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Chapter 1. Introduction
This specification defines a set of Java APIs for the development of Web services built according to
the Representational State Transfer[1] (REST) architectural style. Readers are assumed to be
familiar with REST; for more information about the REST architectural style and RESTful Web
services, see:

• Architectural Styles and the Design of Network-based Software Architectures[1]

• Representational State Transfer on Wikipedia[3]

1.1. Status
This is the final release of version 3.2. The issue tracking system for this release can be found at:

https://github.com/jakartaee/rest/issues

The corresponding Javadocs can be found online at:

https://jakarta.ee/specifications/restful-ws/4.0/apidocs/

A compatible implementation can be obtained from:

https://eclipse-ee4j.github.io/jersey/

The project team seeks feedback from the community on any aspect of this specification, please
send comments to:

jaxrs-dev@eclipse.org

1.1.1. Support for @Context Injection

As part of an effort to better align with Jakarta CDI, future versions of this API will no longer
support @Context injection and related types such as ContextResolver. As much as possible, all
injection tasks will be delegated to Jakarta CDI for a better integration into the Jakarta EE
ecosystem.

1.2. Goals
The following are the goals of the API:

POJO-based

The API will provide a set of annotations and associated classes/interfaces that may be used with
POJOs in order to expose them as Web resources. The specification will define object lifecycle
and scope.

HTTP-centric

The specification will assume HTTP[4] is the underlying network protocol and will provide a
clear mapping between HTTP and URI[5] elements and the corresponding API classes and
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annotations. The API will provide high level support for common HTTP usage patterns and will
be sufficiently flexible to support a variety of HTTP applications including WebDAV[6] and the
Atom Publishing Protocol[7].

Format independence

The API will be applicable to a wide variety of HTTP entity body content types. It will provide the
necessary pluggability to allow additional types to be added by an application in a standard
manner.

Container independence

Artifacts using the API will be deployable in a variety of Web-tier containers. The specification
will define how artifacts are deployed in a Servlet[8] container and as a JAX-WS[9] Provider.

Inclusion in Jakarta EE

The specification will define the environment for a Web resource class hosted in a Jakarta EE
container and will specify how to use Jakarta EE features and components within a Web
resource class.

1.3. Non-Goals
The following are non-goals:

Support for Java versions prior to Java SE 8

The API will make extensive use of annotations and lambda expressions that require Java SE 8
or later.

Description, registration and discovery

The specification will neither define nor require any service description, registration or
discovery capability.

HTTP Stack

The specification will not define a new HTTP stack. HTTP protocol support is provided by a
container that hosts artifacts developed using the API.

Data model/format classes

The API will not define classes that support manipulation of entity body content, rather it will
provide pluggability to allow such classes to be used by artifacts developed using the API.

1.4. Conventions
The keywords `MUST', `MUST NOT', `REQUIRED', `SHALL', `SHALL NOT', `SHOULD', `SHOULD
NOT', `RECOMMENDED', `MAY', and `OPTIONAL' in this document are to be interpreted as
described in RFC 2119[10].

Java code and sample data fragments are formatted as shown in figure [1.1]:

package com.example.hello;
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public class Hello {
    public static void main(String args[]) {
    System.out.println("Hello World");
    }
}

URIs of the general form `http://example.org/…' and `http://example.com/…' represent application
or context-dependent URIs.

All parts of this specification are normative, with the exception of examples, notes and sections
explicitly marked as `Non-Normative'. Non-normative notes are formatted as shown below.

Note: This is a note.

1.5. Terminology
Resource class

A Java class that uses JAX-RS annotations to implement a corresponding Web resource, see
Chapter [resources].

Root resource class

A resource class annotated with @Path. Root resource classes provide the roots of the resource
class tree and provide access to sub-resources, see Chapter [resources].

Request method designator

A runtime annotation annotated with @HttpMethod. Used to identify the HTTP request method to
be handled by a resource method.

Resource method

A method of a resource class annotated with a request method designator that is used to handle
requests on the corresponding resource, see Resource Methods.

Sub-resource locator

A method of a resource class that is used to locate sub-resources of the corresponding resource,
see Sub Resources.

Sub-resource method

A method of a resource class that is used to handle requests on a sub-resource of the
corresponding resource, see Sub Resources.

Provider

An implementation of a JAX-RS extension interface. Providers extend the capabilities of a JAX-
RS runtime and are described in Chapter Providers.

Filter

A provider used for filtering requests and responses.
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Entity Interceptor

A provider used for intercepting calls to message body readers and writers.

Invocation

A Client API object that can be configured to issue an HTTP request.

WebTarget

The recipient of an Invocation, identified by a URI.

Link

A URI with additional meta-data such as a media type, a relation, a title, etc.

1.6. Project Team Members
This specification is being developed as part of Jakarta RESTful Web Services project under the
Jakarta EE Specification Process. It is the result of the collaborative work of the project team and
various contributors.

The following are the current committers of the Jakarta RESTful Web Services specification project:

 — Christian Kaltepoth (individual)

 — Markus Karg (individual)

 — Andy McCright (IBM)

 — Santiago Pericas-Geertsen (Oracle)

JAX-RS 2.1 has been developed as part of JSR 370 under the Java Community Process. The following
are former group members of the JSR 370 Expert Group:

 — Sergey Beryozkin (Talend SA)

 — Adam Bien (Individual Member)

 — Sebastian Dashner (Individual Member)

 — Markus Karg (Individual Member)

 — Casey Lee (Vision Service Plan)

 — Marcos Luna (Individual Member)

 — Andy McCright (IBM)

 — Julian Reschke (Individual Member)

 — Alessio Soldano (Red Hat)

The following are former group members of the JSR 339 Expert Group:
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 — Jan Algermussen (Individual Member)

 — Florent Beniot (OW2)

 — Sergey Beryozkin (Talend SA)

 — Adam Bien (Individual Member)

 — Bill Burke (Red Hat)

 — Clinton L. Combs (Individual Member)

 — Jian Wu Dai (IBM)

 — Bill De Hora (Individual Member)

 — Markus Karg (Individual Member)

 — Sastry Malladi (eBay, Inc)

 — Julian Reschke (Individual Member)

 — Guilherme de Azevedo Silveira (Individual Member)

 — Synodinos, Dionysios G. (Individual Member)

JAX-RS 1.X has been developed as part of JSR 311 under the Java Community Process. The following
were group members of the JSR 311 Expert Group:

 — Heiko Braun (Red Hat Middleware LLC)

 — Larry Cable (BEA Systems)

 — Roy Fielding (Day Software, Inc.)

 — Harpreet Geekee (Nortel)

 — Nickolas Grabovas (Individual Member)

 — Mark Hansen (Individual Member)

 — John Harby (Individual Member)

 — Hao He (Individual Member)

 — Ryan Heaton (Individual Member)

 — David Hensley (Individual Member)

 — Stephan Koops (Individual Member)

 — Changshin Lee (NCsoft Corporation)

 — Francois Leygues (Alcatel-Lucent)
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 — Jerome Louvel (Individual Member)

 — Hamid Ben Malek (Fujitsu Limited)

 — Ryan J. McDonough (Individual Member)

 — Felix Meschberger (Day Software, Inc.)
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Chapter 2. Applications
A JAX-RS application consists of one or more resources (see Chapter Resources) and zero or more
providers (see Chapter Providers). This chapter describes aspects of JAX-RS that apply to an
application as a whole, subsequent chapters describe particular aspects of a JAX-RS application and
requirements on JAX-RS implementations.

2.1. Configuration
The resources and providers that make up a JAX-RS application are configured via an application-
supplied subclass of Application. An implementation MAY provide alternate mechanisms for
locating resource classes and providers (e.g. runtime class scanning) but use of Application is the
only portable means of configuration.

2.2. Verification
Specific application requirements are detailed throughout this specification and the JAX-
RS Javadocs. Implementations MAY perform verification steps that go beyond what it is stated in
this document.

A JAX-RS implementation MAY report an error condition if it detects that two or more resources
could result in an ambiguity during the execution of the algorithm described Request Matching. For
example, if two resource methods in the same resource class have identical (or even intersecting)
values in all the annotations that are relevant to the algorithm described in that section. The exact
set of verification steps as well as the error reporting mechanism is implementation dependent.

2.3. Publication
Applications are published in different ways depending on whether the application is run in a Java
SE environment or within a container. This section describes the alternate means of publication.

2.3.1. Java SE

There are two alternative ways of publishing on Java SE: Creating SE endpoints directly or using the
SE bootstrap API. Both are described in this section. Any compliant implementation that supports
either of these alternatives on Java SE MUST support both.

2.3.1.1. Java SE Endpoint

In a Java SE environment a configured instance of an endpoint class can be obtained using the
createEndpoint method of RuntimeDelegate. The application supplies an instance of Application and
the type of endpoint required. An implementation MAY support zero or more endpoint types of any
desired type.

How the resulting endpoint class instance is used to publish the application is outside the scope of
this specification.
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JAX-WS

An implementation that supports publication via JAX-WS MUST support createEndpoint with an
endpoint type of jakarta.xml.ws.Provider. JAX-WS describes how a Provider based endpoint can be
published in an SE environment.

2.3.1.2. Java SE Bootstrap

This is the RECOMMENDED way of publishing an application on Java SE, as the bootstrapping code
is completely portable across vendors and products.

In a Java SE environment an application can be published using an embedded HTTP server
bootstrapped by the implementation. An application invokes SeBootstrap.start(app, config) with
an implementation of Application and a configuration built by calling build() on a configuration
builder.

The builder is created by SeBootstrap.Configuration.builder() and assembles all information
needed to configure the embedded HTTP server using properties. A compliant implementation
MUST support all properties explicitly defined by SeBootstrap.Configuration, but MAY support
additional properties using a product-specific namespace prefix.

Reserved Namespace jakarta

The namespace prefix jakarta is reserved and MUST NOT be extended by vendors, but only by
future revisions of the Jakarta RESTful Web Services API, Javadoc and / or specification.

2.3.2. Servlet

A JAX-RS application is packaged as a Web application in a .war file. The application classes are
packaged in WEB-INF/classes or WEB-INF/lib and required libraries are packaged in WEB-INF/lib. See
the Servlet specification for full details on packaging of web applications.

It is RECOMMENDED that implementations support the Servlet 3 framework pluggability
mechanism to enable portability between containers and to avail themselves of container-supplied
class scanning facilities. When using the pluggability mechanism the following conditions MUST be
met:

• If no Application subclass is present, JAX-RS implementations are REQUIRED to dynamically add
a servlet and set its name to

jakarta.ws.rs.core.Application

and to automatically discover all root resource classes and providers which MUST be packaged
with the application. Additionally, the application MUST be packaged with a web.xml that
specifies a servlet mapping for the added servlet. An example of such a web.xml file is:

<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
        http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
    <servlet>
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        <servlet-name>jakarta.ws.rs.core.Application</servlet-name>
    </servlet>
    <servlet-mapping>
        <servlet-name>jakarta.ws.rs.core.Application</servlet-name>
        <url-pattern>/myresources/*</url-pattern>
    </servlet-mapping>
</web-app>

• If an Application subclass is present:

◦ If there is already a servlet that handles this application. That is, a servlet that has an
initialization parameter named

jakarta.ws.rs.Application

whose value is the fully qualified name of the Application subclass, then no additional
configuration steps are required by the JAX-RS implementation.

◦ If no servlet handles this application, JAX-RS implementations are REQUIRED to dynamically
add a servlet whose fully qualified name must be that of the Application subclass. If the
Application subclass is annotated with @ApplicationPath, implementations are REQUIRED to
use the value of this annotation appended with "/*" to define a mapping for the added
server. Otherwise, the application MUST be packaged with a web.xml that specifies a servlet
mapping. For example, if org.example.MyApplication is the name of the Application subclass,
a sample web.xml would be:

<web-app version="3.0" xmlns="http://java.sun.com/xml/ns/javaee"
    xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
    xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
        http://java.sun.com/xml/ns/javaee/web-app_3_0.xsd">
    <servlet>
        <servlet-name>org.example.MyApplication</servlet-name>
    </servlet>
    <servlet-mapping>
        <servlet-name>org.example.MyApplication</servlet-name>
        <url-pattern>/myresources/*</url-pattern>
    </servlet-mapping>
</web-app>

When an Application subclass is present in the archive, if both Application.getClasses and
Application.getSingletons return an empty collection then all root resource classes and providers
packaged in the web application MUST be included and the JAX-RS implementation is REQUIRED to
discover them automatically by scanning a .war file as described above. If either getClasses or
getSingletons returns a non-empty collection then only those classes or singletons returned MUST
be included in the published JAX-RS application.

The following table summarizes the Servlet 3 framework pluggability mechanism:

Table 1. Summary of Servlet 3 framework pluggability cases
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Condition Action Servlet Name web.xml

No Application
subclass

Add servlet jakarta.ws.rs.core.Application Required for servlet
mapping

Application subclass
handled by existing
servlet

(none) (already defined) Not required

Application subclass
not handled by
existing servlet

Add servlet Subclass name If no @ApplicationPath then
required for servlet
mapping

If not using the Servlet 3 framework pluggability mechanism (e.g. in a pre-Servlet 3.0 container),
the servlet-class or filter-class element of the web.xml descriptor SHOULD name the JAX-
RS implementation-supplied servlet or filter class respectively. The Application subclass SHOULD be
identified using an init-param with a param-name of jakarta.ws.rs.Application.

Note that the Servlet 3 framework pluggability mechanism described above is based on servlets and
not filters. Applications that prefer to use an implementation-supplied filter class must use the pre-
Servlet 3.0 configuration mechanism.

2.3.3. Other Container

An implementation MAY provide facilities to host a JAX-RS application in other types of container,
such facilities are outside the scope of this specification.
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Chapter 3. Resources
Using JAX-RS a Web resource is implemented as a resource class and requests are handled by
resource methods. This chapter describes resource classes and resource methods in detail.

3.1. Resource Classes
A resource class is a Java class that uses JAX-RS annotations to implement a corresponding Web
resource. Resource classes are POJOs that have at least one method annotated with @Path or a
request method designator.

3.1.1. Lifecycle and Environment

By default a new resource class instance is created for each request to that resource. First the
constructor (see Constructors) is called, then any requested dependencies are injected (see Fields
and Bean Properties), then the appropriate method (see Resource Methods) is invoked and finally
the object is made available for garbage collection.

An implementation MAY offer other resource class lifecycles, mechanisms for specifying these are
outside the scope of this specification. E.g. an implementation based on an inversion-of-control
framework may support all of the lifecycle options provided by that framework.

3.1.2. Constructors

Root resource classes are instantiated by the JAX-RS runtime and MUST have a public constructor
for which the JAX-RS runtime can provide all parameter values. Note that a zero argument
constructor is permissible under this rule.

A public constructor MAY include parameters annotated with one of the following: @Context,
@HeaderParam, @CookieParam, @MatrixParam, @QueryParam or @PathParam. However, depending on the
resource class lifecycle and concurrency, per-request information may not make sense in a
constructor. If more than one public constructor is suitable then an implementation MUST use the
one with the most parameters. Choosing amongst suitable constructors with the same number of
parameters is implementation specific, implementations SHOULD generate a warning about such
ambiguity.

Non-root resource classes are instantiated by an application and do not require the above-
described public constructor.

3.2. Fields and Bean Properties
When a resource class is instantiated, the values of fields and bean properties annotated with one
the following annotations are set according to the semantics of the annotation:

@MatrixParam

Extracts the value of a URI matrix parameter.
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@QueryParam

Extracts the value of a URI query parameter.

@PathParam

Extracts the value of a URI template parameter.

@CookieParam

Extracts the value of a cookie.

@HeaderParam

Extracts the value of a header.

@Context

Injects an instance of a supported resource, see chapters Context and Environment for more
details.

Because injection occurs at object creation time, use of these annotations (with the exception of
@Context) on resource class fields and bean properties is only supported for the default per-request
resource class lifecycle. An implementation SHOULD warn if resource classes with other lifecycles
use these annotations on resource class fields or bean properties.

A JAX-RS implementation is only required to set the annotated field and bean property values of
instances created by its runtime. Objects returned by sub-resource locators (see Sub Resources) are
expected to be initialized by their creator.

Valid parameter types for each of the above annotations are listed in the corresponding Javadoc,
however in general (excluding @Context) the following types are supported:

1. Types for which a ParamConverter is available via a registered ParamConverterProvider. See
Javadoc for these classes for more information.

2. Primitive types.

3. Types that have a constructor that accepts a single String argument.

4. Types that have a static method named valueOf or fromString with a single String argument that
return an instance of the type. If both methods are present then valueOf MUST be used unless
the type is an enum in which case fromString MUST be used[1].

5. List<T>, Set<T>, SortedSet<T> or an array T[], where T satisfies 1, 3 or 4 above.

The DefaultValue annotation may be used to supply a default value for some of the above, see the
Javadoc for DefaultValue for usage details and rules for generating a value in the absence of this
annotation and the requested data. The Encoded annotation may be used to disable automatic URI
decoding for @MatrixParam, @QueryParam, and @PathParam annotated fields and properties.

A WebApplicationException thrown during construction of field or property values using any of the 5
steps listed above is processed directly as described in Exceptions. Other exceptions thrown during
construction of field or property values using any of the 5 steps listed above are treated as client
errors: if the field or property is annotated with @MatrixParam, @QueryParam or @PathParam then an
implementation MUST generate an instance of NotFoundException (404 status) that wraps the thrown
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exception and no entity; if the field or property is annotated with @HeaderParam or @CookieParam then
an implementation MUST generate an instance of BadRequestException (400 status) that wraps the
thrown exception and no entity. Exceptions MUST be processed as described in Exceptions.

3.3. Resource Methods
Resource methods are methods of a resource class annotated with a request method designator.
They are used to handle requests and MUST conform to certain restrictions described in this
section.

A request method designator is a runtime annotation that is annotated with the
@HttpMethod annotation. JAX-RS defines a set of request method designators for the common HTTP
methods: @GET, @POST, @PUT, @DELETE, @PATCH, @HEAD and @OPTIONS. Users may define their own custom
request method designators including alternate designators for the common HTTP methods.

3.3.1. Visibility

Only public methods may be exposed as resource methods. An implementation SHOULD warn
users if a non-public method carries a method designator or @Path annotation.

3.3.2. Parameters

When a resource method is invoked, parameters annotated with @FormParam or one of the
annotations listed in Section [resource_field] are mapped from the request according to the
semantics of the annotation. Similar to fields and bean properties:

• The DefaultValue annotation may be used to supply a default value for parameters

• The Encoded annotation may be used to disable automatic URI decoding of parameter values

• Exceptions thrown during construction of parameter values are treated the same as exceptions
thrown during construction of field or bean property values, see Fields and Bean Properties.
Exceptions thrown during construction of @FormParam annotated parameter values are treated
the same as if the parameter were annotated with @HeaderParam.

• For resource methods that consume multipart/form-data media types, the @FormParam annotation
may be used on jakarta.ws.rs.core.EntityPart parameters. See Special handling for consuming
multipart/form-data media types for more details.

3.3.2.1. Entity Parameters

The value of a parameter not annotated with @FormParam or any of the annotations listed in in Fields
and Bean Properties, called the entity parameter, is mapped from the request entity body.
Conversion between an entity body and a Java type is the responsibility of an entity provider, see
Entity Providers. Resource methods MUST have at most one entity parameter.

3.3.3. Return Type

Resource methods MAY return void, Response, GenericEntity, or another Java type, these return
types are mapped to a response entity body as follows:
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void

Results in an empty entity body with a 204 status code.

Response

Results in an entity body mapped from the entity property of the Response with the status code
specified by the status property of the Response. A null return value results in a 204 status code.
If the status property of the Response is not set: a 200 status code is used for a non-null entity
property and a 204 status code is used if the entity property is null.

GenericEntity

Results in an entity body mapped from the Entity property of the GenericEntity. If the return
value is not null a 200 status code is used, a null return value results in a 204 status code.

Other

Results in an entity body mapped from the class of the returned instance or of its type parameter
T if the return type is CompletionStage<T> (see CompletionStage); if the class is an anonymous
inner class, its superclass is used instead. If the return value is not null a 200 status code is used,
a null return value results in a 204 status code.

Methods that need to provide additional metadata with a response should return an instance of
Response, the ResponseBuilder class provides a convenient way to create a Response instance using a
builder pattern.

Conversion between a Java object and an entity body is the responsibility of an entity provider, see
Entity Providers. The return type of a resource method and the type of the returned instance are
used to determine the raw type and generic type supplied to the isWritable method of
MessageBodyWriter as follows:

Table 2. Determining raw and generic types of return values

Return Type Returned Instance used[2] Raw Type Generic Type

GenericEntity GenericEntity or subclass RawType property Type property

Response GenericEntity or subclass RawType property Type property

Response Object or subclass Class of instance Class of instance

Other Return type or subclass Class of instance Generic type of return type

To illustrate the above consider a method that always returns an instance of ArrayList<String>
either directly or wrapped in some combination of Response and GenericEntity. The resulting raw
and generic types are shown below.

Table 3. Example raw and generic types of return values

Return Type Returned Instance Raw Type *Generic Type

GenericEntity GenericEntity<List<String>> ArrayList<?> List<String>

Response GenericEntity<List<String>> ArrayList<?> List<String>

Response ArrayList<String> ArrayList<?> ArrayList<?>

List<String> ArrayList<String> ArrayList<?> List<String>
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3.3.4. Exceptions

A resource method, sub-resource method or sub-resource locator may throw any checked or
unchecked exception. An implementation MUST catch all exceptions and process them in the
following order:

1. Instances of WebApplicationException and its subclasses MUST be mapped to a response as
follows. If the response property of the exception is null, then an implementation MUST use the
most appropriate exception mapping provider (see Exception Mapping Providers) to create a
new Response instance; otherwise the response property is used directly. The resulting
Response instance is then processed according to Return Type.

2. An implementation MUST use the exception mapping provider (see Exception Mapping
Providers) whose generic type is the nearest superclass of the exception to create a
Response instance that is then processed according to Return Type. If the exception mapping
provider throws an exception while creating a Response then return a server error (status code
500) response to the client.

3.3.5. HEAD and OPTIONS

HEAD and OPTIONS requests receive additional automated support. On receipt of a HEAD request an
implementation MUST either:

1. Call a method annotated with a request method designator for HEAD or, if none present,

2. Call a method annotated with a request method designator for GET and discard any returned
entity.

Note that option 2 may result in reduced performance where entity creation is significant.

On receipt of an OPTIONS request an implementation MUST either:

1. Call a method annotated with a request method designator for OPTIONS or, if none present,

2. Generate an automatic response using the metadata provided by the JAX-RS annotations on the
matching class and its methods.

3.4. URI Templates
A root resource class is anchored in URI space using the @Path annotation. The value of the
annotation is a relative URI path template whose base URI is provided by the combination of the
deployment context and the application path (see the @ApplicationPath annotation).

A URI path template is a string with zero or more embedded parameters that, when values are
substituted for all the parameters, is a valid URI[5] path. The Javadoc for the @Path annotation
describes their syntax. E.g.:

@Path("widgets/{id}")
public class Widget {
    ...
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}

In the above example the Widget resource class is identified by the relative URI path widgets/xxx
where xxx is the value of the id parameter.

Note: Because \{and } are not part of either the reserved or unreserved productions of URI[5] they will
not appear in a valid URI.

The value of the annotation is automatically encoded, e.g. the following two lines are equivalent:

@Path("widget list/{id}")
@Path("widget%20list/{id}")

Template parameters can optionally specify the regular expression used to match their values. The
default value matches any text and terminates at the end of a path segment but other values can be
used to alter this behavior, e.g.:

@Path("widgets/{path:.+}")
public class Widget {
    ...
}

In the above example the Widget resource class will be matched for any request whose path starts
with widgets and contains at least one more path segment; the value of the path parameter will be
the request path following widgets. E.g. given the request path widgets/small/a the value of path
would be small/a.

The value of a URI path parameter is available for injection via @PathParam on a field, property or
method parameter. Note that if a URI template is used on a method, a path parameter injected in a
field or property may not be available (set to null). The following example illustrates this scenario:

@Path("widgets")
public class WidgetsResource {
    @PathParam("id") String id;

    @GET
    public WidgetList getWidgets() {
        ...     // id is null here
    }

    @GET
    @Path("{id}")
    public Widget findWidget() {
        return new WidgetResource(id);
    }
}
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3.4.1. Sub Resources

Methods of a resource class that are annotated with @Path are either sub-resource methods or sub-
resource locators. Sub-resource methods handle a HTTP request directly whilst sub-resource
locators return an object or class that will handle a HTTP request. The presence or absence of a
request method designator (e.g. @GET) differentiates between the two:

Present

Such methods, known as sub-resource methods, are treated like a normal resource method (see
Resource Methods) except the method is only invoked for request URIs that match a URI
template created by concatenating the URI template of the resource class with the URI template
of the method[3].

Absent

Such methods, known as sub-resource locators, are used to dynamically resolve the object that
will handle the request. Sub-resource locators can return objects or classes; if a class is returned
then an object is obtained by the implementation using a suitable constructor as described in
Constructors. In either case, the resulting object is used to handle the request or to further
resolve the object that will handle the request, see Matching Requests to Resource Methods for
further details. + When an object is returned, implementations MUST dynamically determine its
class rather than relying on the static sub-resource locator return type, since the returned
instance may be a subclass of the declared type with potentially different annotations, see
Annotation Inheritance for rules on annotation inheritance. Sub-resource locators may have all
the same parameters as a normal resource method (see Resource Methods) except that they
MUST NOT have an entity parameter.

The following example illustrates the difference:

@Path("widgets")
public class WidgetsResource {
    @GET
    @Path("offers")
    public WidgetList getDiscounted() {...}

    @Path("{id}")
    public WidgetResource findWidget(@PathParam("id") String id) {
        return new WidgetResource(id);
    }
}

public class WidgetResource {
    public WidgetResource(String id) {...}

    @GET
    public Widget getDetails() {...}
}

In the above a GET request for the widgets/offers resource is handled directly by the getDiscounted
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sub-resource method of the resource class WidgetsResource whereas a GET request for widgets/xxx is
handled by the getDetails method of the WidgetResource resource class.

Note: A set of sub-resource methods annotated with the same URI template value are functionally
equivalent to a similarly annotated sub-resource locator that returns an instance of a resource class
with the same set of resource methods.

3.5. Declaring Media Type Capabilities
Application classes can declare the supported request and response media types using the
@Consumes and @Produces annotations respectively. These annotations MAY be applied to a resource
method, a resource class, or to an entity provider (see Declaring Media Type Capabilities). Use of
these annotations on a resource method overrides any on the resource class or on an entity
provider for a method argument or return type. In the absence of either of these annotations,
support for any media type (/*) is assumed.

The following example illustrates the use of these annotations:

@Path("widgets")
@Produces("application/widgets+xml")
public class WidgetsResource {

    @GET
    public Widgets getAsXML() {...}

    @GET
    @Produces("text/html")
    public String getAsHtml() {...}

    @POST
    @Consumes("application/widgets+xml")
    public void addWidget(Widget widget) {...}
}

@Provider
@Produces("application/widgets+xml")
public class WidgetsProvider implements MessageBodyWriter<Widgets> {...}

@Provider
@Consumes("application/widgets+xml")
public class WidgetProvider implements MessageBodyReader<Widget> {...}

In the above:

• The getAsXML resource method will be called for GET requests that specify a response media type
of application/widgets+xml. It returns a Widgets instance that will be mapped to that format
using the WidgetsProvider class (see Entity Providers for more information on
MessageBodyWriter).
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• The getAsHtml resource method will be called for GET requests that specify a response media
type of text/html. It returns a String containing text/html that will be written using the default
implementation of MessageBodyWriter<String>.

• The addWidget resource method will be called for POST requests that contain an entity of the
media type application/widgets+xml. The value of the widget parameter will be mapped from the
request entity using the WidgetProvider class (see Entity Providers for more information on
MessageBodyReader).

An implementation MUST NOT invoke a method whose effective value of @Produces does not match
the request Accept header. If no Accept header is present in the request, it is assumed that the client
accepts any media type or */*.

An implementation MUST NOT invoke a method whose effective value of @Consumes does not match
the request Content-Type header, with the exception of requests in which the Content-Type header is
absent. In those cases, the content type shall be treated as the wildcard */* for matching
purposes[4]. This rule enables inheritance of class-level @Consumes annotations on @GET resource
methods that are typically matched by requests without a Content-Type header.

3.5.1. Selecting from multiple media types

When accepting multiple media types, clients may indicate preferences by using a relative quality
factor known as the q parameter. The value of the q parameter, or q-value, is used to sort the set of
accepted types. For example, a client may indicate preference for application/widgets+xml with a
relative quality factor of 1 and for application/xml with a relative quality factor of 0.8. Q-values
range from 0 (undesirable) to 1 (highly desirable), with 1 used as default when omitted. A GET
request matched to the WidgetsResource class with an accept header of text/html; q=1,
application/widgets+xml; q=0.8 will result in a call to method getAsHtml instead of getAsXML based
on the value of q.

A server can also indicate media type preference using the qs parameter; server preference is only
examined when multiple media types are accepted by a client with the same q-value. Consider the
following example:

@Path("widgets2")
public class WidgetsResource2 {

    @GET
    @Produces("application/xml", "application/json")
    public Widgets getWidget() {...}

}

Suppose a client issues a GET request with an accept header of application/*; q=0.5, text/html.
Based on this request, the server determines that both application/xml and application/json are
equally preferred by the client with a q-value of 0.5. By specifying a server relative quality factor as
part of the @Produces annotation, it is possible to control which response media type to select:
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@Path("widgets2")
public class WidgetsResource2 {

    @GET
    @Produces("application/xml; qs=1", "application/json; qs=0.75")
    public Widgets getWidget() {...}

}

With the updated value for @Produces in this example, and in response to a GET request with an
accept header that includes application/*; q=0.5, JAX-RS implementations are REQUIRED to select
the media type application/xml given its higher qs-value. Note that qs-values, just like q-values, are
relative and as such are only comparable to other qs-values within the same @Produces annotation
instance. For more information see Determining the MediaType of Responses.

3.5.2. Special handling for consuming multipart/form-data media types

The multipart/form-data media type enables requests to send multiple entities (parts) as a single
entity. Each part contains its own set of headers, media type and content. There are a few different
ways to consume these requests in a resource method. First, a resource method may contain an
entity parameter of type, List<EntityPart>. For example:

@Path("widgets3")
public class WidgetsResource3 {

    @POST
    @Consumes(MediaType.MULTIPART_FORM_DATA)
    public Response postWidget(List<EntityPart> parts) {
        for (EntityPart part : parts) {
            String name = part.getName();
            Optional<String> fileName = part.getFileName();
            InputStream is = part.getContent();
            MultivaluedMap<String, String> partHeaders = part.getHeaders();
            MediaType mediaType = part.getMediaType();
            doSomethingWithPart(name, fileName, is, partHeaders, mediaType);
        }
        return Response.ok().build();
    }

}

Another approach is to use @FormParam parameters where the value in the annotation corresponds
to the name of the part. The parameter type may be a jakarta.ws.rs.core.EntityPart, a
java.io.InputStream, or a String. Here is an example:

@Path("widgets4")
public class WidgetsResource4 {
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    @POST
    @Consumes(MediaType.MULTIPART_FORM_DATA)
    public Response postWidget(@FormParam("part1Name") String part1,
                               @FormParam("part2Name") InputStream part2,
                               @FormParam("part3Name") EntityPart part3) {...}
}

The only way to access the headers for a particular part is to use the EntityPart type. The
InputStream and String types will only provide the content of the part. Note that parts of a multipart
entity can be quite large, so care should be taken when using String parameter types as that will
load the entire content of the part into the Java heap.

When converting the part’s content, the implementation MUST use the encoding charset specified
in the part’s Content-Type header, or UTF-8 if the charset is not specified in the header.

3.6. Annotation Inheritance
JAX-RS annotations may be used on the methods and method parameters of a super-class or an
implemented interface. Such annotations are inherited by a corresponding sub-class or
implementation class method provided that the method and its parameters do not have any JAX-
RS annotations of their own. Annotations on a super-class take precedence over those on an
implemented interface. The precedence over conflicting annotations defined in multiple
implemented interfaces is implementation specific. Note that inheritance of class or interface
annotations is not supported.

If a subclass or implementation method has any JAX-RS annotations then all of the annotations on
the superclass or interface method are ignored. E.g.:

public interface ReadOnlyAtomFeed {
    @GET @Produces("application/atom+xml")
    Feed getFeed();
}

@Path("feed")
public class ActivityLog implements ReadOnlyAtomFeed {
    public Feed getFeed() {...}
}

In the above, ActivityLog.getFeed inherits the @GET and @Produces annotations from the interface.
Conversely:

@Path("feed")
public class ActivityLog implements ReadOnlyAtomFeed {
    @Produces("application/atom+xml")
    public Feed getFeed() {...}
}
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In the above, the @GET annotation on ReadOnlyAtomFeed.getFeed is not inherited by Activity-
Log.getFeed and it would require its own request method designator since it redefines the
@Produces annotation.

For consistency with other Jakarta EE specifications, it is recommended to always repeat
annotations instead of relying on annotation inheritance.

3.7. Matching Requests to Resource Methods
This section describes how a request is matched to a resource class and method. Implementations
are not required to use the algorithm as written but MUST produce results equivalent to those
produced by the algorithm.

3.7.1. Request Preprocessing

Prior to matching, request URIs are normalized[5] by following the rules for case, path segment, and
percent encoding normalization described in section 6.2.2 of RFC 3986[5]. The normalized request
URI MUST be reflected in the URIs obtained from an injected UriInfo.

3.7.2. Request Matching

A request is matched to the corresponding resource method or sub-resource method by comparing
the normalized request URI (see Request Preprocessing), the media type of any request entity, and
the requested response entity format to the metadata annotations on the resource classes and their
methods. If no matching resource method or sub-resource method can be found then an
appropriate error response is returned. All exceptions reported by this algorithm MUST be
processed as described in Exceptions.

Matching of requests to resource methods proceeds in three stages as follows:

1. Identify a set of candidate root resource classes matching the request:

Input

U=\mbox{request URI path},C=\{\mbox{root resource classes}\}

Output

U=\mbox{final capturing group not yet matched}, C'=\{\mbox{root resouce classes matched
so far}\}

1. Set E=\{\}.

2. For each class Z in C add a regular expression (computed using the function R(A)
described in Converting URI Templates to Regular Expressions) to E as follows:

▪ Add R(T_Z) where T_Z is the URI path template specified for the class Z.

Note that two or more classes in C may add the same regular expression to E if they
are annotated with the same URI path template (modulo variable names).

3. Filter E by matching each member against U as follows:
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▪ Remove members that do not match U.

▪ Remove members for which the final regular expression capturing group (henceforth
simply referred to as a capturing group) value is neither empty nor '/' and the class Z
has no sub-resource methods or locators.

4. If E is empty then no matching resource can be found, the algorithm terminates and an
implementation MUST generate a NotFoundException (404 status) and no entity.

5. Sort E using the number of literal characters[6] in each member as the primary key
(descending order), the number of capturing groups as a secondary key (descending
order) and the number of capturing groups with non-default regular expressions (i.e. not
'([ˆ/]+?)') as the tertiary key (descending order).

6. Set R_{\mbox{match}} to be the first member of E and set U to be the value of the final
capturing group of R_{\mbox{match}} when matched against U. Let C' be the set of classes Z
such that R(T_Z)=R_{\mbox{match}}. By definition, all root resource classes in C' must be
annotated with the same URI path template modulo variable names.

2. Obtain a set of candidate resource methods for the request:

Input

U=\mbox{final capturing group not yet matched}, C'=\{\mbox{root resouce classes matched
so far}\}

Output

M=\{\mbox{candidate resource methods}}

1. If U is null or '/', set
M = \{\mbox{resource methods of all classes in $C'$ (excluding sub-resource
methods)}\}
and go to step 3 if M \neq \{\}

2. Set E=\{\}.

3. For each class Z' in C' add regular expressions to E for each sub-resource method and
locator as follows:

1. For each sub-resource method D, add R(T_D) where T_D is the URI path template of the
sub-resource method.

2. For each sub-resource locator L, add R(T_L) where T_L is the URI path template of the
sub-resource locator.

4. Filter E by matching each member against U as follows:

▪ Remove members that do not match U.

▪ Remove members derived from T_D (those added in step 3(c)i) for which the final
capturing group value is neither empty nor '/'.

5. If E is empty, then no matching resource can be found and the algorithm terminates by
generating a NotFoundException (404 status) and no entity.

6. Sort E using the number of literal characters in each member as the primary key
(descending order), the number of capturing groups as a secondary key (descending
order), the number of capturing groups with non-default regular expressions (i.e. not
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([^/]+?)) as the tertiary key (descending order), and the source of each member as
quaternary key sorting those derived from sub-resource methods ahead of those derived
from sub-resource locators.

7. Set R_{\mbox{match}} to be the first member of E

8. Set M as follows, M = \{\mbox{subresource methods of all classes in $C'$ (excluding
sub-resource locators)}\}] and go to step 3 if M \neq \{\}.

9. Let L be a sub-resource locator such that R_{\mbox{match}} = R(T_L). Implementations
SHOULD report an error if there is more than one sub-resource locator that satisfies this
condition. Set U to be the value of the final capturing group of R(T_L) when matched
against U, and set C' to be the singleton set containing only the class that defines L.

10. Go to step 2a.

3. Identify the method that will handle the request:

Input

M=\mbox{candidate resource methods}

Output

O=\mbox{instance of resource class matched}, D=\mbox{resource method matched from $M$}

1. Filter M by removing members that do not meet the following criteria:

▪ The request method is supported. If no methods support the request method an
implementation MUST generate a NotAllowedException (405 status) and no entity. Note
the additional support for HEAD and OPTIONS described in Section HEAD and OPTIONS.

▪ The media type of the request entity body (if any) is a supported input data format
(see Section Declaring Media Type Capabilities). If no methods support the media type
of the request entity body an implementation MUST generate a NotSupportedException
(415 status) and no entity.

▪ At least one of the acceptable response entity body media types is a supported output
data format (see Section Declaring Media Type Capabilities). If no methods support
one of the acceptable response entity body media types an implementation MUST
generate a NotAcceptableException (406 status) and no entity.

2. If after filtering the set M has more than one element, sort it in descending order as
follows. First, let us define the client media type and the server media type as those
denoted by the Accept header in a request and the @Produces annotation on a resource
method, respectively. Let a client media type be of the form \mbox{$n$/$m$;q=$v_1$}, a
server media type be of the form \mbox{$n$/$m$;qs=$v_2$} and a combined media type of
the form \mbox{$n$/$m$;q=$v_1$;qs=$v_2$;d=$v_3$}, where the distance factor d is defined
below. For any of these types, m could be *, or m and n could be * and the values of q and qs
are assumed to be 1.0 if absent.

Let S(p_1, p_2) be defined over a client media type p_1 and a server media type p_2 as the
function that returns the most specific combined type with a distance factor if p_1 and p_2
are compatible and {\perp} otherwise. For example:

▪ S(\mbox{text/html;q=1}, \mbox{text/html;qs=1}) = \mbox{text/html;q=1;qs=1;d=0},
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▪ S(\mbox{text/*;q=0.5}, \mbox{text/html;qs=0.8}) =
\mbox{text/html;q=0.5;qs=0.8;d=1},

▪ S(\mbox{*/*;q=0.2}, \mbox{text/*;qs=0.9}) = \mbox{text/*;q=0.2;qs=0.9;d=1},

▪ S(\mbox{text/*;q=0.4}, \mbox{application/*;qs=0.3}) = {\perp}.

where the d factor corresponds to the number of wildcards matched with a concrete type
or subtype. Note that q and qs are not matched, but simply combined in the resulting
media type. A total ordering can be defined over combined media types as follows.

We write \mbox{$n_1$/$m_1$;q=$v_1$;qs=$v_1'$;d=$v_1''$} \ge
\mbox{$n_2$/$m_2$;q=$v_2$;qs=$v_2'$;d=$v_2''$} if one of these ordered conditions holds:

1. \mbox{$n_1$/$m_1$} \succ \mbox{$n_2$/$m_2$} where the partial order \succ is defined
as \mbox{$n$/$m$} \succ \mbox{$n$/*} \succ \mbox{*/*},

2. \mbox{$n_2$/$m_2$} \nsucc \mbox{$n_1$/$m_1$} and v_1 > v_2,

3. \mbox{$n_2$/$m_2$} \nsucc \mbox{$n_1$/$m_1$} and v_1 = v_2 and v_1' > v_2'.

4. \mbox{$n_2$/$m_2$} \nsucc \mbox{$n_1$/$m_1$} and v_1 = v_2 and v_1' = v_2' and
v_1'' \le v_2''.

Note that \ge is a total order even though \succ is a partial order. For example, the
following holds \mbox{text/html;q=1.0;qs=0.7;d=0} \ge
\mbox{application/xml;q=1.0;qs=0.2;d=0} even though \mbox{text/html} is incomparable
to \mbox{application/xml} according to \succ. Additionally, it is possible under \ge for two
types to be equal even though they are not identical [7]. For convenience, we defined p \ge
{\perp} for every media type p.

Given these definitions, we can now sort M in descending order based on \ge as follows:

▪ Let t be the request content type and C_M a resource method’s @Consumes set of server
media types, we use the media type \max_\ge \{ S(t,c) \, | \, (t, c) \in \{t\}
\times C_M\} as primary key.

▪ Let A be the request accept header set of client media types and P_M a resource
method’s @Produces set of server media types, we use the media type \max_\ge \{
S(a,p) \, | \, (a,p) \in A \times P_M\} as secondary key. If there is more than one
maximum element , implementations SHOULD report a warning and select one of
these types in an implementation dependent manner.

3. Let D be the first resource method in the set M[8] and O an instance of the class that defines
D. If after sorting, there is more than one maximum element in M, implementations
SHOULD report a warning and select one of these methods in an implementation
dependent manner.

Consider the following example and assume the request to be GET widgets/1:

@Path("widget")
public class WidgetResource {
    private String id;
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    public WidgetResource() {
        this("0");
    }

    public WidgetResource(String id) {
        this.id = id;
    }

    @GET
    public Widget findWidget() {
        return Widget.findWidgetById(id);
    }
}

@Path("widgets")
public class WidgetsResource {

    @Path("{id}")
    public WidgetResource getWidget(@PathParam("id") String id) {
        return new WidgetResource(id);
    }
}

The input and output values for each of the 3 steps in the matching algorithm are as
follows:

Step 1

Identify a set of candidate root resource classes matching the request. Let R(\mbox{widgets})
= \mbox{widgets(/.*)?} and R(\mbox{widget}) = \mbox{widget(/.*)?},

Input

U = \mbox{widgets/1} and C = \{\mbox{WidgetResource}, \mbox{WidgetsResource}\}

Output

U = \mbox{/1} and C' = \{\mbox{WidgetsResource}\}

Step 2

Obtain a set of candidate resource methods for the request. Let R(\{\mbox{id}\}) =
\mbox{([ˆ/]+?)(/.*)?},

Input

U = \mbox{/1} and C' = \{\mbox{WidgetsResource}\}

Output

M = \{\mbox{findWidget}\}

Step 3

Identify the method that will handle the request,
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Input

M = \{\mbox{findWidget}\}

Output

O = \mbox{WidgetResource instance} and D = \mbox{findWidget}

Note that the algorithm matches a single root resource class (WidgetsResource) and,
consequently, the @Path annotation on WidgetResource is ignored for the request GET
widgets/1.

3.7.3. Converting URI Templates to Regular Expressions

The function R(A) converts a URI path template annotation A into a regular expression as follows:

1. URI encode the template, ignoring URI template variable specifications.

2. Escape any regular expression characters in the URI template, again ignoring URI template
variable specifications.

3. Replace each URI template variable with a capturing group containing the specified regular
expression or '([ˆ/]+?)' if no regular expression is specified[9].

4. If the resulting string ends with / then remove the final character.

5. Append '(/.*)?' to the result.

Note that the above renders the name of template variables irrelevant for template matching
purposes. However, implementations will need to retain template variable names in order to
facilitate the extraction of template variable values via @PathParam or UriInfo.getPathParameters.

3.8. Determining the MediaType of Responses
In many cases it is not possible to statically determine the media type of a response. The following
algorithm is used to determine the response media type, M_{\mbox{selected}}, at run time:

1. If the method returns an instance of Response whose metadata includes the response media type
(M_{\mbox{specified}}) then set M_{\mbox{selected}} = M_{\mbox{specified}}, finish.

2. Gather the set of producible media types P:

◦ If the method is annotated with @Produces, set P = \{ V(\mbox{method}) \} where V(t)
represents the values of @Produces on the specified target t.

◦ Else if the class is annotated with @Produces, set P = \{ V(\mbox{class}) \}.

◦ Else set P = \{ V(\mbox{writers}) \} where writers is the set of MessageBodyWriter that
support the class of the returned entity object.

3. If P = \{\}, set P = \{\mbox{'*/*'}\}

4. Obtain the acceptable media types A. If A = \{\}, set A = \{\mbox{'*/*'}\}

5. Set M=\{\}. For each member of A, a:

◦ For each member of P, p:
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▪ If a is compatible with p, add S(a,p) to M, where the function S returns the most specific
media type of the pair with the q-value of a and server-side qs-value of p.

6. If M = \{\} then generate a NotAcceptableException (406 status) and no entity. The exception
MUST be processed as described in Exceptions. Finish.

7. Sort M in descending order, with a primary key of specificity (\mbox{n/m} > \mbox{n/*} >
\mbox{*/*}), a secondary key of q-value and a tertiary key of qs-value.

8. For each member of M, m:

◦ If m is a concrete type, set M_{\mbox{selected}} = m, finish.

9. If M contains '*/*' or 'application/*', set M_{\mbox{selected}} = \mbox{'application/octet-
stream'}, finish.

10. Generate a NotAcceptableException (406 status) and no entity. The exception MUST be processed
as described in Exceptions. Finish.

Note that the above renders a response with a default media type of 'application/octet-stream' when
a concrete type cannot be determined. It is RECOMMENDED that
MessageBodyWriter implementations specify at least one concrete type via @Produces.

[1] Due to limitations of the built-in valueOf method that is part of all Java enumerations, a fromString method is often defined by
the enum writers. Consequently, the fromString method is preferred when available.

[2] Or Entity property of returned instance if return type is Response or a subclass thereof.

[3] If the resource class URI template does not end with a / character then one is added during the concatenation.

[4] Given that content types do not include wildcards, this is an exceptional condition for the purpose of simplifying the matching
algorithm.

[5] Note: some containers might perform this functionality prior to passing the request to an implementation.

[6] Here, literal characters means those not resulting from template variable substitution.

[7] E.g., \mbox{text/html;q=1.0;qs=0.7;d=0} \ge \mbox{application/xml;q=1.0;qs=0.7;d=0} and
\mbox{application/xml;q=1.0;qs=0.7;d=0} \ge \mbox{text/html;q=1.0;qs=0.7;d=0}.

[8] Step 3a ensures the set contains at least one member.

[9] Note that the syntax +? denotes a reluctant quantifier as defined in the java.util.regex.Pattern class.
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Chapter 4. Providers
Providers in JAX-RS are responsible for various cross-cutting concerns such as filtering requests,
converting representations into Java objects, mapping exceptions to responses, etc. A provider can
be either pre-packaged in the JAX-RS runtime or supplied by an application. All application-supplied
providers implement interfaces in the JAX-RS API and MAY be annotated with @Provider for
automatic discovery purposes; the integration of pre-packaged providers into the JAX-RS runtime is
implementation dependent.

This chapter introduces some of the basic JAX-RS providers; other providers are introduced in
Chapter Client API and Chapter Filters and Interceptors.

4.1. Lifecycle and Environment
By default a single instance of each provider class is instantiated for each JAX-RS application. First
the constructor (see Constructors) is called, then any requested dependencies are injected (see
Chapter Context), then the appropriate provider methods may be called multiple times
(simultaneously), and finally the object is made available for garbage collection. Providers
describes how a provider obtains access to other providers via dependency injection.

An implementation MAY offer other provider lifecycles, mechanisms for specifying these are
outside the scope of this specification. E.g. an implementation based on an inversion-of-control
framework may support all of the lifecycle options provided by that framework.

4.1.1. Automatic Discovery

The annotation @Provider is used by a JAX-RS runtime to automatically discover provider classes via
mechanisms such as class scanning. A JAX-RS implementation that supports automatic discovery of
classes MUST process only those classes that are annotated with @Provider.

4.1.2. Services

On runtime initialization, an implementation MUST discover and register certain service providers
in jakarta.ws.rs.core.Configuration runtime configurations, if and only if service loading is
enabled. Service loading is enabled, except when there is an Application subclass whose
getProperties method returns a map which contains the key jakarta.ws.rs.loadServices with a
value of Boolean.FALSE. For each service X, where X is jakarta.ws.rs.core.Feature or
jakarta.ws.rs.container.DynamicFeature, the set of providers to be registered MUST be determined
as follows:

• first, register all providers discovered with ServiceLoader.load(X.class)

• additionally, register all providers discovered with ServiceLoader.load(X.class,
X.class.getClassLoader())

Note that service loading allows libraries to be self-sufficient: it allows them to register what they
need with the JAX-RS implementation without intervention from the application. From the
viewpoint of an application developer, this means that they do not need to understand the inner
workings of their dependent libraries when overriding getClasses. As another example, it allows
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system integrators to extend the JAX-RS implementation (e.g. to provide integrations with other
Jakarta EE specifications) in a completely portable manner.

4.1.3. Constructors

Provider classes that are instantiated by the JAX-RS runtime and MUST have a public constructor
for which the JAX-RS runtime can provide all parameter values. Note that a zero argument
constructor is permissible under this rule.

A public constructor MAY include parameters annotated with @Context—Chapter Context defines
the parameter types permitted for this annotation. Since providers may be created outside the
scope of a particular request, only deployment-specific properties may be available from injected
interfaces at construction time; request-specific properties are available when a provider method is
called. If more than one public constructor can be used then an implementation MUST use the one
with the most parameters. Choosing amongst constructors with the same number of parameters is
implementation specific, implementations SHOULD generate a warning about such ambiguity.

4.1.4. Priorities

Application-supplied providers enable developers to extend and customize the JAX-RS runtime.
Therefore, an application-supplied provider MUST always be preferred over a pre-packaged one if a
single one is required.

Application-supplied providers may be annotated with @Priority. If two or more providers are
candidates for a certain task, the one with the highest priority is chosen: the highest priority is
defined to be the one with the lowest value in this case. That is, @Priority(1) is higher than
@Priority(10). If two or more providers are eligible and have identical priorities, one is chosen in
an implementation dependent manner. The default priority for all application-supplied providers is
jakarta.ws.rs.Priorities.USER.

The general rule about priorities is different for filters and interceptors since these providers are
collected into chains. For more information see Section Priorities.

4.2. Entity Providers
Entity providers supply mapping services between representations and their associated Java types.
Entity providers come in two flavors: MessageBodyReader and MessageBodyWriter described below.

4.2.1. Message Body Reader

The MessageBodyReader interface defines the contract between the JAX-RS runtime and components
that provide mapping services from representations to a corresponding Java type. A class wishing
to provide such a service implements the MessageBodyReader interface and may be annotated with
@Provider for automatic discovery.

The following describes the logical[1] steps taken by a JAX-RS implementation when mapping a
message entity body to a Java method parameter:

1. Obtain the media type of the request. If the request does not contain a Content-Type header then
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use application/octet-stream.

2. Identify the Java type of the parameter whose value will be mapped from the entity body.
Matching Requests to Resource Methods describes how the Java method is chosen.

3. Select the set of MessageBodyReader classes that support the media type of the request, see
Declaring Media Type Capabilities.

4. Iterate through the selected MessageBodyReader classes and, utilizing the isReadable method of
each, choose a MessageBodyReader provider that supports the desired Java type.

5. If step 4 locates one or more suitable MessageBodyReader’s then select the one with the highest
priority as described in Priorities and use its readFrom method to map the entity body to the
desired Java type.

6. Otherwise, the server runtime MUST generate a NotSupportedException (415 status) and no entity
(to be processed as described in Exceptions) and the client runtime MUST generate an instance
of ProcessingException.

See Exceptions for more information on handling exceptions thrown in MessageBodyReader.readFrom.

4.2.2. Message Body Writer

The MessageBodyWriter interface defines the contract between the JAX-RS runtime and components
that provide mapping services from a Java type to a representation. A class wishing to provide such
a service implements the MessageBodyWriter interface and may be annotated with @Provider for
automatic discovery.

The following describes the logical steps taken by a JAX-RS implementation when mapping a return
value to a message entity body:

1. Obtain the object that will be mapped to the message entity body. For a return type of
Response or subclasses, the object is the value of the entity property, for other return types it is
the returned object.

2. Determine the media type of the response, see Determining the MediaType of Responses.

3. Select the set of MessageBodyWriter providers that support (see Declaring Media Type
Capabilities) the object and media type of the message entity body.

4. Sort the selected MessageBodyWriter providers with a primary key of generic type where
providers whose generic type is the nearest superclass of the object class are sorted first and a
secondary key of media type (see Declaring Media Type Capabilities).

5. Iterate through the sorted MessageBodyWriter providers and, utilizing the isWriteable method of
each, choose an MessageBodyWriter that supports the object that will be mapped to the entity
body.

6. If step 5 locates one or more suitable MessageBodyWriter’s that are equal with respect to the
sorting in step 4, then select the one with the highest priority as described in Priorities and use
its writeTo method to map the entity body to the desired Java type.

7. Otherwise, the server runtime MUST generate a generate an InternalServerErrorException, a
subclass of WebApplicationException with its status set to 500, and no entity (to be processed as
described in Exceptions) and the client runtime MUST generate a ProcessingException.
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Experience gained in the field has resulted in the reversal of the sorting keys in step 4 in this
specification. This represents a backward incompatible change with respect to JAX-RS 1.X.
Implementations of this specification are REQUIRED to provide a backward compatible flag for
those applications that rely on the previous ordering. The mechanism defined to enable this flag is
implementation dependent.

See Exceptions for more information on handling exceptions thrown in MessageBodyWriter.write.

4.2.3. Declaring Media Type Capabilities

Message body readers and writers MAY restrict the media types they support using the
@Consumes and @Produces annotations respectively. The absence of these annotations is equivalent to
their inclusion with media type ("*/*"), i.e. absence implies that any media type is supported. An
implementation MUST NOT use an entity provider for a media type that is not supported by that
provider.

When choosing an entity provider an implementation sorts the available providers according to the
media types they declare support for. Sorting of media types follows the general rule: x/y < x/* < */*,
i.e. a provider that explicitly lists a media types is sorted before a provider that lists */*.

4.2.4. Standard Entity Providers

An implementation MUST include pre-packaged MessageBodyReader and
MessageBodyWriter implementations for the following Java and media type combinations:

byte[]

All media types (*/*).

java.lang.String

All media types (*/*).

java.io.InputStream

All media types (*/*).

java.io.Reader

All media types (*/*).

java.io.File

All media types (*/*).

jakarta.activation.DataSource

All media types (*/*).

javax.xml.transform.Source

XML types (text/xml, application/xml and media types of the form application/*+xml).

MultivaluedMap<String,String>

Form content (application/x-www-form-urlencoded).
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java.util.List<EntityPart>

Multipart data (multipart/form-data)

StreamingOutput

All media types (*/*), MessageBodyWriter only.

java.lang.Boolean, java.lang.Character, java.lang.Number

Only for text/plain. Corresponding primitive types supported via boxing/unboxing conversion.

Depending on the environment, the list of standard entity providers MUST also include those for
JSON or XML. For more information about these providers see Java API for JSON Processing, Java
API for JSON Binding and Jakarta XML Binding.

When reading zero-length message entities all pre-packaged MessageBodyReader implementations,
except the JAXB one and those for the (boxed) primitive types above, MUST create a corresponding
Java object that represents zero-length data. The pre-packaged JAXB and the pre-packaged
primitive type MessageBodyReader implementations MUST throw a NoContentException for zero-
length message entities.

When a NoContentException is thrown while reading a server request entity from a
MessageBodyReader it MUST be translated by the server runtime into a BadRequestException wrapping
the original NoContentException and re-thrown to be processed by any registered exception
mappers.

The implementation-supplied entity provider(s) for jakarta.xml.bind.JAXBElement and application-
supplied JAXB classes MUST use JAXBContext instances provided by application-supplied context
resolvers, see Context Providers. If an application does not supply a JAXBContext for a particular
type, the implementation-supplied entity provider MUST use its own default context instead.

The implementation-supplied entity provider(s) for application-supplied JSON-B classes MUST use
Jsonb instances provided by application-supplied context resolvers, see Context Providers. If an
application does not supply a Jsonb instance for a particular type, the implementation-supplied
entity provider MUST use its own default context instead.

When writing responses, implementations SHOULD respect application-supplied character set
metadata and SHOULD use UTF-8 if a character set is not specified by the application or if the
application specifies a character set that is unsupported.

An implementation MUST support application-provided entity providers and MUST use those in
preference to its own pre-packaged providers when either could handle the same request. More
precisely, step 4 in Message Body Reader and step 5 in Message Body Writer MUST prefer
application-provided over pre-packaged entity providers.

4.2.5. Transfer Encoding

Transfer encoding for inbound data is handled by a component of the container or the JAX-
RS runtime. MessageBodyReader providers always operate on the decoded HTTP entity body rather
than directly on the HTTP message body.

A JAX-RS runtime or container MAY transfer encode outbound data or this MAY be done by
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application code.

4.2.6. Content Encoding

Content encoding is the responsibility of the application. Application-supplied entity providers MAY
perform such encoding and manipulate the HTTP headers accordingly.

4.3. Context Providers
Context providers supply context to resource classes and other providers. A context provider class
implements the ContextResolver<T> interface and may be annotated with @Provider for automatic
discovery. E.g., an application wishing to provide a customized JAXBContext to the default JAXB
entity providers would supply a class implementing ContextResolver<JAXBContext>.

Context providers MAY return null from the getContext method if they do not wish to provide their
context for a particular Java type. E.g. a JAXB context provider may wish to only provide the context
for certain JAXB classes. Context providers MAY also manage multiple contexts of the same type
keyed to different Java types.

Note that a context provider for JAXB is only applicable in products that support Jakarta XML
Binding.

4.3.1. Declaring Media Type Capabilities

Context provider implementations MAY restrict the media types they support using the
@Produces annotation. The absence of this annotation is equivalent to its inclusion with media type
("*/*"), i.e. absence implies that any media type is supported.

When choosing a context provider an implementation sorts the available providers according to
the media types they declare support for. Sorting of media types follows the general rule: x/y < x/* <
*/*, i.e. a provider that explicitly lists a media type is sorted before a provider that lists */*.

4.4. Exception Mapping Providers
Exception mapping providers map a checked or runtime exception to an instance of Response. An
exception mapping provider implements the ExceptionMapper<T> interface and may be annotated
with @Provider for automatic discovery.

When a resource class or provider method throws an exception, the matching provider is used to
obtain a Response instance. The resulting Response is processed as if a web resource method had
returned the Response, see Return Type. In particular, a mapped Response MUST be processed using
the ContainerResponse filter chain defined in Chapter Filters and Interceptors.

When choosing an exception mapping provider to map an exception, an implementation MUST use
the provider whose generic type is the nearest superclass of the exception. If two or more exception
providers are applicable, the one with the highest priority MUST be chosen as described in
Priorities.

A JAX-RS implementation MUST include a default exception mapping provider that implements
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ExceptionMapper<Throwable> and which SHOULD set the response status to 500.

When the default exception mapping provider handles a WebApplicationException, it MUST return
the embedded Response, and it MUST respect the status code in the Response.

Any registered CompletionCallback MUST be invoked with an unmapped exception before the
default exception mapping provider maps the unmapped exception to a Response.

To avoid a potentially infinite loop, a single exception mapper must be used during the processing
of a request and its corresponding response. JAX-RS implementations MUST NOT attempt to map
exceptions thrown while processing a response previously mapped from an exception. Instead, this
exception MUST be processed as described in steps 3 and 4 in Exceptions.

Note that exception mapping providers are not supported as part of the Client API.

4.5. Exceptions
Exception handling differs depending on whether a provider is part of the client runtime or server
runtime. This is covered in the next two sections.

4.5.1. Server Runtime

When a provider method throws an exception, the JAX-RS server runtime will attempt to map the
exception to a suitable HTTP response in the same way as described for methods and locators in
Exceptions. If the exception is thrown while generating a response, JAX-RS implementations are
required to map the exception only when the response has not been committed yet.

As explained in Exception Mapping Providers, an application can supply exception mapping
providers to customize this mapping, but these exception mappers will be ignored during the
processing of a previously mapped response to avoid entering a potentially infinite loop. For
example, suppose a method in a message body reader throws an exception that is mapped to a
response via an exception mapping provider; if the message body writer throws an exception while
trying to write the mapped response, JAX-RS implementations will not attempt to map the
exception again.

4.5.2. Client Runtime

When a provider method throws an exception, the JAX-RS client runtime will map it to an instance
of ProcessingException if thrown while processing a request, and to a ResponseProcessingException if
thrown while processing a response.

Note that the client runtime will only throw an instance of WebApplicationException (or any of its
subclasses) as a result of a response from the server with status codes 3xx, 4xx or 5xx. See Client
Exceptions for more details on WebApplicationException.

[1] Implementations are free to optimize their processing provided the results are equivalent to those that would be obtained if
these steps are followed.
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Chapter 5. Client API
The Client API is used to access Web resources. It provides a higher-level API than
HttpURLConnection as well as integration with JAX-RS providers. Unless otherwise stated, types
presented in this chapter live in the jakarta.ws.rs.client package.

5.1. Bootstrapping a Client Instance
An instance of Client is required to access a Web resource using the Client API. The default instance
of Client can be obtained by calling newClient on ClientBuilder. Client instances can be configured
using methods inherited from Configurable as follows:

// Default instance of client
Client client = ClientBuilder.newClient();

// Additional configuration of default client
client.property("MyProperty", "MyValue")
    .register(MyProvider.class)
    .register(MyFeature.class);

See Chapter Providers for more information on providers. Properties are simply name-value pairs
where the value is an arbitrary object. Features are also providers and must implement the Feature
interface; they are useful for grouping sets of properties and providers (including other features)
that are logically related and must be enabled as a unit.

5.2. Resource Access
A Web resource can be accessed using a fluent API in which method invocations are chained to
build and ultimately submit an HTTP request. The following example gets a text/plain
representation of the resource identified by http://example.org/hello:

Client client = ClientBuilder.newClient();
Response res = client.target("http://example.org/hello")
    .request("text/plain").get();

Conceptually, the steps required to submit a request are the following: (i) obtain an instance of
Client (ii) create a WebTarget (iii) create a request from the WebTarget and (iv) submit a request or get
a prepared Invocation for later submission. See Section [invocations] for more information on using
Invocation.

Method chaining is not limited to the example shown above. A request can be further specified by
setting headers, cookies, query parameters, etc. For example:

Response res = client.target("http://example.org/hello")
    .queryParam("MyParam","...")
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    .request("text/plain")
    .header("MyHeader", "...")
    .get();

See the Javadoc for the classes in the jakarta.ws.rs.client package for more information.

5.3. Client Targets
The benefits of using a WebTarget become apparent when building complex URIs, for example by
extending base URIs with additional path segments or templates. The following example highlights
these cases:

WebTarget base = client.target("http://example.org/");
WebTarget hello = base.path("hello").path("{whom}");
Response res = hello.resolveTemplate("whom", "world").request("...").get();

Note the use of the URI template parameter {whom}. The example above gets a representation for the
resource identified by http://example.org/hello/world.

WebTarget instances are immutable with respect to their URI (or URI template): methods for
specifying additional path segments and parameters return a new instance of WebTarget. However,
WebTarget instances are mutable with respect to their configuration. Thus, configuring a
WebTarget does not create new instances.

// Create WebTarget instance base
WebTarget base = client.target("http://example.org/");
// Create new WebTarget instance hello and configure it
WebTarget hello = base.path("hello");
hello.register(MyProvider.class);

In this example, two instances of WebTarget are created. The instance hello inherits the
configuration from base and it is further configured by registering MyProvider.class. Note that
changes to hello’s configuration do not affect base, i.e. inheritance performs a deep copy of the
configuration. See Configurable Types for additional information on configurable types.

5.4. Typed Entities
The response to a request is not limited to be of type Response. The following example upgrades the
status of customer number 123 to "gold status" by first obtaining an entity of type Customer and then
posting that entity to a different URI:

Customer c = client.target("http://examples.org/customers/123")
.request("application/xml").get(Customer.class);
String newId = client.target("http://examples.org/gold-customers/")
.request().post(xml(c), String.class);
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Note the use of the variant xml() in the call to post. The class jakarta.ws.rs.client.Entity defines
variants for the most popular media types used in JAX-RS applications.

In the example above, just like in the Server API, JAX-RS implementations are REQUIRED to use
entity providers to map a representation of type application/xml to an instance of Customer and vice
versa. See Standard Entity Providers for a list of entity providers that MUST be supported by all
JAX-RS implementations.

5.5. Invocations
An invocation is a request that has been prepared and is ready for execution. Invocations provide a
generic interface that enables a separation of concerns between the creator and the submitter. In
particular, the submitter does not need to know how the invocation was prepared, but only how it
should be executed: namely, synchronously or asynchronously.

Let us consider the following example [1]:

// Executed by the creator
Invocation inv1 = client.target("http://examples.org/atm/balance")
    .queryParam("card", "111122223333").queryParam("pin", "9876")
    .request("text/plain").buildGet();
Invocation inv2 = client.target("http://examples.org/atm/withdrawal")
    .queryParam("card", "111122223333").queryParam("pin", "9876")
    .request().buildPost(text("50.0"));
Collection<Invocation> invs = Arrays.asList(inv1, inv2);

// Executed by the submitter
Collection<Response> ress =
    Collections.transform(invs, new F<Invocation, Response>() {
        @Override
        public Response apply(Invocation inv) {
            return inv.invoke();
        }
    });

In this example, two invocations are prepared and stored in a collection by the creator. The
submitter then traverses the collection applying a transformation that maps an Invocation to a
Response. The mapping calls Invocation.invoke to execute the invocation synchronously;
asynchronous execution is also supported by calling Invocation.submit. Refer to
Chapter Asynchronous Processing for more information on asynchronous invocations.

5.6. Configurable Types
The following Client API types are configurable: Client, ClientBuilder, and WebTarget. Configuration
methods are inherited from the Configurable interface implemented by all these classes. This
interface supports configuration of:
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Properties

Name-value pairs for additional configuration of features or other components of a JAX-
RS implementation.

Features

A special type of provider that implement the Feature interface and can be used to configure a
JAX-RS implementation.

Providers

Classes or instances of classes that implement one or more of the provider interfaces from
Chapter Providers. A provider can be a message body reader, a filter, a context resolver, etc.

The configuration defined on an instance of any of the aforementioned types is inherited by other
instances created from it. For example, an instance of WebTarget created from a Client will inherit
the Client’s configuration. However, any additional changes to the instance of WebTarget will not
impact the Client’s configuration and vice versa. Therefore, once a configuration is inherited it is
also detached (deep copied) from its parent configuration and changes to the parent and child
configurations are not be visible to each other.

5.6.1. Filters and Entity Interceptors

As explained in Chapter Filters and Interceptors, filters and interceptors are defined as JAX-RS
providers. Therefore, they can be registered in any of the configurable types listed in the previous
section. The following example shows how to register filters and interceptors on instances of
Client and WebTarget:

// Create client and register logging filter
Client client = ClientBuilder.newClient().register(LoggingFilter.class);

// Executes logging filter from client and caching filter from target
WebTarget wt = client.target("http://examples.org/customers/123");
Customer c = wt.register(CachingFilter.class).request("application/xml")
    .get(Customer.class);

In this example, LoggingFilter is inherited by each instance of WebTarget created from client; an
additional provider named CachingFilter is registered on the instance of WebTarget.

5.7. Reactive Clients
Client API introduces asynchronous programming in the Client API. Asynchronous programming in
JAX-RS enables clients to unblock certain threads by pushing work to background threads which
can be monitored and possibly waited on (joined) at a later time. This can be accomplished in JAX-
RS by either providing an instance of InvocationCallback or operating on the result of type
Future<T> returned by an asynchronous invoker —or some combination of both styles.

Using InvocationCallback enables a more reactive programming style in which user-provided code
activates (or reacts) only when a certain event has occurred. Using callbacks works well for simple
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cases, but the source code becomes harder to understand when multiple events are in play. For
example, when asynchronous invocations need to be composed, combined or in any way operated
upon. These type of scenarios may result in callbacks that are nested inside other callbacks making
the code far less readable —often referred to as the pyramid of doom because of the inherent
nesting of calls.

To address the requirement of greater readability and to enable programmers to better reason
about asynchronous computations, Java 8 introduces the a new interface called CompletionStage
that includes a large number of methods dedicated to managing asynchronous computations.

JAX-RS 2.1 defines a new type of invoker called RxInvoker, as well a default implementation of this
type called CompletionStageRxInvoker that is based on the Java 8 type CompletionStage. There is a
new rx method which is used in a similar manner to async as described in Client API. Let us
consider the following example:

CompletionStage<String> csf = client.target("forecast/{destination}")
    .resolveTemplate("destination", "mars")
    .request()
    .rx()
    .get(String.class);

csf.thenAccept(System.out::println);

This example first creates an asynchronous computation of type CompletionStage<String>, and then
simply waits for it to complete and displays its result (technically, a second computation of type
CompletionStage<Void> is created on the last line simply to consume the result of the first
computation).

The value of CompletionStage becomes apparent when multiple asynchronous computations are
necessary to accomplish a task. The following example obtains, in parallel, a price and a forecast
for a destination and makes a reservation only if the desired conditions are met.

CompletionStage<Number> csp = client.target("price/{destination}")
    .resolveTemplate("destination", "mars")
    .request()
    .rx()
    .get(Number.class);

CompletionStage<String> csf = client.target("forecast/{destination}")
    .resolveTemplate("destination", "mars")
    .request()
    .rx()
    .get(String.class);

csp.thenCombine(csf, (price, forecast) ->
    reserveIfAffordableAndWarm(price, forecast));

Note that the Consumer passed in the call to method thenCombine requires the values of each stage to
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be available and, therefore, can only be executed after the two parallel stages are completed.

As we shall see in the next section, support for CompletionStage is the default for all JAX-
RS implementations, but other reactive APIs may also be supported as extensions.

5.7.1. Reactive API Extensions

There have been several proposals for reactive APIs in Java. All JAX-RS implementations MUST
support an invoker for CompletionStage as shown above. Additionally, JAX-RS implementations MAY
support other reactive APIs using an extension built into the Client API.

RxJava [11] is a popular reactive library available in Java. The type representing an asynchronous
computation in this API is called an Observable. An implementation may support this type by
providing a new invoker as shown in the following example:

Client client = client.register(ObservableRxInvokerProvider.class);

Observable<String> of = client.target("forecast/{destination}")
    .resolveTemplate("destination", "mars")
    .request()
    .rx(ObservableRxInvoker.class) // overrides default invoker
    .get(String.class);

of.subscribe(System.out::println);

First, a provider for the new invoker must be registered on the Client object. Second, the type of the
invoker must be specified as a parameter to the rx method. Note that because this is a JAX-
RS extension, the actual names for the provider and the invoker in the example above are
implementation dependent. The reader is referred to the documentation for the JAX-
RS implementation of choice for more information.

Version 2.0 of RxJava [12] has been completely re-written on top of the Reactive-Streams
specification. This new architecture prompted the introduction of a new type called Flowable. JAX-
RS implementations could easily support this new version by implementing a new provider (such
as FlowableRxInvokerProvider) and using the same pattern shown in the example above.

5.8. Executor Services
Executor services can be used to submit asynchronous tasks for execution. JAX-RS applications can
specify executor services while building a Client instance. Two methods are provided in
ClientBuilder for this purpose, namely, executorService and scheduledExecutorService.

In an environment that supports Jakarta Concurrency [13], such as full Jakarta EE platform
products, implementations MUST use ManagedExecutorService and ManagedScheduledExecutorService,
respectively. The reader is referred to the Javadoc of ClientBuilder for more information about
executor services.
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5.9. Client Exceptions
A method of the JAX-RS Client API that nominally throws WebApplicationException MUST actually
throw the most specific exception subclass for the current response status code, unless no such
subclass is defined by the JAX-RS API.

Only in the latter case the method MAY throw the WebApplicationException class directly.

The method MAY throw a direct or indirect subclass of the mandatory exception.

Example: If a response has the status 404, a compliant implementation MUST NOT throw
WebApplicationException(404), but instead MUST throw NotFoundException, or a subclass of
NotFoundException, because the description of NotFoundException exactly matches the status code
404.

Example: If a response has the status 567, a compliant implementation MUST NOT throw
WebApplicationException(567) but instead MUST throw ServerErrorException, or a subclass of
ServerErrorException, because the description of ServerErrorException indirectly matches the status
code 567 by matching the whole 5XX family of codes.

[1] The Collections class in this example is arbitrary and does not correspond to any specific implementation. There are a number
of Java collection libraries available that provide this type of functionality.

45



Chapter 6. Filters and Interceptors
Filters and entity interceptors can be registered for execution at well-defined extension points in
JAX-RS implementations. They are used to extend an implementation in order to provide
capabilities such as logging, confidentiality, authentication, entity compression, etc.

6.1. Introduction
Entity interceptors wrap around a method invocation at a specific extension point. Filters execute
code at an extension point but without wrapping a method invocation. There are four extension
points for filters: ClientRequest, ClientResponse, ContainerRequest and ContainerResponse. There are
two extension points for entity interceptors: ReadFrom and WriteTo. For each of these extension
points, there is a corresponding interface:

public interface ClientRequestFilter {
    void filter(ClientRequestContext requestContext) throws IOException;
}

public interface ClientResponseFilter {
    void filter(ClientRequestContext requestContext,
        ClientResponseContext responseContext) throws IOException;
}

public interface ContainerRequestFilter {
    void filter(ContainerRequestContext requestContext) throws IOException;
}

public interface ContainerResponseFilter {
    void filter(ContainerRequestContext requestContext,
    ContainerResponseContext responseContext) throws IOException;
}

public interface ReaderInterceptor {
    Object aroundReadFrom(ReaderInterceptorContext context)
        throws java.io.IOException, jakarta.ws.rs.WebApplicationException;
}

public interface WriterInterceptor {
    void aroundWriteTo(WriterInterceptorContext context)
        throws java.io.IOException, jakarta.ws.rs.WebApplicationException;
}

A client filter is a class that implements ClientRequestFilter or ClientResponseFilter or both. A
container filter is a class that implements ContainerRequestFilter or ContainerResponseFilter, or
both. An entity interceptor is a class that implements ReaderInterceptor or WriterInterceptor, or
both. Filters and entity interceptors are providers and, as such, may be annotated with
@Provider for automatic discovery.
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In the Client API, a ClientRequestFilter is executed as part of the invocation pipeline, before the
HTTP request is delivered to the network; a ClientResponseFilter is executed upon receiving a
server response, before control is returned to the application. In the Server API, a
ContainerRequestFilter is executed upon receiving a request from a client; a
ContainerResponseFilter is executed as part of the response pipeline, before the HTTP response is
delivered to the network.

A globally-bound (see Global Binding) ContainerRequestFilter is a container filter executed after
resource matching unless it is annotated with @PreMatching. The use of this annotation on this type
of filters defines a new extension point for applications to use, namely . Certain
ContainerRequestContext methods may not be available at this extension point.

An entity interceptor implementing ReaderInterceptor wraps around calls to MessageBodyReader’s
method readFrom. An entity interceptor implementing WriterInterceptor wraps around calls to
MessageBodyWriter’s method writeTo. JAX-RS implementations are REQUIRED to call registered
interceptors when mapping representations to Java types and vice versa. See Entity Providers for
more information on entity providers.

Please refer to Appendix Processing Pipeline for some diagrams on the client and server processing
pipelines that show the interaction between filters and entity interceptors.

6.2. Filters
Filters are grouped into filter chains. There is a separate filter chain for each extension point
introduced in the previous section, namely: ClientRequest, ClientResponse, ContainerRequest,
ContainerResponse and PreMatchContainerRequest. Filters in a chain are sorted based on their
priorities (see Priorities) and are executed in order.

The following example shows an implementation of a container logging filter: each method simply
logs the message and returns.

@Provider
class LoggingFilter implements ContainerRequestFilter,
                               ContainerResponseFilter {

    @Override
    public void filter(ContainerRequestContext requestContext)
        throws IOException {
        log(requestContext);
    }

    @Override
    public void filter(ContainerRequestContext requestContext,
        ContainerResponseContext responseContext) throws IOException {
        log(responseContext);
    }
    ...
}
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ContainerRequestContext is a mutable class that provides request-specific information for the filter,
such as the request URI, message headers, message entity or request-scoped properties. The
exposed setters allow (certain) modification of the request before it is processed by the resource
method. Similarly, there is a corresponding ContainerResponseContext that provides response-
specific information.

Request filters implementing ClientRequestFilter or ContainerRequestFilter can stop the execution
of their corresponding chains by calling abortWith(Response) in their corresponding context object.
If this method is invoked, JAX-RS implementations are REQUIRED to abort execution of the chain
and treat the response object as if produced by calling the resource method (Server API) or
executing the HTTP invocation (Client API). For example, upon a cache hit, a client caching filter
may call abortWith(Response) to abort execution and optimize network access.

As stated above, a ContainerRequestFilter that is annotated with @PreMatching is executed upon
receiving a client request but before a resource method is matched. Thus, this type of filter has the
ability to modify the input to the matching algorithm (see Request Matching) and, consequently,
alter its outcome. The following example uses a ContainerRequestFilter annotated with
@PreMatching to tunnel requests via POST by using the X-HTTP-Method-Override header to
overwrite the HTTP method prior to resource matching.

@Provider
@PreMatching
public class HttpMethodOverrideFilter implements ContainerRequestFilter {

    @Override
    public void filter(ContainerRequestContext requestContext)
        throws IOException {
        if (requestContext.getMethod().equalsIgnoreCase("POST")) {
            String override = requestContext.getHeaders()
                .getFirst("X-HTTP-Method-Override");
            if (override != null) {
                requestContext.setMethod(override);
            }
        }
    }
}

6.3. Entity Interceptors
An entity interceptor implements interface ReaderInterceptor or WriterInterceptor, or both. There
is an interceptor chain for each kind of entity interceptor. Entity interceptors in a chain are sorted
based on their priorities (see Priorities) and are executed in order.

As part of the JAX-RS processing pipeline (see Appendix Processing Pipeline), entity interceptors
wrap calls to the methods readFrom in classes implementing MessageBodyReader and writeTo in classes
implementing MessageBodyWriter. An interceptor SHOULD explicitly call the context method proceed
to continue the execution of the chain. Because of their wrapping nature, failure to call this method
will prevent execution of the wrapped method in the corresponding message body reader or
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message body writer.

The following example shows an implementation of a GZIP entity interceptor that provides deflate
and inflate capabilities [1].

@Provider
class GzipInterceptor implements ReaderInterceptor, WriterInterceptor {

    @Override
    Object aroundReadFrom(ReaderInterceptorContext ctx) ... {
        if (isGzipped(ctx)) {
            InputStream old = ctx.getInputStream();
            ctx.setInputStream(new GZIPInputStream(old));
            try {
                return ctx.proceed();
            } finally {
                ctx.setInputStream(old);
            }
        } else {
            return ctx.proceed();
        }
    }

    @Override
    void aroundWriteTo(WriterInterceptorContext ctx) ... {
        OutputStream old = ctx.getOutputStream();
        GZIPOutputStream gzipOutputStream = new GZIPOutputStream(old);
        ctx.setOutputStream(gzipOutputStream);
        updateHeaders(ctx);
        try {
            ctx.proceed();
        } finally {
            gzipOutputStream.finish();
            ctx.setOutputStream(old);
        }
    }
    ...
}

The context types, ReaderInterceptorContext and WriterInterceptorContext, provide read and write
access to the parameters of the corresponding wrapped methods. In the example shown above, the
input and output streams are wrapped and updated in the context object before proceeding. JAX-
RS implementations MUST use the last parameter values set in the context object when calling the
wrapped methods MessageBodyReader.readFrom and MessageBodyWriter.writeTo.

It is worth noting that a readFrom or a writeTo that is called directly from application code, e.g. via
the injection of a Providers instance, will not trigger the execution of any entity interceptors since it
is not part of the normal JAX-RS processing pipeline.
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6.4. Lifecycle
By default, just like all the other providers, a single instance of each filter or entity interceptor is
instantiated for each JAX-RS application. First the constructor is called, then any requested
dependencies are injected, then the appropriate methods are called (simultaneously) as needed.
Implementations MAY offer alternative lifecycle options beyond the default one. See Lifecycle and
Environment for additional information.

6.5. Binding
Binding is the process by which a filter or interceptor is associated with a resource class or method
(Server API) or an invocation (Client API). The forms of binding presented in the next sections are
only supported as part of the Server API. See Binding in Client API for binding in the Client API.

6.5.1. Global Binding

Global binding is the default type of binding. A filter or interceptor that has no annotations is
assumed to be bound globally, i.e. it applies to all the resource methods in an application. Like any
other provider, a filter or interceptor can be registered manually (e.g., via Application or
Configuration) or be discovered automatically. Note that for a filter or interceptor to be
automatically discovered it MUST be annotated with @Provider (see Automatic Discovery).

For example, the LoggingFilter defined in Filters is both automatically discovered (it is annotated
with @Provider) and bound globally. If this filter is part of an application, requests and responses
will be logged for all resource methods.

As stated in Introduction, a global ContainerRequestFilter is executed after resource matching
unless annotated with @PreMatching. A global filter that injects ResourceInfo, and generally depends
on resource information for its execution, must not be annotated with @PreMatching.

6.5.2. Name Binding

A filter or interceptor can be associated with a resource class or method by declaring a new binding
annotation à la CDI [14]. These annotations are declared using the JAX-RS meta-annotation
@NameBinding and are used to decorate both the filter (or interceptor) and the resource method or
resource class. For example, the LoggingFilter defined in Filters can be bound to the method hello
in MyResourceClass, instead of globally, as follows:

@Provider
@Logged
class LoggingFilter implements ContainerRequestFilter,
                               ContainerResponseFilter {
    ...
}

@Path("/")
public class MyResourceClass {
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    @Logged
    @GET
    @Produces("text/plain")
    @Path("{name}")
    public String hello(@PathParam("name") String name) {
        return "Hello " + name;
    }
}

According to the semantics of LoggingFilter, the request will be logged before the hello method is
called and the response will be logged after it returns. The declaration of the @Logged annotation is
shown next.

@NameBinding
@Target({ ElementType.TYPE, ElementType.METHOD })
@Retention(value = RetentionPolicy.RUNTIME)
public @interface Logged { }

Multiple filters and interceptors can be bound to a single resource method using additional
annotations. For example, given the following filter:

@Provider
@Authenticated
class AuthenticationFilter implements ContainerRequestFilter {
    ...
}

method hello above could be decorated with @Logged and @Authenticated in order to provide both
logging and authentication capabilities to the resource.

A filter or interceptor class can be decorated with multiple binding annotations. In this case, in
accordance with the semantics described in CDI [14], all those annotations must be present in the
resource class or method for the binding to be established. For example, if LoggingFilter is defined
as follows:

@Provider
@Logged @Verbose
class LoggingFilter implements ContainerRequestFilter,
                               ContainerResponseFilter {
    ...
}

then method hello above must be annotated with both @Logged and @Verbose for the binding to be in
effect.

Binding annotations can also be applied to resource classes and Application subclasses. Binding
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annotations that decorate resource classes apply to all resource methods defined in them. Binding
annotations that decorate Application subclasses can also be used to bind filters and interceptors
globally, even if other annotations are present. For example, LoggingFilter as defined at the
beginning of this section can be bound globally as follows:

@Logged
public class MyApplication extends Application {
    ...
}

Note that returning filters or interceptors from the methods getClasses or getSingletons in an
application subclass will bind them globally only if they are not decorated with a name binding
annotation. If they are decorated with at least one name binding annotation, the application
subclass must be annotated as shown above in order for those filters or interceptors to be bound
globally. See Chapter Applications for more information on JAX-RS applications.

6.5.3. Dynamic Binding

The annotation-based forms of binding presented thus far are static. Dynamic binding is also
supported using dynamic features. A dynamic feature is a provider that implements the
DynamicFeature interface. These providers are used to augment the set of filters and entity
interceptors bound to a resource method.

The following example defines a dynamic feature that binds the filter LoggingFilter —assumed not
globally bound for the purpose of this example— with all the resource methods in MyResource that
are annotated with @GET.

@Provider
public final class DynamicLoggingFilterFeature implements DynamicFeature {

    @Override
    public void configure(ResourceInfo resourceInfo,
                          FeatureContext context) {
        if (MyResource.class.isAssignableFrom(resourceInfo.getResourceClass())
            && resourceInfo.getResourceMethod().isAnnotationPresent(GET.class)) {
            context.register(new LoggingFilter());
        }
    }
}

The overridden method in this provider updates the Configuration object assigned to each resource
method; the information about the resource method is provided in the form of a ResourceInfo
instance. JAX-RS implementations SHOULD resolve dynamic features for filters and interceptors
once for each resource method. It is RECOMMENDED to process dynamic features at application
deployment time.
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6.5.4. Binding in Client API

Binding in the Client API is accomplished via API calls instead of annotations. Client, Invocation,
Invocation.Builder and WebTarget are all configurable types: their configuration can be accessed
using the methods inherited from the Configurable interface. See Configurable Types for more
information.

6.6. Priorities
The order in which filters and interceptors are executed as part of their corresponding chains is
controlled by the @Priority annotation defined in [15]. Priorities are represented by integer
numbers. Execution chains for extension points ContainerRequest, PreMatchContainerRequest,
ClientRequest, ReadFrom and WriteTo are sorted in ascending order; the lower the number the higher
the priority. Execution chains for extension points ContainerResponse and ClientResponse are sorted
in descending order; the higher the number the higher the priority. These rules ensure that
response filters are executed in reversed order of request filters.

The Priorities class in JAX-RS defines a set of built-in priorities for security, header decorators,
decoders and encoders. The default binding priority is jakarta.ws.rs.Priorities.USER. For example,
the priority of an authentication filter can be set as follows:

@Provider
@Authenticated
@Priority(Priorities.AUTHENTICATION)
public class AuthenticationFilter implements ContainerRequestFilter {
    ...
}

Note that even though, as explained in Binding in Client API, annotations are not used for binding
in the Client API, they are still used to define priorities. Therefore, if a priority other than the
default is required, the @Priority annotation must be used for a filter or interceptor registered with
the Client API.

The order in which filters and interceptors that belong to the same priority class are executed is
implementation dependent.

6.7. Exceptions

6.7.1. Server Runtime

When a filter or interceptor method throws an exception, the server runtime will process the
exception as described in Server Runtime. As explained in Exception Mapping Providers, a JAX-RS
implementation will supply a default exception mapping provider and an application can supply
additional exception mapping providers. At most one exception mapper MUST be used in a single
request processing cycle to avoid potentially infinite loops.

A response mapped from an exception MUST be processed using the  filter chain and the
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 interceptor chain (if an entity is present in the mapped response). The number of entries in these
chains depends on whether a resource method has been matched or not at the time the exception is
thrown. There are two cases:

1. If a web resource has been matched before the exception was thrown, then the filters in  and
the interceptors in  will include everything that has been bound to the method as well as
globally;

2. Otherwise, only global filters and interceptors will be included.

Note that a filter or interceptor invoked in case 2 will not have access to resource-dependent
information, such as that returned by an injectable instance of ResourceInfo.

6.7.2. Client Runtime

When a filter or interceptor method throws an exception, the client runtime will process the
exception as described in Client Runtime.

[1] This class is not intended to be a complete implementation of this interceptor.
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Chapter 7. Validation
Validation is the process of verifying that some data obeys one or more pre-defined constraints. The
Bean Validation specification [16] defines an API to validate Java Beans. This chapter describes how
JAX-RS provides native support for validating resource classes based on the concepts presented in
[16]. See Bean Validation for more information on implementation requirements.

7.1. Constraint Annotations
The Server API provides support for extracting request values and mapping them into Java fields,
properties and parameters using annotations such as @HeaderParam, @QueryParam, etc. It also supports
mapping of request entity bodies into Java objects via non-annotated parameters (i.e., parameters
without any JAX-RS annotations). See Chapter Resources for additional information.

In earlier versions of JAX-RS, any additional validation of these values needed to be performed
programmatically. This version of JAX-RS introduces support for declarative validation based on the
Bean Validation specification [16].

The Bean Validation specification [16] supports the use of constraint annotations as a way of
declaratively validating beans, method parameters and method returned values. For example,
consider the following resource class augmented with constraint annotations:

@Path("/")
class MyResourceClass {

    @POST
    @Consumes("application/x-www-form-urlencoded")
    public void registerUser(
        @NotNull @FormParam("firstName") String firstName,
        @NotNull @FormParam("lastName") String lastName,
        @Email @FormParam("email") String email) {
        ...
    }
}

The annotations @NotNull and @Email impose additional constraints on the form parameters
firstName, lastName and email. The @NotNull constraint is built-in to the Bean Validation API; the
@Email constraint is assumed to be user defined in the example above. These constraint annotations
are not restricted to method parameters, they can be used in any location in which the JAX-RS
binding annotations are allowed with the exception of constructors and property setters. Rather
than using method parameters, the MyResourceClass shown above could have been written as
follows:

@Path("/")
class MyResourceClass {

    @NotNull @FormParam("firstName")
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    private String firstName;

    @NotNull @FormParam("lastName")
    private String lastName;

    private String email;

    @FormParam("email")
    public void setEmail(String email) {
        this.email = email;
    }

    @Email
    public String getEmail() {
        return email;
    }
    ...
}

Note that in this version, firstName and lastName are fields initialized via injection and email is a
resource class property. Constraint annotations on properties are specified in their corresponding
getters.

Constraint annotations are also allowed on resource classes. In addition to annotating fields and
properties, an annotation can be defined for the entire class. Let us assume that @NonEmptyNames
validates that one of the two name fields in MyResourceClass is provided. Using such an annotation,
the example above can be extended as follows:

@Path("/")
@NonEmptyNames
class MyResourceClass {

    @NotNull @FormParam("firstName")
    private String firstName;

    @NotNull @FormParam("lastName")
    private String lastName;

    private String email;
    ...
}

Constraint annotations on resource classes are useful for defining cross-field and cross-property
constraints.

7.2. Annotations and Validators
Annotation constraints and validators are defined in accordance with the Bean Validation
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Specification [16]. The @Email annotation shown above is defined using the Bean Validation
@Constraint meta-annotation:

@Target( { METHOD, FIELD, PARAMETER })
@Retention(RUNTIME)
@Constraint(validatedBy = EmailValidator.class)
public @interface Email {
    String message() default "{com.example.validation.constraints.email}";
    Class<?>[] groups() default {};
    Class<? extends Payload>[] payload() default {};
}

The @Constraint annotation must include a reference to the validator class that will be used to
validate decorated values. The EmailValidator class must implement ConstraintValidator<Email, T>
where T is the type of values being validated. For example,

public class EmailValidator implements ConstraintValidator<Email, String> {
    public void initialize(Email email) {
        ...
    }

    public boolean isValid(String value, ConstraintValidatorContext context) {
        ...
    }
}

Thus, EmailValidator applies to values annotated with @Email that are of type String. Validators for
different types can be defined for the same constraint annotation.

Constraint annotations must also define a groups element to indicate which processing groups they
are associated with. If no groups are specified (as in the example above) the Default group is
assumed. For simplicity, JAX-RS implementations are NOT REQUIRED to support processing groups
other than Default. In what follows, we assume that constraint validation is carried out in the
Default processing group.

7.3. Entity Validation
Request entity bodies can be mapped to resource method parameters. There are two ways in which
these entities can be validated. If the request entity is mapped to a Java bean whose class is
decorated with Bean Validation annotations, then validation can be enabled using @Valid:

@StandardUser
class User {

    @NotNull
    private String firstName;
    ...
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}

@Path("/")
class MyResourceClass {

    @POST
    @Consumes("application/xml")
    public void registerUser(@Valid User user) {
        ...
    }
}

In this case, the validator associated with @StandardUser (as well as those for non-class level
constraints like @NotNull) will be called to verify the request entity mapped to user. Alternatively, a
new annotation can be defined and used directly on the resource method parameter.

@Path("/")
class MyResourceClass {

    @POST
    @Consumes("application/xml")
    public void registerUser(@PremiumUser User user) {
        ...
    }
}

In the example above, @PremiumUser rather than @StandardUser will be used to validate the request
entity. These two ways in which validation of entities can be triggered can also be combined by
including @Valid in the list of constraints. The presence of @Valid will trigger validation of all the
constraint annotations decorating a Java bean class. This validation will take place in the Default
processing group unless the @ConvertGroup annotation is present. See [16] for more information on
@ConvertGroup.

Response entity bodies returned from resource methods can be validated in a similar manner by
annotating the resource method itself. To exemplify, assuming both @StandardUser and @PremiumUser
are required to be checked before returning a user, the getUser method can be annotated as shown
next:

@Path("/")
class MyResourceClass {

    @GET
    @Path("{id}")
    @Produces("application/xml")
    @Valid @PremiumUser
    public User getUser(@PathParam("id") String id) {
        User u = findUser(id);
        return u;
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    }
    ...
}

Note that @PremiumUser is explicitly listed and @StandardUser is triggered by the presence of the
@Valid annotation —see definition of User class earlier in this section.

7.4. Default Validation Mode
According to [16], validation is enabled by default only for the so called constrained methods. Getter
methods as defined by the Java Beans specification are not constrained methods, so they will not be
validated by default. The special annotation @ValidateOnExecution defined in [16] can be used to
selectively enable and disable validation. For example, you can enable validation on method
getEmail shown above as follows:

@Path("/")
class MyResourceClass {

    @Email
    @ValidateOnExecution
    public String getEmail() {
        return email;
    }
    ...
}

The default value for the type attribute of @ValidateOnExecution is IMPLICIT which, in the example
above, results in method getEmail being validated. See [16] for more information on other uses of
this annotation.

Note that if validation for getter methods is enabled and a resource method’s signature obeys the
rules for getters, the resource method may be (unintentionally) invoked during validation.
Conversely, if validation for getter methods is disabled and the matching resource method’s
signature obeys the rules for getters, the JAX-RS runtime will still validate the method (i.e., the
validation preference will be ignored) before invocation.

7.5. Annotation Inheritance
The rules for inheritance of constraint annotation are defined in [16]. It is worth noting that these
rules are incompatible with those defined in Annotation Inheritance. Generally speaking,
constraint annotations in [16] are cumulative (can be strengthen) across a given type hierarchy
while JAX-RS annotations are inherited or, overridden and ignored.

The goal of this specification is to enable validation of JAX-RS resources by leveraging existing Bean
Validation implementations. Therefore, JAX-RS implementations MUST follow the constraint
annotation rules defined in [16].
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7.6. Validation and Error Reporting
Constraint annotations are allowed in the same locations as the following annotations:
@MatrixParam, @QueryParam, @PathParam, @CookieParam, @HeaderParam and @Context, except in class
constructors and property setters. Specifically, they are allowed in resource method parameters,
fields and property getters as well as resource classes, entity parameters and resource methods
(return values).

The default resource class instance lifecycle is per-request in JAX-RS. Implementations MAY support
other lifecycles; the same caveats related to the use of other JAX-RS annotations in resource classes
apply to constraint annotations. For example, a constraint validation annotating a constructor
parameter in a resource class whose lifecycle is singleton will only be executed once.

JAX-RS implementations SHOULD use the following process to validate resource class instances
after they have been instantiated:

Phase 1

Inject field values and initialize bean properties as described in Section Fields and Bean
Properties.

Phase 2

Validate annotations on fields, property getters (if enabled) and the resource class. The order in
which these validations are executed is implementation dependent.

Phase 3

Validate annotations on parameters passed to the resource method matched.

Phase 4

If no constraint violations found thus far, invoke resource method and validate returned value.

The exception model in [16] defines a base class jakarta.validation.ValidationException and a few
subclasses to report errors that are specific to constraint definitions, constraint declarations, group
definitions and constraint violations. JAX-RS implementations MUST provide a default exception
mapper (see Exception Mapping Providers) for jakarta.validation.ValidationException according
to the following rules:

1. If the exception is of type jakarta.validation.ValidationException or any of its subclasses
excluding jakarta.validation.ConstraintViolationException, then it is mapped to a response
with status code 500 (Internal Server Error).

2. If the exception is an instance of jakarta.validation.ConstraintViolationException, then:

1. If the exception was thrown while validating a method return type, then it is mapped to a
response with status code 500 (Internal Server Error).[1]

2. Otherwise, it is mapped to a response with status code 400 (Bad Request).

In all cases, JAX-RS implementations SHOULD include a response entity describing the source of the
error; however, the exact content and format of this entity is beyond the scope of this specification.
As described in Exception Mapping Providers, applications can provide their own exception
mappers and, consequently, customize the default mapper described above.
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[1] The property path of a ConstraintViolation provides information about the location from which an exception originated. See
Javadoc for more information.
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Chapter 8. Asynchronous Processing
This chapter describes the asynchronous processing capabilities in JAX-RS. Asynchronous
processing is supported both in the Client API and in the Server API.

8.1. Introduction
Asynchronous processing is a technique that enables a better and more efficient use of processing
threads. On the client side, a thread that issues a request may also be responsible for updating a UI
component; if that thread is blocked waiting for a response, the user’s perceived performance of
the application will suffer. Similarly, on the server side, a thread that is processing a request should
avoid blocking while waiting for an external event to complete so that other requests arriving to
the server during that period of time can be attended[1].

8.2. Server API

8.2.1. AsyncResponse

Synchronous processing requires a resource method to produce a response upon returning control
back to the JAX-RS implementation. Asynchronous processing enables a resource method to inform
the JAX-RS implementation that a response is not readily available upon return but will be
produced at a future time. This can be accomplished by first suspending and later resuming the
client connection on which the request was received.

Let us illustrate these concepts via an example:

@Path("/async/longRunning")
public class MyResource {

    @GET
    public void longRunningOp(@Suspended final AsyncResponse ar) {
        executor.submit(
            new Runnable() {
                public void run() {
                    executeLongRunningOp();
                    ar.resume("Hello async world!");
                }
            });
    }
    ...
}

A resource method that elects to produce a response asynchronously must inject as a method
parameter an instance of the class AsyncResponse using the special annotation @Suspended. In the
example above, the method longRunningOp is called upon receiving a GET request. Rather than
producing a response immediately, this method forks a (non-request) thread to execute a long
running operation and returns immediately. Once the execution of the long running operation is
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complete, the connection is resumed and the response returned by calling resume on the injected
instance of AsyncResponse.

For more information on executors, concurrency and thread management in a Jakarta EE
environment, the reader is referred to Jakarta Concurrency Specification [13]. For more
information about executors in the JAX-RS Client API see Executor Services.

8.2.1.1. Timeouts and Callbacks

A timeout value can be specified when suspending a connection to avoid waiting for a response
indefinitely. The default unit is milliseconds, but any unit of type java.util.concurrent.TimeUnit can
be used. The following example sets a timeout of 15 seconds and registers an instance of
TimeoutHandler in case the timeout is reached before the connection is resumed.

@GET
public void longRunningOp(@Suspended final AsyncResponse ar) {
    // Register handler and set timeout
    ar.setTimeoutHandler(new TimeoutHandler() {
        public void handleTimeout(AsyncResponse ar) {
            ar.resume(Response.status(SERVICE_UNAVAILABLE).entity(
                "Operation timed out -- please try again").build());
            }
    });
    ar.setTimeout(15, SECONDS);

    // Execute long running operation in new thread
    executor.execute(
        new Runnable() {
            public void run() {
                executeLongRunningOp();
                ar.resume("Hello async world!");
            }
        });
}

JAX-RS implementations are REQUIRED to generate a ServiceUnavailableException, a subclass of
WebApplicationException with its status set to 503, if the timeout value is reached and no timeout
handler is registered. The exception MUST be processed as described in Exceptions. If a registered
timeout handler resets the timeout value or resumes the connection and returns a response, JAX-RS
implementations MUST NOT generate an exception.

It is also possible to register callbacks on an instance of AsyncResponse in order to listen for
processing completion (CompletionCallback) and connection termination (ConnectionCallback)
events. See Javadoc for AsyncResponse for more information on how to register these callbacks. Note
that support for ConnectionCallback is OPTIONAL.

8.2.2. CompletionStage

An alternative approach to the injection of AsyncResponse is for a resource method to return an
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instance of CompletionStage<T> as an indication to the underlying JAX-RS implementation that
asynchronous processing is enabled. The example from AsyncResponse can be re-written using
CompletionStage as follows:

@Path("/async/longRunning")
public class MyResource {

    @GET
    public CompletionStage<String> longRunningOp() {
        CompletableFuture<String> cs = new CompletableFuture<>();
        executor.submit(
            new Runnable() {
                public void run() {
                    executeLongRunningOp();
                    cs.complete("Hello async world!");
                }
            });
        return cs;
    }
    ...
}

In this example, a CompletableFuture instance is created and returned in the resource method; the
call to method complete on that instance is executed only after the long running operation
terminates.

8.3. EJB Resource Classes
As stated in Enterprise Java Beans (EJBs), JAX-RS implementations in products that support EJB
must also support the use of stateless and singleton session beans as root resource classes. When an
EJB method is annotated with @Asynchronous, the EJB container automatically allocates the
necessary resources for its execution. Thus, in this scenario, the use of an Executor is unnecessary to
generate an asynchronous response.

Consider the following example:

@Stateless
@Path("/")
class EJBResource {

    @GET @Asynchronous
    public void longRunningOp(@Suspended AsyncResponse ar) {
        executeLongRunningOp();
        ar.resume("Hello async world!");
    }
}
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There is no explicit thread management needed in this case since that is under the control of the
EJB container. Just like the other examples in this chapter, the response is produced by calling
resume on the injected AsyncResponse. Hence, the return type of longRunningOp is simply void.

8.4. Client API
The fluent API supports asynchronous invocations as part of the invocation building process. By
default, invocations are synchronous but can be set to run asynchronously by calling the async
method and (optionally) registering an instance of InvocationCallback as shown next:

Client client = ClientBuilder.newClient();
WebTarget target = client.target("http://example.org/customers/{id}");
target.resolveTemplate("id", 123).request().async().get(
    new InvocationCallback<Customer>() {
        @Override
        public void completed(Customer customer) {
            // Do something
        }
        @Override
        public void failed(Throwable throwable) {
            // Process error
        }
});

Note that in this example, the call to get after calling async returns immediately without blocking
the caller’s thread. The response type is specified as a type parameter to InvocationCallback. The
method completed is called when the invocation completes successfully and a response is available;
the method failed is called with an instance of Throwable when the invocation fails.

All asynchronous invocations return an instance of Future<T> here the type parameter T matches
the type specified in InvocationCallback. This instance can be used to monitor or cancel the
asynchronous invocation:

Future<Customer> ff = target.resolveTemplate("id", 123).request().async()
    .get(new InvocationCallback<Customer>() {
    @Override
    public void completed(Customer customer) {
        // Do something
    }
    @Override
    public void failed(Throwable throwable) {
        // Process error
    }
    });

// After waiting for a while ...
if (!ff.isDone()) {
    ff.cancel(true);
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}

Even though it is recommended to pass an instance of InvocationCallback when executing an
asynchronous call, it is not mandated. When omitted, the Future<T> returned by the invocation can
be used to gain access to the response by calling the method Future.get, which will return an
instance of T if the invocation was successful or null if the invocation failed.

[1] The maximum number of request threads is typically set by the administrator; if that upper bound is reached, subsequent
requests will be rejected.
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Chapter 9. Server-Sent Events

9.1. Introduction
Server-sent events (SSE) is a specification originally introduced as part of HTML5 by the W3C, but is
currently maintained by the WHATWG [17]. It provides a way to establish a one-way channel from
a server to a client. The connection is long running: it is re-used for multiple events sent from the
server, yet it is still based on the HTTP protocol. Clients request the opening of an SSE connection by
using the special media type text/event-stream in the Accept header.

Events are structured and contain several fields, namely, event, data, id, retry and comment. SSE is a
messaging protocol where the event field corresponds to a topic, and where the id field can be used
to validate event order and guarantee continuity. If a connection is interrupted for any reason, the
id can be sent in a request header for a server to re-play past events —although this is an optional
behavior that may not be supported by all implementations. Event payloads are conveyed in the
data field and must be in text format; retry is used to control re-connects and finally comment is a
general purpose field that can also be used to keep connections alive.

9.2. Client API
The JAX-RS client API for SSE was inspired by the corresponding JavaScript API in HTML5, but with
changes that originate from the use of a different language. The entry point to the client API is the
type SseEventSource, which provides a fluent builder similarly to other classes in the JAX-RS API. An
SseEventSource is constructed from a WebTarget that is already configured with a resource location;
SseEventSource does not duplicate any functionality in WebTarget and only adds the necessary logic
for SSE.

The following example shows how to open an SSE connection and read some messages for a little
while:

WebTarget target = client.target("http://...");
try (SseEventSource source = SseEventSource.target(target).build()) {
    source.register(System.out::println);
    source.open();
    Thread.sleep(500); // Consume events for just 500 ms
} catch (InterruptedException e) {
    // falls through
}

As seen in this example, an SseEventSource implements AutoCloseable. Before opening the source,
the client registers an event consumer that simply prints each event. Additional handlers for other
life-cycle events such as onComplete and onError are also supported, but for simplicity only onEvent is
shown in the example above.

67



9.3. Server API
The JAX-RS SSE server API is used to accept connections and send events to one or more clients. A
resource method that injects an SseEventSink and produces the media type text/event-stream is an
SSE resource method.

The following example accepts SSE connections and uses an executor thread to send 3 events
before closing the connection:

@GET
@Path("eventStream")
@Produces(MediaType.SERVER_SENT_EVENTS)
public void eventStream(@Context SseEventSink eventSink,
                        @Context Sse sse) {
    executor.execute(() -> {
        try (SseEventSink sink = eventSink) {
            eventSink.send(sse.newEvent("event1"));
            eventSink.send(sse.newEvent("event2"));
            eventSink.send(sse.newEvent("event3"));
        }
    });
}

SSE resource methods follow a similar pattern to those for asynchronous processing (see
Introduction) in that the object representing the incoming connection, in this case SseEventSink, is
injected into the resource method.

The example above also injects the Sse type which provides factory methods for events and
broadcasters. See Broadcasting for more information about broadcasting. Note that, just like
SseEventSource, the interface SseEventSink is also auto-closeable, hence the use of the try-with-
resources statement above.

Method send on SseEventSink returns a CompletionStage<?> as a way to provide a handle to the action
of asynchronously sending a message to a client.

9.4. Broadcasting
Applications may need to send events to multiple clients simultaneously. This action is called
broadcasting in JAX-RS. Multiple SseEventSink’s can be registered on a single SseBroadcaster.

A broadcaster can only be created by calling method newBroadcaster on the injected Sse instance.
The life-cycle and scope of an SseBroadcaster is fully controlled by applications and not the JAX-
RS runtime. The following example shows the use of broadcasters, note the @Singleton annotation
on the resource class:

@Path("/")
@Singleton
public class SseResource {
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    @Context
    private Sse sse;

    private volatile SseBroadcaster sseBroadcaster;

    @PostConstruct
    public init() {
        this.sseBroadcaster = sse.newBroadcaster();
    }

    @GET
    @Path("register")
    @Produces(MediaType.SERVER_SENT_EVENTS)
    public void register(@Context SseEventSink eventSink) {
        eventSink.send(sse.newEvent("welcome!"));
        sseBroadcaster.register(eventSink);
    }

    @POST
    @Path("broadcast")
    @Consumes(MediaType.MULTIPART_FORM_DATA)
    public void broadcast(@FormParam("event") String event) {
        sseBroadcaster.broadcast(sse.newEvent(event));
    }
}

The register method on a broadcaster is used to add a new SseEventSink; the broadcast method is
used to send an SSE event to all registered consumers.

9.5. Processing Pipeline
Connections from SSE clients are represented by injectable instances of SseEventSink. There are
some similarities between SSE and asynchronous processing (see Chapter Asynchronous
Processing). Asynchronous responses can be resumed at most once while an SseEventSink can be
used multiple times to stream individual events.

For compatibility purposes, implementations MUST initiate processing of an SSE response when
either the first message is sent or when the resource method returns, whichever happens first. The
initial SSE response, which may only include the HTTP headers, is processed using the standard
JAX-RS pipeline as described in Appendix Processing Pipeline. Each subsequent SSE event may
include a different payload and thus require the use of a specific message body writer. Note that
since this use case differs slightly from the normal JAX-RS pipeline, implementations SHOULD NOT
call entity interceptors on each individual event.[1]

9.6. Environment
The SseEventSource class uses the existing JAX-RS mechanism based on RuntimeDelegate to find an
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implementation using the service name jakarta.ws.rs.sse.SseEventSource.Builder. The majority of
types in the jakarta.ws.rs.sse are thread safe; the reader is referred to the Javadoc for more
information on thread safety.

[1] As a matter of fact, there is no API to bind entity interceptors to individual SSE events.
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Chapter 10. Context
JAX-RS provides facilities for obtaining and processing information about the application
deployment context and the context of individual requests. Such information is available to
Application subclasses (see Section Configuration), root resource classes (see Chapter Resources),
and providers (see Chapter Providers). This chapter describes these facilities.

10.1. Concurrency
Context is specific to a particular request but instances of certain JAX-RS components (providers
and resource classes with a lifecycle other than per-request) may need to support multiple
concurrent requests. When injecting an instance of one of the types listed in Context Types, the
instance supplied MUST be capable of selecting the correct context for a particular request. Use of a
thread-local proxy is a common way to achieve this.

10.2. Context Types
This section describes the types of context available to providers (client and server) as well as
resource classes and Application subclasses (server only). Except for Configuration and Providers,
which are injectable in both client and server-side providers, all the other types are server-side
only.

10.2.1. Application

The instance of the application-supplied Application subclass can be injected into a class field or
method parameter using the @Context annotation. Access to the Application subclass instance allows
configuration information to be centralized in that class. Note that this cannot be injected into the
Application subclass itself since this would create a circular dependency.

10.2.2. URIs and URI Templates

An instance of UriInfo can be injected into a class field or method parameter using the
@Context annotation. UriInfo provides both static and dynamic, per-request information, about the
components of a request URI. E.g. the following would return the names of any query parameters in
a request:

@GET
@Produces("text/plain")
public String listQueryParamNames(@Context UriInfo info) {
    StringBuilder buf = new StringBuilder();
    for (String param: info.getQueryParameters().keySet()) {
        buf.append(param);
        buf.append("\n");
    }
    return buf.toString();
}
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Note that the methods of UriInfo provide access to request URI information following the pre-
processing described in Request Preprocessing.

10.2.3. Headers

An instance of HttpHeaders can be injected into a class field or method parameter using the
@Context annotation. HttpHeaders provides access to request header information either in map form
or via strongly typed convenience methods. E.g. the following would return the names of all the
headers in a request:

@GET
@Produces("text/plain")
public String listHeaderNames(@Context HttpHeaders headers) {
    StringBuilder buf = new StringBuilder();
    for (String header: headers.getRequestHeaders().keySet()) {
        buf.append(header);
        buf.append("\n");
    }
    return buf.toString();
}

Note that the methods of HttpHeaders provide access to request information following the pre-
processing described in Request Preprocessing.

Response headers may be provided using the Response class, see Return Type for more details.

10.2.4. Content Negotiation and Preconditions

JAX-RS simplifies support for content negotiation and preconditions using the Request interface. An
instance of Request can be injected into a class field or method parameter using the
@Context annotation. The methods of Request allow a caller to determine the best matching
representation variant and to evaluate whether the current state of the resource matches any
preconditions in the request. Precondition support methods return a ResponseBuilder that can be
returned to the client to inform it that the request preconditions were not met. E.g. the following
checks if the current entity tag matches any preconditions in the request before updating the
resource:

@PUT
public Response updateFoo(@Context Request request, Foo foo) {
    EntityTag tag = getCurrentTag();
    ResponseBuilder responseBuilder = request.evaluatePreconditions(tag);
    if (responseBuilder != null)
        return responseBuilder.build();
    else
        return doUpdate(foo);
}
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The application could also set the content location, expiry date and cache control information into
the returned ResponseBuilder before building the response.

10.2.5. Security Context

The SecurityContext interface provides access to information about the security context of the
current request. An instance of SecurityContext can be injected into a class field or method
parameter using the @Context annotation. The methods of SecurityContext provide access to the
current user principal, information about roles assumed by the requester, whether the request
arrived over a secure channel and the authentication scheme used.

10.2.6. Providers

The Providers interface allows for lookup of provider instances based on a set of search criteria. An
instance of Providers can be injected into a class field or method parameter using the
@Context annotation.

This interface is expected to be primarily of interest to provider authors wishing to use other
providers functionality. It is injectable in both client and server providers.

10.2.7. Resource Context

The ResourceContext interface provides access to instantiation and initialization of resource or sub-
resource classes in the default per-request scope. It can be injected to help with creation and
initialization, or just initialization, of instances created by an application.

Let us revisit the example from Sub Resources with some simple modifications:

@Path("widgets")
public class WidgetsResource {
    @Context
    private ResourceContext rc;

    @Path("{id}")
    public WidgetResource findWidget(@PathParam("id") String id) {
        return rc.initResource(new WidgetResource(id));
    }
}

public class WidgetResource {
    @Context
    private HttpHeaders headers;

    public WidgetResource(String id) {...}

    @GET
    public Widget getDetails() {...}
}
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Note that the instance returned by the resource locator findWidget in WidgetsResource is initialized
using the injected ResourceContext before it is returned. Without this step, the headers field in
WidgetResource will not be properly initialized.

10.2.8. Configuration

Both the client and the server runtime configurations are available for injection via @Context. These
configurations are available for injection in providers (client or server) and resource classes (server
only).

As an example, consider the case of a client logging filter that not only logs messages but also logs
information about certain features enabled during the processing of a request:

public class LoggingFilter implements ClientRequestFilter {

    @Context
    private Configuration config;

    @Override
    public void filter(ClientRequestContext ctx) throws IOException {
        if (config.isEnabled(MyFeature.class)) {
            logMyFeatureEnabled(ctx);
        }
        logMessage(ctx);
    }
    ...
}

A client runtime configuration is injected in the filter shown above and its isEnabled method called
to check if MyFeature is enabled.
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Chapter 11. Environment
The container-managed resources available to a JAX-RS root resource class or provider depend on
the environment in which it is deployed. Section Context Types describes the types of context
available regardless of container. The following sections describe the additional container-
managed resources available to a JAX-RS root resource class or provider deployed in a variety of
environments.

11.1. Servlet Container
The @Context annotation can be used to indicate a dependency on a Servlet-defined resource. A
Servlet-based implementation MUST support injection of the following Servlet-defined types:
ServletConfig, ServletContext, HttpServletRequest and HttpServletResponse.

An injected HttpServletRequest allows a resource method to stream the contents of a request entity.
If the resource method has a parameter whose value is derived from the request entity then the
stream will have already been consumed and an attempt to access it MAY result in an exception.

An injected HttpServletResponse allows a resource method to commit the HTTP response prior to
returning. An implementation MUST check the committed status and only process the return value
if the response is not yet committed.

Servlet filters may trigger consumption of a request body by accessing request parameters. In a
servlet container the @FormParam annotation and the standard entity provider for application/x-
www-form-urlencoded MUST obtain their values from the servlet request parameters if the request
body has already been consumed. Servlet APIs do not differentiate between parameters in the URI
and body of a request so URI-based query parameters may be included in the entity parameter.

11.2. Integration with Jakarta EE Technologies
This section describes the additional requirements that apply to a JAX-RS implementation when
combined in a product that supports the following specifications.

11.2.1. Servlets

In a product that also supports the Servlet specification, implementations MUST support JAX-
RS applications that are packaged as a Web application. See Servlet for more information Web
application packaging.

It is RECOMMENDED for a JAX-RS implementation to provide asynchronous processing support, as
defined in Asynchronous Processing, by enabling asynchronous processing (i.e.,
asyncSupported=true) in the underlying Servlet 3 container. It is OPTIONAL for a JAX-
RS implementation to support asynchronous processing when running on a Servlet container
whose version is prior to 3.

As explained in Servlet Container, injection of Servlet-defined types is possible using the
@Context annotation. Additionally, web application’s <context-param> and servlet’s <init-param> can
be used to define application properties passed to server-side features or injected into server-side
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JAX-RS components. See Javadoc for Application.getProperties for more information.

11.2.2. Context and Dependency Injection (CDI)

In a product that supports CDI, implementations MUST support the use of CDI-style Beans as root
resource classes, providers and Application subclasses. Providers and Application subclasses MUST
be singletons or use application scope.

For example, assuming CDI is enabled via the inclusion of a beans.xml file, a CDI-style bean that can
be defined as a JAX-RS resource as follows:

@Path("/cdibean")
public class CdiBeanResource {

    @Inject MyOtherCdiBean bean;    // CDI injected bean

    @GET
    @Produces("text/plain")
    public String getIt() {
        return bean.getIt();
    }
}

The example above takes advantage of the type-safe dependency injection provided in CDI by using
another bean, of type MyOtherCdiBean, in order to return a resource representation. See Additional
Requirements for additional requirements on CDI-style Beans.

11.2.3. Enterprise Java Beans (EJBs)

In a product that supports EJBs, an implementation MUST support the use of stateless and singleton
session beans as root resource classes, providers and Application subclasses. JAX-RS annotations
can be applied to methods in an EJB’s local interface or directly to methods in a no-interface EJB.
Resource class annotations (like @Path) MUST be applied to an EJB’s class directly following the
annotation inheritance rules defined in Annotation Inheritance.

For example, a stateless EJB that implements a local interface can be defined as a JAX-RS resource
class as follows:

@Local
public interface LocalEjb {

    @GET
    @Produces("text/plain")
    public String getIt();
}

@Stateless
@Path("/stateless")
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public class StatelessEjbResource implements LocalEjb {

    @Override
    public String getIt() {
        return "Hi stateless!";
    }
}

JAX-RS implementations are REQUIRED to discover EJBs by inspecting annotations on classes and
local interfaces; they are not REQUIRED to read EJB deployment descriptors (ejb-jar.xml).
Therefore, any information in an EJB deployment descriptor for the purpose of overriding EJB
annotations or providing additional meta-data will likely result in a non-portable JAX-
RS application.

If an ExceptionMapper for a EJBException or subclass is not included with an application then
exceptions thrown by an EJB resource class or provider method MUST be unwrapped and
processed as described in Exceptions.

See EJB Resource Classes for more information on asynchronous EJB methods and Additional
Requirements for additional requirements on EJBs.

11.2.4. Bean Validation

In a product that supports the Bean Validation specification [16] , implementations MUST support
resource validation using constraint annotations as described in Chapter Validation. Otherwise,
support for resource validation is OPTIONAL.

11.2.5. Java API for JSON Processing

In a product that supports the Java API for JSON Processing (JSON-P) [18], implementations MUST
support entity providers for JsonValue and all of its sub-types: JsonStructure, JsonObject, JsonArray,
JsonString and JsonNumber.

Note that other types from the JSON-P API such as JsonParser, JsonGenerator, JsonReader and
JsonWriter can also be integrated into JAX-RS applications using the entity providers for InputStream
and StreamingOutput.

11.2.6. Java API for JSON Binding

In a product that supports the Java API for JSON Binding (JSON-B) [19], implementations MUST
support entity providers for all Java types supported by JSON-B in combination with the following
media types: application/json, text/json as well as any other media types matching /json or
/*+json.

Note that if JSON-B and JSON-P are both supported in the same environment, entity providers for
JSON-B take precedence over those for JSON-P for all types except JsonValue and its sub-types.
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11.2.7. Jakarta XML Binding

In a product that supports the Jakarta XML Binding API (JAXB) [21], implementations MUST support
entity providers for the type, jakarta.xml.bind.JAXBElement, and application-supplied JAXB classes
in combination with the following XML-based media types: text/xml and application/xml and media
types of the form application/*+xml.

11.2.8. Additional Requirements

The following additional requirements apply when using CDI-style Beans or EJBs as resource
classes, providers or Application subclasses:

• For JAX-RS resources and providers where the JAX-RS implementation participates in their
creation and initialization, field and property injection in these resources and providers MUST
be performed prior to the container invoking any @PostConstruct annotated method. For
resources and providers created by the application (e.g. instances returned via the
Application.getSingletons() method, or instances passed via Configurable.register), this
requirement does not apply.

• Support for constructor injection of JAX-RS resources is OPTIONAL. Portable applications MUST
instead use fields or bean properties in conjunction with a @PostConstruct annotated method.
Implementations SHOULD warn users about use of non-portable constructor injection.

• Implementations MUST NOT require use of @Inject or @Resource to trigger injection of JAX-
RS annotated fields or properties. Implementations MAY support such usage but SHOULD warn
users about non-portability.

11.3. Other
Other container technologies MAY specify their own set of injectable resources but MUST, at a
minimum, support access to the types of context listed in Context Types.
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Chapter 12. Runtime Delegate
RuntimeDelegate is an abstract factory class that provides various methods for the creation of objects
that implement JAX-RS APIs. These methods are designed for use by other JAX-RS API classes and
are not intended to be called directly by applications. RuntimeDelegate allows the standard JAX-
RS API classes to use different JAX-RS implementations without any code changes.

An implementation of JAX-RS MUST provide a concrete subclass of RuntimeDelegate. Using the
supplied RuntimeDelegate this can be provided to JAX-RS in one of two ways:

1. An instance of RuntimeDelegate can be instantiated and injected using its static method
setInstance. In this case the implementation is responsible for creating the instance; this option
is intended for use with implementations based on IoC frameworks.

2. The class to be used can be configured, see Configuration. In this case JAX-RS is responsible for
instantiating an instance of the class and the configured class MUST have a public constructor
which takes no arguments.

Note that an implementation MAY supply an alternate implementation of the RuntimeDelegate API
class (provided it passes the TCK signature test and behaves according to the specification) that
supports alternate means of locating a concrete subclass.

A JAX-RS implementation may rely on a particular implementation of RuntimeDelegate being used –
applications SHOULD NOT override the supplied RuntimeDelegate instance with an application-
supplied alternative and doing so may cause unexpected problems.

12.1. Configuration
If not supplied by injection, the supplied RuntimeDelegate API class obtains the concrete
implementation class using the following algorithm. The steps listed below are performed in
sequence and, at each step, at most one candidate implementation class name will be produced.
The implementation will then attempt to load the class with the given class name using the current
context class loader or, missing one, the java.lang.Class.forName(String) method. As soon as a step
results in an implementation class being successfully loaded, the algorithm terminates.

1. Use the Java SE class java.util.ServiceLoader to attempt to load an implementation from META-
INF/services/jakarta.ws.rs.ext.RuntimeDelegate. Note that this may require more than one call
to method ServiceLoader.load(Class, ClassLoader) in order to try both the context class loader
and the current class loader as explained above.[1]

2. If the ${java.home}/lib/jaxrs.properties file exists and it is readable by the
java.util.Properties.load(InputStream) method and it contains an entry whose key is
jakarta.ws.rs.ext.RuntimeDelegate, then the value of that entry is used as the name of the
implementation class.

3. If a system property with the name jakarta.ws.rs.ext.RuntimeDelegate is defined, then its value
is used as the name of the implementation class.

4. Finally, a default implementation class name is used.

[1] Earlier versions of JAX-RS did not mandate the use ServiceLoader. This backward-compatible change that started in JAX-RS 2.1 is
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to ensure forward compatibility with the Java SE 9 module system.

80



Appendix A: Summary of Annotations
Annotation Target Description

Consumes Type or method Specifies a list of media types that can be
consumed.

Produces Type or method Specifies a list of media types that can be
produced.

GET Method Specifies that the annotated method handles
HTTP GET requests.

POST Method Specifies that the annotated method handles
HTTP POST requests.

PUT Method Specifies that the annotated method handles
HTTP PUT requests.

DELETE Method Specifies that the annotated method handles
HTTP DELETE requests.

PATCH Method Specifies that the annotated method handles
HTTP PATCH requests.

HEAD Method Specifies that the annotated method handles
HTTP HEAD requests. Note that HEAD may be
automatically handled, see HEAD and
OPTIONS.

OPTIONS Method Specifies that the annotated method handles
HTTP OPTIONS requests.

ApplicationPath Type Specifies the resource-wide application path
that forms the base URI of all root resource
classes.

Path Type or method Specifies a relative path for a resource. When
used on a class this annotation identifies that
class as a root resource. When used on a
method this annotation identifies a sub-
resource method or locator.

PathParam Parameter, field or method Specifies that the value of a method
parameter, class field, or bean property is to
be extracted from the request URI path. The
value of the annotation identifies the name of
a URI template parameter.

QueryParam Parameter, field or method Specifies that the value of a method
parameter, class field, or bean property is to
be extracted from a URI query parameter.
The value of the annotation identifies the
name of a query parameter.
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FormParam Parameter, field or method Specifies that the value of a method
parameter is to be extracted from a form
parameter in a request entity body. The value
of the annotation identifies the name of a
form parameter. Note that whilst the
annotation target allows use on fields and
methods, the specification only requires
support for use on resource method
parameters.

MatrixParam Parameter, field or method Specifies that the value of a method
parameter, class field, or bean property is to
be extracted from a URI matrix parameter.
The value of the annotation identifies the
name of a matrix parameter.

CookieParam Parameter, field or method Specifies that the value of a method
parameter, class field, or bean property is to
be extracted from a HTTP cookie. The value
of the annotation identifies the name of a the
cookie.

HeaderParam Parameter, field or method Specifies that the value of a method
parameter, class field, or bean property is to
be extracted from a HTTP header. The value
of the annotation identifies the name of a
HTTP header.

Encoded Type, constructor, method,
field or parameter

Disables automatic URI decoding for path,
query, form and matrix parameters.

DefaultValue Parameter, field or method Specifies a default value for a field, property
or method parameter annotated with
@QueryParam, @MatrixParam, @CookieParam,
@FormParam or @HeaderParam. The specified
value will be used if the corresponding query
or matrix parameter is not present in the
request URI, if the corresponding form
parameter is not in the request entity body, or
if the corresponding HTTP header is not
included in the request.

Context Field, method or parameter Identifies an injection target for one of the
types listed in Context Types or the applicable
section of Chapter Environment.

HttpMethod Annotation Specifies the HTTP method for a request
method designator annotation.

Provider Type Specifies that the annotated class implements
a JAX-RS extension interface.

Since JAX-RS 2.0
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NameBinding Annotation Meta-annotation to create annotations for
binding filters or interceptors to resource
methods and applications. Name binding is
only supported as part of the Server API.

Suspended Parameter Indicates that a resource method is
asynchronous. I.e., that it does not produce a
response upon returning. JAX-RS
implementations will suspend the incoming
connection until a response becomes
available.

PreMatching Type Global binding annotation that can be applied
to a container filter to indicate that it should
be applied globally and before the resource
method is matched.

BeanParam Parameter, field or method Can be used to inject a user-defined bean
whose fields and properties may be
annotated with JAX-RS param annotations.

ConstrainedTo Type Can be used to restrict the applicability of a
provider to just the Client API or just the
Server API. If omitted, a provider can be used
in either context.

ParamConverter.Lazy Type Indicates that a conversion of a default value
delegated to a ParamConverter SHOULD occur
only when the value is actually requested.
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Appendix B: HTTP Header Support
The following table lists HTTP headers that are directly supported, either automatically by a JAX-
RS implementation runtime or by an application using the JAX-RS API. Any request header may be
obtained using HttpHeaders, see Headers; response headers not listed here may set using the
ResponseBuilder.header method.

Header Description

Accept Used by runtime when selecting a resource method, compared to
value of @Produces annotation, see Declaring Media Type Capabilities.

Accept-Charset Processed by runtime if application uses Request.selectVariant
method, see Content Negotiation and Preconditions.

Accept-Encoding Processed by runtime if application uses Request.selectVariant
method, see Content Negotiation and Preconditions.

Accept-Language Processed by runtime if application uses Request.selectVariant
method, see Content Negotiation and Preconditions.

Allow Included in automatically generated 405 error responses (see Request
Matching) and automatically generated responses to OPTIONS
requests (see HEAD and OPTIONS).

Authorization Depends on container, information available via SecurityContext, see
Security Context.

Cache-Control See CacheControl class and ResponseBuilder.cacheControl method.

Content-Encoding Response header set by application using Response.ok or
ResponseBuilder.variant.

Content-Language Response header set by application using Response.ok,
ResponseBuilder.language, or ResponseBuilder.variant.

Content-Length Processed automatically for requests, set automatically in responses if
value is provided by the MessageBodyWriter used to serialize the
message entity.

Content-Type Request header used by runtime when selecting a resource method,
compared to value of @Consumes annotation, see Declaring Media Type
Capabilities. Response header either set by application using
Response.ok, ResponseBuilder.type, or ResponseBuilder.variant, or set
automatically by runtime (see Determining the MediaType of
Responses).

Cookie See Cookie class and HttpHeaders.getCookies method.

Date Included in responses automatically as per HTTP/1.1.

ETag See EntityTag class, Response.notModified method and
ResponseBuilder.tag method.

Expect Depends on underlying container.

Expires Set by application using the ResponseBuilder.expires method.
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If-Match Processed by runtime if application uses corresponding
Request.evaluatePreconditions method, see Content Negotiation and
Preconditions. If-Modified-Since & Processed by runtime if
application uses corresponding Request.evaluatePreconditions
method, see Content Negotiation and Preconditions.

If-None-Match Processed by runtime if application uses corresponding
Request.evaluatePreconditions method, see Section Content
Negotiation and Preconditions.

If-Unmodified-Since Processed by runtime if application uses corresponding
Request.evaluatePreconditions method, see Content Negotiation and
Preconditions.

Last-Modified Set by application using the ResponseBuilder.lastModified method.
Location & Set by application using the applicable Response method or
directly using the ResponseBuilder.location method.

Set-Cookie See NewCookie class and ResponseBuilder.cookie method.

Transfer-Encoding See Transfer Encoding.

Vary Set by application using Response.notAcceptable method or
ResponseBuilder.variants method.

WWW-Authenticate Depends on container.
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Appendix C: Processing Pipeline

Figure 1. JAX-RS Server Processing Pipeline
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Figure 2. JAX-RS Client Processing Pipeline
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Appendix D: Change Log

D.1. Changes Since 3.1 Release
• Integration with Jakarta EE Technologies: Removal of @ManagedBean annotation support.

Managed bean support is now part of CDI.

• Java SE: Clarified when the two alternative ways of publishing on Java SE must be supported.

• Removed Link.JaxbLink and Link.JaxbAdapter inner classes.

• Added containsHeaderString() method to ClientRequestContext, ClientResponseContext,
ContainerRequestContext, ContainerResponseContext, and HttpHeaders.

• Added APPLICATION_MERGE_PATCH_JSON and APPLICATION_MERGE_PATCH_JSON_TYPE to MediaType

• Added getMatchedResourceTemplates() method to UriInfo.

D.2. Changes Since 3.0 Release
• Standard Entity Providers: JSON-B entity providers MUST favor Jsonb instances provided by
ContextResolver<Jsonb> over their own default context.

• Special handling for consuming multipart/form-data media types: Added portable API for
handling multipart/form-data.

• Services: Added requirement that JAX-RS implementations MUST automatically register certain
service providers.

• Java SE Bootstrap: Added portable HTTP server bootstrapping on Java SE.

• Exception Mapping Providers: Added requirement that JAX-RS implementations have default
exception mappers.

• Fields and Bean Properties: Array types may be specified for @CookieParam, @FormParam,
@HeaderParam, @MatrixParam and @QueryParam parameters.

• Deprecated Link.JaxbLink and Link.JaxbAdapter inner classes.

• New method #hasProperty(String) wherever #getProperty(String) exists

• Response.created(URI) now resolves relative URIs into an absolute URI against the base URI, not
against the request URI anymore.

• Support for @Context Injection: New section that mentions removal of @Context injection
support in future versions.

• Declaring Media Type Capabilities: Clarified resource matching when Content-Type or Accept are
missing in request.

• Constructors of Cookie class are deprecated in favor of new Cookie.Builder class.

• Constructors of NewCookie are deprecated in favor of new NewCookie.Builder class.
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D.3. Changes Since 2.1 Release
• Referencing Jakarta EE instead of Java EE

• Package changes from javax.ws.rs. to jakarta.ws.rs.

• Jakarta XML Binding: JAXB API is now optional

• Additional Requirements: Clarified injection with regard to getSingletons() method

D.4. Changes Since 2.1 Public Review
• Processing Pipeline: New section describing the SSE processing pipeline.

• Sub Resources: Allow sub-resource locators to return classes as well.

• Executor Services: Removed defaults for all environments not supporting the Java Concurrenty
Utilities for Java EE API.

• Java API for JSON Processing: Support for JsonValue and all its sub-types.

• Java API for JSON Binding: New section for JSON-B support.

• CompletionStage: New section for CompletionStage<T> as return type in a resource method.

• Priorities: New section introducing support for @Priority for all providers.

• Entity Providers: Modified algorithm steps to add support for @Priority in selection of message
body readers and writers.

D.5. Changes Since 2.1 Early Draft
• Chapter Server-Sent Events: API changes and removal of Flow API references.

• Resource Methods: Added @PATCH to list of supported HTTP methods.

• Executor Services: New section about executor services.

• Configuration: Use of ServiceLoader in first step of algorithm.

D.6. Changes Since 2.0 Final Release
• Fields and Bean Properties: Clarified exception handling for all 5 steps used to convert a string

to a Param. Allowed the combination of List<T>, Set<T>, or SortedSet<T> and ParamConverter.

• Request Matching: Defined client and server media types.

• Reactive Clients: New section introducing support for reactive clients.

• Server-Sent Events: New chapter describing the Server-Sent Events API.

D.7. Changes Since 2.0 Proposed Final Draft
• Message Body Reader and Message Body Writer: Updated last logical step separating client and

server runtimes.

• Standard Entity Providers: New exception NoContentException to handle zero-length entities.
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• Exceptions and Exceptions: New subsections to separate client and server processing of
exceptions.

• Configurable Types: Invocation and Invocation.Builder are no longer configurable types.

• Filters and Entity Interceptors: Updated samples based on changes to Client API.

• Default Validation Mode: Updated section based on changes to Bean Validation API.

• Validation and Error Reporting: Minor re-wording of Phase 2.

• Timeouts and Callbacks: Improved example to return a response if a timeout expires.

• Client API: Updated samples based on changes to Client API.

• Context Types: Clarified server vs. client injectable types.

• Configuration: New section about injection of Configuration instances.

• Bean Validation: New section stating that support for resource validation is required only in a
product that supports Bean Validation.

D.8. Changes Since 2.0 Public Review Draft
• In Javadocs: Method getSize in class MessageBodyWriter is deprecated.

• Chapter Resources and Providers: Replaced WebApplicationException by corresponding subclass
depending on HTTP status code.

• Fields and Bean Properties: New step for ParamConverter.

• Standard Entity Providers: Special case for zero-length entities and primitive types.

• Chapter Client API: Updated samples and text related to the configuration of Client API types.
Method configuration has been removed in favor of the Configurable interface.

• Chapter Client API: ClientFactory renamed to ClientBuilder.

• Chapter Client API: Dropped support for @Uri annotation.

• Entity Interceptors: New paragraph clarifying that entity interceptors are not called if a
readFrom or writeTo method is called directly from application code.

• Entity Interceptors: Improved GzipInterceptor sample.

• Name Binding: Clarified name binding with multiple annotations. Made semantics compatible
with CDI interceptor binding. Name binding with Application subclasses.

• Priorities: Annotation @BindingPriority replaced by common annotation @Priority.

• Exceptions: Clarified processing of a response mapped from an exception.

• Server API: Updated samples in this section. New citation for JSR 236.

• Timeouts and Callbacks: Improved example.

• Client API: Fixed signature of method failed in samples.

• Default Validation Mode: New section about default validation and @ValidateExecutable.

• Validation and Error Reporting: Restored validation phases.

• Java API for JSON Processing: New section about integration with JSON-P.
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D.9. Changes Since 2.0 Early Draft (Third Edition)
• Chapter "Validation": Removed from PR. JAX-RS 2.0 will defer to CDI for Bean Validation. Only

those resource classes that are CDI beans would be validated.

• Exceptions: Clarified that the steps must be followed in order and that throwables are
propagated to the underlying container only if they cannot be mapped.

• Resource Methods: Added @OPTIONS to list.

• Return Type: New note about anonymous inner classes.

• Request Matching: Allow multiple root resource classes to share same URI in algorithm. Note
changes in output and input of steps 1 and 2, respectively.

• Message Body Writer: Throw new exception InternalServerErrorException.

• Entity Providers: Removed steps that required the use of the JavaBeans Activation Framework
[20] to map objects to representations and vice-versa. The EG deemed this feature to be
confusing and not portable across implementations.

• Standard Entity Providers: Support for pre-packaged readers and writers for Java types
java.lang.Boolean, java.lang.Character, java.lang.Number and media type text/plain.

• Standard Entity Providers: Detailed behavior for readers and zero-length request entities.

• Dynamic Binding: DynamicBinder replaced by DynamicFeature.

• Exceptions: Clarified processing of responses mapped using exception mappers.

• Chapter Asynchronous Processing: Updated sections related to the Server API. @Suspended
annotation, timeouts and callbacks.

• Timeouts and Callbacks: Throw new exception ServiceUnavailableException.

• Resource Context: New section for ResourceContext.

• Enterprise Java Beans (EJBs): Clarified location of annotations in accordance to the JAX-RS
annotation inheritance rules.

• Filters and Interceptors: Replaced @PostMatching by @PreMatching. Post-matching is now the
default.

• Summary of Annotations: Edited section on JAX-RS 2.0 annotations.

D.10. Changes Since 2.0 Early Draft (Second Edition)
• URI Templates: New example showing a scenario in which a @PathParam is not be available for

injection.

• Request Matching: Formalization of certain parts of the matching algorithm that were vague.
Defined formal ordering between media types and highlighted situations in which
implementations should report a warning if the matching is ambiguous.

• Request Matching: New sample showing the resource matching algorithm in action.

• Converting URI Templates to Regular Expressions: New footnote about syntax of regular
expression.
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• Chapter Providers: The annotation @Provider is now only required for automatic discovery of
providers (typically via class scanning). It is no longer required for a provider that is manually
registered in classes such as Application or Configuration.

• Automatic Discovery: New section about automatic discovery of provider classes. Only those
annotated with @Provider must be discovered automatically.

• Chapter Client API: Features are now providers and can be registered as such. A feature can no
longer be disabled.

• Chapter Client API: Class Target renamed to WebTarget. Removed text describing how to use a
builder factory class (no longer supported). A few other minor updates and typos fixed.

• Chapter Filters and Interceptors: Extension points for filters revised. New filter interfaces
ClientRequestFilter and ClientResponseFilter in Client API and new filter interfaces
ContainerRequestFilter and ContainerResponseFilter in Server API. Corresponding context
classes also updated in chapter. A ContainerRequestFilter is executed before resource matching
unless annotated with @PostMatching. It is no longer possible to share a filter implementation
between the Client and Server APIs; entity interceptors are still shareable.

• Chapter Filters and Interceptors: Section on the relationship between filters and entity
interceptors (including diagram) dropped.

• Global Binding: Clarified global binding in relation to the new semantics of @Provider for
automatic discovery.

• Dynamic Binding: The DynamicBinding interface, intended to be implemented by filters and
entity interceptors, is replaced by DynamicBinder. A dynamic binder is a new type of provider
that binds filters and entity interceptors with resource methods.

• Chapter Validation: Use media type names instead of Java constants for clarity. More descriptive
names for constraint annotations. Changed inheritance rules for constraint annotations to
follow those defined in [16]. New note about @Valid support for return values. Fixed phase
number typo.

• Timeouts and Callbacks: New sentence about calling suspend more than once or in a method
annotated with @Suspend.

• EJB Resource Classes: New section about EJB resource classes with methods annotated with
@Asynchronous.

• Chapter Environment: Re-structured chapter with sub-sections for each of the EE technologies
with which JAX-RS integrates. New examples added.

D.11. Changes Since 2.0 Early Draft
• Project Team Members: Updated 2.0 expert group member list.

• Acknowledgements: Updated acknowledgements for 2.0 version.

• Exceptions: New section that describes exception handling for all providers. Related changes to
reference this new section.

• Exceptions: New section for filter and interceptor exceptions. Related changes to reference this
new section.

• Request Matching: Updated step 2a so that it only goes to step 3 when M \neq \{\}.
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• Request Matching: New sentence about the use of a server quality parameter (qs-value) during
request matching.

• Chapter Filters and Interceptors: New extension point for pre-match filters that are executed
before resource matching.

• Chapter Filters and Interceptors: Filter methods no longer return a next action; the execution of
a request filter chain is stopped by setting a response in the associated context.

• Chapter Filters and Interceptors: Handlers renamed to entity interceptors for clarity (in this log
included).

• Section Global Binding: Global binding is now the default for filters and entity interceptors. The
annotation @GlobalBinding has been dropped.

• Section Priorities: Clarified reverse ordering of the response filter chain based on binding
priorities.

• Appendix C: Removed from this version after changes to Chapter Filters and Interceptors.

• Chapter Validation: Moved to an instantiate-then-validate strategy in which validation of
constructor parameters and setters is no longer supported. Simplified validation process to
better align with Bean Validation 1.1 [16]. In particular, validation of resource classes, fields and
property getters are all carried out in a single step.

D.12. Changes Since 1.1 Release
• Status: Updated URLs to JSR pages, etc.

• Non-Goals: Removed Client APIs as non-goal.

• Terminology: Added new terminology.

• Project Team Members: List 2.0 expert group members.

• Acknowledgements: acknowledgements for 2.0 version.

• Chapter Applications: Somewhat generic section on validation removed to avoid confusion with
the type of validation defined in Chapter "Validation".

• Servlet: Clarified used of Servlet 3 framework pluggability. Added sample web.xml files and a
table summarizing all cases.

• Entity Parameters: Clarified notion of entity parameter as a parameter not annotated with any
JAX-RS annotation.

• Declaring Media Type Capabilities: Explained use of quality factor q. Introduced server-side
quality factor qs and included example.

• Annotation Inheritance: Added sentence about conflicting annotations and recommendation to
repeat annotations for consistency with other Java EE specifications.

• Request Preprocessing: Highlighted input and output for each step in algorithm. Minor edits to
simplify presentation.

• Determining the MediaType of Responses: Updated algorithm to support server-side quality
factor qs.

• Client API: New chapter Client API.
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• Filters and Interceptors: New chapter Filters and Interceptors.

• Chapter "Validation": New chapter Validation.

• Chapter Asynchronous Processing: New chapter Asynchronous Processing.

• Appendix Summary of Annotations: New section for 2.0 annotations.

• Appendix C: New appendix describing filter and interceptor extension points.

D.13. Changes Since 1.0 Release
• Servlet: New requirements for Servlet 3 containers.

• Integration with Jakarta EE Technologies: Requirements for Java EE 6 containers.

• Standard Entity Providers: Requirements on standard entity providers when presented with an
empty message entity.

• Message Body Writer: Add closeness of generic type as secondary sort key.

• Message Body Reader: Default to application/octet-stream if a request does not contain a
content-type header.

• Fields and Bean Properties: Add support for static fromString method.

• Annotation Inheritance: Clarify annotation inheritance.

• Security Context: Fix typo.

• Servlet Container: Additional considerations related to filters consuming request bodies.

D.14. Changes Since Proposed Final Draft
• Request Matching: Additional sort criteria so that templates with explicit regexs are sorted

ahead of those with the default.

• Request Matching, Determining the MediaType of Responses, Declaring Media Type Capabilities
and Declaring Media Type Capabilities: Q-values not used in @Consumes or @Produces.

• Message Body Writer: Fixed algorithm to refer to Determining the MediaType of Responses
instead of restating it. Fixed status code returned when the media type has been determined but
an appropriate message body writer cannot be located.

• Chapter Runtime Delegate: Clarify that an implementation can supply an alternate
RuntimeDelegate API class.

D.15. Changes Since Public Review Draft
• Applications: Renamed ApplicationConfig class to Application.

• Chapter Resources: UriBuilder reworked to always encode components.

• Constructors and Constructors: Added requirement to warn when choice of constructor is
ambiguous.

• Fields and Bean Properties: FormParam no longer required to be supported on fields or
properties.
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• Return Type: Added text describing how to determine raw and generic types from method
return type and returned instance.

• URI Templates: Template parameters can specify the regular expression that forms their
capturing group.

• Request Preprocessing: Make pre-processed URIs available rather than original request URI.
Added URI normalization.

• Request Preprocessing: Removed URI-based content negotiation.

• Request Matching: Reorganized the request matching algorithm to remove redundancy and
improve readability, no functional change.

• Converting URI Templates to Regular Expressions: Changes to regular expressions to eliminate
edge cases.

• Entity Providers: Added requirement to use JavaBean Activation Framework when no entity
provider can be found.

• Standard Entity Providers: Require standard JAXB entity providers to use application-supplied
JAXB contexts in preference to their own.

• Context Providers: Added support for specifying media type capabilities of context providers.

• Context Types: Removed ContextResolver from list of injectable resources.

• Providers: Changed name to Providers, removed entity provider-specific text to reflect more
generic capabilities.

• HTTP Header Support: New appendix describing where particular HTTP headers are supported.
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