
but is limited in what it can do with the response object.

¢ It can write to the body of the response and commit a response.

* It cannot set headers or call any method, such as setCookie, that affects the headers of the
response.

Transferring Control to Another Web Component

In some applications, you might want to have one web component do preliminary processing of a
request and have another component generate the response. For example, you might want to
partially process a request and then transfer to another component, depending on the nature of the
request.

To transfer control to another web component, you invoke the forward method of a
RequestDispatcher. When a request is forwarded, the request URL is set to the path of the forwarded
page. The original URI and its constituent parts are saved as the following request attributes:

jakarta.servlet.forward.request_uri
jakarta.servlet.forward.context_path
jakarta.servlet.forward.servlet_path
jakarta.servlet.forward.path_info
jakarta.servlet.forward.query_string

The forward method should be used to give another resource responsibility for replying to the user.
If you have already accessed a ServletOutputStream or PrintWriter object within the servlet, you
cannot use this method; doing so throws an I1legalStateException.

288

Accessing the Web Context

The context in which web components execute is an object that implements the ServletContext
interface. You retrieve the web context by using the getServletContext method. The web context
provides methods for accessing

* Initialization parameters
* Resources associated with the web context
* Object-valued attributes
* Logging capabilities
The counter’s access methods are synchronized to prevent incompatible operations by servlets that

are running concurrently. A filter retrieves the counter object by using the context’s getAttribute
method. The incremented value of the counter is recorded in the log.

Maintaining Client State

Many applications require that a series of requests from a client be associated with one another.
For example, a web application can save the state of a user’s shopping cart across requests. Web-
based applications are responsible for maintaining such state, called a session, because HTTP is
stateless. To support applications that need to maintain state, Jakarta Servlet technology provides
an API for managing sessions and allows several mechanisms for implementing sessions.

Accessing a Session

Sessions are represented by an HttpSession object. You access a session by calling the getSession
method of a request object. This method returns the current session associated with this request;
or, if the request does not have a session, this method creates one.

Associating Objects with a Session

You can associate object-valued attributes with a session by name. Such attributes are accessible by
any web component that belongs to the same web context and is handling a request that is part of
the same session.

Recall that your application can notify web context and session listener objects of servlet lifecycle
events (Handling Servlet Lifecycle Events). You can also notify objects of certain events related to
their association with a session, such as the following.

* When the object is added to or removed from a session. To receive this notification, your object
must implement the jakarta.servlet.http.HttpSessionBindinglListener interface.

* When the session to which the object is attached will be passivated or activated. A session will
be passivated or activated when it is moved between virtual machines or saved to and restored
from persistent storage. To receive this notification, your object must implement the
jakarta.servlet.http.HttpSessionActivationListener interface.

Session Management

Because an HTTP client has no way to signal that it no longer needs a session, each session has an

289

associated timeout so that its resources can be reclaimed. The timeout period can be accessed by
using a session’s getMaxInactiveInterval and setMaxInactiveInterval methods.

* To ensure that an active session is not timed out, you should periodically access the session by
using service methods because this resets the session’s time-to-live counter.

* When a particular client interaction is finished, you use the session’s invalidate method to
invalidate a session on the server side and remove any session data.

To Set the Timeout Period Using NetBeans IDE

To set the timeout period in the deployment descriptor using NetBeans IDE, follow these steps.
. Open the project if you haven’t already.
. Expand the node of your project in the Projects tab.
. Expand the Web Pages and WEB-INF nodes that are under the project node.

1
2
3
4. Double-click web.xml.
5. Click General at the top of the editor.
6

. In the Session Timeout field, enter an integer value.

The integer value represents the number of minutes of inactivity that must pass before the
session times out.

Session Tracking

To associate a session with a user, a web container can use several methods, all of which involve
passing an identifier between the client and the server. The identifier can be maintained on the
client as a cookie, or the web component can include the identifier in every URL that is returned to
the client.

If your application uses session objects, you must ensure that session tracking is enabled by having
the application rewrite URLs whenever the client turns off cookies. You do this by calling the
response’s encodeURL(URL) method on all URLs returned by a servlet. This method includes the
session ID in the URL only if cookies are disabled; otherwise, the method returns the URL
unchanged.

Servlet Request Connection Information

The session tracking as described above is sufficient for most applications but debugging and
certain advanced use cases may require tracking individual low level connections.

New in the Servlet 6.0 API release is the jakarta.servlet.ServletConnection interface which gives
fine-grained information about the connection associated with a given servlet request. Most
notably getConnectionId() returns a unique ID for the network connection and getRequestId()
returns a unique ID for the given servlet request.

Here is an example of retrieving the connection ID inside a servlet method:

@0verride

290

public void doGet
(HttpServletRequest request, HttpServletResponse response)
throws ServletException, IOException

ServletConnection connection = request.getServletConnection();
String id = connection.getConnectionId();

Finalizing a Servlet

The web container may determine that a servlet should be removed from service (for example,
when a container wants to reclaim memory resources or when it is being shut down). In such a
case, the container calls the destroy method of the Servlet interface. In this method, you release any
resources the servlet is using and save any persistent state. The destroy method releases the
database object created in the init method.

A servlet’s service methods should all be complete when a servlet is removed. The server tries to
ensure this by calling the destroy method only after all service requests have returned or after a
server-specific grace period, whichever comes first. If your servlet has operations that may run
longer than the server’s grace period, the operations could still be running when destroy is called.
You must make sure that any threads still handling client requests complete.

The remainder of this section explains how to do the following.

» Keep track of how many threads are currently running the service method.

* Provide a clean shutdown by having the destroy method notify long-running threads of the
shutdown and wait for them to complete.

* Have the long-running methods poll periodically to check for shutdown and, if necessary, stop
working, clean up, and return.

Tracking Service Requests

To track service requests:
1. Include a field in your servlet class that counts the number of service methods that are running.

The field should have synchronized access methods to increment, decrement, and return its
value:

public class ShutdownExample extends HttpServlet {
private int serviceCounter = 0;

// Access methods for serviceCounter

protected synchronized void enteringServiceMethod() {
serviceCounter++;

}

protected synchronized void leavingServiceMethod() {
serviceCounter--;

291

}
protected synchronized int numServices() {
return serviceCounter;

}

The service method should increment the service counter each time the method is entered and
should decrement the counter each time the method returns. This is one of the few times that
your HttpServlet subclass should override the service method. The new method should call
super.service to preserve the functionality of the original service method:

protected void service(HttpServletRequest req,
HttpServletResponse resp)
throws ServletException,IOException {
enteringServiceMethod();
try {
super.service(req, resp);
} finally {
leavingServiceMethod();

}

Notifying Methods to Shut Down

To ensure a clean shutdown, your destroy method should not release any shared resources until all
the service requests have completed:
1. Check the service counter.

2. Notify long-running methods that it is time to shut down.

For this notification, another field is required. The field should have the usual access methods:

public class ShutdownExample extends HttpServlet {
private boolean shuttingDown;

//Access methods for shuttingDown
protected synchronized void setShuttingDown(boolean flag) {
shuttingDown = flag;

}
protected synchronized boolean isShuttingDown() {
return shuttingDown;

}

Here is an example of the destroy method using these fields to provide a clean shutdown:

public void destroy() {

292

/* Check to see whether there are still service methods /*
/* running, and if there are, tell them to stop. */
if (numServices() > 0) {
setShuttingDown(true);
}

/* Wait for the service methods to stop. */
while (numServices() > 0) {

try {
Thread.sleep(interval);
} catch (InterruptedException e) {

}

Creating Polite Long-Running Methods

The final step in providing a clean shutdown is to make any long-running methods behave politely.
Methods that might run for a long time should check the value of the field that notifies them of
shutdowns and should interrupt their work, if necessary:

public void doPost(...) {

for(i = 0; ((i < lotsOfStuffToDo) &&
IisShuttingDown()); i++) {

try {
partOfLongRunningOperation(i);
} catch (InterruptedException e) {

}

Uploading Files with Jakarta Servlet Technology

Supporting file uploads is a very basic and common requirement for many web applications. In
prior versions of the Servlet specification, implementing file upload required the use of external
libraries or complex input processing. The Jakarta Servlet specification now helps to provide a
viable solution to the problem in a generic and portable way. Jakarta Servlet technology now
supports file upload out of the box, so any web container that implements the specification can
parse multipart requests and make mime attachments available through the HttpServletRequest
object.

A new annotation, jakarta.servlet.annotation.MultipartConfig, is used to indicate that the servlet
on which it is declared expects requests to be made using the multipart/form-data MIME type.
Servlets that are annotated with @MultipartConfig can retrieve the Part components of a given
multipart/form-data request by calling the request.getPart(String name) or request.getParts()
method.

293

The @MultipartConfig Annotation

The @MultipartConfig annotation supports the following optional attributes.

* location: An absolute path to a directory on the file system. The location attribute does not
support a path relative to the application context. This location is used to store files temporarily
while the parts are processed or when the size of the file exceeds the specified

nn

fileSizeThreshold setting. The default location is "".

» fileSizeThreshold: The file size in bytes after which the file will be temporarily stored on disk.
The default size is 0 bytes.

» maxFileSize: The maximum size allowed for uploaded files, in bytes. If the size of any uploaded
file is greater than this size, the web container will throw an exception (I1legalStateException).
The default size is unlimited.

* maxRequestSize: The maximum size allowed for a multipart/form-data request, in bytes. The web
container will throw an exception if the overall size of all uploaded files exceeds this threshold.
The default size is unlimited.

For, example, the @MultipartConfig annotation could be constructed as follows:

@MultipartConfig(location="/tmp", fileSizeThreshold=1024*1024,
maxFileSize=1024*1024*5, maxRequestSize=1024*1024*5*5)

Instead of using the @MultipartConfig annotation to hard-code these attributes in your file upload
servlet, you could add the following as a child element of the servlet configuration element in the
web. xml file:

<multipart-config>
<location>/tmp</location>
<max-file-size>20848820</max-file-size>
<max-request-size>418018841</max-request-size>
<file-size-threshold>1048576</file-size-threshold>
</multipart-config>

The getParts and getPart Methods
The Servlet specification supports two additional HttpServletRequest methods:

* Collection<Part> getParts()

* Part getPart(String name)
The request.getParts() method returns collections of all Part objects. If you have more than one
input of type file, multiple Part objects are returned. Because Part objects are named, the

getPart(String name) method can be used to access a particular Part. Alternatively, the getParts()
method, which returns an Iterable<Part>, can be used to get an Iterator over all the Part objects.

The jakarta.servlet.http.Part interface is a simple one, providing methods that allow
introspection of each Part. The methods do the following:

294

Retrieve the name, size, and content-type of the Part
* Query the headers submitted with a Part
* Delete a Part

e Write a Part out to disk

For example, the Part interface provides the write(String filename) method to write the file with
the specified name. The file can then be saved in the directory that is specified with the location
attribute of the @MultipartConfig annotation or, in the case of the fileupload example, in the
location specified by the Destination field in the form.

Asynchronous Processing

Web containers in application servers normally use a server thread per client request. Under heavy
load conditions, containers need a large amount of threads to serve all the client requests.
Scalability limitations include running out of memory or exhausting the pool of container threads.
To create scalable web applications, you must ensure that no threads associated with a request are
sitting idle, so the container can use them to process new requests.

There are two common scenarios in which a thread associated with a request can be sitting idle.

» The thread needs to wait for a resource to become available or process data before building the
response. For example, an application may need to query a database or access data from a
remote web service before generating the response.

* The thread needs to wait for an event before generating the response. For example, an
application may have to wait for a Jakarta Messaging message, new information from another
client, or new data available in a queue before generating the response.

These scenarios represent blocking operations that limit the scalability of web applications.
Asynchronous processing refers to assigning these blocking operations to a new thread and
retuning the thread associated with the request immediately to the container.

Asynchronous Processing in Servlets

Jakarta EE provides asynchronous processing support for servlets and filters. If a servlet or a filter
reaches a potentially blocking operation when processing a request, it can assign the operation to
an asynchronous execution context and return the thread associated with the request immediately
to the container without generating a response. The blocking operation completes in the
asynchronous execution context in a different thread, which can generate a response or dispatch
the request to another servlet.

To enable asynchronous processing on a servlet, set the parameter asyncSupported to true on the
@WebServlet annotation as follows:

@WebServlet(urlPatterns={"/asyncservliet"}, asyncSupported=true)
public class AsyncServlet extends HttpServlet { ... }

The jakarta.servlet.AsyncContext class provides the functionality that you need to perform

295

asynchronous processing inside service methods. To obtain an instance of AsyncContext, call the
startAsync() method on the request object of your service method; for example:

public void doGet(HttpServletRequest req, HttpServletResponse resp) {

AsyncContext acontext = req.startAsync();

This call puts the request into asynchronous mode and ensures that the response is not committed
after exiting the service method. You have to generate the response in the asynchronous context
after the blocking operation completes or dispatch the request to another servlet.

Functionality Provided by the AsyncContext Class describes the basic functionality provided by the
AsyncContext class.

Functionality Provided by the AsyncContext Class

Method Description

Signature

void The container provides a different thread in which the blocking

sta;t(Runnable operation can be processed.

run
You provide code for the blocking operation as a class that
implements the Runnable interface. You can provide this class as an
inner class when calling the start method or use another
mechanism to pass the AsyncContext instance to your class.

ServletRequest Returns the request used to initialize this asynchronous context. In

getRequest()

the example above, the request is the same as in the service method.

You can use this method inside the asynchronous context to obtain
parameters from the request.

ServletResponse Returns the response used to initialize this asynchronous context. In
getResponse() the example above, the response is the same as in the service
method.

You can use this method inside the asynchronous context to write to
the response with the results of the blocking operation.

void complete() Completes the asynchronous operation and closes the response
associated with this asynchronous context.

You call this method after writing to the response object inside the
asynchronous context.

296

Method Description
Signature

void Dispatches the request and response objects to the given path.
dispatch(String

ath . .
path) You use this method to have another servlet write to the response

after the blocking operation completes.

Waiting for a Resource

This section demonstrates how to use the functionality provided by the AsyncContext class for the
following use case:

1. A servlet receives a parameter from a GET request.

2. The servlet uses a resource, such as a database or a web service, to retrieve information based
on the value of the parameter. The resource can be slow at times, so this may be a blocking
operation.

3. The servlet generates a response using the result from the resource.

The following code shows a basic servlet that does not use asynchronous processing:

@WebServlet(urlPatterns={"/syncservlet"})
public class SyncServlet extends HttpServlet {
private MyRemoteResource resource;
@0verride
public void init(ServletConfig config) {
resource = MyRemoteResource.create("configl=x,config2=y");

}

@0verride
public void doGet(HttpServletRequest request,
HttpServletResponse response) {
response.setContentType("text/html;charset=UTF-8");
String param = request.getParameter("param");
String result = resource.process(param);
/* ... print to the response ... */

The following code shows the same servlet using asynchronous processing:

@WebServlet(urlPatterns={"/asyncservlet"}, asyncSupported=true)
public class AsyncServlet extends HttpServlet {
/* ... Same variables and init method as in SyncServlet ... */
@0verride
public void doGet(HttpServletRequest request,
HttpServletResponse response) {
response.setContentType("text/html;charset=UTF-8");

297

final AsyncContext acontext = request.startAsync();
acontext.start(new Runnable() {
public void run() {

String param = acontext.getRequest().getParameter("param");
String result = resource.process(param);
HttpServletResponse response = acontext.getResponse();
/* ... print to the response ... */
acontext.complete();

1)

AsyncServlet adds asyncSupported=true to the @WebServlet annotation. The rest of the differences are
inside the service method.

* request.startAsync() causes the request to be processed asynchronously; the response is not
sent to the client at the end of the service method.

* acontext.start(new Runnable() {::-}) gets a new thread from the container.

* The code inside the run() method of the inner class executes in the new thread. The inner class
has access to the asynchronous context to read parameters from the request and write to the
response. Calling the complete() method of the asynchronous context commits the response and
sends it to the client.

The service method of AsyncServlet returns immediately, and the request is processed in the
asynchronous context.

Nonblocking I/O

Web containers in application servers normally use a server thread per client request. To develop
scalable web applications, you must ensure that threads associated with client requests are never
sitting idle waiting for a blocking operation to complete. Asynchronous Processing provides a
mechanism to execute application-specific blocking operations in a new thread, returning the
thread associated with the request immediately to the container. Even if you use asynchronous
processing for all the application-specific blocking operations inside your service methods, threads
associated with client requests can be momentarily sitting idle because of input/output
considerations.

For example, if a client is submitting a large HTTP POST request over a slow network connection,
the server can read the request faster than the client can provide it. Using traditional I/O, the
container thread associated with this request would be sometimes sitting idle waiting for the rest of
the request.

Jakarta EE provides nonblocking I/O support for servlets and filters when processing requests in
asynchronous mode. The following steps summarize how to use nonblocking I/O to process
requests and write responses inside service methods.

1. Put the request in asynchronous mode as described in Asynchronous Processing.

298

2. Obtain an input stream and/or an output stream from the request and response objects in the

service method.

3. Assign a read listener to the input stream and/or a write listener to the output stream.

4. Process the request and the response inside the listener’s callback methods.

Nonblocking I/O Support in jakarta.servlet.ServletOutputStream describe the methods available in
the servlet input and output streams for nonblocking I/O support. Listener Interfaces for
Nonblocking I/O Support describes the interfaces for read listeners and write listeners.

Nonblocking I/O Support in jakarta.servlet.ServletInputStream

Method

void setReadlListener(ReadlListener rl)

boolean isReady()

boolean isFinished()

Description

Associates this input stream with a listener
object that contains callback methods to read
data asynchronously. You provide the listener
object as an anonymous class or use another
mechanism to pass the input stream to the read
listener object.

Returns true if data can be read without
blocking.

Returns true when all the data has been read.

Nonblocking I/O Support in jakarta.servlet.ServletOutputStream

Method

void setWritelListener(WritelListener wl)

boolean isReady()

Listener Interfaces for Nonblocking I/O Support
Interface Methods

ReadlListener void onDataAvailable()

void onAllDataRead()

void onError(Throwable t)

WriteListener void onWritePossible()

void onError(Throwable t)

Description

Associates this output stream with a listener
object that contains callback methods to write
data asynchronously. You provide the write
listener object as an anonymous class or use
another mechanism to pass the output stream to
the write listener object.

Returns true if data can be written without
blocking.

Description

A ServletInputStream instance calls these
methods on its listener when there is data
available to read, when all the data has been
read, or when there is an error.

A ServletQutputStreaminstance calls these
methods on its listener when it is possible to
write data without blocking or when there is an
error.

299

Reading a Large HTTP POST Request Using Nonblocking I/0

The code in this section shows how to read a large HTTP POST request inside a servlet by putting
the request in asynchronous mode (as described in Asynchronous Processing) and using the
nonblocking I/O functionality from Nonblocking I/O Support in jakarta.servlet.ServletinputStream
and Listener Interfaces for Nonblocking I/O Support.

@WebServlet(urlPatterns={"/asyncioservlet"}, asyncSupported=true)
public class AsyncIOServlet extends HttpServlet {
@lverride
public void doPost(HttpServletRequest request,
HttpServletResponse response)
throws IOException {
final AsyncContext acontext = request.startAsync();
final ServletInputStream input = request.getInputStream();

input.setReadlListener(new ReadlListener() {
byte buffer[] = new byte[4*1024];
StringBuilder sbuilder = new StringBuilder();
@override
public void onDataAvailable() {
try {
do {
int length = input.read(buffer);
sbuilder.append(new String(buffer, @, length));
} while(input.isReady());
} catch (IOException ex) { ... }
}
@override
public void onAllDataRead() {
try {
acontext.getResponse().getWriter()
write("...the response...");
} catch (IOException ex) { ... }
acontext.complete();
}
@override
public void onError(Throwable t) { ... }
b

This example declares the web servlet with asynchronous support using the @WebServlet annotation
parameter asyncSupported=true. The service method first puts the request in asynchronous mode by
calling the startAsync() method of the request object, which is required in order to use nonblocking
I/0. Then, the service method obtains an input stream associated with the request and assigns a
read listener defined as an inner class. The listener reads parts of the request as they become
available and then writes some response to the client when it finishes reading the request.

300

Server Push

Server push is the ability of the server to anticipate what will be needed by the client in advance of
the client’s request. It lets the server pre-populate the browser’s cache in advance of the browser
asking for the resource to put in the cache.

Server push is the most visible of the improvements in HTTP/2 to appear in the servlet API. All of
the new features in HTTP/2, including server push, are aimed at improving the performance of the
web browsing experience.

Server push derives its contribution to improved browser performance from the fact that servers
know what additional assets (such as images, stylesheets, and scripts) go along with initial requests.
For example, servers might know that whenever a browser requests index.html, it will shortly
thereafter request header.gif, footer.gif, and style.css. Servers can preemptively start sending the
bytes of these assets along with the bytes of the index.html.

To use server push, obtain a reference to a PushBuilder from an HttpServletRequest, edit the builder
as desired, then call push(). See the javadoc for the class jakarta.servlet.http.PushBuilder and the
method jakarta.servlet.http.HttpServletRequest.newPushBuilder().

Protocol Upgrade Processing

In HTTP/1.1, clients can request to switch to a different protocol on the current connection by using
the Upgrade header field. If the server accepts the request to switch to the protocol indicated by the
client, it generates an HTTP response with status 101 (switching protocols). After this exchange, the
client and the server communicate using the new protocol.

For example, a client can make an HTTP request to switch to the XYZP protocol as follows:

GET /xyzpresource HTTP/1.1
Host: localhost:8080
Accept: text/html

Upgrade: XYZP

Connection: Upgrade
OtherHeaderA: Value

The client can specify parameters for the new protocol using HTTP headers. The server can accept
the request and generate a response as follows:

HTTP/1.1 101 Switching Protocols
Upgrade: XYZP

Connection: Upgrade
OtherHeaderB: Value

(XYZP data)

Jakarta EE supports the HTTP protocol upgrade functionality in servlets, as described in Protocol
Upgrade Support.

301

https://jakarta.ee/specifications/platform/9/apidocs/

Protocol Upgrade Support
Class or Interface Method

HttpServletRequest HttpUpgradeHandler upgrade(Class handler)

The upgrade method starts the protocol upgrade
processing. This method instantiates a class that
implements the HttpUpgradeHandler interface and delegates
the connection to it.

You call the upgrade method inside a service method when
accepting a request from a client to switch protocols.

HttpUpgradeHandler void init(WebConnection wc)

The init method is called when the servlet accepts the
request to switch protocols. You implement this method
and obtain input and output streams from the
WebConnection object to implement the new protocol.

HttpUpgradeHandler void destroy()

The destroy method is called when the client disconnects.
You implement this method and free any resources
associated with processing the new protocol.

WebConnection ServletInputStream getInputStream()

The getInputStream method provides access to the input
stream of the connection. You can use Nonblocking I/O
with the returned stream to implement the new protocol.

WebConnection ServletOutputStream getOutputStream()

The getOutputStream method provides access to the output
stream of the connection. You can use Nonblocking I/O
with the returned stream to implement the new protocol.

The following code demonstrates how to accept an HTTP protocol upgrade request from a client:

@WebServlet(urlPatterns={"/xyzpresource"})
public class XYZPUpgradeServlet extends HttpServlet {
@lverride
public void doGet(HttpServletRequest request,
HttpServletResponse response) {
if ("XYZP".equals(request.getHeader("Upgrade"))) {
/* Accept upgrade request */
response.setStatus(101);
response.setHeader ("Upgrade", "XYZP");
response.setHeader ("Connection", "Upgrade");
response.setHeader ("OtherHeaderB", "Value");

302

/* Delegate the connection to the upgrade handler */
XYZPUpgradeHandler = request.upgrade(XYZPUpgradeHandler.class);
/* (the service method returns immedately) */

} else {
/* ... write error response ... */

}

The XYZPUpgradeHandler class handles the connection:

public class XYZPUpgradeHandler implements HttpUpgradeHandler {
@0verride
public void init(WebConnection we) {
ServletInputStream input = wc.getInputStream();
ServletQutputStream output = wc.getOutputStream();

/* ... implement XYZP using these streams (protocol-specific) ... */
}
@lverride
public void destroy() { ... }

The class that implements HttpUpgradeHandler uses the streams from the current connection to
communicate with the client using the new protocol. See the Servlet 5.0 specification at
https://jakarta.ee/specifications/servlet/5.0 for details on HTTP protocol upgrade support.

HTTP Trailer

HTTP trailer is a collection of a special type of HTTP headers that comes after the response body.
The trailer response header allows the sender to include additional fields at the end of chunked
messages in order to supply metadata that might be dynamically generated while the message body
is sent, such as a message integrity check, digital signature, or post-processing status.

If trailer headers are ready for reading, isTrailerFieldsReady() will return true. Then a servlet can
read trailer headers of the HTTP request using the getTrailerFields method of the
HttpServletRequest interface. If trailer headers are not ready for reading, isTrailerFieldsReady()
returns false and will cause an I1legalStateException.

A servlet can write trailer headers to the response by providing a supplier to the setTrailerFields()
method of the HttpServletResponse interface. The following headers and types of headers must not
be included in the set of keys in the map passed to setTrailerFields(): Transfer-Encoding, Content-
Length, Host, controls and conditional headers, authentication headers, Content-Encoding, Content-
Type, Content-Range, and Trailer. When sending response trailers, you must include a regular
header, called Trailer, whose value is a comma-separated list of all the keys in the map that is
supplied to the setTrailerFields() method. The value of the Trailer header lets the client know
what trailers to expect.

The supplier of the trailer headers can be obtained by accessing the getTrailerFields() method of

303

https://jakarta.ee/specifications/servlet/5.0

the HttpServletResponse interface.

See the javadoc for getTrailerFields() and isTrailerFieldsReady() in HttpServletRequest, and
getTrailerFields() and setTrailerFields() in HttpServletResponse.

The mood Example Application

The mood example application, located in the jakartaee-examples/tutorial/web/servlet/mood/
directory, is a simple example that displays Duke’s moods at different times during the day. The
example shows how to develop a simple application by using the @WebServlet, @WebFilter, and
@WebListener annotations to create a servlet, a listener, and a filter.

Components of the mood Example Application

The mood example application is comprised of three components: mood.web.MoodServlet,
mood.web.TimeOfDayFilter, and mood.web.SimpleServletlListener.

MoodServlet, the presentation layer of the application, displays Duke’s mood in a graphic, based on

the time of day. The @WebServlet annotation specifies the URL pattern:

@WebServlet("/report")
public class MoodServlet extends HttpServlet {

}

TimeOfDayFilter sets an initialization parameter indicating that Duke is awake:

@WebFilter(filterName = "TimeOfDayFilter",
urlPatterns = {"/*"},
initParams = {

@WebInitParam(name = "mood", value = "awake")})
public class TimeOfDayFilter implements Filter {

}

The filter calls the doFilter method, which contains a switch statement that sets Duke’s mood based
on the current time.

SimpleServletListener logs changes in the servlet’s lifecycle. The log entries appear in the server
log.

Running the mood Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the mood example.

To Run the mood Example Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. From the File menu, choose Open Project.

304

https://jakarta.ee/specifications/platform/9/apidocs/

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/servlet

Select the mood folder.
Click Open Project.

In the Projects tab, right-click the mood project and select Build.

N o e

In a web browser, enter the following URL:

http://localhost:8080/mood/report

The URL specifies the context root, followed by the URL pattern.

A web page appears with the title "Servlet MoodServlet at /mood", a text string describing
Duke’s mood, and an illustrative graphic.

To Run the mood Example Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. In a terminal window, go to:

jakartaee-examples/tutorial/web/servlet/mood/

3. Enter the following command to deploy the application:

mvn install

4. In a web browser, enter the following URL:

http://localhost:8080/mood/report

The URL specifies the context root, followed by the URL pattern.

A web page appears with the title "Servlet MoodServlet at /mood", a text string describing
Duke’s mood, and an illustrative graphic.

The fileupload Example Application

The fileupload example, located in the jakartaee-examples/tutorial/web/servlet/fileupload/
directory, illustrates how to implement and use the file upload feature.

The Duke’s Forest case study provides a more complex example that uploads an image file and
stores its content in a database.

305

Except where expressly provided otherwise, the site, and all content provided on
or through the site, are provided on an "as is" and "as available" basis. Oracle
expressly disclaims all warranties of any kind, whether express or implied,
including, but not limited to, the implied warranties of merchantability, fitness for
a particular purpose and non-infringement with respect to the site and all content
provided on or through the site. Oracle makes no warranty that: (a) the site or
content will meet your requirements; (b) the site will be available on an

o uninterrupted, timely, secure, or error-free basis; (c) the results that may be
obtained from the use of the site or any content provided on or through the site
will be accurate or reliable; or (d) the quality of any content purchased or obtained
by you on or through the site will meet your expectations.

Any content accessed, downloaded or otherwise obtained on or through the use of
the site is used at your own discretion and risk. Oracle shall have no responsibility
for any damage to your computer system or loss of data that results from the
download or use of content.

Architecture of the fileupload Example Application

The fileupload example application consists of a single servlet and an HTML form that makes a file
upload request to the servlet.

This example includes a very simple HTML form with two fields, File and Destination. The input
type, file, enables a user to browse the local file system to select the file. When the file is selected, it
is sent to the server as a part of a POST request. During this process, two mandatory restrictions are
applied to the form with input type file.

e The enctype attribute must be set to a value of multipart/form-data.

e Its method must be POST.

When the form is specified in this manner, the entire request is sent to the server in encoded form.
The servlet then uses its own means to handle the request to process the incoming file data and
extract a file from the stream. The destination is the path to the location where the file will be saved
on your computer. Pressing the Upload button at the bottom of the form posts the data to the
servlet, which saves the file in the specified destination.

The HTML form in index.html is as follows:

<!DOCTYPE html>
<html lang="en">

<head>
<title>File Upload</title>
</head>
<body>
<form method="post" action="upload" enctype="multipart/form-data">
<div>
<label>File: <input type="file" name="file" /></label>
</div>
<div>

306

<label>Destination: <input name="destination" value="/tmp" /></label>

</div>

<div>
<input type="submit" name="upload" value="Upload" />

</div>

</form>
</body>
</html>

A POST request method is used when the client needs to send data to the server as part of the
request, such as when uploading a file or submitting a completed form. In contrast, a GET request
method sends a URL and headers only to the server, whereas POST requests also include a message
body. This allows arbitrary length data of any type to be sent to the server. A header field in the
POST request usually indicates the message body’s Internet media type.

When submitting a form, the browser streams the content in, combining all parts, with each part
representing a field of a form. Parts are named after the input elements and are separated from
each other with string delimiters named boundary.

This is what submitted data from the fileupload form looks like, after selecting sample.txt as the file
that will be uploaded to the tmp directory on the local file system:

POST /fileupload/upload HTTP/1.1

Host: localhost:8080
Content-Type: multipart/form-data;

L e 263081694432439 Content-Length: 441
————————————————————————————— 263081694432439
Content-Disposition: form-data; name="file"; filename="sample.txt"
Content-Type: text/plain

Data from sample file

————————————————————————————— 263081694432439
Content-Disposition: form-data; name="destination"

/tmp

————————————————————————————— 263081694432439
Content-Disposition: form-data; name="upload"

Upload

----------------------------- 263081694432439--

The servlet FileUploadServlet.java begins as follows:

@WebServlet(name = "FileUploadServlet", urlPatterns = {"/upload"})
@MultipartConfig
public class FileUploadServlet extends HttpServlet {
private final static Logger LOGGER =
Logger.getLogger(FileUploadServlet.class.getCanonicalName());

The @WebServlet annotation uses the urlPatterns property to define servlet mappings.

307

The @MultipartConfig annotation indicates that the servlet expects requests to be made using the
multipart/form-data MIME type.

The processRequest method retrieves the destination and file part from the request, then calls the
getFileName method to retrieve the file name from the file part. The method then creates a
FileOutputStream and copies the file to the specified destination. The error-handling section of the
method catches and handles some of the most common reasons why a file would not be found. The
processRequest and getFileName methods look like this:

protected void processRequest(HttpServletRequest request,
HttpServletResponse response)
throws ServletException, IOException {
response.setContentType("text/html;charset=UTF-8");

// Create path components to save the file

final String path = request.getParameter("destination");
final Part filePart = request.getPart("file");

final String fileName = getFileName(filePart);

OutputStream out = null;
InputStream filecontent = null;
final PrintWriter writer = response.getWriter();

try {
out = new FileQutputStream(new File(path + File.separator
+ fileName));
filecontent = filePart.getInputStream();

int read = 0;
final byte[] bytes = new byte[1024];

while ((read = filecontent.read(bytes)) != -1) {
out.write(bytes, 0, read);

}

writer.println("New file " + fileName + " created at " + path);

LOGGER.1og(Level.INFO, "File{@}being uploaded to {1}",
new Object[]{fileName, path});

} catch (FileNotFoundException fne) {

writer.println("You either did not specify a file to upload or are
+ "trying to upload a file to a protected or nonexistent "
+ "location.");

writer.println("
 ERROR: " + fne.getMessage());

LOGGER.1og(Level.SEVERE, "Problems during file upload. Error: {0}",
new Object[]{fne.getMessage()});
} finally {
if (out != null) {
out.close();

}
if (filecontent != null) {

308

filecontent.close();

}
if (writer !'= null) {
writer.close();

}
}

private String getFileName(final Part part) {
final String partHeader = part.getHeader("content-disposition");
LOGGER.1og(Level.INFO, "Part Header = {0}", partHeader);
for (String content : part.getHeader("content-disposition").split(";")) {
if (content.trim().startsWith("filename")) {
return content.substring(
content.index0f('=") + 1).trim().replace("\"", "");

}

return null;

Running the fileupload Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the fileupload
example.

To Build, Package, and Deploy the fileupload Example Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/servlet

4. Select the fileupload folder.
5. Click Open Project.

6. In the Projects tab, right-click the fileupload project and select Build.

To Build, Package, and Deploy the fileupload Example Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. In a terminal window, go to:

jakartaee-examples/tutorial/web/servlet/fileupload/

3. Enter the following command to deploy the application:

309

mvn install

To Run the fileupload Example

1. In a web browser, enter the following URL:

http://localhost:8080/fileupload/

2. On the File Upload page, click Choose File to display a file browser window.

3. Select a file to upload and click Open.

The name of the file you selected is displayed in the File field. If you do not select a file, an
exception will be thrown.

4. In the Destination field, type a directory name.

The directory must have already been created and must also be writable. If you do not enter a
directory name or if you enter the name of a nonexistent or protected directory, an exception
will be thrown.

5. Click Upload to upload the file that you selected to the directory that you specified in the
Destination field.

A message reports that the file was created in the directory that you specified.

6. Go to the directory that you specified in the Destination field and verify that the uploaded file is
present.

The dukeetf Example Application

The dukeetf example application, located in the jakartaee-examples/tutorial/web/dukeetf/
directory, demonstrates how to use asynchronous processing in a servlet to provide data updates to
web clients. The example resembles a service that provides periodic updates on the price and
trading volume of an electronically traded fund (ETF).

Architecture of the dukeetf Example Application

The dukeetf example application consists of a servlet, an enterprise bean, and an HTML page.
* The servlet puts requests in asynchronous mode, stores them in a queue, and writes the
responses when new data for price and trading volume becomes available.
* The enterprise bean updates the price and volume information once every second.

» The HTML page uses JavaScript code to make requests to the servlet for new data, parse the
response from the servlet, and update the price and volume information without reloading the

page.

The dukeetf example application uses a programming model known as long polling. In the

310

traditional HTTP request and response model, the user must make an explicit request (such as
clicking a link or submitting a form) to get any new information from the server, and the page has
to be reloaded. Long polling provides a mechanism for web applications to push updates to clients
using HTTP without the user making an explicit request. The server handles connections
asynchronously, and the client uses JavaScript to make new connections. In this model, clients
make a new request immediately after receiving new data, and the server keeps the connection
open until new data becomes available.

The Servlet

The DukeETFServlet class uses asynchronous processing:

@WebServlet(urlPatterns={"/dukeetf"}, asyncSupported=true)
public class DukeETFServlet extends HttpServlet {

}

In the following code, the init method initializes a queue to hold client requests and registers the
servlet with the enterprise bean that provides the price and volume updates. The send method gets
called once per second by the PriceVolumeBean to send updates and close the connection:

@0verride
public void init(ServletConfig config) {
/* Queue for requests */
requestQueue = new ConcurrentlLinkedQueue<>();
/* Register with the enterprise bean that provides price/volume updates */
pvbean.registerServlet(this);

}

/* PriceVolumeBean calls this method every second to send updates */
public void send(double price, int volume) {
/* Send update to all connected clients */
for (AsyncContext acontext : requestQueue) {
try {
String msg = String.format("%.2f / %d", price, volume);
PrintWriter writer = acontext.getResponse().getWriter();
writer.write(msg);
logger.log(Level.INFO, "Sent: {0}", msg);
/* Close the connection
* The client (JavaScript) makes a new one instantly */
acontext.complete();
} catch (IOException ex) {
logger.log(Level.INFO, ex.toString());
}

The service method puts client requests in asynchronous mode and adds a listener to each request.

311

The listener is implemented as an anonymous class that removes the request from the queue when
the servlet finishes writing a response or when there is an error. Finally, the service method adds
the request to the request queue created in the init method. The service method is the following:

@override
public void doGet(HttpServletRequest request,
HttpServletResponse response) {
response.setContentType("text/html");
/* Put request in async mode */
final AsyncContext acontext = request.startAsync();
/* Remove from the queue when done */
acontext.addListener (new AsyncListener() {
public void onComplete(AsyncEvent ae) throws IOException {
requestQueue.remove(acontext);
}
public void onTimeout(AsyncEvent ae) throws IOException {
requestQueue.remove(acontext);
}
public void onError(AsyncEvent ae) throws IOException {
requestQueue.remove(acontext);
}
public void onStartAsync(AsyncEvent ae) throws IOException {}
3
/* Add to the queue */
requestQueue.add(acontext);

The Enterprise Bean

The PriceVolumeBean class is an enterprise bean that uses the timer service from the container to
update the price and volume information and call the servlet’s send method once every second:

@Startup

@Singleton

public class PriceVolumeBean {
/* Use the container's timer service */
@Resource TimerService tservice;
private DukeETFServlet servlet;

@PostConstruct
public void init() {
/* Initialize the EJB and create a timer */
random = new Random();
servlet = null;
tservice.createlntervalTimer (1000, 1000, new TimerConfig());

}

public void registerServlet(DukeETFServlet servlet) {

312

/* Associate a servlet to send updates to */
this.servlet = servlet;

}

@Timeout
public void timeout() {
/* Adjust price and volume and send updates */
price += 1.0*(random.nextInt(100)-50)/100.0;
volume += random.nextInt(5000) - 2500;
if (servlet != null)
servlet.send(price, volume);

See Using the Timer Service in [entbeans:ejb-basicexamples::ejb-
basicexamples:::_running_the_enterprise_bean_examples] for more information on the timer
service.

The HTML Page

The HTML page consists of a table and some JavaScript code. The table contains two fields
referenced from JavaScript code:

<html xmlns="http://www.w3.0rg/1999/xhtm1">
<head>...</head>
<body onload="makeAjaxRequest();">

<table>
<td id="price">--.--</td>
<td id="volume">--</td>
</table>
</body>
</html>

The JavaScript code uses the XMLHttpRequest API, which provides functionality for transferring data
between a client and a server. The script makes an asynchronous request to the servlet and
designates a callback method. When the server provides a response, the callback method updates
the fields in the table and makes a new request. The JavaScript code is the following:

var ajaxRequest;
function updatePage() {
if (ajaxRequest.readyState === 4) {
var arraypv = ajaxRequest.responseText.split("/");
document.getElementById("price").innerHTML = arraypv[0];
document.getElementById("volume").innerHTML = arraypv[1];

313

makeAjaxRequest();
}
}
function makeAjaxRequest() {
ajaxRequest = new XMLHttpRequest();
ajaxRequest.onreadystatechange = updatePage;
ajaxRequest.open("GET", "http://localhost:8080/dukeetf/dukeetf"”,
true);
ajaxRequest.send(null);

The XMLHttpRequest API is supported by most modern browsers, and it is widely used in Ajax web
client development (Asynchronous JavaScript and XML).

See The dukeetf2 Example Application in [web:websocket::websocket:::_jakarta_websocket] for an
equivalent version of this example implemented using a WebSocket endpoint.

Running the dukeetf Example Application

This section describes how to run the dukeetf example application using NetBeans IDE and from the
command line.

To Run the dukeetf Example Application Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/servlet

4, Select the dukeetf folder.
5. Click Open Project.

6. In the Projects tab, right-click the dukeetf project and select Run.

This command builds and packages the application into a WAR file (dukeetf.war) located in the
target directory, deploys it to the server, and launches a web browser window with the
following URL:

http://localhost:8080/dukeetf/

Open the same URL in a different web browser to see how both pages get price and volume
updates simultaneously.

To Run the dukeetf Example Application Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

314

2. In a terminal window, go to:
jakartaee-examples/tutorial/web/servlet/dukeetf/

3. Enter the following command to deploy the application:
mvn install

4. Open a web browser window and type the following address:
http://localhost:8080/dukeetf/

Open the same URL in a different web browser to see how both pages get price and volume
updates simultaneously.

Further Information about Jakarta Servlet Technology

For more information on Jakarta Servlet technology, see the Jakarta Servlet 6.0 specification at
https://jakarta.ee/specifications/servlet/6.0/.

The Jakarta Servlet 6.0 specification was released with Jakarta EE 10. For more about the changes in
this release please see this article.

The Servlet 6.0 specification permanently removes several methods and classes
that had been deprecated in the Servlet 5.0 specification, please see the list here:
https://jakarta.ee/specifications/servlet/5.0/apidocs/deprecated-list. html.

Jakarta Faces

Jakarta Faces Technology

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

Jakarta Faces technology is a server-side component framework for building Java technology-based
web applications.

Introduction to Jakarta Faces Technology

Jakarta Faces technology consists of the following:

* An API for representing components and managing their state; handling events, server-side
validation, and data conversion; defining page navigation; supporting internationalization and
accessibility; and providing extensibility for all these features

» Tag libraries for adding components to web pages and for connecting components to server-side

315

https://jakarta.ee/specifications/servlet/6.0/
https://www.theserverside.com/blog/Coffee-Talk-Java-News-Stories-and-Opinions/Top-5-things-to-know-about-the-Jakarta-Servlet-60-API-release
https://jakarta.ee/specifications/servlet/5.0/apidocs/deprecated-list.html

objects

Jakarta Faces technology provides a well-defined programming model and various tag libraries.
The tag libraries contain tag handlers that implement the component tags. These features
significantly ease the burden of building and maintaining web applications with server-side user
interfaces (UIs). With minimal effort, you can complete the following tasks.

» Create a web page.

* Drop components onto a web page by adding component tags.

* Bind components on a page to server-side data.

* Wire component-generated events to server-side application code.

» Save and restore application state beyond the life of server requests.

* Reuse and extend components through customization.
This chapter provides an overview of Jakarta Faces technology. After explaining what a Jakarta
Faces application is and reviewing some of the primary benefits of using Jakarta Faces technology,
this chapter describes the process of creating a simple Jakarta Faces application. This chapter also

introduces the Jakarta Faces lifecycle by describing the example Jakarta Faces application and its
progression through the lifecycle stages.

What Is a Jakarta Faces Application?

The functionality provided by a Jakarta Faces application is similar to that of any other Java web
application. A typical Jakarta Faces application includes the following parts.

» A set of web pages in which components are laid out.

A set of tags to add components to the web page.

A set of managed beans, which are lightweight, container-managed objects (POJOs). In a Jakarta
Faces application, managed beans serve as backing beans, which define properties and
functions for Ul components on a page.

* A web deployment descriptor (web.xml file).

* Optionally, one or more application configuration resource files, such as a faces-config.xml file,
which can be used to define page navigation rules and configure beans and other custom
objects, such as custom components.

* Optionally, a set of custom objects, which can include custom components, validators,
converters, or listeners, created by the application developer.

* Optionally, a set of custom tags for representing custom objects on the page.

Figure 10, “Responding to a Client Request for a Jakarta Faces Page” shows the interaction between
client and server in a typical Jakarta Faces application. In response to a client request, a web page is
rendered by the web container that implements Jakarta Faces technology.

316

Web Container

myfacelet.xhml
Browser

Access page
(HTTP Request)

Generates
Component
Tree
Renders HTML myView
(HTTP Response)

Figure 10. Responding to a Client Request for a Jakarta Faces Page

The web page, myfacelet.xhtml, is built using Jakarta Faces component tags. Component tags are
used to add components to the view (represented by myView in the diagram), which is the server-side
representation of the page. In addition to components, the web page can also reference objects,
such as the following:

* Any event listeners, validators, and converters that are registered on the components

* The JavaBeans components that capture the data and process the application-specific
functionality of the components

On request from the client, the view is rendered as a response. Rendering is the process whereby,
based on the server-side view, the web container generates output, such as HTML or XHTML, that
can be read by the client, such as a browser.

Jakarta Faces Technology Benefits

One of the greatest advantages of Jakarta Faces technology is that it offers a clean separation
between behavior and presentation for web applications. A Jakarta Faces application can map
HTTP requests to component-specific event handling and manage components as stateful objects on
the server. Jakarta Faces technology allows you to build web applications that implement the finer-
grained separation of behavior and presentation that is traditionally offered by client-side UI
architectures.

The separation of logic from presentation also allows each member of a web application
development team to focus on a single piece of the development process and provides a simple
programming model to link the pieces. For example, page authors with no programming expertise
can use Jakarta Faces technology tags in a web page to link to server-side objects without writing
any scripts.

Another important goal of Jakarta Faces technology is to leverage familiar component and web-tier
concepts without limiting you to a particular scripting technology or markup language. Jakarta
Faces technology APIs are layered directly on top of the Servlet API, as shown in Figure 11, “Web
Application Technologies”.

317

Jakarta Faces Jakarta Server Pages
Standard Tag Library

Jakarta Server Pages

Jakarta Server Pages

Figure 11. Web Application Technologies

This layering of APIs enables several important application use cases, such as using different
presentation technologies, creating your own custom components directly from the component
classes, and generating output for various client devices.

Facelets technology, available as part of Jakarta Faces technology, is the preferred presentation
technology for building Jakarta Faces technology-based web applications. For more information on
Facelets technology features, see [web:faces-facelets::faces-facelets:::_introduction_to_facelets].

Facelets technology offers several advantages.

* Code can be reused and extended for components through the templating and composite
component features.

* You can use annotations to automatically register the managed bean as a resource available for
Jakarta Faces applications. In addition, implicit navigation rules allow developers to quickly
configure page navigation (see Navigation Model for details). These features reduce the manual
configuration process for applications.

* Most important, Jakarta Faces technology provides a rich architecture for managing component
state, processing component data, validating user input, and handling events.

A Simple Jakarta Faces Application

Jakarta Faces technology provides an easy and user-friendly process for creating web applications.
Developing a simple Jakarta Faces application typically requires the following tasks, which have
already been described in A Web Module That Uses Jakarta Faces Technology: The hellol Example:

* Creating web pages using component tags
* Developing managed beans
* Mapping the FacesServlet instance
The hellol example includes a managed bean and two Facelets web pages. When accessed by a

client, the first web page asks the user for his or her name, and the second page responds by
providing a greeting.

For details on Facelets technology, see [web:faces-facelets::faces-facelets:::_introduction_to_facelets].
For details on using EL expressions, see Expression Language. For details on the Jakarta Faces
programming model and building web pages using Jakarta Faces technology, see [web:faces-
page::faces-page:::_using_jakarta_faces_technology_in_web_pages].

Every web application has a lifecycle. Common tasks, such as handling incoming requests, decoding
parameters, modifying and saving state, and rendering web pages to the browser, are all
performed during a web application lifecycle. Some web application frameworks hide the details of

318

the lifecycle from you, whereas others require you to manage them manually.

By default, Jakarta Faces automatically handles most of the lifecycle actions for you. However, it
also exposes the various stages of the request lifecycle so that you can modify or perform different
actions if your application requirements warrant it.

The lifecycle of a Jakarta Faces application starts and ends with the following activity: The client
makes a request for the web page, and the server responds with the page. The lifecycle consists of
two main phases: Execute and Render.

During the Execute phase, several actions can take place.

* The application view is built or restored.
* The request parameter values are applied.

* Conversions and validations are performed for component values.

Managed beans are updated with component values.
* Application logic is invoked.

For a first (initial) request, only the view is built. For subsequent (postback) requests, some or all of
the other actions can take place.

In the Render phase, the requested view is rendered as a response to the client. Rendering is
typically the process of generating output, such as HTML or XHTML, that can be read by the client,
usually a browser.

The following short description of the example Jakarta Faces application passing through its
lifecycle summarizes the activity that takes place behind the scenes.

The hello1 example application goes through the following stages when it is deployed on GlassFish
Server.

1. When the hellol application is built and deployed on GlassFish Server, the application is in an
uninitiated state.

2. When a client makes an initial request for the index.xhtml web page, the hellol Facelets
application is compiled.

3. The compiled Facelets application is executed, and a new component tree is constructed for the
hello1 application and placed in a FacesContext.

4. The component tree is populated with the component and the managed bean property
associated with it, represented by the EL expression hello.name.

A new view is built, based on the component tree.
The view is rendered to the requesting client as a response.

The component tree is destroyed automatically.

o N o U

On subsequent (postback) requests, the component tree is rebuilt, and the saved state is applied.

For full details on the lifecycle, see The Lifecycle of a Jakarta Faces Application.

319

User Interface Component Model

In addition to the lifecycle description, an overview of Jakarta Faces architecture provides better
understanding of the technology.

Jakarta Faces components are the building blocks of a Jakarta Faces view. A component can be a
user interface (UI) component or a non-Ul component.

Jakarta Faces Ul components are configurable, reusable elements that compose the user interfaces
of Jakarta Faces applications. A component can be simple, such as a button, or can be compound,
such as a table composed of multiple components.

Jakarta Faces technology provides a rich, flexible component architecture that includes the
following:

A set of jakarta.faces.component.UIComponent classes for specifying the state and behavior of Ul
components

* Arendering model that defines how to render the components in various ways
* A conversion model that defines how to register data converters onto a component

* An event and listener model that defines how to handle component events

A validation model that defines how to register validators onto a component

This section briefly describes each of these pieces of the component architecture.

User Interface Component Classes

Jakarta Faces technology provides a set of UI component classes and associated behavioral
interfaces that specify all the UI component functionality, such as holding component state,
maintaining a reference to objects, and driving event handling and rendering for a set of standard
components.

The component classes are completely extensible, allowing component writers to create their own
custom components. See [web:faces-custom::faces-
custom:::_creating_custom_ui_components_and_other_custom_objects] for more information.

The abstract base class for all components is jakarta.faces.component.UIComponent. Jakarta Faces Ul
component classes extend the UIComponentBase class (a subclass of UIComponent), which defines the
default state and behavior of a component. The following set of component classes is included with
Jakarta Faces technology.

UIColumn: Represents a single column of data in a UIData component.

UICommand: Represents a control that fires actions when activated.

» UIData: Represents a data binding to a collection of data represented by a
jakarta.faces.model.DataModel instance.

* UIForm: Represents an input form to be presented to the user. Its child components represent
(among other things) the input fields to be included when the form is submitted. This
component is analogous to the form tag in HTML.

320

* UIGraphic: Displays an image.

» UIInput: Takes data input from a user. This class is a subclass of UIOutput.
* UIMessage: Displays a localized error message.

 UIMessages: Displays a set of localized error messages.

» UIOutcomeTarget: Displays a link in the form of a link or a button.

» UIOutput: Displays data output on a page.

» UIPanel: Manages the layout of its child components.

» UIParameter: Represents substitution parameters.

» UISelectBoolean: Allows a user to set a boolean value on a control by selecting or deselecting it.
This class is a subclass of the UIInput class.

» UISelectItem: Represents a single item in a set of items.
» UISelectItems: Represents an entire set of items.

» UISelectMany: Allows a user to select multiple items from a group of items. This class is a
subclass of the UIInput class.

» UISelectOne: Allows a user to select one item from a group of items. This class is a subclass of the
UIInput class.

» UIViewParameter: Represents the query parameters in a request. This class is a subclass of the
UIInput class.

» UIViewRoot: Represents the root of the component tree.
In addition to extending UIComponentBase, the component classes also implement one or more

behavioral interfaces, each of which defines certain behavior for a set of components whose classes
implement the interface.

These behavioral interfaces, all defined in the jakarta.faces.component package unless otherwise
stated, are as follows.

* ActionSource: Indicates that the component can fire an action event. This interface is intended
for use with components based on JavaServer Faces technology 1.1_01 and earlier versions. This
interface is deprecated in JavaServer Faces 2.

* ActionSource2: Extends ActionSource and therefore provides the same functionality. However, it
allows components to use the Expression Language (EL) when they are referencing methods
that handle action events.

» EditableValueHolder: Extends ValueHolder and specifies additional features for editable
components, such as validation and emitting value-change events.

* NamingContainer: Mandates that each component rooted at this component have a unique ID.
» StateHolder: Denotes that a component has state that must be saved between requests.

* ValueHolder: Indicates that the component maintains a local value as well as the option of
accessing data in the model tier.

* jakarta.faces.event.SystemEventListenerHolder: Maintains a list of
jakarta.faces.event.SystemEventListener instances for each type of

321

jakarta.faces.event.SystemEvent defined by that class.

* jakarta.faces.component.behavior.ClientBehaviorHolder: ~Adds the ability to attach
jakarta.faces.component.behavior.ClientBehavior instances, such as a reusable script.

UICommand implements ActionSource2 and StateHolder. UIOutput and component classes that extend
UIOutput implement StateHolder and ValueHolder. UIInput and component classes that extend
UIInput implement EditableValueHolder, StateHolder, and ValueHolder. UIComponentBase implements
StateHolder.

Only component writers will need to use the component classes and behavioral interfaces directly.
Page authors and application developers will use a standard component by including a tag that
represents it on a page. Most of the components can be rendered in different ways on a page. For
example, a UICommand component can be rendered as a button or a link.

The next section explains how the rendering model works and how page authors can choose to
render the components by selecting the appropriate tags.

Component Rendering Model

The Jakarta Faces component architecture is designed such that the functionality of the components
is defined by the component classes, whereas the component rendering can be defined by a
separate renderer class. This design has several benefits, including the following.

* Component writers can define the behavior of a component once but create multiple renderers,
each of which defines a different way to render the component to the same client or to different
clients.

» Page authors and application developers can change the appearance of a component on the
page by selecting the tag that represents the appropriate combination of component and
renderer.

A render kit defines how component classes map to component tags that are appropriate for a
particular client. The Jakarta Faces implementation includes a standard HTML render kit for
rendering to an HTML client.

The render kit defines a set of jakarta.faces.render.Renderer classes for each component that it
supports. Each Renderer class defines a different way to render the particular component to the
output defined by the render kit. For example, a UISelectOne component has three different
renderers. One of them renders the component as a group of options. Another renders the
component as a combo box. The third one renders the component as a list box. Similarly, a
UICommand component can be rendered as a button or a link, using the h:commandButton or
h:commandLink tag. The command part of each tag corresponds to the UICommand class, specifying the
functionality, which is to fire an action. The Button or Link part of each tag corresponds to a
separate Renderer class that defines how the component appears on the page.

Each custom tag defined in the standard HTML render kit is composed of the component
functionality (defined in the UIComponent class) and the rendering attributes (defined by the Renderer
class).

The section Adding Components to a Page Using HTML Tag Library Tags lists all supported

322

component tags and illustrates how to use the tags in an example.

The Jakarta Faces implementation provides a custom tag library for rendering components in
HTML.

Conversion Model

A Jakarta Faces application can optionally associate a component with server-side object data. This
object is a JavaBeans component, such as a managed bean. An application gets and sets the object
data for a component by calling the appropriate object properties for that component.

When a component is bound to an object, the application has two views of the component’s data.

* The model view, in which data is represented as data types, such as int or long.

* The presentation view, in which data is represented in a manner that can be read or modified
by the user. For example, a java.util.Date might be represented as a text string in the format
mm/dd/yy or as a set of three text strings.

The Jakarta Faces implementation automatically converts component data between these two
views when the bean property associated with the component is of one of the types supported by
the component’s data. For example, if a UISelectBoolean component is associated with a bean
property of type java.lang.Boolean, the Jakarta Faces implementation will automatically convert
the component’s data from String to Boolean. In addition, some component data must be bound to
properties of a particular type. For example, a UISelectBoolean component must be bound to a
property of type boolean or java.lang.Boolean.

Sometimes you might want to convert a component’s data to a type other than a standard type, or
you might want to convert the format of the data. To facilitate this, Jakarta Faces technology allows
you to register a jakarta.faces.convert.Converter implementation on UIQutput components and
components whose classes subclass UIQutput. If you register the Converter implementation on a
component, the Converter implementation converts the component’s data between the two views.

You can either use the standard converters supplied with the Jakarta Faces implementation or
create your own custom converter. Custom converter creation is covered in [web:faces-
custom::faces-custom:::_creating_custom_ui_components_and_other_custom_objects].

Event and Listener Model

The Jakarta Faces event and listener model is similar to the JavaBeans event model in that it has
strongly typed event classes and listener interfaces that an application can use to handle events
generated by components.

The Jakarta Faces specification defines three types of events: application events, system events, and
data-model events.

Application events are tied to a particular application and are generated by a UIComponent. They
represent the standard events available in previous versions of Jakarta Faces technology.

An event object identifies the component that generated the event and stores information about the
event. To be notified of an event, an application must provide an implementation of the listener

323

class and must register it on the component that generates the event. When the user activates a
component, such as by clicking a button, an event is fired. This causes the Jakarta Faces
implementation to invoke the listener method that processes the event.

Jakarta Faces supports two kinds of application events: action events and value-change events.

An action event (class jakarta.faces.event.ActionEvent) occurs when the user activates a
component that implements ActionSource. These components include buttons and links.

A value-change event (class jakarta.faces.event.ValueChangeEvent) occurs when the user changes
the value of a component represented by UIInput or one of its subclasses. An example is selecting a
check box, an action that results in the component’s value changing to true. The component types
that can generate these types of events are the UIInput, UISelectOne, UISelectMany, and
UISelectBoolean components. Value-change events are fired only if no validation errors are
detected.

Depending on the value of the immediate property (see The immediate Attribute) of the component
emitting the event, action events can be processed during the Invoke Application phase or the
Apply Request Values phase, and value-change events can be processed during the Process
Validations phase or the Apply Request Values phase.

System events are generated by an Object rather than a UIComponent. They are generated during the
execution of an application at predefined times. They are applicable to the entire application rather
than to a specific component.

A data-model event occurs when a new row of a UIData component is selected.

There are two ways to cause your application to react to action events or value-change events that
are emitted by a standard component:

* Implement an event listener class to handle the event, and register the listener on the
component by nesting either an f:valueChangelListener tag or an f:actionListener tag inside the
component tag.

* Implement a method of a managed bean to handle the event, and refer to the method with a
method expression from the appropriate attribute of the component’s tag.

See Implementing an Event Listener for information on how to implement an event listener. See
Registering Listeners on Components for information on how to register the listener on a
component.

See Writing a Method to Handle an Action Event and Writing a Method to Handle a Value-Change
Event for information on how to implement managed bean methods that handle these events.

See Referencing a Managed Bean Method for information on how to refer to the managed bean
method from the component tag.

When emitting events from custom components, you must implement the appropriate event class
and manually queue the event on the component in addition to implementing an event listener
class or a managed bean method that handles the event. Handling Events for Custom Components
explains how to do this.

324

Validation Model

Jakarta Faces technology supports a mechanism for validating the local data of editable
components (such as text fields). This validation occurs before the corresponding model data is
updated to match the local value.

Like the conversion model, the validation model defines a set of standard classes for performing
common data validation checks. The Jakarta Faces core tag library also defines a set of tags that
correspond to the standard jakarta.faces.validator.Validator implementations. See Using the
Standard Validators for a list of all the standard validation classes and corresponding tags.

Most of the tags have a set of attributes for configuring the validator’s properties, such as the
minimum and maximum allowable values for the component’s data. The page author registers the
validator on a component by nesting the validator’s tag within the component’s tag.

In addition to validators that are registered on the component, you can declare a default validator
that is registered on all UIInput components in the application. For more information on default
validators, see Using Default Validators.

The validation model also allows you to create your own custom validator and corresponding tag to
perform custom validation. The validation model provides two ways to implement custom
validation.

* Implement a Validator interface that performs the validation.

* Implement a managed bean method that performs the validation.
If you are implementing a Validator interface, you must also do the following.

» Register the Validator implementation with the application.

* Create a custom tag or use an f:validator tag to register the validator on the component.
In the previously described standard validation model, the validator is defined for each input
component on a page. The Bean Validation model allows the validator to be applied to all fields in a
page. See [beanvalidation:bean-validation::bean-
validation:::_introduction_to_jakarta_bean_validation] and [beanvalidation:bean-validation-

advanced::bean-validation-advanced:::_bean_validation_advanced_topics] for more information on
Bean Validation.

Navigation Model

The Jakarta Faces navigation model makes it easy to define page navigation and to handle any
additional processing that is needed to choose the sequence in which pages are loaded.

In Jakarta Faces technology, navigation is a set of rules for choosing the next page or view to be
displayed after an application action, such as when a button or link is clicked.

Navigation can be implicit or user-defined. Implicit navigation comes into play when user-defined
navigation rules are not configured in the application configuration resource files.

When you add a component such as a commandButton to a Facelets page, and assign another page as

325

the value for its action property, the default navigation handler will try to match a suitable page
within the application implicitly. In the following example, the default navigation handler will try
to locate a page named response.xhtml within the application and navigate to it:

<h:commandButton value="submit" action="response">

User-defined navigation rules are declared in zero or more application configuration resource files,
such as faces-config.xml, by using a set of XML elements. The default structure of a navigation rule
is as follows:

<navigation-rule>
<description></description>
<from-view-id></from-view-id>
<navigation-case>
<from-action></from-action>
<from-outcome></from-outcome>
<if></if>
<to-view-id></to-view-id>
</navigation-case>
</navigation-rule>

User-defined navigation is handled as follows.

* Define the rules in the application configuration resource file.

» Refer to an outcome String from the button or link component’s action attribute. This outcome
String is used by the Jakarta Faces implementation to select the navigation rule.

Here is an example navigation rule:

<navigation-rule>
<from-view-id>/greeting.xhtml</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/response.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

This rule states that when a command component (such as an h:commandButton or an h:commandLink)
on greeting.xhtml is activated, the application will navigate from the greeting.xhtml page to the
response.xhtml page if the outcome referenced by the button component’s tag is success. Here is an
h:commandButton tag from greeting.xhtml that would specify a logical outcome of success:

<h:commandButton id="submit" value="Submit" action="success"/>

As the example demonstrates, each navigation-rule element defines how to get from one page

326

(specified in the from-view-id element) to the other pages of the application. The navigation-rule
elements can contain any number of navigation-case elements, each of which defines the page to
open next (defined by to-view-id) based on a logical outcome (defined by from-outcome).

In more complicated applications, the logical outcome can also come from the return value of an
action method in a managed bean. This method performs some processing to determine the
outcome. For example, the method can check whether the password the user entered on the page
matches the one on file. If it does, the method might return success; otherwise, it might return
failure. An outcome of failure might result in the logon page being reloaded. An outcome of
success might cause the page displaying the user’s credit card activity to open. If you want the
outcome to be returned by a method on a bean, you must refer to the method using a method
expression with the action attribute, as shown by this example:

<h:commandButton id="submit" value="Submit"
action="#{cashierBean.submit}" />

When the user clicks the button represented by this tag, the corresponding component generates an
action event. This event is handled by the default jakarta.faces.event.ActionListener instance,
which calls the action method referenced by the component that triggered the event. The action
method returns a logical outcome to the action listener.

The listener passes the logical outcome and a reference to the action method that produced the
outcome to the default jakarta.faces.application.NavigationHandler. The NavigationHandler selects
the page to display next by matching the outcome or the action method reference against the
navigation rules in the application configuration resource file by the following process.

1. The NavigationHandler selects the navigation rule that matches the page currently displayed.

2. It matches the outcome or the action method reference that it received from the default
jakarta.faces.event.ActionListener with those defined by the navigation cases.

3. It tries to match both the method reference and the outcome against the same navigation case.
4. If the previous step fails, the navigation handler attempts to match the outcome.

5. Finally, the navigation handler attempts to match the action method reference if the previous
two attempts failed.

6. If no navigation case is matched, it displays the same view again.

When the NavigationHandler achieves a match, the Render Response phase begins. During this
phase, the page selected by the NavigationHandler will be rendered.

The Duke’s Tutoring case study example application uses navigation rules in the business methods
that handle creating, editing, and deleting the users of the application. For example, the form for
creating a student has the following h:commandButton tag:

<h:commandButton id="submit"
action="#{adminBean.createStudent(studentManager.newStudent)}"
value="#{bundle['action.submit']}"/>

327

The action event calls the dukestutoring.ejb.AdminBean.createStudent method:

public String createStudent(Student student) {
em.persist(student);
return "createdStudent";

The return value of createdStudent has a corresponding navigation case in the faces-config.xml
configuration file:

<navigation-rule>
<from-view-id>/admin/student/createStudent.xhtml</from-view-id>
<navigation-case>
<from-outcome>createdStudent</from-outcome>
<to-view-id>/admin/index.xhtml</to-view-id>
</navigation-case>
</navigation-rule>

After the student is created, the user is returned to the Administration index page.
For more information on how to define navigation rules, see Configuring Navigation Rules.

For more information on how to implement action methods to handle navigation, see Writing a
Method to Handle an Action Event.

For more information on how to reference outcomes or action methods from component tags, see
Referencing a Method That Performs Navigation.

The Lifecycle of a Jakarta Faces Application

The lifecycle of an application refers to the various stages of processing of that application, from its
initiation to its conclusion. All applications have lifecycles. During a web application lifecycle,
common tasks are performed, including the following.

Handling incoming requests

* Decoding parameters

* Modifying and saving state

* Rendering web pages to the browser

The Jakarta Faces web application framework manages lifecycle phases automatically for simple
applications or allows you to manage them manually for more complex applications as required.

Jakarta Faces applications that use advanced features may require interaction with the lifecycle at
certain phases. For example, Ajax applications use partial processing features of the lifecycle (see
Partial Processing and Partial Rendering). A clearer understanding of the lifecycle phases is key to
creating well-designed components.

328

A simplified view of the Jakarta Faces lifecycle, consisting of the two main phases of a Jakarta Faces
web application, is introduced in A Simple Jakarta Faces Application. This section examines the
Jakarta Faces lifecycle in more detail.

Overview of the Jakarta Faces Lifecycle

The lifecycle of a Jakarta Faces application begins when the client makes an HTTP request for a
page and ends when the server responds with the page, translated to HTML.

The lifecycle can be divided into two main phases: Execute and Render. The Execute phase is
further divided into subphases to support the sophisticated component tree. This structure requires
that component data be converted and validated, component events be handled, and component
data be propagated to beans in an orderly fashion.

A Jakarta Faces page is represented by a tree of components, called a view. During the lifecycle, the
Jakarta Faces implementation must build the view while considering the state saved from a
previous submission of the page. When the client requests a page, the Jakarta Faces
implementation performs several tasks, such as validating the data input of components in the
view and converting input data to types specified on the server side.

The Jakarta Faces implementation performs all these tasks as a series of steps in the Jakarta Faces
request-response lifecycle. Figure 12, “Jakarta Faces Standard Request-Response Lifecycle”
illustrates these steps.

329

Faces Request

'

Restore view

'

Apply requests

'

Render Response] Process events — Response —
* complete

Process validations

Validation/ ¢

Conversion Errors/ ~ — Process events — Response ~ —»
Render Response ¢ complete

Update model values

'

— Conversion Errors/ — Process events — Response —
Render Response * complete

Invoke application

'

Process events — Response —
* complete
Render response -

'

Faces Response

Figure 12. Jakarta Faces Standard Request-Response Lifecycle

The request-response lifecycle handles two kinds of requests: initial requests and postbacks. An
initial request occurs when a user makes a request for a page for the first time. A postback request
occurs when a user submits the form contained on a page that was previously loaded into the
browser as a result of executing an initial request.

When the lifecycle handles an initial request, it executes only the Restore View and Render
Response phases, because there is no user input or action to process. Conversely, when the lifecycle
handles a postback, it executes all of the phases.

Usually, the first request for a Jakarta Faces page comes in from a client, as a result of clicking a link
or button component on a Jakarta Faces page. To render a response that is another Jakarta Faces
page, the application creates a new view and stores it in the jakarta.faces.context.FacesContext
instance, which represents all of the information associated with processing an incoming request
and creating a response. The application then acquires object references needed by the view and
calls the FacesContext.renderResponse method, which forces immediate rendering of the view by

330

skipping to the Render Response Phase of the lifecycle, as is shown by the arrows labelled Render
Response in Figure 12, “Jakarta Faces Standard Request-Response Lifecycle”.

Sometimes, an application might need to redirect to a different web application resource, such as a
web service, or generate a response that does not contain Jakarta Faces components. In these
situations, the developer must skip the Render Response phase by calling the
FacesContext.responseComplete method. This situation is also shown in , with the arrows labelled
Response Complete.

The most common situation is that a Jakarta Faces component submits a request for another
Jakarta Faces page. In this case, the Jakarta Faces implementation handles the request and
automatically goes through the phases in the lifecycle to perform any necessary conversions,
validations, and model updates and to generate the response.

There is one exception to the lifecycle described in this section. When a component’s immediate
attribute is set to true, the validation, conversion, and events associated with these components are
processed during the Apply Request Values Phase rather than in a later phase.

The details of the lifecycle explained in the following sections are primarily intended for developers
who need to know information such as when validations, conversions, and events are usually
handled and ways to change how and when they are handled. For more information on each of the
lifecycle phases, download the latest Jakarta Faces Specification documentation from
https://jakarta.ee/specifications/faces/.

The Jakarta Faces application lifecycle Execute phase contains the following subphases:

¢ Restore View Phase

* Apply Request Values Phase

Process Validations Phase

Update Model Values Phase

* Invoke Application Phase

Render Response Phase

Restore View Phase

When a request for a Jakarta Faces page is made, usually by an action, such as when a link or a
button component is clicked, the Jakarta Faces implementation begins the Restore View phase.

During this phase, the Jakarta Faces implementation builds the view of the page, wires event
handlers and validators to components in the view, and saves the view in the FacesContext instance,
which contains all the information needed to process a single request. All the application’s
components, event handlers, converters, and validators have access to the FacesContext instance.

If the request for the page is an initial request, the Jakarta Faces implementation creates an empty
view during this phase and the lifecycle advances to the Render Response phase, during which the
empty view is populated with the components referenced by the tags in the page.

If the request for the page is a postback, a view corresponding to this page already exists in the

331

https://jakarta.ee/specifications/faces/

FacesContext instance. During this phase, the Jakarta Faces implementation restores the view by
using the state information saved on the client or the server.

Apply Request Values Phase

After the component tree is restored during a postback request, each component in the tree
extracts its new value from the request parameters by using its decode (processDecodes()) method.
The value is then stored locally on each component.

If any decode methods or event listeners have called the renderResponse method on the current
FacesContext instance, the Jakarta Faces implementation skips to the Render Response phase.

If any events have been queued during this phase, the Jakarta Faces implementation broadcasts the
events to interested listeners.

If some components on the page have their immediate attributes (see The immediate Attribute) set to
true, then the validations, conversions, and events associated with these components will be
processed during this phase. If any conversion fails, an error message associated with the
component is generated and queued on FacesContext. This message will be displayed during the
Render Response phase, along with any validation errors resulting from the Process Validations
phase.

At this point, if the application needs to redirect to a different web application resource or generate
a response that does not contain any Jakarta Faces components, it can call the
FacesContext.responseComplete method.

At the end of this phase, the components are set to their new values, and messages and events have
been queued.

If the current request is identified as a partial request, the partial context is retrieved from the
FacesContext, and the partial processing method is applied.

Process Validations Phase

During this phase, the Jakarta Faces implementation processes all validators registered on the
components in the tree by using its validate (processValidators) method. It examines the
component attributes that specify the rules for the validation and compares these rules to the local
value stored for the component. The Jakarta Faces implementation also completes conversions for
input components that do not have the immediate attribute set to true.

If the local value is invalid, or if any conversion fails, the Jakarta Faces implementation adds an
error message to the FacesContext instance, and the lifecycle advances directly to the Render
Response phase so that the page is rendered again with the error messages displayed. If there were
conversion errors from the Apply Request Values phase, the messages for these errors are also
displayed.

If any validate methods or event listeners have called the renderResponse method on the current
FacesContext, the Jakarta Faces implementation skips to the Render Response phase.

At this point, if the application needs to redirect to a different web application resource or generate
a response that does not contain any Jakarta Faces components, it can call the

332

FacesContext.responseComplete method.

If events have been queued during this phase, the Jakarta Faces implementation broadcasts them to
interested listeners.

If the current request is identified as a partial request, the partial context is retrieved from the
FacesContext, and the partial processing method is applied.

Update Model Values Phase

After the Jakarta Faces implementation determines that the data is valid, it traverses the
component tree and sets the corresponding server-side object properties to the components' local
values. The Jakarta Faces implementation updates only the bean properties pointed at by an input
component’s value attribute. If the local data cannot be converted to the types specified by the bean
properties, the lifecycle advances directly to the Render Response phase so that the page is re-
rendered with errors displayed. This is similar to what happens with validation errors.

If any updateModels methods or any listeners have called the renderResponse method on the current
FacesContext instance, the Jakarta Faces implementation skips to the Render Response phase.

At this point, if the application needs to redirect to a different web application resource or generate
a response that does not contain any Jakarta Faces components, it can call the
FacesContext.responseComplete method.

If any events have been queued during this phase, the Jakarta Faces implementation broadcasts
them to interested listeners.

If the current request is identified as a partial request, the partial context is retrieved from the
FacesContext, and the partial processing method is applied.

Invoke Application Phase

During this phase, the Jakarta Faces implementation handles any application-level events, such as
submitting a form or linking to another page.

At this point, if the application needs to redirect to a different web application resource or generate
a response that does not contain any Jakarta Faces components, it can call the
FacesContext.responseComplete method.

If the view being processed was reconstructed from state information from a previous request and
if a component has fired an event, these events are broadcast to interested listeners.

Finally, the Jakarta Faces implementation transfers control to the Render Response phase.

Render Response Phase

During this phase, Jakarta Faces builds the view and delegates authority to the appropriate
resource for rendering the pages.

If this is an initial request, the components that are represented on the page will be added to the
component tree. If this is not an initial request, the components are already added to the tree and

333

need not be added again.

If the request is a postback and errors were encountered during the Apply Request Values phase,
Process Validations phase, or Update Model Values phase, the original page is rendered again
during this phase. If the pages contain h:message or h:messages tags, any queued error messages are
displayed on the page.

After the content of the view is rendered, the state of the response is saved so that subsequent
requests can access it. The saved state is available to the Restore View phase.

Partial Processing and Partial Rendering

The Jakarta Faces lifecycle spans all of the execute and render processes of an application. It is also
possible to process and render only parts of an application, such as a single component. For
example, the Jakarta Faces Ajax framework can generate requests containing information on which
particular component may be processed and which particular component may be rendered back to
the client.

Once such a partial request enters the Jakarta Faces lifecycle, the information is identified and
processed by a jakarta.faces.context.PartialViewContext object. The Jakarta Faces lifecycle is still
aware of such Ajax requests and modifies the component tree accordingly.

The execute and render attributes of the f:ajax tag are used to identify which components may be
executed and rendered. For more information on these attributes, see [web:faces-ajax::faces-
ajax:::_using_ajax_with_jakarta_faces_technology].

Further Information about Jakarta Faces Technology

For more information on Jakarta Faces technology, see

* Jakarta Faces 4.0 specification:
https://jakarta.ee/specifications/faces/4.0/

* Mojarra website:
https://eclipse-ee4j.github.io/mojarra/

For additional samples, see the GlassFish samples at https://github.com/eclipse-ee4j/glassfish-
samples/tree/master/ws/jakartaee9.

Introduction to Facelets

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

The term Facelets refers to the view declaration language for Jakarta Faces technology. Facelets is a
part of the Jakarta Faces specification and also the preferred presentation technology for building
Jakarta Faces technology-based applications. Jakarta Server Pages technology, previously used as
the presentation technology for Jakarta Faces, does not support all the new features available in
Jakarta Faces in the Jakarta EE platform. Jakarta Server Pages technology is considered to be a
deprecated presentation technology for Jakarta Faces.

334

https://jakarta.ee/specifications/faces/4.0/
https://eclipse-ee4j.github.io/mojarra/
https://github.com/eclipse-ee4j/glassfish-samples/tree/master/ws/jakartaee9
https://github.com/eclipse-ee4j/glassfish-samples/tree/master/ws/jakartaee9

What Is Facelets?

Facelets is a powerful but lightweight page declaration language that is used to build Jakarta Faces
views using HTML style templates and to build component trees. Facelets features include the
following:

» Use of XHTML for creating web pages
» Support for Facelets tag libraries in addition to Jakarta Faces and JSTL tag libraries
 Support for the Expression Language (EL)

» Templating for components and pages
The advantages of Facelets for large-scale development projects include the following:

» Support for code reuse through templating and composite components

» Functional extensibility of components and other server-side objects through customization

Faster compilation time

Compile-time EL validation

High-performance rendering

In short, the use of Facelets reduces the time and effort that needs to be spent on development and
deployment.

Facelets views are usually created as XHTML pages. Jakarta Faces implementations support XHTML
pages created in conformance with the XHTML Transitional Document Type Definition (DTD), as
listed at https://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional. By convention, web pages
built with XHTML have an .xhtml extension.

Jakarta Faces technology supports various tag libraries to add components to a web page. To
support the Jakarta Faces tag library mechanism, Facelets uses XML namespace declarations. Tag
Libraries Supported by Facelets lists the tag libraries supported by Facelets.

Tag Libraries Supported by Facelets

Tag Library URI Prefix = Example Contents
Jakarta Faces Facelets jakarta.faces.facelets ui: ui:component Tags for templating
Tag Library
uiinsert
Jakarta Faces HTML Tag jakarta.faces.html h: h:head Jakarta Faces
Library component tags for
h:body all UIComponent
objects

h:outputText

h:inputText

335

https://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional

Tag Library URI Prefix = Example Contents

Jakarta Faces Core Tag jakarta.faces.core f: fiactionliste Tags for Jakarta
Library ner Faces custom
actions that are
independent of any
particular render

f:attribute

kit
Pass-through Elements jakarta.faces faces: faces:id Tags to support
Tag Library HTML5-friendly
markup
Pass-through Attributes jakarta.faces.passthroug P: p:type Tags to support
Tag Library h HTML5-friendly
markup
Composite Component jakarta.faces.composite CC: cc:interface Tags to support
Tag Library composite
components
JSTL Core Tag Library jakarta.tags.core c: c:forEach JSTL 1.2 Core Tags
c:catch
JSTL Functions Tag jakarta.tags.functions ~ fn: fn:toUpperCas JSTL 1.2 Functions
Library € Tags

fn:toLowerCas
e

Facelets provides two namespaces to support HTML5-friendly markup. For details, see HTML5-
Friendly Markup.

Facelets supports tags for composite components, for which you can declare custom prefixes. For
more information on composite components, see Composite Components.

The namespace prefixes shown in the table are conventional, not mandatory. As is always the case
when you declare an XML namespace, you can specify any prefix in your Facelets page. For
example, you can declare the prefix for the composite component tag library as

xmlns:composite="jakarta.faces.composite"

instead of as

xmlns:cc="jakarta.faces.composite"

Based on the Jakarta Faces support for Expression Language (EL) syntax, Facelets uses EL
expressions to reference properties and methods of managed beans. EL expressions can be used to
bind component objects or values to methods or properties of managed beans that are used as
backing beans. For more information on using EL expressions, see Using the EL to Reference

336

Managed Beans.

The Lifecycle of a Facelets Application

The Jakarta Faces specification defines the lifecycle of a Jakarta Faces application. For more
information on this lifecycle, see The Lifecycle of a Jakarta Faces Application. The following steps
describe that process as applied to a Facelets-based application.

1.

When a client, such as a browser, makes a new request to a page that is created using Facelets, a
new component tree or jakarta.faces.component.UIViewRoot is created and placed in the
FacesContext.

The UIViewRoot is applied to the Facelets, and the view is populated with components for
rendering.

The newly built view is rendered back as a response to the client.

On rendering, the state of this view is stored for the next request. The state of input components
and form data is stored.

The client may interact with the view and request another view or change from the Jakarta
Faces application. At this time, the saved view is restored from the stored state.

The restored view is once again passed through the Jakarta Faces lifecycle, which eventually
will either generate a new view or re-render the current view if there were no validation
problems and no action was triggered.

If the same view is requested, the stored view is rendered once again.
If a new view is requested, then the process described in Step 2 is continued.

The new view is then rendered back as a response to the client.

Developing a Simple Facelets Application: The guessnumber-faces Example Application

This section describes the general steps involved in developing a Jakarta Faces application. The
following tasks are usually required:

Developing the managed beans

Creating the pages using the component tags
Defining page navigation

Mapping the FacesServlet instance

Adding managed bean declarations

Creating a Facelets Application

The example used in this tutorial is the guessnumber-faces application. The application presents you
with a page that asks you to guess a number from 0 to 10, validates your input against a random
number, and responds with another page that informs you whether you guessed the number
correctly or incorrectly.

The source code for this application is in the jakartaee-examples/tutorial/web/faces/quessnumber-
faces/ directory.

337

Developing a Managed Bean

In a typical Jakarta Faces application, each page of the application connects to a managed bean that
serves as a backing bean. The backing bean defines the methods and properties that are associated
with the components. In this example, both pages use the same backing bean.

The following managed bean class, UserNumberBean.java, generates a random number from 0 to 10

inclusive:

package ee.jakarta.tutorial.guessnumber;

import java.io.Serializable;
import java.util.Random;

import jakarta.annotation.PostConstruct;
import jakarta.faces.view.ViewScoped;
import jakarta.inject.Named;

@Named
@ViewScoped
public class UserNumberBean implements Serializable {

private static final long serialVersionUID = 1L;

private static final int MINIMUM
private static final int MAXIMUM

0;
10;

private int randomInt;
private Integer userNumber;
private String response;

@PostConstruct

public void init() {
randomInt = new Random().nextInt(maximum + 1);
// Print number to server log.
System.out.println("Duke's number:

+ randomInt);

}

public void guess() {
if (userNumber.compareTo(randomInt) != 0) {
response = "Sorry, " + userNumber + " is incorrect.";

}
else {

response = "Yay! You got it!";
}

}

public Integer getUserNumber() {
return userNumber;

}

338

public void setUserNumber(Integer userNumber) {
this.userNumber = userNumber;

}

public String getResponse() {
return response;

}

public int getMinimum() {
return MINIMUM;
}

public int getMaximum() {
return MAXIMUM;
}

Note the use of the @Named annotation, which makes the managed bean accessible through the EL.
The @ViewScoped annotation registers the bean scope as view to enable you to reuse the same bean
instance as long as you interact with the same web page without navigating away.

Creating Facelets Views

To create a page or view, you add components to the pages, wire the components to backing bean
values and properties, and register converters, validators, or listeners on the components.

For the example application, XHTML web pages serve as the front end. The page of the example
application is a page called greeting.xhtml. A closer look at various sections of this web page
provides more information.

The first section of the web page declares the document type of the generated HTML output, which
is HTMLS5:

<!DOCTYPE html>

The next section specifies the language of the text embedded in the generated HTML output and
then declares the XML namespace for the tag libraries that are used in the web page:

<html lang="en"
xmlns:h="jakarta.faces.html"
xmlns:f="jakarta.faces.core">

The next section uses various tags to insert components into the web page:

<h:head>
<title>Guess Number Facelets Application</title>
<h:outputStylesheet name="css/default.css"/>

339

</h:head>
<h:body>
<h:form>
<h:graphicImage name="1images/wave.svg"
alt="Duke waving his hand"
width="100" height="100" />
<h1>
Hi, my name is Duke. I am thinking of a number from
#{userNumberBean.minimum} to #{userNumberBean.maximum}.
Can you guess it?
</h1>
<div class="input">
<h:outputlabel id="userNumberLabel" for="userNumber"
value="Enter a number from @ to 10:" />
<h:inputText id="userNumber" required="true"
value="#{userNumberBean.userNumber}">
<f:validatelLongRange minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}" />
</h:inputText>
<h:message id="userNumberMessage" for="userNumber" />
</div>
<div class="actions">
<h:commandButton id="guess" value="Guess"
action="#{userNumberBean.guess}">
<f:ajax execute="@form"
render="userNumberMessage response" />
</h:commandButton>
</div>
<div class="output">
<h:outputText id="response" value="#{userNumberBean.response}" />
</div>
</h:form>
</h:body>

Note the use of the following tags:

» Facelets HTML tags (those beginning with h:) to add components

* The Facelets core tag f:validateLongRange to validate the user input

An h:inputText tag accepts user input and sets the value of the managed bean property userNumber
through the EL expression #{userNumberBean.userNumber}. The input value is validated for value
range by the Jakarta Faces standard validator tag f:validateLongRange.

The image file, wave.svg, is added to the page as a resource, as is the style sheet. For more details
about the resources facility, see Web Resources.

An h:commandButton tag with the ID guess starts validation of the input data when a user clicks the
button. Using f:ajax, the tag updates the h:message associated with the h:inputText so that it can
display any validation error messages. Also the h:outputText is being updated which shows the
response to your input.

340

Configuring the Application

Configuring a Jakarta Faces application involves mapping the Faces Servlet in the web deployment
descriptor file, such as a web.xml file, and possibly adding managed bean declarations, navigation
rules, and resource bundle declarations to the application configuration resource file, faces-
config.xml.

If you are using NetBeans IDE, a web deployment descriptor file is automatically created for you. In
such an IDE-created web.xml file, change the default greeting page, which is index.xhtml, to
greeting.xhtml. Here is an example web. xml file, showing this change in bold.

<?xml version="1.0" encoding="UTF-8"7>
<web-app xmlns="https://jakarta.ee/xml/ns/jakartaee"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="https://jakarta.ee/xml/ns/jakartaee
https://jakarta.ee/xml/ns/jakartaee/web-app_6_0.xsd"
version="6.0">
<context-param>
<param-name>jakarta.faces.PROJECT_STAGE</param-name>
<param-value>Development</param-value>
</context-param>
<servlet>
<servlet-name>Faces Servlet</servlet-name>
<servlet-class>jakarta.faces.webapp.FacesServlet</servlet-class>
<load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
<servlet-name>Faces Servlet</servlet-name>
<url-pattern>*.xhtml</url-pattern>
</servlet-mapping>
<welcome-file-list>
<welcome-file>greeting.xhtml</welcome-file>
</welcome-file-list>
</web-app>

Note the use of the context parameter PROJECT_STAGE. This parameter identifies the status of a
Jakarta Faces application in the software lifecycle.

The stage of an application can affect the behavior of the application. For example, if the project
stage is defined as Development, debugging information is automatically generated for the user. If
not defined by the user, the default project stage is Production.

Running the guessnumber-faces Facelets Example

You can use either NetBeans IDE or Maven to build, package, deploy, and run the guessnumber-faces
example.

To Build, Package, and Deploy the guessnumber-faces Example Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

341

2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/faces

4. Select the guessnumber-faces folder.
5. Click Open Project.

6. In the Projects tab, right-click the guessnumber-faces project and select Build.
This option builds the example application and deploys it to your GlassFish Server instance.

To Build, Package, and Deploy the guessnumber-faces Example Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. In a terminal window, go to:

jakartaee-examples/tutorial/web/faces/guessnumber-faces/

3. Enter the following command:

mvn install

This command builds and packages the application into a WAR file, quessnumber-faces.war, that
is located in the target directory. It then deploys it to the server.

To Run the guessnumber-faces Example

1. Open a web browser.

2. Enter the following URL in your web browser:

http://localhost:8080/guessnumber-faces

3. In the field, enter a number from 0 to 10 and click Submit.
Another page appears, reporting whether your guess is correct or incorrect.
4. If you guessed incorrectly, click Back to return to the main page.

You can continue to guess until you get the correct answer, or you can look in the server log,
where the UserNumberBean constructor displays the correct answer.

Using Facelets Templates

Jakarta Faces technology provides the tools to implement user interfaces that are easy to extend
and reuse. Templating is a useful Facelets feature that allows you to create a page that will act as

342

the base, or template, for the other pages in an application. By using templates, you can reuse code
and avoid recreating similarly constructed pages. Templating also helps in maintaining a standard
look and feel in an application with a large number of pages.

Facelets Templating Tags lists Facelets tags that are used for templating and their respective
functionality.

Facelets Templating Tags

Tag Function
ui:component Defines a component that is created and added to the component tree.
ui:composition Defines a page composition that optionally uses a template. Content outside of

this tag is ignored.

ui:debug Defines a debug component that is created and added to the component tree.
ui:decorate Similar to the composition tag but does not disregard content outside this tag.
ui:define Defines content that is inserted into a page by a template.

ui:fragment Similar to the component tag but does not disregard content outside this tag.
ui:include Encapsulates and reuses content for multiple pages.

uiiinsert Inserts content into a template.

ui:param Used to pass parameters to an included file.

uiirepeat Used as an alternative for loop tags, such as c:forEach or h:dataTable.
uiiremove Removes content from a page.

For more information on Facelets templating tags, see the Jakarta Faces Facelets Tag Library
documentation.

The Facelets tag library includes the main templating tag ui:insert. A template page that is created
with this tag allows you to define a default structure for a page. A template page is used as a
template for other pages, usually referred to as client pages.

Here is an example of a template saved as /WEB-INF/templates/template.xhtml:

<!DOCTYPE html>
<html xmlns:ui="jakarta.faces.facelets"
xmlns:h="jakarta.faces.html">

<h:head>
<title>Facelets Template</title>
<h:outputStylesheet name="css/default.css"/>
<h:outputStylesheet name="css/layout.css"/>
</h:head>

<h:body>

<div id="top">
<ui:insert name="top">Top Section</ui:insert>

343

</div>
<div>
<div id="left">
<ui:insert name="left">Left Section</ui:insert>
</div>
<div id="content">
<ui:insert name="content">Main Content</ui:insert>
</div>
</div>
</h:body>
</html>

The example page defines an XHTML page that is divided into three sections: a top section, a left
section, and a main section. The sections have style sheets associated with them. The same
structure can be reused for the other pages of the application.

The client page invokes the template by using the ui:composition tag. In the following example, a
client page named templateclient.xhtml invokes the template page named template.xhtml from the
preceding example. A client page allows content to be inserted with the help of the ui:define tag.

<ui:composition template="/WEB-INF/templates/template.xhtml">
xmlns:ui="jakarta.faces.facelets"
xmlns:h="jakarta.faces.html">
<ui:define name="top">
<h1>Welcome to Template Client Page</h1>
</ui:define>

<ui:define name="left">
<p>You are in the Left Section.</p>
</ui:define>

<ui:define name="content">
<header>
<h:graphicImage name="1images/wave.svg"
alt="Duke waving his hand"
width="100" height="100" />
</header>
<p>You are in the Main Content Section.</p>
</ui:define>
</ui:composition>

You can use NetBeans IDE to create Facelets template and client pages. For more information on
creating these pages, see https://netbeans.org/kb/docs/web/jsf20-intro.html.

Composite Components

Jakarta Faces technology offers the concept of composite components with Facelets. A composite
component is a special type of template that acts as a component.

344

https://netbeans.org/kb/docs/web/jsf20-intro.html

Any component is essentially a piece of reusable code that behaves in a particular way. For
example, an input component accepts user input. A component can also have validators,
converters, and listeners attached to it to perform certain defined actions.

A composite component consists of a collection of markup tags and other existing components. This
reusable, user-created component has a customized, defined functionality and can have validators,
converters, and listeners attached to it like any other component.

With Facelets, any XHTML page that contains markup tags and other components can be converted
into a composite component. Using the resources facility, the composite component can be stored in
a library that is available to the application from the defined resources location.

Composite Component Tags lists the most commonly used composite tags and their functions.

Composite Component Tags
Tag Function

composite:interfa Declares the usage contract for a composite component. The composite
ce component can be used as a single component whose feature set is the union
of the features declared in the usage contract.

COWDQSi te:impleme Defines the implementation of the composite component. If a
ntation composite:interface element appears, there must be a corresponding
composite:implementation.

composite:attribu Declares an attribute that may be given to an instance of the composite
te component in which this tag is declared.

CC_’"‘POSi te:insertC Any child components or template text within the composite component tag

hildren in the using page will be reparented into the composite component at the
point indicated by this tag’s placement within the composite:implementation
section.

composite:valueHo Declares that the composite component whose contract is declared by the

Lder composite:interface in which this element is nested exposes an
implementation of ValueHolder suitable for use as the target of attached
objects in the using page.

composite:editabl Declares that the composite component whose contract is declared by the

eValueHolder composite:interface in which this element is nested exposes an
implementation of EditableValueHolder suitable for use as the target of
attached objects in the using page.

composite:actionS Declares that the composite component whose contract is declared by the

ource composite:interface in which this element is nested exposes an
implementation of ActionSource? suitable for use as the target of attached
objects in the using page.

For more information and a complete list of Facelets composite tags, see the Jakarta Faces Facelets
Tag Library documentation.

The following example shows a composite component that renders an form field with a label, input
and message component:

345

<ui:component xmlns:ui="jakarta.faces.facelets"
xmlns:cc="jakarta.faces.composite"
xmlns:h="jakarta.faces.html">
<cc:interface>
<cc:attribute name="1label" required="true" />
<cc:attribute name="value" required="true" />
</cc:interface>

<cc:implementation>
<div id="#{cc.clientId}" class="field">
<h:outputlabel for="input" value="#{cc.attrs.label}" />
<h:inputText id="input" value="#{cc.attrs.value}" />
<h:message for="input" />
</div>
</cc:implementation>
</ui:component>

Note the use of cc.attrs.value when defining the value of the outputlabel and inputText
components. The word cc in Jakarta Faces is a reserved word for composite components. The
#{cc.attrs.attribute-name} expression is used to access the attributes defined for the composite
component’s interface, which in this case happens to be value.

The preceding example content is stored as a file named field.xhtml in a folder named
resources/mycomponents, under the application web root directory. This directory is considered a
library by Jakarta Faces, and a component can be accessed from such a library. The mycomponents
folder name is free to your choice. For more information on resources, see Web Resources.

The web page that uses this composite component is generally called a using page. The using page
includes a reference to the composite component, in the xml namespace declarations:

<!DOCTYPE html>
<html xmlns:h="jakarta.faces.html"
xmlns:my="jakarta.faces.composite/mycomponents">

<h:head>
<title>Using a sample composite component</title>
</h:head>

<h:body>
<h:form>
<my:field id="email"
label="Enter your email address"
value="#{bean.emaill}" />
</h:form>
</h:body>
</html>

The local composite component library is defined in the xmlns namespace with the declaration

346

xmlns:my="jakarta.faces.composite/mycomponents”. The my XML namespace are free to your choice.
The /mycomponents part must represent the folder name where the composite component files are
located. The component itself is accessed through the my:field tag. The preceding example content
can be stored as a web page named userpage.xhtml under the web root directory. When compiled
and deployed on a server, it can be accessed with the following URL:

http://localhost:8080/application-name/userpage.xhtml

See [web:faces-advanced-cc::faces-advanced-
cc:::_composite_components_advanced_topics_and_an_example] for more information and an
example.

Web Resources

Web resources are any software artifacts that the web application requires for proper rendering,
including images, script files, and any user-created component libraries. Resources must be
collected in a standard location, which can be one of the following.

* A resource packaged in the web application root must be in a subdirectory of a resources
directory at the web application root: resources/resource-identifier.

* A resource packaged in the web application’s classpath must be in a subdirectory of the META-
INF/resources directory within a web application: META-INF/resources/resource-identifier. You
can use this file structure to package resources in a JAR file bundled in the web application.

The Jakarta Faces runtime will look for the resources in the preceding listed locations, in that order.

Resource identifiers are unique strings that conform to the following format (all on one line):

[locale-prefix/][library-name/]J[library-version/]resource-name[/resource-version]

Elements of the resource identifier in brackets ([]) are optional, indicating that only a resource-
name, which is usually a file name, is a required element. For example, the most common way to
specify a style sheet, image, or script is to use the library and name attributes, as in the following tag
from the guessnumber-faces example:s

<h:outputStylesheet library="css" name="default.css"/>

This tag specifies that the default.css style sheet is in the directory web/resources/css.

You can also specify the location of an image using the following syntax, also from the guessnumber -
faces example:

<h:graphicImage value="#{resource['images:wave.med.gif']}"/>

This tag specifies that the image named wave.med.qgif is in the directory web/resources/images.

347

Resources can be considered as a library location. Any artifact, such as a composite component or a
template that is stored in the resources directory, becomes accessible to the other application
components, which can use it to create a resource instance.

Relocatable Resources

You can place a resource tag in one part of a page and specify that it be rendered in another part of
the page. To do this, you use the target attribute of a tag that specifies a resource. Acceptable values
for this attribute are as follows.

* “head” renders the resource in the head element.
* “body” renders the resource in the body element.

¢ “form” renders the resource in the form element.

For example, the following h:outputScript tag is placed within an h:form element, but it renders the
JavaScript in the head element:

<h:form>
<h:outputScript name="myscript.js" library="mylibrary" target="head"/>
</h:form>

The h:outputStylesheet tag also supports resource relocation, in a similar way.

Relocatable resources are essential for composite components that use stylesheets and can also be
useful for composite components that use JavaScript. See The compositecomponentexample
Example Application for an example.

Resource Library Contracts

Resource library contracts allow you to define a different look and feel for different parts of one or
more applications, instead of either having to use the same look and feel for all or having to specify
a different look on a page-by-page basis.

To do this, you create a contracts section of your web application. Within the contracts section, you
can specify any number of named areas, each of which is called a contract. Within each contract
you can specify resources such as template files, stylesheets, JavaScript files, and images.

For example, you could specify two contracts named c1 and c2, each of which uses a template and
other files:

src/main/webapp
WEB-INF/
contracts
cl

template.xhtml
style.css
myImg.qif
myJS.js

348

c?
template.xhtml
style2.css
img2.gif
1S2.3js
index.xhtml

One part of the application can use c1, while another can use c2.

Another way to use contracts is to specify a single contract that contains multiple templates:

src/main/webapp
contracts
myContract
templatel.xhtml
template2.xhtml
style.css
img.png
img2.png

You can package a resource library contract in a JAR file for reuse in different applications. If you
do so, the contracts must be located under META-INF/contracts. You can then place the JAR file in the
WEB-INF/1ib directory of an application. This means that the application would be organized as
follows:

src/main/webapp/
WEB-INF/1ib/myContract.jar

You can specify the contract usage within an application’s faces-config.xml file, under the resource-
library-contracts element. You need to use this element only if your application uses more than
one contract, however.

The hellol-rlc Example Application

The hello1-rlc example modifies the simple hello1 example from A Web Module That Uses Jakarta
Faces Technology: The hellol Example to use two resource library contracts. Each of the two pages
in the application uses a different contract.

The managed bean for hellol-rlc, Hello.java, is identical to the one for hellol (except that it
replaces the @Named and @RequestScoped annotations with @Model).

The source code for this application is in the jakartaee-examples/tutorial/web/faces/hellol-rlc/
directory.

349

Configuring the hellol-rlc Example

The faces-config.xml file for the hello1-rlc example contains the following elements:

<resource-library-contracts>
<contract-mapping>
<url-pattern>/reply/*</url-pattern>
<contracts>reply</contracts>
</contract-mapping>
<contract-mapping>
<url-pattern>*</url-pattern>
<contracts>hello</contracts>
</contract-mapping>
</resource-library-contracts>

The contract-mapping elements within the resource-library-contracts element map each contract to
a different set of pages within the application. One contract, named reply, is used for all pages
under the reply area of the application (/reply/*). The other contract, hello, is used for all other
pages in the application (*).

The application is organized as follows:

hellol-rlc
pom.xml
src/main/java/jakarta/tutorial/hellolrlc/Hello.java
src/main/webapp
WEB-INF
faces-config.xml
web.xml
contracts
hello
default.css
duke.handsOnHips.gif
template.xhtml
reply
default.css
duke.thumbsup.gif
template.xhtml
reply
response.xhtml
greeting.xhtml

The web.xml file specifies the welcome-file as greeting.xhtml. Because it is not located under
src/main/webapp/reply, this Facelets page uses the hello contract, whereas
src/main/webapp/reply/response.xhtml uses the reply contract.

The Facelets Pages for the hellol-rlc Example

The greeting.xhtml and response.xhtml pages have identical code calling in their templates:

350

<ui:composition template="/template.xhtml">

The template.xhtml files in the hello and reply contracts differ only in two respects: the placeholder
text for the title element ("Hello Template" and "Reply Template") and the graphic that each
specifies.

The default.css stylesheets in the two contracts differ in only one respect: the background color
specified for the body element.

To Build, Package, and Deploy the hellol-rlc Example Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/faces

4. Select the hellol1-rlc folder.
5. Click Open Project.

6. In the Projects tab, right-click the hellol1-rlc project and select Build.

This option builds the example application and deploys it to your GlassFish Server instance.

To Build, Package, and Deploy the hellol-rlc Example Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. In a terminal window, go to:

jakartaee-examples/tutorial/web/faces/hellol-rlc/

3. Enter the following command:

mvn install

This command builds and packages the application into a WAR file, hello1-rlc.war, that is
located in the target directory. It then deploys it to your GlassFish Server instance.

To Run the hellol-rlc Example

1. Enter the following URL in your web browser:

http://localhost:8080/hellol-rlc

351

2. The greeting.xhtml page looks just like the one from hello1 except for its background color and
graphic.

3. In the text field, enter your name and click Submit.

4. The response page also looks just like the one from hellol except for its background color and
graphic.

The page displays the name you submitted. Click Back to return to the greeting.xhtml page.

HTMLS5-Friendly Markup

When you want to produce user interface features for which HTML does not have its own elements,
you can create a custom Jakarta Faces component and insert it in your Facelets page. This
mechanism can cause a simple element to create complex web code. However, creating such a
component is a significant task (see [web:faces-custom::faces-
custom:::_creating_custom_ui_components_and_other_custom_objects]).

HTMLS5 offers new elements and attributes that can make it unnecessary to write your own
components. It also provides many new capabilities for existing components. Jakarta Faces
technology supports HTMLS5 not by introducing new UI components that imitate HTML5 ones but
by allowing you to use HTML5 markup directly. It also allows you to use Jakarta Faces attributes
within HTML5 elements. Jakarta Faces technology support for HTMLS5 falls into two categories:

* Pass-through elements

* Pass-through attributes
The effect of the HTML5-friendly markup feature is to offer the Facelets page author almost
complete control over the rendered page output, rather than having to pass this control off to

component authors. You can mix and match Jakarta Faces and HTML5 components and elements as
you see fit.

Using Pass-Through Elements

Pass-through elements allow you to use HTMLS5 tags and attributes but to treat them as equivalent
to Jakarta Faces components associated with a server-side UIComponent instance.

To make an element that is not a Jakarta Faces element a pass-through element, specify at least one
of its attributes using the jakarta.faces namespace. For example, the following code declares the
namespace with the short name faces:

<html ... xmlns:faces="jakarta.faces"

<input type="email" faces:id="email" name="email"
value="#{reservationBean.email}" required="required"/>

Here, the faces prefix is placed on the id attribute so that the HTML5 input tag’s attributes are
treated as part of the Facelets page. This means that, for example, you can use EL expressions to
retrieve managed bean properties.

352

How Facelets Renders HTML5 Elements shows how pass-through elements are rendered as Facelets
tags. The faces implementation uses the element name and the identifying attribute to determine
the corresponding Facelets tag that will be used in the server-side processing. The browser,
however, interprets the markup that the page author has written.

How Facelets Renders HTML5 Elements

HTMLS Element Identifying Facelets Tag

Name Attribute

a faces:action h:commandLink

a faces:actionListen h:commandLink
er

a faces:value h:outputLink

a faces:outcome h:1link

body h:body

button h:commandButton

button faces:outcome h:button

form h:form

head h:head

img h:graphicImage

input type="button" h:commandButton

input type="checkbox" h:selectBooleanChe

ckbox

input type="color" h:inputText

input type="date" h:inputText

input type="datetime" h:inputText

input type="datetime- h:inputText
local”

input type="email" h:inputText

input type="month" h:inputText

input type="number" h:inputText

input type="range" h:inputText

input type="search" h:inputText

input type="time" h:inputText

input type="ur1" h:inputText

input type="week" h:inputText

input type="file" h:inputFile

input type="hidden" h:inputHidden

input type="password" h:inputSecret

input type="reset" h:commandButton

input type="submit" h:commandButton

input type="*" h:inputText

353

HTMLS Element Identifying Facelets Tag

Name Attribute

label h:outputlabel

link h:outputStylesheet

script h:outputScript

select multiple="*" h:selectManyListbo
X

select h:selectOnelListbox

textarea h:inputTextArea

Using Pass-Through Attributes

Pass-through attributes are the converse of pass-through elements. They allow you to pass
attributes that are not Jakarta Faces attributes through to the browser without interpretation. If you
specify a pass-through attribute in a Jakarta Faces UIComponent, the attribute name and value are
passed straight through to the browser without being interpreted by Jakarta Faces components or
renderers. There are several ways to specify pass-through attributes.

» Use the Jakarta Faces namespace for pass-through attributes to prefix the attribute names
within a Jakarta Faces component. For example, the following code declares the namespace
with the short name p, then passes the type, min, max, required, and title attributes through to
the HTMLS5 input component:

<html ... xmlns:p="jakarta.faces.passthrough"

<h:form prependId="false">

<h:inputText id="nights" p:type="number" value="#{bean.nights}"
p:min="1" p:max="30" p:required="required"
p:title="Enter a number between 1 and 30 inclusive.">

This will cause the following markup to be rendered (assuming that bean.nights has a default
value set to 1):

<input id="nights" type="number" value="1" min="1" max="30"
required="required"
title="Enter a number between 1 and 30 inclusive.">

* To pass a single attribute, nest the f:passThroughAttribute tag within a component tag. For
example:

<h:inputText value="#{user.email}">
<f:passThroughAttribute name="type" value="email" />
</h:inputText>

354

This code would be rendered similarly to the following:
<input value="me@me.com" type="email" />

* To pass a group of attributes, nest the f:passThroughAttributes tag within a component tag,
specifying an EL value that must evaluate to a Map<String, Object>. For example:

<h:inputText value="#{bean.nights}">
<f:passThroughAttributes value="#{bean.nameValuePairs}" />
</h:inputText>

If the bean used the following Map declaration and initialized the map in the constructor as
follows, the markup would be similar to the output of the code that uses the pass-through
attribute namespace:

private Map<String, Object> nameValuePairs;

public Bean() {
this.nameValuePairs = new HashMap<>();
this.nameValuePairs.put("type", "number");
this.nameValuePairs.put("min", "1");
this.nameValuePairs.put("max", "30");
this.nameValuePairs.put("required", "required");
this.nameValuePairs.put("title",

"Enter a number between 1 and 4 inclusive.");

The reservation Example Application

The reservation example application provides a set of HTML5 input elements of various types to
simulate purchasing tickets for a theatrical event. It consists of two Facelets pages,
reservation.xhtml and confirmation.xhtml, and a backing bean, ReservationBean.java. The pages use
both pass-through attributes and pass-through elements.

The source code for this application is in the jakartaee-examples/tutorial/web/faces/reservation/
directory.

The Facelets Pages for the reservation Application

The first important feature of the Facelets pages for the reservation application is the DOCTYPE
header. The facelets pages for this application begin simply with the following DOCTYPE header,
which indicates that the XHTML-generated result is an HTML5 page:

<!DOCTYPE html>

The namespace declarations in the html element of the reservation.xhtml page specify both the

355

faces and the passthrough namespaces:

<html lang="en
xmlns:faces="jakarta.faces"
xmlns:f="jakarta.faces.core"
xmlns:h="jakarta.faces.html"
xmlns:p="jakarta.faces.passthrough">

Next, an h:head tag followed by an h:outputStylesheet tag within the h:body tag illustrates the use of
a relocatable resource (as described in Relocatable Resources):

<h:head>
<title>Reservation Application</title>
</h:head>
<h:body>
<h:outputStylesheet name="css/stylesheet.css" target="head" />

The reservation.xhtml page uses a HTML5-specific input element type on h:inputText, which is date.

<h:inputText id="date" type="date"
value="#{reservationBean.date}" required="true"
title="Enter or choose a date." />

The field for the number of tickets uses the f:passThroughAttributes tag to pass a Map defined in the
managed bean. It also recalculates the total in response to a change in the field:

<h:inputText id="tickets" value="#{reservationBean.tickets}">
<f:passThroughAttributes value="#{reservationBean.ticketAttrs}"/>
<f:ajax listener="#{reservationBean.calculateTotal}"
render="total" />
</h:inputText>

The field for the price specifies the min, max and step as a pass-through attribute of the h:inputText
element, offering a range of four ticket prices. Here, the p prefix on the HTMLS attributes passes
them through to the browser uninterpreted by the Jakarta Faces input component:

<h:inputText id="price" type="number"
value="#{reservationBean.price}" required="true"
p:min="80" p:max="120" p:step="20"
title="Enter a price: 80, 100, 120, or 140.">
<f:ajax listener="#{reservationBean.calculateTotal}"
render="total" />
</h:inputText>

The output of the calculateTotal method that is specified as the listener for the Ajax event is

356

rendered in the output element whose id and name value is total. See [webh:faces-ajax::faces-
ajax:::_using_ajax_with_jakarta_faces_technology], for more information.

The second Facelets page, confirmation.xhtml, uses a pass-through output element to display the
values entered by the user and provides a Facelets h:commandButton tag to allow the user to return to
the reservation.xhtml page.

The Managed Bean for the reservation Application

The session-scoped managed bean for the reservation application, ReservationBean.java, contains
properties for all the elements on the Facelets pages. It also contains two methods, calculateTotal
and clear, that act as listeners for Ajax events on the reservation.xhtml page.

To Build, Package, and Deploy the reservation Example Using NetBeans IDE

1
2.

Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
From the File menu, choose Open Project.

In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/faces

Select the reservation folder.
Click Open Project.

In the Projects tab, right-click the reservation project and select Build.

This option builds the example application and deploys it to your GlassFish Server instance.

To Build, Package, and Deploy the reservation Example Using Maven

1.
2.

3.

Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

In a terminal window, go to:

jakartaee-examples/tutorial/web/faces/reservation/

Enter the following command:

mvn install

This command builds and packages the application into a WAR file, reservation.war, that is
located in the target directory. It then deploys the WAR file to your GlassFish Server instance.

To Run the reservation Example

At the time of the publication of this tutorial, the browser that most fully implements HTMLS is
Google Chrome, and it is recommended that you use it to run this example. Other browsers are

357

catching up, however, and may work equally well by the time you read this.

1.

2.

Enter the following URL in your web browser:

http://localhost:8080/reservation

Enter information in the fields of the reservation.xhtml page.

The Performance Date field has a date field with up and down arrows that allow you to
increment and decrement the month, day, and year as well as a larger down arrow that brings
up a date editor in calendar form.

The Number of Tickets and Ticket Price fields also have up and down arrows that allow you to
increment and decrement the values within the allowed range and steps. The Estimated Total
changes when you change either of these two fields.

Email addresses and dates are checked for format, but not for validity (you can make a
reservation for a past date, for instance).

Click Make Reservation to complete the reservation or Clear to restore the fields to their default
values.

If you click Make Reservation, the confirmation.xhtml page appears, displaying the submitted
values.

Click Back to return to the reservation.xhtml page.

Using Jakarta Faces Technology in Web Pages

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

Web pages (Facelets pages, in most cases) represent the presentation layer for web applications.
The process of creating web pages for a Jakarta Faces application includes using component tags to
add components to the page and wire them to backing beans, validators, listeners, converters, and
other server-side objects that are associated with the page.

This chapter explains how to create web pages using various types of component and core tags. In

the

next chapter, you will learn about adding converters, validators, and listeners to component

tags to provide additional functionality to components.

Many of the examples in this chapter are taken from Duke’s Bookstore Case Study Example

Setting Up a Page

A typical Jakarta Faces web page includes the following elements:

358

A set of namespace declarations that declare the Jakarta Faces tag libraries

Optionally, the HTML head (h:head) and body (h:body) tags

casestudies:dukes-bookstore/dukes-bookstore.pdf#_dukes_bookstore_case_study_example

* A form tag (h:form) that represents the user input components

To add the Jakarta Faces components to your web page, you need to provide the page access to the
two standard tag libraries: the Jakarta Faces HTML render Kit tag library and the Jakarta Faces core
tag library. The Jakarta Faces standard HTML tag library defines tags that represent common HTML
user interface components. The Jakarta Faces core tag library defines tags that perform core actions
and are independent of a particular render Kit.

For a complete list of Jakarta Faces Facelets tags and their attributes, refer to the Jakarta Faces
Facelets Tag Library documentation.

To use any of the Jakarta Faces tags, you need to include appropriate directives at the top of each
page specifying the tag libraries.

For Facelets applications, the XML namespace directives uniquely identify the tag library URI and
the tag prefix.

For example, when you create a Facelets XHTML page, include namespace directives as follows:

<html xmlns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="jakarta.faces.html"
xmlns:f="jakarta.faces.core">

The XML namespace URI identifies the tag library location, and the prefix value is used to
distinguish the tags belonging to that specific tag library. You can also use other prefixes instead of
the standard h or f. However, when including the tag in the page you must use the prefix that you
have chosen for the tag library. For example, in the following web page the form tag must be
referenced using the h prefix because the preceding tag library directive uses the h prefix to
distinguish the tags defined in the HTML tag library:

<h:form ...>

The sections Adding Components to a Page Using HTML Tag Library Tags and Using Core Tags
describe how to use the component tags from the Jakarta Faces standard HTML tag library and the
core tags from the Jakarta Faces core tag library.

Adding Components to a Page Using HTML Tag Library Tags

The tags defined by the Jakarta Faces standard HTML tag library represent HTML form components
and other basic HTML elements. These components display data or accept data from the user. This
data is collected as part of a form and is submitted to the server, usually when the user clicks a
button. This section explains how to use each of the component tags shown in The Component Tags.

The Component Tags

Tag Functions Rendered As Appearance

h:column Represents a column of data A column of data in an A column in a table
in a data component HTML table

359

https://jakarta.ee/specifications/faces/3.0/renderkitdoc/
https://jakarta.ee/specifications/faces/3.0/vdldoc/
https://jakarta.ee/specifications/faces/3.0/vdldoc/

Tag

h:commandButt
on

h:commandLink

h:dataTable

h:form

h:graphicImag

h:inputFile

h:inputHidden

h:inputSecret

h:inputText
h:inputTextar
ea

h:message
h:messages

h:outputForma

h:outputlabel

h:outputLink

h:outputText

360

Functions

Submits a form to the
application

Links to another page or
location on a page

Represents a data wrapper

Represents an input form
(inner tags of the form
receive the data that will be
submitted with the form)

Displays an image

Allows a user to upload a
file

Allows a page author to
include a hidden variable in
a page

Allows a user to input a

string without the actual
string appearing in the field

Allows a user to input a
string

Allows a user to enter a
multiline string

Displays a localized message

Displays localized messages

Displays a formatted
message

Displays a nested
component as a label for a
specified input field

Links to another page or
location on a page without
generating an action event

Displays a line of text

Rendered As

An HTML <input type=
value> element for which

the type value can be

“submit”, “reset”, or “image”

An HTML <a href> element

An HTML <table> element

An HTML <form> element

An HTML element

An HTML <input
type="file"> element

An HTML <input

type="hidden"> element

An HTML <input

type="password"> element

An HTML <input
type="text"> element

An HTML <textarea>
element

An HTML tag if styles

are used

A set of HTML tags if

styles are used

Plain text

An HTML <1abel> element

An HTML <a> element

Plain text

Appearance

A button

Alink
A table that can be

updated dynamically

No appearance

An image

A field with a Browse...
button

No appearance

A field that displays a
row of characters
instead of the actual
string entered

A field

A multirow field

A text string

A text string

Plain text

Plain text

A link

Plain text

Tag Functions Rendered As Appearance

hipanelGrid Displays a table An HTML <table> element A table
with <tr> and <td> elements
h:panelGroup Groups a set of components A HTML <div> or A row in a table
under one parent element
hiselectBoole Allows a user to change the An HTML <input A check box
anCheckbox value of a Boolean choice type="checkbox"> element
h:selectManyC Displays a set of check boxes A set of HTML <input> A group of check boxes
heckbox from which the user can elements of type checkbox
select multiple values
h:selectManyL Allows a user to select An HTML <select> element A box
istbox

multiple items from a set of
items all displayed at once

h:selectManyM Allows a user to select An HTML <select> element A menu
enu multiple items from a set of
items

h:selectOneli Allows a user to select one An HTML <select> element A box
stbox item from a set of items all
displayed at once

h:selectOneMe Allows a user to select one An HTML <select> element A menu

nu item from a set of items
h:selectOneRa Allows a user to select one An HTML <input A group of options
dio

item from a set of items type="radio"> element
For a standalone radio

button, use the group
attribute.

The tags correspond to components in the jakarta.faces.component package. The components are
discussed in more detail in [web:faces-develop::faces-
develop:::_developing with_jakarta_faces_technology]

The next section explains the important attributes that are common to most component tags. For
each of the components discussed in the following sections, Writing Bean Properties explains how
to write a bean property bound to that particular component or its value.

For reference information about the tags and their attributes, see the Jakarta Faces Facelets Tag
Library documentation.

Common Component Tag Attributes

Most of the component tags support the attributes shown in Common Component Tag Attributes.

Common Component Tag Attributes

361

https://jakarta.ee/specifications/faces/3.0/vdldoc/
https://jakarta.ee/specifications/faces/3.0/vdldoc/

Attribute Description

binding Identifies a bean property and binds the component
instance to it.

id Uniquely identifies the component.

immediate If set to true, indicates that any events, validation, and

conversion associated with the component should happen
when request parameter values are applied.

rendered Specifies a condition under which the component should
be rendered. If the condition is not satisfied, the
component is not rendered.

style Specifies a Cascading Style Sheet (CSS) style for the tag.

styleClass Specifies a CSS class that contains definitions of the styles.

value Specifies the value of the component in the form of a value
expression.

All the tag attributes except id can accept expressions, as defined by the Expression Language,
described in Expression Language.

An attribute such as rendered or value can be set on the page and then modified in the backing bean
for the page.

The id Attribute

The id attribute is not usually required for a component tag but is used when another component
or a server-side class must refer to the component. If you don’t include an id attribute, the Jakarta
Faces implementation automatically generates a component ID. Unlike most other Jakarta Faces tag
attributes, the id attribute takes expressions using only the evaluation syntax described in
Immediate Evaluation, which uses the ${} delimiters. For more information on expression syntax,
see Value Expressions.

The immediate Attribute

Input components and command components (those that implement the ActionSource interface,
such as buttons and links) can set the immediate attribute to true to force events, validations, and
conversions to be processed when request parameter values are applied.

You need to carefully consider how the combination of an input component’s immediate value and a
command component’s immediate value determines what happens when the command component
is activated.

Suppose that you have a page with a button and a field for entering the quantity of a book in a
shopping cart. If the immediate attributes of both the button and the field are set to true, the new
value entered in the field will be available for any processing associated with the event that is
generated when the button is clicked. The event associated with the button as well as the events,
validation, and conversion associated with the field are all handled when request parameter values
are applied.

362

If the button’s immediate attribute is set to true but the field’s immediate attribute is set to false, the
event associated with the button is processed without updating the field’s local value to the model
layer. The reason is that any events, conversion, and validation associated with the field occur after
request parameter values are applied.

The bookshowcart.xhtml page of the Duke’s Bookstore case study has examples of components using
the immediate attribute to control which component’s data is updated when certain buttons are
clicked. The quantity field for each book does not set the immediate attribute, so the value is false
(the default).

<h:inputText id="quantity"
size="4"
value="#{item.quantity}"
title="#{bundle.ItemQuantity}">
<f:validatelLongRange minimum="0"/>

</h:inputText>

The immediate attribute of the Continue Shopping hyperlink is set to true, while the immediate
attribute of the Update Quantities hyperlink is set to false:

<h:commandLink id="continue"
action="bookcatalog"
immediate="true">
<h:outputText value="#{bundle.ContinueShopping}"/>
</h:commandLink>

<h:commandLink id="update"
action="#{showcart.update}"
immediate="false">
<h:outputText value="#{bundle.UpdateQuantities}"/>
</h:commandLink>

If you click the Continue Shopping hyperlink, none of the changes entered into the quantity input
fields will be processed. If you click the Update Quantities hyperlink, the values in the quantity
fields will be updated in the shopping cart.

The rendered Attribute

A component tag uses a Boolean EL expression along with the rendered attribute to determine
whether the component will be rendered. For example, the commandLink component in the following
section of a page is not rendered if the cart contains no items:

<h:commandLink id="check" ... rendered="#{cart.numberOfItems > 0}">
<h:outputText value="#{bundle.CartCheck}"/>
</h:commandLink>

363

Unlike nearly every other Jakarta Faces tag attribute, the rendered attribute is restricted to using
rvalue expressions. As explained in Value and Method Expressions, these rvalue expressions can
only read data; they cannot write the data back to the data source. Therefore, expressions used
with rendered attributes can use the arithmetic operators and literals that rvalue expressions can
use but lvalue expressions cannot use. For example, the expression in the preceding example uses
the > operator.

In this example and others, bundle refers to a java.util.ResourceBundle file that
o contains locale-specific strings to be displayed. Resource bundles are discussed in
[web:webil8n::webil8n:::_internationalizing_and_localizing_web_applications].

The style and styleClass Attributes

The style and styleClass attributes allow you to specify CSS styles for the rendered output of your
tags. Displaying Error Messages with the h:message and h:messages Tags describes an example of
using the style attribute to specify styles directly in the attribute. A component tag can instead
refer to a CSS class.

The following example shows the use of a dataTable tag that references the style class list-
background:

<h:dataTable id="1items"

styleClass="1ist-background"
value="#{cart.items}"
var="book">

The style sheet that defines this class is stylesheet.css, which will be included in the application.
For more information on defining styles, see the Cascading Style Sheets specifications and drafts at
https://www.w3.org/Style/CSS/.

The value and binding Attributes

A tag representing an output component uses the value and binding attributes to bind its
component’s value or instance, respectively, to a data object. The value attribute is used more
commonly than the binding attribute, and examples appear throughout this chapter. For more
information on these attributes, see Creating a Managed Bean, Writing Properties Bound to
Component Values, and Writing Properties Bound to Component Instances.

Adding HTML Head and Body Tags

The HTML head (h:head) and body (h:body) tags add HTML page structure to Jakarta Faces web
pages.

* The h:head tag represents the head element of an HTML page.

* The h:body tag represents the body element of an HTML page.

The following is an example of an XHTML page using the usual head and body markup tags:

364

https://www.w3.org/Style/CSS/

<IDOCTYPE html>
<html>
<head>
<title>Add a title</title>
</head>
<body>
<main>Add content</main>
</body>
</html>

The following is an example of an XHTML page using h:head and h:body tags:

<IDOCTYPE html>
<html xmlns:h="jakarta.faces.html">
<h:head>
<title>Add a title</title>
</h:head>
<h:body>
<main>Add content</main>
</h:body>
</html>

Both of the preceding example code segments render the same HTML elements. The head and body
tags are useful mainly for resource relocation. For more information on resource relocation, see
Resource Relocation Using h:outputScript and h:outputStylesheet Tags.

Adding a Form Component

An h:form tag represents an input form, which includes child components that can contain data that
is either presented to the user or submitted with the form.

Figure 13, “A Typical Form” shows a typical login form in which a user enters a user name and
password, then submits the form by clicking the Login button.

User Name: Duke

PaSSWOI‘d: sheskeske sk ofesfesfeske ke ok el

Figure 13. A Typical Form

The h:form tag represents the form on the page and encloses all the components that display or
collect data from the user, as shown here:

<h:form>
. other Jakarta Faces tags and other content...
</h:form>

365

The h:form tag can also include HTML markup to lay out the components on the page. Note that the
h:form tag itself does not perform any layout; its purpose is to collect data and to declare attributes
that can be used by other components in the form.

A page can include multiple h:form tags, but only the values from the form submitted by the user
will be included in the postback request.

Using Text Components

Text components allow users to view and edit text in web applications. The basic types of text
components are as follows:
* Label, which displays read-only text

* Field, which allows users to enter text (on one or more lines), often to be submitted as part of a
form

» Password field, which is a type of field that displays a set of characters, such as asterisks,
instead of the password text that the user enters

Figure 14, “Example Text Components” shows examples of these text components.

Label User Name: Duke Text Field
Password: kst kokokoskok ok Password Field
Comments: A user can enter text Text Area

across multiple lines.

Figure 14. Example Text Components

Text components can be categorized as either input or output. A Jakarta Faces output component,
such as a label, is rendered as read-only text. A Jakarta Faces input component, such as a field, is
rendered as editable text.

The input and output components can each be rendered in various ways to display more
specialized text.

Input Tags lists the tags that represent the input components.

Input Tags
Tag Function
h:inputHidden Allows a page author to include a hidden variable in a
page
h:inputSecret The standard password field: accepts one line of text with
no spaces and displays it as a set of asterisks as it is
entered
h:inputText The standard field: accepts a one-line text string

h:inputTextarea The standard multiline field: accepts multiple lines of text

366

The input tags support the tag attributes shown in Input Tag Attributes in addition to those
described in Common Component Tag Attributes. Note that this table does not include all the
attributes supported by the input tags but just those that are used most often. For the complete list
of attributes, refer to the Jakarta Faces Facelets Tag Library documentation.

Input Tag Attributes
Attribute Description
converter Identifies a converter that will be used to convert the

component’s local data. See Using the Standard Converters
for more information on how to use this attribute.

converterMessage Specifies an error message to display when the converter
registered on the component fails.

dir Specifies the direction of the text displayed by this
component. Acceptable values are 1tr, meaning left to
right, and rt1, meaning right to left.

label Specifies a name that can be used to identify this
component in error messages.

lang Specifies the code for the language used in the rendered
markup, such as en or pt-BR.

required Takes a boolean value that indicates whether the user must
enter a value in this component.

requiredMessage Specifies an error message to display when the user does
not enter a value into the component.

validator Identifies a method expression pointing to a managed
bean method that performs validation on the component’s
data. See Referencing a Method That Performs Validation
for an example of using the f:validator tag.

validatorMessage Specifies an error message to display when the validator
registered on the component fails to validate the
component’s local value.

valueChangelistene Jdentifies a method expression that points to a managed

: bean method that handles the event of entering a value in
this component. See Referencing a Method That Handles a
Value-Change Event for an example of using
valueChangelListener.

Output Tags lists the tags that represent the output components.

Output Tags

Tag Function

h:outputFormat Displays a formatted message

h:outputlLabel The standard read-only label: displays a component as a

label for a specified input field

367

https://jakarta.ee/specifications/faces/3.0/vdldoc/

Tag Function

h:outputlink Displays an <a href> tag that links to another page without
generating an action event

h:outputText Displays a one-line text string

The output tags support the converter tag attribute in addition to those listed in Common
Component Tag Attributes.

The rest of this section explains how to use some of the tags listed in Output Tags. The other tags are
written in a similar way.

Rendering a Field with the h:inputText Tag

The h:inputText tag is used to display a field. A similar tag, the h:outputText tag, displays a read-
only, single-line string. This section shows you how to use the h:inputText tag. The h:outputText tag
is written in a similar way.

Here is an example of an h:inputText tag:

<h:inputText id="name"

label="Customer Name"

size="30"

value="#{cashierBean.name}"

required="true"

requiredMessage="#{bundle.ReqCustomerName}">

<f:valueChangelistener
type="ee.jakarta.tutorial.dukesbookstore.listeners.NameChanged" />

</h:inputText>

The 1abel attribute specifies a user-friendly name that will be used in the substitution parameters
of error messages displayed for this component.

The value attribute refers to the name property of a managed bean named CashierBean. This property
holds the data for the name component. After the user submits the form, the value of the name
property in CashierBean will be set to the text entered in the field corresponding to this tag.

The required attribute causes the page to reload, displaying errors, if the user does not enter a value
in the name field. The Jakarta Faces implementation checks whether the value of the component is
null or is an empty string.

If your component must have a non-null value or a String value at least one character in length,
you should add a required attribute to your tag and set its value to true. If your tag has a required
attribute that is set to true and the value is null or a zero-length string, no other validators that are
registered on the tag are called. If your tag does not have a required attribute set to true, other
validators that are registered on the tag are called, but those validators must handle the possibility
of a null or zero-length string. See Validating Null and Empty Strings for more information.

368

Rendering a Password Field with the h:inputSecret Tag

The h:inputSecret tag renders an <input type="password"> HTML tag. When the user types a string
into this field, a row of asterisks is displayed instead of the text entered by the user. Here is an
example:

<h:inputSecret redisplay="false" value="#{loginBean.password}" />

In this example, the redisplay attribute is set to false. This will prevent the password from being
displayed in a query string or in the source file of the resulting HTML page.

Rendering a Label with the h:outputLabel Tag

The h:outputLabel tag is used to attach a label to a specified input field for the purpose of making it
accessible. The following page uses an h:outputlLabel tag to render the label of a check box:

<h:selectBooleanCheckbox id="fanClub"
rendered="false"
binding="#{cashierBean.specialOffer}" />
<h:outputlLabel for="fanClub"
rendered="false"
binding="#{cashierBean.specialOfferText}">
<h:outputText id="fanClubLabel"
value="#{bundle.DukeFanClub}" />
</h:outputlabel>

The h:selectBooleanCheckbox tag and the h:outputlLabel tag have rendered attributes that are set to
false on the page but are set to true in the CashierBean under certain circumstances. The for
attribute of the h:outputlLabel tag maps to the id of the input field to which the label is attached. The
h:outputText tag nested inside the h:outputlLabel tag represents the label component. The value
attribute on the h:outputText tag indicates the text that is displayed next to the input field.

Instead of using an h:outputText tag for the text displayed as a label, you can simply use the
h:outputlLabel tag’s value attribute. The following code snippet shows what the previous code
snippet would look like if it used the value attribute of the h:outputlLabel tag to specify the text of
the label:

<h:selectBooleanCheckbox id="fanClub"
rendered="false"
binding="#{cashierBean.specialOffer}" />
<h:outputlLabel for="fanClub"
rendered="false"
binding="#{cashierBean.specialOfferText}"
value="#{bundle.DukeFanClub}" />
</h:outputlabel>

369

Rendering a Link with the h:outputLink Tag

The h:outputLink tag is used to render a link that, when clicked, loads another page but does not
generate an action event. You should use this tag instead of the h:commandLink tag if you always want
the URL specified by the h:outputlLink tag’s value attribute to open and do not want any processing
to be performed when the user clicks the link. Here is an example:

<h:outputlink value="javadocs">
Documentation for this demo
</h:outputLink>

The text in the body of the h:outputLink tag identifies the text that the user clicks to get to the next
page.

Displaying a Formatted Message with the h:outputFormat Tag

The h:outputFormat tag allows display of concatenated messages as a MessageFormat pattern, as
described in the API documentation for java.text.MessageFormat. Here is an example of an
h:outputFormat tag:

<h:outputFormat value="Hello, {0}!">
<f:param value="#{hello.name}"/>
</h:outputFormat>

The value attribute specifies the MessageFormat pattern. The f:param tag specifies the substitution
parameters for the message. The value of the parameter replaces the {0} in the sentence. If the
value of "#{hello.name}" is "Bill", the message displayed in the page is as follows:

Hello, Bill!

An h:outputFormat tag can include more than one f:param tag for those messages that have more
than one parameter that must be concatenated into the message. If you have more than one
parameter for one message, make sure that you put the f:param tags in the proper order so that the
data is inserted in the correct place in the message. Here is the preceding example modified with an
additional parameter:

<h:outputFormat value="Hello, {0}! You are visitor number {1} to the page.">
<f:param value="#{hello.name}" />
<f:param value="#{bean.numVisitor}"/>

</h:outputFormat>

The value of {1} is replaced by the second parameter. The parameter is an EL expression,
bean.numVisitor, in which the property numVisitor of the managed bean bean keeps track of visitors
to the page. This is an example of a value-expression-enabled tag attribute accepting an EL
expression. The message displayed in the page is now as follows:

370

Hello, Bill! You are visitor number 10 to the page.

Using Command Component Tags for Performing Actions and Navigation

In Jakarta Faces applications, the button and link component tags are used to perform actions, such
as submitting a form, and for navigating to another page. These tags are called command
component tags because they perform an action when activated.

The h:commandButton tag is rendered as a button. The h:commandLink tag is rendered as a link.

In addition to the tag attributes listed in Common Component Tag Attributes, the h:commandButton
and h:commandLink tags can use the following attributes.

 action, which is either a logical outcome String or a method expression pointing to a bean
method that returns a logical outcome String. In either case, the logical outcome String is used
to determine what page to access when the command component tag is activated.

» actionlListener, which is a method expression pointing to a bean method that processes an
action event fired by the command component tag.

See Referencing a Method That Performs Navigation for more information on using the action
attribute. See Referencing a Method That Handles an Action Event for details on using the
actionListener attribute.

Rendering a Button with the h:commandButton Tag

If you are using an h:commandButton component tag, the data from the current page is processed
when a user clicks the button, and the next page is opened. Here is an example of the
h:commandButton tag:

<h:commandButton value="Submit"
action="#{cashierBean.submit}"/>

Clicking the button will cause the submit method of CashierBean to be invoked because the action
attribute references this method. The submit method performs some processing and returns a
logical outcome.

The value attribute of the example h:commandButton tag references the button’s label. For
information on how to use the action attribute, see Referencing a Method That Performs
Navigation.

Rendering a Link with the h:commandLink Tag

The h:commandLink tag represents an HTML link and is rendered as an HTML <a> element.

An h:commandLink tag must include a nested h:outputText tag, which represents the text that the user
clicks to generate the event. Here is an example:

<h:commandLink id="Duke" action="bookstore">

371

<f:actionListener
type="ee.jakarta.tutorial.dukesbookstore.listeners.LinkBookChangelListener" />
<h:outputText value="#{bundle.Book201}"/>
</h:commandLink>

This tag will render HTML that looks something like the following:

<a id="_idt16:Duke" href="#"
onclick="mojarra.cljs(document.getElementById('j_idt16"),
{'j_idt16:Duke':"'j_idt16:Duke'},"'");
return false;">My Early Years: Growing Up on Star7, by Duke

o The h:commandLink tag will render JavaScript scripting language. If you use this tag,
make sure that your browser is enabled for JavaScript technology.

Adding Graphics and Images with the h:graphicImage Tag

In a Jakarta Faces application, use the h:graphicImage tag to render an image on a page:
<h:graphicImage id="mapImage" url="/resources/images/book_all.jpg"/>

In this example, the url attribute specifies the path to the image. The URL of the example tag begins
with a slash (/), which adds the relative context path of the web application to the beginning of the
path to the image.

Alternatively, you can use the facility described in Web Resources to point to the image location.
Here are two examples:

<h:graphicImage id="mapImage"
name="book_all.jpg"
library="images"
alt="#{bundle.ChooseBook}"
usemap="#bookMap" />

<h:graphicImage value="#{resource['images:wave.med.gif']}"/>

You can use similar syntax to refer to an image in a style sheet. The following syntax in a style sheet
specifies that the image is to be found at resources/img/top-background. jpg:

header {
position: relative;
height: 150px;
background: #fff url(#{resource['img:top-background.jpg']}) repeat-x;

372

Laying Out Components with the h:panelGrid and h:panelGroup Tags

In a Jakarta Faces application, you use a panel as a layout container for a set of other components.
A panel is rendered as an HTML table. Panel Component Tags lists the tags used to create panels.

Panel Component Tags
Tag Attributes Function

h:panelGrid columns, columnClasses, footer(Class, headerClass, Displays a table
panel(Class, rowClasses, role

h:panelGroup layout Groups a set of
components under
one parent

The h:panelGrid tag is used to represent an entire table. The h:panelGroup tag is used to represent
rows in a table. Other tags are used to represent individual cells in the rows.

The columns attribute defines how to group the data in the table and therefore is required if you
want your table to have more than one column. The h:panelGrid tag also has a set of optional
attributes that specify CSS classes: columnClasses, footer(Class, header(lass, panelClass, and
rowClasses. The role attribute can have the value "presentation” to indicate that the purpose of the
table is to format the display rather than to show data.

If the header(lass attribute value is specified, the h:panelGrid tag must have a header as its first
child. Similarly, if a footerClass attribute value is specified, the h:panelGrid tag must have a footer
as its last child.

Here is an example:

<h:panelGrid columns="2"

headerClass="1list-header"
styleClass="1ist-background"
rowClasses="list-row-even, list-row-odd"
summary="#{bundle.CustomerInfo}"
title="#{bundle.Checkout}"
role="presentation">

<f:facet name="header">

<h:outputText value="#{bundle.Checkout}"/>
</f:facet>

<h:outputlLabel for="name" value="#{bundle.Name}" />
<h:inputText id="name" size="30"
value="#{cashierBean.name}"
required="true"
requiredMessage="#{bundle.ReqCustomerName}">
<f:valueChangelistener
type="ee.jakarta.tutorial.dukesbookstore.listeners.NameChanged" />
</h:inputText>
<h:message styleClass="error-message" for="name"/>

373

<h:outputlLabel for="ccno" value="#{bundle.CCNumber}"/>

<h:inputText id="ccno"
size="19"
converterMessage="#{bundle.CreditMessage}"
required="true"
requiredMessage="#{bundle.ReqCreditCard}">

<f:converter converterId="ccno"/>

<f:validateRegex

pattern="\d{16}|\d{4} \d{4} \d{4} \d{4}|\d{4}-\d{4}-\d{4}-\d{4}" />
</h:inputText>
<h:message styleClass="error-message" for="ccno"/>

</h:panelGrid>

The preceding h:panelGrid tag is rendered as a table that contains components in which a customer
inputs personal information. This h:panelGrid tag uses style sheet classes to format the table. The
following code shows the list-header definition:

.list-header {
background-color: #ffffff;
color: #000000;
text-align: center;

Because the h:panelGrid tag specifies a header(Class, the h:panelGrid tag must contain a header. The
example h:panelGrid tag uses an f:facet tag for the header. Facets can have only one child, so an
h:panelGroup tag is needed if you want to group more than one component within an f:facet. The
example h:panelGrid tag has only one cell of data, so an h:panelGroup tag is not needed. (For more
information about facets, see Using Data-Bound Table Components.

The h:panelGroup tag has an attribute, layout, in addition to those listed in Common Component Tag
Attributes. If the layout attribute has the value block, an HTML div element is rendered to enclose
the row; otherwise, an HTML span element is rendered to enclose the row. If you are specifying
styles for the h:panelGroup tag, you should set the layout attribute to block in order for the styles to
be applied to the components within the h:panelGroup tag. You should do this because styles, such as
those that set width and height, are not applied to inline elements, which is how content enclosed
by the span element is defined.

An h:panelGroup tag can also be used to encapsulate a nested tree of components so that the tree of
components appears as a single component to the parent component.

Data, represented by the nested tags, is grouped into rows according to the value of the columns
attribute of the h:panelGrid tag. The columns attribute in the example is set to 2, and therefore the
table will have two columns. The column in which each component is displayed is determined by
the order in which the component is listed on the page modulo 2. So, if a component is the fifth one
in the list of components, that component will be in the 5 modulo 2 column, or column 1.

374

Displaying Components for Selecting One Value

Another commonly used component is one that allows a user to select one value, whether it is the
only value available or one of a set of choices. The most common tags for this kind of component
are as follows:

* An h:selectBooleanCheckbox tag, displayed as a check box, which represents a Boolean state

* An h:selectOneRadio tag, displayed as a set of options

* An h:selectOneMenu tag, displayed as a scrollable list

* An h:selectOnelistbox tag, displayed as an unscrollable list

Figure 15, “Example Components for Selecting One Item” shows examples of these components.

Language: Chinese Format: = Hardcover
Genre O Fiction guas A
Dutch Paperback
Radio @ Non-fiction English Large-print
Buttons O Reference French Cassette
. German DVD
O Biography
Spanish Tustrated
Swabhili \'%4
Availability: |z| In print
Check Box Drop-Down Menu List Box

Figure 15. Example Components for Selecting One Item

Displaying a Check Box Using the h:selectBooleanCheckbox Tag

The h:selectBooleanCheckbox tag is the only tag that Jakarta Faces technology provides for
representing a Boolean state.

Here is an example that shows how to use the h:selectBooleanCheckbox tag:

<h:selectBooleanCheckbox id="fanClub"
rendered="false"
binding="#{cashierBean.specialOffer}" />
<h:outputlLabel for="fanClub"
rendered="false"
binding="#{cashierBean.specialOfferText}"
value="#{bundle.DukeFanClub}" />

The h:selectBooleanCheckbox tag and the h:outputlLabel tag have rendered attributes that are set to
false on the page but are set to true in the CashierBean under certain circumstances. When the
h:selectBooleanCheckbox tag is rendered, it displays a check box to allow users to indicate whether
they want to join the Duke Fan Club. When the h:outputlLabel tag is rendered, it displays the label
for the check box. The label text is represented by the value attribute.

Displaying a Menu Using the h:selectOneMenu Tag

A component that allows the user to select one value from a set of values can be rendered as a box

375

or a set of options. This section describes the h:selectOneMenu tag. The h:selectOneRadio and
h:selectOnelListbox tags are used in a similar way. The h:selectOnelListbox tag is similar to the
h:selectOneMenu tag except that h:selectOneListbox defines a size attribute that determines how
many of the items are displayed at once.

The h:selectOneMenu tag represents a component that contains a list of items from which a user can
select one item. This menu component is sometimes known as a drop-down list or a combo box. The
following code snippet shows how the h:selectOneMenu tag is used to allow the user to select a
shipping method:

<h:selectOneMenu id="shippingOption" required="true"
value="#{cashierBean.shippingOption}">
<f:selectItem itemValue="2" itemLabel="#{bundle.QuickShip}"/>
<f:selectItem itemValue="5" itemLabel="#{bundle.NormalShip}"/>
<f:selectItem itemValue="7" itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

The value attribute of the h:selectOneMenu tag maps to the property that holds the currently selected
item’s value. In this case, the value is set by the backing bean. You are not required to provide a
value for the currently selected item. If you don’t provide a value, the browser determines which
one is selected.

Like the h:selectOneRadio tag, the h:selectOneMenu tag must contain either an f:selectItems tag or a
set of f:selectItem tags for representing the items in the list. Using the f:selectltem and f:selectltems
Tags describes these tags.

Displaying Components for Selecting Multiple Values

In some cases, you need to allow your users to select multiple values rather than just one value
from a list of choices. You can do this using one of the following component tags:

* An h:selectManyCheckbox tag, displayed as a set of check boxes

* An h:selectManyMenu tag, displayed as a menu

* An h:selectManyListbox tag, displayed as a box

Figure 16, “Example Components for Selecting Multiple Values” shows examples of these
components.

o Language: Chinese A Format: = Hardcover
Genre |Z| Fiction
Dutch Paperback
Check Non-fiction English Large-print
Boxes |:| Reference French Cassette
. German DVD
|:| Biography
Spanish Tlustrated
Swabhili \%
Drop-Down Menu List Box

Figure 16. Example Components for Selecting Multiple Values

376

These tags allow the user to select zero or more values from a set of values. This section explains
the h:selectManyCheckbox tag. The h:selectManyListbox and h:selectManyMenu tags are used in a
similar way.

Unlike a menu, a list displays a subset of items in a box; a menu displays only one item at a time
when the user is not selecting the menu. The size attribute of the h:selectManylListbox tag
determines the number of items displayed at one time. The box includes a scroll bar for scrolling
through any remaining items in the list.

The h:selectManyCheckbox tag renders a group of check boxes, with each check box representing one
value that can be selected:

<h:selectManyCheckbox id="newslettercheckbox"
layout="pageDirection"
value="#{cashierBean.newsletters}">
<f:selectItems value="#{cashierBean.newsletterItems}"/>
</h:selectManyCheckbox>

The value attribute of the h:selectManyCheckbox tag identifies the newsletters property of the
CashierBean managed bean. This property holds the values of the currently selected items from the
set of check boxes. You are not required to provide a value for the currently selected items. If you
don’t provide a value, the first item in the list is selected by default. In the CashierBean managed
bean, this value is instantiated to 0, so no items are selected by default.

The layout attribute indicates how the set of check boxes is arranged on the page. Because layout is
set to pageDirection, the check boxes are arranged vertically. The default is 1ineDirection, which
aligns the check boxes horizontally.

The h:selectManyCheckbox tag must also contain a tag or set of tags representing the set of check
boxes. To represent a set of items, you use the f:selectItems tag. To represent each item
individually, you use the f:selectItem tag. The following section explains these tags in more detail.

Using the f:selectIitem and f:selectItems Tags

The f:selectItem and f:selectItems tags represent components that can be nested inside a
component that allows you to select one or multiple items. An f:selectItem tag contains the value,
label, and description of a single item. An f:selectItems tag contains the values, labels, and
descriptions of the entire list of items.

You can use either a set of f:selectItem tags or a single f:selectItems tag within your component
tag.

The advantages of using the f:selectItems tag are as follows.

* Items can be represented by using different data structures, including Array, Map, and
Collection. The value of the f:selectItems tag can represent even a generic collection of POJOs.

* Different lists can be concatenated into a single component, and the lists can be grouped within
the component.

377

» Values can be generated dynamically at runtime.
The advantages of using f:selectItem are as follows.

¢ Items in the list can be defined from the page.

 Less code is needed in the backing bean for the f:selectItem properties.

The rest of this section shows you how to use the f:selectItems and f:selectItem tags.

Using the f:selectIltems Tag

The following example from Displaying Components for Selecting Multiple Values shows how to use
the h:selectManyCheckbox tag:

<h:selectManyCheckbox id="newslettercheckbox"
layout="pageDirection"
value="#{cashierBean.newsletters}">
<f:selectItems value="#{cashierBean.newsletterItems}"/>
</h:selectManyCheckbox>

The value attribute of the f:selectItems tag is bound to the managed bean property
cashierBean.newsletterItems. The individual SelectItem objects are created programmatically in the
managed bean.

See UlSelectItems Properties for information on how to write a managed bean property for one of
these tags.

Using the f:selectltem Tag

The f:selectItem tag represents a single item in a list of items. Here is the example from Displaying
a Menu Using the h:selectOneMenu Tag once again:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashierBean.shippingOption}">
<f:selectItem itemValue="2"
itemLabel="#{bundle.QuickShip}"/>
<f:selectItem itemValue="5"
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem itemValue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

The itemValue attribute represents the value for the f:selectItem tag. The itemLabel attribute
represents the String that appears in the list component on the page.

The itemValue and itemLabel attributes are value-binding enabled, meaning that they can use value-
binding expressions to refer to values in external objects. These attributes can also define literal

378

values, as shown in the example h:selectOneMenu tag.

Displaying the Results from Selection Components

If you display components that allow a user to select values, you may also want to display the result
of the selection.

For example, you might want to thank a user who selected the checkbox to join the Duke Fan Club,
as described in Displaying a Check Box Using the h:selectBooleanCheckbox Tag. Because the
checkbox is bound to the specialOffer property of CashierBean, a UISelectBoolean value, you can call
the isSelected method of the property to determine whether to render a thank-you message:

<h:outputText value="#{bundle.DukeFanClubThanks}"
rendered="#{cashierBean.specialOffer.isSelected()}"/>

Similarly, you might want to acknowledge that a user subscribed to newsletters using the
h:selectManyCheckbox tag, as described in Displaying Components for Selecting Multiple Values. To
do so, you can retrieve the value of the newsletters property, the String array that holds the
selected items:

<h:outputText value="#{bundle.NewsletterThanks}"
rendered="#{!empty cashierBean.newsletters}"/>

<ui:repeat value="#{cashierBean.newsletters}" var="nli">
<h:outputText value="#{nli}" /></1i>
</ui:repeat>

An introductory thank-you message is displayed only if the newsletters array is not empty. Then a
ui:repeat tag, a simple way to show values in a loop, displays the contents of the selected items in
an itemized list. (This tag is listed in Facelets Templating Tags.)

Using Data-Bound Table Components

Data-bound table components display relational data in a tabular format. In a Jakarta Faces
application, the h:dataTable component tag supports binding to a collection of data objects and
displays the data as an HTML table. The h:column tag represents a column of data within the table,
iterating over each record in the data source, which is displayed as a row. Here is an example:

<h:dataTable id="items"
captionClass="list-caption"
columnClasses="list-column-center, list-column-left,
list-column-right, list-column-center"
footerClass="list-footer"
headerClass="1list-header"
rowClasses="list-row-even, list-row-odd"
styleClass="1ist-background"
summary="#{bundle.ShoppingCart}"

379

value="#{cart.items}"

border="1"
var="item">
<h:column>

<f:facet name="header">
<h:outputText value="#{bundle.ItemQuantity}" />
</f:facet>
<h:inputText id="quantity"
size="4"
value="#{item.quantity}"
title="#{bundle.ItemQuantity}">
<f:validatelLongRange minimum="1"/>
<f:valueChangelistener
type="ee.jakarta.tutorial.dukesbookstore.listeners.QuantityChanged"/>
</h:inputText>
</h:column>
<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.ItemTitle}"/>
</f:facet>
<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.title}"/>
</h:commandLink>
</h:column>

<f:facet name="footer">
<h:panelGroup>
<h:outputText value="#{bundle.Subtotal}"/>
<h:outputText value="#{cart.total}" />
<f:convertNumber currencySymbol="$" type="currency" />
</h:outputText>
</h:panelGroup>
</f:facet>
<f:facet name="caption">
<h:outputText value="#{bundle.Caption}"/>
</f:facet>
</h:dataTable>

The example h:dataTable tag displays the books in the shopping cart as well as the quantity of each
book in the shopping cart, the prices, and a set of buttons the user can click to remove books from
the shopping cart.

The h:column tags represent columns of data in a data component. While the data component is
iterating over the rows of data, it processes the column component associated with each h:column
tag for each row in the table.

The h:dataTable tag shown in the preceding code example iterates through the list of books
(cart.items) in the shopping cart and displays their titles, authors, and prices. Each time the
h:dataTable tag iterates through the list of books, it renders one cell in each column.

380

The h:dataTable and h:column tags use facets to represent parts of the table that are not repeated or
updated. These parts include headers, footers, and captions.

In the preceding example, h:column tags include f:facet tags for representing column headers or
footers. The h:column tag allows you to control the styles of these headers and footers by supporting
the header(Class and footer(Class attributes. These attributes accept space-separated lists of CSS
classes, which will be applied to the header and footer cells of the corresponding column in the
rendered table.

Facets can have only one child, so an h:panelGroup tag is needed if you want to group more than one
component within an f:facet. Because the facet tag representing the footer includes more than one
tag, the h:panelGroup tag is needed to group those tags. Finally, this h:dataTable tag includes an
f:facet tag with its name attribute set to caption, causing a table caption to be rendered above the
table.

This table is a classic use case for a data component because the number of books might not be
known to the application developer or the page author when that application is developed. The
data component can dynamically adjust the number of rows of the table to accommodate the
underlying data.

The value attribute of an h:dataTable tag references the data to be included in the table. This data
can take the form of any of the following:

* Alist of beans

* An array of beans

* A single bean

A jakarta.faces.model.DataModel object

* A java.sql.ResultSet object

* A jakarta.servlet.jsp.jstl.sql.Result object

* A javax.sql.RowSet object
All data sources for data components have a DataModel wrapper. Unless you explicitly construct a
DataModel wrapper, the Jakarta Faces implementation will create one around data of any of the

other acceptable types. See Writing Bean Properties for more information on how to write
properties for use with a data component.

The var attribute specifies a name that is used by the components within the h:dataTable tag as an
alias to the data referenced in the value attribute of h:dataTable.

In the example h:dataTable tag, the value attribute points to a list of books. The var attribute points
to a single book in that list. As the h:dataTable tag iterates through the list, each reference to item
points to the current book in the list.

The h:dataTable tag also has the ability to display only a subset of the underlying data. This feature
is not shown in the preceding example. To display a subset of the data, you use the optional first
and rows attributes.

The first attribute specifies the first row to be displayed. The rows attribute specifies the number of

381

rows, starting with the first row, to be displayed. For example, if you wanted to display records 2
through 10 of the underlying data, you would set first to 2 and rows to 9. When you display a
subset of the data in your pages, you might want to consider including a link or button that causes
subsequent rows to display when clicked. By default, both first and rows are set to zero, and this
causes all the rows of the underlying data to display.

Optional Attributes for the h:dataTable Tag shows the optional attributes for the h:dataTable tag.

Optional Attributes for the h:dataTable Tag

Attribute Defines Styles For
captionClass Table caption
columnClasses All the columns
footer(Class Footer

headerClass Header

rowClasses Rows

styleClass The entire table

Each of the attributes in Optional Attributes for the h:dataTable Tag can specify more than one
style. If columnClasses or rowClasses specifies more than one style, the styles are applied to the
columns or rows in the order that the styles are listed in the attribute. For example, if column(Classes
specifies styles list-column-center and list-column-right, and if the table has two columns, the first
column will have style list-column-center, and the second column will have style list-column-
right.

If the style attribute specifies more styles than there are columns or rows, the remaining styles will
be assigned to columns or rows starting from the first column or row. Similarly, if the style attribute
specifies fewer styles than there are columns or rows, the remaining columns or rows will be
assigned styles starting from the first style.

Displaying Error Messages with the h:message and h:messages Tags

The h:message and h:messages tags are used to display error messages when conversion or
validation fails. The h:message tag displays error messages related to a specific input component,
whereas the h:messages tag displays the error messages for the entire page.

Here is an example h:message tag from the guessnumber-faces application:

<p>
<h:inputText id="userNo"
title="Type a number from @ to 10:"
value="#{userNumberBean.userNumber}">
<f:validateLongRange minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>
</h:inputText>
<h:commandButton id="submit" value="Submit"
action="response"/>
</p>

382

<h:message showSummary="true" showDetail="false"
style="color: #d20005;
font-family: 'New Century Schoolbook', serif;
font-style: oblique;
text-decoration: overline"
id="errors1"
for="userNo"/>

The for attribute refers to the ID of the component that generated the error message. The error
message is displayed at the same location that the h:message tag appears in the page. In this case,
the error message will appear below the Submit button.

The style attribute allows you to specify the style of the text of the message. In the example in this
section, the text will be a shade of red, New Century Schoolbook, serif font family, and oblique style,
and a line will appear over the text. The message and messages tags support many other attributes
for defining styles. For more information on these attributes, refer to the Jakarta Faces Facelets Tag
Library documentation.

Another attribute supported by the h:messages tag is the layout attribute. Its default value is list,
which indicates that the messages are displayed in a bullet list using the HTML ul and 1i elements.
If you set the attribute value to table, the messages will be rendered in a table using the HTML
table element.

The preceding example shows a standard validator that is registered on the input component. The
message tag displays the error message that is associated with this validator when the validator
cannot validate the input component’s value. In general, when you register a converter or validator
on a component, you are queueing the error messages associated with the converter or validator on
the component. The h:message and h:messages tags display the appropriate error messages that are
queued on the component when the validators or converters registered on that component fail to
convert or validate the component’s value.

Standard error messages are provided with standard converters and standard validators. An
application architect can override these standard messages and supply error messages for custom
converters and validators by registering custom error messages with the application.

Creating Bookmarkable URLs with the h:button and h:link Tags

The ability to create bookmarkable URLs refers to the ability to generate links based on a specified
navigation outcome and on component parameters.

In HTTP, most browsers by default send GET requests for URL retrieval and POST requests for data
processing. The GET requests can have query parameters and can be cached, which is not advised
for POST requests, which send data to servers for processing. The other Jakarta Faces tags capable
of generating links use either simple GET requests, as in the case of h:outputLink, or POST requests,
as in the case of h:commandLink or h:commandButton tags. GET requests with query parameters provide
finer granularity to URL strings. These URLs are created with one or more name=value parameters
appended to the simple URL after a ? character and separated by either &; or & strings.

To create a bookmarkable URL, use an h:1link or h:button tag. Both of these tags can generate a link

383

https://jakarta.ee/specifications/faces/3.0/vdldoc/
https://jakarta.ee/specifications/faces/3.0/vdldoc/

based on the outcome attribute of the component. For example:

<h:1link outcome="somepage" value="Message" />

The h:1ink tag will generate a URL link that points to the somepage.xhtml file on the same server. The
following sample HTML is generated from the preceding tag, assuming that the application name is
simplebookmark:

Message

This is a simple GET request that cannot pass any data from page to page. To create more complex
GET requests and utilize the complete functionality of the h:1ink tag, use view parameters.

Using View Parameters to Configure Bookmarkable URLs

To pass a parameter from one page to another, use the includeViewParams attribute in your h:1ink
tag and, in addition, use an f:param tag to specify the name and value to be passed. Here the h:1ink
tag specifies the outcome page as personal.xhtml and provides a parameter named Result whose
value is a managed bean property:

<h:body>
<h:form>
<h:graphicImage url="#{resource['images:duke.waving.qgif']}"
alt="Duke waving his hand"/>
<h2>Hello, #{hello.name}!</h2>
<p>I've made your
<h:1link outcome="personal" value="personal greeting page!"
includeViewParams="true">
<f:param name="Result" value="#{hello.name}"/>
</h:1link>
</p>
<h:commandButton id="back" value="Back" action="index" />
</h:form>
</h:body>

If the includeViewParams attribute is set on the component, the view parameters are added to the
hyperlink. Therefore, the resulting URL will look something like this if the value of hello.name is
Timmy:

http://localhost:8080/bookmarks/personal.xhtml?Result=Timmy

On the outcome page, specify the core tags f:metadata and f:viewparam as the source of parameters
for configuring the URLs. View parameters are declared as part of f:metadata for a page, as shown
in the following example:

384

<f:metadata>
<f:viewParam name="Result" value="#{hello.name}"/>
</f:metadata>

This allows you to specify the bean property value on the page:

<h:outputText value="Howdy, #{hello.name}!" />

As a view parameter, the name also appears in the page’s URL. If you edit the URL, you change the
output on the page.

Because the URL can be the result of various parameter values, the order of the URL creation has
been predefined. The order in which the various parameter values are read is as follows:

1. Component

2. Navigation-case parameters

3. View parameters

The bookmarks Example Application

The bookmarks example application modifies the hello1 application described in A Web Module That
Uses Jakarta Faces Technology: The hellol Example to use a bookmarkable URL that uses view
parameters.

Like hello1, the application includes the Hello.java managed bean, an index.xhtml page, and a
response.xhtml page. In addition, it includes a personal.xhtml page, to which a bookmarkable URL
and view parameters are passed from the response.xhtml page, as described in Using View
Parameters to Configure Bookmarkable URLs.

You can use either NetBeans IDE or Maven to build, package, deploy, and run the bookmarks
example. The source code for this example is in the jakartaee-
examples/tutorial/web/faces/bookmarks/ directory.

To Build, Package, and Deploy the bookmarks Example Using NetBeans IDE

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).
2. From the File menu, choose Open Project.

3. In the Open Project dialog box, navigate to:

jakartaee-examples/tutorial/web/faces

4, Select the bookmarks folder.
5. Click Open Project.

6. In the Projects tab, right-click the bookmarks project and select Build.

385

This option builds the example application and deploys it to your GlassFish Server instance.

To Build, Package, and Deploy the bookmarks Example Using Maven

1. Make sure that GlassFish Server has been started (see Starting and Stopping GlassFish Server).

2. In a terminal window, go to:

jakartaee-examples/tutorial/web/faces/bookmarks/

3. Enter the following command:

mvn install

This command builds and packages the application into a WAR file, bookmarks.war, that is
located in the target directory. It then deploys the WAR file to your GlassFish Server instance.

To Run the bookmarks Example

1. Enter the following URL in your web browser:

http://localhost:8080/bookmarks

2. In the text field, enter a name and click Submit.

3. On the response page, move your mouse over the "personal greeting page" link to view the URL
with the view parameter, then click the link.

The personal.xhtml page opens, displaying a greeting to the name you typed.
4. In the URL field, modify the Result parameter value and press Return.
The name in the greeting changes to what you typed.

Resource Relocation Using h:outputScript and h:outputStylesheet Tags

Resource relocation refers to the ability of a Jakarta Faces application to specify the location where
a resource can be rendered. Resource relocation can be defined with the following HTML tags:

* h:outputScript
* h:outputStylesheet

These tags have name and target attributes, which can be used to define the render location. For a
complete list of attributes for these tags, see the Jakarta Faces Facelets Tag Library documentation.

For the h:outputScript tag, the name and target attributes define where the output of a resource may
appear. Here is an example:

386

https://jakarta.ee/specifications/faces/3.0/vdldoc/

<html xmlns="http://www.w3.0rg/1999/xhtml"
xmlns:h="jakarta.faces.html">
<h:head id="head">
<title>Resource Relocation</title>
</h:head>
<h:body id="body">
<h:form id="form">
<h:outputScript name="hello.js"/>
<h:outputStylesheet name="hello.css"/>
</h:form>
</h:body>
</html>

Because the target attribute is not defined in the tags, the style sheet hello.css is rendered in the
head element of the page, and the hello.js script is rendered in the body of the page.

Here is the HTML generated by the preceding code:

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head>
<title>Resource Relocation</title>
<link type="text/css" rel="stylesheet"
href="/context-root/jakarta.faces.resource/hello.css"/>
</head>
<body>
<form id="form" name="form" method="post"
action="..." enctype="...">
<script type="text/javascript"
src="/context-root/jakarta.faces.resource/hello.js">
</script>
</form>
</body>
</html>

If you set the target attribute for the h:outputScript tag, the incoming GET request provides the
location parameter. Here is an example:

<html xmlns="http://www.w3.0rg/1999/xhtm1"
xmlns:h="jakarta.faces.html">
<h:head id="head">
<title>Resource Relocation</title>
</h:head>
<h:body id="body">
<h:form id="form">
<h:outputScript name="hello.js" target="#{param.location}"/>
<h:outputStylesheet name="hello.css"/>
</h:form>
</h:body>

387

</html>

In this case, if the incoming request does not provide a location parameter, the default locations
will still apply: The style sheet is rendered in the head, and the script is rendered inline. However, if
the incoming request specifies the location parameter as the head, both the style sheet and the
script will be rendered in the head element.

The HTML generated by the preceding code is as follows:

<html xmlns="http://www.w3.0rg/1999/xhtm1">
<head>
<title>Resource Relocation</title>
<link type="text/css" rel="stylesheet"
href="/context-root/jakarta.faces.resource/hello.css"/>
<script type="text/javascript"
src="/context-root/jakarta.faces.resource/hello.js">

</script>
</head>
<body>
<form id="form" name="form" method="post"
action="..." enctype="...">
</form>
</body>
</html>

Similarly, if the incoming request provides the location parameter as the body, the script will be
rendered in the body element.

The preceding section describes simple uses for resource relocation. That feature can add even
more functionality for the components and pages. A page author does not have to know the
location of a resource or its placement.

By using a @ResourceDependency annotation for the components, component authors can define the
resources for the component, such as a style sheet and script. This allows the page authors freedom
from defining resource locations.

Using Core Tags

The tags included in the Jakarta Faces core tag library are used to perform core actions that are not
performed by HTML tags.

Event-Handling Core Tags lists the event-handling core tags.

Event-Handling Core Tags

Tag Function
fiactionListener Adds an action listener to a parent component
fiphaselistener Adds a Phaselistener to a page

388

Tag Function

fisetPropertyActionlistener Registers a special action listener whose sole purpose is to push a
value into a managed bean when a form is submitted

fivalueChangelistener Adds a value-change listener to a parent component

Data-Conversion Core Tags lists the data-conversion core tags.

Data-Conversion Core Tags

Tag Function

ficonverter Adds an arbitrary converter to the parent component
ficonvertDateTime Adds a DateTimeConverter instance to the parent component
f:convertNumber Adds a NumberConverter instance to the parent component

Facet Core Tags lists the facet core tags.

Facet Core Tags

Tag Function

f:facet Adds a nested component that has a special relationship to its
enclosing tag

f:metadata Registers a facet on a parent component

Core Tags That Represent Items in a List lists the core tags that represent items in a list.

Core Tags That Represent Items in a List

Tag Function
fiselectItem Represents one item in a list of items
fiselectItems Represents a set of items

Validator Core Tags lists the validator core tags.

Validator Core Tags

Tag Function

fivalidateDoubleRange Adds a DoubleRangeValidator to a component
f:validatelength Adds a LengthValidator to a component
f:validatelongRange Adds a LongRangeValidator to a component

fivalidator Adds a custom validator to a component

fivalidateRegEx Adds a RegExValidator to a component

fivalidateBean Delegates the validation of a local value to a BeanValidator
fivalidateRequired Enforces the presence of a value in a component

Miscellaneous Core Tags lists the core tags that fall into other categories.

389

Miscellaneous Core Tags
Tag Category
Attribute configuration
Localization

Parameter substitution

Ajax

Event

WebSocket

Tag

Function

fiattribute Adds configurable attributes to a parent component

f:loadBundle Specifies a ResourceBundle that is exposed as a Map

f:iparam Substitutes parameters into a MessageFormat instance and
adds query string name-value pairs to a URL

fiajax Associates an Ajax action with a single component or a
group of components based on placement

frevent Allows installing a ComponentSystemEventListener on a
component

fiwebsocket Allows server-side communications to be pushed to all

instances of a socket containing the same channel name.

These tags, which are used in conjunction with component tags, are explained in other sections of

this tutorial.

Where the Core Tags Are Explained lists the sections that explain how to use specific core tags.

Where the Core Tags Are Explained

Tags
Event-handling tags

Data-conversion tags

f:facet

f:1loadBundle
f:metadata

f:param

f:selectItem and
fiselectItems

Validator tags

f:ajax

f:websocket

Where Explained
Registering Listeners on Components
Using the Standard Converters

Using Data-Bound Table Components and Laying Out Components
with the h:panelGrid and h:panelGroup Tags

Setting the Resource Bundle
Using View Parameters to Configure Bookmarkable URLs
Displaying a Formatted Message with the h:outputFormat Tag

Using the f:selectItem and f:selectltems Tags

Using the Standard Validators

[web:faces-ajax::faces-
ajax:::_using_ajax_with_jakarta_faces_technology]

[web:faces-ws::faces-
ws:::_using websockets_with_jakarta_faces_technology]

Using Converters, Listeners, and Validators

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

The previous chapter described components and explained how to add them to a web page. This

390

chapter provides information on adding more functionality to the components through converters,
listeners, and validators.

* Converters are used to convert data that is received from the input components. Converters
allow an application to bring the strongly typed features of the Java programming language into
the String-based world of HTTP servlet programming.

* Listeners are used to listen to the events happening in the page and perform actions as defined.

* Validators are used to validate the data that is received from the input components. Validators
allow an application to express constraints on form input data to ensure that the necessary
requirements are met before the input data is processed.

Using the Standard Converters

The Jakarta Faces implementation provides a set of Converter implementations that you can use to
convert component data. The purpose of conversion is to take the String-based data coming in from
the Servlet API and convert it to strongly typed Java objects suitable for the business domain. For
more information on the conceptual details of the conversion model, see Conversion Model.

The standard Converter implementations are located in the jakarta.faces.convert package.
Normally, converters are implicitly assigned based on the type of the EL expression pointed to by
the value of the component. However, these converters can also be accessed by a converter ID.
Converter Classes and Converter IDs shows the converter classes and their associated converter
IDs.

Converter Classes and Converter IDs

Class in the Converter ID
jakarta.faces.convert

Package

BigDecimalConverter jakarta.faces.BigDecimal
BigIntegerConverter jakarta.faces.BigIlnteger
BooleanConverter jakarta.faces.Boolean
ByteConverter jakarta.faces.Byte
CharacterConverter jakarta.faces.Character
DateTimeConverter jakarta.faces.DateTime
DoubleConverter jakarta.faces.Double
EnumConverter jakarta.faces.Enum
FloatConverter jakarta.faces.Float
IntegerConverter jakarta.faces.Integer
LongConverter jakarta.faces.Long
NumberConverter jakarta.faces.Number
ShortConverter jakarta.faces.Short

A standard error message is associated with each of these converters. If you have registered one of
these converters onto a component on your page and the converter is not able to convert the
component’s value, the converter’s error message will display on the page. For example, the

391

following error message appears if BigIntegerConverter fails to convert a value:

{0} must be a number consisting of one or more digits

In this case, the {0} substitution parameter will be replaced with the name of the input component
on which the converter is registered.

Two of the standard converters (DateTimeConverter and NumberConverter) have their own tags, which
allow you to configure the format of the component data using the tag attributes. For more
information about using DateTimeConverter, see Using DateTimeConverter. For more information
about using NumberConverter, see Using NumberConverter. The following section explains how to
convert a component’s value, including how to register other standard converters with a
component.

Converting a Component’s Value

To use a particular converter to convert a component’s value, you need to register the converter
onto the component. You can register any of the standard converters in one of the following ways.

* Nest one of the standard converter tags inside the component’s tag. These tags are
f:convertDateTime and f:convertNumber, which are described in Using NumberConverter,
respectively.

* Bind the value of the component to a managed bean property of the same type as the converter.
This is the most common technique.

» Refer to the converter from the component tag’s converter attribute, specifying the ID of the
converter class.

* Nest an f:converter tag inside of the component tag, and use either the f:converter tag’s
converterld attribute or its binding attribute to refer to the converter.

As an example of the second technique, if you want a component’s data to be converted to an
Integer, you can simply bind the component’s value to a managed bean property. Here is an
example:

Integer age = 0;
public Integer getAge(){ return age;}
public void setAge(Integer age) {this.age = age;}

The data from the h:inputText tag in the this example will be converted to a java.lang.Integer
value. The Integer type is a supported type of NumberConverter. If you don’t need to specify any
formatting instructions using the f:convertNumber tag attributes, and if one of the standard
converters will suffice, you can simply reference that converter by using the component tag’s
converter attribute.

You can also nest an f:converter tag within the component tag and use either the converter tag’s
converterId attribute or its binding attribute to reference the converter.

The converterId attribute must reference the converter’s ID. Here is an example that uses one of the

392

converter IDs listed in Converter Classes and Converter IDs:

<h:inputText value="#{loginBean.age}">
<f:converter converterId="jakarta.faces.Integer" />
</h:inputText>

Instead of using the converterId attribute, the f:converter tag can use the binding attribute. The
binding attribute must resolve to a bean property that accepts and returns an appropriate Converter
instance.

You can also create custom converters and register them on components using the f:converter tag.
For details, see Creating and Using a Custom Converter.

Using DateTimeConverter

You can convert a component’s data to a java.util.Date by nesting the convertDateTime tag inside
the component tag. The convertDateTime tag has several attributes that allow you to specify the
format and type of the data. Attributes for the f:convertDateTime Tag lists the attributes.

Here is a simple example of a convertDateTime tag:

<h:outputText value="#{cashierBean.shipDate}">
<f:convertDateTime type="date" dateStyle="full" />
</h:outputText>

When binding the DateTimeConverter to a component, ensure that the managed bean property to
which the component is bound is of type java.util.Date. In the preceding example,
cashierBean.shipDate must be of type java.util.Date.

The example tag can display the following output:

Saturday, September 21, 2013

You can also display the same date and time by using the following tag in which the date format is
specified:

<h:outputText value="#{cashierBean.shipDate}">
<f:convertDateTime pattern="EEEEEEEE, MMM dd, yyyy" />
</h:outputText>

If you want to display the example date in Spanish, you can use the locale attribute:

<h:outputText value="#{cashierBean.shipDate}">
<f:convertDateTime dateStyle="full"
locale="es"
timeStyle="1long" type="both" />

393

</h:outputText>

This tag would display the following output:

jueves 24 de octubre de 2013 15:07:04 GMT

Refer to the "Customizing Formats" lesson of the Java Tutorial at https://docs.oracle.com/javase/
tutorial/i18n/format/simpleDateFormat.html for more information on how to format the output
using the pattern attribute of the convertDateTime tag.

Attributes for the f:convertDateTime Tag

Attribute Type Description

binding DateTimeConverter Used to bind a converter to a managed bean
property.

dateStyle String Defines the format, as specified by

java.text.DateFormat, of a date or the date part
of a date string. Applied only if type is date or
both and if pattern is not defined. Valid values:
default, short, medium, long, and full. If no value
is specified, default is used.

for String Used with composite components. Refers to one
of the objects within the composite component
inside which this tag is nested.

locale String or Locale Locale whose predefined styles for dates and
times are used during formatting or parsing. If
not specified, the Locale returned by
FacesContext.getlLocale will be used.

pattern String Custom formatting pattern that determines how
the date/time string should be formatted and
parsed. If this attribute is specified, dateStyle
and timeStyle attributes are ignored.

See Type Attribute and Default Pattern Values
for the default values when pattern is not
specified.

timeStyle String Defines the format, as specified by
java.text.DateFormat, of a time or the time part
of a date string. Applied only if type is time and
pattern is not defined. Valid values: default,
short, medium, long, and full. If no value is
specified, default is used.

timeZone String or TimeZone Time zone in which to interpret any time
information in the date string.

394

https://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html
https://docs.oracle.com/javase/tutorial/i18n/format/simpleDateFormat.html

Attribute Type Description

type String Specifies whether the string value will contain a
date, a time, or both. Valid values are: date, time,
both, LocalDate, LocalTime, LocalDateTime,
OffsetTime, OffsetDateTime, or ZonedDateTime. If
no value is specified, date is used.

See Type Attribute and Default Pattern Values
for additional information.

Type Attribute and Default Pattern Values

Type Attribute Class Default When Pattern Is Not Specified
both java.util.Date DateFormat.getDateTimeInstance(dateStyle, timeS
tyle)
date java.util.Date DateFormat.getDateTimeInstance(dateStyle)
time java.util.Date DateFormat.getDateTimeInstance(timeStyle)
localDate java.time.LocalDate DateTimeFormatter.oflocalizedDate(dateStyle)
localTime java.time.LocalTime DateTimeFormatter.oflocalizedTime(dateStyle)
localDateTime java.time.LocalDateTim DateTimeFormatter.oflocalizedDateTime(dateStyl
e e)
offsetTime java.time.0ffsetTime DateTimeFormatter.ISO OFFSET_TIME
offsetDateTime java.time.OffsetDateTi DateTimeFormatter.ISO_OFFSET_DATE_TIME
me
zonedDateTime java.time.ZonedDateTim DateTimeFormatter.ISO_ZONED_DATE_TIME
e

Using NumberConverter

You can convert a component’s data to a java.lang.Number by nesting the convertNumber tag inside
the component tag. The convertNumber tag has several attributes that allow you to specify the format
and type of the data. Attributes for the f:convertNumber Tag lists the attributes.

The following example uses a convertNumber tag to display the total prices of the contents of a

shopping cart:

<h:outputText value="#{cart.total}">
<f:convertNumber currencySymbol="$" type="currency"/>
</h:outputText>

When binding the NumberConverter to a component, ensure that the managed bean property to
which the component is bound is of a primitive type or has a type of java.lang.Number. In the
preceding example, cart.total is of type double.

Here is an example of a number that this tag can display:

395

$934

This result can also be displayed by using the following tag in which the currency pattern is

specified:

<h:outputText id="cartTotal" value="#{cart.total}">

<f:convertNumber pattern="$####" />
</h:outputText>

See the "Customizing Formats" lesson of the Java Tutorial at https://docs.oracle.com/javase/tutorial/
i18n/format/decimalFormat.html for more information on how to format the output by using the

pattern attribute of the convertNumber tag.

Attributes for the f:convertNumber Tag

Attribute
binding

currencyCode

currencySymbol

for

groupingUsed

integerOnly

locale

maxFractionDigits

maxIntegerDigits

minFractionDigits

minIntegerDigits

pattern

396

Type

NumberConverter

String

String

String

Boolean

Boolean

String or Locale

int

int

int

int

String

Description

Used to bind a converter to a managed bean
property.

ISO 4217 currency code, used only when
formatting currencies.

Currency symbol, applied only when formatting
currencies.

Used with composite components. Refers to one
of the objects within the composite component
inside which this tag is nested.

Specifies whether formatted output contains
grouping separators.

Specifies whether only the integer part of the
value will be parsed.

Locale whose number styles are used to format
or parse data.

Maximum number of digits formatted in the
fractional part of the output.

Maximum number of digits formatted in the
integer part of the output.

Minimum number of digits formatted in the
fractional part of the output.

Minimum number of digits formatted in the
integer part of the output.

Custom formatting pattern that determines how
the number string is formatted and parsed.

https://docs.oracle.com/javase/tutorial/i18n/format/decimalFormat.html
https://docs.oracle.com/javase/tutorial/i18n/format/decimalFormat.html

Attribute Type Description

type String Specifies whether the string value is parsed and
formatted as a number, currency, or percentage. If
not specified, number is used.

Registering Listeners on Components

An application developer can implement listeners as classes or as managed bean methods. If a
listener is a managed bean method, the page author references the method from either the
component’s valueChangeListener attribute or its actionListener attribute. If the listener is a class,
the page author can reference the listener from either an f:valueChangelistener tag or an
f:actionlListener tag and nest the tag inside the component tag to register the listener on the
component.

Referencing a Method That Handles an Action Event and Referencing a Method That Handles a
Value-Change Event explain how a page author uses the valueChangelistener and actionListener
attributes to reference managed bean methods that handle events.

This section explains how to register a NameChanged value-change listener and a BookChange action
listener implementation on components. The Duke’s Bookstore case study includes both of these
listeners.

Registering a Value-Change Listener on a Component

A page author can register a ValueChangelListener implementation on a component that implements
EditableValueHolder by nesting an f:valueChangelistener tag within the component’s tag on the
page. The f:valueChangelistener tag supports the attributes shown in Attributes for the
fivalueChangeListener Tag, one of which must be used.

Attributes for the f:valueChangeListener Tag

Attribut Description
e

type References the fully qualified class name of a
ValueChangeListener implementation. Can accept
a literal or a value expression.

binding References an object that implements
ValueChangelListener. Can accept only a value
expression, which must point to a managed
bean property that accepts and returns a
ValueChangelListener implementation.

The following example shows a value-change listener registered on a component:

<h:inputText id="name"
size="30"
value="#{cashierBean.name}"
required="true"

397

requiredMessage="#{bundle.ReqCustomerName}">
<f:valueChangelListener
type="ee.jakarta.tutorial.dukesbookstore.listeners.NameChanged" />
</h:inputText>

In the example, the core tag type attribute specifies the custom NameChanged listener as the
ValueChangelistener implementation registered on the name component.

After this component tag is processed and local values have been validated, its corresponding
component instance will queue the ValueChangeEvent associated with the specified
ValueChangelListener to the component.

The binding attribute is used to bind a ValueChangelistener implementation to a managed bean
property. This attribute works in a similar way to the binding attribute supported by the standard
converter tags. See Binding Component Values and Instances to Managed Bean Properties for more
information.

Registering an Action Listener on a Component

A page author can register an ActionListener implementation on a command component by nesting
an f:actionListener tag within the component’s tag on the page. Similarly to the
f:valueChangelistener tag, the f:actionListener tag supports both the type and binding attributes.
One of these attributes must be used to reference the action listener.

Here is an example of an h: commandLink tag that references an ActionlListener implementation:

<h:commandLink id="Duke" action="bookstore">
<f:actionListener
type="ee.jakarta.tutorial.dukesbookstore.listeners.LinkBookChangelListener" />
<h:outputText value="#{bundle.Book201}"/>
</h:commandLink>

The type attribute of the f:actionListener tag specifies the fully qualified class name of the
ActionListener implementation. Similarly to the f:valueChangeListener tag, the f:actionListener tag
also supports the binding attribute. See Binding Converters, Listeners, and Validators to Managed
Bean Properties for more information about binding listeners to managed bean properties.

In addition to the actionListener tag that allows you register a custom listener onto a component,
the core tag library includes the f:setPropertyActionlListener tag. You use this tag to register a
special action listener onto the ActionSource instance associated with a component. When the
component is activated, the listener will store the object referenced by the tag’s value attribute into
the object referenced by the tag’s target attribute.

The bookcatalog.xhtml page of the Duke’s Bookstore application uses f:setPropertyActionListener
with two components: the h:commandLink component used to link to the bookdetails.xhtml page and
the h:commandButton component used to add a book to the cart:

<h:dataTable id="books"

398

value="#{store.books}"

var="book"

headerClass="1ist-header"
styleClass="1ist-background"
rowClasses="1list-row-even, list-row-odd"
border="1"
summary="#{bundle.BookCatalog}" >

<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.ItemTitle}"/>
</f:facet>
<h:commandLink action="#{catalog.details}"
value="#{book.title}">
<f:setPropertyActionlListener target="#{requestScope.book}"
value="#{book}"/>
</h:commandLink>
</h:column>

<h:column>
<f:facet name="header">
<h:outputText value="#{bundle.CartAdd}"/>
</f:facet>
<h:commandButton id="add"
action="#{catalog.add}"
value="#{bundle.CartAdd}">
<f:setPropertyActionlListener target="#{requestScope.book}"
value="#{book}"/>
</h:commandButton>
</h:column>

</h:dataTable>

The h:commandLink and h:commandButton tags are within an h:dataTable tag, which iterates over the
list of books. The var attribute refers to a single book in the list of books.

The object referenced by the var attribute of an h:dataTable tag is in page scope. However, in this
case you need to put this object into request scope so that when the user activates the commandLink
component to go to bookdetails.xhtml or activates the commandButton component to go to
bookcatalog.xhtml, the book data is available to those pages. Therefore, the
f:setPropertyActionListener tag is used to set the current book object into request scope when the
commandLink or commandButton component is activated.

In the preceding example, the f:setPropertyActionlListener tag’s value attribute references the book
object. The f:setPropertyActionListener tag’s target attribute references the value expression
requestScope.book, which is where the book object referenced by the value attribute is stored when
the commandLink or the commandButton component is activated.

399

Using the Standard Validators

Jakarta Faces technology provides a set of standard classes and associated tags that page authors
and application developers can use to validate a component’s data. The Validator Classes lists all the

standard validator classes and the tags that allow you to use the validators from the page.

The Validator Classes

Validator Tag Function

Class

BeanValidator validateBean Registers a bean validator for the component.

BeanValidator validateWlholeB Allows cross-field validation by enabling class-level bean

edn validation on CDI-based backing beans.

DoubleRangeVal validateDouble Checks whether the local value of a component is within a

idator Range certain range. The value must be floating-point or convertible to
floating-point.

LengthValidato validateLength Checks whether the length of a component’s local value is within

r a certain range. The value must be a java.lang.String.

LongRangeValid validatelongRa Checks whether the local value of a component is within a

ator nge certain range. The value must be any numeric type or String
that can be converted to a long.

RegexValidator validateRegex Checks whether the local value of a component is a match
against a regular expression from the java.util.regex package.

RequiredValida validateRequir Ensures that the local value is not empty on an

tor ed

EditableValueHolder component.

All of these validator classes implement the Validator interface. Component writers and application
developers can also implement this interface to define their own set of constraints for a
component’s value.

Similar to the standard converters, each of these validators has one or more standard error
messages associated with it. If you have registered one of these validators onto a component on
your page and the validator is unable to validate the component’s value, the validator’s error
message will display on the page. For example, the error message that displays when the
component’s value exceeds the maximum value allowed by LongRangeValidator is as follows:

{1}: Validation Error: Value is greater than allowable maximum of "{@}"

In this case, the {1} substitution parameter is replaced by the component’s label or id, and the {0}
substitution parameter is replaced with the maximum value allowed by the validator.

See Displaying Error Messages with the h:message and h:messages Tags for information on how to
display validation error messages on the page when validation fails.

Instead of using the standard validators, you can use Bean Validation to validate data. If you specify
bean validation constraints on your managed bean properties, the constraints are automatically

400

placed on the corresponding fields on your applications web pages. See [beanvalidation:bean-
validation::bean-validation:::_introduction_to_jakarta_bean_validation] for more information. You
do not need to specify the validateBean tag to use Bean Validation, but the tag allows you to use
more advanced Bean Validation features. For example, you can use the validationGroups attribute
of the tag to specify constraint groups.

You can also create and register custom validators, although Bean Validation has made this feature
less useful. For details, see Creating and Using a Custom Validator.

Validating a Component’s Value

To validate a component’s value using a particular validator, you need to register that validator on
the component. You can do this in one of the following ways.

* Nest the validator’s corresponding tag (shown in The Validator Classes) inside the component’s
tag. Using Validator Tags explains how to use the validatelLongRange tag. You can use the other
standard tags in the same way.

» Refer to a method that performs the validation from the component tag’s validator attribute.

* Nest a validator tag inside the component tag, and use either the validator tag’s validatorId
attribute or its binding attribute to refer to the validator.

See Referencing a Method That Performs Validation for more information on using the validator
attribute.

The validatorId attribute works similarly to the converterId attribute of the converter tag, as
described in Converting a Component’s Value.

Keep in mind that validation can be performed only on components that implement
EditableValueHolder, because these components accept values that can be validated.

Using Validator Tags

The following example shows how to use the f:validatelLongRange validator tag on an input
component named quantity:

<h:inputText id="quantity" size="4" value="#{item.quantity}">
<f:validatelLongRange minimum="1"/>

</h:inputText>

<h:message for="quantity"/>

This tag requires the user to enter a number that is at least 1. The validatelLongRange tag also has a
maximum attribute, which sets a maximum value for the input.

The attributes of all the standard validator tags accept EL value expressions. This means that the
attributes can reference managed bean properties rather than specify literal values. For example,
the f:validatelongRange tag in the preceding example can reference managed bean properties
called minimum and maximum to get the minimum and maximum values acceptable to the validator
implementation, as shown in this snippet from the gquessnumber-faces example:

401

<h:inputText id="userNo"
title="Type a number from @ to 10:"
value="#{userNumberBean.userNumber}">
<f:validatelLongRange minimum="#{userNumberBean.minimum}"
maximum="#{userNumberBean.maximum}"/>
</h:inputText>

The following f:validateRegex tag shows how you might ensure that a password is from 4 to 10
characters long and contains at least one digit, at least one lowercase letter, and at least one
uppercase letter:

<f:validateRegex pattern="((?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{4,10})"
for="passwordVal"/>

Referencing a Managed Bean Method

A component tag has a set of attributes for referencing managed bean methods that can perform
certain functions for the component associated with the tag. These attributes are summarized in
Component Tag Attributes That Reference Managed Bean Methods.

Component Tag Attributes That Reference Managed Bean
Methods

Attribut Function
e

action Refers to a managed bean method that performs
navigation processing for the component and
returns a logical outcome String

actionli Refers to a managed bean method that handles
stener action events

validato Refersto a managed bean method that performs
r validation on the component’s value

valueCha Refers to a managed bean method that handles

ngeliste yalye-change events
ner

Only components that implement ActionSource can use the action and actionlListener attributes.
Only components that implement EditableValueHolder can use the validator or valueChangelistener
attributes.

The component tag refers to a managed bean method using a method expression as a value of one
of the attributes. The method referenced by an attribute must follow a particular signature, which
is defined by the tag attribute’s definition in the Jakarta Faces Facelets Tag Library documentation.
For example, the definition of the validator attribute of the inputText tag is the following:

void validate(jakarta.faces.context.FacesContext,

402

https://jakarta.ee/specifications/faces/3.0/vdldoc/

jakarta.faces.component.UIComponent, java.lang.Object)

The following sections give examples of how to use the attributes.

Referencing a Method That Performs Navigation

If your page includes a component, such as a button or a link, that causes the application to
navigate to another page when the component is activated, the tag corresponding to this
component must include an action attribute. This attribute does one of the following:

* Specifies a logical outcome String that tells the application which page to access next

* References a managed bean method that performs some processing and returns a logical
outcome String

The following example shows how to reference a navigation method:

<h:commandButton value="#{bundle.Submit}"
action="#{cashierBean.submit}" />

See Writing a Method to Handle Navigation for information on how to write such a method.

Referencing a Method That Handles an Action Event

If a component on your page generates an action event, and if that event is handled by a managed
bean method, you refer to the method by using the component’s actionListener attribute.

The following example shows how such a method could be referenced:

<h:commandLink id="Duke" action="bookstore"
actionListener="#{actionBean.chooseBookFromLink}">

The actionListener attribute of this component tag references the chooseBookFromLink method using
a method expression. The chooseBookFromLink method handles the event when the user clicks the
link rendered by this component. See Writing a Method to Handle an Action Event for information
on how to write such a method.

Referencing a Method That Performs Validation

If the input of one of the components on your page is validated by a managed bean method, refer to
the method from the component’s tag by using the validator attribute.

The following simplified example from The guessnumber-cdi CDI Example shows how to reference
a method that performs validation on inputGuess, an input component:

<h:inputText id="1inputGuess"
value="#{userNumberBean.userNumber}"
required="true" size="3"

403

disabled="#{userNumberBean.number eq userNumberBean.userNumber ...}"
validator="#{userNumberBean.validateNumberRange}">
</h:inputText>

The managed bean method validateNumberRange verifies that the input value is within the valid
range, which changes each time another guess is made. See Writing a Method to Perform Validation
for information on how to write such a method.

Referencing a Method That Handles a Value-Change Event

If you want a component on your page to generate a value-change event and you want that event to
be handled by a managed bean method instead of a ValueChangelistener implementation, you refer
to the method by using the component’s valueChangelListener attribute:

<h:inputText id="name"
size="30"
value="#{cashierBean.name}"
required="true"
valueChangelistener="#{cashierBean.processValueChange}" />
</h:inputText>

The valueChangelistener attribute of this component tag references the processValueChange method
of CashierBean by using a method expression. The processValueChange method handles the event of a
user entering a name in the input field rendered by this component.

Writing a Method to Handle a Value-Change Event describes how to implement a method that
handles a ValueChangeEvent.

Developing with Jakarta Faces Technology

o We are working on a fresh, updated Jakarta EE Tutorial. This section hasn’t yet
been updated.

This chapter provides an overview of managed beans and explains how to write methods and
properties of managed beans that are used by a Jakarta Faces application. This chapter also
introduces the Bean Validation feature.

Managed Beans in Jakarta Faces Technology

A typical Jakarta Faces application includes one or more managed beans, each of which can be
associated with the components used in a particular page. This section introduces the basic
concepts of creating, configuring, and using managed beans in an application.

[web:faces-page::faces-page:::_using_jakarta_faces_technology_in_web_pages] and
[web:faces-page-core::faces-page-

o core:::_using converters_listeners_and_validators] show how to add components
to a page and connect them to server-side objects by using component tags and
core tags. These chapters also show how to provide additional functionality to the

404

components through converters, listeners, and validators. Developing a Jakarta
Faces application also involves the task of programming the server-side objects:
managed beans, converters, event handlers, and validators.

Creating a Managed Bean

A managed bean is created with a constructor with no arguments, a set of properties, and a set of
methods that perform functions for a component. Each of the managed bean properties can be
bound to one of the following:

* A component value

* A component instance

* A converter instance

A listener instance

A validator instance

The most common functions that managed bean methods perform include the following:

» Validating a component’s data
* Handling an event fired by a component

* Performing processing to determine the next page to which the application must navigate

As with all JavaBeans components, a property consists of a private data field and a set of accessor
methods, as shown by this code:

private Integer userNumber = null;

public void setUserNumber(Integer user_number) {
userNumber = user_number;

+
public Integer getUserNumber() {

return userNumber;

When bound to a component’s value, a bean property can be any of the basic primitive and
numeric types or any Java object type for which the application has access to an appropriate
converter. For example, a property can be of type java.util.Date if the application has access to a
converter that can convert the Date type to a String and back again. See Writing Bean Properties for
information on which types are accepted by which component tags.

When a bean property is bound to a component instance, the property’s type must be the same as
the component object. For example, if a jakarta.faces.component.UISelectBoolean component is
bound to the property, the property must accept and return a UISelectBoolean object. Likewise, if
the property is bound to a converter, validator, or listener instance, the property must be of the
appropriate converter, validator, or listener type.

For more information on writing beans and their properties, see Writing Bean Properties.

405

Using the EL to Reference Managed Beans

To bind component values and objects to managed bean properties or to reference managed bean
methods from component tags, page authors use the Expression Language syntax. As explained in
Overview of the EL, the following are some of the features that the EL offers:

» Deferred evaluation of expressions
* The ability to use a value expression to both read and write data

* Method expressions

Deferred evaluation of expressions is important because the Jakarta Faces lifecycle is split into
several phases in which component event handling, data conversion and validation, and data
propagation to external objects are all performed in an orderly fashion. The implementation must
be able to delay the evaluation of expressions until the proper phase of the lifecycle has been
reached. Therefore, the implementation’s tag attributes always use deferred-evaluation syntax,
which is distinguished by the #{} delimiter.

To store data in external objects, almost all Jakarta Faces tag attributes use lvalue expressions,
which are expressions that allow both getting and setting data on external objects.

Finally, some component tag attributes accept method expressions that reference methods that
handle component events or validate or convert component data.

To illustrate a Jakarta Faces tag using the EL, the following tag references a method that validates
user input:

<h:inputText id="1inputGuess"
value="#{userNumberBean.userNumber}"
required="true" size="3"
disabled="#{userNumberBean.number eq userNumberBean.userNumber ...}"
validator="#{userNumberBean.validateNumberRange}">
</h:inputText>

This tag binds the inputGuess component’s value to the UserNumberBean.userNumber managed bean
property by using an lvalue expression. The tag uses a method expression to refer to the
UserNumberBean.validateNumberRange method, which performs validation of the component’s local
value. The local value is whatever the user types into the field corresponding to this tag. This
method is invoked when the expression is evaluated.

Nearly all Jakarta Faces tag attributes accept value expressions. In addition to referencing bean
properties, value expressions can reference lists, maps, arrays, implicit objects, and resource
bundles.

Another use of value expressions is to bind a component instance to a managed bean property. A
page author does this by referencing the property from the binding attribute:

<h:outputlLabel for="fanClub"
rendered="false"

406

binding="#{cashierBean.specialOfferText}"
value="#{bundle.DukeFanClub}"/>
</h:outputlLabel>

In addition to using expressions with the standard component tags, you can configure your custom
component properties to accept expressions by creating jakarta.el.ValueExpression or
jakarta.el.MethodExpression instances for them.

For information on the EL, see Expression Language.

For information on referencing managed bean methods from component tags, see Referencing a
Managed Bean Method.

Writing Bean Properties

As explained in Managed Beans in Jakarta Faces Technology, a managed bean property can be
bound to one of the following items:

* A component value

* A component instance

* A converter implementation

* Alistener implementation

A validator implementation

These properties follow the conventions of JavaBeans components (also called beans). For more
information on JavaBeans components, see the JavaBeans Tutorial at https://docs.oracle.com/javase/
tutorial/javabeans/index.html.

The component’s tag binds the component’s value to a managed bean property by using its value
attribute and binds the component’s instance to a managed bean property by using its binding
attribute. Likewise, all the converter, listener, and validator tags use their binding attributes to bind
their associated implementations to managed bean properties. See Binding Component Values and
Instances to Managed Bean Properties and Binding Converters, Listeners, and Validators to
Managed Bean Properties for more information.

To bind a component’s value to a managed bean property, the type of the property must match the
type of the component’s value to which it is bound. For example, if a managed bean property is
bound to a UISelectBoolean component’s value, the property should accept and return a boolean
value or a Boolean wrapper Object instance.

To bind a component instance to a managed bean property, the property must match the type of
component. For example, if a managed bean property is bound to a UISelectBoolean instance, the
property should accept and return a UISelectBoolean value.

Similarly, to bind a converter, listener, or validator implementation to a managed bean property,
the property must accept and return the same type of converter, listener, or validator object. For
example, if you are using the convertDateTime tag to bind a jakarta.faces.convert.DateTimeConverter
to a property, that property must accept and return a DateTimeConverter instance.

407

https://docs.oracle.com/javase/tutorial/javabeans/index.html
https://docs.oracle.com/javase/tutorial/javabeans/index.html

The rest of this section explains how to write properties that can be bound to component values, to
component instances for the component objects described in Adding Components to a Page Using
HTML Tag Library Tags, and to converter, listener, and validator implementations.

Writing Properties Bound to Component Values

To write a managed bean property that is bound to a component’s value, you must match the
property type to the component’s value.

Acceptable Types of Component Values lists the jakarta.faces.component classes and the acceptable
types of their values.

Acceptable Types of Component Values

Component Class Acceptable Types of Component Values

UIInput, UIOutput, Any of the basic primitive and numeric types or any Java programming
UISelectItem, language object type for which an appropriate

UISelectOne jakarta.faces.convert.Converter implementation is available

UIData array of beans, List of beans, single bean, java.sql.ResultSet,

jakarta.servlet.jsp.jstl.sql.Result, javax.sql.RowSet

UISelectBoolean boolean or Boolean

UISelectItems java.lang.String, Collection, Array, Map

UISelectMany array or List, although elements of the array or List can be any of the
standard types

When they bind components to properties by using the value attributes of the component tags, page
authors need to ensure that the corresponding properties match the types of the components'
values.

Ullnput and UIOutput Properties

The UIInput and UIOutput component classes are represented by the component tags that begin with
h:input and h:output, respectively (for example, h:inputText and h:outputText).

In the following example, an h:inputText tag binds the name component to the name property of a
managed bean called CashierBean.

<h:inputText id="name"
size="30"
value="#{cashierBean.name}"
cel>
</h:inputText>

The following code snippet from the managed bean CashierBean shows the bean property type
bound by the preceding component tag:

protected String name = null;

408

public void setName(String name) {
this.name = name;

}
public String getName() {
return this.name;

}

As described in Using the Standard Converters, to convert the value of an input or output
component you can either apply a converter or create the bean property bound to the component
with the matching type. Here is the example tag, from Using DateTimeConverter, that displays the
date on which items will be shipped.

<h:outputText value="#{cashierBean.shipDate}">
<f:convertDateTime type="date" dateStyle="full" />
</h:outputText>

The bean property represented by this tag must have a type of java.util.Date. The following code
snippet shows the shipDate property, from the managed bean CashierBean, that is bound by the tag’s
value in the preceding example:

private Date shipDate;

public Date getShipDate() {
return this.shipDate;

}
public void setShipDate(Date shipDate) {
this.shipDate = shipDate;

}

UlData Properties

The UIData component class is represented by the h:dataTable component tag.

UIData components must be bound to one of the managed bean property types listed in Acceptable
Types of Component Values. Data components are discussed in Using Data-Bound Table
Components. Here is part of the start tag of dataTable from that section:

<h:dataTable id="1items"
value="#{cart.items}"

var="item">

The value expression points to the items property of a shopping cart bean named cart. The cart
bean maintains a map of ShoppingCartItem beans.

409

The getItems method from the cart bean populates a List with ShoppingCartItem instances that are
saved in the items map when the customer adds books to the cart, as shown in the following code
segment:

public synchronized List<ShoppingCartItem> getItems() {
List<ShoppingCartItem> results = new ArraylList<ShoppingCartItem>();
results.addAl1(this.items.values());
return results;

All the components contained in the UIData component are bound to the properties of the cart bean
that is bound to the entire UIData component. For example, here is the h:outputText tag that displays
the book title in the table:

<h:commandLink action="#{showcart.details}">
<h:outputText value="#{item.item.title}"/>
</h:commandLink>

The title is actually a link to the bookdetails.xhtml page. The h:outputText tag uses the value
expression #{item.item.title} to bind its UIOutput component to the title property of the Book
entity. The first item in the expression is the ShoppingCartItem instance that the h:dataTable tag is
referencing while rendering the current row. The second item in expression refers to the item
property of ShoppingCartItem, which returns an Object (in this case, a Book). The title part of the
expression refers to the title property of Book. The value of the UIOutput component corresponding
to this tag is bound to the title property of the Book entity:

private String title;

public String getTitle() {
return title;

}

public void setTitle(String title) {
this.title = title;
}

The UlData component (and UIRepeat) supports the Map and Iterable interfaces, as well as custom
types.

For UIData and UIRepeat, the supported types are:
* null (becomes empty list)
* jakarta.faces.model.DataMode
* java.util.list

* java.lang.0Object[]

410

* java.sql.ResultSet

* jakarta.servlet.jsp.jstl.sql.Result
* java.util.Collection

* java.lang.Iterable

* java.util.Map

* java.lang.Object (becomes ScalarDataModel)

UlSelectBoolean Properties

The UISelectBoolean component class is represented by the component tag h:selectBooleanCheckbox.

Managed bean properties that hold a UISelectBoolean component’s data must be of boolean or
Boolean type. The example selectBooleanCheckbox tag from the section Displaying Components for
Selecting One Value binds a component to a property. The following example shows a tag that binds
a component value to a boolean property:

<h:selectBooleanCheckbox title="#{bundle.receiveEmails}"
value="#{custFormBean.receiveEmails}">

</h:selectBooleanCheckbox>

<h:outputText value="#{bundle.receiveEmails}">

Here is an example property that can be bound to the component represented by the example tag:

private boolean receiveEmails = false;

public void setReceiveEmails(boolean receiveEmails) {
this.receiveEmails = receiveEmails;

+
public boolean getReceiveEmails() {
return receiveEmails;

}

UlSelectMany Properties

The UISelectMany component class is represented by the component tags that begin with
h:selectMany (for example, h:selectManyCheckbox and h:selectManyListbox).

Because a UISelectMany component allows a user to select one or more items from a list of items,
this component must map to a bean property of type List or array. This bean property represents
the set of currently selected items from the list of available items.

The following example of the selectManyCheckbox tag comes from Displaying Components for
Selecting Multiple Values:

<h:selectManyCheckbox id="newslettercheckbox"
layout="pageDirection"

411

value="#{cashierBean.newsletters}">
<f:selectItems value="#{cashierBean.newsletterItems}"/>
</h:selectManyCheckbox>

Here is the bean property that maps to the value of the selectManyCheckbox tag from the preceding
example:

private String[] newsletters;

public void setNewsletters(String[] newsletters) {
this.newsletters = newsletters;

}
public String[] getNewsletters() {
return this.newsletters;

}

The UISelectItem and UISelectItems components are used to represent all the values in a
UISelectMany component. See UlSelectltems Properties for information on writing the bean
properties for the UISelectItem and UISelectItems components.

UlSelectOne Properties

The UISelectOne component class is represented by the component tags that begin with h:selectOne
(for example, h:selectOneRadio and h:selectOnelListbox).

UISelectOne properties accept the same types as UIInput and UIOutput properties, because a
UISelectOne component represents the single selected item from a set of items. This item can be any
of the primitive types and anything else for which you can apply a converter.

Here is an example of the h:selectOneMenu tag from Displaying a Menu Using the h:selectOneMenu
Tag:

<h:selectOneMenu id="shippingOption"
required="true"
value="#{cashierBean.shippingOption}">
<f:selectItem itemValue="2"
itemLabel="#{bundle.QuickShip}"/>
<f:selectItem itemValue="5"
itemLabel="#{bundle.NormalShip}"/>
<f:selectItem itemValue="7"
itemLabel="#{bundle.SaverShip}"/>
</h:selectOneMenu>

Here is the bean property corresponding to this tag:

private String shippingOption = "2";

412

public void setShippingOption(String shippingOption) {
this.shippingOption = shippingOption;

¥

public String getShippingOption() {
return this.shippingOption;

}

Note that shippingOption represents the currently selected item from the list of items in the
UISelectOne component.

The UISelectItem and UISelectItems components are used to represent all the values in a
UISelectOne component. This is explained in Displaying a Menu Using the h:selectOneMenu Tag.

For information on how to write the managed bean properties for the UISelectItem and
UISelectItems components, see UlSelectltems Properties.

UlSelectItem Properties

A UISelectItem component represents a single value in a set of values in a UISelectMany or a
UISelectOne component. A UISelectItem component must be bound to a managed bean property of
type jakarta.faces.model.SelectItem. A SelectItem object is composed of an Object representing the
value along with two Strings representing the label and the description of the UISelectItem object.

The example selectOneMenu tag from UlSelectOne Properties contains selectItem tags that set the
values of the list of items in the page. Here is an example of a bean property that can set the values
for this list in the bean:

SelectItem itemOne = null;

SelectItem getItemOne(){
return itemOne;

}
void setItemOne(SelectItem item) {
itemOne = item;

UlSelectItems Properties

UISelectItems components are children of UISelectMany and UISelectOne components. Each
UISelectItems component is composed of a set of either UISelectItem instances or any collection of
objects, such as an array, a list, or even POJOs.

The following code snippet from CashierBean shows how to write the properties for selectItems tags
containing SelectItem instances.

private String[] newsletters;

private static final SelectItem[] newsletterItems = {
new SelectItem("Duke's Quarterly"),
new SelectItem("Innovator's Almanac"),

413

new SelectItem("Duke's Diet and Exercise Journal"),
new SelectItem("Random Ramblings")

+

public void setNewsletters(String[] newsletters) {
this.newsletters = newsletters;

}

public String[] getNewsletters() {
return this.newsletters;

}

public SelectItem[] getNewsletterItems() {
return newsletterItems;

}

Here, the newsletters property represents the SelectItems object, whereas the newsletterItems
property represents a static array of SelectItem objects. The SelectItem class has several
constructors; in this example, the first argument is an Object representing the value of the item,
whereas the second argument is a String representing the label that appears in the UISelectMany
component on the page.

Writing Properties Bound to Component Instances

A property bound to a component instance returns and accepts a component instance rather than a
component value. The following components bind a component instance to a managed bean

property:

<h:selectBooleanCheckbox id="fanClub"
rendered="false"
binding="#{cashierBean.specialOffer}" />
<h:outputlLabel for="fanClub"
rendered="false"
binding="#{cashierBean.specialOfferText}"
value="#{bundle.DukeFanClub}" />
</h:outputlLabel>

The selectBooleanCheckbox tag renders a check box and binds the fanClub UISelectBoolean
component to the specialOffer property of CashierBean. The outputlLabel tag binds the value of the
value attribute, which represents the check box’s label, to the specialOfferText property of
CashierBean. If the user orders more than $100 worth of books and clicks the Submit button, the
submit method of CashierBean sets both components' rendered properties to true, causing the check
box and label to display when the page is re-rendered.

Because the components corresponding to the example tags are bound to the managed bean
properties, these properties must match the components’ types. This means that the
specialOfferText property must be of type UIOutput, and the specialOffer property must be of type
UISelectBoolean:

414

UIOutput specialOfferText = null;
UISelectBoolean specialOffer = null;

public UIOutput getSpecialOfferText() {
return this.specialOfferText;

}
public void setSpecialOfferText(UIOutput specialOfferText) {

this.specialOfferText = specialOfferText;
}

public UISelectBoolean getSpecialOffer() {
return this.specialOffer;

+
public void setSpecialOffer(UISelectBoolean specialOffer) {

this.specialOffer = specialOffer;
}

For more general information on component binding, see Managed Beans in Jakarta Faces
Technology.

For information on how to reference a managed bean method that performs navigation when a
button is clicked, see Referencing a Method That Performs Navigation.

For more information on writing managed bean methods that handle navigation, see Writing a
Method to Handle Navigation.

Writing Properties Bound to Converters, Listeners, or Validators

All the standard converter, listener, and validator tags included with Jakarta Faces technology
support binding attributes that allow you to bind converter, listener, or validator implementations
to managed bean properties.

The following example shows a standard convertDateTime tag using a value expression with its
binding attribute to bind the jakarta.faces.convert.DateTimeConverter instance to the convertDate
property of LoginBean:

<h:inputText value="#{loginBean.birthDate}">
<f:convertDateTime binding="#{loginBean.convertDate}" />
</h:inputText>

The convertDate property must therefore accept and return a DateTimeConverter object, as shown
here:

private DateTimeConverter convertDate;
public DateTimeConverter getConvertDate() {

return convertDate;

415

public void setConvertDate(DateTimeConverter convertDate) {
convertDate.setPattern("EEEEEEEE, MMM dd, yyyy");
this.convertDate = convertDate;

Because the converter is bound to a managed bean property, the managed bean property can
modify the attributes of the converter or add new functionality to it. In the case of the preceding
example, the property sets the date pattern that the converter uses to parse the user’s input into a
Date object.

The managed bean properties that are bound to validator or listener implementations are written
in the same way and have the same general purpose.

Writing Managed Bean Methods

Methods of a managed bean can perform several application-specific functions for components on
the page.