
Jakarta Faces
Jakarta Faces Team, https://projects.eclipse.org/projects/ee4j.faces

4.0, May 16, 2022: Final

Table of Contents
Copyright. 2

Eclipse Foundation Specification License – v1.0. 2

Disclaimers . 2

Preface. 4

Related Technologies . 4

Other Jakarta Platform Specifications . 4

Related Documents and Specifications. 4

Terminology. 5

Providing Feedback . 5

Acknowledgements . 5

1. Overview. 7

1.1. Solving Practical Problems of the Web . 7

1.2. Specification Audience . 8

1.2.1. Page Authors. 8

1.2.2. Component Writers . 8

1.2.3. Application Developers . 9

1.2.4. Tool Providers . 10

1.2.5. Jakarta Faces Implementors . 11

1.3. Introduction to Jakarta Faces APIs . 11

1.3.1. package jakarta.faces . 11

1.3.2. package jakarta.faces.application . 11

1.3.3. package jakarta.faces.component . 11

1.3.4. package jakarta.faces.component.html. 12

1.3.5. package jakarta.faces.context . 12

1.3.6. package jakarta.faces.convert . 12

1.3.7. package jakarta.faces.el . 12

1.3.8. package jakarta.faces.flow and jakarta.faces.flow.builder . 12

1.3.9. package jakarta.faces.lifecycle . 12

1.3.10. package jakarta.faces.event . 12

1.3.11. package jakarta.faces.render . 13

1.3.12. package jakarta.faces.validator . 13

1.3.13. package jakarta.faces.webapp . 13

2. Request Processing Lifecycle . 14

2.1. Request Processing Lifecycle Scenarios . 15

2.1.1. Non-Faces Request Generates Faces Response. 16

2.1.2. Faces Request Generates Faces Response . 16

2.1.3. Faces Request Generates Non-Faces Response. 17

2.2. Standard Request Processing Lifecycle Phases . 18

2.2.1. Restore View. 18

2.2.2. Apply Request Values . 20

2.2.2.1. Apply Request Values Partial Processing . 21

2.2.3. Process Validations . 21

2.2.3.1. Partial Validations Partial Processing. 22

2.2.4. Update Model Values . 22

2.2.4.1. Update Model Values Partial Processing . 22

2.2.5. Invoke Application . 23

2.2.6. Render Response . 23

2.2.6.1. Render Response Partial Processing. 25

2.3. Common Event Processing . 26

2.4. Common Application Activities . 26

2.4.1. Acquire Faces Object References. 26

2.4.1.1. Acquire and Configure Lifecycle Reference . 27

2.4.1.2. Acquire and Configure FacesContext Reference . 27

2.4.2. Create And Configure A New View . 27

2.4.2.1. Create A New View . 27

2.4.2.2. Configure the Desired RenderKit. 28

2.4.2.3. Configure The View’s Components . 29

2.4.2.4. Store the new View in the FacesContext . 29

2.5. Concepts that impact several lifecycle phases . 29

2.5.1. Value Handling . 29

2.5.1.1. Apply Request Values Phase . 29

2.5.1.2. Process Validators Phase . 29

2.5.1.3. Executing Validation. 30

2.5.1.4. Update Model Values Phase . 30

2.5.2. Localization and Internationalization (L10N/I18N) . 30

2.5.2.1. Determining the active Locale . 30

2.5.2.2. Determining the Character Encoding . 31

2.5.2.3. Localized Text. 32

2.5.2.4. Localized Application Messages. 32

2.5.3. State Management . 35

2.5.3.1. State Management Considerations for the Custom Component Author 36

2.5.3.2. State Management Considerations for the Jakarta Faces Implementor. 37

2.5.4. Resource Handling . 37

2.5.5. View Parameters . 38

2.5.6. Bookmarkability . 39

2.5.7. Jakarta Bean Validation . 39

2.5.8. Ajax. 40

2.5.9. Component Behaviors . 40

2.5.10. System Events . 41

2.6. Resource Handling . 42

2.6.1. Packaging Resources . 42

2.6.1.1. Packaging Resources into the Web Application Root . 42

2.6.1.2. Packaging Resources into the Classpath . 42

2.6.1.3. Resource Identifiers . 43

2.6.1.4. Libraries of Localized and Versioned Resources . 46

2.6.2. Rendering Resources . 50

2.6.2.1. Relocatable Resources . 50

2.6.2.2. Resource Rendering Using Annotations. 51

2.7. Resource Library Contracts . 51

3. User Interface Component Model. 53

3.1. UIComponent and UIComponentBase . 53

3.1.1. Component Identifiers . 54

3.1.2. Component Type . 54

3.1.3. Component Family . 54

3.1.4. ValueExpression properties . 55

3.1.5. Component Bindings . 55

3.1.6. Client Identifiers . 56

3.1.7. Component Tree Manipulation . 57

3.1.8. Component Tree Navigation. 57

3.1.9. Facet Management . 59

3.1.10. Managing Component Behavior . 60

3.1.11. Generic Attributes. 60

3.1.11.1. Special Attributes . 61

3.1.12. Render-Independent Properties . 62

3.1.13. Component Specialization Methods . 63

3.1.14. Lifecycle Management Methods . 65

3.1.15. Utility Methods . 66

3.2. Component Behavioral Interfaces . 66

3.2.1. ActionSource . 66

3.2.1.1. Properties . 67

3.2.1.2. Methods . 67

3.2.1.3. Events . 67

3.2.2. ActionSource2 . 68

3.2.2.1. Properties . 68

3.2.2.2. Methods . 68

3.2.2.3. Events . 68

3.2.3. NamingContainer . 68

3.2.4. StateHolder . 69

3.2.4.1. Properties . 69

3.2.4.2. Methods . 69

3.2.4.3. Events . 70

3.2.5. PartialStateHolder. 70

3.2.5.1. Properties . 70

3.2.5.2. Methods . 70

3.2.5.3. Events . 71

3.2.6. ValueHolder . 71

3.2.6.1. Properties . 71

3.2.6.2. Methods . 71

3.2.6.3. Events . 72

3.2.7. EditableValueHolder . 72

3.2.7.1. Properties . 72

3.2.7.2. Methods . 72

3.2.7.3. Events . 73

3.2.8. SystemEventListenerHolder. 73

3.2.8.1. Properties . 73

3.2.8.2. Methods . 73

3.2.8.3. Events . 74

3.2.9. ClientBehaviorHolder . 74

3.3. Conversion Model . 75

3.3.1. Overview . 75

3.3.2. Converter . 75

3.3.3. Standard Converter Implementations . 76

3.4. Event and Listener Model. 78

3.4.1. Overview . 78

3.4.2. Application Events . 79

3.4.2.1. Event Classes. 79

3.4.2.2. Listener Classes . 81

3.4.2.3. Phase Identifiers . 81

3.4.2.4. Listener Registration . 81

3.4.2.5. Event Queueing . 82

3.4.2.6. Event Broadcasting . 82

3.4.3. System Events . 83

3.4.3.1. Event Classes. 83

3.4.3.2. Listener Classes . 84

3.4.3.3. Programmatic Listener Registration. 84

3.4.3.4. Declarative Listener Registration . 85

3.4.3.5. Listener Registration By Annotation. 85

3.4.3.6. Listener Registration By Application Configuration Resources . 86

3.4.3.7. Event Broadcasting . 86

3.5. Validation Model . 86

3.5.1. Overview . 86

3.5.2. Validator Classes . 86

3.5.3. Validation Registration . 86

3.5.4. Validation Processing . 88

3.5.5. Standard Validator Implementations. 88

3.5.6. Bean Validation Integration . 89

3.5.6.1. Bean Validator Activation . 90

3.5.6.2. Obtaining a ValidatorFactory . 90

3.5.6.3. Class-Level Validation. 90

3.5.6.4. Localization of Bean Validation Messages. 91

3.6. Composite User Interface Components . 92

3.6.1. Non-normative Background . 92

3.6.1.1. What does it mean to be a Jakarta Faces User Interface component? 93

3.6.1.2. How does one make a custom Jakarta Faces User Interface component?. 93

3.6.1.3. How does one make a composite component?. 94

3.6.1.4. A simple composite component example . 95

3.6.1.5. Walk through of the run-time for the simple composite component example 96

3.6.1.6. Composite Component Terms. 97

3.6.2. Normative Requirements . 98

3.6.2.1. Composite Component Metadata. 99

3.7. Component Behavior Model . 101

3.7.1. Overview. 101

3.7.2. Behavior Interface . 102

3.7.3. BehaviorBase . 102

3.7.4. The Client Behavior Contract . 102

3.7.5. ClientBehaviorHolder . 103

3.7.6. ClientBehaviorRenderer . 103

3.7.7. ClientBehaviorContext. 103

3.7.8. ClientBehaviorHint. 104

3.7.9. ClientBehaviorBase . 104

3.7.10. Behavior Event / Listener Model. 105

3.7.10.1. Event Classes . 105

3.7.10.2. Listener Classes . 105

3.7.10.3. Listener Registration . 106

3.7.11. Ajax Behavior . 106

3.7.11.1. AjaxBehavior . 106

3.7.11.2. Ajax Behavior Event / Listener Model . 106

3.7.12. Adding Behavior To Components . 106

3.7.13. Behavior Registration . 107

3.7.13.1. XML Registration. 107

3.7.13.2. Registration By Annotation. 107

4. Standard User Interface Components . 109

4.1. Standard User Interface Components . 109

4.1.1. UIColumn . 110

4.1.1.1. Component Type . 111

4.1.1.2. Properties . 111

4.1.1.3. Methods . 111

4.1.1.4. Events. 111

4.1.2. UICommand . 111

4.1.2.1. Component Type . 111

4.1.2.2. Properties . 111

4.1.2.3. Methods . 112

4.1.2.4. Events. 112

4.1.3. UIData . 112

4.1.3.1. Component Type . 112

4.1.3.2. Properties . 112

4.1.3.3. Methods . 114

4.1.3.4. Events. 114

4.1.4. UIForm. 115

4.1.4.1. Component Type . 115

4.1.4.2. Properties . 115

4.1.4.3. Methods. 115

4.1.4.4. Events. 116

4.1.5. UIGraphic . 116

4.1.5.1. Component Type . 116

4.1.5.2. Properties . 116

4.1.5.3. Methods . 117

4.1.5.4. Events. 117

4.1.6. UIInput. 117

4.1.6.1. Component Type . 117

4.1.6.2. Properties . 117

4.1.6.3. Methods . 118

4.1.6.4. Events. 119

4.1.7. UIMessage . 119

4.1.7.1. Component Type . 119

4.1.7.2. Properties . 119

4.1.7.3. Methods. 120

4.1.7.4. Events. 120

4.1.8. UIMessages . 120

4.1.8.1. Component Type . 120

4.1.8.2. Properties . 120

4.1.8.3. Methods. 121

4.1.8.4. Events. 121

4.1.9. UIOutcomeTarget . 121

4.1.9.1. Component Type . 122

4.1.9.2. Properties . 122

4.1.9.3. Methods . 122

4.1.9.4. Events. 122

4.1.10. UIOutput . 122

4.1.10.1. Component Type . 122

4.1.10.2. Properties . 123

4.1.10.3. Methods . 123

4.1.10.4. Events. 123

4.1.11. UIPanel . 123

4.1.11.1. Component Type . 123

4.1.11.2. Properties . 123

4.1.11.3. Methods . 123

4.1.11.4. Events. 123

4.1.12. UIParameter. 124

4.1.12.1. Component Type . 124

4.1.12.2. Properties . 124

4.1.12.3. Methods . 124

4.1.12.4. Events. 124

4.1.13. UISelectBoolean. 124

4.1.13.1. Component Type . 124

4.1.13.2. Properties . 124

4.1.13.3. Methods . 125

4.1.13.4. Events. 125

4.1.14. UISelectItem . 125

4.1.14.1. Component Type . 125

4.1.14.2. Properties . 125

4.1.14.3. Methods . 126

4.1.14.4. Events. 126

4.1.15. UISelectItems . 126

4.1.15.1. Component Type . 126

4.1.15.2. Properties . 126

4.1.15.3. Methods . 127

4.1.15.4. Events. 127

4.1.16. UISelectMany . 127

4.1.16.1. Component Type . 127

4.1.16.2. Properties . 127

4.1.16.3. Methods . 128

4.1.16.4. Events. 128

4.1.17. UISelectOne . 128

4.1.17.1. Component Type . 128

4.1.17.2. Properties . 128

4.1.17.3. Methods . 128

4.1.17.4. Events. 128

4.1.18. UIViewParameter . 128

4.1.19. UIViewRoot. 129

4.1.19.1. Component Type . 129

4.1.19.2. Properties . 129

4.1.19.3. Methods . 130

4.1.19.4. Events. 130

4.1.19.5. Partial Processing . 131

4.2. Standard UIComponent Model Beans . 131

4.2.1. DataModel. 131

4.2.1.1. Properties . 131

4.2.1.2. Methods . 132

4.2.1.3. Events. 132

4.2.1.4. Concrete Implementations . 132

4.2.2. SelectItem . 133

4.2.2.1. Properties . 133

4.2.2.2. Methods . 133

4.2.2.3. Events. 133

4.2.3. SelectItemGroup . 133

4.2.3.1. Properties . 134

4.2.3.2. Methods . 134

4.2.3.3. Events. 134

5. Expression Language Facility . 135

5.1. Value Expressions. 135

5.1.1. Overview. 135

5.1.2. Value Expression Syntax and Semantics . 136

5.2. MethodExpressions . 136

5.2.1. MethodExpression Syntax and Semantics . 137

5.2.2. Jakarta Faces Managed Classes and Jakarta EE Annotations . 137

5.3. How Faces Leverages the Expression Language. 138

5.3.1. ELContext . 139

5.3.1.1. Lifetime, Ownership and Cardinality. 139

5.3.1.2. Properties . 139

5.3.1.3. Methods . 139

5.3.1.4. Events. 140

5.3.2. ELResolver . 140

5.3.2.1. Lifetime, Ownership, and Cardinality . 140

5.3.2.2. Properties . 140

5.3.2.3. Methods . 140

5.3.2.4. Events. 141

5.3.3. ExpressionFactory . 141

5.3.3.1. Lifetime, Ownership, and Cardinality . 141

5.3.3.2. Properties . 141

5.3.3.3. Methods . 141

5.3.3.4. Events. 142

5.4. ELResolver Instance Provided by Faces . 142

5.4.1. ELResolvers from application configuration resources . 142

5.4.2. ELResolvers from Application.addELResolver() . 142

5.4.3. Faces ELResolver for Facelets and Programmatic Access . 142

5.4.3.1. faces.CompositeComponentAttributesELResolver . 143

5.4.3.2. el.CompositeELResolver . 145

5.4.3.3. faces.ResourceELResolver. 145

5.4.3.4. el.ResourceBundleELResolver . 146

5.4.3.5. faces.ResourceBundleELResolver . 147

5.4.3.6. Stream, StaticField, Map, List, Array, and Bean ELResolvers . 148

5.4.3.7. faces.ScopedAttributeELResolver . 148

5.5. Current Expression Evaluation APIs . 150

5.5.1. ELResolver . 150

5.5.2. ValueExpression . 150

5.5.3. MethodExpression . 150

5.5.4. Expression Evaluation Exceptions . 150

5.6. CDI Integration . 151

5.6.1. Jakarta Faces Objects Valid for @Inject Injection . 151

5.6.2. Expression Language Resolution . 151

5.6.2.1. Implicit Objects for Facelets and Programmatic Access . 152

6. Per-Request State Information . 153

6.1. FacesContext . 153

6.1.1. Application . 153

6.1.2. Attributes . 153

6.1.3. ELContext . 153

6.1.4. ExternalContext. 154

6.1.4.1. Flash . 155

6.1.5. ViewRoot . 155

6.1.6. Message Queue . 156

6.1.7. RenderKit . 156

6.1.8. ResponseStream and ResponseWriter. 157

6.1.9. Flow Control Methods . 157

6.1.10. Partial Processing Methods . 158

6.1.11. Partial View Context. 158

6.1.12. Access To The Current FacesContext Instance. 158

6.1.13. CurrentPhaseId . 159

6.1.14. ExceptionHandler. 159

6.2. ExceptionHandler. 159

6.2.1. Default ExceptionHandler implementation . 160

6.2.2. Default Error Page . 161

6.3. FacesMessage. 162

6.4. ResponseStream . 162

6.5. ResponseWriter. 163

6.6. FacesContextFactory . 165

6.7. ExceptionHandlerFactory. 165

6.8. ExternalContextFactory . 166

7. Application Integration. 167

7.1. Application . 167

7.1.1. ActionListener Property . 167

7.1.2. DefaultRenderKitId Property . 168

7.1.3. FlowHandler Property . 168

7.1.4. NavigationHandler Property . 169

7.1.5. StateManager Property . 169

7.1.6. ELResolver Property. 169

7.1.7. ELContextListener Property. 169

7.1.8. ViewHandler Property. 170

7.1.9. ProjectStage Property. 170

7.1.10. Acquiring ExpressionFactory Instance . 170

7.1.11. Programmatically Evaluating Expressions. 170

7.1.12. Object Factories . 171

7.1.12.1. Default Validator Ids. 172

7.1.13. Internationalization Support . 172

7.1.14. System Event Methods. 173

7.1.14.1. Subscribing to system events . 173

7.1.14.2. Unsubscribing from system events. 174

7.2. ApplicationFactory . 174

7.3. Application Actions . 175

7.4. NavigationHandler. 175

7.4.1. Overview. 175

7.4.2. Default NavigationHandler Algorithm . 176

7.4.2.1. Requirements for Explicit Navigation in Faces Flow Call Nodes other than ViewNodes 181

7.4.2.2. Requirements for Entering a Flow . 182

7.4.2.3. Requirements for Exiting a Flow. 182

7.4.2.4. Requirements for Calling A Flow from the Current Flow . 182

7.4.3. Example NavigationHandler Configuration. 182

7.5. FlowHandler . 187

7.5.1. Non-normative example . 188

7.5.2. Non-normative Feature Overview . 190

7.6. ViewHandler . 190

7.6.1. Overview. 190

7.6.2. Default ViewHandler Implementation . 193

7.6.2.1. ViewHandler Methods that Derive Information From the Incoming Request. 193

7.6.2.2. ViewHandler Methods that are Called to Fill a Specific Role in the Lifecycle 195

7.6.2.3. ViewHandler Methods Relating to Navigation. 195

7.6.2.4. ViewHandler Methods that relate to View Protection . 198

7.7. ViewDeclarationLanguage . 198

7.7.1. ViewDeclarationLanguageFactory . 198

7.7.2. Default ViewDeclarationLanguage Implementation . 199

7.7.2.1. ViewDeclarationLanguage.createView() . 199

7.7.2.2. ViewDeclarationLanguage.calculateResourceLibraryContracts(). 199

7.7.2.3. ViewDeclarationLanguage.buildView() . 200

7.7.2.4. ViewDeclarationLanguage.getComponentMetadata() . 200

7.7.2.5. ViewDeclarationLanguage.getViewMetadata() and getViewParameters() 201

7.7.2.6. ViewDeclarationLanguage.getScriptComponentResource() . 201

7.7.2.7. ViewDeclarationLanguage.renderView() . 202

7.7.2.8. ViewDeclarationLanguage.restoreView() . 202

7.8. StateManager. 202

7.8.1. Overview. 203

7.8.1.1. Stateless Views . 203

7.8.2. State Saving Alternatives and Implications . 204

7.8.3. State Saving Methods. 204

7.8.4. State Restoring Methods . 205

7.8.5. Convenience Methods . 205

7.9. ResourceHandler . 205

8. Rendering Model . 206

8.1. RenderKit . 206

8.2. Renderer . 208

8.3. ClientBehaviorRenderer . 209

8.3.1. ClientBehaviorRenderer Registration . 209

8.4. ResponseStateManager . 210

8.5. RenderKitFactory . 211

8.6. Standard HTML RenderKit Implementation . 212

8.7. The Concrete HTML Component Classes. 212

9. Standard Tag Libraries . 214

9.1. UIComponent Tags . 214

9.2. Using UIComponent Tags . 215

9.2.1. Declaring the Tag Libraries . 215

9.2.2. Including Components in a Page. 216

9.2.3. Creating Components and Overriding Attributes . 216

9.2.4. Deleting Components on Redisplay . 217

9.2.5. Representing Component Hierarchies. 217

9.2.6. Registering Converters, Event Listeners, and Validators . 218

9.2.7. Using Facets . 219

9.2.8. Interoperability with Jakarta Tags . 219

9.3. UIComponent tag Implementation Requirements . 220

9.4. Jakarta Faces Core Tag Library . 220

9.5. Standard HTML RenderKit Tag Library . 221

10. Facelets and its use in Web Applications . 223

10.1. Non-normative Background . 223

10.1.1. Differences between Jakarta Server Pages and Facelets. 223

10.1.2. Resource Library Contracts Background . 224

10.1.2.1. Non-normative Example . 224

10.1.2.2. Non-normative Feature Overview . 227

10.1.3. HTML5 Friendly Markup . 228

10.1.3.1. Non-normative Feature Overview . 228

10.2. Java Programming Language Specification for Facelets in Jakarta Faces 230

10.2.1. Specification of the ViewDeclarationLanguage Implementation for Facelets for Jakarta

Faces . 231

10.3. XHTML Specification for Facelets for Jakarta Faces . 233

10.3.1. General Requirements. 233

10.3.1.1. DOCTYPE and XML Declaration. 233

10.3.2. Facelet Tag Library mechanism . 233

10.3.3. Requirements specific to composite components. 235

10.3.3.1. Declaring a composite component library for use in a Facelet page 235

10.3.3.2. Creating an instance of a top level component . 236

10.3.3.3. Populating a top level component instance with children. 236

10.4. Standard Facelet Tag Libraries . 237

10.4.1. Jakarta Faces Core Tag Library . 237

10.4.2. Standard HTML RenderKit Tag Library . 238

10.4.3. Facelet Templating Tag Library. 238

10.4.4. Composite Component Tag Library . 238

10.4.5. Jakarta Tags Core and Function Tag Libraries. 238

10.5. Assertions relating to the construction of the view . 238

11. Using Jakarta Faces in Web Applications . 239

11.1. Web Application Deployment Descriptor . 239

11.1.1. Servlet Definition . 239

11.1.2. Servlet Mapping . 240

11.1.3. Application Configuration Parameters . 240

11.2. Included Classes and Resources . 245

11.2.1. Application-Specific Classes and Resources . 245

11.2.2. Jakarta Servlet API Classes (jakarta.servlet.*) . 245

11.2.3. Jakarta Tags API Classes (jakarta.servlet.jsp.jstl.*) . 245

11.2.4. Jakarta Tags Implementation Classes . 246

11.2.5. Jakarta Faces API Classes (jakarta.faces.*) . 246

11.2.6. Jakarta Faces Implementation Classes. 246

11.2.6.1. FactoryFinder. 246

11.2.6.2. FacesServlet . 247

11.3. Application Configuration Resources . 248

11.3.1. Overview. 248

11.3.2. Application Startup Behavior . 249

11.3.2.1. Resource Library Contracts . 250

11.3.3. Faces Flows. 251

11.3.3.1. Defining Flows . 251

11.3.3.2. Packaging Faces Flows in JAR Files. 252

11.3.3.3. Packaging Flows in Directories . 252

11.3.4. Application Shutdown Behavior . 253

11.3.5. Application Configuration Resource Format . 253

11.3.6. Configuration Impact on Jakarta Faces Runtime . 255

11.3.7. Delegating Implementation Support . 258

11.3.8. Ordering of Artifacts . 260

11.3.9. Example Application Configuration Resource. 265

11.4. Annotations that correspond to and may take the place of entries in the Application

Configuration Resources . 267

11.4.1. Requirements for scanning of classes for annotations . 267

12. Lifecycle Management . 268

12.1. Lifecycle . 268

12.2. PhaseEvent. 269

12.3. PhaseListener . 269

12.4. LifecycleFactory . 272

13. Ajax Integration . 273

13.1. JavaScript Resource . 273

13.1.1. JavaScript Resource Loading . 273

13.1.1.1. The Annotation Approach. 273

13.1.1.2. The Resource API Approach . 273

13.1.1.3. The Page Declaration Language Approach . 274

13.2. JavaScript Namespacing . 275

13.3. Ajax Interaction . 275

13.3.1. Sending an Ajax Request. 275

13.3.2. Ajax Request Queueing . 275

13.3.3. Request Callback Function . 276

13.3.4. Receiving The Ajax Response. 276

13.3.5. Monitoring Events On The Client . 276

13.3.5.1. Monitoring Events For An Ajax Request . 276

13.3.5.2. Monitoring Events For All Ajax Requests . 277

13.3.5.3. Sending Events. 277

13.3.6. Handling Errors On the Client . 277

13.3.6.1. Handling Errors For An Ajax Request . 277

13.3.6.2. Handling Errors For All Ajax Requests . 277

13.3.6.3. Signaling Errors. 278

13.3.7. Handling Errors On The Server. 278

13.4. Partial View Traversal. 279

13.4.1. Partial Traversal Strategy . 279

13.4.2. Partial View Processing. 279

13.4.3. Partial View Rendering . 280

13.4.4. Sending The Response to The Client. 280

13.4.4.1. Writing The Partial Response. 281

14. JavaScript API . 282

14.1. Collecting and Encoding View State. 282

14.1.1. Use Case. 282

14.2. Initiating an Ajax Request . 282

14.2.1. Usage . 283

14.2.2. Keywords . 283

14.2.3. Default Values . 284

14.2.4. Request Sending Specifics. 284

14.2.5. Use Case. 285

14.3. Processing The Ajax Response. 285

14.4. Registering Callback Functions . 285

14.4.1. Request/Response Event Handling . 285

14.4.1.1. Use Case . 286

14.4.2. Error Handling . 287

14.4.2.1. Use Case . 287

14.5. Determining An Application’s Project Stage . 288

14.5.1. Use Case. 288

14.6. Script Chaining . 288

Appendix A: Jakarta Faces Metadata . 289

A.1. Required Handling of *-extension elements in the application configuration resources files . . 289

A.1.1. faces-config-extension handling . 289

A.1.1.1. The facelets-processing element . 289

A.2. XML Schema Definition For Facelet Taglib . 291

A.3. XML Schema Definition For Partial Response. 291

Appendix B: Change Log . 293

B.1. Changes between 4.0 and 3.0. 293

B.1.1. Backward Compatibility with Previous Versions . 294

B.2. Changes between 3.0 and 2.3. 294

B.2.1. Backward Compatibility with Previous Versions . 294

B.3. Changes between 2.2 and 2.3. 294

B.3.1. Big Ticket Features . 295

B.3.2. Other Features, by Functional Area . 296

B.3.2.1. Components/Renderers . 296

B.3.2.2. Lifecycle . 297

B.3.2.3. Platform Integration. 297

B.3.2.4. Facelets/VDL . 298

B.3.2.5. Spec Clarifications . 298

B.3.2.6. Resources . 299

B.3.2.7. Expression Language . 299

B.3.2.8. Configuration and Bootstrapping . 299

B.3.2.9. Miscellaneous . 299

B.3.3. Backward Compatibility with Previous Versions . 299

B.3.4. Breakages in Backward Compatibility . 300

B.4. Changes between 2.1 and 2.2. 300

B.4.1. Big Ticket Features . 300

B.4.2. Other Features, by Functional Area . 300

B.4.2.1. Components/Renderers . 300

B.4.2.2. Lifecycle . 302

B.4.2.3. Platform Integration. 303

B.4.2.4. Facelets/VDL . 303

B.4.2.5. Spec Clarifications . 305

B.4.2.6. Resources . 306

B.4.2.7. Expression Language . 307

B.4.2.8. Configuration and Bootstrapping . 307

B.4.2.9. Miscellaneous . 307

B.4.3. Backward Compatibility with Previous Versions . 310

B.4.4. Breakages in Backward Compatibility . 310

B.5. Changes between 2.0 Rev a and 2.1 . 310

B.5.1. Facelet Tag Library mechanism . 310

B.5.2. New feature: <facelets-processing> . 311

B.5.3. Update schema for 2.1 . 311

B.5.4. Change Restore View Phase . 311

B.5.5. Default ViewHandler Implementation . 311

B.6. Changes between 2.0 Final and 2.0 Rev a . 311

B.6.1. Global changes . 311

B.6.1.1. ExceptionQueuedEvent . 311

B.6.1.2. Usage of the term "page" in the JSF 2.0 spec. 311

B.6.2. Front Matter. 312

B.6.3. Chapter 2. 312

B.6.3.1. Restore View. 312

B.6.3.2. Localized Application Messages . 312

B.6.3.3. JSR 303 Bean Validation. 312

B.6.3.4. JSR 303 Bean Validation needs to reference "Bean Validation Integration" section 313

B.6.3.5. Resource Identifiers . 313

B.6.4. Chapter 3. 313

B.6.4.1. Clarify meaning of "javax.faces.bean" in Bean Validator Activation 313

B.6.4.2. Need to be consistent between Declarative Listener Registration of the JSF 2.0 Spec

and the VDLDoc for f:event . 313

B.6.4.3. Typo in Declarative Listener Registration of the JSF 2.0 Spec regarding

"beforeRender" . 313

B.6.4.4. Validation Registration, What does it mean to be a JSF User Interface component? . . . 314

B.6.4.5. Composite Component Metadata . 314

B.6.5. Chapter 4. 314

B.6.5.1. Events . 314

B.6.6. Chapter 7. 314

B.6.6.1. Overview. 314

B.6.6.2. Default NavigationHandler Algorithm . 314

B.6.6.3. Default ViewHandler Implementation . 314

B.6.7. Chapter 10 . 314

B.6.7.1. General Requirements . 315

B.6.7.2. Facelet Tag Library mechanism . 315

B.6.7.3. VDLDocs . 315

B.6.8. Chapter 13 . 315

B.6.8.1. Redundancy in Partial View Processing of the JSF 2.0 Spec . 315

B.6.8.2. "Execute portions" of the JSF request processing lifecycle in the JSF 2.0 Spec 315

B.6.9. Chapter 14 . 316

B.6.9.1. Initiating an Ajax Request Typo in table 14.2.2 of the JSF 2.0 Spec. 316

B.6.9.2. Request/Response Event Handling Table 14.4.1 . 316

B.6.10. Appendix A Metadata . 316

B.6.11. VDLDoc changes . 316

B.6.11.1. Typo in f:selectItems VDLDocs . 316

B.6.11.2. Need clarification on execute attribute of f:ajax. 316

B.6.11.3. Spelling error in VDLDocs for f:ajax . 316

B.6.11.4. Need clarification on required attribute in VDLDocs for tags that got a new "for"

attribute in JSF 2.0. 317

B.6.11.5. Uppercase typo in VDLDocs for f:event. 317

B.6.11.6. Need to change "JSP" to "Facelets" in "Body Content" of VDLDocs 317

B.6.11.7. Need clarification in VDLDocs for f:metadata . 317

B.6.11.8. Missing description in VDLDocs for name attribute of f:viewParam 317

B.6.11.9. VLDDocs on "for" attribute of f:viewParam claim it can be used in a CC 317

B.6.11.10. Miscellaneous VDLDoc items. 318

B.6.11.11. Should TLDDocs now be VDLDocs? . 318

B.6.11.12. Typo in VDLDocs for f:event. 319

B.6.12. Accepted Changes from JCP Change Log for JSF 2.0 Rev a . 319

B.7. Changes in versions below 2.0 Final . 326

Specification: Jakarta Faces

Version: 4.0

Status: Final

Release: May 16, 2022

Preface

Final Jakarta Faces 1

Copyright
Copyright © 2019, 2022 Eclipse Foundation. https://www.eclipse.org/legal/efsl.php

Eclipse Foundation Specification License – v1.0
By using and/or copying this document, or the Eclipse Foundation document from which this statement
is linked, you (the licensee) agree that you have read, understood, and will comply with the following
terms and conditions:

Permission to copy, and distribute the contents of this document, or the Eclipse Foundation document
from which this statement is linked, in any medium for any purpose and without fee or royalty is
hereby granted, provided that you include the following on ALL copies of the document, or portions
thereof, that you use:

• link or URL to the original Eclipse Foundation document.

• All existing copyright notices, or if one does not exist, a notice (hypertext is preferred, but a textual
representation is permitted) of the form: "Copyright (c) 2019, [$date-of-document] Eclipse
Foundation, Inc. <<url to this license>>"

Inclusion of the full text of this NOTICE must be provided. We request that authorship attribution be
provided in any software, documents, or other items or products that you create pursuant to the
implementation of the contents of this document, or any portion thereof.

No right to create modifications or derivatives of Eclipse Foundation documents is granted pursuant to
this license, except anyone may prepare and distribute derivative works and portions of this document
in software that implements the specification, in supporting materials accompanying such software,
and in documentation of such software, PROVIDED that all such works include the notice below.
HOWEVER, the publication of derivative works of this document for use as a technical specification is
expressly prohibited.

The notice is:

"Copyright (c) 2019, [$date-of-document] Eclipse Foundation. This software or document includes
material copied from or derived from [title and URI of the Eclipse Foundation specification
document]."

Disclaimers

THIS DOCUMENT IS PROVIDED "AS IS," AND THE COPYRIGHT HOLDERS AND THE ECLIPSE
FOUNDATION MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING,
BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE DOCUMENT ARE SUITABLE FOR ANY
PURPOSE; NOR THAT THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD
PARTY PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

Eclipse Foundation Specification License – v1.0

2 Jakarta Faces Final

https://www.eclipse.org/legal/efsl.php

THE COPYRIGHT HOLDERS AND THE ECLIPSE FOUNDATION WILL NOT BE LIABLE FOR ANY DIRECT,
INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY USE OF THE DOCUMENT OR
THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS THEREOF.

The name and trademarks of the copyright holders or the Eclipse Foundation may NOT be used in
advertising or publicity pertaining to this document or its contents without specific, written prior
permission. Title to copyright in this document will at all times remain with copyright holders.

Eclipse Foundation Specification License – v1.0

Final Jakarta Faces 3

Preface
This is the Jakarta Faces Specification Document, version 4.0.

Related Technologies

Other Jakarta Platform Specifications

Jakarta Faces 4.0 is based on the following Jakarta specifications:

Jakarta Servlet, version 6.0 https://jakarta.ee/specifications/servlet/

Jakarta Expression Language, version 5.0 https://jakarta.ee/specifications/expression-language/

Jakarta Contexts and Dependency Injection, version 4.0 https://jakarta.ee/specifications/cdi/

Jakarta Bean Validation, version 3.0 https://jakarta.ee/specifications/bean-validation/

Jakarta Tags, version 2.0 https://jakarta.ee/specifications/tags/

Jakarta WebSocket, version 2.0, optional https://jakarta.ee/specifications/websocket/

Jakarta JSON Processing, version 2.1, optional https://jakarta.ee/specifications/jsonp/

JavaBeans™ Specification, version 1.01 https://www.oracle.com/java/technologies/javase/javabeans-
spec.html

Therefore, a Jakarta Faces container must support all of the above specifications. This requirement
allows faces applications to be portable across a variety of Jakarta Faces implementations.

In addition, Jakarta Faces is designed to work synergistically with other web-related Java APIs,
including:

Portlet Specification 1.0, JSR-168 https://jcp.org/en/jsr/detail?id=168

Portlet Specification 2.0, JSR-286 https://jcp.org/en/jsr/detail?id=286

Portlet Specification 3.0, JSR-362 https://jcp.org/en/jsr/detail?id=362

Portlet Bridge Specification, JSR-301 https://jcp.org/en/jsr/detail?id=301

Related Documents and Specifications

The following documents and specifications of the World Wide Web Consortium will be of interest to
Jakarta Faces implementors, as well as developers of applications and components based on Jakarta
Faces.

Related Technologies

4 Jakarta Faces Final

https://jakarta.ee/specifications/servlet/
https://jakarta.ee/specifications/expression-language/
https://jakarta.ee/specifications/cdi/
https://jakarta.ee/specifications/bean-validation/
https://jakarta.ee/specifications/tags/
https://jakarta.ee/specifications/websocket/
https://jakarta.ee/specifications/jsonp/
https://www.oracle.com/java/technologies/javase/javabeans-spec.html
https://www.oracle.com/java/technologies/javase/javabeans-spec.html
https://jcp.org/en/jsr/detail?id=168
https://jcp.org/en/jsr/detail?id=286
https://jcp.org/en/jsr/detail?id=362
https://jcp.org/en/jsr/detail?id=301

Hypertext Markup Language (HTML), Living Standard https://html.spec.whatwg.org/

Extensible HyperText Markup Language (XHTML), version 1.0 https://www.w3.org/TR/xhtml1/

Extensible Markup Language (XML), version 1.0 (Second Edition) https://www.w3.org/TR/REC-xml/

The class and method Javadoc documentation for the classes and interfaces in jakarta.faces (and its
subpackages) are incorporated by reference as requirements of this Specification.

The Facelet tag library for the HTML_BASIC standard RenderKit is specified in the VDLDocs and
incorporated by reference in this Specification.

Terminology
The key words MUST, MUST NOT, REQUIRED, SHALL, SHALL NOT, SHOULD, SHOULD NOT,
RECOMMENDED, MAY, and OPTIONAL in this document are to be interpreted as described in

Key words for use in RFCs to Indicate Requirement Levels (RFC 2119) https://www.rfc-editor.org/rfc/
rfc2119.txt

Providing Feedback
We welcome any and all feedback about this specification. Please email your comments to <faces-
dev@eclipse.org>.

Please note that, due to the volume of feedback that we receive, you will not normally receive a reply
from an engineer. However, each and every comment is read, evaluated, and archived by the
specification team.

Acknowledgements
The authors would like to thank the Jakarta Faces 4.0 contributors.

• Arjan Tijms

• Bauke Scholtz

• Thomas Andraschko

• Manfred Riem

• Christoph Straßer

• Emil Lefkof

The editors would like to recognize the following individuals who have contributed to the success of
Jakarta Faces over the years.

Terminology

Final Jakarta Faces 5

https://html.spec.whatwg.org/
https://www.w3.org/TR/xhtml1/
https://www.w3.org/TR/REC-xml/
https://www.rfc-editor.org/rfc/rfc2119.txt
https://www.rfc-editor.org/rfc/rfc2119.txt
mailto:faces-dev@eclipse.org
mailto:faces-dev@eclipse.org

Ed Burns Frank Caputo Cagatay Civici

Ken Fyten Neil Griffin Josh Juneau

Brian Leatham Kito Mann Michael Müller

Paul Nicolucci Leonardo Uribe Dan Allen

Thomas Asel Jennifer Ball Lincoln Baxter III

Hans Bergsten Shawn Bayern Joseph Berkovitz

Dennis Byrne Pete Carapetyan Ryan DeLaplante

Keith Donald Jim Driscoll Hanspeter Duennenberger

Ken Finnigan Amy Fowler Mike Freedman

David Geary Manfred Geiler Ted Goddard

Juan Gonzalez Jeremy Grelle Rick Hightower

Jacob Hookom Justyna Horwat Alexander Jesse

Max Katz Roger Keays Gavin King

Roger Kitain Eric Lazarus Jason Lee

Felipe Leme Cody Lerum Alberto Lemos

Ryan Lubke Barbara Louis Martin Marinschek

Kumar Mettu Craig McClanahan Pete Muir

Bernd Müller Michael Müller Hans Muller

Brendan Murray Michael Nash Imre Osswald

Joe Ottinger Ken Paulsen Dhiru Pandey

Raj Premkumar Werner Punz Matt Raible

Hazem Saleh Andy Schwartz Yara Senger

Stan Silvert Vernon Singleton Bernhard Slominski

Alexander Smirnov Thomas Spiegel Kyle Stiemann

James Strachan Jayashri Visvanathan Ana von Klopp

Matthias Wessendorf Adam Winer Mike Youngstrom

John Zukowski

Acknowledgements

6 Jakarta Faces Final

Chapter 1. Overview
Jakarta Faces is a user interface (UI) framework for Java web applications. It is designed to significantly
ease the burden of writing and maintaining applications that run on a Java application server and
render their UIs back to a target client. Jakarta Faces provides ease-of-use in the following ways:

• Makes it easy to construct a UI from a set of reusable UI components

• Simplifies migration of application data to and from the UI

• Helps manage UI state across server requests

• Provides a simple model for wiring client-generated events to server-side application code

• Allows custom UI components to be easily built and re-used

Most importantly, Jakarta Faces establishes standards which are designed to be leveraged by tools to
provide a developer experience which is accessible to a wide variety of developer types, ranging from
corporate developers to systems programmers. A “corporate developer” is characterized as an
individual who is proficient in writing procedural code and business logic, but is not necessarily skilled
in object-oriented programming. A “systems programmer” understands object-oriented fundamentals,
including abstraction and designing for re-use. A corporate developer typically relies on tools for
development, while a system programmer may define his or her tool as a text editor for writing code.

Therefore, Jakarta Faces is designed to be tooled, but also exposes the framework and programming
model as APIs so that it can be used outside of tools, as is sometimes required by systems
programmers.

1.1. Solving Practical Problems of the Web
Jakarta Faces’s core architecture is designed to be independent of specific protocols and markup.
However it is also aimed directly at solving many of the common problems encountered when writing
applications for HTML clients that communicate via HTTP to a Java application server that supports
Jakarta Servlet and Jakarta Server Pages based applications. These applications are typically form-
based, and are comprised of one or more HTML pages with which the user interacts to complete a task
or set of tasks. Jakarta Faces tackles the following challenges associated with these applications:

• Managing UI component state across requests

• Supporting encapsulation of the differences in markup across different browsers and clients

• Supporting form processing (multi-page, more than one per page, and so on)

• Providing a strongly typed event model that allows the application to write server-side handlers
(independent of HTTP) for client generated events

• Validating request data and providing appropriate error reporting

• Enabling type conversion when migrating markup values (Strings) to and from application data
objects (which are often not Strings)

1.1. Solving Practical Problems of the Web

Final Jakarta Faces 7

• Handling error and exceptions, and reporting errors in human-readable form back to the
application user

• Handling page-to-page navigation in response to UI events and model interactions.

1.2. Specification Audience
The Jakarta Faces Specification, and the technology that it defines, is addressed to several audiences
that will use this information in different ways. The following sections describe these audiences, the
roles that they play with respect to Jakarta Faces, and how they will use the information contained in
this document. As is the case with many technologies, the same person may play more than one of
these roles in a particular development scenario; however, it is still useful to understand the individual
viewpoints separately.

1.2.1. Page Authors

A page author is primarily responsible for creating the user interface of a web application. He or she
must be familiar with the markup and scripting languages (such as HTML and JavaScript) that are
understood by the target client devices, as well as the rendering technology (such as Facelets) used to
create dynamic content. Page authors are often focused on graphical design and human factors
engineering, and are generally not familiar with programming languages such as Java or Visual Basic
(although many page authors will have a basic understanding of client side scripting languages such as
JavaScript).

Page authors will generally assemble the content of the pages being created from libraries of prebuilt
user interface components that are provided by component writers, tool providers, and Jakarta Faces
implementors. The components themselves will be represented as configurable objects that utilize the
dynamic markup capabilities of the underlying rendering technology. When Facelets are in use, for
example, Jakarta Faces components will be represented as namespaced tags, which will support
configuring the attributes of those components as tag attributes in the page. In addition, the pages
produced by a page author will be used by the Jakarta Faces framework to create component tree
hierarchies, called “views”, that represent the components on those pages.

Page authors will generally utilize development tools, such as HTML editors, that allow them to deal
directly with the visual representation of the page being created. However, it is still feasible for a page
author that is familiar with the underlying rendering technology to construct pages “by hand” using a
text editor.

1.2.2. Component Writers

Component writers are responsible for creating libraries of reusable user interface objects. Such
components support the following functionality:

• Convert the internal representation of the component’s properties and attributes into the
appropriate markup language for pages being rendered (encoding).

1.2. Specification Audience

8 Jakarta Faces Final

• Convert the properties of an incoming request—parameters, headers, and cookies—into the
corresponding properties and attributes of the component (decoding)

• Utilize request-time events to initiate visual changes in one or more components, followed by
redisplay of the current page.

• Support validation checks on the syntax and semantics of the representation of this component on
an incoming request, as well as conversion into the internal form that is appropriate for this
component.

• Saving and restoring component state across requests

As will be discussed in Rendering Model, the encoding and decoding functionality may optionally be
delegated to one or more Render Kits, which are responsible for customizing these operations to the
precise requirements of the client that is initiating a particular request (for example, adapting to the
differences between JavaScript handling in different browsers, or variations in the WML markup
supported by different wireless clients).

The component writer role is sometimes separate from other Jakarta Faces roles, but is often
combined. For example, reusable components, component libraries, and render kits might be created
by:

• A page author creating a custom “widget” for use on a particular page

• An application developer providing components that correspond to specific data objects in the
application’s business domain

• A specialized team within a larger development group responsible for creating standardized
components for reuse across applications

• Third party library and framework providers creating component libraries that are portable across
Jakarta Faces implementations

• Tool providers whose tools can leverage the specific capabilities of those libraries in development
of Jakarta Faces-based applications

• Jakarta Faces implementors who provide implementation-specific component libraries as part of
their Jakarta Faces product suite

Within Jakarta Faces, user interface components are represented as Java classes that follow the design
patterns outlined in the JavaBeans Specification. Therefore, new and existing tools that facilitate
JavaBean development can be leveraged to create new Jakarta Faces components. In addition, the
fundamental component APIs are simple enough for developers with basic Java programming skills to
program by hand.

1.2.3. Application Developers

Application Developers are responsible for providing the server-side functionality of a web application
that is not directly related to the user interface. This encompasses the following general areas of
responsibility:

1.2. Specification Audience

Final Jakarta Faces 9

• Define mechanisms for persistent storage of the information required by Jakarta Faces-based web
applications (such as creating schemas in a relational database management system)

• Create a Java object representation of the persistent information, such as Jakarta Persistence
entities, and call the corresponding beans as necessary to perform persistence of the application’s
data.

• Encapsulate the application’s functionality, or business logic, in Java objects that are reusable in
web and non-web applications, such as CDI beans.

• Expose the data representation and functional logic objects for use via Jakarta Faces, as would be
done for any Jakarta Servlet- or Jakarta Server Pages-based application.

Only the latter responsibility is directly related to Jakarta Faces APIs. In particular, the following steps
are required to fulfill this responsibility:

• Expose the underlying data required by the user interface layer as objects that are accessible from
the web tier (such as via request or session attributes in the Jakarta Servlet API), via value reference
expressions, as described in Standard User Interface Components.”

• Provide application-level event handlers for the events that are enqueued by Jakarta Faces
components during the request processing lifecycle, as described in Invoke Application.

Application modules interact with Jakarta Faces through standard APIs, and can therefore be created
using new and existing tools that facilitate general Java development. In addition, application modules
can be written (either by hand, or by being generated) in conformance to an application framework
created by a tool provider.

1.2.4. Tool Providers

Tool providers, as their name implies, are responsible for creating tools that assist in the development
of Jakarta Faces-based applications, rather than creating such applications directly. Jakarta Faces APIs
support the creation of a rich variety of development tools, which can create applications that are
portable across multiple Jakarta Faces implementations. Examples of possible tools include:

• GUI-oriented page development tools that assist page authors in creating the user interface for a
web application

• IDEs that facilitate the creation of components (either for a particular page, or for a reusable
component library)

• Page generators that work from a high level description of the desired user interface to create the
corresponding page and component objects

• IDEs that support the development of general web applications, adapted to provide specialized
support (such as configuration management) for Jakarta Faces

• Web application frameworks (such as MVC-based and workflow management systems) that
facilitate the use of Jakarta Faces components for user interface design, in conjunction with higher
level navigation management and other services

1.2. Specification Audience

10 Jakarta Faces Final

• Application generators that convert high level descriptions of an entire application into the set of
pages, UI components, and application modules needed to provide the required application
functionality

Tool providers will generally leverage the Jakarta Faces APIs for introspection of the features of
component libraries and render kit frameworks, as well as the application portability implied by the
use of standard APIs in the code generated for an application.

1.2.5. Jakarta Faces Implementors

Finally, Jakarta Faces implementors will provide runtime environments that implement all of the
requirements described in this specification. Typically, a Jakarta Faces implementor will be the
provider of a Jakarta EE application server, although it is also possible to provide a Jakarta Faces
implementation that is portable across Jakarta EE servers.

Advanced features of the Jakarta Faces APIs allow Jakarta Faces implementors, as well as application
developers, to customize and extend the basic functionality of Jakarta Faces in a portable way. These
features provide a rich environment for server vendors to compete on features and quality of service
aspects of their implementations, while maximizing the portability of Jakarta Faces-based applications
across different Jakarta Faces implementations.

1.3. Introduction to Jakarta Faces APIs
This section briefly describes major functional subdivisions of the APIs defined by Jakarta Faces. Each
subdivision is described in its own chapter, later in this specification.

1.3.1. package jakarta.faces

This package contains top level classes for the Jakarta Faces API. The most important class in the
package is FactoryFinder, which is the mechanism by which users can override many of the key pieces
of the implementation with their own.

Please see FactoryFinder.

1.3.2. package jakarta.faces.application

This package contains APIs that are used to link an application’s business logic objects to Jakarta Faces,
as well as convenient pluggable mechanisms to manage the execution of an application that is based
on Jakarta Faces. The main class in this package is Application.

Please see Application.

1.3.3. package jakarta.faces.component

This package contains fundamental APIs for user interface components.

1.3. Introduction to Jakarta Faces APIs

Final Jakarta Faces 11

Please see User Interface Component Model.

1.3.4. package jakarta.faces.component.html

This package contains concrete base classes for each valid combination of component + renderer.

1.3.5. package jakarta.faces.context

This package contains classes and interfaces defining per-request state information. The main class in
this package is FacesContext, which is the access point for all per-request information, as well as the
gateway to several other helper classes.

Please see FacesContext.

1.3.6. package jakarta.faces.convert

This package contains classes and interfaces defining converters. The main class in this package is
Converter.

Please see Conversion Model.

1.3.7. package jakarta.faces.el

This package contains an interface for the Composite Component Attributes ELResolver.

Please see Composite Component Attributes ELResolver.

1.3.8. package jakarta.faces.flow and jakarta.faces.flow.builder

The runtime API for Faces Flows.

Please see FlowHandler.

1.3.9. package jakarta.faces.lifecycle

This package contains classes and interfaces defining lifecycle management for the Jakarta Faces
implementation. The main class in this package is Lifecycle. Lifecycle is the gateway to executing the
request processing lifecycle.

Please see Request Processing Lifecycle.

1.3.10. package jakarta.faces.event

This package contains interfaces describing events and event listeners, and concrete event
implementation classes. All component-level events extend from FacesEvent and all component-level
listeners extend from FacesListener.

1.3. Introduction to Jakarta Faces APIs

12 Jakarta Faces Final

Please see Event and Listener Model.

1.3.11. package jakarta.faces.render

This package contains classes and interfaces defining the rendering model. The main class in this
package is RenderKit. RenderKit maintains references to a collection of Renderer instances which
provide rendering capability for a specific client device type.

Please see Rendering Model.

1.3.12. package jakarta.faces.validator

Interface defining the validator model, and concrete validator implementation classes.

Please see Validation Model

1.3.13. package jakarta.faces.webapp

A standard Jakarta Servlet class required for integration of Jakarta Faces into web applications.

Please see Using Jakarta Faces in Web Applications.

1.3. Introduction to Jakarta Faces APIs

Final Jakarta Faces 13

Chapter 2. Request Processing Lifecycle
Web user interfaces generally follow a pattern where the user-agent sends one or more requests to the
server with the end goal of displaying a user-interface. In the case of Web browsers, an initial HTTP
GET or POST request is made to the server, which responds with a document which the browser
interprets and automatically makes subsequent requests on the user’s behalf. The responses to each of
these subsequent requests are usually images, JavaScript files, CSS Style Sheets, and other artifacts that
fit “into” the original document. If the Jakarta Faces lifecycle is involved in rendering the initial
response, the entire process of initial request, the response to that request, and any subsequent
requests made automatically by the user-agent, and their responses, is called a Faces View
Request/Response for discussion. The following graphic illustrates a Faces View Request/Response.

Chapter 2. Request Processing Lifecycle

14 Jakarta Faces Final

Each Faces View Request/Response goes through a well-defined request processing lifecycle made up of
phases. There are three different scenarios that must be considered, each with its own combination of
phases and activities:

• Non-Faces Request generates Faces Response

• Faces Request generates Faces Response

• Faces Request generates Non-Faces Response

Where the terms being used are defined as follows:

• Faces Response —A response that was created by the execution of the Render Response phase of the
request processing lifecycle.

• Non-Faces Response —A response that was not created by the execution of the render response
phase of the request processing lifecycle. Examples would be a Jakarta Servlet-generated or Jakarta
Server Pages-rendered response that does not incorporate Jakarta Faces components, a response
that sets an HTTP status code other than the usual 200 (such as a redirect), or a response whose
HTTP body consists entirely of the bytes of an in page resource, such as a JavaScript file, a CSS file,
an image, or an applet. This last scenario is considered a special case of a Non-Faces Response and
will be referred to as a Faces Resource Response for the remainder of this specification.

• Faces Request —A request that was sent from a previously generated Faces response. Examples
would be a hyperlink or form submit from a rendered user interface component, where the
request URI was crafted (by the component or renderer that created it) to identify the view to use
for processing the request. Another example is a request for a resource that the user-agent was
instructed to fetch an artifact such as an image, a JavaScript file, a CSS stylesheet, or an applet. This
last scenario is considered a special case of a Faces Request and will be referred to as a Faces
Resource Request for the remainder of this specification.

• Non-Faces Request —A request that was sent to an application component (e.g. a Jakarta Servlet or
Jakarta Server Pages page), rather than directed to a Faces view.

In addition, of course, your web application may receive non-Faces requests that generate non-Faces
responses. Because such requests do not involve Jakarta Faces at all, their processing is outside the
scope of this specification, and will not be considered further.

READER NOTE: The dynamic behavior descriptions in this Chapter make forward references to the
sections that describe the individual classes and interfaces. You will probably find it useful to follow
the reference and skim the definition of each new class or interface as you encounter them, then come
back and finish the behavior description. Later, you can study the characteristics of each Jakarta Faces
API in the subsequent chapters.

2.1. Request Processing Lifecycle Scenarios
Each of the scenarios described above has a lifecycle that is composed of a particular set of phases,
executed in a particular order. The scenarios are described individually in the following subsections.

2.1. Request Processing Lifecycle Scenarios

Final Jakarta Faces 15

2.1.1. Non-Faces Request Generates Faces Response

An application that is processing a non-Faces request may use Jakarta Faces to render a Faces response
to that request. In order to accomplish this, the application must perform the common activities that
are described in the following sections:

• Acquire Faces object references, as described in Acquire Faces Object References, below.

• Create a new view, as described in Create And Configure A New View, below.

• Store the view into the FacesContext by calling the setViewRoot() method on the FacesContext.

2.1.2. Faces Request Generates Faces Response

The most common lifecycle will be the case where a previous Faces response includes user interface
controls that will submit a subsequent request to this web application, utilizing a request URI that is
mapped to the Jakarta Faces implementation’s controller, as described in Servlet Mapping. Because
such a request will be initially handled by the Jakarta Faces implementation, the application need not
take any special steps—its event listeners, validators, and application actions will be invoked at
appropriate times as the standard request processing lifecycle, described in the following diagrams, is
invoked.

The “Handle Resource Request” box, and its subsequent boxes, are explained in Resource Handling.
The following diagram explains the “Execute and Render Lifecycle” box.

2.1. Request Processing Lifecycle Scenarios

16 Jakarta Faces Final

The behavior of the individual phases of the request processing lifecycle are described in individual
subsections of Standard Request Processing Lifecycle Phases. Note that, at the conclusion of several
phases of the request processing lifecycle, common event processing logic (as described in Common
Event Processing) is performed to broadcast any FacesEvents generated by components in the
component tree to interested event listeners.

2.1.3. Faces Request Generates Non-Faces Response

Normally, a Jakarta Faces-based application will utilize the Render Response phase of the request
processing lifecycle to actually create the response that is sent back to the client. In some
circumstances, however, this behavior might not be desirable. For example:

• A Faces Request needs to be redirected to a different web application resource (via a call to
HttpServletResponse.sendRedirect).

• A Faces Request causes the generation of a response using some other technology (such as a Jakarta
Servlet, or a Jakarta Server Pages page not containing Jakarta Faces components).

• A Faces Request causes the generation of a response simply by serving up the bytes of a resource,
such as an image, a JavaScript file, a CSS file, or an applet

In any of these scenarios, the application will have used the standard mechanisms of the Jakarta
Servlet or Portlet API to create the response headers and content. It is then necessary to tell the Jakarta
Faces implementation that the response has already been created, so that the Render Response phase of

2.1. Request Processing Lifecycle Scenarios

Final Jakarta Faces 17

the request processing lifecycle should be skipped. This is accomplished by calling the
responseComplete() method on the FacesContext instance for the current request, prior to returning
from event handlers or application actions.

2.2. Standard Request Processing Lifecycle Phases
The standard phases of the request processing lifecycle are described in the following subsections.

The default request lifecycle processing implementation must ensure that the currentPhaseId property
of the FacesContext instance for this request is set with the proper PhaseId constant for the current
phase as early as possible at the beginning of each phase.

2.2.1. Restore View

The Jakarta Faces implementation must perform the following tasks during the Restore View phase of
the request processing lifecycle:

• Call initView() on the ViewHandler. This will set the character encoding properly for this request.

• Examine the FacesContext instance for the current request. If it already contains a UIViewRoot:

◦ Set the locale on this UIViewRoot to the value returned by the getRequestLocale() method on the
ExternalContext for this request.

◦ Take no further action during this phase, and return. The presence of a UIViewRoot already
installed in the FacesContext before the Restore View Phase implementation indicates that the
phase should assume the view has already been restored by other means.

• Derive the viewId according to the following algorithm, or one semantically equivalent to it.

◦ Look in the request map for a value under the key jakarta.servlet.include.path_info. If found, let
it be the viewId.

◦ Call getRequestPathInfo() on the current ExternalContext. If this value is non-null, let this be the
viewId .

◦ Look in the request map for a value under the key jakarta.servlet.include.servlet_path. If found,
let it be the viewId.

◦ If none of these steps yields a non-null viewId, throw a FacesException with an appropriate
localized message.

• Determine if this request is a postback or initial request by executing the following algorithm. Find
the render-kit-id for the current request by calling calculateRenderKitId() on the Application’s
ViewHandler. Get that RenderKit’s ResponseStateManager and call its isPostback() method, passing
the current FacesContext. If the current request is an attempt by the servlet container to display a
servlet error page, do not interpret the request as a postback, even if it is indeed a postback.

• If the request is a postback, call setProcessingEvents(false) on the current FacesContext. Then call
ViewHandler.restoreView(), passing the FacesContext instance for the current request and the view
identifier, and returning a UIViewRoot for the restored view. If the return from

2.2. Standard Request Processing Lifecycle Phases

18 Jakarta Faces Final

ViewHandler.restoreView() is null, throw a ViewExpiredException with an appropriate error
message. jakarta.faces.application.ViewExpiredException is a FacesException that must be thrown to
signal to the application that the expected view was not returned for the view identifier. An
application may choose to perform some action based on this exception.

• Store the restored UIViewRoot in the FacesContext.

• Call setProcessingEvents(true) on the current FacesContext.

• If the request is not a postback, try to obtain the ViewDeclarationLanguage from the ViewHandler,
for the current viewId by calling ViewHandler.deriveLogicalViewId() and passing the result to
ViewHandler.getViewDeclarationLanguage(). If no such instance can be obtained, call
facesContext.renderResponse(). Otherwise, call getViewMetadata() on the ViewDeclarationLanguage
instance. If the result is non-null, call createMetadataView() on the ViewMetadata instance. Call
ViewMetadata.hasMetadata(), passing the newly created viewRoot. If this method returns false, call
facesContext.renderResponse(). If it turns out that the previous call to createViewMetadata() did not
create a UIViewRoot instance, call createView() on the ViewHandler.

View Protection

• Call ViewHandler.getProtectedViewsUnmodifiable() to determine if the view for this viewId is
protected. If not, assume the requested view is not protected and take no additional view
protection steps. Obtain the value of the value of the request parameter whose name is given by the
value of ResponseStateManager.NON_POSTBACK_VIEW_TOKEN_PARAM. If there is no value, throw
ProtectedViewException. If the value is present, compare it to the return from
ResponseStateManager.getCryptographicallyStrongTokenFromSession(). If the values do not match,
throw ProtectedViewException. If the values do match, look for a Referer [sic] request header. If
the header is present, use the protected view API to determine if any of the declared protected
views match the value of the Referer header. If so, conclude that the previously visited page is also
a protected view and it is therefore safe to continue. Otherwise, try to determine if the value of the
Referer header corresponds to any of the views in the current web application. If not, throw a
ProtectedViewException. If the Origin header is present, additionally perform the same steps as
with the Referer header.

• Call renderResponse() on the FacesContext .

Obtain a reference to the FlowHandler from the Application. Call its clientWindowTransition() method.
This ensures that navigation that happened as a result of the renderer for the
jakarta.faces.OutcomeTarget component-family is correctly handled with respect to flows. For example,
this enables <h:button> to work correctly with flows.

Using Application.publishEvent(), publish a PostAddToViewEvent with the created UIViewRoot as the
event source.

In all cases, the implementation must ensure that the restored tree is traversed and the
PostRestoreStateEvent is published for every node in the tree.

At the end of this phase, the viewRoot property of the FacesContext instance for the current request
will reflect the saved configuration of the view generated by the previous Faces Response, or a new

2.2. Standard Request Processing Lifecycle Phases

Final Jakarta Faces 19

view returned by ViewHandler.createView() for the view identifier.

2.2.2. Apply Request Values

The purpose of the Apply Request Values phase of the request processing lifecycle is to give each
component the opportunity to update its current state from the information included in the current
request (parameters, headers, cookies, and so on). When the information from the current request has
been examined to update the component’s current state, the component is said to have a “local value”.

During the Apply Request Values phase, the Jakarta Faces implementation must call the
processDecodes() method of the UIViewRoot of the component tree. This will normally cause the
processDecodes() method of each component in the tree to be called recursively, as described in the
Javadocs for the UIComponent.processDecodes() method. The processDecodes() method must determine
if the current request is a “partial request” by calling
FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest() . If
FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest() returns true, perform the
sequence of steps as outlined in Apply Request Values Partial Processing. Details of the decoding
process follow.

During the decoding of request values, some components perform special processing, including:

• Components that implement ActionSource (such as UICommand), which recognize that they were
activated, will queue an ActionEvent. The event will be delivered at the end of Apply Request Values
phase if the immediate property of the component is true, or at the end of Invoke Application phase
if it is false.

• Components that implement EditableValueHolder (such as UIInput), and whose immediate property
is set to true, will cause the conversion and validation processing (including the potential to fire
ValueChangeEvent events) that normally happens during Process Validations phase to occur during
Apply Request Values phase instead.

As described in Common Event Processing, the processDecodes() method on the UIViewRoot
component at the root of the component tree will have caused any queued events to be broadcast to
interested listeners.

At the end of this phase, all EditableValueHolder components in the component tree will have been
updated with new submitted values included in this request (or enough data to reproduce incorrect
input will have been stored, if there were conversion errors). In addition, conversion and validation
will have been performed on EditableValueHolder components whose immediate property is set to true,
as described in the UIInput Javadocs. Conversions and validations that failed will have caused
messages to be enqueued via calls to the addMessage() method of the FacesContext instance for the
current request, and the valid property on the corresponding component(s) will be set to false.

If any of the decode() methods that were invoked, or an event listener that processed a queued event,
called responseComplete() on the FacesContext instance for the current request, clear the remaining
events from the event queue and terminate lifecycle processing of the current request. If any of the
decode() methods that were invoked, or an event listener that processed a queued event, called

2.2. Standard Request Processing Lifecycle Phases

20 Jakarta Faces Final

renderResponse() on the FacesContext instance for the current request, clear the remaining events from
the event queue and transfer control to the Render Response phase of the request processing lifecycle.
Otherwise, control must proceed to the Process Validations phase.

2.2.2.1. Apply Request Values Partial Processing

Call FacesContext.getPartialViewContext(). Call PartialViewContext.processPartial() passing the
FacesContext, PhaseID.APPLY_REQUEST_VALUES as arguments.

2.2.3. Process Validations

As part of the creation of the view for this request, zero or more Validator instances may have been
registered for each component. In addition, component classes themselves may implement validation
logic in their validate() methods.

During the Process Validations phase of the request processing lifecycle, the Jakarta Faces
implementation must call the processValidators() method of the UIViewRoot of the tree. This will
normally cause the processValidators() method of each component in the tree to be called recursively,
as described in the API reference for the UIComponent.processValidators() method. The
processValidators() method must determine if the current request is a “partial request” by calling
FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest() . If
FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest() returns true, perform the
sequence of steps as outlined in Partial Validations Partial Processing. Note that EditableValueHolder
components whose immediate property is set to true will have had their conversion and validation
processing performed during Apply Request Values phase.

During the processing of validations, events may have been queued by the components and/or
Validators whose validate() method was invoked. As described in Common Event Processing, the
processValidators() method on the UIViewRoot component at the root of the component tree will have
caused any queued events to be broadcast to interested listeners.

At the end of this phase, all conversions and configured validations will have been completed.
Conversions and Validations that failed will have caused messages to be enqueued via calls to the
addMessage() method of the FacesContext instance for the current request, and the valid property on
the corresponding components will have been set to false.

If any of the validate() methods that were invoked, or an event listener that processed a queued event,
called responseComplete() on the FacesContext instance for the current request, clear the remaining
events from the event queue and terminate lifecycle processing of the current request. If any of the
validate() methods that were invoked, or an event listener that processed a queued event, called
renderResponse() on the FacesContext instance for the current request, clear the remaining events from
the event queue and transfer control to the Render Response phase of the request processing lifecycle.
Otherwise, control must proceed to the Update Model Values phase.

2.2. Standard Request Processing Lifecycle Phases

Final Jakarta Faces 21

2.2.3.1. Partial Validations Partial Processing

Call FacesContext.getPartialViewContext(). Call PartialViewContext.processPartial() passing the
FacesContext, PhaseID.PROCESS_VALIDATIONS as arguments.

2.2.4. Update Model Values

If this phase of the request processing lifecycle is reached, it is assumed that the incoming request is
syntactically and semantically valid (according to the validations that were performed), that the local
value of every component in the component tree has been updated, and that it is now appropriate to
update the application’s model data in preparation for performing any application events that have
been enqueued.

During the Update Model Values phase, the Jakarta Faces implementation must call the
processUpdates() method of the UIViewRoot component of the tree. This will normally cause the
processUpdates() method of each component in the tree to be called recursively, as described in the API
reference for the UIComponent.processUpdates() method. The processUpdates() method must
determine if the current request is a “partial request” by calling
FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest() . If
FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest() returns true, perform the
sequence of steps as outlined in Update Model Values Partial Processing. The actual model update for a
particular component is done in the updateModel() method for that component.

During the processing of model updates, events may have been queued by the components whose
updateModel() method was invoked. As described in Common Event Processing, the processUpdates()
method on the UIViewRoot component at the root of the component tree will have caused any queued
events to be broadcast to interested listeners.

At the end of this phase, all appropriate model data objects will have had their values updated to
match the local value of the corresponding component, and the component local values will have been
cleared.

If any of the updateModel() methods that were invoked, or an event listener that processed a queued
event, called responseComplete() on the FacesContext instance for the current request, clear the
remaining events from the event queue and terminate lifecycle processing of the current request. If
any of the updateModel() methods that was invoked, or an event listener that processed a queued
event, called renderResponse() on the FacesContext instance for the current request, clear the
remaining events from the event queue and transfer control to the Render Response phase of the
request processing lifecycle. Otherwise, control must proceed to the Invoke Application phase.

2.2.4.1. Update Model Values Partial Processing

Call FacesContext.getPartialViewContext(). Call PartialViewContext.processPartial() passing the
FacesContext, PhaseID.UPDATE_MODEL_VALUES as arguments.

2.2. Standard Request Processing Lifecycle Phases

22 Jakarta Faces Final

2.2.5. Invoke Application

If this phase of the request processing lifecycle is reached, it is assumed that all model updates have
been completed, and any remaining event broadcast to the application needs to be performed. The
implementation must ensure that the processApplication() method of the UIViewRoot instance is called.
The default behavior of this method will be to broadcast any queued events that specify a phase
identifier of PhaseId.INVOKE_APPLICATION. If responseComplete() was called on the FacesContext
instance for the current request, clear the remaining events from the event queue and terminate
lifecycle processing of the current request. If renderResponse() was called on the FacesContext instance
for the current request, clear the remaining events from the event queue.

Advanced applications (or application frameworks) may replace the default ActionListener instance by
calling the setActionListener() method on the Application instance for this application. However, the
Jakarta Faces implementation must provide a default ActionListener instance that behaves as
described in ActionListener Property.

2.2.6. Render Response

This phase accomplishes two things:

1. Causes the response to be rendered to the client

2. Causes the state of the response to be saved for processing on subsequent requests.

Jakarta Faces supports a range of approaches that Jakarta Faces implementations may utilize in
creating the response text that corresponds to the contents of the response view, including:

• Deriving all of the response content directly from the results of the encoding methods (on either
the components or the corresponding renderers) that are called.

• Interleaving the results of component encoding with content that is dynamically generated by
application programming logic.

• Interleaving the results of component encoding with content that is copied from a static “template”
resource.

• Interleaving the results of component encoding by embedding calls to the encoding methods into a
dynamic resource.

Because of the number of possible options, the mechanism for implementing the Render Response
phase cannot be specified precisely. However, all Jakarta Faces implementations of this phase must
conform to the following requirements:

• If it is possible to obtain a ViewDeclarationLanguage instance for the current viewId, from the
ViewHandler, its buildView() method must be called.

• Publish the jakarta.faces.event.PreRenderViewEvent.

• Jakarta Faces implementations must provide a default ViewHandler implementation that is capable
of handling views written in the Faces View Declaration Language (VDL).

2.2. Standard Request Processing Lifecycle Phases

Final Jakarta Faces 23

• If all of the response content is being derived from the encoding methods of the component or
associated Renderers, the component tree should be walked in the same depth-first manner as was
used in earlier phases to process the component tree, but subject to the additional constraints listed
here. Generally this is handled by a call to ViewHandler.renderView().

• If the response content is being interleaved from additional sources and the encoding methods, the
components may be selected for rendering in any desired order.

• During the rendering process, additional components may be added to the component tree based
on information available to the ViewHandler implementation. However, before adding a new
component, the ViewHandler implementation must first check for the existence of the
corresponding component in the component tree. If the component already exists (perhaps
because a previous phase has pre-created one or more components), the existing component’s
properties and attributes must be utilized.

• Under no circumstances should a component be selected for rendering when its parent component,
or any of its ancestors in the component tree, has its rendersChildren property set to true. In such
cases, the parent or ancestor component must render the content of this child component when the
parent or ancestor was selected.

• If the isRendered() method of a component returns false, the renderer for that component must not
generate any markup, and none of its facets or children (if any) should be rendered.

• It must be possible for the application to programmatically modify the component tree at any time
during the request processing lifecycle (except during the rendering of the view) and have the
system behave as expected. For example, the following must be permitted. Modification of the view
during rendering may lead to undefined results. It must be possible to allow components added by
the templating system (such as Facelets) to be removed from the tree before rendering. It must be
possible to programmatically add components to the tree and have them render in the proper place
in the hierarchy. It must be possible to re-order components in the tree before rendering. These
manipulations do require that any components added to the tree have ids that are unique within
the scope of the closest parent NamingContainer component. The value of the rendersChildren
property is handled as expected, and may be either true or false.

• If running on a container that supports Jakarta Servlet 4.0 or later, after any dynamic component
manipulations have been completed, any resources that have been added to the UIViewRoot, such
as scripts, images, or stylesheets, and any inline images, must be pushed to the client using the
Jakarta Servlet Server Push API. All of the pushes must be started before any of the HTML of the
response is rendered to the client.

• For partial requests, where partial view rendering is required, there must be no content written
outside of the view (outside f:view). Response writing must be disabled. Response writing must be
enabled again at the start of encodeBegin.

When each particular component in the component tree is selected for rendering, calls to its
encodeXxx() methods must be performed in the manner described in Component Specialization
Methods. For components that implement ValueHolder (such as UIInput and UIOutput), data
conversion must occur as described in the UIOutput Javadocs.

2.2. Standard Request Processing Lifecycle Phases

24 Jakarta Faces Final

Upon completion of rendering, but before state saving the Jakarta Faces runtime must publish a
jakarta.faces.event.PostRenderViewEvent. After doing so the Jakarta Faces runtime must save the
completed state using the methods of the class StateManager. This state information must be made
accessible on a subsequent request, so that the Restore View can access it. For more on StateManager,
see State Saving Methods.

2.2.6.1. Render Response Partial Processing

According to UIViewRoot.encodeChildren(), FacesContext.processPartial(PhaseId.RENDER_RESPONSE),
will be called if and only if the current request is an Ajax request. Take these actions in this case.

On the ExternalContext for the request, call setResponseContentType("text/xml") and
addResponseHeader("Cache-control", "no-cache"). Call startDocument() on the PartialResponseWriter.

Call writePreamble("<?xml version='1.0' encoding='currentEncoding'?>\n”) on the PartialResponseWriter,
where encoding is the return from the getCharacterEncoding() on the PartialResponseWriter, or UTF-8
if that method returns null.

If isResetValues() returns true, call getRenderIds() and pass the result to UIViewRoot.resetValues().

If isRenderAll() returns true and the view root is not an instance of NamingContainer, call
startUpdate(PartialResponseWriter.RENDER_ALL_MARKER) on the PartialResponseWriter. For each
child of the UIViewRoot, call encodeAll(). Call endUpdate() on the PartialResponseWriter. Render the
state using the algorithm described below in Partial State Rendering, call endDocument() on the
PartialResponseWriter and return. If isRenderAll() returns true and this UIViewRoot is a
NamingContainer, treat this as a case where isRenderAll() returned false, but use the UIViewRoot itself
as the one and only component from which the tree visit must start.

If isRenderAll() returns false, if there are ids to render, visit the subset of components in the tree to be
rendered in similar fashion as for other phases, but for each UIComponent in the traversal, call
startUpdate(id) on the PartialResponseWriter, where id is the client id of the component. Call
encodeAll() on the component, and then endUpdate() on the PartialResponseWriter. If there are no ids
to render, this step is un-necessary. After the subset of components (if any) have been rendered,
Render the state using the algorithm described below in Partial State Rendering, call endDocument() on
the PartialResponseWriter and return.

Partial State Rendering

This section describes the requirements for rendering the <update> elements pertaining to view state
and window id in the case of partial response rendering.

If the view root is marked transient, take no action and return.

Obtain a unique id for the view state, as described in the JavaDocs for the constant field
ResponseStateManager.VIEW_STATE_PARAM. Pass this id to a call to startUpdate() on the
PartialResponseWriter. Obtain the view state to render by calling getViewState() on the application’s
StateManager. Write the state by calling write() on the PartialResponseWriter, passing the state as the
argument. Call endUpdate() on the PartialResponseWriter.

2.2. Standard Request Processing Lifecycle Phases

Final Jakarta Faces 25

If getClientWindow() on the ExternalContext, returns non-null, obtain an id for the <update> element
for the window id as described in the JavaDocs for the constant
ResponseStateManager.WINDOW_ID_PARAM. Pass this id to a call to startUpdate() on the
PartialResponseWriter. Call write() on that same writer, passing the result of calling getId() on the
ClientWindow. Call endUpdate() on the PartialResponseWriter.

2.3. Common Event Processing
For a complete description of the event processing model for Jakarta Faces components, see Event and
Listener Model.

During several phases of the request processing lifecycle, as described in Standard Request Processing
Lifecycle Phases, the possibility exists for events to be queued (via a call to the queueEvent() method on
the source UIComponent instance, or a call to the queue() method on the FacesEvent instance), which
must now be broadcast to interested event listeners. The broadcast is performed as a side effect of
calling the appropriate lifecycle management method (processDecodes(), processValidators(),
processUpdates(), or processApplication()) on the UIViewRoot instance at the root of the current
component tree.

For each queued event, the broadcast() method of the source UIComponent must be called to broadcast
the event to all event listeners who have registered an interest, on this source component for events of
the specified type, after which the event is removed from the event queue. See the API reference for
the UIComponent.broadcast() method for the detailed functional requirements.

It is also possible for event listeners to cause additional events to be enqueued for processing during
the current phase of the request processing lifecycle. Such events must be broadcast in the order they
were enqueued, after all originally queued events have been broadcast, before the lifecycle
management method returns.

2.4. Common Application Activities
The following subsections describe common activities that may be undertaken by an application that is
using Jakarta Faces to process an incoming request and/or create an outgoing response. Their use is
described in Request Processing Lifecycle Scenarios, for each request processing lifecycle scenario in
which the activity is relevant.

2.4.1. Acquire Faces Object References

This phase is only required when the request being processed was not submitted from a previous
response, and therefore did not initiate the Faces Request Generates Faces Response lifecycle. In order
to generate a Faces Response, the application must first acquire references to several objects provided
by the Jakarta Faces implementation, as described below.

2.3. Common Event Processing

26 Jakarta Faces Final

2.4.1.1. Acquire and Configure Lifecycle Reference

As described in Lifecycle, the Jakarta Faces implementation must provide an instance of
jakarta.faces.lifecycle.Lifecycle that may be utilized to manage the remainder of the request processing
lifecycle. An application may acquire a reference to this instance in a portable manner, as follows:

LifecycleFactory lFactory = (LifecycleFactory)
 FactoryFinder.getFactory(FactoryFinder.LIFECYCLE_FACTORY);
Lifescycle lifecycle =
 lFactory.getLifecycle(LifecycleFactory.DEFAULT_LIFECYCLE);

It is also legal to specify a different lifecycle identifier as a parameter to the getLifecycle() method, as
long as this identifier is recognized and supported by the Jakarta Faces implementation you are using.
However, using a non-default lifecycle identifier will generally not be portable to any other Jakarta
Faces implementation.

2.4.1.2. Acquire and Configure FacesContext Reference

As described in FacesContext, the Jakarta Faces implementation must provide an instance of
jakarta.faces.context.FacesContext to contain all of the per-request state information for a Faces
Request or a Faces Response. An application that is processing a Non-Faces Request, but wants to
create a Faces Response, must acquire a reference to a FacesContext instance as follows

FacesContextFactory fcFactory = (FacesContextFactory)
 FactoryFinder.getFactory(FactoryFinder.FACES_CONTEXT_FACTORY);
FacesContext facesContext =
 fcFactory.getFacesContext(context, request, response, lifecycle);

where the context, request, and response objects represent the corresponding instances for the
application environment. For example, in a Jakarta Servlet-based application, these would be the
ServletContext, HttpServletRequest, and HttpServletResponse instances for the current request.

2.4.2. Create And Configure A New View

When a Faces response is being intially created, or when the application decides it wants to create and
configure a new view that will ultimately be rendered, it may follow the steps described below in order
to set up the view that will be used. You must start with a reference to a FacesContext instance for the
current request.

2.4.2.1. Create A New View

Views are represented by a data structure rooted in an instance of
jakarta.faces.component.UIViewRoot, and identified by a view identifier whose meaning depends on
the ViewHandler implementation to be used during the Render Response phase of the request

2.4. Common Application Activities

Final Jakarta Faces 27

processing lifecycle. The ViewHandler provides a factory method that may be utilized to construct new
component trees, as follows:

String viewId = ... identifier of the desired Tree ...;
ViewHandler viewHandler = application.getViewHandler();
UIViewRoot view = viewHandler.createView(facesContext, viewId);

The UIViewRoot instance returned by the createView() method must minimally contain a single
UIViewRoot provided by the Jakarta Faces implementation, which must encapsulate any
implementation-specific component management that is required. Optionally, a Jakarta Faces
implementation’s ViewHandler may support the automatic population of the returned UIViewRoot with
additional components, perhaps based on some external metadata description.

The caller of ViewHandler.createView() must cause the FacesContext to be populated with the new
UIViewRoot. Applications must make sure that it is safe to discard any state saved in the view rooted at
the UIViewRoot currently stored in the FacesContext. If Facelets is the page definition language,
FacesContext.setViewRoot() must be called before returning from ViewHandler.createView(). Refer to
Default ViewHandler Implementation for more ViewHandler details.

2.4.2.2. Configure the Desired RenderKit

The UIViewRoot instance provided by the ViewHandler, as described in the previous subsection, must
automatically be configured to utilize the default jakarta.faces.render.RenderKit implementation
provided by the Jakarta Faces implementation, as described in RenderKit. This RenderKit must support
the standard components and Renderers described later in this specification, to maximize the
portability of your application.

However, a different RenderKit instance provided by your Jakarta Faces implementation (or as an add-
on library) may be utilized instead, if desired. A reference to this RenderKit instance can be obtained
from the standard RenderKitFactory, and then assigned to the UIViewRoot instance created previously,
as follows:

String renderKitId = ... identifier of desired RenderKit ...;
RenderKitFactory rkFactory = (RenderKitFactory)
 FactoryFinder.getFactory(FactoryFinder.RENDER_KIT_FACTORY);
RenderKit renderKit = rkFactory.getRenderKit(renderKitId, facesContext);
view.setRenderKitId(renderKitId);

As described in Chapter 8, changing the RenderKit being used changes the set of Renderers that will
actually perform decoding and encoding activities. Because the components themselves store only a
rendererType property (a logical identifier of a particular Renderer), it is thus very easy to switch
between RenderKits, as long as they support renderers with the same renderer types.

The default ViewHandler must call calculateRenderKitId() on itself and set the result into the

2.4. Common Application Activities

28 Jakarta Faces Final

UIViewRoot’s renderKitId property. This allows applications that use alternative RenderKits to
dynamically switch on a per-view basis.

2.4.2.3. Configure The View’s Components

At any time, the application can add new components to the view, remove them, or modify the
attributes and properties of existing components. For example, a new FooComponent (an
implementation of UIComponent) can be added as a child to the root UIViewRoot in the component tree
as follows:

FooComponent component = ... create a FooComponent instance ...;
facesContext.getViewRoot().getChildren().add(component);

2.4.2.4. Store the new View in the FacesContext

Once the view has been created and configured, the FacesContext instance for this request must be
made aware of it by calling setViewRoot().

2.5. Concepts that impact several lifecycle phases
This section is intended to give the reader a “big picture” perspective on several complex concepts that
impact several request processing lifecycle phases.

2.5.1. Value Handling

At a fundamental level, Jakarta Faces is a way to get values from the user, into your model tier for
processing. The process by which values flow from the user to the model has been documented
elsewhere in this spec, but a brief holistic survey comes in handy. The following description assumes
the Jakarta Servlet/HTTP case, and that all components have Renderers.

2.5.1.1. Apply Request Values Phase

The user presses a button that causes a form submit to occur. This causes the state of the form to be
sent as name=value pairs in the POST data of the HTTP request. The Jakarta Faces request processing
lifecycle is entered, and eventually we come to the Apply Request Values Phase. In this phase, the
decode() method for each Renderer for each UIComponent in the view is called. The Renderer takes the
value from the request and passes it to the setSubmittedValue() method of the component, which is, of
course, an instance of EditableValueHolder. If the component has the “immediate” property set to true,
we execute validation immediately after decoding. See below for what happens when we execute
validation.

2.5.1.2. Process Validators Phase

processValidators() is called on the root of the view. For each EditableValueHolder in the view, If the
“immediate” property is not set, we execute validation for each UIInput in the view. Otherwise,

2.5. Concepts that impact several lifecycle phases

Final Jakarta Faces 29

validation has already occurred and this phase is a no-op.

2.5.1.3. Executing Validation

Please see the javadocs for UIInput.validate() for more details, but basically, this method gets the
submitted value from the component (set during Apply Request Values), gets the Renderer for the
component and calls its getConvertedValue(), passing the submitted value. If a conversion error occurs,
it is dealt with as described in the javadocs for that method. Otherwise, all validators attached to the
component are asked to validate the converted value. If any validation errors occur, they are dealt
with as described in the javadocs for Validator.validate(). The converted value is pushed into the
component’s setValue() method, and a ValueChangeEvent is fired if the value has changed.

2.5.1.4. Update Model Values Phase

For each UIInput component in the view, its updateModel() method is called. This method only takes
action if a local value was set when validation executed and if the page author configured this
component to push its value to the model tier. This phase simply causes the converted local value of
the UIInput component to be pushed to the model in the way specified by the page author. Any errors
that occur as a result of the attempt to push the value to the model tier are dealt with as described in
the javadocs for UIInput.updateModel().

2.5.2. Localization and Internationalization (L10N/I18N)

Jakarta Faces is fully internationalized. The I18N capability in Jakarta Faces builds on the I18N
concepts offered in the Jakarta Servlet and Jakarta Tags specifications. I18N happens at several points
in the request processing lifecycle, but it is easiest to explain what goes on by breaking the task down
by function.

2.5.2.1. Determining the active Locale

Jakarta Faces has the concept of an active Locale which is used to look up all localized resources.
Converters must use this Locale when performing their conversion. This Locale is stored as the value
of the locale JavaBeans property on the UIViewRoot of the current FacesContext. The application
developer can tell Jakarta Faces what locales the application supports in the applications’ WEB-
INF/faces-config.xml file. For example:

<faces-config>
 <application>
 <locale-config>
 <default-locale>en</default-locale>
 <supported-locale>de</supported-locale>
 <supported-locale>fr</supported-locale>
 <supported-locale>es</supported-locale>
 </locale-config>
 </application>

2.5. Concepts that impact several lifecycle phases

30 Jakarta Faces Final

This application’s default locale is en, but it also supports de, fr, and es locales. These elements cause
the Application instance to be populated with Locale data. Please see the javadocs for details.

The UIViewRoot’s Locale is determined and set by the ViewHandler during the execution of the
ViewHandler ’s createView() method. This method must cause the active Locale to be determined by
looking at the user’s preferences combined with the application’s stated supported locales. Please see
the javadocs for details.

The application can call UIViewRoot.setLocale() directly, but it is also possible for the page author to
override the UIViewRoot’s locale by using the locale attribute on the <f:view> tag. The value of this
attribute must be specified as language[{-|_}country[{-|_}variant]] without the colons, for example
"ja_JP_SJIS". The separators between the segments must be ’ - ’ or ’ _ ’.

To facilitate BCP 47 support, the Locale parsing mentioned above is done only if the JDK
Locale.languageForTag method does not return a Locale with a language in it. The additional format of
the Locale string is as specified by that method.

2.5.2.2. Determining the Character Encoding

The request and response character encoding are set and interpreted as follows.

On an initial request to a Faces webapp, the request character encoding is left unmodified, relying on
the underlying request object (e.g., the Jakarta Servlet or Portlet request) to parse request parameter
correctly.

At the beginning of the render-response phase, the ViewHandler must ensure that the response Locale
is set to be that of the UIViewRoot, for example by calling ServletResponse.setLocale() when running in
the Jakarta Servlet environment. Setting the response Locale may affect the response character
encoding, see the Jakarta Servlet and Portlet specifications for details.

At the end of the render-response phase, the ViewHandler must store the response character encoding
used by the underlying response object (e.g., the Jakarta Servlet or Portlet response) in the session (if
and only if a session already exists) under a well known, implementation-dependent key.

On a subsequent postback, before any of the ExternalContext methods for accessing request
parameters are invoked, the ViewHandler must examine the Content-Type header to read the charset
attribute and use its value to set it as the request encoding for the underlying request object. If the
Content-Type header doesn’t contain a charset attribute, the encoding previously stored in the session
(if and only if a session already exists), must be used to set the encoding for the underlying request
object. If no character encoding is found, the request encoding must be left unmodified.

The above algorithm allows an application to use the mechanisms of the underlying technologies to
adjust both the request and response encoding in an application-specific manner. Note, though, that
the character encoding rules prior to Jakarta Servlet 2.4 are imprecise and special care must be taken
for portability between containers.

2.5. Concepts that impact several lifecycle phases

Final Jakarta Faces 31

2.5.2.3. Localized Text

Since most Jakarta Faces components allow pulling their display value from the model tier, it is easy to
do the localization at the model tier level. As a convenience, Jakarta Faces provides the <f:loadBundle>
tag, which takes a ResourceBundle and loads it into a Map, which is then stored in the scoped
namespace in request scope, thus making its messages available using the same mechanism for
accessing data in the model tier. For example:

<f:loadBundle basename="com.foo.industryMessages.chemical"
 var="messages" />
<h:outputText value="#{messages.benzene}" />

This must cause the ResourceBundle named com.foo.industryMessages.chemical to be loaded as a Map
into the request scope under the key messages. Localized content can then be pulled out of it using the
normal value expression syntax.

2.5.2.4. Localized Application Messages

This section describes how Jakarta Faces handles localized error and informational messages that
occur as a result of conversion, validation, or other application actions during the request processing
lifecycle. The Jakarta Faces class jakarta.faces.application.FacesMessage is provided to encapsulate
summary, detail, and severity information for a message. A Jakarta Faces implementation must
provide a jakarta.faces.Messages ResourceBundle containing all of the necessary keys for the standard
messages. The required keys (and a non-normative indication of the intended message text) are as
follows:

• jakarta.faces.component.UIInput.CONVERSION={0}: Conversion error occurred

• jakarta.faces.component.UIInput.REQUIRED={0}: Validation Error: Value is required

• jakarta.faces.component.UIInput.UPDATE= {0}: An error occurred when processing your submitted
information

• jakarta.faces.component.UISelectOne.INVALID={0}: Validation Error: Value is not valid

• jakarta.faces.component.UISelectMany.INVALID={0}: Validation Error: Value is not valid

• jakarta.faces.converter.BigDecimalConverter.DECIMAL={2}: ''{0}'' must be a signed decimal
number.

• jakarta.faces.converter.BigDecimalConverter.DECIMAL_detail={2}: ''{0}'' must be a signed decimal
number consisting of zero or more digits, that may be followed by a decimal point and fraction.
Example: {1}

• jakarta.faces.converter.BigIntegerConverter.BIGINTEGER={2}: ''{0}'' must be a number consisting of
one or more digits.

• jakarta.faces.converter.BigIntegerConverter.BIGINTEGER_detail={2}: ''{0}'' must be a number
consisting of one or more digits. Example: {1}

2.5. Concepts that impact several lifecycle phases

32 Jakarta Faces Final

• jakarta.faces.converter.BooleanConverter.BOOLEAN={1}: ''{0}'' must be 'true' or 'false'.

• jakarta.faces.converter.BooleanConverter.BOOLEAN_detail={1}: ''{0}'' must be 'true' or 'false'. Any
value other than 'true' will evaluate to 'false'.

• jakarta.faces.converter.ByteConverter.BYTE={2}: ''{0}'' must be a number between -128 and 127.

• jakarta.faces.converter.ByteConverter.BYTE_detail={2}: ''{0}'' must be a number between -128 and
127. Example: {1}

• jakarta.faces.converter.CharacterConverter.CHARACTER={1}: ''{0}'' must be a valid character.

• jakarta.faces.converter.CharacterConverter.CHARACTER_detail={1}: ''{0}'' must be a valid ASCII
character.

• jakarta.faces.converter.DateTimeConverter.DATE={2}: ''{0}'' could not be understood as a date.

• jakarta.faces.converter.DateTimeConverter.DATE_detail={2}: ''{0}'' could not be understood as a
date. Example: {1}

• jakarta.faces.converter.DateTimeConverter.TIME={2}: ''{0}'' could not be understood as a time.

• jakarta.faces.converter.DateTimeConverter.TIME_detail={2}: ''{0}'' could not be understood as a
time. Example: {1}

• jakarta.faces.converter.DateTimeConverter.DATETIME={2}: ''{0}'' could not be understood as a date
and time.

• jakarta.faces.converter.DateTimeConverter.DATETIME_detail={2}: '{0}'' could not be understood as
a date and time. Example: {1}

• jakarta.faces.converter.DateTimeConverter.PATTERN_TYPE={1}: A 'pattern' or 'type' attribute must
be specified to convert the value ''{0}''.

• jakarta.faces.converter.DoubleConverter.DOUBLE={2}: ''{0}'' must be a number consisting of one or
more digits.

• jakarta.faces.converter.DoubleConverter.DOUBLE_detail={2}: ''{0}'' must be a number between
4.9E-324 and 1.7976931348623157E308 Example: {1}

• jakarta.faces.converter.EnumConverter.ENUM={2}: ''{0}'' must be convertible to an enum.

• jakarta.faces.converter.EnumConverter.ENUM_detail={2}: ''{0}'' must be convertible to an enum
from the enum that contains the constant ''{1}''.

• jakarta.faces.converter.EnumConverter.ENUM_NO_CLASS={1}: ''{0}'' must be convertible to an
enum from the enum, but no enum class provided.

• jakarta.faces.converter.EnumConverter.ENUM_NO_CLASS_detail={1}: ''{0}'' must be convertible to
an enum from the enum, but no enum class provided.

• jakarta.faces.converter.FloatConverter.FLOAT={2}: ''{0}'' must be a number consisting of one or
more digits.

• jakarta.faces.converter.FloatConverter.FLOAT_detail={2}: ''{0}'' must be a number between 1.4E-45
and 3.4028235E38 Example: {1}

2.5. Concepts that impact several lifecycle phases

Final Jakarta Faces 33

• jakarta.faces.converter.IntegerConverter.INTEGER={2}: ''{0}'' must be a number consisting of one
or more digits.

• jakarta.faces.converter.IntegerConverter.INTEGER_detail={2}: ''{0}'' must be a number between
-2147483648 and 2147483647 Example: {1}

• jakarta.faces.converter.LongConverter.LONG={2}: ''{0}'' must be a number consisting of one or
more digits.

• jakarta.faces.converter.LongConverter.LONG_detail={2}: ''{0}'' must be a number between
-9223372036854775808 to 9223372036854775807 Example: {1}

• jakarta.faces.converter.NumberConverter.CURRENCY={2}: ''{0}'' could not be understood as a
currency value.

• jakarta.faces.converter.NumberConverter.CURRENCY_detail={2}: ''{0}'' could not be understood as a
currency value. Example: {1}

• jakarta.faces.converter.NumberConverter.PERCENT={2}: ''{0}'' could not be understood as a
percentage.

• jakarta.faces.converter.NumberConverter.PERCENT_detail={2}: ''{0}'' could not be understood as a
percentage. Example: {1}

• jakarta.faces.converter.NumberConverter.NUMBER={2}: ''{0}'' is not a number.

• jakarta.faces.converter.NumberConverter.NUMBER_detail={2}: ''{0}'' is not a number. Example: {1}

• jakarta.faces.converter.NumberConverter.PATTERN={2}: ''{0}'' is not a number pattern.

• jakarta.faces.converter.NumberConverter.PATTERN_detail={2}: ''{0}'' is not a number pattern.
Example: {1}

• jakarta.faces.converter.ShortConverter.SHORT={2}: ''{0}'' must be a number consisting of one or
more digits.

• jakarta.faces.converter.ShortConverter.SHORT_detail={2}: ''{0}'' must be a number between -32768
and 32767 Example: {1}

• jakarta.faces.converter.STRING={1}: Could not convert ''{0}'' to a string.

• jakarta.faces.validator.BeanValidator.MESSAGE={0}

• jakarta.faces.validator.DoubleRangeValidator.MAXIMUM={1}: Validation Error: Value is greater
than allowable maximum of ''{0}''

• jakarta.faces.validator.DoubleRangeValidator.MINIMUM={1}: Validation Error: Value is less than
allowable minimum of ''{0}''

• jakarta.faces.validator.DoubleRangeValidator.NOT_IN_RANGE={2}: Validation Error: Specified
attribute is not between the expected values of {0} and {1}.

• jakarta.faces.validator.DoubleRangeValidator.TYPE={0}: Validation Error: Value is not of the correct
type

• jakarta.faces.validator.LengthValidator.MAXIMUM={1}: Validation Error: Length is greater than
allowable maximum of ''{0}''

2.5. Concepts that impact several lifecycle phases

34 Jakarta Faces Final

• jakarta.faces.validator.LengthValidator.MINIMUM={1}: Validation Error: Length is less than
allowable minimum of ''{0}''

• jakarta.faces.validator.LongRangeValidator.MAXIMUM={1}: Validation Error: Value is greater than
allowable maximum of ''{0}''

• jakarta.faces.validator.LongRangeValidator.MINIMUM={1}: Validation Error Value is less than
allowable minimum of ''{0}''

• jakarta.faces.validator.LongRangeValidator.NOT_IN_RANGE={2}: Validation Error: Specified
attribute is not between the expected values of {0} and {1}.

• jakarta.faces.validator.LongRangeValidator.TYPE={0}: Validation Error: Value is not of the correct
type

A Jakarta Faces application may provide its own messages, or overrides to the standard messages by
supplying a <message-bundle> element to in the application configuration resources. Since the
ResourceBundle provided in the Java platform has no notion of summary or detail, Jakarta Faces
adopts the policy that ResourceBundle key for the message looks up the message summary. The detail is
stored under the same key as the summary, with detail appended. These ResourceBundle keys must be
used to look up the necessary values to create a localized FacesMessage instance. Note that the value of
the summary and detail keys in the ResourceBundle may contain parameter substitution tokens, which
must be substituted with the appropriate values using java.text.MessageFormat. Replace the last
parameter substitution token shown in the messages above with the input component’s label attribute.
For example, {1} for “DoubleRangeValidator.MAXIMUM”, {2} for “ShortConverter.SHORT”. The label
attribute is a generic attribute. Please see Generic Attributes and Standard HTML RenderKit
Implementation for more information on these attributes. If the input component’s label attribute is not
specified, use the component’s client identifier.

These messages can be displayed in the page using the UIMessage and UIMessages components and
their corresponding tags, <h:message> and <h:messages>.

The following algorithm must be used to create a FacesMessage instance given a message key.

• Call getMessageBundle() on the Application instance for this web application, to determine if the
application has defined a resource bundle name. If so, load that ResourceBundle and look for the
message there.

• If not there, look in the jakarta.faces.Messages resource bundle.

• In either case, if a message is found, use the above conventions to create a FacesMessage instance.

2.5.3. State Management

Jakarta Faces introduces a powerful and flexible system for saving and restoring the state of the view
between requests to the server. It is useful to describe state management from several viewpoints. For
the page author, state management happens transparently. For the app assembler, state management
can be configured to save the state in the client or on the server by setting the ServletContext
InitParameter named jakarta.faces.STATE_SAVING_METHOD to either client or server. The value of this

2.5. Concepts that impact several lifecycle phases

Final Jakarta Faces 35

parameter directs the state management decisions made by the implementation.

2.5.3.1. State Management Considerations for the Custom Component Author

Since the component developer cannot know what the state saving method will be at runtime, they
must be aware of state management. As shown in The jakarta.faces.component package, all Jakarta
Faces components implement the StateHolder interface. As a consequence the standard components
provide implementations of PartialStateHolder to suit their needs. A custom component that extends
UIComponent directly, and does not extend any of the standard components, must implement
PartialStateHolder (or its older super-interface, StateHolder), manually. The helper class StateHelper
exists to simplify this process for the custom component author. Please see PartialStateHolder or
StateHolder for details.

A custom component that does extend from one of the standard components and maintains its own
state, in addition to the state maintained by the superclass must take special care to implement
StateHolder or PartialStateHolder correctly. Notably, calls to saveState() must not alter the state in any
way. The subclass is responsible for saving and restoring the state of the superclass. Consider this
example. My custom component represents a “slider” ui widget. As such, it needs to keep track of the
maximum value, minimum value, and current values as part of its state.

public class Slider extends UISelectOne {
 protected Integer min = null;
 protected Integer max = null;
 protected Integer cur = null;

 // ... details omitted
 public Object saveState(FacesContext context) {
 Object values[] = new Object[4];
 values[0] = super.saveState(context);
 values[1] = min;
 values[2] = max;
 values[3] = cur;
 }

 public void restoreState(FacesContext context, Object state) {
 Object values[] = (Object {}) state; // guaranteed to succeed
 super.restoreState(context, values[0]);
 min = (Integer) values[1];
 max = (Integer) values[2];
 cur = (Integer) values[3];
 }

Note that we call super.saveState() and super.restoreState() as appropriate. This is absolutely vital!
Failing to do this will prevent the component from working.

2.5. Concepts that impact several lifecycle phases

36 Jakarta Faces Final

2.5.3.2. State Management Considerations for the Jakarta Faces Implementor

The intent of the state management facility is to make life easier for the page author, app assembler,
and component author. However, the complexity has to live somewhere, and the Jakarta Faces
implementor is the lucky role. Here is an overview of the key players. Please see the javadocs for each
individual class for more information.

Key Players in State Management

• StateHelper the helper class that defines a Map -like contract that makes it easier for components to
implement PartialStateHolder.

• ViewHandler the entry point to the state management system. Uses a helper class, StateManager, to
do the actual work.

• StateManager abstraction for the hard work of state saving. Uses a helper class,
ResponseStateManager, for the rendering technology specific decisions.

• ResponseStateManager abstraction for rendering technology specific state management decisions.

• UIComponent directs process of saving and restoring individual component state.

2.5.4. Resource Handling

This section only applies to pages written using Facelets. Resource Handling is the starting point for the
normative specification for Resource Handling. This section gives a non-normative overview of the
feature. The following steps walk through the points in the lifecycle where this feature is encountered.
Consider a Faces web application that contains resources that have been packaged into the application
as specified in Packaging Resources. Assume each page in the application includes references to
resources, specifically scripts and stylesheets. The first diagram in this chapter is helpful in
understanding this example.

Consider an initial request to the application.

• The ViewHandler calls ViewDeclarationLanguage.buildView(). This ultimately causes the
processEvent() method for the jakarta.faces.resource.Script and jakarta.faces.resource.Stylesheet
renderers (which implement ComponentSystemEventListener) to be called after each component
that declares them as their renderer is added to the view. This method is specified to take actions
that cause the resource to be rendered at the correct part in the page based on user-specified or
application invariant rules. Here’s how it works.

• Every UIComponent instance in a view is created with a call to some variant of
Application.createComponent(). The specification for this method now includes some annotation
processing requirements. If the component or its renderer has an @ListenerFor or @ListenersFor
annotation, and the Script and Stylesheet renderers must, the component or its renderer are added
as a component scoped listener for the appropriate event. In the case of Script and Stylesheet
renderers, they must listen for the PostAddToViewEvent.

• When the processEvent() method is called on a Script or Stylesheet renderer, the renderer takes the
specified action to move the component to the proper point in the tree based on what kind of

2.5. Concepts that impact several lifecycle phases

Final Jakarta Faces 37

resource it is, and on what hints the page author has declared on the component in the view.

• The ViewHandler calls ViewDeclarationLanguage.renderView(). The view is traversed as normal and
because the components with Script and Stylesheet renderers have already been reparented to the
proper place in the view, the normal renderering causes the resource to be encoded as described in
Rendering Resources.

The browser then parses the completely rendered page and proceeds to issue subsequent requests for
the resources included in the page.

Now consider a request from the browser for one of those resources included in the page.

• The request comes back to the Faces server. The FacesServlet is specified to call
ResourceHandler.isResourceRequest() as shown in the diagram in Faces Request Generates Faces
Response. In this case, the method returns true. The FacesServlet is specified to call
ResourceHandler.handleResourceRequest() to serve up the bytes of the resource.

2.5.5. View Parameters

This section only applies to pages written using Facelets. The normative specification for this feature is
spread out across several places, including the View Declaration Language Documentation for the
<f:metadata> element, the javadocs for the UIViewParameter, ViewHandler, and
ViewDeclarationLanguage classes, and the spec language requirements for the default
NavigationHandler and the Request Processing Lifecycle. This leads to a very diffuse field of
specification requirements. To aid in understanding the feature, this section provides a non-normative
overview of the feature. The following steps walk through the points in the lifecycle where this feature
is encountered. Consider a web application that uses this feature exclusively on every page. Therefore
every page has the following features in common.

• Every page has an <f:metadata> tag, with at least one <f:viewParameter> element within it.

• Every page has at least one <h:link> or < h:button> with the appropriate parameters nested within
it.

• No other kind of navigation components are used in the application.

Consider an initial request to the application.

• As specified in section Restore View, the restore view phase of the request processing lifecycle
detects that this is an initial request and tries to obtain the ViewDeclarationLanguage instance from
the ViewHandler for this viewId. Because every page in the app is written in Facelets, there is a
ViewDeclarationLanguage instance. Restore view phase calls
ViewDeclarationLanguage.getViewMetadata(). Because every view in this particular app does have
<f:metadata> on every page, this method returns a ViewMetadata instance. Restore view phase calls
MetaData.createMetadataView(). This method creates a UIViewRoot containing only children
declared in the <f:metadata> element. Restore view phase calls ViewMetadata.getViewParameters().
Because every <f:metadata> in the app has at least one <f:viewParameter> element within it, this
method returns a non empty Collection<UIViewParameter>. Restore view phase uses this fact to

2.5. Concepts that impact several lifecycle phases

38 Jakarta Faces Final

decide that the lifecycle must not skip straight to render response, as is the normal action taken on
initial requests.

• The remaining phases of the request processing lifecycle execute: apply request values, process
validations, update model values, invoke application, and finally render response. Because the
view only contains UIViewParameter children, only these children are traversed during the
lifecycle, but because this is an initial request, with no query parameters, none of these compnents
take any action during the lifecycle.

• Because the pages exclusively use <h:link> and <h:button> for their navigation, the renderers for
these components are called during the rendering of the page. As specified in the renderkit docs for
the renderers for those components, markup is rendered that causes the browser to issue a GET
request with query parameters.

Consider when the user clicks on a link in the application. The browser issues a GET request with
query parameters

• Restore view phase takes the same action as in the previously explained request. Because this is a
GET request, no state is restored from the previous request.

• Because this is a request with query parameters, the UIViewParameter children do take action
when they are traversed during the normal lifecycle, reading values during the apply request
values phase, doing conversion and processing validators attached to the <f:viewParam> elements,
if any, and updating models during the update model values phase. Because there are only <h:link>
and <h:button> navigation elements in the page, no action action will happen during the invoke
application phase. The response is re-rendered as normal. In such an application, the only
navigation to a new page happens by virtue of the browser issuing a GET request to a different
viewId.

2.5.6. Bookmarkability

Jakarta Faces has a bookmarking capability with the use of two Standard HTML RenderKit additions.

Provided is a component (UIOutcomeTarget) that provides properties that are used to produce a
hyperlink at render time. The component can appear in the form of a button or a link. This feature
introduces a concept known as “preemptive navigation”, which means the target URL is determined at
Render Response time - before the user has activated the component. This feature allows the user to
leverage the navigation model while also providing the ability to generate bookmarkable non-faces
requests.

2.5.7. Jakarta Bean Validation

Jakarta Faces supports Jakarta Bean Validation. A Jakarta Faces implementation must support Jakarta
Bean Validation if the environment in which the Jakarta Faces runtime is included requires Jakarta
Bean Validation. Currently the only such environment is when Jakarta Faces is included in a Jakarta EE
runtime.

A detailed description of the usage of Jakarta Bean Validation with Jakarta Faces is beyond the scope of

2.5. Concepts that impact several lifecycle phases

Final Jakarta Faces 39

this section, but this section will provide a brief overview of the feature, touching on the points of
interest to a spec implementor. Consider a simple web application that has one page, written in
Facelets, that has several text fields inside of a form. This application is running in a Jakarta Faces
runtime in an environment that does require Jakarta Bean Validation, and therefore this feature is
available. Assume that every text field is bound to a managed bean property that has at least one
Jakarta Bean Validation constraint annotation attached to it.

During the render response phase that always precedes a postback, due to the specification
requirements in Validation Registration, every UIInput in this application has an instance of Validator
with id jakarta.faces.Bean attached to it.

During the process validations phase, due to the specification for the validate() method of this
Validator, Bean Validation is invoked automatically, for the user specified validation constraints,
whenever such components are normally validated. The jakarta.faces.Bean standard validator also
ensures that every ConstraintViolation that resulted in attempting to validate the model data is
wrapped in a FacesMessage and added to the FacesContext as normal with every other kind of
validator.

See also Bean Validation Integration.

2.5.8. Ajax

Jakarta Faces supports Ajax. The specification contains a JavaScript library for performing basic Ajax
operations. The library helps define a standard way of sending an Ajax request, and processing an Ajax
response, since these are problem areas for component compatibility. The specification provides two
ways of adding Ajax to Jakarta Faces web applications. Page authors may use the JavaScript library
directly in their pages by attaching the Ajax request call to a Jakarta Faces component via a JavaScript
event (such as onclick). They may also take a more declarative approach and use a core Facelets tag
(<f:ajax/>) that they can nest within Jakarta Faces components to “Ajaxify” them. It is also possible to
“Ajaxify” regions of a page by “wrapping” the tag around component groups.

The server side aspects of Jakarta Faces Ajax frameworks work with the standard Jakarta Faces
lifecycle. In addition to providing a standard page authoring experience, the specification also
standardizes the server side processing of Ajax requests. Selected components in a Jakarta Faces view
can be processed (known as partial processing) and selected components can be rendered to the client
(known as partial rendering).

2.5.9. Component Behaviors

The Jakarta Faces specification contains a type of attached object known as component behaviors.
Component behaviors play a similar role to converters and validators in that they are attached to a
component instance in order to enhance the component with additional functionality not defined by
the component itself. While converters and validators are currently limited to the server-side request
processing lifecycle, component behaviors have impact that extends to the client, within the scope of a
particular instance component in a view. In particular, the ClientBehavior interface defines a contract
for behaviors that can enhance a component’s rendered content with behavior-defined "scripts". These

2.5. Concepts that impact several lifecycle phases

40 Jakarta Faces Final

scripts are executed on the client in response to end user interaction, but can also trigger postbacks
back into the Jakarta Faces request processing lifecycle.

The usage pattern for client behaviors is as follows:

• The page author attaches a client behavior to a component, typically by specifying a behavior tag as
a child of a component tag.

• When attaching a client behavior to a component, the page author identifies the name of a client
"event" to attach to. The set of valid events are defined by the component.

• At render time, the component (or renderer) retrieves the client behavior and asks it for its script.

• The component (or renderer) renders this script at the appropriate location in its generated
content (eg. typically in a DOM event handler).

• When the end user interacts with the component’s content in the browser, the behavior-defined
script is executed in response to the page author-specified event.

• The script provides some client-side interaction, for example, hiding or showing content or
validating input on the client, and possibly posts back to the server.

The first client behavior provided by the Jakarta Faces specification is the AjaxBehavior. This behavior
is exposed to a page author as a Facelets <f:ajax> tag, which can be embedded within any of the
standard HTML components as follows:

<h:commandButton>
 <f:ajax event="mouseover" />
</h:commandButton>

When activated in response to end user activity, the <f:ajax> client behavior generates an Ajax request
back into the Jakarta Faces request processing lifecycle.

The component behavior framework is extensible and allows developers to define custom behaviors
and also allows component authors to enhance custom components to work with behaviors.

2.5.10. System Events

System Events are normatively specified in System Events. This section provides an overview of this
feature as it relates to the lifecycle.

System events expand on the idea of lifecycle PhaseEvents. With PhaseEvents, it is possible to have
application scoped PhaseListeners that are given the opportunity to act on the system before and after
each phase in the lifecycle. System events provide a much more fine grained insight into the system,
allowing application or component scoped listeners to be notified of a variety of kinds of events. The
set of events supported in the core specification is given in Event Classes. To accomodate extensibility,
users may define their own kinds of events.

2.5. Concepts that impact several lifecycle phases

Final Jakarta Faces 41

The system event feature is a simple publish/subscribe event model. There is no event queue, events
are published immediately, and always with a call to Application.publishEvent(). There are several ways
to declare interest in a particular kind of event.

• Call Application.subscribeToEvent() to add an application scoped listener.

• Call UIComponent.subscribeToEvent() to add a component scoped listener.

• Use the <f:event> tag to declare a component scoped listener.

• Use the @ListenerFor or @ListenersFor annotation. The scope of the listener is determined by the
code that processes the annotation.

• Use the <system-event-listener> element in an application configuration resource to add an
application scoped listener.

This feature is conceptually related to the lifecycle because there are calls to Application.publishEvent()
sprinkled throughout the code that gets executed when the lifecycle runs.

2.6. Resource Handling
As shown in the diagram in Faces Request Generates Faces Response, the Jakarta Faces run-time must
determine if the current Faces Request is a Faces Resource Request or a View Request. This must be
accomplished by calling Application.getResourceHandler().isResourceRequest(). Most of the normative
specification for resource handling is contained in the Javadocs for ResourceHandler and its related
classes. This section contains the specification for resource handling that fits best in prose, rather than
in Javadocs.

2.6.1. Packaging Resources

ResourceHandler defines a path based packaging convention for resources. The default
implementation of ResourceHandler must support packaging resources in the web application root or
in the classpath, according to the following specification.Other implementations of ResourceHandler
are free to package resources however they like.

2.6.1.1. Packaging Resources into the Web Application Root

The default implementation must support packaging resources in the web application root under the
path

resources/<resourceIdentifier>

relative to the web app root. Resources packaged into the web app root must be accessed using the
getResource*() methods on ExternalContext.

2.6.1.2. Packaging Resources into the Classpath

For the default implementation, resources packaged in the classpath must reside under the JAR entry

2.6. Resource Handling

42 Jakarta Faces Final

name:

META-INF/resources/<resourceIdentifier>

Resources packaged into the classpath must be accessed using the getResource*() methods of the
ClassLoader obtained by calling the getContextClassLoader() method of the curreth Thread.

2.6.1.3. Resource Identifiers

<resourceIdentifier> consists of several segments, specified as follows.

[localePrefix/][libraryName/][libraryVersion/]resourceName[/resourceVersion]

The run-time must enforce the following rules to consider a <resourceIdentifier> valid. A
<resourceIdentifier> that does not follow these rules must not be considered valid and must be ignored
silently.

• The set of characters that are valid for use in the localePrefix, libraryName, libraryVerison,
resourceName and resourceVersion segments of the resource identifier is specififed as XML
NameChar excluding the path separator and ‘:’ characters. The specification for XML NameChar
may be seen at https://www.w3.org/TR/REC-xml/#NT-NameChar.

• A further restriction applies to libraryName. A libraryName must not be an underscore separated
sequence of non-negative integers or a locale string. More rigorously, a libraryName must not
match either of the following regular expressions:

[0-9]+(_[0-9]+)*
[A-Za-z]{2}(_[A-Za-z]{2}(_[A-Za-z]+)*)?

• Segments in square brackets [] are optional.

• The segments must appear in the order shown above.

• If libraryVersion is present, it must be preceded by libraryName.

• If libraryVersion is present, any leaf files under libraryName must be ignored.

• If resourceVersion is present, it must be preceded by resourceName.

• There must be a ’ / ’ between adjacent segments in a <resourceIdentifier>

• If libraryVersion or resourceVersion are present, both must be a ’ _ ’ separated list of integers, neither
starting nor ending with ’ _ ’

If resourceVersion is present, it must be a version number in the same format as libraryVersion. An
optional “file extension” may be used with the resourceVersion. If “file extension” is used, a “.”
character, followed by a “file extension” must be appended to the version number. See the following
table for an example.

The following examples illustrate the nine valid combinations of the above resource identifier

2.6. Resource Handling

Final Jakarta Faces 43

https://www.w3.org/TR/REC-xml/#NT-NameChar

segments.

localePrefx libraryName library

Version
[optional]

resourceNa
me

resource

Version
[optional]

Description actual
resourceIden
tifier

__ __ __ duke.gif __ A non-
localized,
non-
versioned
image
resource
called
"duke.gif",
not in a
library

duke.gif

__ corporate __ duke.gif __ A non-
localized,
non-
versioned
image
resource
called
"duke.gif" in
a library
called
"corporate"

corporate/du
ke.gif

__ corporate 2_3 duke.gif __ A non-
localized,
non-
versioned
image
resource
called
"duke.gif", in
version 2_3
of the
"corporate"
library

corporate/2_
3/duke.gif

2.6. Resource Handling

44 Jakarta Faces Final

__ basic 2_3 script.js 1_3_4.js A non-
localized,
version 1.3.4
script
resource
called
"script.js", in
versioned
2_3

library
called "
basic".

basic/2_3/scri
pt.js/1_3_4.js

de __ __ header.css __ A non-
versioned
style
resource
called
"header.css"
localized for
locale "de"

de/header.css

de_AT __ __ footer.css 1_4_2.css Version
1_4_2 of style
resource
"footer.css",
localized for
locale "
de_AT"

de_AT/footer.
css/1_4_2.css

zh extraFancy __ menu-bar.css 2_4.css Version 2_4
of style
resource
called,
"menu-
bar.css" in
non-
versioned
library,
"extraFancy",
localized for
locale "zh"

zh/extraFanc
y/menu-
bar.css/2_4.c
ss

2.6. Resource Handling

Final Jakarta Faces 45

ja mild 0_1 ajaxTransact
ion.js

__ Non-
versioned
script
resource
called,
"ajaxTransac
tion.js", in
version 0_1
of library
called "mild",
localized for
locale "ja"

ja/mild/0_1/aj
axTransactio
n.js

de_ch grassy 1_0 bg.png 1_0.png Version 1_0
of image
resource
called
"bg.png", in
version 1_0
of library
called
"grassy"
localized for
locale "
de_ch"

de_ch/grassy/
1_0/bg.png/1_
0.png

2.6.1.4. Libraries of Localized and Versioned Resources

An important feature of the resource handler is the ability for resources to be localized, versioned, and
collected into libraries. The localization and versioning scheme is completely hidden behind the API of
ResourceHandler and Resource and is not exposed in any way to the Jakarta Faces run-time.

The default implementation of ResourceHandler.createResource(), for all variants of that method, must
implement the following to discover which actual resource will be encapsulated within the returned
Resource instance. An implementation may perform caching of the resource metadata to improve
performance if the ProjectStage is ProjectStage.Production.

Using the resourceName and libraryName arguments to createResource(), and the resource packaging
scheme specified in Packaging Resources into the Web Application Root, Packaging Resources into the
Classpath, and Resource Identifiers, discover the file or entry that contains the bytes of the resource. If
there are multiple versions of the same library, and libraryVersion is not specified, the library with the
highest version is chosen. If there are multiple versions of the same resource, and resourceVersion is
not specified, the resource with the highest version is chosen. The algorithm is specified in pseudocode.

function createResource(resourceName, libraryName) {

2.6. Resource Handling

46 Jakarta Faces Final

 var resource = null;
 var resourceId = null;
 for (var contract : getLibraryContracts()) {
 resourceId = deriveResourceIdConsideringResourceLoaders(contract,
 resourceName, libraryName)
 if (null != resourceId) {
 resource = create the resource using the resourceId;
 return resource;
 }
 }

 // try without a contract
 resourceId = deriveResourceIdConsideringResourceLoaders(null,
 resourceName, libraryName)
 if (null != resourceId) {
 resource = create the resource using the resourceId;
 }
 return resource;
}

function deriveResourceIdConsideringResourceLoaders(contract,
 resourceName, libraryName) {
 var prefix = web app root resource prefix;
 var resourceLoader = web app resource loader;
 // these are shorthand for the prefix and resource loading
 // facility specified in Section 2.6.1.1. They are
 // not actual API per se.
 var resourceId = deriveResourceIdConsideringLocalePrefix(contract,
 prefix, resourceLoader, resourceName, libraryName);

 if (null == resourceId) {
 prefix = classpath resource prefix;
 resourceLoader = classpath resource loader;
 // these are shorthand for the prefix and resource
 // loading facility specified in Section 2.6.1.2. They are
 // not actual API per se.
 resourceId = deriveResourceIdConsideringLocalePrefix(contract,
 prefix, resourceLoader, resourceName, libraryName);
 }
 return resourceId;
}

function deriveResourceIdConsideringLocalePrefix(contract, prefix,
 resourceLoader, resourceName, libraryName) {
 var localePrefix = getLocalePrefix();
 var result = deriveResourceId(contract, prefix, resourceLoader,
 resourceName, libraryName, localePrefix);
 // If the application has been configured to have a localePrefix,

2.6. Resource Handling

Final Jakarta Faces 47

 // and the resource is not found, try to find it again,
 // without the localePrefix.
 if (null == result && null != localePrefix) {
 result = deriveResourceId(contract, prefix, resourceLoader,
 resourceName, libraryName, null);
 }
 return result;
}

function deriveResourceId(contract, prefix, resourceLoader,
 resourceName, libraryName, localePrefix) {
 var resourceVersion = null;
 var libraryVersion = null;
 var resourceId;
 if (null != localePrefix) {
 prefix = localePrefix + '/' + prefix;
 }
 if (null != contract) {
 prefix = contract + '/' + prefix;
 }

 if (null != libraryName) {
 // actual argument is
 // resourcesInContractInJar/resources/resourcesInContractInJar
 var libraryPaths = resourceLoader.getResourcePaths(
 prefix + '/' + libraryName);

 if (null != libraryPaths && !libraryPaths.isEmpty()) {
 libraryVersion = // execute the comment
 // Look in the libraryPaths for versioned libraries.
 // If one or more versioned libraries are found, take
 // the one with the highest version number as the value
 // of libraryVersion. If no versioned libraries
 // are found, let libraryVersion remain null.
 }
 if (null != libraryVersion) {
 libraryName = libraryName + '/' + libraryVersion;
 }
 var resourcePaths = resourceLoader.getResourcePaths(
 prefix + '/' + libraryName + '/' + resourceName);
 if (null != resourcePaths && !resourcePaths.isEmpty()) {
 resourceVersion = // execute the comment +
 // Look in the resourcePaths for versioned resources.
 // If one or more versioned resources are found, take
 // the one with the "highest" version number as the value
 // of resourceVersion. If no versioned libraries
 // are found, let resourceVersion remain null.
 }

2.6. Resource Handling

48 Jakarta Faces Final

 if (null != resourceVersion) {
 resourceId = prefix + '/' + libraryName + '/' +
 resourceName + '/' + resourceVersion;
 }
 else {
 resourceId = prefix + '/' + libraryName + '/' + resourceName;
 }
 } // end of if (null != libraryName)
 else {
 // libraryName == null
 var resourcePaths = resourceLoader.getResourcePaths(
 prefix + '/' + resourceName);
 if (null != resourcePaths && !resourcePaths.isEmpty()) {
 resourceVersion = // execute the comment
 // Look in the resourcePaths for versioned resources.
 // If one or more versioned resources are found, take
 // the one with the "highest" version number as the value
 // of resourceVersion. If no versioned libraries
 // are found, let resourceVersion remain null.
 }
 if (null != resourceVersion) {
 resourceId = prefix + '/' + resourceName + '/' +
 resourceVersion;
 } else {
 resourceId = prefix + '/' + resourceName;
 }
 } // end of else, when libraryName == null
 return resourceId;
}

function getLocalePrefix() {
 var localePrefix;
 var appBundleName = facesContext.application.messageBundle;
 if (null != appBundleName) {
 var locale =
 // If there is a viewRoot on the current facesContext,
 // use its locale.
 // Otherwise, use the locale of the application's ViewHandler
 ResourceBundle appBundle = ResourceBundle.getBundle(
 appBundleName, locale);
 localePrefix = appBundle.getString(ResourceHandler. LOCALE_PREFIX);
 }
 // Any MissingResourceException instances that are encountered
 // in the above code must be swallowed by this method, and null
 // returned;
 return localePrefix;
}

2.6. Resource Handling

Final Jakarta Faces 49

2.6.2. Rendering Resources

Resources such as images, stylesheets and scripts use the resource handling mechanism as outlined in
Packaging Resources. So, for example:

<h:graphicImage library="common" name="images/planets.png" />
<h:graphicImage value="#{resource['common:images/planets.png']}" />

These entries render exactly the same markup. In addition to using the name and library attributes,
stylesheet and script resources can be “relocated” to other parts of the view. For example, we could
specify that a script resource be rendered within an HTML “head”, “body” or “form” element in the
page.

2.6.2.1. Relocatable Resources

Relocatable resources are resources that can be told where to render themselves, and this rendered
location may be different than the resource tag placement in the view. For example, a portion of the
view may be described in the view declaration language as follows:

<!DOCTYPE html>
<html xmlns:h="jakarta.faces.html">
 <h:head>
 <title>Example View</title>
 </h:head>
 <h:body>
 <h:form>
 <h:outputScript library="jakarta.faces" name="faces.js" target="head" />
 </h:form>
 </h:body>
</html>

The example tag <h:outputScript> which extends from UIOutput refers to the example renderer,
ScriptRenderer, implementing ComponentSystemEventListener, that listens for PostAddToViewEvent
event types:

@ListenerFor(facesEventClass=PostAddToViewEvent.class,
 sourceClass=UIOutput.class)
public class ScriptRenderer extends Renderer
 implements ComponentSystemEventListener {...

Refer to Event and Listener Model. When the component for this resource is added to the view, the
ScriptRenderer.processEvent() method adds the component to a facet (named by the target attribute)
under the view root. using the UIViewRoot component resource methods as described in Methods.

2.6. Resource Handling

50 Jakarta Faces Final

The <h:head> and <h:body> tags refer to the renderers HeadRenderer and BodyRenderer respectively.
They are described in the Standard HTML Renderkit documentation referred to in Standard HTML
RenderKit Implementation. During the rendering phase, the encode methods for these renderers
render the HTML “head” and “body” elements respectively. Then they render all component resources
under the facet child (named by target) under the UIViewRoot using the UIViewRoot component
resource methods as described in Methods.

Existing component libraries (with existing head and body components), that want to use this resource
loading feature must follow the rendering requirements described in Standard HTML RenderKit
Implementation.

2.6.2.2. Resource Rendering Using Annotations

Components and renderers may be declared as requiring a resource using the @ResourceDependency
annotation. The implementation must scan for the presence of this annotation on the component that
was added to the List of child components. Check for the presence of the annotation on the renderer
for this component (if there is a renderer for the component). The annotation check must be done
immediately after the component is added to the List. Refer to Component Tree Manipulation for
detailed information.

2.7. Resource Library Contracts
A resource library contract is a resource library, as specified in the preceding section, except that
instead of residing in the resources directory of the web-app root, or in the META-INF/resources JAR
entry name in a JAR file, it resides in the contracts directory of the web-app root, or in the META-
INF/contracts JAR entry name in a JAR file. When packaged in a JAR file, there is one additional
packaging requirement: each resource library contract in the JAR must have a marker file. The name
of the file is given by the value of the symbolic constant
jakarta.faces.application.ResourceHandler.RESOURCE_CONTRACT_XML. This may be a zero length file,
though future versions of the specification may use the file to declare the usage contract. The
requirement to have a marker file enables implementations to optimize for faster deployment while
still enabling automatic discovery of the available contracts.

Following is a listing of the entries in a JAR file containing two resource library contracts.

2.7. Resource Library Contracts

Final Jakarta Faces 51

META-INF/contracts/
 siteLayout/
 jakarta.faces.contract.xml
 topNav_template.xhtml
 leftNav_foo.xhtml
 styles.css
 script.js
 background.png
 subSiteLayout/
 jakarta.faces.contract.xml
 sub_template.xhtml

All of the other packaging, encoding and decoding requirements are the same as for resource libraries.

See Resource Library Contracts Background for a non-normative overview of the feature, including a
brief usage example.

2.7. Resource Library Contracts

52 Jakarta Faces Final

Chapter 3. User Interface Component Model
A Jakarta Faces user interface component is the basic building block for creating a Jakarta Faces user
interface. A particular component represents a configurable and reusable element in the user
interface, which may range in complexity from simple (such as a button or text field) to compound
(such as a tree control or table). Components can optionally be associated with corresponding objects
in the data model of an application, via value expressions.

Jakarta Faces also supports user interface components with several additional helper APIs:

• Converters —Pluggable support class to convert the markup value of a component to and from the
corresponding type in the model tier.

• Events and Listeners —An event broadcast and listener registration model based on the design
patterns of the JavaBeans Specification, version 1.0.1.

• Validators —Pluggable support classes that can examine the local value of a component (as
received in an incoming request) and ensure that it conforms to the business rules enforced by
each Validator. Error messages for validation failures can be generated and sent back to the user
during rendering.

The user interface for a particular page of a Jakarta Faces-based web application is created by
assembling the user interface components for a particular request or response into a view. The view is
a tree of classes that implement UIComponent. The components in the tree have parent-child
relationships with other components, starting at the root element of the tree, which must be an
instance of UIViewRoot. Components in the tree can be anonymous or they can be given a component
identifier by the framework user. Components in the tree can be located based on component
identifiers, which must be unique within the scope of the nearest ancestor to the component that is a
naming container. For complex rendering scenarios, components can also be attached to other
components as facets.

This chapter describes the basic architecture and APIs for user interface components and the
supporting APIs.

3.1. UIComponent and UIComponentBase
The base abstract class for all user interface components is jakarta.faces.component.UIComponent. This
class defines the state information and behavioral contracts for all components through a Java
programming language API, which means that components are independent of a rendering technology
such as Facelets. A standard set of components (described in Standard User Interface Components) that
add specialized properties, attributes, and behavior, is also provided as a set of concrete subclasses.

Component writers, tool providers, application developers, and Jakarta Faces implementors can also
create additional UIComponent implementations for use within a particular application. To assist such
developers, a convenience subclass, jakarta.faces.component.UIComponentBase, is provided as part of
Jakarta Faces. This class provides useful default implementations of nearly every UIComponent

3.1. UIComponent and UIComponentBase

Final Jakarta Faces 53

method, allowing the component writer to focus on the unique characteristics of a particular
UIComponent implementation.

The following subsections define the key functional capabilities of Jakarta Faces user interface
components.

3.1.1. Component Identifiers

public String getId();
public void setId(String componentId);

Every component may be named by a component identifier that must conform to the following rules:

• They must start with a letter (as defined by the Character.isLetter() method).

• Subsequent characters must be letters (as defined by the Character.isLetter() method), digits as
defined by the Character.isDigit() method, dashes (‘-’), or underscores (‘_’).

To minimize the size of responses generated by Jakarta Faces, it is recommended that component
identifiers be as short as possible.

If a component has been given an identifier, it must be unique in the namespace of the closest ancestor
to that component that is a NamingContainer (if any).

3.1.2. Component Type

While not a property of UIComponent, the component-type is an important piece of data related to each
UIComponent subclass that allows the Application instance to create new instances of UIComponent
subclasses with that type. Please see Object Factories for more on component-type.

Component types starting with “jakarta.faces.” are reserved for use by the Jakarta Faces specification.

3.1.3. Component Family

public String getFamily();

Each standard user interface component class has a standard value for the component family, which is
used to look up renderers associated with this component. Subclasses of a generic UIComponent class
will generally inherit this property from its superclass, so that renderers who only expect the
superclass will still be able to process specialized subclasses.

Component families starting with “jakarta.faces.” are reserved for use by the Jakarta Faces
specification.

3.1. UIComponent and UIComponentBase

54 Jakarta Faces Final

3.1.4. ValueExpression properties

Properties and attributes of standard concrete component classes may be value expression enabled.
This means that, rather than specifying a literal value as the parameter to a property or attribute
setter, the caller instead associates a ValueExpression (see ValueExpression) whose getValue() method
must be called (by the property getter) to return the actual property value to be returned if no value
has been set via the corresponding property setter. If a property or attribute value has been set, that
value must be returned by the property getter (shadowing any associated value binding expression for
this property).

Value binding expressions are managed with the following method calls:

public ValueExpression getValueExpression(String name);
public void setValueExpression(String name, ValueExpression expression);

where name is the name of the attribute or property for which to establish the value expression. The
implementation of setValueExpression must detemine if the expression is a literal by calling
ValueExpression.isLiteralText() on the expression argument. If the expression argument is literal text,
then ValueExpression.getValue() must be called on the expression argument. The result must be used
as the value argument, along with the name argument to this component’s getAttributes().put(name,
value) method call. For the standard component classes defined by this specification, all attributes, and
all properties other than id, parent, action, listener, actionListener, valueChangeListener, and validator
are value expression enabled. The action, listener, actionListener, valueChangeListener, and validator
attributes are method expression enabled.

In previous versions of this specification, this concept was called “value binding”. Methods and classes
referring to this concept are deprecated, but remain implemented to preserve backwards
compatibility.

public ValueBinding getValueBinding(String name);
public void setValueBinding(String name, ValueBinding binding);

Please consult the javadoc for these methods to learn how they are implemented in terms of the new
“value expression” concept.

3.1.5. Component Bindings

A component binding is a special value expression that can be used to facilitate “wiring up” a
component instance to a corresponding property of a JavaBean that is associated with the page, and
wants to manipulate component instances programatically. It is established by calling
setValueExpression() (see ValueExpression properties) with the special property name binding.

The specified ValueExpression must point to a read-write JavaBeans property of type UIComponent (or
appropriate subclass). Such a component binding is used at two different times during the processing

3.1. UIComponent and UIComponentBase

Final Jakarta Faces 55

of a Faces Request:

• When a component instance is first created (typically by virtue of being referenced by a tag in a
page), the Jakarta Faces implementation will retrieve the ValueExpression for the name binding,
and call getValue() on it. If this call returns a non-null UIComponent value (because the JavaBean
programmatically instantiated and configured a component already), that instance will be added to
the component tree that is being created. If the call returns null, a new component instance will be
created, added to the component tree, and setValue() will be called on the ValueExpression (which
will cause the property on the JavaBean to be set to the newly created component instance).

• When a component tree is recreated during the Restore View phase of the request processing
lifecycle, for each component that has a ValueExpression associated with the name “binding”,
setValue() will be called on it, passing the recreated component instance.

Component bindings are often used in conjunction with JavaBeans that are dynamically instantiated
via the Managed Bean Creation facility. If application developers place managed beans that are pointed
at by component binding expressions in any scope other than request scope, the system cannot behave
correctly. This is because placing it in a scope wider than request scope would require thread safety,
since UIComponent instances depend on running inside of a single thread. There are also potentially
negative impacts on memory management when placing a component binding in “session” or “view”
scopes.

3.1.6. Client Identifiers

Client identifiers are used by Jakarta Faces implementations, as they decode and encode components,
for any occasion when the component must have a client side name. Some examples of such an
occasion are:

• to name request parameters for a subsequent request from the Jakarta Faces-generated page.

• to serve as anchors for client side scripting code.

• to serve as anchors for client side accessibility labels.

public String getClientId(FacesContext context);
protected String getContainerClientId(FacesContext context);

The client identifier is derived from the component identifier (or the result of calling
UIViewRoot.createUniqueId() if there is not one), and the client identifier of the closest parent
component that is a NamingContainer according to the algorithm specified in the javadoc for
UIComponent.getClientId(). The Renderer associated with this component, if any, will then be asked to
convert this client identifier to a form appropriate for sending to the client. The value returned from
this method must be the same throughout the lifetime of the component instance unless setId() is
called, in which case it will be recalculated by the next call to getClientId().

3.1. UIComponent and UIComponentBase

56 Jakarta Faces Final

3.1.7. Component Tree Manipulation

public UIComponent getParent();
public void setParent(UIComponent parent);

Components that have been added as children of another component can identify the parent by calling
the getParent method. For the root node component of a component tree, or any component that is not
part of a component tree, getParent will return null. In some special cases, such as transient
components, it is possible that a component in the tree will return null from getParent(). The
setParent() method should only be called by the List instance returned by calling the getChildren()
method, or the Map instance returned by calling the getFacets() method, when child components or
facets are being added, removed, or replaced.

public List<UIComponent> getChildren();

Return a mutable List that contains all of the child UIComponents for this component instance. The
returned List implementation must support all of the required and optional methods of the List
interface, as well as update the parent property of children that are added and removed, as described
in the Javadocs for this method. Note that the add() methods have a special requirement to cause the
PostAddToViewEvent method to be fired, as well as the processing of the ResourceDependency
annotation. See the javadocs for getChildren() for details.

public int getChildCount();

A convenience method to return the number of child components for this component. [P2-start
UIComponent.getChildCount requirements.] If there are no children, this method must return 0. The
method must not cause the creation of a child component list, so it is preferred over calling
getChildren().size() when there are no children. [P2-end]

3.1.8. Component Tree Navigation

public UIComponent findComponent(String expr);

Search for and return the UIComponent with an id that matches the specified search expression (if
any), according to the algorithm described in the Javadocs for this method.

public Iterator<UIComponent> getFacetsAndChildren();

Return an immutable Iterator over all of the facets associated with this component (in an
undetermined order), followed by all the child components associated with this component (in the

3.1. UIComponent and UIComponentBase

Final Jakarta Faces 57

order they would be returned by getChildren()).

public boolean invokeOnComponent(FacesContext context,
 String clientId, ContextCallback callback) throws FacesException;

Starting at this component in the view, search for the UIComponent whose getClientId() method returns
a String that exactly matches the argument clientId using the algorithm specified in the Javadocs for
this method. If such a UIComponent is found, call the invokeContextCallback() method on the argument
callback passing the current FacesContext and the found UIComponent. Upon normal return from the
callback, return true to the caller. If the callback throws an exception, it must be wrapped inside of a
FacesException and re-thrown. If no such UIComponent is found, return false to the caller.

Special consideration should be given to the implementation of invokeOnComponent() for
UIComponent classes that handle iteration, such as UIData. Iterating components manipulate their
own internal state to handle iteration, and doing so alters the clientIds of components nested within
the iterating component. Implementations of invokeOnComponent() must guarantee that any state
present in the component or children is restored before returning. Please see the Javadocs for
UIData.invokeOnComponent() for details.

The ContextCallback interface is specified as follows..

public interface ContextCallback {
 public void invokeContextCallback(
 FacesContext context, UIComponent target);
}

Please consult the Javadocs for more details on this interface.

public static UIComponent getCurrentComponent(FacesContext context);

Returns the UIComponent instance that is currently being processed.

public static UIComponent getCurrentCompositeComponent(
 FacesContext context);

Returns the closest ancestor component relative to getCurrentComponent that is a composite
component, or null if no such component is exists.

public boolean visitTree(VisitContext context, VisitCallback callback);

Uses the visit API introduced in version 2 of the specification to perform a flexible and customizable

3.1. UIComponent and UIComponentBase

58 Jakarta Faces Final

visit of the tree from this instance and its children. Please see the package description for the package
jakarta.faces.component.visit for the normative specification.

3.1.9. Facet Management

Jakarta Faces supports the traditional model of composing complex components out of simple
components via parent-child relationships that organize the entire set of components into a tree, as
described in Component Tree Manipulation. However, an additional useful facility is the ability to
define particular subordinate components that have a specific role with respect to the owning
component, which is typically independent of the parent-child relationship. An example might be a
“data grid” control, where the children represent the columns to be rendered in the grid. It is useful to
be able to identify a component that represents the column header and/or footer, separate from the
usual child collection that represents the column data.

To meet this requirement, Jakarta Faces components offer support for facets, which represent a named
collection of subordinate (but non-child) components that are related to the current component by
virtue of a unique facet name that represents the role that particular component plays. Although facets
are not part of the parent-child tree, they participate in request processing lifecycle methods, as
described in Lifecycle Management Methods.

public Map<String, UIComponent> getFacets();

Return a mutable Map representing the facets of this UIComponent, keyed by the facet name.

public UIComponent getFacet(String name);

A convenience method to return a facet value, if it exists, or null otherwise. If the requested facet does
not exist, no facets Map must not be created, so it is preferred over calling getFacets().get() when there
are no Facets.

For easy use of components that use facets, component authors may include type-safe getter and setter
methods that correspond to each named facet that is supported by that component class. For example,
a component that supports a header facet of type UIHeader should have methods with signatures and
functionality as follows:

public UIHeader getHeader() {
 return ((UIHeader) getFacet("header");
}

public void setHeader(UIHeader header) {
 getFacets().put("header", header);
}

3.1. UIComponent and UIComponentBase

Final Jakarta Faces 59

3.1.10. Managing Component Behavior

UIComponentBase provides default implementations for the methods from the
jakarta.faces.component.behavior.BehaviorHolder interface. UIComponentBase does not implement the
jakarta.faces.component.behavior.BehaviorHolder interface, but it provides the default
implementations to simplify subclass implemenations. Refer to Component Behavior Model for more
information.

public void addBehavior(String eventName, Behavior behavior)

This method attaches a Behavior to the component for the specified eventName. The eventName must
be one of the values in the Collection returned from getEventNames(). For example, it may be desired to
have some behavior defined when a “click” event occurs. The behavior could be some client side
behavior in the form of a script executing, or a server side listener executing.

public Collection<String> getEventNames()

Returns the logical event names that can be associated with behavior for the component.

public Map<String, List<Behavior>> getBehaviors()

Returns a Map defining the association of events and behaviors. They keys in the Map are event
names.

public String getDefaultEventName()

Returns the default event name (if any) for the component.

3.1.11. Generic Attributes

public Map<String, Object> getAttributes();

The render-independent characteristics of components are generally represented as Jakarta Bean
component properties with getter and setter methods (see Render-Independent Properties). In
addition, components may also be associated with generic attributes that are defined outside the
component implementation class. Typical uses of generic attributes include:

• Specification of render-dependent characteristics, for use by specific Renderers.

• General purpose association of application-specific objects with components.

3.1. UIComponent and UIComponentBase

60 Jakarta Faces Final

The attributes for a component may be of any Java programming language object type, and are keyed
by attribute name (a String). However, see State Saving Alternatives and Implications for implications
of your application’s choice of state saving method on the classes used to implement attribute values.

Attribute names that begin with jakarta.faces are reserved for use by the Jakarta Faces specification.
Names that begin with jakarta are reserved for definition through the Eclipse Foundation Process.
Implementations are not allowed to define names that begin with jakarta.

The Map returned by getAttributes() must also support attribute-property transparency, which
operates as follows:

• When the get() method is called, if the specified attribute name matches the name of a readable
JavaBeans property on the component implementation class, the value returned will be acquired
by calling the appropriate property getter method, and wrapping Java primitive values (such as int)
in their corresponding wrapper classes (such as java.lang.Integer) if necessary. If the specified
attribute name does not match the name of a readable JavaBeans property on the component
implementation class, consult the internal data-structure to in which generic attributes are stored.
If no entry exists in the internal data-structure, see if there is a ValueExpression for this attribute
name by calling getValueExpression(), passing the attribute name as the key. If a ValueExpression
exists, call getValue() on it, returning the result. If an ELException is thrown wrap it in a
FacesException and re-throw it.

• When the put() method is called, if the specified attribute name matches the name of a writable
JavaBeans property on the component implementation class, the appropriate property setter
method will be called. If the specified attribute name does not match the name of a writable
JavaBeans property, simply put the value in the data-structure for generic attributes.

• When the remove() method is called, if the specified attribute name matches the name of a
JavaBeans property on the component, an IllegalArgumentException must be thrown.

• When the containsKey() method is called, if the specified attribute name matches the name of a
JavaBeans property, return false. Otherwise, return true if and only if the specified attribute name
exists in the internal data-structure for the generic attributes.

The Map returned by getAttributes() must also conform to the entire contract for the Map interface.

3.1.11.1. Special Attributes

UIComponent Constants

public static final String BEANINFO_KEY =
 "jakarta.faces.component.BEANINFO_KEY";

This is a key in the component attributes Map whose value is a java.beans.BeanInfo describing the
composite component.

3.1. UIComponent and UIComponentBase

Final Jakarta Faces 61

public static final String FACETS_KEY =
 "jakarta.faces.component.FACETS_KEY";

This is a key in the composite component BeanDescriptor whose value is a Map<PropertyDescriptor>
that contains meta-information for the declared facets for the composite component.

public static final String COMPOSITE_COMPONENT_TYPE_KEY =
 "jakarta.faces.component.COMPOSITE_COMPONENT_TYPE";

This is a key in the composite component BeanDescriptor whose value is a ValueExpression that
evaluates to the component-type of the composite component root.

public static final String COMPOSITE_FACET_NAME =
 "jakarta.faces.component.COMPOSITE_FACET_NAME";

This is a key in the Map<PropertyDescriptor> that is returned by using the key FACETS_KEY. The value
of this constant is also used as the key in the Map returned from getFacets(). In this case, the value of
this key is the facet (the UIPanel) that is the parent of all the components in the composite
implementation section of the composite component VDL file.

Refer to the jakarta.faces.component.UIComponent Javadocs for more detailed information.

3.1.12. Render-Independent Properties

The render-independent characteristics of a user interface component are represented as JavaBean
component properties, following JavaBeans naming conventions. Specifically, the method names of the
getter and/or setter methods are determined using standard JavaBeans component introspection rules,
as defined by java.beans.Introspector. The render-independent properties supported by all
UIComponents are described in the following table:

Name Access Type Description

id RW String The component identifier, as described in
Component Identifiers.

parent RW UIComponent The parent component for which this component
is a child or a facet.

rendered RW boolean A flag that, if set to true, indicates that this
component should be processed during all phases
of the request processing lifecycle. The default
value is “true”.

3.1. UIComponent and UIComponentBase

62 Jakarta Faces Final

Name Access Type Description

rendererType RW String Identifier of the Renderer instance (from the set of
Renderer instances supported by the RenderKit
associated with the component tree we are
processing. If this property is set, several
operations during the request processing lifecycle
(such as decode and the encodeXxx family of
methods) will be delegated to a Renderer instance
of this type. If this property is not set, the
component must implement these methods
directly.

rendersChildren RO boolean A flag that, if set to true, indicates that this
component manages the rendering of all of its
children components (so the Jakarta Faces
implementation should not attempt to render
them). The default implementation in
UIComponentBase delegates this setting to the
associated Renderer, if any, and returns false
otherwise.

transient RW boolean A flag that, if set to true, indicates that this
component must not be included in the state of
the component tree. The default implementation
in UIComponentBase returns false for this
property.

The method names for the render-independent property getters and setters must conform to the
design patterns in the JavaBeans specification. See State Saving Alternatives and Implications for
implications of your application’s choice of state saving method on the classes used to implement
property values.

3.1.13. Component Specialization Methods

The methods described in this section are called by the Jakarta Faces implementation during the
various phases of the request processing lifecycle, and may be overridden in a concrete subclass to
implement specialized behavior for this component.

public boolean broadcast(FacesEvent event)
 throws AbortProcessingException;

The broadcast() method is called during the common event processing (see Common Event Processing)
at the end of several request processing lifecycle phases. For more information about the event and
listener model, see Event and Listener Model. Note that it is not necessary to override this method to

3.1. UIComponent and UIComponentBase

Final Jakarta Faces 63

support additional event types.

public void decode(FacesContext context);

This method is called during the Apply Request Values phase of the request processing lifecycle, and
has the responsibility of extracting a new local value for this component from an incoming request.
The default implementation in UIComponentBase delegates to a corresponding Renderer, if the
rendererType property is set, and does nothing otherwise.

Generally, component writers will choose to delegate decoding and encoding to a corresponding
Renderer by setting the rendererType property (which means the default behavior described above is
adequate).

public void encodeAll(FacesContext context) throws IOException
public void encodeBegin(FacesContext context) throws IOException;
public void encodeChildren(FacesContext context) throws IOException;
public void encodeEnd(FacesContext context) throws IOException;

These methods are called during the Render Response phase of the request processing lifecycle.
encodeAll() will cause this component and all its children and facets that return true from isRendered()
to be rendered, regardless of the value of the getRendersChildren() return value. encodeBegin(),
encodeChildren(), and encodeEnd() have the responsibility of creating the response data for the
beginning of this component, this component’s children (only called if the rendersChildren property of
this component is true), and the ending of this component, respectively. Typically, this will involve
generating markup for the output technology being supported, such as creating an HTML <input>
element for a UIInput component. For clients that support it, the encode methods might also generate
client-side scripting code (such as JavaScript), and/or stylesheets (such as CSS). The default
implementations in UIComponentBase encodeBegin() and encodeEnd() delegate to a corresponding
Renderer, if the rendererType property is true, and do nothing otherwise. The default implementation
in UIComponentBase encodeChildren() must iterate over its children and call encodeAll() for each child
component. encodeBegin() must publish a PreRenderComponentEvent.

Generally, component writers will choose to delegate encoding to a corresponding Renderer, by setting
the rendererType property (which means the default behavior described above is adequate).

public void queueEvent(FacesEvent event);

Enqueue the specified event for broadcast at the end of the current request processing lifecycle phase.
Default behavior is to delegate this to the queueEvent() of the parent component, normally resulting in
broadcast via the default behavior in the UIViewRoot lifecycle methods.

The component author can override any of the above methods to customize the behavior of their
component.

3.1. UIComponent and UIComponentBase

64 Jakarta Faces Final

3.1.14. Lifecycle Management Methods

The following methods are called by the various phases of the request processing lifecycle, and
implement a recursive tree walk of the components in a component tree, calling the component
specialization methods described above for each component. These methods are not generally
overridden by component writers, but doing so may be useful for some advanced component
implementations. See the javadocs for detailed information on these methods

In order to support the “component” implicit object (See Implicit Object ELResolver for Facelets and
Programmatic Access), the following methods have been added to UIComponent

protected void pushComponentToEL(FacesContext context);
protected void popComponentFromEL(FacesContext context)

pushComponentToEL() and popComponentFromEL() must be called inside each of the lifecycle
management methods in this section as specified in the javadoc for that method.

public void processRestoreState(FacesContext context, Object state);

Perform the component tree processing required by the Restore View phase of the request processing
lifecycle for all facets of this component, all children of this component, and this component itself.

public void processDecodes(FacesContext context);

Perform the component tree processing required by the Apply Request Values phase of the request
processing lifecycle for all facets of this component, all children of this component, and this component
itself

public void processValidators(FacesContext context);

Perform the component tree processing required by the Process Validations phase of the request
processing lifecycle for all facets of this component, all children of this component, and this component
itself.

public void processUpdates(FacesContext context);

Perform the component tree processing required by the Update Model Values phase of the request
processing lifecycle for all facets of this component, all children of this component, and this component
itself.

3.1. UIComponent and UIComponentBase

Final Jakarta Faces 65

public void processSaveState(FacesContext context);

Perform the component tree processing required by the state saving portion of the Render Response
phase of the request processing lifecycle for all facets of this component, all children of this
component, and this component itself.

3.1.15. Utility Methods

protected FacesContext getFacesContext();

Return the FacesContext instance for the current request.

protected Renderer getRenderer(FacesContext context);

Return the Renderer that is associated this UIComponent, if any, based on the values of the family and
rendererType properties currently stored as instance data on the UIComponent.

protected void addFacesListener(FacesListener listener);
protected void removeFacesListener(FacesListener listener);

These methods are used to register and deregister an event listener. They should be called only by a
public addXxxListener() method on the component implementation class, which provides typesafe
listener registration.

public Map<String, String> getResourceBundleMap();

Return a Map of the ResourceBundle for this component. Please consult the Javadocs for more
information.

3.2. Component Behavioral Interfaces
In addition to extending UIComponent, component classes may also implement one or more of the
behavioral interfaces described below. Components that implement these interfaces must provide the
corresponding method signatures and implement the described functionality.

3.2.1. ActionSource

The ActionSource interface defines a way for a component to indicate that wishes to be a source of
ActionEvent events, including the ability invoke application actions (see Application Actions) via the
default ActionListener facility (see ActionListener Property).

3.2. Component Behavioral Interfaces

66 Jakarta Faces Final

3.2.1.1. Properties

The following render-independent properties are added by the ActionSource interface:

Name Access Type Description

immediate RW boolean A flag indicating that the default ActionListener
should execute immediately (that is, during the
Apply Request Values phase of the request
processing lifecycle, instead of waiting for Invoke
Application phase). The default value of this
property must be false.

3.2.1.2. Methods

ActionSource adds no new processing methods.

3.2.1.3. Events

A component implementing ActionSource is a source of ActionEvent events. There are three important
moments in the lifetime of an ActionEvent:

• when an the event is created

• when the event is queued for later processing

• when the listeners for the event are notified

ActionEvent creation occurs when the system detects that the component implementing ActionSource
has been activated. For example, a button has been pressed. This happens when the decode()
processing of the Apply Request Values phase of the request processing lifecycle detects that the
corresponding user interface control was activated.

ActionEvent queueing occurs immediately after the event is created.

Event listeners that have registered an interest in ActionEvents fired by this component (see below) are
notified at the end of the Apply Request Values or Invoke Application phase, depending upon the
immediate property of the originating UICommand.

ActionSource includes the following methods to register and deregister ActionListener instances
interested in these events. See Event and Listener Model for more details on the event and listener
model provided by Jakarta Faces.

public void addActionListener(ActionListener listener);
public void removeActionListener(ActionListener listener);

In addition to manually registered listeners, the Jakarta Faces implementation provides a default
ActionListener that will process ActionEvent events during the Apply Request Values or Invoke

3.2. Component Behavioral Interfaces

Final Jakarta Faces 67

Application phases of the request processing lifecycle. See Invoke Application for more information.

3.2.2. ActionSource2

The ActionSource2 interface extends ActionSource and provides a JavaBeans property analogous to the
action property on ActionSource. This allows the ActionSource concept to leverage the Jakarta
Expression Language API.

3.2.2.1. Properties

The following render-independent properties are added by the ActionSource interface:

Name Access Type Description

actionExpression RW jakarta.el.MethodE
xpression

A MethodExpression (see MethodExpression) that
must (if non-null) point at an action method (see
Application Actions). The specified method will be
called during the Apply Request Values or Invoke
Application phase of the request processing
lifecycle, as described in Invoke Application.

3.2.2.2. Methods

ActionSource2 adds no new processing methods.

3.2.2.3. Events

ActionSource2 adds no new events.

3.2.3. NamingContainer

NamingContainer is a marker interface. Components that implement NamingContainer have the
property that, for all of their children that have non-null component identifiers, all of those identifiers
are unique. This property is enforced by the renderView() method on ViewHandler. Since this is just a
marker interface, there are no properties, methods, or events. Among the standard components,
UIForm and UIData implement NamingContainer. See UIForm and Section Methods “UIData” for details
of how the NamingContainer concept is used in these two cases.

NamingContainer defines a public static final character constant, SEPARATOR_CHAR, that is used as
default value to separate components of client identifiers, as well as the components of search
expressions used by the findComponent() method see (Component Tree Navigation). The value of this
constant must be a colon character (“:”), which is according to the HTML standard among the
allowable values for the id and name attribute.

Use of this separator character in client identifiers rendered by Renderers can cause problems with CSS
stylesheets that attach styles to a particular client identifier. For the Standard HTML RenderKit, this
issue can be worked around by using the styleClass attribute to select CSS styles by class rather than by

3.2. Component Behavioral Interfaces

68 Jakarta Faces Final

identifier, or by wrapping the section in a plain HTML <div> or element containing the desired
client identifier, or by escaping the colon character with a backslash in the CSS selector.

This separator character can be overridden to another character by the context initialization
parameter named jakarta.faces.SEPARATOR_CHAR, for example an underscore character (“_”), but the
page authors must then ensure to not use this exact character in the component identifiers themselves.

Component authors should never use the final character constant SEPARATOR_CHAR directly, but they
should instead use UINamingContainer.getSeparatorChar(FacesContext) method to obtain the desired
separator character, which can be either the overridden character or the default character of (“:”).

3.2.4. StateHolder

The StateHolder interface is implemented by UIComponent, Converter, FacesListener, and Validator
classes that need to save their state between requests. UIComponent implements this interface to
denote that components have state that must be saved and restored between requests.

3.2.4.1. Properties

The following render-independent properties are added by the StateHolder interface:

Name Access Type Description

transient RW boolean A flag indicating whether this instance has
decided to opt out of having its state information
saved and restored. The default value for all
standard component, converter, and validator
classes that implement StateHolder must be false.

3.2.4.2. Methods

Any class implementing StateHolder must implement both the saveState() and restoreState() methods,
since these two methods have a tightly coupled contract between themselves. In other words, if there is
an inheritance hierarchy, it is not permissible to have the saveState() and restoreState() methods reside
at different levels of the hierarchy.

public Object saveState(FacesContext context);
public void restoreState(FacesContext context,
 Object state) throws IOException;

Gets or restores the state of the instance as a Serializable Object.

If the class that implements this interface has references to Objects which also implement StateHolder
(such as a UIComponent with a converter, event listeners, and/or validators) these methods must call
the saveState() or restoreState() method on all those instances as well.

3.2. Component Behavioral Interfaces

Final Jakarta Faces 69

Any class implementing StateHolder must have a public no-args constructor.

If the state saving method is server, these methods may not be called.

If the class that implements this interface has references to Objects which do not implement
StateHolder, these methods must ensure that the references are preserved. For example, consider class
MySpecialComponent, which implements StateHolder, and keeps a reference to a helper class,
MySpecialComponentHelper, which does not implement StateHolder. MySpecialComponent.saveState()
must save enough information about MySpecialComponentHelper, so that when
MySpecialComponent.restoreState() is called, the reference to MySpecialComponentHelper can be
restored. The return from saveState() must be Serializable.

Since all of the standard user interface components listed in Standard User Interface Components”
extend from UIComponent, they all implement the StateHolder interface. In addition, the standard
Converter and Validator classes that require state to be saved and restored also implement StateHolder.

3.2.4.3. Events

StateHolder does not originate any standard events.

3.2.5. PartialStateHolder

PartialStateHolder extends StateHolder and adds a usage contract for components that wish to take
part in the partial state saving mechanism introduced in version 2.0. Implementations of this interface
should use the jakarta.faces.component.StateHelper instance returned from
UIComponent.getStateHelper() to store stateful component information that otherwise would have
been stored as instance variables on the class implementing PartialStateHolder.

3.2.5.1. Properties

PartialStateHolder adds no properties to the StateHolder contract

3.2.5.2. Methods

The following methods support the partial state saving feature:

void clearInitialState();
boolean initialStateMarked();
void markInitialState();

These methods allow the state saving feature to determine if the component is in its initial state or not,
and to set the flag indicating this condition of existence. The Javadocs for these methods specify the
conditions under which these methods are invoked.

3.2. Component Behavioral Interfaces

70 Jakarta Faces Final

3.2.5.3. Events

PartialStateHolder does not originate any standard events.

3.2.6. ValueHolder

ValueHolder is an interface that may be implemented by any concrete UIComponent that wishes to
support a local value, as well as access data in the model tier via a value expression , and support
conversion between String and the model tier data’s native data type.

3.2.6.1. Properties

The following render-independent properties are added by the ValueHolder interface:

Name Access Type Description

converter RW Converter The Converter (if any) that is registered for this
UIComponent.

value RW Object First consult the local value property of this
component. If non-null return it. If the local value
property is null, see if we have a ValueExpression
for the value property. If so, return the result of
evaluating the property, otherwise return null.

localValue RO Object allows any value set by calling setValue() to be
returned, without potentially evaluating a
ValueExpression the way that getValue() will do

Like nearly all component properties, the value property may have a value binding expression (see
ValueExpression properties) associated with it. If present (and if there is no value set directly on this
component), such an expression is utilized to retrieve a value dynamically from a model tier object
during Render Response Phase of the request processing lifecycle. In addition, for input components,
the value expression is used during Update Model Values phase (on the subsequent request) to push the
possibly updated component value back to the model tier object.

The Converter property is used to allow the component to know how to convert the model type from
the String format provided by the Servlet API to the proper type in the model tier.

The Converter property must be inspected for the presence of ResourceDependency and
ResourceDependencies annotations as described in the Javadocs for the setConverter method.

3.2.6.2. Methods

ValueHolder adds no methods.

3.2. Component Behavioral Interfaces

Final Jakarta Faces 71

3.2.6.3. Events

ValueHolder does not originate any standard events.

3.2.7. EditableValueHolder

The EditableValueHolder interface (extends ValueHolder, see ValueHolder) describes additional
features supported by editable components, including ValueChangeEvents and Validators.

3.2.7.1. Properties

The following render-independent properties are added by the EditableValueHolder interface:

Name Access Type Description

immediate RW boolean Flag indicating that conversion and validation of
this component’s value should occur during Apply
Request Values phase instead of Process
Validations phase.

localValueSet RW boolean Flag indicating whether the value property has
been set.

required RW boolean Is the user required to provide a non-empty value
for this component? Default value must be false.

submittedValue RW Object The submitted, unconverted, value of this
component. This property should only be set by
the decode() method of this component, or its
corresponding Renderer, or by the validate
method of this component. This property should
only be read by the validate() method of this
component.

valid RW boolean A flag indicating whether the local value of this
component is valid (that is, no conversion error or
validation error has occurred).

3.2.7.2. Methods

The following methods support the validation functionality performed during the Process Validations
phase of the request processing lifecycle:

public void addValidator(Validator validator);
public void removeValidator(Validator validator);

The addValidator() and removeValidator() methods are used to register and deregister additional
external Validator instances that will be used to perform correctness checks on the local value of this

3.2. Component Behavioral Interfaces

72 Jakarta Faces Final

component.

If the validator property is not null, the method it points at must be called by the processValidations()
method, after the validate() method of all registered Validators is called.

The addValidator’s Validator argument must be inspected for the presense of the ResourceDependency
and ResourceDependencies annotations as described in the Javadocs for the addValidator method.

3.2.7.3. Events

EditableValueHolder is a source of ValueChangeEvent, PreValidateEvent and PostValidate events. These
are emitted during calls to validate(), which happens during the Process Validations phase of the
request processing lifecycle. The PreValidateEvent is published immediately before the component gets
validated. PostValidate is published after validation has occurred, regardless if the validation was
successful or not. If the validation for the component did pass successfully, and the previous value of
this component differs from the current value, the ValueChangeEvent is published. The following
methods allow listeners to register and deregister for ValueChangeEvents. See Event and Listener
Model for more details on the event and listener model provided by Jakarta Faces.

public void addValueChangeListener(ValueChangeListener listener);
public void removeValueChangeListener(ValueChangeListener listener);

In addition to the above listener registration methods, If the valueChangeListener property is not null,
the method it points at must be called by the broadcast() method, after the processValueChange()
method of all registered ValueChangeListeners is called.

3.2.8. SystemEventListenerHolder

Classes that implement this interface agree to maintain a list of SystemEventListener instances for each
kind of SystemEvent they can generate. This interface enables arbitrary Objects to act as the source for
SystemEvent instances.

3.2.8.1. Properties

This interface contains no JavaBeans properties

3.2.8.2. Methods

The following method gives the Jakarta Faces runtime access to the list of listeners stored by this
instance.:

public List<FacesLifecycleListener> getListenersForEventClass(
 Class<? extends SystemEvent> facesEventClass);

During the processing for Application.publishEvent(), if the source argument to that method

3.2. Component Behavioral Interfaces

Final Jakarta Faces 73

implements SystemEventListenerHolder, the getListenersForEventClass() method is invoked on it, and
each listener in the list is given an opportunity to process the event, as specified in the javadocs for
Application.publishEvent().

3.2.8.3. Events

While the class that implements SystemEventListenerHolder is indeed a source of events, it is a call to
Application.publishEvent() that causes the event to actually be emitted. In the interest of maximum
flexibility, this interface does not define how listeners are added, removed, or stored. See Event and
Listener Model for more details on the event and listener model provided by Jakarta Faces.

3.2.9. ClientBehaviorHolder

Components must implement the ClientBehaviorHolder interface to add the ability for attaching
ClientBehavior instances (see Component Behavior Model). Components that extend UIComponentBase
only need to implement the getEventNames() method and specify "implements ClientBehaviorHolder".
UIComponentBase provides base implementations for all other methods. The concrete HTML
component classes that come with Jakarta Faces implement the ClientBehaviorHolder interface.

public void addClientBehavior(String eventName, ClientBehavior behavior);

Attach a ClientBehavior to a component implementing this ClientBehaviorHolder interface for the
specified event. A default implementation of this method is provided in UIComponentBase to make it
easier for subclass implementations to add behaviors.

public Collection<String> getEventNames();

Return a Collection of logical event names that are supported by the component implementing this
ClientBehaviorHolder interface. The Collection must be non null and unmodifiable.

public Map<String, List<ClientBehavior>> getClientBehaviors();

Return a Map containing the event-client behavior association. Each event in the Map may contain one
or more ClientBehavior instances that were added via the addClientBehavior() method.

Each key value in this Map must be one of the event names in the Collection returned from
getEventNames().

public String getDefaultEventName();

Return the default event name for this component behavior if the component defines a default event.

3.2. Component Behavioral Interfaces

74 Jakarta Faces Final

3.3. Conversion Model
This section describes the facilities provided by Jakarta Faces to support type conversion between
server-side Java objects and their (typically String-based) representation in presentation markup.

3.3.1. Overview

A typical web application must constantly deal with two fundamentally different viewpoints of the
underlying data being manipulated through the user interface:

• The model view—Data is typically represented as Java programming language objects (often
JavaBeans components), with data represented in some native Java programming language
datatype. For example, date and time values might be represented in the model view as instances
of java.util.Date.

• The presentation view—Data is typically represented in some form that can be perceived or
modified by the user of the application. For example, a date or type value might be represented as a
text string, as three text strings (one each for month/date/year or one each for
hour/minute/second), as a calendar control, associated with a spin control that lets you increment
or decrement individual elements of the date or time with a single mouse click, or in a variety of
other ways. Some presentation views may depend on the preferred language or locale of the user
(such as the commonly used mm/dd/yy and dd/mm/yy date formats, or the variety of punctuation
characters in monetary amount presentations for various currencies).

To transform data formats between these views, Jakarta Faces provides an ability to plug-in an
optional Converter for each ValueHolder, which has the responsibility of converting the internal data
representation between the two views. The application developer attaches a particular Converter to a
particular ValueHolder by calling setConverter, passing an instance of the particular converter. A
Converter implementation may be acquired from the Application instance (see Object Factories) for
your application.

3.3.2. Converter

Jakarta Faces provides the jakarta.faces.convert.Converter interface to define the behavioral
characteristics of a Converter. Instances of implementations of this interface are either identified by a
converter identifier, or by a class for which the Converter class asserts that it can perform successful
conversions, which can be registered with, and later retrieved from, an Application, as described in
Object Factories.

Often, a Converter will be an object that requires no extra configuration information to perform its
responsibilities. However, in some cases, it is useful to provide configuration parameters to the
Converter (such as a java.text.DateFormat pattern for a Converter that supports java.util.Date model
objects). Such configuration information will generally be provided via JavaBeans properties on the
Converter instance.

Converter implementations should be programmed so that the conversions they perform are

3.3. Conversion Model

Final Jakarta Faces 75

symmetric. In other words, if a model data object is converted to a String (via a call to the getAsString
method), it should be possible to call getAsObject and pass it the converted String as the value
parameter, and return a model data object that is semantically equal to the original one. In some cases,
this is not possible. For example, a converter that uses the formatting facilities provided by the
java.text.Format class might create two adjacent integer numbers with no separator in between, and in
this case the Converter could not tell which digits belong to which number.

For UIInput and UIOutput components that wish to explicitly select a Converter to be used, a new
Converter instance of the appropriate type must be created, optionally configured, and registered on
the component by calling setConverter(). Otherwise, the Jakarta Faces implementation will
automatically create new instances based on the data type being converted, if such Converter classes
have been registered. In either case, Converter implementations need not be threadsafe, because they
will be used only in the context of a single request processing thread.

The following two method signatures are defined by the Converter interface:

public Object getAsObject(FacesContext context,
 UIComponent component, String value) throws ConverterException;

This method is used to convert the presentation view of a component’s value (typically a String that
was received as a request parameter) into the corresponding model view. It is called during the Apply
Request Values phase of the request processing lifecycle.

public String getAsString(FacesContext context,
 UIComponent component, Object value) throws ConverterException;

This method is used to convert the model view of a component’s value (typically some native Java
programming language class) into the presentation view (typically a String that will be rendered in
some markup language. It is called during the Render Response phase of the request processing
lifecycle.

If the class implementing Converter has a ResourceDependency annotation or a
ResourceDependencies annotation, the action described in the Javadocs for the Converter interface
must be followed when ValueHolder.setConverter is called.

3.3.3. Standard Converter Implementations

Jakarta Faces provides a set of standard Converter implementations. A Jakarta Faces implementation
must register the DateTime and Number converters by name with the Application instance for this web
application, as described in the table below. This ensures that the converters are available for
subsequent calls to Application.createConverter(). Each concrete implementation class must define a
static final String constant CONVERTER_ID whose value is the standard converter id under which this
Converter is registered.

3.3. Conversion Model

76 Jakarta Faces Final

The following converter id values must be registered to create instances of the specified Converter
implementation classes:

• jakarta.faces.BigDecimal —An instance of jakarta.faces.convert.BigDecimalConverter (or a subclass
of this class).

• jakarta.faces.BigInteger —An instance of jakarta.faces.convert.BigIntegerConverter (or a subclass of
this class).

• jakarta.faces.Boolean —An instance of jakarta.faces.convert.BooleanConverter (or a subclass of this
class).

• jakarta.faces.Byte —An instance of jakarta.faces.convert.ByteConverter (or a subclass of this class).

• jakarta.faces.Character —An instance of jakarta.faces.convert.CharacterConverter (or a subclass of
this class).

• jakarta.faces.DateTime —An instance of jakarta.faces.convert.DateTimeConverter (or a subclass of
this class).

• jakarta.faces.Double —An instance of jakarta.faces.convert.DoubleConverter (or a subclass of this
class).

• jakarta.faces.Float —An instance of jakarta.faces.convert.FloatConverter (or a subclass of this class).

• jakarta.faces.Integer —An instance of jakarta.faces.convert.IntegerConverter (or a subclass of this
class).

• jakarta.faces.Long —An instance of jakarta.faces.convert.LongConverter (or a subclass of this class).

• jakarta.faces.Number —An instance of jakarta.faces.convert.NumberConverter (or a subclass of this
class).

• jakarta.faces.Short —An instance of jakarta.faces.convert.ShortConverter (or a subclass of this
class).

See the Javadocs for these classes for a detailed description of the conversion operations they perform,
and the configuration properties that they support.

A Jakarta Faces implementation must register converters for all of the following classes using the by-
type registration mechanism:

• java.math.BigDecimal, and java.math.BigDecimal.TYPE —An instance of
jakarta.faces.convert.BigDecimalConverter (or a subclass of this class).

• java.math.BigInteger, and java.math.BigInteger.TYPE —An instance of
jakarta.faces.convert.BigIntegerConverter (or a subclass of this class).

• java.lang.Boolean, and java.lang.Boolean.TYPE —An instance of
jakarta.faces.convert.BooleanConverter (or a subclass of this class).

• java.lang.Byte, and java.lang.Byte.TYPE — An instance of jakarta.faces.convert.ByteConverter (or a
subclass of this class).

• java.lang.Character, and java.lang.Character.TYPE —An instance of

3.3. Conversion Model

Final Jakarta Faces 77

jakarta.faces.convert.CharacterConverter (or a subclass of this class).

• java.lang.Double, and java.lang.Double.TYPE —An instance of jakarta.faces.convert.DoubleConverter
(or a subclass of this class).

• java.lang.Float, and java.lang.Float.TYPE —An instance of jakarta.faces.convert.FloatConverter (or a
subclass of this class).

• java.lang.Integer, and java.lang.Integer.TYPE —An instance of
jakarta.faces.convert.IntegerConverter (or a subclass of this class).

• java.lang.Long, and java.lang.Long.TYPE — An instance of jakarta.faces.convert.LongConverter (or a
subclass of this class).

• java.lang.Short, and java.lang.Short.TYPE —An instance of jakarta.faces.convert.ShortConverter (or
a subclass of this class).

• java.lang.Enum, and java.lang.Enum.TYPE — An instance of jakarta.faces.convert.EnumConverter (or
a subclass of this class).

See the Javadocs for these classes for a detailed description of the conversion operations they perform,
and the configuration properties that they support.

A compliant implementation must allow the registration of a converter for class java.lang.String and
java.lang.String.TYPE that will be used to convert values for these types.

3.4. Event and Listener Model
This section describes how Jakarta Faces provides support for generating and handling user interface
events and system events.

3.4.1. Overview

Jakarta Faces implements a model for event notification and listener registration based on the design
patterns in the JavaBeans Specification, version 1.0.1. This is similar to the approach taken in other user
interface toolkits, such as the Swing Framework included in the JDK.

A UIComponent subclass may choose to emit events that signify significant state changes, and broadcast
them to listeners that have registered an interest in receiving events of the type indicated by the
event’s implementation class. At the end of several phases of the request processing lifecycle, the
Jakarta Faces implementation will broadcast all of the events that have been queued to interested
listeners. Jakarta Faces also defines system events. System events are events that are not specific to any
particular application, but rather stem from specific points in time of running a Jakarta Faces
application. The following UML class diagram illustrates the key players in the event model. Boxes
shaded in gray indicate classes or interfaces defined outside of the jakarta.faces.event package.

3.4. Event and Listener Model

78 Jakarta Faces Final

3.4.2. Application Events

Application events are events that are specific to a particular application. Application events are the
standard events that have been in Jakarta Faces from the beginning.

3.4.2.1. Event Classes

All events that are broadcast by Jakarta Faces user interface components must extend the
jakarta.faces.event.FacesEvent abstract base class. The parameter list for the constructor(s) of this event
class must include a UIComponent, which identifies the component from which the event will be
broadcast to interested listeners. The source component can be retrieved from the event object itself
by calling getComponent. Additional constructor parameters and/or properties on the event class can

3.4. Event and Listener Model

Final Jakarta Faces 79

be used to relay additional information about the event.

In conformance to the naming patterns defined in the JavaBeans Specification, event classes typically
have a class name that ends with Event. It is recommended that application event classes follow this
naming pattern as well.

The component that is the source of a FacesEvent can be retrieved via this method:

public UIComponent getComponent();

FacesEvent has a phaseId property (of type PhaseId, see Phase Identifiers) used to identify the request
processing lifecycle phase after which the event will be delivered to interested listeners.

public PhaseId getPhaseId();
public void setPhaseId(PhaseId phaseId);

If this property is set to PhaseId.ANY_PHASE (which is the default), the event will be delivered at the
end of the phase in which it was enqueued.

To facilitate general management of event listeners in Jakarta Faces components, a FacesEvent
implementation class must support the following methods:

public abstract boolean isAppropriateListener(FacesListener listener);
public abstract void processListener(FacesListener listener);

The isAppropriateListener() method returns true if the specified FacesListener is a relevant receiver of
this type of event. Typically, this will be implemented as a simple “instanceof” check to ensure that the
listener class implements the FacesListener subinterface that corresponds to this event class

The processListener() method must call the appropriate event processing method on the specified
listener. Typically, this will be implemented by casting the listener to the corresponding FacesListener
subinterface and calling the appropriate event processing method, passing this event instance as a
parameter.

public void queue();

The above convenience method calls the queueEvent() method of the source UIComponent for this
event, passing this event as a parameter.

Jakarta Faces includes two standard FacesEvent subclasses, which are emitted by the corresponding
standard UIComponent subclasses described in the following chapter.

• ActionEvent —Emitted by a UICommand component when the user activates the corresponding

3.4. Event and Listener Model

80 Jakarta Faces Final

user interface control (such as a clicking a button or a hyperlink).

• ValueChangeEvent —Emitted by a UIInput component (or appropriate subclass) when a new local
value has been created, and has passed all validations.

3.4.2.2. Listener Classes

For each event type that may be emitted, a corresponding listener interface must be created, which
extends the jakarta.faces.event.FacesListener interface. The method signature(s) defined by the listener
interface must take a single parameter, an instance of the event class for which this listener is being
created. A listener implementation class will implement one or more of these listener interfaces, along
with the event handling method(s) specified by those interfaces. The event handling methods will be
called during event broadcast, one per event.

In conformance to the naming patterns defined in the JavaBeans Specification, listener interfaces have
a class name based on the class name of the event being listened to, but with the word Listener
replacing the trailing Event of the event class name (thus, the listener for a FooEvent would be a
FooListener). It is recommended that application event listener interfaces follow this naming pattern as
well.

Corresponding to the two standard event classes described in the previous section, Jakarta Faces
defines two standard event listener interfaces that may be implemented by application classes:

• ActionListener —a listener that is interested in receiving ActionEvent events.

• ValueChangeListener —a listener that is interested in receiving ValueChangeEvent events.

3.4.2.3. Phase Identifiers

As described in Common Event Processing, event handling occurs at the end of several phases of the
request processing lifecycle. In addition, a particular event must indicate, through the value it returns
from the getPhaseId() method, the phase in which it wishes to be delivered. This indication is done by
returning an instance of jakarta.faces.event.PhaseId. The class defines a typesafe enumeration of all the
legal values that may be returned by getPhaseId(). In addition, a special value (PhaseId.ANY_PHASE)
may be returned to indicate that this event wants to be delivered at the end of the phase in which it
was queued.

3.4.2.4. Listener Registration

A concrete UIComponent subclass that emits events of a particular type must include public methods to
register and deregister a listener implementation. In order to be recognized by development tools,
these listener methods must follow the naming patterns defined in the JavaBeans Specification. For
example, for a component that emits FooEvent events, to be received by listeners that implement the
FooListener interface, the method signatures (on the component class) must be:

3.4. Event and Listener Model

Final Jakarta Faces 81

public void addFooListener(FooListener listener);
public FooListener[] getFooListeners();
public void removeFooListener(FooListener listener);

The application (or other components) may register listener instances at any time, by calling the
appropriate add method. The set of listeners associated with a component is part of the state
information that Jakarta Faces saves and restores. Therefore, listener implementation classes must
have a public zero-argument constructor, and may implement StateHolder (see StateHolder) if they
have internal state information that needs to be saved and restored.

The UICommand and UIInput standard component classes include listener registration and
deregistration methods for event listeners associated with the event types that they emit. The UIInput
methods are also inherited by UIInput subclasses, including UISelectBoolean, UISelectMany, and
UISelectOne.

3.4.2.5. Event Queueing

During the processing being performed by any phase of the request processing lifecycle, events may be
created and queued by calling the queueEvent() method on the source UIComponent instance, or by
calling the queue() method on the FacesEvent instance itself. As described in Common Event Processing,
at the end of certain phases of the request processing lifecycle, any queued events will be broadcast to
interested listeners in the order that the events were originally queued.

Deferring event broadcast until the end of a request processing lifecycle phase ensures that the entire
component tree has been processed by that state, and that event listeners all see the same consistent
state of the entire tree, no matter when the event was actually queued.

3.4.2.6. Event Broadcasting

As described in Common Event Processing, at the end of each request processing lifecycle phase that
may cause events to be queued, the lifecycle management method of the UIViewRoot component at the
root of the component tree will iterate over the queued events and call the broadcast() method on the
source component instance to actually notify the registered listeners. See the Javadocs of the
broadcast() method for detailed functional requirements.

During event broadcasting, a listener processing an event may:

• Examine or modify the state of any component in the component tree.

• Add or remove components from the component tree.

• Add messages to be returned to the user, by calling addMessage on the FacesContext instance for
the current request.

• Queue one or more additional events, from the same source component or a different one, for
processing during the current lifecycle phase.

• Throw an AbortProcessingException, to tell the Jakarta Faces implementation that no further

3.4. Event and Listener Model

82 Jakarta Faces Final

broadcast of this event should take place.

• Call renderResponse() on the FacesContext instance for the current request. This tells the Jakarta
Faces implementation that, when the current phase of the request processing lifecycle has been
completed, control should be transferred to the Render Response phase.

• Call responseComplete() on the FacesContext instance for the current request. This tells the Jakarta
Faces implementation that, when the current phase of the request processing lifecycle has been
completed, processing for this request should be terminated (because the actual response content
has been generated by some other means).

3.4.3. System Events

System Events represent specific points in time for a Jakarta Faces application. PhaseEvents also
represent specific points in time in a Jakarta Faces application, but the granularity they offer is not as
precise as System Events. For more on PhaseEvents, please see PhaseEvent.

3.4.3.1. Event Classes

All system events extend from the base class SystemEvent. SystemEvent has a similar API to FacesEvent,
but the source of the event is of type Object (instead of UIComponent), SystemEvent has no PhaseId
property and SystemEvent has no queue() method because SystemEvents are never queued.
SystemEvent shares isAppropriateListener() and processListener() with FacesEvent. For the specification
of these methods see Event Classes.

System events that originate from or are associated with specific component instances should extend
from ComponentSystemEvent, which extends SystemEvent and adds a getComponent() method, as
specififed in Event Classes.

The specification defines the following SystemEvent subclasses, all in package jakarta.faces.event.

• ExceptionQueuedEvent indicates a non-expected Exception has been thrown. Please see
ExceptionHandler for the normative specification.

• PostConstructApplicationEvent must be published immediately after application startup. Please see
Application Startup Behavior for the normative specification.

• PreDestroyApplicationEvent must be published as immediately before application shutdown. Please
see Application Shutdown Behavior for the normative specification

• PostKeepFlashEvent This event must be published by a call to Application.publishEvent() when a
value is kept in the flash.

• PostPutFlashEvent This event must be published by a call to Application.publishEvent() when a
value is stored in the flash.

• PreClearFlashEvent This event must be published by a call to Application.publishEvent() when a
before the flash is cleared.

• PreRemoveFlashEvent This event must be published by a call to Application.publishEvent() when a
value is removed from the flash.

3.4. Event and Listener Model

Final Jakarta Faces 83

The specification defines the following ComponentSystemEvent classes, all in package
jakarta.faces.event.

• PostAddToViewEvent indicates that the source component has just been added to the view. Please
see Component Tree Manipulation for a reference to the normative specification.

• PostConstructViewMapEvent indicates that the Map that is the view scope has just been created.
Please see, the UIViewRoot Events for a reference to the normative specification.

• PostRenderViewEvent indicates that the UIViewRoot source component has just been rendered.
Please see Render Response for the normative specification.

• PostRestoreStateEvent indicates that an individual component instance has just had its state
restored. Please see the UIViewRoot Events for a reference to the normative specification.

• PostValidateEvent indicates that an individual component instance has just been validated. Please
see the EditableValueHolder Events for the normative specification.

• PreDestroyViewMapEvent indicates that the Map that is the view scope is about to be destroyed.
Please see, the UIViewRoot Properties for the normative specification.

• PreRenderComponentEvent indicates that the source component is about to be rendered. Please see
Component Tree Manipulation for a reference to the normative specification.

• PreRenderViewEvent indicates that the UIViewRoot source component is about to be rendered.
Please see Render Response for the normative specification.

• PreValidateEvent indicates that an individual component instance is about to be validated. Please
see the EditableValueHolder Events for the normative specification.

3.4.3.2. Listener Classes

Unlike application events, the creation of new event types for system events does not require the
creation of new listener interfaces. All SystemEvent types can be listened for by listeners that
implement jakarta.faces.event.SystemEventListener. Please see the javadocs for that class for the
complete specification.

As a developer convenience, the listener interface ComponentSystemEventListener has been defined for
those cases when a SystemEventListener is being attached to a specific UIComponent instance.
ComponentSystemEventListener lacks the isListenerForSource() method because it is implcictly defined
by virture of the listener being added to a specific component instance.

3.4.3.3. Programmatic Listener Registration

System events may be listened for at the Application level, using Application.subscribeToEvent() or at
the component level, by calling subscribeToEvent() on a specific component instance. The specification
for Application.subscribeToEvent() may be found in System Event Methods.

The following methods are defined on UIComponent to support per-component system events.

3.4. Event and Listener Model

84 Jakarta Faces Final

public void subscribeToEvent(Class<? extends SystemEvent> eventClass,
 ComponentSystemEventListener componentListener);
public void unsubscribeFromEvent(Class<? extends SystemEvent> eventClass,
 ComponentSystemEventListener componentListener);

See the javadoc for UIComponent for the normative specification of these methods.

In addition to the above methods, the @ListenerFor and @ListenersFor annotations allow components,
renderers, validators and converters to declare that they want to register for system events. Please see
the javadocs for those annotations for the complete specification.

3.4.3.4. Declarative Listener Registration

Page authors can subscribe to events using the <f:event/> tag. This tag will allow the application
developer to specify the method to be called when the specifed event fires for the component of which
the tag is a child. One example of the tag usage is as follows:

<h:form>
 <f:event type="postAddToView"
 listener="#{dynamicFormBacking.populateFields}" />
</h:form>

The type attribute specifies the type of event, and can be any of the specification-defined events or one
of any user-defined events, but must be a ComponentSystemEvent, using either the short-hand name
for the event or the fully-qualified class name (e.g., com.foo.app.event.CustomEvent). If the event can
not be found, a FacesException listing the offending event type will be thrown. Please see the VDLDocs
for the <f:event /> tag for the normative specification of the declarative event feature.

The method signature for the MethodExpression pointed to by the listener attribute must match the
signature of jakarta.faces.event.ComponentSystemEventListener.processEvent(), which is:

public void processEvent(jakarta.faces.event.ComponentSystemEvent event)
 throws AbortProcessingException

3.4.3.5. Listener Registration By Annotation

The ListenerFor and ListenersFor annotations can be applied to components and rendererers. Classes
tagged with the ListenerFor annotation are installed as listeners. The ListenersFor annotation is a
container annotation tp specify multiple ListenerFor annotations for a single class. Please refer to the
Javadocs for the ListenerFor and ListenersFor classes for more details.

3.4. Event and Listener Model

Final Jakarta Faces 85

3.4.3.6. Listener Registration By Application Configuration Resources

A <system-event-listener> element, within the <application> element of an application configuration
resource, declares an application scoped listener and causes a call to Application.subscribeToEvent().

3.4.3.7. Event Broadcasting

System events are broadcast immediately by calls to Application.publishEvent() Please see System Event
Methods for the normative specification of publishEvent().

3.5. Validation Model
This section describes the facilities provided by Jakarta Faces for validating user input.

3.5.1. Overview

Jakarta Faces supports a mechanism for registering zero or more validators on each
EditableValueHolder component in the component tree. A validator’s purpose is to perform checks on
the local value of the component, during the Process Validations phase of the request processing
lifecycle. In addition, a component may implement internal checking in a validate method that is part
of the component class.

3.5.2. Validator Classes

A validator must implement the jakarta.faces.validator.Validator interface, which contains a validate()
method signature.

public void validate(FacesContext context,
 UIComponent component, Object value);

General purpose validators may require configuration values in order to define the precise check to be
performed. For example, a validator that enforces a maximum length might wish to support a
configurable length limit. Such configuration values are typically implemented as JavaBeans
component properties, and/or constructor arguments, on the Validator implementation class. In
addition, a validator may elect to use generic attributes of the component being validated for
configuration information.

Jakarta Faces includes implementations of several standard validators, as described in Standard
Validator Implementations.

3.5.3. Validation Registration

The EditableValueHolder interface (implemented by UIInput) includes an addValidator method to
register an additional validator for this component, and a removeValidator method to remove an
existing registration. Please see the javadocs for EditableValueHolder.addValidator().

3.5. Validation Model

86 Jakarta Faces Final

The application (or other components) may register validator instances at any time, by calling the
addValidator method. The set of validators associated with a component is part of the state information
that Jakarta Faces saves and restores. Validators that wish to have configuration properties saved and
restored must also implement StateHolder (see StateHolder).

In addition to validators which are registered explicitly on the component, either through the Java API
or in the view markup, zero or more “default validators” can be declared in the application
configuration resources, which will be registered on all UIInput instances in the component tree unless
explicitly disabled. The default validators are appended after any locally defined validators once the
EditableValueHolder is populated and added to the component tree. A default validator must not be
added to a UIInput if a validator having the same id is already present.

The typical way of registering a default validator id is by declaring it in a configuration resource, as
follows:

<faces-config>
 <application>
 <default-validators>
 <validator-id>jakarta.faces.Bean</validator-id>
 </default-validators>
 </application>
</faces-config>

A default validator may also be registered using the isDefault attribute on the @FacesValidator
annotation on a Validator class, as specified in Requirements for scanning of classes for annotations.

The during application startup, the runtime must cause any default validators declared either in the
application configuration resources, or via a @FacesValidator annotation with isDefault set to true to be
added with a call to Application.addDefaultValidatorId(). This method is declared in Default Validator
Ids.

Any configuration resource that declares a list of default validators overrides any list provided in a
previously processed configuration resource. If an empty <default-validators/> element is found in a
configuration resource, the list of default validators must be cleared.

In environments that include Bean Validation, the following additional actions must be taken at
startup time. If the jakarta.faces.validator.DISABLE_DEFAULT_BEAN_VALIDATOR <context-param>
exists and its value is true, the following step must be skipped:

• The runtime must guarantee that the validator id jakarta.faces.Bean is included in the result from a
call to Application.getDefaultValidatorInfo() (see Default Validator Ids), regardless of any
configuration found in the application configuration resources or via the @FacesValidator
annotation.

3.5. Validation Model

Final Jakarta Faces 87

3.5.4. Validation Processing

During the Process Validations phase of the request processing lifecycle (as described in Process
Validations), the Jakarta Faces implementation will ensure that the validate() method of each registered
Validator, the method referenced by the validator property (if any), and the validate() method of the
component itself, is called for each EditableValueHolder component in the component tree, regardless
of the validity state of any of the components in the tree. The responsibilities of each validate() method
include:

• Perform the check for which this validator was registered.

• If violation(s) of the correctness rules are found, create a FacesMessage instance describing the
problem, and create a ValidatorException around it, and throw the ValidatorException. The
EditableValueHolder on which this validation is being performed will catch this exception, set valid
to false for that instance, and cause the message to be added to the FacesContext.

In addition, a validate() method may:

• Examine or modify the state of any component in the component tree.

• Add or remove components from the component tree.

• Queue one or more events, from the same component or a different one, for processing during the
current lifecycle phase.

The render-independent property required is a shorthand for the function of a “required” validator. If
the value of this property is true, there is an entry in the request payload corresponding to this
component, and the component has no value, the component is marked invalid and a message is added
to the FacesContext instance. See Localized Application Messages for details on the message.

3.5.5. Standard Validator Implementations

Jakarta Faces defines a standard suite of Validator implementations that perform a variety of
commonly required checks. In addition, component writers, application developers, and tool providers
will often define additional Validator implementations that may be used to support component-type-
specific or application-specific constraints. These implementations share the following common
characteristics:

• Standard Validators accept configuration information as either parameters to the constructor that
creates a new instance of that Validator, or as JavaBeans component properties on the Validator
implementation class.

• To support internationalization, FacesMessage instances should be created. The message identifiers
for such standard messages are also defined by manifest String constants in the implementation
classes. It is the user’s responsibility to ensure the content of a FacesMessage instance is properly
localized, and appropriate parameter substitution is performed, perhaps using
java.text.MessageFormat.

• See the javadocs for UIInput.validateValue() for further normative specification regarding

3.5. Validation Model

88 Jakarta Faces Final

validation.

• Concrete Validator implementations must define a public static final String constant
VALIDATOR_ID, whose value is the standard identifier under which the Jakarta Faces
implementation must register this instance (see below).

Please see Localized Application Messages for the list of message identifiers.

The following standard Validator implementations (in the jakarta.faces.validator package) are
provided:

• DoubleRangeValidator —Checks the local value of a component, which must be of any numeric
type, against specified maximum and/or minimum values. Standard identifier is
“jakarta.faces.DoubleRange”.

• LengthValidator —Checks the length (i.e. number of characters) of the local value of a component,
which must be of type String, against maximum and/or minimum values. Standard identifier is
“jakarta.faces.Length”.

• LongRangeValidator —Checks the local value of a component, which must be of any numeric type
convertible to long , against maximum and/or minimum values. Standard identifier is
“jakarta.faces.LongRange”.

• RegexValidator —Accepts a “pattern” attribute that is interpreted as a regular expression from the
java.util.regex package. The local value of the component is checked fora match against this regular
expression. Standard identifier is “jakarta.faces.RegularExpression”

• BeanValidator - The implementation must ensure that this validator is only available when running
in an environment in which JSR-303 Beans Validation is available. Please see the javadocs for
BeanValidator.validate() for the specification. Standard identifier is “jakarta.faces.Bean”

• RequiredValidator - Analogous to setting the required attribute to true on the EditableValueHolder.
Enforces that the local value is not empty. Reuses the logic and error messages defined on UIInput.
Standard identifier for this validator is "jakarta.faces.Required"

MethodExpressionValidator —Wraps a MethodExpression and interprets it as pointing to a method that
performs validation. Any exception thrown when the expression is invoked is wrapped in a
ValidatorException in similar fashion as the above validators.

3.5.6. Bean Validation Integration

If the implementation is running in a container environment that requires Jakarta Bean Validation, it
must expose the bean validation as described in this specification.

As stated in the specification goals of Jakarta Bean Validation, validation often gets spread out across
the application, from user interface components to persistent objects. Jakarta Bean Validation strives to
avoid this duplication by defining a set of metadata that can be used to express validation constraints
that are sharable by any layer of the application. Since its inception, Jakarta Faces has supported a
“field level validation” approach. Rather than requiring the developer to define validators for each

3.5. Validation Model

Final Jakarta Faces 89

input component (i.e., EditableValueHolder), the BeanValidator can be automatically applied to all
fields on a page so that the work of enforcing the constraints can be delegated to the Bean Validation
provider.

3.5.6.1. Bean Validator Activation

If Bean Validation is present in the runtime environment, the system must ensure that the standard
validator with validator-id jakarta.faces.Bean is added with a call to
Application.addDefaultValidatorId(). See Standard Validator Implementations for the description of the
standard BeanValidator, and <f:validateBean> for the Facelet tag that exposes this validator to the page
author. This ensures Bean Validation will be called for every field in the application.

If Bean Validation is present, and the jakarta.faces.VALIDATE_EMPTY_FIELDS <context-param> is not
explicitly set to false, Jakarta Faces will validate null and empty fields so that the @NotNull and
@NotEmpty constraints from Bean Validation can be leveraged. The next section describes how the
reference to the Bean Validation ValidatorFactory is obtained by that validator.

3.5.6.2. Obtaining a ValidatorFactory

The Bean Validation ValidatorFactory is the main entry point into Bean Validation and is responsible
for creating Validator instances. A ValidatorFactory is retrieved using the following algorithm:

• If the servlet context contains a ValidatorFactory instance under the attribute named
jakarta.faces.validator.beanValidator.ValidatorFactory, this instance is used by Jakarta Faces to
acquire Validator instances (specifically in the BeanValidator). This key should be defined in the
constant named VALIDATOR_FACTORY_KEY on BeanValidator.

• If the servlet context does not contain such an entry, Jakarta Faces looks for a Bean Validation
provider in the classpath. If present, the standard Bean Validation bootstrap strategy is used. If not
present, Bean Validation integration is disabled. If the BeanValidator is used an no ValidatorFactory
can be retrieved, a FacesException is raised. The standard Bean Validation bootstrap procedure is
shown here:

ValidatorFactory validatorFactory =
 Validation.buildDefaultValidatorFactory();

Once instantiated, the result can be stored in the servlet context attribute mentioned as a means of
caching the result. If Jakarta Faces is running in a Jakarta EE environment, Jakarta Bean Validation will
be available, as defined by the Jakarta EE specification, and thus activated in Jakarta Faces. The EE
container will be responsible for making the ValidatorFactory available as an attribute in the
ServletContext as mentioned above.

3.5.6.3. Class-Level Validation

Jakarta Faces conversion and validation as described in this chapter operates on the principle that all
conversion and validation is performed before values are pushed into the model. This principle allows

3.5. Validation Model

90 Jakarta Faces Final

one to safely assume that if a value is pushed into the model, it is of the proper type and has been
validated. This validation is done on a “field level” basis, as mentioned in Bean Validation Integration.
This approach poses challenges for higher level validation that needs to take the value of several fields
together into account to decide if they are valid or not. For example, consider the common case of a
user account creation page with two fields for the password. The page can only be considered valid if
both password fields are themselves individually valid based on the specified password constraints
and also are both the same value. Jakarta Faces provides for this case by providing a facility for
performing Class-Level Validation using Bean Validation. Please see the VDLDoc for the
<f:validateWholeBean /> tag for the normative specification of this feature as well as a usage example
showing the password validation scenario.

3.5.6.4. Localization of Bean Validation Messages

To ensure proper localization of the messages, Jakarta Faces should provide a custom BeanValidation
MessageInterpolator resolving the Locale according to Jakarta Faces defaults and delegating to the
default MessageInterpolator as defined in ValidationFactory.getMessageInterpolator(). A possible
implementation is shown here:

public class FacesMessageInterpolator implements MessageInterpolator {
 private final MessageInterpolator delegate;

 public FacesMessageInterpolator(MessageInterpolator delegate) {
 this.delegate = delegate;
 }

 public String interpolate(String message,
 ConstraintDescriptor constraintDescriptor,Object value) {
 Locale locale = FacesContext.getCurrentInstance()
 .getViewRoot().getLocale();
 return this.delegate.interpolate(
 message, constraintDescriptor, value, locale);
 }

 public String interpolate(String message, ConstraintDescriptor
 constraintDescriptor, Object value, Locale locale) {
 return this.delegate.interpolate(
 message, constraintDescriptor, value, locale);
 }
}

Once a ValidatorFactory is obtained, as described in Obtaining a ValidatorFactory, Jakarta Faces
receives a Validator instance by providing the custom message interpolator to the validator state.

3.5. Validation Model

Final Jakarta Faces 91

//could be cached
MessageInterpolator facesMessageInterpolator = new FacesMessageInterpolator(
 validatorFactory.getMessageInterpolator());

//...

Validator validator = validatorFactory
 .usingContext()
 .messageInterpolator(facesMessageInterpolator)
 .getValidator();

The local value is then passed to the Validator.validateValue() method to check for constraint
violations. Since Bean Validation defines a strategy for localized message reporting, the BeanValidator
does not need to concern itself with producing the validation message. Instead, the BeanValidator
should accept the interpolated message returned from Bean Validation API, which is accessed via the
method getInterpolatedMessage() on the ContraintFailure class, and use it as the replacement value for
the first numbered placeholder for the key jakarta.faces.validator.BeanValidator.MESSAGE (i.e., {0}). To
encourage use of the Bean Validation message facility, the default message format string for the
BeanValidator message key must be a single placeholder, as shown here:

jakarta.faces.validator.BeanValidator.MESSAGE={0}

Putting the Bean Validation message resolution in full control of producing the displayed message is
the recommended approach. However, to allow the developer to align the messages generated by the
BeanValidator with existing Jakarta Faces validators, the developer may choose to override this
message key in an application resource bundle and reference the component label, which replaces the
second numbered placeholder (i.e., {1}).

jakarta.faces.validator.BeanValidator.MESSAGE={1}:{0}

This approach is useful if you are already using localized labels for your input components and are
displaying the messages above the form, rather than adjacent to the input.

3.6. Composite User Interface Components

3.6.1. Non-normative Background

To aid implementors in providing a spec compliant runtime for composite components, this section
provides a non-normative background to motivate the discussion of the composite component feature.
The composite component feature enables developers to write real, reusable, Jakarta Faces UI
components without any Java code or configuration XML.

3.6. Composite User Interface Components

92 Jakarta Faces Final

3.6.1.1. What does it mean to be a Jakarta Faces User Interface component?

Jakarta Faces is a component based framework, and Jakarta Faces UI components are the main point of
Jakarta Faces. But what is a Jakarta Faces UI component, really? Conceptually, a Jakarta Faces UI
Component is a software artifact that represents a reusable, self contained piece of a user interface. A
very narrow definition for “Jakarta Faces UI Component” is imposed at runtime. This definition can be
summarized as

A Jakarta Faces UI Component is represented at runtime by an instance of a Java class that includes
jakarta.faces.component.UIComponent as an ancestor in its inheritance hierarchy.

It is easy to write a class that adheres to this definition, but in practice, component authors need to do
more than just this in order to get the most from Jakarta Faces and to conform to user’s expectations of
what a Jakarta Faces UI Component is. For example, users expect a Jakarta Faces UI Component can do
some or all of the following:

• be exposed to the page-author via a markup tag with sensible attributes

• emit events (such a ValueChangeEvent or ActionEvent)

• allow attaching listeners

• allow attaching a Converter and/or Validator(s)

• render itself to the user-agent, with full support for styles, localization and accessibility

• support delegated rendering to allow for client device independence

• read values sent from the user-agent and correctly adapt them to the faces lifecycle

• correctly handle saving and restoring its state across multiple requests from the user-agent

Another important dimension to consider regarding UI components is the context in which the
developer interacts with the component. There are generally two such contexts.

• In the context of a markup view, such as a Facelet view. In this context the developer interacts with
the UI component using a markup element, setting attributes on that element, and nesting child
elements within that component markup element.

• In the context of code, such as a listener, a managed bean, or other programming language context.
In this context, the developer is writing JavaCode that is either passed the UI component as an
argument, or obtains a reference to the UI component in some other way.

3.6.1.2. How does one make a custom Jakarta Faces User Interface component?

To satisfy a user’s expectations for a Jakarta Faces UI component, the component author must adhere
to one of the following best practices.

• extend the custom component class from an existing subclass of UIComponent that most closely
represents the meaning and behavior of the piece of the UI you are encapsulating in the
component.

3.6. Composite User Interface Components

Final Jakarta Faces 93

• extend the custom component class directly from UIComponentBase and implement the
appropriate “behavioral interface”(s) that most closely represents the meaning and behavior of the
piece of the UI you are encapsulating in the component. See Component Behavioral Interfaces for
more.

Note that the first best practice includes the second one “for free” since the stock UIComponent
subclasses already implement the appropriate behavioral interfaces.

When following either best practice, the Jakarta Faces UI component developer must follow several
steps to make the component available for use in markup pages or in code, including but not
necessarily limited to

• Make entries in a faces-config.xml file, linking the component class to its component-type, which
enables the Application.createComponent() method to create instances of the component.

• Make entries in a faces-config.xml file to declare a Renderer that provides client-device
independence.

• Provide a Facelet tag handler that allows the page author to build UIs that include the component,
and to customize each instance of the component with listeners, properties and model associations.
This includes making the association between the Renderer and the UIComponent.

• Provide a Renderer that provides client device independency for the component

• Make entries in a faces-config.xml file that links the Renderer and its Java class.

These steps are complex, yet the components one creates by following them can be very flexible and
powerful. By making some simplifying assumptions, it is possible to allow the creation of components
that are just as powerful but require far less complexity to develop. This is the whole point of
composite components: to enable developers to write real, reusable, Jakarta Faces UI components
without any Java code or configuration XML.

3.6.1.3. How does one make a composite component?

The composite component feature builds on two features in Jakarta Faces: resources (Resource
Handling) and Facelets (Facelets and its use in Web Applications”). Briefly, a composite component is
any Facelet markup file that resides inside of a resource library. For example, if a Facelet markup file
named loginPanel.xhtml resides inside of a resource library called ezcomp, then page authors can use
this component by declaring the xml namespace xmlns:ez="jakarta.faces.composite/ezcomp" and
including the tag <ez:loginPanel /> in their pages. Naturally, it is possible for a composite component
author to declare an alternate XML namespace for their composite components, but doing so is
optional.

Any valid Facelet markup is valid for use inside of a composite component, including the templating
features specified in Facelet Templating Tag Library. In addition, the tag library specified in Composite
Component Tag Library must be used to declare the metadata for the composite component. Future
versions of the Jakarta Faces specification may relax this requirement, but for now at least the
<cc:interface> and <cc:implementation> sections are required when creating a composite component.

3.6. Composite User Interface Components

94 Jakarta Faces Final

3.6.1.4. A simple composite component example

Create the page that uses the composite component, index.xhtml.

<!DOCTYPE html>
<html xmlns:f="jakarta.faces.core"
 xmlns:h="jakarta.faces.html"
 xmlns:ez="jakarta.faces.composite/ezcomp">
 <h:head>
 <title>A simple example of EZComp</title>
 </h:head>
 <h:body>
 <h:form>
 <ez:loginPanel id="loginPanel">
 <f:actionListener for="loginEvent"
 binding="#{loginBacking.loginEventListener}" />
 </ez:loginPanel>
 </h:form>
 </h:body>
</html>

The only thing special about this page is the ez namespace declaration and the inclusion of the
<ez:loginPanel /> tag on the page. The occurrence of the string “jakarta.faces.composite/” in a Facelet
XML namespace declaration means that whatever follows that last “/” is taken to be the name of a
resource library. For any usage of this namespace in the page, such as <ez:loginPanel />, a Facelet
markup file with the corresponding name is loaded and taken to be the composite component, in this
case the file loginPanel.xhtml. The implementation requirements for this and other Facelet features
related to composite components are specified in Requirements specific to composite components.

Create the composite component markup page. In this case, loginPanel.xhtml resides in the
./resources/ezcomp directory relative to the index.xhtml file.

<ui:component xmlns:ui="jakarta.faces.facelets"
 xmlns:f="jakarta.faces.core"
 xmlns:h="jakarta.faces.html"
 xmlns:cc="jakarta.faces.composite">
 <cc:interface>
 <cc:actionSource name="loginEvent" />
 </cc:interface>
 <cc:implementation>
 <p>Username: <h:inputText id="usernameInput" /></p>
 <p>Password: <h:inputSecret id="passwordInput" /></p>
 <p><h:commandButton id="loginEvent" value="login"/></p>
 </cc:implementation>
</ui:component>

3.6. Composite User Interface Components

Final Jakarta Faces 95

The <cc:interface> section declares the public interface that users of this component need to
understand. In this case, the component declares that it contains an implementation of ActionSource2
(see ActionSource2), and therefore anything one can do with an ActionSource2 in a Facelet markup
page you one do with the composite component. (See Component Behavioral Interfaces for more on
ActionSource2 and other behavioral interfaces). The <cc:implementation> section defines the
implementation of this composite component.

3.6.1.5. Walk through of the run-time for the simple composite component example

This section gives a non-normative traversal of the composite component feature using the previous
example as a guide. Please refer to the javadocs for the normative specification for each method
mentioned below. Any text in italics is a term defined in Composite Component Terms.

1. The user-agent requests the index.html from A simple composite component example. This page
contains the xmlns:ez="jakarta.faces.composite/ezcomp" declaration and an occurrence of the
<ez:loginPanel> tag. Because this page contains a usage of a composite component, it is called a
using page for discussion.

The runtime notices the use of an xml namespace beginning with “jakarta.faces.composite/”. Takes
the substring of the namespace after the last “/”, exclusive, and looks for a resource library with the
name “ezcomp” by calling ResourceHandler.libraryExists().

2. The runtime encounters the <ez:loginPanel> component in the using page. This causes
Application.createComponent(FacesContext, Resource) to be called. This method instantiates the top
level component but does not populate it with children. Pay careful attention to the javadocs for this
method. Depending on the circumstances, the top level component instance can come from a
developer supplied Java Class, a Script, or an implementation specific java class. This method calls
ViewDeclarationLanguage.getComponentMetadata(FacesContext, Resource), which obtains the
composite component BeanInfo (and therefore also the composite component BeanDescriptor) that
exposes the composite component metadata. The composite component metadata also includes any
attached object targets exposed by the composite component author. One thing that
Application.createComponent(FacesContext, Resource) does to the component before returning it is
set the component’s renderer type to be jakarta.faces.Composite. This is important during
rendering.

Again, Application.createComponent(FacesContext, Resource) does not populate the top level
component with children. Subsequent processing done as the runtime traverses the rest of the page
takes care of that. One very important aspect of that subsequent processing is ensuring that all of
the UIComponent children in the defining page are placed in a facet underneath the top level
component. The name of that facet is given by the UIComponent.COMPOSITE_FACET_NAME
constant.

3. After the children of the composite component tag in the using page have been processed by the
VDL implementation, the VDL implementation must call VDLUtils.retargetAttachedObjects(). This
method examines the composite component metadata and retargets any attached objects from the
using page to their approriate inner component targets.

3.6. Composite User Interface Components

96 Jakarta Faces Final

4. Because the renderer type of the composite component was set to jakarta.faces.Composite, the
composite component renderer is invoked to render the composite component.

3.6.1.6. Composite Component Terms

The following terms are commonly used to describe the composite component feature.

Attached Object

Any artifact that can be attached to a UIComponent (composite or otherwise). Usually, this means a
Converter, Validator, ActionListener, or ValueChangeListener.

Attached Object Target

Part of the composite component metadata that allows the composite component author to expose
the semantics of an inner component to the using page author without exposing the rendering or
implementation details of the inner component.

Composite Component

A tree of UIComponent instances, rooted at a top level component, that can be thought of and used as
a single component in a view. The component hierarchy of this subtree is described in the composite
component defining page.

Composite Component Author

The individual or role creating the composite component. This usually involves authoring the
composite component defining page.

Composite Component BeanDescriptor

A constituent element of the composite component metadata. This version of the spec uses the
JavaBeans API to expose the component metadata for the composite component. Future versions of
the spec may use a different API to expose the component metadata.

Composite Component BeanInfo

The main element of the composite component metadata.

Composite Component Declaration

The section of markup within the composite component defining page that includes the
<cc:interface> section and its children.

Composite Component Definition

The section of markup within the composite component defining page that includes the
<cc:implementation> section and its children.

Composite Component Library

A resource library that contains a defining page for each composite component that the composite
component author wishes to expose to the using page author.

3.6. Composite User Interface Components

Final Jakarta Faces 97

Composite Component Metadata

Any data about the composite component. The normative specification for what must be in the
composite component metadata is in the javadocs for
ViewDeclarationLanguage.getComponentMetadata().

Composite Component Renderer

A new renderer in the HTML_BASIC render kit that knows how to render a composite component.

Composite Component Tag

The tag in the using page that references a composite component declared and defined in a defining
page.

Defining page

The markup page, usually Facelets markup, that contains the composite component declaration and
composite component definition.

Inner Component

Any UIComponent inside of the defining page or a page that is referenced from the defining page.

Top level component

The UIComponent instance in the tree that is the parent of all UIComponent instances within the
defining page and any pages used by that defining page.

Using Page

The VDL page in which a composite component tag is used.

Using Page Author

The individual or role that creates pages that use the composite component.

3.6.2. Normative Requirements

This section contains the normative requirements for the composite component runtime, or pointers to
other parts of the specification that articulate those requirements in the appropriate context.

Table 1. References to Composite Component Requirements in Context

Section Feature

Implicit Object ELResolver
for Facelets and
Programmatic Access

Ability for the composite component author to refer to the top level
component from a Jakarta Expression Language expression, such as
#{cc.children[3]}.

Composite Component
Attributes ELResolver

Ability for the composite component author to refer to attributes
declared on the composite component tag using EL expressions such as
#{cc.attrs.usernameLabel}

3.6. Composite User Interface Components

98 Jakarta Faces Final

Section Feature

Object Factories Methods called by the VDL page to create a new instance of a top level
component for eventual inclusion in the view

Requirements specific to
composite components

Requirements of the Facelet implementation relating to Facelets.

Composite Component Tag
Library

Tag handlers for the composite tag library

3.6.2.1. Composite Component Metadata

In the current version of the specification, only composite UIComponents must have component
metadata. It is possible that future versions of the specification will broaden this requirement so that
all UIComponents must have metadata.

This section describes the implementation of the composite component metadata that is returned from
the method ViewDeclarationLanguage.getComponentMetadata(). This method is formally declared in
ViewDeclarationLanguage.getComponentMetadata(), but for reference its signature is repeated here.

public BeanInfo getComponentMetadata(
 FacesContext context, Resource componentResource)

The specification requires that this method is called from Application.createComponent(FacesContext
context, Resource componentResource). See the javadocs for that method for actions that must be taken
based on the composite component metadata returned from getComponentMetadata().

The default implementation of this method must support authoring the component metadata using
tags placed inside of a <cc:interface /> element found on a defining page. This element is specified in the
Facelets taglibrary docs.

Composite component metadata currently consists of the following information:

• The composite component BeanInfo, returned from this method.

• The Resource from which the composite component was created.

• The composite component BeanDescriptor.

This BeanDescriptor must be returned when getBeanDescriptor() is called on the composite
component BeanInfo.

The composite component BeanDescriptor exposes the following information.

◦ The “name” attributes of the <cc:interface/ > element is exposed using the corresponding
method on the composite component BeanDescriptor. If ProjectStage is Development, The
“displayName”, “shortDescription”, “expert”, “hidden”, and “preferred” attributes of the

3.6. Composite User Interface Components

Final Jakarta Faces 99

<cc:interface/ > element are exposed using the corresponding methods on the composite
component BeanDescriptor. Any additional attributes on <cc:interface/ > are exposed as
attributes accessible from the getValue() and attributeNames() methods on BeanDescriptor
(inherited from FeatureDescriptor). The return type from getValue() must be a
jakarta.el.ValueExpression for such attributes.

◦ The list of exposed AttachedObjectTargets to which the page author can attach things such as
listeners, converters, or validators.

The VDL implementation must populate the composite component metadata with a
List<AttachedObjectTarget> that includes all of the inner components exposed by the composite
component author for use by the page author.

This List must be exposed in the value set of the composite component BeanDescriptor under
the key AttachedObjectTarget.ATTACHED_OBJECT_TARGETS_KEY.

For example, if the defining page has

<cc:interface>
 <cc:editableValueHolder name="username" />
 <cc:actionSource name="loginEvent" />
 <cc:actionSource name="allEvents"
 targets="loginEvent cancelEvent" />
</cc:interface>

The list of attached object targets would consist of instances of implementations of the
following interfaces from the package jakarta.faces.webapp.vdl.

1. EditableValueHolderAttachedObjectTarget

2. ActionSource2AttachedObjectTarget

3. ActionSource2AttachedObjectTarget

4. BehaviorHolderAttachedObjectTarget

◦ A ValueExpression that evaluates to the component type of the composite component. By default
this is "jakarta.faces.NamingContainer" but the composite component page author can change
this, or provide a Java or script-based UIComponent implementation that is required to
implement NamingContainer.

This ValueExpression must be exposed in the value set of the composite component
BeanDescriptor under the key UIComponent.COMPOSITE_COMPONENT_TYPE_KEY.

◦ A Map<String, PropertyDescriptor> representing the facets declared by the composite
component author for use by the page author.

This Map must be exposed in the value set of the composite component BeanDescriptor under
the key UIComponent.FACETS_KEY.

3.6. Composite User Interface Components

100 Jakarta Faces Final

◦ Any attributes declared by the composite component author using <cc:attribute/ > elements
must be exposed in the array of PropertyDescriptors returned from getPropertyDescriptors() on
the composite component BeanInfo.

For each such attribute, for any String or boolean valued JavaBeans properties on the interface
PropertyDescriptor (and its superinterfaces) that are also given as attributes on a <cc:attribute/ >
element, those properties must be exposed as properties on the PropertyDescriptor for that
markup element. Any additional attributes on <cc:attribute/ > are exposed as attributes
accessible from the getValue() and attributeNames() methods on PropertyDescriptor. The return
type from getValue() must be a ValueExpression with the exception of the getValue("type"). The
return type from getValue("type") must be Class. If the value specified for the type attribute of
<cc:attribute/> cannot be converted to an actual Class, a TagAttributeException must be thrown,
including the Tag and TagAttribute instances in the constructor.

The composite component BeanDescriptor must return a Collection<String> when its getValue()
method is called with an argument equal to the value of the symbolic constant
UIComponent.ATTRS_WITH_DECLARED_DEFAULT_VALUES. The Collection<String> must contain
the names of any <cc:attribute> elements for which the default attribute was specified, or null if
none of the attributes have been given a default value.

3.7. Component Behavior Model
This section describes the facilities for adding Behavior attached objects to Jakarta Faces components.

3.7.1. Overview

Jakarta Faces supports a mechanism for enhancing components with additional behaviors that are not
explicitly defined by the component author.

At the root of the behavior model is he Behavior interface. This interface serves as a supertype for
additional behavior contracts. The ClientBehavior interface extends the Behavior interface by
providing a contract for defining reusable scripts that can be attached to any component that
implements the ClientBehaviorHolder interface. The ClientBehaviorHolder interface defines the set of
attach points, or "events", to which a ClientBehavior may be attached. For example, an "AlertBehavior"
implementation might display a JavaScript alert when attached to a component and activated by the
end user.

While client behaviors typically add client-side capabilities, they are not limited to client. Client
behaviors can also participate in the Jakarta Faces request processing lifecycle. Jakarta Faces’s
AjaxBehavior is a good example of such a cross-tier behavior. The AjaxBehavior both triggers an Ajax
request from the client and also delivers AjaxBehaviorEvents to listeners on the server.

The standard HTML components provided by Jakarta Faces are all client behavior-ready. That is, all of
the standard HTML components implement the ClientBehaviorHolder interface and allow client
behaviors to be attached to well defined events. .

3.7. Component Behavior Model

Final Jakarta Faces 101

3.7.2. Behavior Interface

The Behavior interface is the root of the component behavior model. It defines a single method to
enable generic behavior event delivery.

public void broadcast(BehaviorEvent event) throws AbortProcessingException

This method is called by UIComponent implementations to re-broadcast behavior events that were
queued by by calling UIComponent.queueEvent.

3.7.3. BehaviorBase

The BehaviorBase abstract class implements the broadcast method from the Behavior interface.
BehaviorBase also implements the PartialStateHolder interface (see PartialStateHolder). It also
provides behavior event listener registration methods.

public void broadcast(BehaviorEvent event) throws AbortProcessingException

This method delivers the BehaviorEvent to listeners that were registered via addBehaviorListener.

The following methods are provided for add and removing BehaviorListeners.

protected void addBehaviorListener(BehaviorListener listener)

protected void removeBehaviorListener(BehaviorListener listener);

3.7.4. The Client Behavior Contract

The ClientBehavior interface extends the Behavior interface and lays the foundation on which behavior
authors can define custom script producing behaviors. The logic for producing these scripts is defined
in the getScript() method.

public String getScript(BehaviorContext behaviorContext)

This method returns a String that is an executable script that can be attached to a client side event
handler. The BehaviorContext argument contains information that may be useful for getScript
implementations.

In addition to client side functionality, client behaviors can also post back to the server and participate
in the request processing lifecycle.

3.7. Component Behavior Model

102 Jakarta Faces Final

public void decode(FacesContext context,UIComponent component)

This method can perform request decoding and queue server side events.

public Set<ClientBehaviorHint> getHints()

This method provides information about the client behavior implementation that may be useful to
components and renderers that interact with the client behavior.

Refer to the javadocs for these methods for more details.

3.7.5. ClientBehaviorHolder

Components that support client behaviors must implement the ClientBehaviorHolder interface. Refer
to ClientBehaviorHolder for more details.

3.7.6. ClientBehaviorRenderer

Client behaviors may implement script generation and decoding in a client behavior class or delegate
to a ClientBehaviorRenderer. Refer to ClientBehaviorRenderer for more specifics.

3.7.7. ClientBehaviorContext

The specification provides a ClientBehaviorContext that contains information that may be used at
script rendering time. Specifically it includes:

• FacesContext

• UIComponent that the current behavior is attached to

• The name of the event that the behavior is associated with

• The identifier of the source - this may correspond to the identifier of the source of the behavior

• A collection of parameters that submitting behaviors should include when posting back to the
server

The ClientBehaviorContext is created with the use of this static method:

public static ClientBehaviorContext createClientBehaviorContext(
 FacesContext context,UIComponent component,
 String eventName, String sourceId,
 Collection<ClientBehaviorContext.Parameter> parameters)

This method must throw a NullPointerException if context, component or eventName is null.

3.7. Component Behavior Model

Final Jakarta Faces 103

3.7.8. ClientBehaviorHint

The ClientBehaviorHint enum is used to convey information about the client behavior implementation.
Currently, only one hint is provided.

SUBMITTING

This hint indicates that a client behavior implementation posts back to the server.

3.7.9. ClientBehaviorBase

ClientBehaviorBase is an extension of BehaviorBase that implements the ClientBehavior interface. It It
is a convenience class that contains default implementations for the methods in ClientBehavior plus
additional methods:

public String getScript(BehaviorContext behaviorContext)

The default implementation calls getRenderer to retrieve the ClientBehaviorRenderer. If a
ClientBehaviorRenderer is found, it is used to obtain the script. If no ClientBehaviorRenderer is found,
this method returns null.

public void decode(FacesContext context,UIComponent component)

The default implementation calls getRenderer to retrieve the ClientBehaviorRenderer. If a
ClientBehaviorRenderer is found, it is used to perform decoding. If no ClientBehaviorRenderer is found,
no decoding is performed.

public Set<ClientBehaviorHint> getHints()

The default implementation returns an empty set

public String getRendererType();

This method identifies the ClientBehaviorRenderer type. By default, no ClientBehaviorRenderer type is
provided. Subclasses should either override this method to return a valid type or override the getScript
and decode methods if a ClientBehaviorRenderer is not available.

protected ClientBehaviorRenderer getRenderer(FacesContext context);

This method returns the ClientBehaviorRenderer instance that is associated with this ClientBehavior. It

3.7. Component Behavior Model

104 Jakarta Faces Final

uses the renderer type returned from get RendererType() to look up the renderer on the RenderKit
using RenderKit.getClientBehaviorRenderer.

3.7.10. Behavior Event / Listener Model

The behavior event / listener model is an extension of the Jakarta Faces event / listener model as
described in Event and Listener Model. BehaviorHolder components are responsible for broadcasting
BehaviorEvents to behaviors.

3.7.10.1. Event Classes

Behaviors can broadcast events in the same way that UIComponents can broadcast events. At the root
of the behavior event hierarchy is BehaviorEvent that extends jakarta.faces.event.FacesEvent. All
events that are broadcast by Jakarta Faces behaviors must extend the jakarta.faces.event.BehaviorEvent
abstract base class. The parameter list for the constructor(s) of this event class must include a
UIComponent, which identifies the component from which the event will be broadcast to interested
listeners, and a Behavior which identifies the behavior associated with the component. The source
component can be retrieved from the event object itself by calling getComponent and the behavior can
be retrieved by calling getBehavior. Additional constructor parameters and/or properties on the event
class can be used to relay additional information about the event.

In conformance to the naming patterns defined in the JavaBeans Specification, event classes typically
have a class name that ends with Event. The following method is available to determine the Behavior
for the event (in addition to the other methods inherited from jakarta.faces.event.FacesEvent):

public Behavior getBehavior()

3.7.10.2. Listener Classes

For each event type that may be emitted, a corresponding listener interface must be created, which
extends the jakarta.faces.event.BehaviorListener interface. BehaviorListener extends from
jakarta.faces.event.FacesListener. The method signature(s) defined by the listener interface must take a
single parameter, an instance of the event class for which this listener is being created. A listener
implementation class will implement one or more of these listener interfaces, along with the event
handling method(s) specified by those interfaces. The event handling methods will be called during
event broadcast, one per event.

In conformance to the naming patterns defined in the JavaBeans Specification, listener interfaces have
a class name based on the class name of the event being listened to, but with the word Listener
replacing the trailing Event of the event class name (thus, the listener for a FooEvent would be a
FooListener). It is recommended that application event listener interfaces follow this naming pattern as
well.

3.7. Component Behavior Model

Final Jakarta Faces 105

3.7.10.3. Listener Registration

BehaviorListener registration follows the same conventions as outlined in Listener Registration.

3.7.11. Ajax Behavior

3.7.11.1. AjaxBehavior

The specification defines a single concrete ClientBehavior implementation:
jakarta.faces.component.behavior.AjaxBehavior. This class extends
jakarta.faces.component.behavior.ClientBehaviorBase. The presence of this behavior on a component
causes the rendering of JavaScript that will produce an Ajax request to the server using the JavaScript
API outlined in Section “JavaScript API”. This behavior may also broadcast
jakarta.faces.event.AjaxBehaviorEvents to registered jakarta.faces.event.AjaxBehaviorListener
implementations. Refer to the javadocs for more details about AjaxBehavior. This behavior must define
the behavior id “jakarta.faces.behavior.Ajax”. The renderer type must also be
“jakarta.faces.behavior.Ajax”.

3.7.11.2. Ajax Behavior Event / Listener Model

Corresponding to the standard behavior event classes described in the previous section the
specification supports an event listener model for broadcasting and handling AjaxBehavior events.

jakarta.faces.event.AjaxBehaviorEvent

This event type extends from jakarta.faces.event.BehaviorEvent and it is broadcast from an
AjaxBehavior. This class follows the standard Jakarta Faces event / listener model, incorporating the
usual methods as outlined in Event and Listener Model. This class is responsible for invoking the
method implementation of jakarta.faces.event.AjaxBehaviorListener.processAjaxBehavior. Refer to the
javadocs for more complete details about this class.

jakarta.faces.event.AjaxBehaviorListener

This listener type extends from jakarta.faces.event.BehaviorListener and it is invoked in response to
AjaxBehaviorEvents.

public void processAjaxBehavior(AjaxBehaviorEvent event)

AjaxBehaviorListener implementations implement this method to provide server side functionality in
response to AjaxBehavior Events. See the javadocs for more details about this class.

3.7.12. Adding Behavior To Components

Using the ClientBehaviorHolder interface (see ClientBehaviorHolder) ClientBehavior instances can be
added to components. For ClientBehavior implementations that extend UIComponentBase, the minimal
requirement is to override getEventNames() to return a non-empty collection of the event names
exposed by the ClientBehaviorHolder. A optional default event name may be specified as well. For

3.7. Component Behavior Model

106 Jakarta Faces Final

example:

Here’s an example code snippet from one of the Html components:

public class HtmlCommandButton extends
 jakarta.faces.component.UICommand implements ClientBehaviorHolder {
...
 private static final Collection<String> EVENT_NAMES =
 Collections.unmodifiableCollection(
 Arrays.asList("blur","change","click","action",...));

 public Collection<String> getEventNames() {
 return EVENT_NAMES;
 }

 public String getDefaultEventName() {
 return "action";
 }
...

Users of the component will be able to attach ClientBehavior instances to any of the event names
specified by the getEventNames() implementation by calling
ClientBehaviorHolder.addBehavior(eventName, clientBehavior).

3.7.13. Behavior Registration

Jakarta Faces provides methods for registering Behavior implementations and these methods are
similar to the methods used to register converters and validators. Refer to Object Factories for the
specifics about these methods.

3.7.13.1. XML Registration

Jakarta Faces provides the usual faces-config.xml registration of custom component behavior
implementations.

<behavior>
 <behavior-id>custom.behavior.Greet</behavior-id>
 <behavior-class>greet.GreetBehavior</behavior-class>
</behavior>

3.7.13.2. Registration By Annotation

Jakarta Faces provides the @FacesBehavior annotation for registering custom behavior
implementations.

3.7. Component Behavior Model

Final Jakarta Faces 107

@FacesBehavior(value="custom.behavior.Greet")
public class GreetBehavior extends BehaviorBase implements Serializable {
...
}

3.7. Component Behavior Model

108 Jakarta Faces Final

Chapter 4. Standard User Interface
Components
In addition to the abstract base class UIComponent and the abstract base class UIComponentBase,
described in the previous chapter, Jakarta Faces provides a number of concrete user interface
component implementation classes that cover the most common requirements. In addition,
component writers will typically create new components by subclassing one of the standard
component classes (or the UIComponentBase class). It is anticipated that the number of standard
component classes will grow in future versions of the Jakarta Faces specification.

Each of these classes defines the render-independent characteristics of the corresponding component
as JavaBeans component properties. Some of these properties may be value expressions that indirectly
point to values related to the current request, or to the properties of model data objects that are
accessible through request-scope, session-scope, or application-scope attributes. In addition, the
rendererType property of each concrete implementation class is set to a defined value, indicating that
decoding and encoding for this component will (by default) be delegated to the corresponding
Renderer.

4.1. Standard User Interface Components
This section documents the features and functionality of the standard UIComponent classes and
implementations that are included in Jakarta Faces.

The implementation for each standard UIComponent class must specify two public static final String
constant values:

• COMPONENT_TYPE —The standard component type identifier under which the corresponding
component class is registered with the Application object for this application. This value may be
used as a parameter to the createComponent() method.

• COMPONENT_FAMILY —The standard component family identifier used to select an appropriate
Renderer for this component.

For all render-independent properties in the following sections (except for id, scope, and var) the value
may either be a literal, or it may come from a value expression. Please see Value Expressions for more
information.

The following UML class diagram shows the classes and interfaces in the package
jakarta.faces.component.

The jakarta.faces.component package

4.1. Standard User Interface Components

Final Jakarta Faces 109

4.1.1. UIColumn

UIColumn (extends UIComponentBase) is a component that represents a single column of data with a
parent UIData component. The child components of a UIColumn will be processed once for each row in
the data managed by the parent UIData.

4.1. Standard User Interface Components

110 Jakarta Faces Final

4.1.1.1. Component Type

The standard component type for UIColumn components is “jakarta.faces.Column”.

4.1.1.2. Properties

UIColumn adds the following render-independent properties:

Name Access Type Description

footer RW UIComponent Convenience methods to get and set the “footer”
facet for this component.

header RW UIComponent Convenience methods to get and set the “header”
facet for this component.

UIColumn specializes the behavior of render-independent properties inherited from the parent class as
follows:

• The default value of the family property must be set to “jakarta.faces.Column”.

• The default value of the rendererType property must be set to null.

4.1.1.3. Methods

UIColumn adds no new processing methods.

4.1.1.4. Events

UIColumn adds no new event handling methods.

4.1.2. UICommand

UICommand (extends UIComponentBase; implements ActionSource) is a control which, when activated
by the user, triggers an application-specific “command” or “action.” Such a component is typically
rendered as a push button, a menu item, or a hyperlink.

4.1.2.1. Component Type

The standard component type for UICommand components is “jakarta.faces.Command”.

4.1.2.2. Properties

UICommand adds the following render-independent properties.

Name Access Type Description

value RW Object The value of this component, normally used as a
label.

4.1. Standard User Interface Components

Final Jakarta Faces 111

See ActionSource for information about properties introduced by the implemented classes.

UICommand components specialize the behavior of render-independent properties inherited from the
parent class as follows:

• The default value of the family property must be set to “jakarta.faces.Command”.

• The default value of the rendererType property must be set to “jakarta.faces.Button”.

4.1.2.3. Methods

UICommand adds no new processing methods. See ActionSource for information about methods
introduced by the implemented classes.

4.1.2.4. Events

UICommand adds no new event processing methods. See ActionSource for information about event
handling introduced by the implemented classes.

4.1.3. UIData

UIData (extends UIComponentBase; implements NamingContainer) is a component that represents a
data binding to a collection of data objects represented by a DataModel instance (see DataModel). Only
children of type UIColumn should be processed by renderers associated with this component.

4.1.3.1. Component Type

The standard component type for UIData components is “jakarta.faces.Data”

4.1.3.2. Properties

UIData adds the following render-independent properties.

Name Access Type Description

dataModel protecte
d RW

DataModel The internal value representation of the UIData
instance. Subclasses might write to this property if
they want to restore the internal model during the
Restore View Phase or if they want to explicitly
refresh the model for the Render Response phase.

first RW int Zero-relative row number of the first row in the
underlying data model to be displayed, or zero to
start at the beginning of the data model.

footer RW UIComponent Convenience methods to get and set the “footer”
facet for this component.

4.1. Standard User Interface Components

112 Jakarta Faces Final

Name Access Type Description

header RW UIComponent Convenience methods to get and set the “header”
facet for this component.

rowCount RO int The number of rows in the underlying DataModel,
which can be -1 if the number of rows is
unknown.

rowAvailable RO boolean Return true if there is row data available for the
currently specified rowIndex ; else return false.

rowData RO Object The data object representing the data for the
currently selected rowIndex value.

rowIndex RW int Zero-relative index of the row currently being
accessed in the underlying DataModel, or -1 for no
current row. See below for further information.

rows RW int The number of rows (starting with the one
identified by the first property) to be displayed, or
zero to display the entire set of available rows.

value RW Object The DataModel instance representing the data to
which this component is bound, or a collection of
data for which a DataModel instance is
synthesized. See below for more information.

var RW String The request-scope attribute (if any) under which
the data object for the current row will be
exposed when iterating.

See NamingContainer for information about properties introduced by the implemented classes.

UIData specializes the behavior of render-independent properties inherited from the parent
component as follows:

• The default value of the family property must be set to “jakarta.faces.Data”.

• The default value of the rendererType property must be set to “jakarta.faces.Table”.

The current value identified by the value property is normally of type DataModel. However, a
DataModel wrapper instance must automatically be provided by the Jakarta Faces implementation if
the current value is of one of the following types:

• java.util.List

• Array of java.util.Object

• java.sql.ResultSet (which therefore also supports javax.sql.RowSet)

• java.util.Map (uses the wrapper for java.lang.Iterable by providing access to
java.util.Map#entrySet())

4.1. Standard User Interface Components

Final Jakarta Faces 113

• Any other Java object is wrapped by a DataModel instance with a single row.

Convenience implementations of DataModel are provided in the jakarta.faces.model package for each
of the above (see Concrete Implementations), and must be used by the UIData component to create the
required DataModel wrapper.

4.1.3.3. Methods

UIData adds no new processing methods. However, the getDataModel() method is now protected, so
implementations have access to the underlying data model. See NamingContainer for information
about methods introduced by the implemented classes.

UIData specializes the behavior of the getClientId() method inherited from its parent, in order to create
a client identifier that includes the current rowIndex value (if it is not -1). Because UIData is a
NamingContainer, this makes it possible for rendered client identifiers of child components to be row-
specific.

UIData specializes the behavior of the queueEvent() method inherited from its parent, to wrap the
specified event (bubbled up from a child component) in a private wrapper containing the current
rowIndex value, so that this rowIndex can be reset when the event is later broadcast.

UIData specializes the behavior of the broadcast() method to unwrap the private wrapper (if this event
was wrapped), and call setRowIndex() to re-establish the context in which the event was queued,
followed by delivery of the event.

UIData specializes the behavior of the processDecodes(), processValidators(), and processUpdates()
methods inherited from its parent as follows:

• For each of these methods, the UIData implementation must iterate over each row in the
underlying data model, starting with the row identified by the first property, for the number of
rows indicated by the rows property, by calling the setRowIndex() method.

• When iteration is complete, set the rowIndex property of this component, and of the underlying
DataModel, to zero, and remove any request attribute exposed via the var property.

UIData specializes the behavior of invokeOnComponent() inherited from UIComponentBase to examine
the argument clientId and extract the rowIndex, if any, and position the data properly before
proceeding to locate the component and invoke the callback. Upon normal or exception return from
the callback the data must be repositioned to match how it was before invoking the callback. Please see
the javadocs for UIData.invokeOnComponent() for more details.

4.1.3.4. Events

UIData adds no new event handling methods. See NamingContainer for information about event
handling introduced by the implemented classes.

4.1. Standard User Interface Components

114 Jakarta Faces Final

4.1.4. UIForm

UIForm (extends UIComponentBase; implements NamingContainer) is a component that represents an
input form to be presented to the user, and whose child components (among other things) represent
the input fields to be included when the form is submitted.

The encodeEnd() method of the renderer for UIForm must call ViewHandler.writeState() before writing
out the markup for the closing tag of the form.This allows the state for multiple forms to be saved.

4.1.4.1. Component Type

The standard component type for UIForm components is “jakarta.faces.Form”.

4.1.4.2. Properties

UIForm adds the following render-independent properties.

Name Access Type Description

prependId RW boolean If true, this UIForm instance does allow its id to be
pre-pendend to its descendent’s id during the
generation of clientIds for the descendents. The
default value of this property is true.

UIForm specializes the behavior of render-independent properties inherited from the parent
component as follows:

• The default value of the family property must be set to “jakarta.faces.Form”.

• The default value of the rendererType property must be set to “jakarta.faces.Form”.

4.1.4.3. Methods.

public boolean isSubmitted();
public void setSubmitted(boolean submitted)

The setSubmitted() method of each UIForm instance in the view must be called during the Apply
Request Values phase of the request processing lifecycle, during the processing performed by the
UIComponent.decode() method. If this UIForm instance represents the form actually being submitted on
this request, the parameter must be set to true; otherwise, it must be set to false. The standard
implementation of UIForm delegates the responsibility for calling this method to the Renderer
associated with this instance..

The value of a UIForm's submitted property must not be saved as part of its state.

public void processDecodes(FacesContext context);

4.1. Standard User Interface Components

Final Jakarta Faces 115

Override UIComponent.processDecodes() to ensure that the submitted property is set for this
component. If the submitted property decodes to false, do not process the children and return
immediately.

public void processValidators(FacesContext context);
public void processUpdates(FacesContext context);

Override processValidators() and processUpdates() to ensure that the children of this UIForm instance
are only processed if isSubmitted() returns true.

public void saveState(FacesContext context);

The saveState() method of UIForm must call setSubmitted(false) before calling super.saveState() as an
extra precaution to ensure the submitted state is not persisted across requests..

protected String getContainerClientId(FacesContext context);

Override the parent method to ensure that children of this UIForm instance in the view have the form’s
clientId prepended to their clientIds if and only if the form’s prependId property is true.

4.1.4.4. Events

UIForm adds no new event handling methods.

4.1.5. UIGraphic

UIGraphic (extends UIComponentBase) is a component that displays a graphical image to the user. The
user cannot manipulate this component; it is for display purposes only.

4.1.5.1. Component Type

The standard component type for UIGraphic components is “jakarta.faces.Graphic”.

4.1.5.2. Properties

The following render-independent properties are added by the UIGraphic component:

4.1. Standard User Interface Components

116 Jakarta Faces Final

Name Access Type Description

url RW String The URL of the image to be displayed. If this URL
begins with a / character, it is assumed to be
relative to the context path of the current web
application. This property is a typesafe alias for
the value property, so that the actual URL to be
used can be acquired via a value expression.

value RW Object The value of this component, normally used as a
URL.

UIGraphic specializes the behavior of render-independent properties inherited from the parent
component as follows:

• The default value of the family property must be set to “jakarta.faces.Graphic”.

• The default value of the rendererType property must be set to “jakarta.faces.Image”.

4.1.5.3. Methods

UIGraphic adds no new processing methods.

4.1.5.4. Events

UIGraphic does not originate any standard events.

4.1.6. UIInput

UIInput (extends UIOutput, implements EditableValueHolder) is a component that both displays the
current value of the component to the user (as UIOutput components do), and processes request
parameters on the subsequent request that need to be decoded.

4.1.6.1. Component Type

The standard component type for UIInput components is “jakarta.faces.Input”.

4.1.6.2. Properties

UIInput adds the following renderer independent properties.:

4.1. Standard User Interface Components

Final Jakarta Faces 117

Name Access Type Description

requiredMessage RW String ValueExpression enabled property. If non-null,
this property is used as the summary and detail
strings of the FacesMessage that is queued on the
FacesContext instead of the default message for
the required validaiton failure. Note that the
message is fully internationalizable via either the
f:loadBundle tag or via ResourceBundle access
from the EL.

converterMessage RW String ValueExpression enabled property. If non-null,
this property is used as the summary and detail
strings of the FacesMessage that is queued on the
FacesContext instead of the default message for
conversion failure. Note that the message is fully
internationalizable via either the f:loadBundle tag
or via ResourceBundle access from the EL.

validatorMessage RW String ValueExpression enabled property. If non-null,
this property is used as the summary and detail
strings of the FacesMessage that is queued on the
FacesContext instead of the default message for
validation failure. Note that the message is fully
internationalizable via either the f:loadBundle tag
or via ResourceBundle access from the EL.

See EditableValueHolder for information about properties introduced by the implemented interfaces.

UIInput specializes the behavior of render-independent properties inherited from the parent
component as follows:

• The default value of the family property must be set to “jakarta.faces.Input”.

• The default value of the rendererType property must be set to “jakarta.faces.Text”.

• The Converter specified by the converter property (if any) must also be used to perform
String→Object conversions during decoding.

• If the value property has an associated ValueExpression, the setValue() method of that
ValueExpression will be called during the Update Model Values phase of the request processing
lifecycle to push the local value of the component back to the corresponding model bean property.

4.1.6.3. Methods

The following method is used during the Update Model Values phase of the request processing lifecycle,
to push the converted (if necessary) and validated (if necessary) local value of this component back to
the corresponding model bean property.

4.1. Standard User Interface Components

118 Jakarta Faces Final

public void updateModel(FacesContext context);

The following method is over-ridden from UIComponent:

public void broadcast(FacesEvent event);

In addition to the default UIComponent.broadcast(jakarta.faces.event.FacesEvent) processing, pass the
ValueChangeEvent being broadcast to the method referenced by the valueChangeListener property (if
any).

public void validate(FacesContext context);

Perform the algorithm described in the javadoc to validate the local value of this UIInput.

public void resetValue();

Perform the algorithm described in the javadoc to reset this UIInput to the state where it has no local
value. This method does not touch the value expresson associated with the “value” property.

4.1.6.4. Events

All events are described in EditableValueHolder.

4.1.7. UIMessage

UIMessage (extends UIComponentBase) encapsulates the rendering of error message(s) related to a
specified input component.

4.1.7.1. Component Type

The standard component type for UIMessage components is “jakarta.faces.Message”.

4.1.7.2. Properties

The following render-independent properties are added by the UIMessage component:

4.1. Standard User Interface Components

Final Jakarta Faces 119

Name Access Type Description

for RW String Identifier of the component for which to render
error messages. If this component is within the
same NamingContainer as the target component,
this must be the component identifier. Otherwise,
it must be an absolute component identifier
(starting with “:”). See the
UIComponent.findComponent() Javadocs for more
information.

showDetail RW boolean Flag indicating whether the “detail” property of
messages for the specified component should be
rendered. Default value is “true”.

showSummary RW boolean Flag indicating whether the “summary” property
of messages for the specified component should
be rendered. Default value is “false”.

UIMessage specializes the behavior of render-independent properties inherited from the parent
component as follows:

• The default value of the family property must be set to “jakarta.faces.Message”.

• The default value of the rendererType property must be set to “jakarta.faces.Message”.

4.1.7.3. Methods.

UIMessage adds no new processing methods.

4.1.7.4. Events

UIMessage adds no new event handling methods.

4.1.8. UIMessages

UIMessage (extends UIComponentBase) encapsulates the rendering of error message(s) not related to a
specified input component, or all enqueued messages.

4.1.8.1. Component Type

The standard component type for UIMessages components is “jakarta.faces.Messages”.

4.1.8.2. Properties

The following render-independent properties are added by the UIMessages component:

4.1. Standard User Interface Components

120 Jakarta Faces Final

Name Access Type Description

globalOnly RW boolean Flag indicating whether only messages not
associated with any specific component should be
rendered. If not set, all messages will be rendered.
Default value is “false”.

showDetail RW boolean Flag indicating whether the “detail” property of
messages for the specified component should be
rendered. Default value is “false”.

showSummary RW boolean Flag indicating whether the “summary” property
of messages for the specified component should
be rendered. Default value is “true”.

UIMessages specializes the behavior of render-independent properties inherited from the parent
component as follows:

• The default value of the family property must be set to “jakarta.faces.Messages”.

• The default value of the rendererType property must be set to “jakarta.faces.Messages”.

4.1.8.3. Methods.

UIMessages adds no new processing methods.

4.1.8.4. Events

UIMessages adds no new event handling methods.

4.1.9. UIOutcomeTarget

UIOutcomeTarget (UIOutput) is a component that has a value and an outcome, either which may
optionally be retrieved from a model tier bean via a value expression (see Value Expressions), and is
displayed to the user as a hyperlink, appearing in the form of a link or a button. The user cannot
modify the value of the hyperlink, as it’s for display purposes only. The target URL of the hyperlink is
derived by passing the outcome to the ConfigurationNavigationHandler to retrieve the matching
NavigationCase and then using the ViewHandler to translate the NavigationCase into an action URL.
When the client activates the hyperlink, typically by clicking it, the target URL is retrieved using a non-
faces request and the response is rendered.

This component introduces a scenario known as "preemptive navigation". The navigation case is
resolved during the Render Response phase, before the client activates the link (and may never
activate the link). The predetermined navigation is pursued after the client activates the link. In
contrast, the UICommand components resolve and execute the navigation at once, after the Invoke
Application phase.

The UIOutcomeTarget component allows the developer to leverage the navigation model while at the

4.1. Standard User Interface Components

Final Jakarta Faces 121

same time being able to generate bookmarkable, non-faces requests to be included in the response.

4.1.9.1. Component Type

The standard component type for UIOutcomeTarget is "jakarta.faces.OutcomeTarget".

4.1.9.2. Properties

The following render-independent properties are added by thec component:

Name Access Type Description

Outcome RW String The logical outcome that is used to resolve a
NavigationCase which in turn is used to build the
target URL of this component. Default value is the
current view ID.

includePageParam
s

RW boolean Flag indicating whether the page parameters
should be appended to the query string of the
target URL. Default value is "false".

UIOutcomeTarget specializes the behavior of render-independent properties inherited from the parent
component as follows:

• The default value of the family property must be set to "jakarta.faces.UIOutcomeTarget"

• The default value of the rendererType property must be set to "jakarta.faces.Link"

4.1.9.3. Methods

The UIOutcomeTarget adds no event handling methods.

4.1.9.4. Events

The UIOutcomeTarget adds no event handling methods.

4.1.10. UIOutput

UIOutput (extends UIComponentBase; implements ValueHolder) is a component that has a value,
optionally retrieved from a model tier bean via a value expression (see Value Expressions), that is
displayed to the user. The user cannot directly modify the rendered value; it is for display purposes
only:

4.1.10.1. Component Type

The standard component type for UIOutput components is “jakarta.faces.Output”.

4.1. Standard User Interface Components

122 Jakarta Faces Final

4.1.10.2. Properties

UIOutput adds no new render-independent properties. See ValueHolder for information about
properties introduced by the implemented classes.

UIOutput specializes the behavior of render-independent properties inherited from the parent
component as follows:

• The default value of the family property must be set to “jakarta.faces.Output”.

• The default value of the rendererType property must be set to “jakarta.faces.Text”.

4.1.10.3. Methods

UIOutput adds no new processing methods. See ValueHolder for information about methods
introduced by the implemented interfaces.

4.1.10.4. Events

UIOutput does not originate any standard events. See ValueHolder for information about events
introduced by the implemented interfaces.

4.1.11. UIPanel

UIPanel (extends UIComponentBase) is a component that manages the layout of its child components.

4.1.11.1. Component Type

The standard component type for UIPanel components is “jakarta.faces.Panel”.

4.1.11.2. Properties

UIPanel adds no new render-independent properties.

UIPanel specializes the behavior of render-independent properties inherited from the parent
component as follows:

• The default value of the family property must be set to “jakarta.faces.Panel”.

• The default value of the rendererType property must be set to null.

4.1.11.3. Methods

UIPanel adds no new processing methods.

4.1.11.4. Events

UIPanel does not originate any standard events

4.1. Standard User Interface Components

Final Jakarta Faces 123

4.1.12. UIParameter

UIParameter (extends UIComponentBase) is a component that represents an optionally named
configuration parameter that affects the rendering of its parent component. UIParameter components
do not generally have rendering behavior of their own.

4.1.12.1. Component Type

The standard component type for UIParameter components is “jakarta.faces.Parameter”.

4.1.12.2. Properties

The following render-independent properties are added by the UIParameter component:

Name Access Type Description

name RW String The optional name for this parameter.

value RW Object The value for this parameter.

UIParameter specializes the behavior of render-independent properties inherited from the parent
component as follows:

• The default value of the family property must be set to “jakarta.faces.Parameter”.

• The default value of the rendererType property must be set to null.

4.1.12.3. Methods

UIParameter adds no new processing methods.

4.1.12.4. Events

UIParameter does not originate any standard events

4.1.13. UISelectBoolean

UISelectBoolean (extends UIInput) is a component that represents a single boolean (true or false) value.
It is most commonly rendered as a checkbox.

4.1.13.1. Component Type

The standard component type for UISelectBoolean components is “jakarta.faces.SelectBoolean”.

4.1.13.2. Properties

The following render-independent properties are added by the UISelectBoolean component:

4.1. Standard User Interface Components

124 Jakarta Faces Final

Name Access Type Description

selected RW boolean The selected state of this component. This
property is a typesafe alias for the value property,
so that the actual state to be used can be acquired
via a value expression.

UISelectBoolean specializes the behavior of render-independent properties inherited from the parent
component as follows:

• The default value of the family property must be set to “jakarta.faces.SelectBoolean”.

• The default value of the rendererType property must be set to “jakarta.faces.Checkbox”.

4.1.13.3. Methods

UISelectBoolean adds no new processing methods.

4.1.13.4. Events

UISelectBoolean inherits the ability to send ValueChangeEvent events from its parent UIInput
component.

4.1.14. UISelectItem

UISelectItem (extends UIComponentBase) is a component that may be nested inside a UISelectMany or
UISelectOne component, and represents exactly one SelectItem instance in the list of available options
for that parent component.

4.1.14.1. Component Type

The standard component type for UISelectItem components is “jakarta.faces.SelectItem”.

4.1.14.2. Properties

The following render-independent properties are added by the UISelectItem component:

Name Access Type Description

itemDescription RW String The optional description of this available selection
item. This may be useful for tools.

itemDisabled RW boolean Flag indicating that any synthesized SelectItem
object should have its disabled property set to
true.

itemLabel RW String The localized label that will be presented to the
user for this selection item.

4.1. Standard User Interface Components

Final Jakarta Faces 125

Name Access Type Description

itemValue RW Object The server-side value of this item, of the same
basic data type as the parent component’s value. If
the parent component type’s value is a value
expression that points at a primitive, this value
must be of the corresponding wrapper type.

value RW jakarta.faces.model
.SelectItem

The SelectItem instance associated with this
component.

UISelectItem specializes the behavior of render-independent properties inherited

• The default value of the family property must be set to “jakarta.faces.SelectItem”.

• The default value of the rendererType property must be set to null.

• If the value property is non-null, it must contain a SelectItem instance used to configure the
selection item specified by this component.

• If the value property is a value expression, it must point at a SelectItem instance used to configure
the selection item specified by this component.

• If the value property is null, and there is no corresponding value expression, the itemDescription,
itemDisabled, itemLabel and itemValue properties must be used to construct a new SelectItem
representing the selection item specified by this component.

4.1.14.3. Methods

UISelectItem adds no new processing methods.

4.1.14.4. Events

UISelectItem does not originate any standard events.

4.1.15. UISelectItems

UISelectItems (extends UIComponentBase) is a component that may be nested inside a UISelectMany or
UISelectOne component, and represents zero or more SelectItem instances for adding selection items to
the list of available options for that parent component.

4.1.15.1. Component Type

The standard component type for UISelectItems components is “jakarta.faces.SelectItems”.

4.1.15.2. Properties

The following render-independent properties are added by the UISelectItems component:

4.1. Standard User Interface Components

126 Jakarta Faces Final

Name Access Type Description

value RW See below The SelectItem instances associated with this
component.

UISelectItems specializes the behavior of render-independent properties inherited

• The default value of the family property must be set to “jakarta.faces.SelectItems”.

• The default value of the rendererType property must be set to null.

• If the value property (or the value returned by a value expression associated with the value
property) is non-null, it must contain a SelectItem bean, an array of SelectItem beans, a Collection of
SelectItem beans, or a Map, where each map entry is used to construct a SelectItem bean with the
key as the label property of the bean, and the value as the value property of the bean (which must
be of the same basic type as the value of the parent component’s value).

4.1.15.3. Methods

UISelectItems adds no new processing methods.

4.1.15.4. Events

UISelectItems does not originate any standard events.

4.1.16. UISelectMany

UISelectMany (extends UIInput) is a component that represents one or more selections from a list of
available options. It is most commonly rendered as a combobox or a series of checkboxes.

4.1.16.1. Component Type

The standard component type for UISelectMany components is “jakarta.faces.SelectMany”.

4.1.16.2. Properties

The following render-independent properties are added by the UISelectMany component:

Name Access Type Description

selectedValues RW Object[] or array of
primitives

The selected item values of this component. This
property is a typesafe alias for the value property,
so that the actual state to be used can be acquired
via a value expression.

UISelectMany specializes the behavior of render-independent properties inherited from the parent
component as follows:

• The default value of the family property must be set to “jakarta.faces.SelectMany”.

4.1. Standard User Interface Components

Final Jakarta Faces 127

• The default value of the rendererType property must be set to “jakarta.faces.Listbox”.

• See the class Javadocs for UISelectMany for additional requirements related to implicit conversions
for the value property.

4.1.16.3. Methods

UISelectMany must provide a specialized validate() method which ensures that any decoded values are
valid options (from the nested UISelectItem and UISelectItems children).

4.1.16.4. Events

UISelectMany inherits the ability to send ValueChangeEvent events from its parent UIInput component.

4.1.17. UISelectOne

UISelectOne (extends UIInput) is a component that represents zero or one selection from a list of
available options. It is most commonly rendered as a combobox or a series of radio buttons.

4.1.17.1. Component Type

The standard component type for UISelectOne components is “jakarta.faces.SelectOne”.

4.1.17.2. Properties

UISelectOne adds no new render-independent properties.

UISelectOne specializes the behavior of render-independent properties inherited from the parent
component as follows:

• The default value of the family property must be set to “jakarta.faces.SelectOne”.

• The default value of the rendererType property must be set to “jakarta.faces.Menu”.

4.1.17.3. Methods

UISelectOne must provide a specialized validate() method which ensures that any decoded value is a
valid option (from the nested UISelectItem and UISelectItems children).

4.1.17.4. Events

UISelectOne inherits the ability to send ValueChangeEvent events from its parent UIInput component.

4.1.18. UIViewParameter

UIViewParameter (extends UIInput) is a component that allows the query parameters included in the
request by UIOutcomTarget renderers to participate in the lifecycle. Please see the javadocs for the
normative speficication of this component.Events.

4.1. Standard User Interface Components

128 Jakarta Faces Final

4.1.19. UIViewRoot

UIViewRoot (extends UIComponentBase;) represents the root of the component tree.

4.1.19.1. Component Type

The standard component type for UIViewRoot components is “jakarta.faces.ViewRoot”

4.1.19.2. Properties

The following render-independent properties are added by the UIViewRoot component:

Name Access Type Description

locale RW java.util.Locale The Locale to be used in localizing the response
for this view.

renderKitId RW String The id of the RenderKit used to render this page.

viewId RW String The view identifier for this view.

beforePhaseListene
r

RW MethodExpression MethodExpression that will be invoked before all
lifecycle phases except for Restore View.

afterPhaseListener RW MethodExpression MethodExpression that will be invoked after all
lifecycle phases except for Restore View.

viewMap RW java.util.Map The Map that acts as the interface to the data store
that is the "view scope".

For an existing view, the locale property may be modified only from the event handling portion of
Process Validations phase through Invoke Application phase, unless it is modified by an Apply Request
Values event handler for an ActionSource or EditableValueHolder component that has its immediate
property set to true (which therefore causes Process Validations, Update Model Values, and Invoke
Application phases to be skipped).

The viewMap property is lazily created the first time it is accessed, and it is destroyed when a different
UIViewRoot instance is installed from a call to FacesContext.setViewRoot(). After the Map is created a
PostConstructViewMapEvent must be published using UIViewRoot as the event source. Immediately
before the Map is destroyed, a PreDestroyViewMapEvent must be published using UIViewRoot as the
event source.

UIViewRoot specializes the behavior of render-independent properties inherited from the parent
component as follows:

• The default value of the family property must be set to “jakarta.faces.ViewRoot”.

• The default value of the rendererType property must be set to null.

4.1. Standard User Interface Components

Final Jakarta Faces 129

4.1.19.3. Methods

The following methods are used for adding UIComponent resources to a target area in the view, and
they are also used for retrieving UIComponent resources from a target area in the view.

public void addComponentResource(FacesContext context,
 UIComponent componentResource);

Add componentResource, that is assumed to represent a resource instance, to the current view. A
resource instance is rendered by a resource Renderer (such as ScriptRenderer, StylesheetRenderer) as
described in the Standard HTML RenderKit. This method will cause the resource to be rendered in the
“head” element of the view.

public void addComponentResource(FacesContext context,
 UIComponent componentResource, String target);

Add componentResource, that is assumed to represent a resource instance, to the current view at the
specified target location. The resource must be added using the algorithm outlined in this method’s
Javadocs.

public List<UIComponent> getComponentResources(String target);

Return a List of UIComponent instances residing under the facet identified by target. Each
UIComponent instance in the List represents a resource. The List must be formulated in accordance
with this method’s Javadocs.

UIViewRoot specializes the behavior of the UIComponent.queueEvent() method to maintain a list of
queued events that can be transmitted later. It also specializes the behavior of the processDecodes(),
processValidators(), processUpdates(), and processApplication() methods to broadcast queued events to
registered listeners. UIViewRoot clears any remaining events from the event queue in these methods if
responseComplete() or renderResponse() has been set on the FacesContext. Please see Apply Request
Values, Process Validations], Update Model Values and Invoke Application for more details.

4.1.19.4. Events

UIViewRoot is a source of PhaseEvent events, which are emitted when the instance moves through all
phases of the request processing lifecycle except Restore View. This phase cannot emit events from
UIViewRoot because the UIViewRoot instance isn’t created when this phase starts. See PhaseEvent and
PhaseListener for more details on the event and listener class.

4.1. Standard User Interface Components

130 Jakarta Faces Final

public void addPhaseListener(PhaseListener listener);
public void removePhaseListener(VPhaseListener listener);
public List<PhaseListener> getPhaseListeners();

UIViewRoot must listen for the top level PostAddToViewEvent event sent by the Restore View phase.
Refer to Restore View for more details about the publishing of this event. Upon receiving this event,
UIViewRoot must cause any “after” Restore View phase listeners to be called.

UIViewRoot is also the source for several kinds of system events. The system must publish a
PostAddToViewEvent, with the UIViewRoot as the source, during the Restore View phase, immediately
after the new UIViewRoot is set into the FacesContext for the request. The system must publish a
PreRenderView event, with UIViewRoot as the source, during the Render Response phase, immediately
before ViewHandler.renderView() is called.

4.1.19.5. Partial Processing

UIViewRoot adds special behavior to processDecodes, processValidators, processUpdates,
getRendersChildren and encodeChildren to facilitate partial processing - namely the ability to have one
or more components processed through the execute and/or render phases of the request processing
lifecycle. Refer to Partial View Traversal, Partial View Processing, Partial View Rendering for an
overview of partial processing. UIViewRoot must perform partial processing as outlined in the
Javadocs for the “processXXX” and “encodeXXX” methods if the current request is a partial request.

4.2. Standard UIComponent Model Beans
Several of the standard UIComponent subclasses described in the previous section reference JavaBean
components to represent the underlying model data that is rendered by those components. The
following subsections define the standard UIComponent model bean classes.

4.2.1. DataModel

DataModel is an abstract base class for creating wrappers around arbitrary data binding technologies.
It can be used to adapt a wide variety of data sources for use by Jakarta Faces components that want to
support access to an underlying data set that can be modelled as multiple rows. The data underlying a
DataModel instance is modelled as a collection of row objects that can be accessed randomly via a
zero-relative index

4.2.1.1. Properties

An instance of DataModel supports the following properties:

4.2. Standard UIComponent Model Beans

Final Jakarta Faces 131

Name Access Type Description

rowAvailable RO boolean Flag indicating whether the current rowIndex
value points at an actual row in the underlying
data.

rowCount RO int The number of rows of data objects represented
by this DataModel instance, or -1 if the number of
rows is unknown.

rowData RO Object An object representing the data for the currently
selected row. DataModel implementations must
return an object that be successfully processed as
the “base” parameter for the ELResolver in use by
this application. If the current rowIndex value is
-1, null is returned.

rowIndex RW int Zero-relative index of the currently selected row,
or -1 if no row is currently selected. When first
created, a DataModel instance must return -1 for
this property.

wrappedData RW Object Opaque property representing the data object
wrapped by this DataModel. Each individual
implementation will restrict the types of Object(s)
that it supports.

4.2.1.2. Methods

DataModel must provide an iterator() to iterate over the row data for this model.

4.2.1.3. Events

No events are generated for this component.

4.2.1.4. Concrete Implementations

The Jakarta Faces implementation must provide concrete implementations of DataModel (in the
jakarta.faces.model package) for the following data wrapping scenarios:

• ArrayDataModel —Wrap an array of Java objects.

• ListDataModel —Wrap a java.util.List of Java objects.

• ResultSetDataModel —Wrap an object of type java.sql.ResultSet (which therefore means that
javax.sql.RowSet instances are also supported).

• ScalarDataModel —Wrap a single Java object in what appears to be a one-row data set.

Each concrete DataModel implementation must extend the DataModel abstract base class, and must

4.2. Standard UIComponent Model Beans

132 Jakarta Faces Final

provide a constructor that accepts a single parameter of the object type being wrapped by that
implementation (in addition to a zero-args constructor). See the JavaDocs for specific implementation
requirements on DataModel defined methods, for each of the concrete implementation classes.

4.2.2. SelectItem

SelectItem is a utility class representing a single choice, from among those made available to the user,
for a UISelectMany or UISelectOne component. It is not itself a UIComponent subclass.

4.2.2.1. Properties

An instance of SelectItem supports the following properties:

Name Access Type Description

description RW String A description of this selection item, for use in
development tools.

disabled RW boolean Flag indicating that this option should be
rendered in a fashion that disables selection by
the user. Default value is false.

label RW String Label of this selection item that should be
rendered to the user.

value RW Object The server-side value of this item, of the same
basic data type as the parent component’s value. If
the parent component type’s value is a value
expression that points at a primitive, this value
must be of the corresponding wrapper type.

4.2.2.2. Methods

An instance of SelectItem supports no additional public processing methods.

4.2.2.3. Events

An instance of SelectItem supports no events.

4.2.3. SelectItemGroup

SelectItemGroup is a utility class extending SelectItem, that represents a group of subordinate
SelectItem instances that can be rendered as a “sub-menu” or “option group”. Renderers will typically
ignore the value property of this instance, but will use the label property to render a heading for the
sub-menu.

4.2. Standard UIComponent Model Beans

Final Jakarta Faces 133

4.2.3.1. Properties

An instance of SelectItemGroup supports the following additional properties:

Name Access Type Description

selectItems RW SelectItem[] Array of SelectItem instances representing the
subordinate selection items that are members of
the group represented by this SelectItemGroup
instance.

Note that, since SelectItemGroup is a subclass of SelectItem, SelectItemGroup instances can be included
in the selectItems property in order to create hierarchies of subordinate menus. However, some
rendering environments may limit the depth to which such nesting is supported; for example, HTML
Living Standard does not allow an <optgroup> to be nested inside another <optgroup> within a <select>
control.

4.2.3.2. Methods

An instance of SelectItemGroup supports no additional public processing methods.

4.2.3.3. Events

An instance of SelectItemGroup supports no events.

4.2. Standard UIComponent Model Beans

134 Jakarta Faces Final

Chapter 5. Expression Language Facility
In the descriptions of the standard user interface component model, it was noted that all attributes,
and nearly all properties can have a value expression associated with them (see ValueExpression
properties). In addition, many properties, such as action, actionListener, validator, and
valueChangeListener can be defined by a method expression pointing at a public method in some class
to be executed. This chapter describes the mechanisms and APIs that Jakarta Faces utilizes in order to
evaluate value expressions and method expressions.

Jakarta Faces relies on Jakarta Expression Language as described by version 4.0 of the Jakarta
Expression Language specification. Please consult that document for complete details about the
Expression Language.

This chapter will focus exclusively on how Jakarta Faces leverages and integrates with Jakarta
Expression Language. It does not describe how Jakarta Expression Language operates.

5.1. Value Expressions

5.1.1. Overview

To support binding of attribute and property of values to dynamically calculated results, the name of
the attribute or property can be associated with a value expression using the setValueExpression()
method. Whenever the dynamically calculated result of evaluating the expression is required, the
getValue() method of the ValueExpression is called, which returns the evaluated result. Such
expressions can be used, for example, to dynamically calculate a component value to be displayed:

<h:outputText value="#{customer.name}" />

which, when this page is rendered, will retrieve the bean stored under the “customer” key, then
acquire the name property from that bean and render it.

Besides the component value itself, value expressions can be used to dynamically compute attributes
and properties. The following example checks a boolean property manager on the current user bean
(presumably representing the logged-in user) to determine whether the salary property of an
employee should be displayed or not:

<h:outputText rendered="#{user.manager}" value="#{employee.salary}" />

which sets the rendered property of the component to false if the user is not a manager, and therefore
causes this component to render nothing.

The Jakarta Expression Language has a powerful set of coercion rules that automatically convert the
type of the value to the appropriate type. These rules occasionally rely on the JavaBeans PropertyEditor

5.1. Value Expressions

Final Jakarta Faces 135

facility to perform this conversion. Note that this conversion is entirely separate from normal Jakarta
Faces Conversion.

Value expressions can also be used to set a value from the user into the item obtained by evaluating
the expression. For example:

<h:inputText value="#{employee.number}" />

When the page is rendered, the expression is evaluated as an r-value and the result is displayed as the
default value in the text field. When the page is submitted, the expression is evaluated as an l-value,
and the value entered by the user (subject to conversion and validation as usual) is pushed into the
expression.

5.1.2. Value Expression Syntax and Semantics

Please see Section 1.2 of the Jakarta Expression Language Specification, Version 4.0 or higher for the
complete specification of ValueExpression syntax and semantics.

5.2. MethodExpressions
Method expressions are a very similar to value expressions, but rather than supporting the dynamic
retrieval and setting of properties, method expressions support the invocation (i.e. execution) of an
arbitrary public method of an arbitrary object, passing a specified set of parameters, and returning the
result from the called method (if any). They may be used in any phase of the request processing
lifecycle; the standard Jakarta Faces components and framework employ them (encapsulated in a
MethodExpression object) at the following times:

• During Apply Request Values or Invoke Application phase (depending upon the state of the
immediate property), components that implement the ActionSource2 behavioral interface (see
ActionSource2) utilize MethodExpressions as follows:

◦ If the actionExpression property is specified, it must be a MethodExpression expression that
identifies an Application Action method (see Application Actions) that takes no parameters and
returns a String.

◦ It’s possible to have a method expression act as an ActionListener by using the classs
MethodExpressionActionListener to wrap a method expression and calling the
addActionListener() method on the ActionSource. The method expression wrapped inside the
MethodExpressionActionListener must identify a public method that accepts an ActionEvent (see
Event Classes) instance, and has a return type of void. The called method has exactly the same
responsibilities as the processAction() method of an ActionListener instance (see Listener
Classes) that was built in to a separate Java class.

• During the Apply Request Values or Process Validations phase (depending upon the state of the
immediate property), components that implement EditableValueHolder (such as UIInput and its
subclasses) components (see EditableValueHolder) utilize method expressions as follows:

5.2. MethodExpressions

136 Jakarta Faces Final

◦ The user can use the MethodExpressionValidator class to wrap a method expression that
identifies a public method that accepts a FacesContext instance and a UIComponent instance,
and an Object containing the value to be validated, and has a return type of void. This
MethodExpressionValidator instance can then be added as a normal Validator using the
EditableValueHolder.addValidator() method. The called method has exactly the same
responsibilities as the validate() method of a Validator instance (see Validator Classes) that was
built in to a separate Java class.

◦ The user can use the MethodExpressionValueChangeListener class to wrap a method expression
that identifies a public method that accepts a ValueChangeEvent (see Event Classes) instance,
and has a return type of void. This MethodExpressionValueChangeListener instance can then be
added as a normal ValueChangeListener using EditableValueHolder.addValueChangeListener().
The called method has exactly the same responsibilities as the processValueChange() method of
a ValueChangeListener instance (see Listener Classes) that was built in to a separate Java class.

5.2.1. MethodExpression Syntax and Semantics

The exact syntax and semantics of MethodExpression are the domain of the Jakarta Expression
Language. Please see Section 1.2.1.2 of the Jakarta Expression Language Specification, Version 4.0 or
higher.

5.2.2. Jakarta Faces Managed Classes and Jakarta EE Annotations

The following Jakarta Faces artifacts must be injectable.

Jakarta Faces Artifacts Eligible for Injection

• jakarta.faces.application.ApplicationFactory

• jakarta.faces.application.NavigationHandler

• jakarta.faces.application.ResourceHandler

• jakarta.faces.application.StateManager

• jakarta.faces.component.visit.VisitContextFactory

• jakarta.faces.context.ExceptionHandlerFactory

• jakarta.faces.context.ExternalContextFactory

• jakarta.faces.context.FacesContextFactory

• jakarta.faces.context.PartialViewContextFactory

• jakarta.faces.event.ActionListener

• jakarta.faces.event.SystemEventListener

• jakarta.faces.lifecycle.ClientWindowFactory

• jakarta.faces.lifecycle.LifecycleFactory

• jakarta.faces.event.PhaseListener

5.2. MethodExpressions

Final Jakarta Faces 137

• jakarta.faces.render.RenderKitFactory

• jakarta.faces.view.ViewDeclarationLanguageFactory

• jakarta.faces.view.facelets.FaceletCacheFactory

• jakarta.faces.view.facelets.TagHandlerDelegateFactory

Please consult the Jakarta EE Specification for complete details of this feature. Here is a summary of
the Jakarta EE annotations one may use in a artifact from the preceding table.

• @jakarta.inject.Inject

• @jakarta.inject.Named

• @jakarta.inject.Qualifier

• @jakarta.inject.Scope

• @jakarta.inject.Singleton

• @jakarta.enterprise.context.ApplicationScoped

• @jakarta.enterprise.context.ConversationScoped

• @jakarta.enterprise.context.Dependent

• @jakarta.enterprise.context.RequestScoped

• @jakarta.enterprise.context.SessionScoped

• @jakarta.annotation.Resource

• @jakarta.annotation.Resources

• @jakarta.ejb.EJB

• @jakarta.ejb.EJBs

• @jakarta.xml.ws.WebServiceRef

• @jakarta.xml.ws.WebServiceRefs

• @jakarta.persistence.PersistenceContext

• @jakarta.persistence.PersistenceContexts

• @jakarta.persistence.PersistenceUnit

• @jakarta.persistence.PersistenceUnits

5.3. How Faces Leverages the Expression Language
This section is non-normative and covers the major players in the Jakarta Expression Language and
how they relate to Jakarta Faces. The number one goal in this version of the Jakarta Faces specification
is to export the concepts behind the Jakarta Faces EL into the Jakarta Expression Language, and then
rely on those facilities to get the work done. Readers interested in how to implement the Jakarta
Expression Language itself must consult the Jakarta Expression Language Spec document.

5.3. How Faces Leverages the Expression Language

138 Jakarta Faces Final

5.3.1. ELContext

The ELContext is a handy little “holder” object that gets passed all around the Jakarta Expression
Language API. It has two purposes.

• To allow technologies that use the Jakarta Expression Language, such as Jakarta Faces, Jakarta
Server Pages and Jakarta Tags, to store any context information specific to that technology so it can
be leveraged during expression evaluation. For example the expression “#{view.viewId}” is specific
to Jakarta Faces. It means, “find the UIViewRoot instance for the current view, and return its
viewId”. The Jakarta Expression Language doesn’t know about the “view” implicit object or what a
UIViewRoot is, but Jakarta Faces does. The Jakarta Expression Language has plugin points that will
get called to resolve “view”, but to do so, Jakarta Faces needs access to the FacesContext from within
the callstack of Expression Language evaluation. Therefore, the ELContext comes to the rescue,
having been populated with the FacesContext earlier in the request processing lifecycle.

• To allow the pluggable resolver to tell the Jakarta Expression Language that it did, in fact, resolve a
property and that further resolvers must not be consulted. This is done by setting the
“propertyResolved” property to true.

The complete specification for ELResolver may be found in Chapter 2 of the Jakarta Expression
Language Specification, Version 4.0.

5.3.1.1. Lifetime, Ownership and Cardinality

An ELContext instance is created the first time getELContext() is called on the FacesContext for this
request. Please see ELContext for details. Its lifetime ends the same time the FacesContext’s lifetime
ends. The FacesContext maintains the owning reference to the ELContext. There is at most one
ELContext per FacesContext.

5.3.1.2. Properties

Name Access Type Description

ELResolver RO jakarta.el.ELResolv
er

Return the ELResolver instance described in Faces
ELResolver for Facelets and Programmatic Access

propertyResolved RW boolean Set by an ELResolver implementation if it
successfully resolved a property. See ELResolver
for how this property is used.

5.3.1.3. Methods

Here is a subset of the methods that are relevant to Jakarta Faces.

public Object getContext(Class key);
void putContext(Class key, Object contextInstance);
...

5.3. How Faces Leverages the Expression Language

Final Jakarta Faces 139

As mentioned in ELContext, the putContext() method is called, passing the current FacesContext
instance the first time the system asks the FacesContext for its ELContext. The getContext() method will
be called by any ELResolver instances that need to access the FacesContext to perform their resolution.

5.3.1.4. Events

The creation of an ELContext instance precipitates the emission of an ELContextEvent from the
FacesContext that created it. Please see ELContext for details.

5.3.2. ELResolver

Faces 1.1 used the VariableResolver and PropertyResolver classes as the workhorses of expression
evaluation. The Unified API has the ELResolver instead. The ELResolver concept is the heart of the
Jakarta Expression Language. When an expression is evaluated, the ELResolver is responsible for
resolving each segment in the expression. For example, in rendering the component behind the tag
“<h:outputText value="#{user.address.street}" />” the ELResolver is called three times. Once to resolve
“user”, again to resolve the “address” property of user, and finally, to resolve the “street” property of
“address”. The complete specification for ELResolver may be found in Chapter 2 of the Jakarta
Expression Language Specification, Version 4.0 or higher.

As described in more detail in ELResolver Instance Provided by Faces, Faces must provide an
implementation of ELResolver. During the course of evaluation of an expression, a variety of sources
must be considered to help resolve each segment of the expression. These sources are linked in a
chain-like fashion. Each link in the chain has the opportunity to resolve the current segment. If it does
so, it must set the “propertyResolved” property on the ELContext, to true. If not, it must not modify the
value of the “propertyResolved” property. If the “propertyResolved” property is not set to true the return
value from the ELResolver method is ignored by the system.

5.3.2.1. Lifetime, Ownership, and Cardinality

ELResolver instances have application lifetime and scope. The CDI container maintains one top level
ELResolver (into which a Faces specific ELResolver is added) accessible from
BeanManager.getELResolver(). This ELResolver instance is also used from the Jakarta Faces VDL. Faces
maintains one ELResolver accessible from FacesContext.getELContext().getELResolver() and
Application.getELResolver().

5.3.2.2. Properties

ELResolver has no proper JavaBeans properties

5.3.2.3. Methods

Here is a subset of the methods that are relevant to Faces.

5.3. How Faces Leverages the Expression Language

140 Jakarta Faces Final

public Object getValue(ELContext context, Object base, Object property);
void setValue(ELContext context,
 Object base, Object property, Object value);
...

getValue() looks at the argument base and tries to return the value of the property named by the
argument property. For example, if base is a JavaBean, property would be the name of the JavaBeans
property, and the resolver would end up calling the getter for that property.

setValue() looks at the argument base and tries to set the argument value into the property named by
the argument property. For example, if base is a JavaBean, property would be the name of the
JavaBeans property, and the resolver would end up calling the setter for that property.

There are other methods, such as isReadOnly() that are beyond the scope of this document, but
described completely in the Jakarta Expression Language Specification.

5.3.2.4. Events

ELResolver precipitates no events.

5.3.3. ExpressionFactory

The Jakarta Expression Language owns the ExpressionFactory class. It is a factory for ValueExpression
and MethodExpression instances.

5.3.3.1. Lifetime, Ownership, and Cardinality

ExpressionFactory instances are application scoped. The Application object maintains the
ExpressionFactory instance used by Faces (See Acquiring ExpressionFactory Instance). The ELManager
object maintains the ExpressionFactory used by the Jakarta Expression Language (and therefore by the
Jakarta Faces VDL). It is permissible for both of these access methods to yield the same java object
instance.

5.3.3.2. Properties

ExpressionFactory has no properties.

5.3.3.3. Methods

public MethodExpression createMethodExpression(ELContext context,
 String expression, FunctionMapper fnMapper, Class[] paramTypes);
public ValueExpression createValueExpression(ELContext context,
 String expression, Class expectedType, FunctionMapper fnMapper);

These methods take the human readable expression string, such as "#{user.address.street}" and return

5.3. How Faces Leverages the Expression Language

Final Jakarta Faces 141

an object oriented representation of the expression. Which method one calls depends on what kind of
expression you need. The Faces Application class has convenience methods specific to Faces needs for
these concepts, please see Programmatically Evaluating Expressions .

5.3.3.4. Events

ExpressionFactory precipitates no events.

5.4. ELResolver Instance Provided by Faces
This section provides details on what an implementation of the Jakarta Faces specification must do to
support the Jakarta Expression Language for usage in a Jakarta Faces application.

ELResolver mentions that a Faces implementation must provide an implementation of ELResolver. This
ELResolver, let’s call it the Faces ELResolver for Facelets and Programmatic Access, is used by Facelets
markup pages, and is returned from FacesContext.getELContext().getELResolver() and
Application.getELResolver(), and is used to resolve expressions that appear programmatically. See the
javadocs for jakarta.el.ELResolver for the specification and method semantics for each method in
ELResolver. The remainder of this section lists the implementation requirements for this resolver.

5.4.1. ELResolvers from application configuration resources

The <el-resolver> element in the application configuration resources will contain the fully qualified
classname to a class with a public no-arg constructor that implements jakarta.el.ELResolver. These are
added to the Faces ELResolver for Facelets and Programmatic Access in the order in which they occur in
the application configuration resources.

5.4.2. ELResolvers from Application.addELResolver()

Any such resolvers are considered at this point in the Faces ELResolver for Facelets and Programmatic
Access in the order in which they were added.

5.4.3. Faces ELResolver for Facelets and Programmatic Access

This section documents the requirements for the second ELResolver mentioned in ELResolver Instances
Provided by Faces, the one that is used for Facelets and for programmatic expression evaluation from
Faces java code.

The implementation for the ELResolver for Programmatic Access is described as a set of ELResolvers
inside of a CompositeELResolver instance, but any implementation strategy is permissible as long as
the semantics are preserved. .

This diagram shows the set of ELResolver instances that must be added to the ELResolver for
Programmatic Access. This instance must be returned from Application.getELResolver() and
FacesContext.getELContext().getELResolver(). It also shows the order in which they must be added.

5.4. ELResolver Instance Provided by Faces

142 Jakarta Faces Final

ELResolver for Facelets and Programmatic Access

The semantics of each ELResolver are given below, either in tables that describe what must be done to
implement each particular method on ELResolver, in prose when such a table is inappropriate, or as a
reference to another section where the semantics are exactly the same.

5.4.3.1. faces.CompositeComponentAttributesELResolver

This ELResolver makes it so expressions that refer to the attributes of a composite component get
correctly evaluated. For example, the expression #{cc.attrs.usernameLabel} says, “find the current
composite component, call its getAttributes() method, within the returned Map look up the value under
the key “usernameLable”. If the value is a ValueExpression, call getValue() on it and the result is
returned as the evaluation of the expression. Otherwise, if the value is not a ValueExpression the value
itself is returned as the evaluation of the expression.”

Table 2. Composite Component Attributes ELResolver

5.4. ELResolver Instance Provided by Faces

Final Jakarta Faces 143

ELResolver method implementation requirements

getValue If base is non-null, is an instance of UIComponent, is a composite
component, and property is non-null and is equal to the string “attrs”,
return a Map implementation with the following characteristics.

Wrap the attributes map of the composite component and delegate all calls
to the composite component attributes map with the following exceptions:

get(), put(), and containsKey() are required to be supported.

get(): if the result of calling get() on the component attributes map is null,
and a default value was declared in the composite component metadata, the
value will be a ValueExpression. Evaluate it and return it. Otherwise, simply
return the value from the component attributes map.

put(): Call getValueExpression() on the component. If this returns non-null,
call setValue() on it, passing the value argument as the last argument.
Otherwise, simply call through to put on the component attributes map.

containsKey(): If the attributes map contains the key, return true.
Otherwise, if a default value has been declared for the attribute, return
true. Otherwise, return false.

The Map implementation must also implement the interface

jakarta.faces.el.CompositeComponentExpressionHolder.

Otherwise, take no action.

getType If the base argument to getType() is not an instance of the composite
component attributes map or the property argument to getType() is not an
instance of java.lang.String, return null. Otherwise, check the top level
component’s ValueExpression collection for an expression under the name
given by the property argument to getType(). If the expression exists, call
getType() on the expression. If the property argument to getType() is not
empty, search the composite component’s metadata for a declared type on a
<cc:attribute> whose name matches the property argument to getType(). If
the expression and the metadata both yield results, the metadata takes
precedence ONLY if it provides a narrower result than does the expression,
i.e. expression type is assignable from metadata type. If the metadata result
does take precedence, call ELContext.setPropertyResolved(true). Otherwise,
return whichever result was available, or null.

setValue Take no action.

isReadOnly Take no action and return true.

5.4. ELResolver Instance Provided by Faces

144 Jakarta Faces Final

ELResolver method implementation requirements

getFeatureDescriptors Take no action.

getCommonPropertyTyp
e

Return String.class

5.4.3.2. el.CompositeELResolver

As indicated in ELResolver for Facelets and Programmatic Access, following the
faces.CompositeComponentAttributesELResolver, the semantics obtained by adding a
CompositeELResolver must be inserted here. This ELResolver contains the following ELResolvers,
described in the referenced sections.

1. ELResolvers from application configuration resources

2. ELResolvers from Application.addELResolver()

5.4.3.3. faces.ResourceELResolver

This Resource ELResolver for Facelets and Programmatic Access resolver is a means by which
Resource instances are encoded into a faces request such that a subsequent faces resource request
from the browser can be satisfied using the ResourceHandler as described in Resource Handling.

Table 3. ResourceELResolver

5.4. ELResolver Instance Provided by Faces

Final Jakarta Faces 145

ELResorver method implementation requirements

getValue If base and property are not null, and base is an instance of
ResourceHandler (as will be the case with an expression such as
#{resource['jakarta.faces:faces.js']}, perform the following. (Note: This is
possible due to the ImplicitObjectELResolver returning the
ResourceHandler, see Implicit Objects for Facelets and Programmatic
Access)

• If property does not contain a colon character ‘:’, treat property as the
resourceName and pass property to
ResourceHandler.createResource(resourceName).

• If property contains a single colon character ‘:’, treat the content before
the ‘:’ as the libraryName and the content after the ‘:’ as the
resourceName and pass both to
ResourceHandler.createResource(resourceName, libraryName). If the
value of libraryName is the literal string “this” (without the quotes),
discover the library name of the current resource (or the contract name
of the current resource, the two are mutually exclusive) and replace
“this” with that library name (or contract name) before calling
ResourceHandler.createResource(). In the case of resource library
contracts, libraryName will actually be the contract name.

• If property contains more than one colon character ‘:’, throw a localized
ELException, including property.

If one of the above steps results in the creation of a non-null Resource
instance, call ELContext.setPropertyResolved(true). Call the
getRequestPath() method on the Resource instance, pass the result through
ExternalContext.encodeResourceUrl() and return the result.

getType Return null. This resolver only performs lookups.

setValue Take no action.

isReadOnly Return false in all cases.

getFeatureDescriptors Return null.

getCommonPropertyTyp
e

If base is non-null, return null.

If base is null, return Object.class.

5.4.3.4. el.ResourceBundleELResolver

This entry in the chain must have the semantics the same as the class
jakarta.el.ResourceBundleELResolver. The default implementation just includes an instance of this
resolver in the chain.

5.4. ELResolver Instance Provided by Faces

146 Jakarta Faces Final

5.4.3.5. faces.ResourceBundleELResolver

This Resource Bundle ELResolver for Facelets and Programmatic Access is the means by which
resource bundles defined in the application configuration resources are called into play during
Expression Language resolution.

Table 4. ResourceBundleELResolver

ELResorver method implementation requirements

getValue If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

If base is null and property is a String equal to the value of the <var>
element of one of the <resource-bundle>'s in the application configuration
resources, use the Locale of the current UIViewRoot and the base-name of
the resource-bundle to load the ResourceBundle. Call
setPropertyResolved(true). Return the ResourceBundle. Otherwise, return
null.

getType If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

If base is null and property is a String equal to the value of the <var>
element of one of the <resource-bundle>'s in the application configuration
resources, call setPropertyResolved(true) and return ResourceBundle.class.

setValue If base is null and property is null, throw PropertyNotFoundException.

If base is null and property is a String equal to the value of the <var>
element of one of the <resource-bundle>'s in the application configuration
resources throw jakarta.el.PropertyNotWriteable, since ResourceBundles
are read-only.

isReadOnly If base is non-null, return null.

If base is false and property is null, throw PropertyNotFoundException.

If base is null and property is a String equal to the value of the <var>
element of one of the <resource-bundle>'s in the application configuration
resources, call setPropertyResolved(true) on the argument ELContext and
return true.

Otherwise return false;

5.4. ELResolver Instance Provided by Faces

Final Jakarta Faces 147

ELResorver method implementation requirements

getFeatureDescriptors If base is non-null, return null.

If base is null, return an Iterator containing java.beans.FeatureDescriptor
instances, one for each <resource-bundle> in the <application> element. It is
required that all of these FeatureDescriptor instances set Boolean.TRUE as
the value of the ELResolver.RESOLVABLE_AT_DESIGN_TIME attribute. The
name of the FeatureDescriptor must be the var element of the <resource-
bundle>. The displayName of the FeatureDescriptor must be the display-
name of the <resource-bundle>. ResourceBundle.class must be stored as the
value of the ELResolver.TYPE attribute. The shortDescription must be a
suitable description depending on the implementation. The expert and
hidden properties must be false. The preferred property must be true.

getCommonPropertyTyp
e

If base is non-null, return null.

If base is null, return string.Class.

5.4.3.6. Stream, StaticField, Map, List, Array, and Bean ELResolvers

These ELResolver instances are provided by the Jakarta Expression Language API and must be added
in the following order:

1. The return from ExpressionFactory.getStreamELResolver()

2. jakarta.el.StaticFieldELResolver

3. jakarta.el.MapELResolver

4. jakarta.el.ListELResolver

5. jakarta.el.ArrayELResolver

6. jakarta.el.BeanELResolver

These actual ELResolver instances must be added. It is not compliant to simply add other resolvers that
preserve these semantics.

5.4.3.7. faces.ScopedAttributeELResolver

This Scoped Attribute ELResolver for Facelets and Programmatic Access is responsible for doing the
scoped lookup that makes it possible for expressions to pick up anything stored in the request, session,
or application scopes by name.

Table 5. Scoped Attribute ELResolver

5.4. ELResolver Instance Provided by Faces

148 Jakarta Faces Final

ELResorver method implementation requirements

getValue If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

Use the argument property as the key in a call to
externalContext.getRequestMap().get(). If this returns non-null, call
setPropertyResolved(true) on the argument ELContext and return the value.

Use the argument property as the key in a call to
facesContext.getViewRoot().getViewMap().get() (accounting for the potential
for null returns safely). If this returns non-null, call
setPropertyResolved(true) on the argument ELContext and return the value.

Use the argument property as the key in a call to
externalContext.getSessionMap().get(). If this returns non-null, call
setPropertyResolved(true) on the argument ELContext and return the value.

Use the argument property as the key in a call to
externalContext.getApplicationMap().get(). If this returns non-null, call
setPropertyResolved(true) on the argument ELContext and return the value.

Otherwise call setPropertyResloved(true) and return null;

getType If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

Otherwise, setPropertyResolved(true) and return Object.class to indicate
that any type is permissable to pass to a call to setValue().

setValue If base is non-null, return null.

If base is null and property is null, throw PropertyNotFoundException.

Consult the Maps for the request, session, and application, in order, looking
for an entry under the key property. If found, replace that entry with
argument value. If not found, call
externalContext.getRequestMap().put(property, value).

Call setPropertyResolved(true) and return;

isReadOnly If base is false, setPropertyResolved(true) return false;

Otherwise, return false;

5.4. ELResolver Instance Provided by Faces

Final Jakarta Faces 149

ELResorver method implementation requirements

getFeatureDescriptors If base is non-null, return null.

If base is null, return an Iterator of java.beans.FeatureDescriptor instances
for all attributes in all scopes. The FeatureDescriptor name and shortName
is the name of the scoped attribute. The actual runtime type of the attribute
must be stored as the value of the ELResolver.TYPE attribute. Boolean.TRUE
must be set as the value of the ELResolver.RESOLVABLE_AT_DESIGN_TIME
attribute. The shortDescription must be a suitable description depending on
the implementation. The expert and hidden properties must be false. The
preferred property must be true.

getCommonPropertyTyp
e

If base is non-null, return null.

If base is null return String.class.

5.5. Current Expression Evaluation APIs

5.5.1. ELResolver

Please see ELResolver for more details.

5.5.2. ValueExpression

It is the main object oriented abstraction for an Expression Language expression that results in a value
either being retrieved or set. Please see Chapter 2 of the Jakarta Expression Language Specification,
Version 4.0 or higher.

5.5.3. MethodExpression

It is the main object oriented abstraction for an Expression Language expression that results in a
method being invoked. Please see Chapter 2 of the Jakarta Expression Language Specification, Version
4.0 or higher.

5.5.4. Expression Evaluation Exceptions

Four exception classes are defined to report errors related to the evaluation of value exceptions:

• jakarta.el.ELException (which extends java.lang.Exception)—used to report a problem evaluating a
value exception dynamically.

• MethodNotFoundException (which extends jakarta.el.ELException)—used to report that a requested
public method does not exist in the context of evaluation of a method expression.

• jakarta.el.PropertyNotFoundException (which extends jakarta.el.ELException)—used to report that a

5.5. Current Expression Evaluation APIs

150 Jakarta Faces Final

requested property does not exist in the context of evaluation of a value expression.

• jakarta.el.PropertyNotWriteableException (which extends jakarta.el.ELException)—used to indicate
that the requested property could not be written to when evaluating the expression.

5.6. CDI Integration
Jakarta Faces must run in a container that supports CDI version 3.0 or higher. This requirement allows
CDI to provide all the functionality of the managed bean facility in a better integrated way with the
rest of the Jakarta EE platform. Delegating these features to CDI allows them to evolve independently
of Jakarta Faces. The remainder of this section specifies some details of CDI integration pertinent to
Jakarta Faces.

5.6.1. Jakarta Faces Objects Valid for @Inject Injection

It must be possible to inject the following Jakarta Faces objects into other objects using @Inject.

Maps Returned by Various Jakarta Faces Accessors

The annotations in package jakarta.faces.annotation are used to cause @Inject injection of the
corresponding Map into a field. Generics may be used.

Jakarta Faces Objects

It must be possible to @Inject the following Jakarta Faces and Jakarta EE objects into CDI beans.

• jakarta.faces.application.ResourceHandler

• jakarta.faces.context.ExternalContext

• jakarta.faces.context.FacesContext

• jakarta.faces.context.Flash

• jakarta.servlet.http.HttpSession

Support for Injection into Jakarta Faces Managed Objects

It must be possible to use @Inject when specifying the following kinds of Jakarta Faces managed
objects.

• Validators declared with @jakarta.faces.validator.FacesValidator(managed=true)

• Converters declared with @jakarta.faces.convert.FacesConverter(managed=true)

• FacesBehaviors declared with @jakarta.faces.component.behavior.FacesBehavior(managed=true)

5.6.2. Expression Language Resolution

The Implicit Objects for Facelets and Programmatic must be resolved using CDI

5.6. CDI Integration

Final Jakarta Faces 151

5.6.2.1. Implicit Objects for Facelets and Programmatic Access

The following Implicit Objects for Facelets and Programmatic Access must be resolved using CDI.

Table 6. Implicit Objects for Programmatic Access

implicitObject source scope

facesContext FacesContext.getCurrentInstance() request

externalContext facesContext.getExternalContext() request

application externalContext.getContext() application

applicationScope externalContext.getApplicationMap() application

cc UIComponent.getCurrentCompositeComponent(facesContext) dependent

cookie externalContext.getRequestCookieMap() request

component UIComponent.getCurrentComponent(facesContext) dependent

flash externalContext.getFlash() request

flowScope facesContext.getApplication().getFlowHandler().getCurrentFlowSc
ope()

flow

header externalContext.getRequestHeaderMap() request

headerValues externalContext.getRequestHeaderValuesMap() request

initParam externalContext.getInitParameterMap() application

param externalContext.getRequestParameterMap() request

paramValues externalContext.getRequestParameterValuesMap() request

request externalContext.getRequest() request

requestScope externalContext.getRequestMap() request

resource facesContext.getApplication().getResourceHandler() request

session externalContext.getSession() session

sessionScope externalContext.getSessionMap() session

view facesContext.getViewRoot() request

viewScope facesContext.getViewRoot().getViewMap() request

5.6. CDI Integration

152 Jakarta Faces Final

Chapter 6. Per-Request State Information
During request processing for a Jakarta Faces page, a context object is used to represent request-
specific information, as well as provide access to services for the application. This chapter describes
the classes which encapsulate this contextual information.

6.1. FacesContext
Jakarta Faces defines the jakarta.faces.context.FacesContext abstract base class for representing all of
the contextual information associated with processing an incoming request, and creating the
corresponding response. A FacesContext instance is created by the Jakarta Faces implementation, prior
to beginning the request processing lifecycle, by a call to the getFacesContext method of
FacesContextFactory, as described in FacesContextFactory. When the request processing lifecycle has
been completed, the Jakarta Faces implementation will call the release method, which gives Jakarta
Faces implementations the opportunity to release any acquired resources, as well as to pool and
recycle FacesContext instances rather than creating new ones for each request.

6.1.1. Application

public Application getApplication();

The Jakarta Faces implementation must ensure that the Application instance for the current web
application is available via this method, as a convenient alternative to lookup via an
ApplicationFactory.

6.1.2. Attributes

public Map<Object,Object> getAttributes();

Return a mutable Map representing the attributes associated wth this FacesContext instance. This Map
is useful to store attributes that you want to go out of scope when the Faces lifecycle for the current
request ends, which is not always the same as the request ending, especially in the case of Servlet
filters that are invoked after the Faces lifecycle for this request completes. Accessing this Map does not
cause any events to fire, as is the case with the other maps: for request, session, and application scope.

6.1.3. ELContext

public ELContext getELContext();

Return the ELContext instance for this FacesContext instance. This ELContext instance has the same
lifetime and scope as the FacesContext instance with which it is associated, and may be created lazily

6.1. FacesContext

Final Jakarta Faces 153

the first time this method is called for a given FacesContext instance. Upon creation of the ELContext
instance, the implementation must take the following action:

• Call the ELContext.putContext(java.lang.Class, java.lang.Object) method on the instance, passing in
FacesContext.class and the this reference for the FacesContext instance itself.

• If the Collection returned by jakarta.faces.Application.getELContextListeners() is non-empty, create
an instance of ELContextEvent and pass it to each ELContextListener instance in the Collection by
calling the ELContextListener.contextCreated(jakarta.el.ELContextEvent) method.

6.1.4. ExternalContext

It is sometimes necessary to interact with APIs provided by the containing environment in which the
Jakarta Faces application is running. In most cases this is the servlet API, but it is also possible for a
Jakarta Faces application to run inside of a portlet. Jakarta Faces provides the ExternalContext abstract
class for this purpose. This class must be implemented along with the FacesContext class, and must be
accessible via the getExternalContext method in FacesContext.

public ExternalContext getExternalContext();

The default implementation must return a valid value when this method is called during startup time.
See the javadocs for this method for the complete specification.

The ExternalContext instance provides immediate access to all of the components defined by the
containing environment (servlet or portlet) within which a Jakarta Faces-based web application is
deployed. The following table lists the container objects available from ExternalContext. Note that the
Access column refers to whether the returned object is mutable. None of the properties may be set
through ExternalContext. itself.

Name Access Type Description

applicationMap RW java.util.Map The application context attributes for this
application.

authType RO String The method used to authenticate the currently
logged on user (if any).

context RW Object The application context object for this application.

initParameterMap RO java.util.Map The context initialization parameters for this
application

remoteUser RO String The login name of the currently logged in user (if
any).

request RW Object The request object for this request.

requestContextPath RO String The context path for this application.

requestCookieMap RO java.util.Map The cookies included with this request.

6.1. FacesContext

154 Jakarta Faces Final

Name Access Type Description

requestHeaderMap RO java.util.Map The HTTP headers included with this request
(value is a String).

requestHeaderValu
esMap

RO java.util.Map .The HTTP headers included with this request
(value is a String array).

requestLocale RW java.util.Locale The preferred Locale for this request.

requestLocales RW java.util.Iterator The preferred Locales for this request, in
descending order of preference.

requestMap RW java.util.Map The request scope attributes for this request.

requestParameterM
ap

RO java.util.Map The request parameters included in this request
(value is a String).

requestParameterN
ames

RO Iterator The set of request parameter names included in
this request.

requestParameterV
aluesMap

RO java.util.Map The request parameters included in this request
(value is a String array).

requestPathInfo RO String The extra path information from the request URI
for this request.

requestServletPath RO String The servlet path information from the request URI
for this request.

response RW Object The response object for the current request.

sessionMap RW java.util.Map The session scope attributes for this request [1].

userPrincipal RO java.security.Princi
pal

The Principal object containing the name of the
currently logged on user (if any).

See the JavaDocs for the normative specification.

6.1.4.1. Flash

The Flash provides a way to pass temporary objects between the user views generated by the faces
lifecycle. Anything one places in the flash will be exposed to the next view encountered by the same
user session and then cleared out..

Name Access Type Description

flash R Flash See the javadocs for the complete specification.

6.1.5. ViewRoot

6.1. FacesContext

Final Jakarta Faces 155

public UIViewRoot getViewRoot();
public void setViewRoot(UIViewRoot root);

During the Restore View phase of the request processing lifecycle, the state management subsystem of
the Jakarta Faces implementation will identify the component tree (if any) to be used during the
inbound processing phases of the lifecycle, and call setViewRoot() to establish it.

6.1.6. Message Queue

public void addMessage(String clientId, FacesMessage message);

During the Apply Request Values, Process Validations, Update Model Values, and Invoke Application
phases of the request processing lifecycle, messages can be queued to either the component tree as a
whole (if clientId is null), or related to a specific component based on its client identifier.

public Interator<String> getClientIdsWithMessages();
public Severity getMaximumSeverity();
public Iterator<FacesMessage> getMessages(String clientId);
public Iterator<FacesMessage> getMessages();

The getClientIdsWithMessages() method must return an Iterator over the client identifiers for which at
least one Message has been queued. This method must be implemented so the clientIds are returned in
the order of calls to addMessage(). The getMaximumSeverity() method returns the highest severity level
on any Message that has been queued, regardless of whether or not the message is associated with a
specific client identifier or not. The getMessages(String) method returns an Iterator over queued
Messages, either those associated with the specified client identifier, or those associated with no client
identifier if the parameter is null. The getMessages() method returns an Iterator over all queued
Messages, whether or not they are associated with a particular client identifier. Both of the
getMessage() variants must be implemented such that the messages are returned in the order in which
they were added via calls to addMessage().

For more information about the Message class, see FacesMessage.

6.1.7. RenderKit

public RenderKit getRenderKit();

Return the RenderKit associated with the render kit identifier in the current UIViewRoot (if any).

6.1. FacesContext

156 Jakarta Faces Final

6.1.8. ResponseStream and ResponseWriter

public ResponseStream getResponseStream();
public void setResponseStream(ResponseStream responseStream);
public ResponseWriter getResponseWriter();
public void setResponseWriter(ResponseWriter responseWriter);
public void enableResponseWriting(boolean enable);

Jakarta Faces supports output that is generated as either a byte stream or a character stream.
UIComponents or Renderers that wish to create output in a binary format should call
getResponseStream() to acquire a stream capable of binary output. Correspondingly, UIComponents or
Renderers that wish to create output in a character format should call getResponseWriter() to acquire a
writer capable of character output.

Due to restrictions of the underlying servlet APIs, either binary or character output can be utilized for
a particular response—they may not be mixed.

Please see ViewHandler to learn when setResponseWriter() and setResponseStream() are called.

The enableResponseWriting method is useful to enable or disable the writing of content to the current
ResponseWriter instance in this FacesContext. If the enable argument is false, content should not be
written to the response if an attempt is made to use the current ResponseWriter.

6.1.9. Flow Control Methods

public void renderResponse();
public void responseComplete();
public boolean getRenderResponse();
public boolean getResponseComplete();

Normally, the phases of the request processing lifecycle are executed sequentially, as described in
Request Processing Lifecycle. However, it is possible for components, event listeners, and validators to
affect this flow by calling one of these methods.

The renderResponse() method signals the Jakarta Faces implementation that, at the end of the current
phase (in other words, after all of the processing and event handling normally performed for this
phase is completed), control should be transferred immediately to the Render Response phase,
bypassing any intervening phases that have not yet been performed. For example, an event listener for
a tree control that was designed to process user interface state changes (such as expanding or
contracting a node) on the server would typically call this method to cause the current page to be
redisplayed, rather than being processed by the application.

The responseComplete() method, on the other hand, signals the Jakarta Faces implementation that the
HTTP response for this request has been completed by some means other than rendering the

6.1. FacesContext

Final Jakarta Faces 157

component tree, and that the request processing lifecycle for this request should be terminated when
the current phase is complete. For example, an event listener that decided an HTTP redirect was
required would perform the appropriate actions on the response object (i.e. calling
ExternalContext.redirect()) and then call this method.

In some circumstances, it is possible that both renderResponse() and responseComplete() might have
been called for the request. In this case, the Jakarta Faces implementation must respect the
responseComplete() call (if it was made) before checking to see if renderResponse() was called.

The getRenderResponse() and getResponseComplete() methods allow a Jakarta Faces-based application
to determine whether the renderResponse() or responseComplete() methods, respectively, have been
called already for the current request.

6.1.10. Partial Processing Methods

public PartialViewContext getPartialViewContext();

The getPartialViewContext()method must return an instance of PartialViewContext either by creating a
new instance, or returning an existing instance from the FacesContext.

6.1.11. Partial View Context

The PartialViewContext contains the constants, properties and methods to facilitate partial view
processing and partial view rendering. Refer to Partial View Processing and Partial View Rendering.
Refer to the JavaDocs for the jakarta.faces.context.PartialViewContext class for method requirements.

6.1.12. Access To The Current FacesContext Instance

public static FacesContext getCurrentInstance();
protected static void setCurrentInstance(FacesContext context);

Under most circumstances, Jakarta Faces components, and application objects that access them, are
passed a reference to the FacesContext instance for the current request. However, in some cases, no
such reference is available. The getCurrentInstance() method may be called by any Java class in the
current web application to retrieve an instance of the FacesContext for this request. The Jakarta Faces
implementation must ensure that this value is set correctly before FacesContextFactory returns a
FacesContext instance, and that the value is maintained in a thread-safe manner.

The default implementation must allow this method to be called during application startup time,
before any requests have been serviced. If called during application startup time, the instance
returned must have the special properties as specified on the javadocs for
FacesContext.getCurrentInstance() The .

6.1. FacesContext

158 Jakarta Faces Final

6.1.13. CurrentPhaseId

The default lifecycle implementation is responsible for setting the currentPhaseId property on the
FacesContext instance for this request, as specified in Standard Request Processing Lifecycle Phases.
The following table describes this property.

Name Access Type Description

currentPhaseId RW PhaseId The PhaseId constant for the current phase of the
request processing lifecycle

6.1.14. ExceptionHandler

The FacesContextFactory ensures that each newly created FacesContext instance is initialized with a
fresh instance of ExceptionHandler, created from ExceptionHandlerFactory. The following table
describes this property.

Name Access Type Description

exceptionHandler RW ExceptionHandler Set by FacesContextFactory.getFacesContext(), this
class is the default exception handler for any
unexpected Exceptions that happen during the
Faces lifecycle. See the Javadocs for
ExceptionHandler for details.

Please see PhaseListener for the circumstances under which ExceptionHandler is used.

6.2. ExceptionHandler
ExceptionHandler is the central point for handling unexpected Exceptions that are thrown during the
Faces lifecycle. The ExceptionHandler must not be notified of any Exceptions that occur during
application startup or shutdown.

Several places in the Faces specification require an Exception to be thrown as a result of normal
lifecycle processing. The following expected Exception cases must not be handled by the
ExceptionHandler.

• All cases where a ValidatorException is specified to be thrown or caught

• All cases where a ConverterException is specified to be thrown or caught

• The case when a MissingResourceException is thrown during the processing of the <f:loadBundle />
tag.

• If an exception is thrown when the runtime is processing the @PreDestroy annotation on a
managed bean.

• All classes when an AbortProcessingException is thrown.

6.2. ExceptionHandler

Final Jakarta Faces 159

All other Exception cases must not be swallowed, and must be allowed to flow up to the
Lifecycle.execute() method where the individual lifecycle phases are implemented. At that point, all
Exceptions are passed to the ExceptionHandler as described in PhaseListener.

Any code that is not a part of the core Faces implementation may leverage the ExceptionHandler in one
of two ways.

6.2.1. Default ExceptionHandler implementation

The default ExceptionHandler must implement the following behavior for each of its methods

public ExceptionQueuedEvent getHandledExceptionEvent();

Return the first “handled” ExceptionQueuedEvent, that is, the one that was actually re-thrown.

public Iterable<ExceptionQueuedEvent> getHandledExceptionEvents();

The default implementation must return an Iterable over all ExceptionEvents that have been handled
by the handle() method.

public Throwable getRootCause(Throwable t);

Unwrap the argument t until the unwrapping encounters an Object whose getClass() is not equal to
FacesException.class or jakarta.el.ELException.class. If there is no root cause, null is returned.

public Iterable<ExceptionQueuedEvent> getUnhandledExceptionEvents();

Return an Iterable over all ExceptionEvents that have not yet been handled by the handle() method.

public void handle() throws FacesException;

Inspect all unhandled ExceptionQueuedEvent instances in the order in which they were queued by calls
to Application.publishEvent(ExceptionQueuedEvent.class, eventContext).

For each ExceptionQueuedEvent in the list, call its getContext() method and call getException() on the
returned result. Upon encountering the first such Exception the corresponding ExceptionQueuedEvent
must be set so that a subsequent call to getHandledExceptionEvent() or getHandledExceptionEvents()
returns that ExceptionQueuedEvent instance. The implementation must also ensure that subsequent
calls to getUnhandledExceptionEvents() do not include that ExceptionQueuedEvent instance. Let
toRethrow be either the result of calling getRootCause() on the Exception, or the Exception itself,
whichever is non-null. Re-wrap toThrow in a ServletException or (PortletException, if in a portlet

6.2. ExceptionHandler

160 Jakarta Faces Final

environment) and throw it, allowing it to be handled by any <error-page> declared in the web
application deployment descriptor or by the default error page as described elsewhere in this section.

There are two exceptions to the above processing rules. In both cases, the Exception must be logged
and not re-thrown.

• If an unchecked Exception occurs as a result of calling a method annotated with PreDestroy on a
managed bean.

• If the Exception originates inside the ELContextListener.removeElContextListener() method

The FacesException must be thrown if and only if a problem occurs while performing the algorithm to
handle the Exception, not as a means of conveying a handled Exception itself.

public boolean isListenerForSource(Object source);

The default implementation must return true if and only if the source argument is an instance of
ExceptionEventContext.

public void processEvent(SystemEvent ExceptionQueuedEvent)
 throws AbortProcessingException;

The default implementation must store the argument ExceptionQueuedEvent in a strongly ordered
queue for later processing by the handle() method.

6.2.2. Default Error Page

If no <error-page> elements are declared in the web application deployment descriptor, the runtime
must provide a default error page that contains the following information.

• The stack trace of the Exception

• The UIComponent tree at the time the ExceptionQueuedEvent was handled.

• All scoped variables in request, view, session and application scope.

• If the error happens during the execution of the view declaration language page (VDL)

◦ The physical file being traversed at the time the Exception was thrown, such as /user.xhtml

◦ The line number within that physical file at the time the Exception was thrown

◦ Any available error message(s) from the VDL page, such as: “The prefix "foz" for element
"foz:bear" is not bound.”

• The viewId at the time the ExceptionQueuedEvent was handled

If Application.getProjectStage() returns ProjectStage.Development, the runtime must guarantee that the
above debug information is available to be included in any Facelet based error page using the

6.2. ExceptionHandler

Final Jakarta Faces 161

<ui:include /> with a src attribute equal to the string “jakarta.faces.error.xhtml”.

6.3. FacesMessage
Each message queued within a FacesContext is an instance of the
jakarta.faces.application.FacesMessage class. The presence of one or more FacesMessage instances on
the FacesContext indicates a failure of some kind during the lifecycle. In particular, a validation or
conversion failure is required to cause a FacesMessage to be added to the FacesContext.

It offers the following constructors:

public FacesMessage();
public FacesMessage(String summary, String detail);
public FacesMessage(Severity severity, String summary, String detail);

The following method signatures are supported to retrieve and set the properties of the completed
message:

public String getDetail();
public void setDetail(String detail);

public Severity getSeverity();
public void setSeverity(Severity severity);

public String getSummary();
public void setSummary(String summary);

The message properties are defined as follows:

• detail —Localized detail text for this FacesMessage (if any). This will generally be additional text
that can help the user understand the context of the problem being reported by this FacesMessage,
and offer suggestions for correcting it.

• severity —A value defining how serious the problem being reported by this FacesMessage instance
should be considered. Four standard severity values (SEVERITY_INFO, SEVERITY_WARN,
SEVERITY_ERROR, and SEVERITY_FATAL) are defined as a typesafe enum in the FacesMessage class.

• summary —Localized summary text for this FacesMessage. This is normally a relatively short
message that concisely describes the nature of the problem being reported by this FacesMessage.

6.4. ResponseStream
ResponseStream is an abstract class representing a binary output stream for the current response. It
has exactly the same method signatures as the java.io.OutputStream class.

6.3. FacesMessage

162 Jakarta Faces Final

6.5. ResponseWriter
ResponseWriter is an abstract class representing a character output stream for the current response. A
ResponseWriter instance is obtained via a factory method on RenderKit. Please see RenderKit. It
supports both low-level and high level APIs for writing character based information

public void close() throws IOException;
public void flush() throws IOException;
public void write(char c[]) throws IOException;
public void write(char c[], int off, int len) throws IOException;
public void write(int c) throws IOException;
public void write(String s) throws IOException;
public void write(String s, int off, int len) throws IOException;

The ResponseWriter class extends java.io.Writer, and therefore inherits these method signatures for
low-level output. The close() method flushes the underlying output writer, and causes any further
attempts to output characters to throw an IOException. The flush method flushes any buffered
information to the underlying output writer, and commits the response. The write methods write raw
characters directly to the output writer.

public abstract String getContentType();
public abstract String getCharacterEncoding();

Return the content type or character encoding used to create this ResponseWriter.

public void startCDATA();
public void endCDATA();

Start and end an XML CDATA Section..

public void startDocument() throws IOException;
public void endDocument() throws IOException;

Write appropriate characters at the beginning (startDocument) or end (endDocument) of the current
response.

public void startElement(String name,
 UIComponent componentForElement) throws IOException;

Write the beginning of a markup element (the < character followed by the element name), which
causes the ResponseWriter implementation to note internally that the element is open. This can be

6.5. ResponseWriter

Final Jakarta Faces 163

followed by zero or more calls to writeAttribute or writeURIAttribute to append an attribute name and
value to the currently open element. The element will be closed (i.e. the trailing > added) on any
subsequent call to startElement(), writeComment(), writeText(), endDocument(), close(), flush(), or
write(). The componentForElement parameter tells the ResponseWriter which UIComponent this
element corresponds to, if any. This parameter may be null to indicate that the element has no
corresponding component. The presence of this parameter allows tools to provide their own
implementation of ResponseWriter to allow the design time environment to know which component
corresponds to which piece of markup.

public void endElement(String name) throws IOException;

Write a closing for the specified element, closing any currently opened element first if necessary.

public void writeComment(Object comment) throws IOException;

Write a comment string wrapped in appropriate comment delimiters, after converting the comment
object to a String first. Any currently opened element is closed first.

public void writeAttribute(String name, Object value,
 String componentPropertyName) throws IOException;

public void writeURIAttribute(String name, Object value,
 String componentPropertyName) throws IOException;

These methods add an attribute name/value pair to an element that was opened with a previous call to
startElement(), throwing an exception if there is no currently open element. The writeAttribute()
method causes character encoding to be performed in the same manner as that performed by the
writeText() methods. The writeURIAttribute() method assumes that the attribute value is a URI, and
performs URI encoding (such as % encoding for HTML). The componentPropertyName, if present,
denotes the property on the associated UIComponent for this element, to which this attribute
corresponds. The componentPropertyName parameter may be null to indicate that this attribute has no
corresponding property.

public void writeText(Object text, String property) throws IOException;
public void writeText(char text[], int off, int len) throws IOException;

Write text (converting from Object to String first, if necessary), performing appropriate character
encoding and escaping. Any currently open element created by a call to startElement is closed first.

public abstract ResponseWriter cloneWithWriter(Writer writer);

6.5. ResponseWriter

164 Jakarta Faces Final

Creates a new instance of this ResponseWriter, using a different Writer.

6.6. FacesContextFactory
A single instance of jakarta.faces.context.FacesContextFactory must be made available to each Jakarta
Faces-based web application running in a servlet or portlet container. This class is primarily of use by
Jakarta Faces implementors—applications will not generally call it directly. The factory instance can be
acquired, by Jakarta Faces implementations or by application code, by executing:

FacesContextFactory factory = (FacesContextFactory)
 FactoryFinder.getFactory(FactoryFinder.FACES_CONTEXT_FACTORY);

The FacesContextFactory implementation class provides the following method signature to create (or
recycle from a pool) a FacesContext instance:

public FacesContext getFacesContext(Object context,
 Object request, Object response, Lifecycle lifecycle);

Create (if necessary) and return a FacesContext instance that has been configured based on the
specified parameters. In a servlet environment, the first argument is a ServletContext, the second a
ServletRequest and the third a ServletResponse.

6.7. ExceptionHandlerFactory
A single instance of jakarta.faces.context.ExceptionHandlerFactory must be made available to each
Jakarta Faces-based web application running in a servlet or portlet container. The factory instance can
be acquired, by Jakarta Faces implementations or by application code, by executing:

ExceptionHandlerFactory factory = (ExceptionHandlerFactory)
 FactoryFinder.getFactory(FactoryFinder.EXCEPTION_HANDLER_FACTORY);

The ExceptionHandlerFactory implementation class provides the following method signature to create
an ExceptionHandler instance:

public ExceptionHandler getExceptionHandler(FacesContext currentContext);

Create and return a ExceptionHandler instance that has been configured based on the specified
parameters.

6.6. FacesContextFactory

Final Jakarta Faces 165

6.8. ExternalContextFactory
A single instance of jakarta.faces.context.ExternalContextFactory must be made available to each
Jakarta Faces-based web application running in a servlet or portlet container. This class is primarily of
use by Jakarta Faces implementors—applications will not generally call it directly. The factory instance
can be acquired, by Jakarta Faces implementations or by application code, by executing:

ExternalContextFactory factory = (ExternalContextFactory)
 FactoryFinder.getFactory(FactoryFinder.EXTERNAL_CONTEXT_FACTORY);

The ExternalContextFactory implementation class provides the following method signature to create
(or recycle from a pool) a FacesContext instance:

public ExternalContext getExternalContext(
Object context, Object request, Object response);

Create (if necessary) and return an ExternalContext instance that has been configured based on the
specified parameters. In a servlet environment, the first argument is a ServletContext, the second a
ServletRequest and the third a ServletResponse.

6.8. ExternalContextFactory

166 Jakarta Faces Final

Chapter 7. Application Integration
Previous chapters of this specification have described the component model, request state information,
and the next chapter describes the rendering model for Jakarta Faces user interface components. This
chapter describes APIs that are used to link an application’s business logic objects, as well as
convenient pluggable mechanisms to manage the execution of an application that is based on Jakarta
Faces. These classes are in the jakarta.faces.application package.

Access to application related information is centralized in an instance of the Application class, of which
there is a single instance per application based on Jakarta Faces. Applications will typically provide
one or more implementations of ActionListener (or a method that can be referenced by an action
expression) in order to respond to ActionEvent events during the Apply Request Values or Invoke
Application phases of the request processing lifecycle. Finally, a standard implementation of
NavigationHandler (replaceable by the application or framework) is provided to manage the selection
of the next view to be rendered.

7.1. Application
There must be a single instance of Application per web application that is utilizing Jakarta Faces. It can
be acquired by calling the getApplication() method on the FacesContext instance for the current
request, or the getApplication() method of the ApplicationFactory (see ApplicationFactory), and
provides default implementations of features that determine how application logic interacts with the
Jakarta Faces implementation. Advanced applications (or application frameworks) can install
replacements for these default implementations, which will be used from that point on. Access to
several integration objects is available via JavaBeans property getters and setters, as described in the
following subsections.

7.1.1. ActionListener Property

public ActionListener getActionListener();
public void setActionListener(ActionListener listener);

Return or replace an ActionListener instance that will be utilized to process ActionEvent events during
the Apply Request Values or Invoke Application phase of the request processing lifecycle. The Jakarta
Faces implementation must provide a default implementation ActionListener that performs the
following functions:

• The processAction() method must first call FacesContext.renderResponse() in order to bypass any
intervening lifecycle phases, once the method returns.

• The processAction() method must next determine the logical outcome of this event, as follows:

◦ If the originating component has a non-null action property, retrieve the MethodBinding and
call invoke() to perform the application-specified processing in this action method. If the

7.1. Application

Final Jakarta Faces 167

method returns non-null, call toString() on the result and use the value returned as the logical
outcome. See Properties for a decription of the action property.

◦ Otherwise, the logical outcome is null.

• The processAction() method must finally retrieve the NavigationHandler instance for this
application, and pass the logical outcome value (determined above) as a parameter to the
handleNavigation() method of the NavigationHandler instance. If the originating component has an
attribute whose name is equal to the value of the symbolic constant
ActionListener.TO_FLOW_DOCUMENT_ID_ATTR_NAME, invoke handleNavigation(FacesContext,
String, String, String) passing the value of the attribute as the last parameter. Otherwise, invoke
handleNavigation(FacesContext, String, String). In either case, the first String argument is the
expression string of the fromAction and the second String argument is the logical outcome.

See the Javadocs for getActionListener() for important backwards compatability information.

7.1.2. DefaultRenderKitId Property

public String getDefaultRenderKitId();
public void setDefaultRenderKitId(String defaultRenderKitId);

An application may specify the render kit identifier of the RenderKit to be used by the ViewHandler to
render views for this application. If not specified, the default render kit identifier specified by
RenderKitFactory.HTML_BASIC_RENDER_KIT will be used by the default ViewHandler implementation.

Unless the application has provided a custom ViewHandler that supports the use of multiple RenderKit
instances in the same application, this method may only be called at application startup, before any
Faces requests have been processed. This is a limitation of the current Specification, and may be lifted
in a future release.

7.1.3. FlowHandler Property

public FlowHandler getFlowHandler();
public void setFlowHandler(FlowHandler handler);

Return or replace the FlowHandler that will be used by the NavigationHandler to make decisions about
navigating application flow. See FlowHandler for an overview of the flow feature.

setFlowHandler() may only be called at application startup, before any Faces requests have been
processed. This is a limitation of the current Specification, and may be lifted in a future release.
getFlowHandler() may be called at any time after application startup.

7.1. Application

168 Jakarta Faces Final

7.1.4. NavigationHandler Property

public NavigationHandler getNavigationHandler();
public void setNavigationHandler(NavigationHandler handler);

Return or replace the NavigationHandler instance (see NavigationHandler) that will be passed the
logical outcome of the application ActionListener as described in the previous subsection. A default
implementation must be provided, with functionality described in Default NavigationHandler
Algorithm:

7.1.5. StateManager Property

public StateManager getStateManager();
public void setStateManager(StateManager manager);

Return or replace the StateManager instance that will be utilized during the Restore View and Render
Response phases of the request processing lifecycle to manage state persistence for the components
belonging to the current view. A default implementation must be provided, which operates as
described in StateManager.

7.1.6. ELResolver Property

public ELResolver getELResolver();
public void addELResolver(ELResolver resolver);

Return the ELResolver instance to be used for all Expression Language resolution. This is actually an
instance of jakarta.el.CompositeELResolver that must contain the ELResolver instances as specified in
ELResolver for Facelets and Programmatic Access.

addELResolver must cause the argument resolver to be added at the end of the list in the
jakarta.el.CompositeELResolver returned from getELResolver(). See the diagram in ELResolver for
Facelets and Programmatic Access

7.1.7. ELContextListener Property

public addELContextListener(ELContextListener listener);
public void removeELContextListener(ELContextListener listener);
public ELContextListener[] getELContextListeners();

addELContextListener() registers an ELContextListener for the current Faces application. This listener
will be notified on creation of ELContext instances, and it will be called once per request.

7.1. Application

Final Jakarta Faces 169

removeELContextListener() removes the argument listener from the list of ELContextListeners. If
listener is null, no exception is thrown and no action is performed. If listener is not in the list, no
exception is thrown and no action is performed.

getELContextListeners() returns an array representing the list of listeners added by calls to
addELContextListener().

7.1.8. ViewHandler Property

public ViewHandler getViewHandler();
public void setViewHandler(ViewHandler handler);

See ViewHandler for the description of the ViewHandler. The Jakarta Faces implementation must
provide a default ViewHandler implementation. This implementation may be replaced by calling
setViewHandler() before the first time the Render Response phase has executed. If a call is made to
setViewHandler() after the first time the Render Response phase has executed, the call must be ignored
by the implementation.

7.1.9. ProjectStage Property

public ProjectStage getProjectStage();

This method must return the enum constant from the class jakarta.faces.application.ProjectStage as
specified in the corresponding application init parameter, JNDI entry, or default Value. See Application
Configuration Parameters.

7.1.10. Acquiring ExpressionFactory Instance

public ExpressionFactory getExpressionFactory();

Return the ExpressionFactory instance for this application. This instance is used by the
evaluateExpressionGet (See Programmatically Evaluating Expressions) convenience method.

The default implementation simply returns the ExpressionFactory from the Jakarta Expression
Language by calling ELManager.getExpressionFactory().

7.1.11. Programmatically Evaluating Expressions

public Object evaluateExpressionGet(FacesContext context,
 String expression, Class expectedType)

7.1. Application

170 Jakarta Faces Final

Get a value by evaluating an expression.

Call getExpressionFactory().createValueExpression() passing the argument expression and expectedType.
Call FacesContext.getELContext() and pass it to ValueExpression.getValue(), returning the result.

It is also possible and sometimes desireable to obtain the actual ValueExpression or MethodExpression
instance directly. This can be accomplished by using the createValueExpression() or
createMethodExpression() methods on the ExpressionFactory returned from getExpressionFactory().

7.1.12. Object Factories

The Application instance for a web application also acts as an object factory for the creation of new
Jakarta Faces objects such as components, converters, validators and behaviors..

public UIComponent createComponent(String componentType);
public UIComponent createComponent(
 String componentType, String rendererType);

public Converter createConverter(Class targetClass);
public Converter createConverter(String converterId);
public Validator createValidator(String validatorId);
public Behavior createBehavior(String behaviorId);

Each of these methods creates a new instance of an object of the requested type [2], based on the
requested identifier. The names of the implementation class used for each identifier is normally
provided by the Jakarta Faces implementation automatically (for standard classes described in this
Specification), or in one or more application configuration resources (see Application Configuration
Resources) included with a Jakarta Faces web application, or embedded in a JAR file containing the
corresponding implementation classes.

All variants createConverter() must take some action to inspect the converter for @ResourceDependency
and @ListenerFor annotations.

public UIComponent createComponent(ValueExpression componentExpression,
 FacesContext context, String componentType);

This method has the following behavior:

• Call the getValue() method on the specified ValueExpression, in the context of the specified
FacesContext. If this results in a non-null UIComponent instance, return it as the value of this
method.

• If the getValue() call did not return a component instance, create a new component instance of the
specified component type, pass the new component to the s etValue() method of the specified
ValueExpression, and return it.

7.1. Application

Final Jakarta Faces 171

public UIComponent createComponent(
 FacesContext context, Resource componentResource);

All variants createComponent() must take some action to inspect the component for
@ResourceDependency and @ListenerFor annotations. Please see the JavaDocs and Composite
Component Metadata for the normative specification relating to this method.

public void addComponent(String componentType, String componentClass);
public void addConverter(Class targetClass, String converterClass);
public void addConverter(String converterId, String converterClass);
public void addValidator(String validatorId, String validatorClass);
public void addBehavior(String behaviorId, String behaviorClass);

Jakarta Faces-based applications can register additional mappings of identifiers to a corresponding
fully qualified class name, or replace mappings provided by the Jakarta Faces implementation in order
to customize the behavior of standard Jakarta Faces features. These methods are also used by the
Jakarta Faces implementation to register mappings based on <component>, <converter>, <behavior>
and <validator> elements discovered in an application configuration resource.

public Iterator<String> getComponentTypes();
public Iterator<String> getConverterIds();
public Iterator<Class> getConverterTypes();
public Iterator<String> getValidatorIds();
public Iterator<String> getBehaviorIds();

Jakarta Faces-based applications can ask the Application instance for a list of the registered identifiers
for components, converters, and validators that are known to the instance.

7.1.12.1. Default Validator Ids

From the list of mappings of validatorId to fully qualified class name, added to the application via calls
to addValidator(), the application maintains a subset of that list under the heading of default validator
ids. The following methods provide access to the default validator ids registered on an application:

public void addDefaultValidatorId(String validatorId);
public Map<String,String> getDefaultValidatorInfo();

The required callsites for these methods are specified in Validation Registration.

7.1.13. Internationalization Support

The following methods and properties allow an application to describe its supported locales, and to

7.1. Application

172 Jakarta Faces Final

provide replacement text for standard messages created by Jakarta Faces objects.

public Iterator<Locale> getSupportedLocales();
public void setSupportedLocales(Collection<Locale> newLocales);
public Locale getDefaultLocale();
public void setDefaultLocale(Locale newLocale);

Jakarta Faces applications may state the Locales they support (and the default Locale within the set of
supported Locales) in the application configuration resources file. The setters for the following
methods must be called when the configuration resources are parsed. Each time the setter is called, the
previous value is overwritten.

public String getMessageBundle();
public void setMessageBundle(String messageBundle);

Specify the fully qualified name of the ResourceBundle from which the Jakarta Faces implementation
will acquire message strings that correspond to standard message keys See Localized Application
Messages for a list of the standard message keys recognized by Jakarta Faces.

7.1.14. System Event Methods

System events are described in System Events. This section describes the methods defined on
Application that support system events

7.1.14.1. Subscribing to system events

public abstract void subscribeToEvent(Class<? extends SystemEvent>
 systemEventClass, SystemEventListener listener)

public abstract void subscribeToEvent(Class<? extends SystemEvent>
 systemEventClass, Class sourceClass, SystemEventListener listener);

public abstract void publishEvent(Class<? extends SystemEvent>
 systemEventClass, SystemEventListenerHolder source);

public void publishEvent(Class<? extends SystemEvent>
 systemEventClass, Class<?> sourceBaseType, Object source)

The first variant of subscribeToEvent() subscribes argument listener to have its isListenerForSource()
method, and (depending on the result from isListenerForSource()) its processEvent() method called any
time any call is made to Application.publishEvent(Class<? extends SystemEvent> systemEventClass,
SystemEventListenerHolder source) where the first argument in the call to publishEvent() is equal to the
first argument to subscribeToEvent(). NOTE: The implementation must not support subclasses for the

7.1. Application

Final Jakarta Faces 173

systemEventClass and/or sourceClass arguments to subscribeToEvent() or publishEvent(). For example,
consider two event types, SuperEvent and SubEvent extends SuperEvent. If a listener subscribes to
SuperEvent.class events, but later someone publishes a SubEvent.class event (which extends
SuperEvent), the listener for SuperEvent.class must not be called.

The second variant of subscribeToEvent() is equivalent to the first, with the additional constraint the
the sourceClass argument to publishEvent() must be equal to the Class object obtained by calling
getClass() on the source argument to publishEvent().

See the javadocs for both variants of subscribeForEvent() for the complete specification of these
methods.

publishEvent() is called by the system at several points in time during the runtime of a Jakarta Faces
application. The specification for when publishEvent() is called is given in the javadoc for the event
classes that are listed in Event Classes. See the javadoc for publishEvent() for the complete specification.

7.1.14.2. Unsubscribing from system events

public abstract void unsubscribeFromEvent(Class<? extends SystemEvent>
 systemEventClass, SystemEventListener listener);

public abstract void unsubscribeFromEvent(Class<? extends SystemEvent>
 systemEventClass, Class sourceClass, SystemEventListener listener);

See the javadocs for both variants of unsubscribeFromEvent() for the complete specification.

7.2. ApplicationFactory
A single instance of jakarta.faces.application.ApplicationFactory must be made available to each
Jakarta Faces-based web application running in a servlet or portlet container. The factory instance can
be acquired by Jakarta Faces implementations or by application code, by executing:

ApplicationFactory factory = (ApplicationFactory)
 FactoryFinder.getFactory(FactoryFinder.APPLICATION_FACTORY);

The ApplicationFactory implementation class supports the following methods:

public Application getApplication();
public void setApplication(Application application);

Return or replace the Application instance for the current web application. The Jakarta Faces
implementation must provide a default Application instance whose behavior is described in
Application.

7.2. ApplicationFactory

174 Jakarta Faces Final

Note that applications will generally find it more convenient to access the Application instance for this
application by calling the getApplication() method on the FacesContext instance for the current request.

7.3. Application Actions
An application action is an application-provided method on some Java class that performs some
application-specified processing when an ActionEvent occurs, during either the Apply Request Values or
the Invoke Application phase of the request processing lifecycle (depending upon the immediate
property of the ActionSource instance initiating the event).

Application action is not a formal Jakarta Faces API; instead any method that meets the following
requirements may be used as an Action by virtue of evaluating a method binding expression:

• The method must be public.

• The method must take no parameters.

• The method must return Object.

The action method will be called by the default ActionListener implementation, as described in
ActionListener Property above. Its responsibility is to perform the desired application actions, and
then return a logical “outcome” (represented as a String) that can be used by a NavigationHandler in
order to determine which view should be rendered next. The action method to be invoked is defined
by a MethodBinding that is specified in the action property of a component that implements
ActionSource. Thus, a component tree with more than one such ActionSource component can specify
individual action methods to be invoked for each activated component, either in the same Java class or
in different Java classes.

7.4. NavigationHandler

7.4.1. Overview

Most Jakarta Faces applications can be thought of as a directed graph of views, each node of which
roughly corresponds to the user’s perception of “location” within the application. Applications that use
the Faces Flows feature have additional kinds of nodes in the directed graph. In any case, navigating
the nodes of this graph is the responsibility of the NavigationHandler. A single NavigationHandler
instance is responsible for consuming the logical outcome returned by an application action that was
invoked, along with additional state information that is available from the FacesContext instance for
the current request, and (optionally) selecting a new view to be rendered. If the outcome returned by
the applicationaction is null or the empty string, and none of the navigation cases that map to the
current view identifier have a non-null condition expression, the same view must be re-displayed. This
is the only case where the same view (and component tree) is re-used.

public void handleNavigation(FacesContext context,
 String fromAction, String outcome);

7.3. Application Actions

Final Jakarta Faces 175

The handleNavigation method may select a new view by calling createView() on the ViewHandler
instance for this application, optionally customizing the created view, and then selecting it by calling
the setViewRoot() method on the FacesContext instance that is passed. Alternatively, the
NavigationHandler can complete the actual response (for example, by issuing an HTTP redirect), and
call responseComplete() on the FacesContext instance.

After a return from the handleNavigation method, control will normally proceed to the Render
Response phase of the request processing lifecycle (see Render Response), which will cause the newly
selected view to be rendered. If the NavigationHandler called the responseComplete() method on the
FacesContext instance, however, the Render Response phase will be bypassed.

Jakarta Faces also contains the ConfigurableNavigationHandler interface, which extends the contract of
the NavigationHandler to include two additional methods that accommodate runtime inspection of the
NavigationCases that represent the rule-based navigation metamodel. The method getNavigationCase
consults the NavigationHandler to determine which NavigationCase the handleNavigation method
would resolve for a given "from action" expression and logical outcome combination. The method
getNavigationCases returns a java.util.Map of all the NavigationCase instances known to this
NavigationHandler. Each key in the map is a from view ID and the cooresponding value is a
java.util.Set of NavigationCases for that from view ID.

public NavigationCase getNavigationCase(FacesContext context,
 String fromAction, String outcome);

public Map<String, Set<NavigationCase>> getNavigationCases();

A Jakarta Faces compliant-implemention must ensure that its NavigationHandler implements the
ConfigurableNavigationHandler interface. The handleNavigation and getNavigation Case methods
should use the same logic to resolve a NavigationCase, which is outlined in the next section.

7.4.2. Default NavigationHandler Algorithm

Jakarta Faces implementations must provide a default NavigationHandler implementation that maps
the action reference that was utilized (by the default ActionListener implementation) to invoke an
application action, the logical outcome value returned by that application action, as well as other state
information, into the view identifier for the new view or flow node to be selected. The remainder of
this section describes the functionality provided by this default implementation.

The behavior of the default NavigationHandler implementation is configured, at web application
startup time, from the contents of zero or more application configuration resources (see Application
Configuration Resources). The configuration information is represented as zero or more <navigation-
rule> elements, each keyed to a matching pattern for the view identifier of the current view expressed
in a <from-view-id> element. This matching pattern must be either an exact match for a view identifier
(such as “/index.xhtml” if you are using the default ViewHandler), or the prefix of a component view id,
followed by an asterisk (“*”) character. A matching pattern of “*”, or the lack of a <from-view-id>
element inside a <navigation-rule> rule, indicates that this rule matches any possible component view

7.4. NavigationHandler

176 Jakarta Faces Final

identifier.

Version 2.2 of the specification introduced the Faces Flows feature. With respect to the navigation
algorithm, any text that references a view identifier, such as <from-view-id> or <to-view-id>, can also
refer to a flow node, subject to these constraints.

• When outside of a flow, view identifier has the additional possibility of being a flow id.

• When inside a flow, a view identifier has the additional possibility of being the id of any node within
the current flow.

If the specification needs to refer to a view identifier that is an actual VDL view (and not a VDL view or
a flow, or flow node), the term vdl view identifier will be used.

Nested within each <navigation-rule> element are zero or more <navigation-case> elements that
contain additional matching criteria based on the action reference expression value used to select an
application action to be invoked (if any), and the logical outcome returned by calling the invoke()
method of that application action [3]. Navigation cases support a condition element, <if>, whose content
must be a single, contiguous value expression expected to resolve to a boolean value (if the content
does not match this requirement, the condition is ignored) [4]. When the <if> element is present, the
value expression it contains must evaluate to true when the navigation case is being consulted in order
for the navigation case to match [5]. Finally, the <navigation-case> element contains a <to-view-id>
element, whose content is either the view identifier or a value expression that resolves to the view
identifier. If the navigation case is a match, this view identifier is to be selected and stored in the
FacesContext for the current request following the invocation of the NavigationHandler. See below for
an example of the configuration information for the default NavigationHandler might be configured.

It is permissible for the application configuration resource(s) used to configure the default
NavigationHandler to include more than one <navigation-rule> element with the same <from-view-id>
matching pattern. For the purposes of the algorithm described below, all of the nested <navigation-
case> elements for all of these rules shall be treated as if they had been nested inside a single
<navigation-rule> element.

The default NavigationHandler implementation must behave as if it were performing the following
algorithm (although optimized implementation techniques may be utilized):

• If no navigation case is matched by a call to the handleNavigation() method, this is an indication
that the current view should be redisplayed. A null outcome does not unconditionally cause all
navigation rules to be skipped.

• Find a <navigation-rule> element for which the view identifier (of the view in the FacesContext
instance for the current request) matches the <from-view-id> matching pattern of the <navigation-
rule>. Rule instances are considered in the following order:

◦ An exact match of the view identifier against a <from-view-id> pattern that does not end with an
asterisk (“*”) character.

◦ For <from-view-id> patterns that end with an asterisk, an exact match on characters preceding
the asterisk against the prefix of the view id. If the patterns for multiple navigation rules match,

7.4. NavigationHandler

Final Jakarta Faces 177

pick the longest matching prefix first.

◦ If there is a <navigation-rule> with a <from-view-id> pattern of only an asterisk [6], it matches
any view identifier.

• From the <navigation-case> elements nested within the matching <navigation-rule> element, locate
a matching navigation case by matching the <from-action> and <from-outcome> values against the
fromAction and outcome parameter values passed to the handleNavigation() method. To match an
outcome value of null, the <from-outcome> must be absent and the <if> element present. Regardless
of outcome value, if the <if> element is present, evaluate the content of this element as a value
expression and only select the navigation case if the expression resolves to true. Navigation cases
are checked in the following order:

◦ Cases specifying both a <from-action> value and a <from-outcome> value are matched against
the action expression and outcome parameters passed to the handleNavigation() method (both
parameters must be not null, and both must be equal to the corresponding condition values, in
order to match).

◦ Cases that specify only a <from-outcome> value are matched against the outcome parameter
passed to the handleNavigation() method (which must be not null, and equal to the
corresponding condition value, to match).

◦ Cases that specify only a <from-action> value are matched against the action expression
parameter passed to the handleNavigation() method (which must be non-null, and equal to the
corresponding condition value, to match; if the <if> element is absent, only match a non-null
outcome; otherwise, match any outcome).

◦ Any remaining case is assumed to match so long as the outcome parameter is non-null or the
<if> element is present.

◦ For cases that match up to this point and contain an <if> element, the condition value
expression must be evaluated and the resolved value true for the case to match.

• If a matching <navigation-case> element was located, proceed as follows.

◦ If the <to-view-id> element is the id of a flow, discover that flow’s start node and resolve it to a
vdl view identifier by following the algorithm in Requirements for Explicit Navigation in Faces
Flow Call Nodes other than ViewNodes

◦ If the <to-view-id> element is a non-view flow node, resolve it to a vdl view identifier by
following the algorithm in Requirements for Explicit Navigation in Faces Flow Call Nodes other
than ViewNodes.

◦ If UIViewAction.isProcessingBroadcast() returns true, call getFlash().setKeepMessages(true) on
the current FacesContext. Compare the viewId of the current viewRoot with the <to-view-id> of
the matching <navigation-case>. If they differ, take any necessary actions to effectively restart
the Jakarta Faces lifecycle on the <to-view-id> of the matching <navigation-case>. Care must be
taken to preserve any view parameters or navigation case parameters, clear the view map of
the UIViewRoot, and call setRenderAll(true) on the PartialViewContext. Implementations may
choose to meet this requirement by treating this case as if a <redirect /> was specified on the
matching <navigation-case>. If the viewIds do not differ, continue on to the next bullet point.

7.4. NavigationHandler

178 Jakarta Faces Final

◦ Clear the view map if the viewId of the new UIViewRoot differs from the viewId of the current
UIViewRoot.

◦ If the <redirect/> element was not specified in this <navigation-case> (or the application is
running in a Portlet environment, where redirects are not possible), use the <to-view-id>
element of the matching case to request a new UIViewRoot instance from the ViewHandler
instance for this application. Call transition() on the FlowHandler, passing the current
FacesContext, the current flow, the new flow and the facesFlowCallNode corresponding to this
faces flow call, if any. Pass the new UIViewRoot to the setViewRoot() method of the FacesContext
instance for the current request.

Then, exit the algorithm. If the content of <to-view-id> is a value expression, first evaluate it to
obtain the value of the view id.

◦ If the <redirect/> element was specified in this <navigation-case>, or this invocation of
handleNavigation() was due to a UIViewAction broadcast event where the new viewId is
different from the current viewId, resolve the <to-view-id> to a view identifier, using the
algorithm in Requirements for Explicit Navigation in Faces Flow Call Nodes other than
ViewNodes. Call getRedirectURL() on the ViewHandler, passing the current FacesContext, the <to-
view-id>, any name=value parameter pairs specified within <view-param> elements within the
<redirect> element, and the value of the include-view-params attribute of the <redirect />
element if present, false, if not. If this navigation is a flow transition (where current flow is not
the same as the new flow), include the relevant flow metadata as entries in the parameters .

▪ If current flow is not null and new flow is null, include the following entries:
FlowHandler.TO_FLOW_DOCUMENT_ID_REQUEST_PARAM_NAME:
FlowHandler.NULL_FLOW
FlowHandler.FLOW_ID_REQUEST_PARAM_NAME: “” (the empty string)

▪ If current flow is null and new flow is not null, include the following entries:
FlowHandler.TO_FLOW_DOCUMENT_ID_REQUEST_PARAM_NAME: The to flow document id
FlowHandler.FLOW_ID_REQUEST_PARAM_NAME: the flow id for the flow that is the
destination of the transition.

▪ If the parameters map has entries for either of these keys, both of the entries must be
replaced with the new values. This allows the call to FlowHandler.clientWindowTransition()
to perform correctly when the GET request after the redirect happens.

The return from getRedirectURL() is the value to be sent to the client to which the redirect will
occur. Call getFlash().setRedirect(true) on the current FacesContext. Cause the current response
to perform an HTTP redirect to this path, and call responseComplete() on the FacesContext
instance for the current request. If the content of <to-view-id> is a value expression, first
evaluate it to obtain the value of the view id.

• If no matching <navigation-case> element was located, return to Step 1 and find the next matching
<navigation-rule> element (if any). If there are no more matching rule elements, execute the
following algorithm to search for an implicit match based on the current outcome. This implicit

7.4. NavigationHandler

Final Jakarta Faces 179

matching algorithm also includes navigating within the current faces flow, and returning from the
current faces flow.

◦ Let outcome be viewIdToTest.

◦ Examine the viewIdToTest for the presence of a “?” character, indicating the presence of a URI
query string. If one is found, remove the query string from viewIdToTest, including the leading
“?” and let it be queryString, look for the string “faces-redirect=true” within the query string. If
found, let isRedirect be true, otherwise let isRedirect be false. Look for the string
“includeViewParams=true” or “faces-include-view-params=true”. If either are found, let
includeViewParams be true, otherwise let includeViewParams be false. When performing
preemptive navigation, redirect is implied, even if the navigation case doesn’t indicate it, and
the query string must be preserved. Refer to UIOutcomeTarget for more information on
preemptive navigation.

◦ If viewIdToTest does not have a “file extension”, take the file extension from the current viewId
and append it properly to viewIdToTest.

◦ If viewIdToTest does not begin with “/”, take the current viewId and look for the last “/”. If not
found, prepend a “/” and continue. Otherwise remove all characters in viewId after, but not
including, “/”, then append viewIdToTest and let the result be viewIdToTest.

◦ Obtain the current ViewHandler and call its deriveViewId() method, passing the current
FacesContext and viewIdToTest. If UnsupportedOperationException is thrown, the
implementation must ensure the algorithm described for ViewHandler.deriveViewId() specified
in Default ViewHandler Implementation is performed. Let the result be implicitViewId.

◦ If implicitViewId is non-null, discover if fromOutcome is equal to the flow-id of an existing flow
in the FlowHandler. If so find the start node of the flow. If the start node is a ViewNode, let
viewIdToTest be the vdlDocumentId value of the ViewNode. Call deriveViewId as in the preceding
step and let the result be implicitViewId. If fromOutcome is not equal to the flow-id of an existing
flow in the FlowHandler, and we are currently in a flow, discover if this is call to a faces-flow-
return node. If so, obtain the fromOutcome of the faces-flow-return node, re-apply this algorithm
to derive the value of the implicitViewId and continue.

◦ If the implicitViewId is non-null, take the following action. If isRedirect is true, append the
queryString to implicitViewId. Let implicitNavigationCase be a conceptual <navigation-case>
element whose fromViewId is the current viewId, fromAction is passed through from the
arguments to handleNavigation(), fromOutcome is passed through from the arguments to
handleNavigation(), toViewId is implicitViewId, and redirect is the value of isRedirect, and
include-view-params is includeViewParams. Treat implicitNavigationCase as a matching
navigation case and return to the first step above that starts with “If a matching <navigation-
case> element was located…”.

• If UIViewAction.isProcessingBroadcast() returns true, call getFlash().setKeepMessages(true) on the
current FacesContext. Compare the viewId of the current viewRoot with the effective <to-view-id>
of the matching <navigation-case>. If they differ, take any necessary actions effectively restart the
Jakarta Faces lifecycle on the effective <to-view-id> of the matching <navigation-case>. Care must be
taken to preserve any view parameters or navigation case parameters, clear the view map of the

7.4. NavigationHandler

180 Jakarta Faces Final

UIViewRoot, and call setRenderAll(true) on the PartialViewContext.

• If none of the above steps found a matching <navigation-case>, perform the steps in Requirements
for Explicit Navigation in Faces Flow Call Nodes other than ViewNodes to find a matching
<navigation-case>.

• If none of the above steps found a matching <navigation-case>, if ProjectStage is not Production
render a message in the page that explains that there was no match for this outcome.

A rule match always causes a new view to be created, losing the state of the old view. This includes
clearing out the view map.

Query string parameters may be contributed by three different sources: the outcome (implicit
navigation), a nested <f:param> on the component tag (e.g., <h:link>, <h:button>, <h:commandLink>,
<h:commandButton>), and view parameters. When a redirect URL is built, whether it be by the N
avigationHandler on a redirect case or a UIOutcomeTarget renderer, the query string parameter
sources should be consulted in the following order:

• the outcome (implicit navigation)

• view parameter

• nested <f:param>

If a query string parameter is found in two or more sources, the latter source must replace all
instances of the query string parameter from the previous source(s).

7.4.2.1. Requirements for Explicit Navigation in Faces Flow Call Nodes other than ViewNodes

These steps must be performed in this order to determine the vdl view identifier when navigating to a
flow node that is not a view node.

Algorithm for resolving a nodeId to a vdl view identifier.

• If nodeId is a view node, let vdl view identifier be the value of nodeId and exit the algorithm.

• If the node is a SwitchNode, iterate over the NavigationCase instances returned from its getCases()
method. For each, one call getCondition(). If the result is true, let nodeId be the value of its
fromOutcome property.

• If the node is a MethodCallNode, let nodeId be the value invoking the value of its methodExpression
property. If the result is null, let nodeId be the value of the MethodCallNode’s outcome property.

• If the node is a FlowCallNode, save it aside as facesFlowCallNode. Let flowId be the value of its
calledFlowId property and flowDocumentId be the value of its calledFlowDocumentId property. If no
flowDocumentId exists for the node, let it be the string resulting from flowId + “/” + flowId
“.xhtml”. Ask the FlowHandler for a Flow for this flowId, flowDocumentId pair. Obtain a reference to
the start node and execute this algorithm again, on that start node.

• If the node is a ReturnNode obtain its navigation case and call FlowHandler.pushReturnMode(). This
enables the navigation to proceed with respect to the calling flow’s navigation rules, or the

7.4. NavigationHandler

Final Jakarta Faces 181

application’s navigation rules if there is no calling flow. Start the navigation algorithm over using it
as the basis but pass the value of the symbolic constant
jakarta.faces.flow.FlowHandler.NULL_FLOW as the value of the toFlowDocumentId argument. If this
does not yield a navigation case, call FlowHandler.getLastDisplayedViewId(), which will return the
last displayed view id of the calling flow, or null if there is no such flow. In a finally block, when the
re-invocation of the navigation algorithms completes, call FlowHandler.popReturnMode().

7.4.2.2. Requirements for Entering a Flow

If any of the preceding navigation steps cause a flow to be entered, the implementation must perform
the following steps, in this order, before continuing with navigation.

• Make it so any @FlowScoped beans for this flow are able to be activated when an Expression
Language expression that references them is evaluated.

• Call the initializer for the flow, if any.

• Proceed to the start node of the flow, which may be any flow node type.

An attempt to navigate into a flow other than via the identified start node of that throw should cause a
FacesException.

7.4.2.3. Requirements for Exiting a Flow

If any of the preceding navigation steps cause a flow to be exited, the implementation must perform
the following steps, in this order, before continuing with navigation.

• Call the finalizer for the flow, if any.

• De-activate any @FlowScoped beans for the current flow.

• If exiting via a return node ensure the return parameters are correctly passed back to the caller.

7.4.2.4. Requirements for Calling A Flow from the Current Flow

If any of the preceding navigation steps cause a flow to be called from another flow, the transition()
method on FlowHandler will ensure parameters are correctly passed.

7.4.3. Example NavigationHandler Configuration

The following <navigation-rule> elements might appear in one or more application configuration
resources (see Application Configuration Resources) to configure the behavior of the default
NavigationHandler implementation:

7.4. NavigationHandler

182 Jakarta Faces Final

<navigation-rule>
 <description>
 APPLICATION WIDE NAVIGATION HANDLING
 </description>
 <from-view-id> * </from-view-id>

 <navigation-case>
 <description>
 Assume there is a “Logout” button on every page that
 invokes the logout Action.
 </description>
 <display-name>Generic Logout Button</display-name>
 <from-action>#{userBean.logout}</from-action>
 <to-view-id>/logout.xhtml</to-view-id>
 </navigation-case>

 <navigation-case>
 <description>
 Handle a generic error outcome that might be returned
 by any application Action.
 </description>
 <display-name>Generic Error Outcome</display-name>
 <from-outcome>loginRequired</from-outcome>
 <to-view-id>/must-login-first.xhtml</to-view-id>
 </navigation-case>

 <navigation-case>
 <description>
 Illustrate paramaters
 </description>
 <from-outcome>redirectPasswordStrength</from-outcome>
 <redirect>
 <view-param>
 <name>userId</name>
 <value>someValue</value>
 </view-param>
 <include-view-params>true</include-view-params>
 </redirect>
 </navigation-case>
</navigation-rule>

7.4. NavigationHandler

Final Jakarta Faces 183

<navigation-rule>
 <description>
 LOGIN PAGE NAVIGATION HANDLING
 </description>
 <from-view-id> /login.xhtml </from-view-id>

 <navigation-case>
 <description>
 Handle case where login succeeded.
 </description>
 <display-name>Successful Login</display-name>
 <from-action>#{userBean.login}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/home.xhtml</to-view-id>
 </navigation-case>

 <navigation-case>
 <description>
 User registration for a new user succeeded.
 </description>
 <display-name>Successful New User Registration</display-name>
 <from-action>#{userBean.register}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/welcome.xhtml</to-view-id>
 </navigation-case>

 <navigation-case>
 <description>
 User registration for a new user failed because of a
 duplicate username.
 </description>
 <display-name>Failed New User Registration</display-name>
 <from-action>#{userBean.register}</from-action>
 <from-outcome>duplicateUserName</from-outcome>
 <to-view-id>/try-another-name.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

7.4. NavigationHandler

184 Jakarta Faces Final

<navigation-rule>
 <description>
 Assume there is a search form on every page. These navigation
 cases get merged with the application-wide rules above because
 they use the same “from-view-id” pattern. The same thing would
 also happen if “from-view-id” was omitted here, because that is
 equivalent to a matching pattern of “*”.
 </description>
 <from-view-id> * </from-view-id>

 <navigation-case>
 <display-name>Search Form Success</display-name>
 <from-action>#{searchForm.go}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/search-results.xhtml</to-view-id>
 </navigation-case>

 <navigation-case>
 <display-name>Search Form Failure</display-name>
 <from-action>#{searchForm.go}</from-action>
 <to-view-id>/search-problem.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

<navigation-rule>
 <description>
 Searching works slightly differently in part of the site.
 </description>
 <from-view-id> /movies/* </from-view-id>

 <navigation-case>
 <display-name>Search Form Success</display-name>
 <from-action>#{searchForm.go}</from-action>
 <from-outcome>success</from-outcome>
 <to-view-id>/movie-search-results.xhtml</to-view-id>
 </navigation-case>

 <navigation-case>
 <display-name>Search Form Failure</display-name>
 <from-action>#\{searchForm.go}</from-action>
 <to-view-id>/search-problem.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

7.4. NavigationHandler

Final Jakarta Faces 185

public void savePizza();

<navigation-rule>
 <description>
 Pizza topping selection navigation handling
 </description>
 <from-view-id>/selectToppings.xhtml</from-view-id>

 <navigation-case>
 <description>
 Case where pizza is saved but there is additional cost
 </description>
 <display-name>Pizza saved w/ extras</display-name>
 <from-action>#{pizzaBuilder.savePizza}</from-action>
 <if>#{pizzaBuilder.additionalCost}</if>
 <to-view-id>/approveExtras.xhtml</to-view-id>
 </navigation-case>

 <navigation-case>
 <description>
 Case where pizza is saved and additional pizzas are needed
 </description>
 <display-name>Pizza saved, additional pizzas needed</display-name>
 <from-action>#{pizzaBuilder.savePizza}</from-action>
 <if>#{not order.complete}</if>
 <to-view-id>/createPizza.xhtml</to-view-id>
 </navigation-case>

 <navigation-case>
 <description>
 Handle case where pizza is saved and order is complete
 </description>
 <display-name>Pizza complete</display-name>
 <from-action>#{pizzaBuilder.savePizza}</from-action>
 <if>#{order.complete}</if>
 <to-view-id>/cart.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

7.4. NavigationHandler

186 Jakarta Faces Final

public String placeOrder();

<navigation-rule>
 <description>
 Cart navigation handling
 </description>
 <from-view-id>/cart.xhtml</from-view-id>

 <navigation-case>
 <description>
 Handle case where account has one click delivery enabled
 </description>
 <display-name>Place order w/ one-click delivery</display-name>
 <from-action>#{pizzaBuilder.placeOrder}</from-action>
 <if>#{account.oneClickDelivery}</if>
 <to-view-id>/confirmation.xhtml</to-view-id>
 </navigation-case>

 <navigation-case>
 <description>
 Handle case where delivery information is required
 </description>
 <display-name>Place order w/o one-click delivery</display-name>
 <from-action>#{pizzaBuilder.placeOrder}</from-action>
 <if>#{not account.oneClickDelivery}</if>
 <to-view-id>/delivery.xhtml</to-view-id>
 </navigation-case>
</navigation-rule>

7.5. FlowHandler
Any Jakarta Faces application can be modeled as a directed graph where the nodes are views and the
edges are transitions between the views. Faces Flows introduces several other kinds of nodes to this
directed graph, providing support for encapsulating related views and edges together. Applications can
be created as composites of modules of functionality, with each module consisting of well defined
entry and exit conditions, and the ability to share state among the nodes within each module. This
feature is heavily influenced by the design of ADF Task Flows in Oracle’s Fusion Middleware and also
by Spring Web Flow and Apache MyFaces CODI. The normative specification for this feature proceeds
from the Javadoc for the class jakarta.faces.flow.FlowHandler, and also from related requirements in
NavigationHandler. This section provides a non-normative usage example and walkthrough of feature
so that all the other parts of the specification that intersect with this feature can be discovered.

7.5. FlowHandler

Final Jakarta Faces 187

7.5.1. Non-normative example

Here is a simple example to introduce the feature. It does not touch on all aspects of the feature. The
example has two flows, each of which calls the other, passing parameters. Any view outside of a flow
may navigate to either of the flows, named flow-a and flow-b.

flow-a next_a next_b

Flow_a_Bean

flow-a
 - param1FromFlowB
 - param2FromFlowB taskFlow

Return1

callB
 - param1FromFlowA
 - param2FromFlowA

start

flow-b next_a next_b

Flow_b_Bean taskFlow
Return1

callA
 - param1FromFlowB
 - param2FromFlowB

start

flow-B
 - param1FromFlowA
 - param2FromFlowA

This diagram uses the following conventions.

• view nodes are boxes

• faces flow return nodes are circles

• faces flow call nodes are boxes with the corners chopped off

• @FlowScoped beans are rectangles semi-circular short sides

• the start node is marked “start”

• inbound and outbound parameters are listed by name

• arrows show valid traversals among the nodes.

These flows are identical, except for the names of their constituents, and each has the following
properties.

• Three view nodes, one of which is the implicit start node

• One faces flow return node, each of which returns the outcome “return1”

• One flow call node, which calls the other flow, with two outbound parameters, named to match up
with the other flow

7.5. FlowHandler

188 Jakarta Faces Final

• Two inbound parameters, named to match up with the other flow

The different kinds of nodes mentioned in the preceding discussion are defined in the javadoc for class
jakarta.faces.flow.FlowHandler.

Consider this simple web app, called basic_faces_flow_call.war, containing the above mentioned flows.
The file layout for of the app is shown next. The example is shown using maven war packaging

basic_faces_flow_call/
 pom.xml
 src/main/webapp/
 index.xhtml
 return1.xhtml
 WEB-INF/beans.xml
 flow-a/
 flow-a.xhtml
 next_a.xhtml
 next_b.xhtml
 flow-b/
 flow-b-flow.xml
 next_a.xhtml
 next_b.xhtml
 src/main/java/com/sun/faces/basic_faces_flow_call/
 FlowA.java
 Flow_a_Bean.java
 Flow_b_Bean.java

To complete the example, the execution of the flows is examined. When the application containing
these flows is deployed, the runtime discovers the flow definitions and adds them to the internal flow
data structure. One flow is defined in flow-b-flow.xml. This is an XML file conforming to the Application
Configuration Resources syntax described in Application Configuration Resources. The other flow is
defined in FlowA.java, a class with a method with the @FlowDefinition annotation. When the flow
discovery is complete, an application scoped, thread safe data structure containing the flow definitions
is available from the jakarta.faces.flow.FlowHandler singleton. This data structure is navigable by the
runtime via the jakarta.faces.flow.Flow API.

When the user agent visits http://localhost:8080/basic_faces_flow_call/faces/index.xhtml, they see a page
with two buttons, the actions of which are flow-a, and flow-b, respectively. Clicking either button causes
entry to the corresponding flow. In this case, the user clicks the flow-a button. The @FlowScoped bean
Flow_a_Bean is instantiated by the container and navigation proceeds immediately to the start node, in
this case flow-a.xhtml. The user proceeds directly to click a button taking them to next_a.xhtml, and
then to next_b.xhtml. On that page there is a button whose action is callB. Clicking this button activates
the correspondingly named faces flow call node, which prepares the specified outbound parameters,
de-activates Flow_a_Bean and calls flow-b.

Upon entry to flow-b, the @FlowScoped bean Flow_b_Bean is instantiated by the container, the

7.5. FlowHandler

Final Jakarta Faces 189

http://localhost:8080/basic_faces_flow_call/faces/index.xhtml

outbound parameters from flow-a are matched up with corresponding inbound parameters on flow-b
and navigation proceeds immediately to the start node, in this case flow-b.xhtml. The user proceeds
directly to click a button taking them to next_a.xhtml, and then to next_b.xhtml. On that page there is a
button whose action is taskFlowReturn1. Clicking this button causes Flow_b_Bean to be deactivated and
navigation to the view named return1 to be performed.

7.5.2. Non-normative Feature Overview

The normative requirements of the feature are stated in the context of the part of the specification
impacted. This section gives the reader a non-normative overview of the feature that touches on all the
parts of the specification that intersect with this feature.

Startup Time

At startup time, the runtime will discover flows available for this application. This behavior is
normatively specified in Faces Flows and in the XML schema for the application configuration resources.

Invoke Application Time

The default ActionListener may need to take special action when calling into a flow. This behavior is
normatively specified in ActionListener Property.

The default NavigationHandler implementation must use the FlowHandler during its operation. This
behavior is normatively specified in Default NavigationHandler Algorithm.

7.6. ViewHandler
ViewHandler is the pluggability mechanism for allowing implementations of or applications using the
Jakarta Faces specification to provide their own handling of the activities in the Render Response and
Restore View phases of the request processing lifecycle. This allows for implementations to support
different response generation technologies, as well as different state saving/restoring approaches.

A Jakarta Faces implementation must provide a default implementation of the ViewHandler interface.
See ViewHandler Property for information on replacing this default implementation with another
implementation.

7.6.1. Overview

ViewHandler defines the public APIs described in the following paragraphs

public Locale calculateLocale(FacesContext context);
public String calculateRenderKitId(FacesContext context);

These methods are called from createView() to allow the new view to determine the Locale to be used
for all subsequent requests, and to find out which renderKitId should be used for rendering the view.

7.6. ViewHandler

190 Jakarta Faces Final

public void initView(FacesContext) throws FacesException;
public String calculateCharacterEncoding(FacesContext context);

The initView() method must be called as the first method in the implementation of the Restore View
Phase of the request processing lifecycle, immediately after checking for the existence of the
FacesContext parameter. See the javadocs for this method for the specification.

public String deriveViewId(FacesContext context, String input);

The deriveViewId() method is an encapsulation of the viewId derivation algorithm in previous versions
of the specification. This method looks at the argument input, and the current request and derives the
viewId upon which the lifecycle will be run.

public UIViewRoot createView(FacesContext context, String viewId);

Create and return a new UIViewRoot instance, initialized with information from the specified
FacesContext and view identifier parameters.

If the view being requested is a Facelet view, the createView() method must ensure that the UIViewRoot
is fully populated with all the children defined in the VDL page before createView() returns.

public String getActionURL(FacesContext context, String viewId);

Returns a URL, suitable for encoding and rendering, that (if activated) will cause the Jakarta Faces
request processing lifecycle for the specified viewId to be executed

public String getBookmarkableURL(FacesContext context, String viewId,
 Map<String, List<String>> parameters, boolean includeViewParams);

Return a Jakarta Faces action URL derived from the viewId argument that is suitable to be used as the
target of a link in a Jakarta Faces response. The URL, if activated, would cause the browser to issue an
initial request to the specified viewId

public String getRedirectURL(FacesContext context, String viewId,
 Map<String, List<String>> parameters, boolean includeViewParams);

Return a Jakarta Faces action URL derived from the viewId argument that is suitable to be used by the
NavigationHandler to issue a redirect request to the URL using an initial request.

7.6. ViewHandler

Final Jakarta Faces 191

public String getResourceURL(FacesContext context, String path);

Returns a URL, suitable for encoding and rendering, that (if activated) will retrieve the specified web
application resource.

public void renderView(FacesContext context, UIViewRoot viewToRender)
 throws IOException, FacesException;

This method must be called during the Render Response phase of the request processing lifecycle. It
must provide a valid ResponseWriter or ResponseStream instance, storing it in the FacesContext
instance for the current request (see ResponseStream and ResponseWriter), and then perform
whatever actions are required to cause the view currently stored in the viewRoot of the FacesContext
instance for the current request to be rendered to the corresponding writer or stream. It must also
interact with the associated StateManager (see StateManager), by calling the getSerializedView() and
saveView() methods, to ensure that state information for current view is saved between requests.

public UIViewRoot restoreView(FacesContext context,
 String viewId) throws IOException;

This method must be called from the Restore View phase of the request processing lifecycle. It must
perform whatever actions are required to restore the view associated with the specified FacesContext
and viewId.

It is the caller’s responsibility to ensure that the returned UIViewRoot instance is stored in the
FacesContext as the new viewRoot property. In addition, if restoreView() returns null (because there is
no saved state for this view identifier), the caller must call createView(), and call renderResponse() on
the FacesContext instance for this request.

public void writeState(FacesContext context) throws IOException;

Take any appropriate action to either immediately write out the current view’s state information (by
calling StateManager.writeState()), or noting where state information may later be written. This
method must be called once per call to the encodeEnd() method of any renderer for a UIForm
component, in order to provide the ViewHandler an opportunity to cause saved state to be included
with each submitted form.

public ViewDeclarationLanguage getViewDeclarationLanguage();

See the javadocs for this method for the specification.

7.6. ViewHandler

192 Jakarta Faces Final

public Set<String> getProtectedViewsUnmodifiable();
public void addProtectedView(String urlPattern);
public boolean removeProtectedView(String urlPattern)

See the javadocs for these methods for the specification.

7.6.2. Default ViewHandler Implementation

The terms view identifier and viewId are used interchangeably below and mean the context relative
path to the web application resource that produces the view, such as a Facelets page. In the Facelets
case, this is a context relative path to the XHTML page representing the view, such as /foo.xhtml.

Jakarta Faces implementations must provide a default ViewHandler implementation, along with a
default ViewDeclarationLanguageFactory implementation that vends ViewDeclarationLanguage
implementation designed to support the rendering of Facelets pages containing Jakarta Faces
components. The default ViewHandler is specified in this section and the default
ViewDeclarationLanguage implementation is specified in the following section.

7.6.2.1. ViewHandler Methods that Derive Information From the Incoming Request

The deriveViewId() method must fulfill the following responsibilities:

• If the argument input is null, return null.

• If prefix mapping (such as “/faces/*”) is used for FacesServlet, normalize the viewId according to the
following algorithm, or its semantic equivalent, and return it.

◦ Remove any number of occurrences of the prefix mapping from the viewId. For example, if the
incoming value was /faces/faces/faces/view.xhtml the result would be simply view.xhtml.

• If suffix mapping (such as “*.faces”) is used for FacesServlet, the viewId is set using following
algorithm.

◦ Let requestViewId be the value of argument input.

◦ Consult the javadocs for ViewHandler.FACELETS_VIEW_MAPPINGS_PARAM_NAME and perform
the steps necessary to obtain a value for that param (or its alias as in the javadocs). Let this be
faceletsViewMappings.

◦ Obtain the value of the context initialization parameter named by the symbolic constant
ViewHandler.FACELETS_SUFFIX_PARAM_NAME. (if no such context initialization parameter is
present, use the value of the symbolic constant ViewHandler.DEFAULT_FACELETS_SUFFIX). Let
this be faceletsDefaultSuffixes.

◦ For each entry in the list from faceletsDefaultSuffixes, replace the suffix of requestViewId with
that entry. For discussion, call this candidateViewId. For each entry in faceletsViewMappings, If
the current entry is a prefix mapping entry, skip it and continue to the next entry. If
candidateViewId is exactly equal to the current entry, consider the algorithm complete with the
result being candidateViewId. If the current entry is a wild-card extension mapping, apply it

7.6. ViewHandler

Final Jakarta Faces 193

non-destructively to candidateViewId and look for a physical resource with that name. If
present, consider the algorithm complete with the result being the name of the physical
resource. Otherwise look for a physical resource with the name candidateViewId. If such a
resource exists, consider the algorithm complete with the result being candidateViewId. If there
are no entries in faceletsViewMappings, look for a physical resource with the name
candidateViewId. If such a resource exists, candidateViewId is the correct viewId.

◦ Otherwise, if a physical resource exists with the name requestViewId let that value be viewId.

◦ Otherwise return null.

• If an exact mapping (such as /foo) is used for FacesServlet, the viewId is set using following
algorithm.

◦ Let requestViewId be the value of the argument input.

◦ Obtain the value of the context initialization parameter named by the symbolic constant
ViewHandler.FACELETS_SUFFIX_PARAM_NAME. (if no such context initialization parameter is
present, use the value of the symbolic constant ViewHandler.DEFAULT_FACELETS_SUFFIX). Let
this be faceletsDefaultSuffixes.

◦ For each entry in the list from faceletsDefaultSuffixes, add that current entry to the end of
requestViewId. For discussion, call this candidateViewId. Look for a physical resource with the
name candidateViewId. If such a resource exists, consider the algorithm complete with the
result being candidateViewId.

◦ Otherwise, if a physical resource exists with the name requestViewId let that value be viewId.

◦ Otherwise return null.

• The getViewDeclarationLanguage() must fulfill the following responsibilites.

• See the javadocs for the normative specification for this method.

The deriveLogicalViewId() method is identical to deriveViewId() except that it does not check for the
existence of the resource.

The calculateCharacterEncoding() method must fulfill the following responsibilities:

• Examine the Content-Type request header. If it has a charset parameter extract it and return it.

• If not, test for the existence of a session by calling getSession(false) on the ExternalContext for this
FacesContext. If the session is non-null, look in the Map returned by the getSessionMap() method of
the ExternalContext for a value under the key given by the value of the symbolic constant
jakarta.faces.application.ViewHandler.CHARACTER_ENCODING_KEY. If a value is found, convert it
to a String and return it.

The calculateLocale() method must fulfill the following responsibilities:

• Attempt to match one of the locales returned by the getLocales() method of the ExternalContext
instance for this request, against the supported locales for this application as defined in the
application configuration resources. Matching is performed by the algorithm described in Section

7.6. ViewHandler

194 Jakarta Faces Final

8.3.2 "Resource Bundle Determination Algorithm" of the Jakarta Standard Tag Library Specification
Document. If a match is found, return the corresponding Locale object.

• Otherwise, if the application has specified a default locale in the application configuration
resources, return the corresponding Locale object.

• Otherwise, return the value returned by calling Locale.getDefault().

The calculateRenderKitId() method must fulfill the following responsibilities:

• Return the value of the request parameter named by the symbolic constant
ResponseStateManager.RENDER_KIT_ID_PARAM if it is not null.

• Otherwise, return the value returned by Application.getDefaultRenderKitId() if it is not null.

• Otherwise, return the value specified by the symbolic constant
RenderKitFactory.HTML_BASIC_RENDER_KIT.

7.6.2.2. ViewHandler Methods that are Called to Fill a Specific Role in the Lifecycle

The createView() method must obtain a reference to the ViewDeclarationLanguage for this viewId and
call its ViewDeclarationLanguage.createView() method, returning the result and not swallowing any
exceptions thrown by that method.

The initView() method must fulfill the following responsibilities:

• See the javadocs for this method for the specification.

The renderView() method must obtain a reference to the ViewDeclarationLanguage for the viewId of the
argument viewToRender and call its ViewDeclarationLanguage.restoreView() method, returning the
result and not swallowing any exceptions thrown by that method.

The restoreView() method must obtain a reference to the ViewDeclarationLanguage for the viewId of
the argument viewToRender and call its ViewDeclarationLanguage.restoreView() method, returning the
result and not swallowing any exceptions thrown by that method.

The writeState() method must fulfill the following responsibilities:

• Obtain the saved state stored in a thread-safe manner during the invocation of renderView() and
pass it to the writeState() method of the StateManager for this application.

7.6.2.3. ViewHandler Methods Relating to Navigation

The getActionURL() method must fulfill the following responsibilities:

• If the specified viewId does not start with a “/”, throw IllegalArgumentException.

• If exact mapping (such as /foo) is used for FacesServlet, the following algorithm must be followed to
derive the result.

◦ Retrieve the collection of existing mappings of the FacesServlet, e.g. using

7.6. ViewHandler

Final Jakarta Faces 195

ServletRegistration#getMappings(). Let this be facesServletMappings. If the argument viewId has
an extension, then obtain the value of the context initialization parameter named by the
symbolic constant ViewHandler.FACELETS_SUFFIX_PARAM_NAME. (if no such context
initialization parameter is present, use the value of the symbolic constant
ViewHandler.DEFAULT_FACELETS_SUFFIX). Let this be faceletsDefaultSuffixes.

◦ For each entry in the list from faceletsDefaultSuffixes, if the extension of the argument viewId is
equal to this entry, remove the extension from viewId. For discussion, call this candidateViewId.

◦ Look if the candidateViewId is present in facesServletMappings. If so,the result is contextPath
candidateViewId.

◦ If the argument viewId has no extension, then look if the viewId is present in
facesServletMappings. If so, the result is contextPath + viewId.

◦ If no result has been obtained, pick any prefix mapping or extension mapping from
facesServletMappings. If no such mapping is found, throw an IllegalStateException.

◦ If such mapping is found remove the "*" character from that mapping, take that as the new
mapping and continue with evaluating this mapping as specified below for "if prefix mapping
[…] is used" and for "if suffix mapping […] is used

• If prefix mapping (such as “/faces/*”) is used for FacesServlet, prepend the context path of the
current application, and the specified prefix, to the specified viewId and return the completed
value. For example “/cardemo/faces/chooseLocale.xhtml”.

• If suffix mapping (such as “*.faces”) is used for FacesServlet, the following algorithm must be
followed to derive the result.

◦ If the argument viewId has no extension, the result is contextPath + viewId + mapping, where
contextPath is the context path of the current application, viewId is the argument viewId and
mapping is the value of the mapping (such as “*.faces”).

◦ If the argument viewId has an extension, and this extension is not mapping, the result is
contextPath
viewId.substring(0, period) + mapping.

◦ If the argument viewId has an extension, and this extension is mapping, the result is contextPath
+ viewId. For example “/cardemo/chooseLocale.faces”

• If the current view is one of the views to which view protection must be applied, the returned URL
must contain the parameter with a name equal to the value of the constant defined by
ResponseStateManager.NON_POSTBACK_VIEW_TOKEN_PARAM. The value of this parameter must
be the return value from a call to
ResponseStateManager.getCryptographicallyStrongTokenFromSession(). This parameter is inspected
during the restore view phase (see Restore View).

The getBookmarkableURL() method must fulfill the following responsibilities:

• If argument includeViewParams is true, obtain the view paramaters corresponding to the argument
viewId and append them to the Map given in argument parameters. Let the resultant Map be called
paramsToEncode.

7.6. ViewHandler

196 Jakarta Faces Final

◦ If the viewId of the current FacesContext is not equal to the argument viewId, get the
ViewDeclarationLanguage for the argument viewId, obtain its ViewMetadata, call
createMetadataView() on it, then call ViewMetadata.getViewParameters() passing the return
from createMetadataView(). Let the result of this method be toViewParams.

◦ If the viewId of the current FacesContext is equal to the argument viewId, call
ViewMetadata.getViewParameters() passing the current UIViewRoot. Let the result of this
method be toViewParams.

◦ If toViewParams is empty, take no further action to add view parameters to this URL. Iterate
over each UIViewParameter element in toViewParams and take the following actions on each
element.

◦ If the Map given by parameters has a key equal to the name property of the current element,
take no action on the current element and continue iterating.

◦ If the current UIViewParameter has a ValueExpression under the key “value” (without the
quotes), let value be the result of calling getStringValueFromModel() on the current
UIViewParameter.

◦ Otherwise, if the current viewId is the same as the argument viewId, let value be the result of
calling getStringValue() on the current UIViewParameter.

◦ Otherwise, if the current viewId is different from the argument viewId, locate the
UIViewParameter instance in the current view whose name is equivalent to the current element
and let value be the result of calling getStringValue() on the located UIViewParameter.

◦ If the above steps yielded a non-null value, find the List<String> value in the parameters map
under the key given by the name property of the current UIViewParameter element. If such a
List exists, add value to it. Otherwise create a List<String>, add value to it, and add it to the
parameters map under the appropriate key.

• If argument includeViewParams is false, take no action to add additional entries to paramaters. Let
paramsToEncode be parameters.

• Call getActionURL() on the argument viewId. Let the result be actionEncodedViewId.

• Call encodeBookmarkableURL() on the current ExternalContext, passing actionEncodedViewId as the
first argument and paramsToEncode as the second. Let the result be bookmarkEncodedURL.

• Pass bookmarkEncodedURL to ExternalContext.encodeActionURL() and return the result.

The getRedirectURL() method must fulfill the following responsibilities:

• Take exactly the same action as in getBookmarkableURL() up to and including the call to
getActionURL(). Thereafter take the following actions.

• Call encodeRedirectURL() on the current ExternalContext, passing actionEncodedViewId as the first
argument and paramsToEncode as the second. Let the result be redirectEncodedURL.

• Pass redirectEncodedURL to ExternalContext.encodeActionURL() and return the result.

The getResourceURL() method must fulfill the following responsibilities:

7.6. ViewHandler

Final Jakarta Faces 197

• If the specified path starts with a “/”, prefix it with the context path for the current web application,
and return the result.

• Otherwise, return the specified path value unchanged.

7.6.2.4. ViewHandler Methods that relate to View Protection

• See the javadocs for addProtectedView() for the normative specification.

• See the javadocs for removeProtectedView() for the normative specification.

• See the javadocs for getProtectedViewsUnmodifiable() for the normative specification.

See the View Protection section within Restore View for the normative specification of this feature.

7.7. ViewDeclarationLanguage
To support the introduction of Facelets into the version 2 of the core specification, whilst preserving
backwards compatibility with Jakarta Server Pages applications used with version 1 of the
specification, the concept of the View Declaration Language was formally introduced in version 2 of the
specification. A View Declaration Language (VDL) is a syntax used to declare user interfaces comprised
of instances of Jakarta Faces UIComponents. Under this definition, Facelets is an example of an
implementation of a VDL. Historically, Jakarta Server Pages was another example of an
implementation of a VDL, but this has been deprecated in version 2 of the specification and removed
in version 4 of the specification. Any of the responsibilities of the ViewHandler that specifically deal
with the VDL sub-system are now the domain of the VDL implementation. These responsibilities are
defined on the ViewDeclarationLanguage class.

The Facelets specific implementation is further detailed in Specification of the
ViewDeclarationLanguage Implementation for Facelets for Jakarta Faces.

7.7.1. ViewDeclarationLanguageFactory

ViewDeclarationLanguageFactory is a factory object that creates (if needed) and returns a new
ViewDeclarationLanguage instance based on the VDL found in a specific view.

The factory mechanism specified in FactoryFinder and the decoration mechanism specified in
Delegating Implementation Support are used to allow decoration or replacement of the
ViewDeclarationLanguageFactory.

public ViewDeclarationLanguage getViewDeclarationLanguage(String viewId)

Return the ViewDeclarationLanguage instance suitable for handling the VDL contained in the page
referenced by the argument viewId. The default implementation must return a valid
ViewDeclarationLanguage instance for views written in Facelets. Whether the instance returned is the
same for a Facelet view or another VDL is an implementation detail.

7.7. ViewDeclarationLanguage

198 Jakarta Faces Final

7.7.2. Default ViewDeclarationLanguage Implementation

For each of the methods on ViewDeclarationLanguage, the required behavior is broken into three
segments:

• Behavior required of all compliant implementations

• Behavior required of the implementation that handles Facelet views

Any implementation strategy is valid as long as these requirements are met.

7.7.2.1. ViewDeclarationLanguage.createView()

public UIViewRoot createView(FacesContext context, String viewId)

The createView() method must fulfill the following responsibilities.

• If there is an existing UIViewRoot available on the FacesContext, this method must copy its locale
and renderKitId to this new view root. If not, this method must call calculateLocale() and
calculateRenderKitId(), and store the results as the values of the locale and renderKitId, properties,
respectively, of the newly created UIViewRoot.

• If no viewId could be identified, or the viewId is exactly equal to the servlet mapping, send the
response error code SC_NOT_FOUND with a suitable message to the client.

• Create a new UIViewRoot object instance using
Application.createComponent(UIViewRoot.COMPONENT_TYPE).

• Pass the argument viewId to the setViewId() method on the new UIViewRoot instance.

• The new UIViewRoot instance must be passed to FacesContext.setViewRoot(). This enables the
broadest possible range of implementations for how tree creation is actually implemented.

• Call calculateResourceLibraryContracts(), passing the argument viewId, and unconditionally set the
result as the resourceLibraryContracts property on the FacesContext. The implementation must
obtain the ViewDeclarationLanguage reference on which to invoke
calculateResourceLibraryContracts() from the ViewHandler. This ensures the methods can be
correctly decorated.

• Return the newly created UIViewRoot.

7.7.2.2. ViewDeclarationLanguage.calculateResourceLibraryContracts()

public List<String> calculateResourceLibraryContracts(
 FacesContext context, String viewId)

The implementation must examine the resource library contracts data structure, which was populated
as specified in Resource Library Contracts, and find the <contract-mapping> element that matches the

7.7. ViewDeclarationLanguage

Final Jakarta Faces 199

argument viewId. When processing the nested <url-pattern> matches must be made using the following
rules in this order.

1. An exact match.

2. The longest match

3. The value * matches all incoming viewIds

The value returned from this method is the list whose contents are taken from the contracts attribute
of the matching <contract-mapping> element.

7.7.2.3. ViewDeclarationLanguage.buildView()

public void buildView(FacesContext context, UIComponent root)

The buildView() method must fulfill the following responsibilities.

• The implementation must guarantee that the page is executed in such a way that the UIComponent
tree described in the VDL page is completely built and populated, rooted at the new UIViewRoot
instance created previously.

• The runtime must guarantee that the view must be fully populated before the afterPhase() method
of any PhaseListeners attached to the application or to the UIViewRoot (via
UIViewRoot.setAfterPhaseListener() or UIViewRoot.addPhaseListener()) are called.

• The implementation must guarantee the markup comprising the view is executed with the
UIComponent instances in the view being encountered in the same depth-first order as in other
lifecycle methods defined on UIComponent, and added to the view (but not rendered at this time),
during the traversal. .

7.7.2.4. ViewDeclarationLanguage.getComponentMetadata()

public BeanInfo getComponentMetadata(
 FacesContext context, Resource componentResource)

The getComponentMetadata() method must fulfill the following responsibilities:

• Return a reference to the component metadata for the composite component represented by the
argument componentResource, or null if the metadata cannot be found. The implementation may
share and pool what it ends up returning from this method to improve performance.

• Support argument componentResource being a Facelet markup file that is to be interpreted as a
composite component as specified in Composite Component Metadata.

7.7. ViewDeclarationLanguage

200 Jakarta Faces Final

7.7.2.5. ViewDeclarationLanguage.getViewMetadata() and getViewParameters()

public ViewMetadata getViewMetadata(FacesContext context, String viewId)

The getViewMetadata() method must fulfill the following responsibilities:

• Return a reference to the view metadata for the view represented by the argument viewId, or null if
the metadata cannot be found. The implementation may share and pool what it ends up returning
from this method to improve performance.

• The implementation must support argument viewId being a Facelet markup file from which the
view metadata should be extracted.

ViewMetadata Contract

public UIViewRoot createMetadataView()

The content of the metadata is provided by the page author as a special <f:facet/> of the UIViewRoot.
The name of this facet is given by the value of the symbolic constant
UIViewRoot.METADATA_FACET_NAME. The UIViewRoot return from this method must have that facet,
and its children as its only children. This facet may contain <f:viewParameter> or <f:viewAction>
children. Each such element is the metadata will cause a UIViewParameter or UIViewAction
(respectively) to be added to the view. Because UIViewParameter extends UIInput it is valid to attach
any of the kinds of attached objects to an <f:viewParameter> that are valid for any element that
represents any other kind of UIInput in the view. Because UIViewAction implements ActionSource2, it is
valid to attach any of the kinds of attached objects to an <f:viewAction> that are valid for any element
that represents any other kind of ActionSource2 in the view.

public Collection<UIViewParameter> getViewParameters(UIViewRoot root)

Convenience method that uses the view metadata specification above to obtain the
List<UIViewParameter> for the argument viewId.

7.7.2.6. ViewDeclarationLanguage.getScriptComponentResource()

public Resource getScriptComponentResource(
 FacesContext context, Resource componentResource)

The getScriptComponentResource() method must fulfill the following responsibilities:

• Take implementation specific action to discover a Resource given the argument
componentResource. The returned Resource if non-null, must point to a script file that can be turned
into something that extends UIComponent and implements NamingContainer.

7.7. ViewDeclarationLanguage

Final Jakarta Faces 201

7.7.2.7. ViewDeclarationLanguage.renderView()

public void renderView(FacesContext context, String viewId)

The renderView() method must fulfill the following responsibilities:

• Return immediately if calling isRendered() on the argument UIViewRoot returns false.

• Call saveView() on the StateManager for this application, saving the result in a thread-safe manner
for use in the writeState() method of ViewHandler.

• Call startDocument() on the ResponseWriter.

• Call encodeAll() on the UIViewRoot.

• Call endDocument() on the ResponseWriter.

• Close the writer used to write the response.

7.7.2.8. ViewDeclarationLanguage.restoreView()

public UIViewRoot restoreView(FacesContext context, String viewId)

The restoreView() method must fulfill the following responsibilities:

• Call ResponseStateManager.isStateless(). If the result is false,

◦ If no viewId could be identified, return null.

◦ Call the restoreView() method of the associated StateManager, passing the FacesContext instance
for the current request and the calculated viewId, and return the returned UIViewRoot, which
may be null.

• Otherwise, take the following steps and return.

◦ Obtain a reference to the ViewDeclarationLanguage from the ViewDeclarationLanguageFactory.
This is necessary to allow for proper decoration. It is not acceptable to simply use the java
language this keyword.

◦ Call createView() on the ViewDeclarationLanguage instance, passing the context and viewId
arguments. Let viewRoot be the result.

◦ Call FacesContext.setViewRoot(viewRoot).

◦ Call buildView() on the ViewDeclarationLanguage, passing the context and viewRoot.

◦ Return the viewRoot.

7.8. StateManager
StateManager directs the process of saving and restoring the view between requests. The StateManager

7.8. StateManager

202 Jakarta Faces Final

instance for an application is retrieved from the Application instance, and therefore cannot know any
details of the markup language created by the RenderKit being used to render a view. Therefore, the
StateManager utilizes a helper object (see ResponseStateManager), that is provided by the RenderKit
implementation, and is therefore aware of the markup language details. The Jakarta Faces
implementation must provide a default StateManager implementation that supports the behavior
described below.

7.8.1. Overview

Conceptually, the state of a view can be divided into two pieces:

• Tree Structure. This includes component parent-child relationships, including facets.

• Component State. This includes:

◦ Component attributes and properties, and

◦ Validators, Converters, FacesListeners, and other objects attached to a component. The manner
in which these attached objects are saved is up to the component implementation. For attached
objects that may have state, the StateHolder interface (see StateHolder) is provided to allow
these objects to preserve their own attributes and properties. If an attached object does not
implement StateHolder, but does implement Serializable, it is saved using standard
serialization. Attached objects that do not implement either StateHolder or Serializable must
have a public, zero-arg constructor, and will be restored only to their initial, default object state
[7].

It is beneficial to think of this separation between tree structure and tree state to allow the possibility
that implementations can use a different mechanism for persisting the structure than is used to persist
the state. For example, in a system where the tree structure is stored statically, as an XML file, for
example, the system could keep a DOM representation of the trees representing the webapp UI in
memory, to be used by all requests to the application.

7.8.1.1. Stateless Views

Version 2.2 of the specification adds support for stateless views. In such a view, the UIComponent state
for the components is not saved. This feature must be used with full awareness of the statefulness
requirements of the components in the view. If a component requires state to operate correctly, it must
not be used in a stateless view. Furthermore, it is not required that @ViewScoped managed beans work
at all with stateless views.

To mark a view as stateless, the existing transient property from UIComponent is exposed to the view
author by means of the transient attribute on the <f:view> tag from the Faces Core tag library. The
following spec sections contain more normative requirements for stateless views.

• The VDLDocs for the <f:view> tag.

• The javadocs for ResponseStateManager.writeState(FacesContext, Object)

• The javadocs for ResponseStateManager.isStateless(FacesContext)

7.8. StateManager

Final Jakarta Faces 203

• The specification of ViewDeclarationLanguage.restoreView()

• The javadocs for jakarta.faces.view.ViewScoped

• The javadocs for jakarta.faces.bean.ViewScoped

7.8.2. State Saving Alternatives and Implications

Jakarta Faces implementations support two primary mechanisms for saving state, based on the value
of the jakarta.faces.STATE_SAVING_METHOD initialization parameter (see Application Configuration
Parameters). The possible values for this parameter give a general indication of the approach to be
used, while allowing Jakarta Faces implementations to innovate on the technical details:

• client —Cause the saved state to be included in the rendered markup that is sent to the client (such
as in a hidden input field for HTML). The state information must be included in the subsequent
request, making it possible for Jakarta Faces to restore the view without having saved information
on the server side. It is advisable that this information be encrypted and tamper evident, since it is
being sent down to the client, where it may persist for some time.The default implementation
Serializes the view in client mode.

• server Cause the saved state to be stored on the server in between requests. Implementations that
wish to enable their saved state to fail over to a different container instance must keep this in mind
when implementing their server side state saving strategy. Serializing the view in server mode is
optional but must be possible by setting the context-param jakarta.faces.SERIALIZE_SERVER_STATE
to true. In the server mode, this serialized view is stored in the session and a unique key to retrieve
the view is sent down to the client. By storing the serialized view in the session, failover may
happen using the usual mechanisms provided by the container.

Serializable in the preceding text means the values of all component attributes and properties (as well
as the saved state of attached objects) must implement java.io.Serializable such that if the aggregate
saved state were written to an ObjectOutputStream, a NotSerializableException would not be thrown.

7.8.3. State Saving Methods.

public Object saveView(FacesContext context);

This method causes the tree structure and component state of the view contained in the argument
FacesContext to be collected, stored, and returned in a java.lang.Object instance that must implement
java.io.Serializable. If null is returned from this method, there is no state to save.

The returned object must represent the entire state of the view, such that a request processing lifecycle
can be run against it on postback. Special care must be taken to guarantee that objects attached to
component instances, such as listeners, converters, and validators, are also saved. The StateHolder
interface is provided for this reason.

This method must also enforce the rule that component ids within a NamingContainer must be unique

7.8. StateManager

204 Jakarta Faces Final

public void writeState(FacesContext context, Object state)
 throws IOException;

Save the state represented in the specified Object instance, in an implementation dependent manner.

7.8.4. State Restoring Methods

public UIViewRoot restoreView(FacesContext context, String viewId);

Restore the tree structure and the component state of the view for this viewId to be restored, in an
implementation dependent manner. If there is no saved state information available for this viewId, this
method returns null.

The default implementation of this method calls through to restoreTreeStructure() and, if necessary
restoreComponentState().

7.8.5. Convenience Methods

public boolean isSavingStateInClient(FacesContext context);

Return true if and only if the value of the ServletContext init parameter named by the value of the
constant StateManager.STATE_SAVING_METHOD_PARAM_NAME is equal to the value of the constant
STATE_SAVING_METHOD_CLIENT. Return false otherwise.

public String getViewState(FacesContext context);

Return the current view state as a String. This method must call ResposeStateManger.getViewState.
Refer to ResponseStateManager for more details.

7.9. ResourceHandler
The normative specification for this class is in the javadoc for
jakarta.faces.application.ResourceHandler. See also Resource Handling.

public ResourceHandler getResourceHandler();
public void setResourceHandler(ResourceHandler impl);

7.9. ResourceHandler

Final Jakarta Faces 205

Chapter 8. Rendering Model
Jakarta Faces supports two programming models for decoding component values from incoming
requests, and encoding component values into outgoing responses - the direct implementation and
delegated implementation models. When the direct implementation model is utilized, components must
decode and encode themselves. When the delegated implementation programming model is utilized,
these operations are delegated to a Renderer instance associated (via the rendererType property) with
the component. This allows applications to deal with components in a manner that is predominantly
independent of how the component will appear to the user, while allowing a simple operation
(selection of a particular RenderKit) to customize the decoding and encoding for a particular client
device or localized application user.

Component writers, application developers, tool providers, and Jakarta Faces implementations will
often provide one or more RenderKit implementations (along with a corresponding library of Renderer
instances). In many cases, these classes will be provided along with the UIComponent classes for the
components supported by the RenderKit. Page authors will generally deal with RenderKits indirectly,
because they are only responsible for selecting a render kit identifier to be associated with a particular
page, and a rendererType property for each UIComponent that is used to select the corresponding
Renderer.

8.1. RenderKit
A RenderKit instance is optionally associated with a view, and supports components using the delegated
implementation programming model for the decoding and encoding of component values. It also
supports Behavior instances for the rendering of client side behavior and decoding for queuing
BehaviorEvents. Refer to Component Behavior Model for more details about this feature. Each Jakarta
Faces implementation must provide a default RenderKit instance (named by the render kit identifier
associated with the String constant RenderKitFactory.HTML_BASIC_RENDER_KIT as described below)
that is utilized if no other RenderKit is selected.

public Renderer getRenderer(String family, String rendererType);

Return the Renderer instance corresponding to the specified component family and rendererType (if
any), which will typically be the value of the rendererType property of a UIComponent about to be
decoded or encoded

public ClientBehaviorRenderer getClientBehaviorRenderer(String type);

Return the ClientBehaviorRenderer instance corresponding to the specified behavior type.

8.1. RenderKit

206 Jakarta Faces Final

public void addRenderer(String family,
 String rendererType, Renderer renderer);

public void addClientBehaviorRenderer(String type,
 ClientBehaviorRenderer renderer);

public Iterator<String> getClientBehaviorRendererTypes();

Applications that wish to go beyond the capabilities of the standard RenderKit that is provided by every
Jakarta Faces implementation may either choose to create their own RenderKit instances and register
them with the RenderKitFactory instance (see RenderKitFactory), or integrate additional (or
replacement) supported Renderer instances into an existing RenderKit instance. For example, it will be
common for an application that requires custom component classes and Renderers to register them
with the standard RenderKit provided by the Jakarta Faces implementation, at application startup time
See Example Application Configuration Resource for an example of a faces-config.xml configuration
resource that defines two additional Renderer instances to be registered in the default RenderKit.

public ResponseWriter createResponseWriter(Writer writer,
 String contentTypeList, String characterEncoding);

Use the provided Writer to create a new ResponseWriter instance for the specified character encoding.

The contentTypeList parameter is an "Accept header style" list of content types for this response, or null
if the RenderKit should choose the best fit. The RenderKit must support a value for the contentTypeList
argument that comes straight from the Accept HTTP header, and therefore requires parsing according
to the specification of the Accept header. Please see Section 14.1 of RFC 2616 (the HTTP 1.1 RFC) for the
specification of the Accept header.

Implementors are advised to consult the getCharacterEncoding() method of class
jakarta.faces.servlet.ServletResponse to get the required value for the characterEncoding parameter for
this method. Since the Writer for this response will already have been obtained (due to it ultimately
being passed to this method), we know that the character encoding cannot change during the
rendering of the response. Please see ResponseWriter

public ResponseStream createResponseStream(OuputStream out);

Use the provided OutputStream to create a new ResponseStream instance.

public ResponseStateManager getResponseStateManager();

8.1. RenderKit

Final Jakarta Faces 207

Return an instance of ResponseStateManager to handle rendering technology specific state
management decisions..

public Iterator<String> getComponentFamilies();
public Iterator<String> getRendererTypes(String componentFamily);

The first method returns an Iterator over the component-family entries supported by this RenderKit.
The second one can be used to get an Iterator over the renderer-type entries for each of the component-
family entries returned from the first method.

8.2. Renderer
A Renderer instance implements the decoding and encoding functionality of components, during the
Apply Request Values and Render Response phases of the request processing lifecycle, when the
component has a non-null value for the rendererType property.

public void decode(FacesContext context, UIComponent component);

For components utilizing the delegated implementation programming model, this method will be called
during the apply request values phase of the request processing lifecycle, for the purpose of converting
the incoming request information for this component back into a new local value. See the API
reference for the Renderer.decode() method for details on its responsibilities.

public void encodeBegin(FacesContext context,
 UIComponent component) throws IOException;

public void encodeChildren(FacesContext context,
 UIComponent component) throws IOException;

public void encodeEnd(FacesContext context,
 UIComponent component) throws IOException;

For components utilizing the delegated implementation programming model, these methods will be
called during the Render Response phase of the request processing lifecycle. These methods have the
same responsibilities as the corresponding encodeBegin(), encodeChildren(), and encodeEnd() methods
of UIComponent (described in Component Specialization Methods and the corresponding Javadocs)
when the component implements the direct implementation programming model.

public String convertClientId(FacesContext context, String clientId);

Converts a component-generated client identifier into one suitable for transmission to the client.

8.2. Renderer

208 Jakarta Faces Final

public boolean getRendersChildren();

Return a flag indicating whether this Renderer is responsible for rendering the children of the
component it is asked to render.

public Object getConvertedValue(FacesContext context,
 UIComponent component, Object submittedValue) throws ConverterException;

Attempt to convert previously stored state information into an object of the type required for this
component (optionally using the registered Converter for this component, if there is one). If conversion
is successful, the new value should be returned from this method; if not, a ConverterException should
be thrown.

A Renderer may listen for events using the ListenerFor annotation. Refer to the Javadocs for the
ListenerFor class for more details.

8.3. ClientBehaviorRenderer
A ClientBehaviorRenderer instance produces client side behavior for components in the form of script
content. It also participates in decoding and as such has the ability to enqueue server side
BehaviorEvents.

public String getScript(ClientBehaviorContext behaviorContext,
 ClientBehavior behavior);

Produce the script content that performs the client side behavior. This method is called during the
Render Response phase of the request processing lifecycle.

public void decode(FacesContext context,
 UIComponent component, ClientBehavior behavior);

This method will be called during the apply request values phase of the request processing lifecycle, for
the primary purpose of enqueuing BehaviorEvents. All client behavior renderer implementations must
extend from the ClientBehaviorRenderer interface.

8.3.1. ClientBehaviorRenderer Registration

ClientBehaviorRenderer implementations may be registered in the Jakarta Faces faces-config.xml or
with an annotation.

8.3. ClientBehaviorRenderer

Final Jakarta Faces 209

XML Registration

<render-kit>
 <render-kit-id>HTML_BASIC</render-kit-id>
 <client-behavior-renderer>
 <client-behavior-renderer-type>
 custom.behavior.Greet
 </client-behavior-renderer-type>
 <client-behavior-renderer-class>
 greet.GreetRenderer
 </client-behavior-renderer-class>
 </client-behavior-renderer>
 ...

Registration By Annotation

Jakarta Faces provides the jakarta.faces.render.FacesBehaviorRenderer annotation.

@FacesClientBehaviorRenderer(value="Hello")
public class YourRenderer extends ClientBehaviorRenderer {
 ...
}

8.4. ResponseStateManager
ResponseStateManager is the helper class to jakarta.faces.application.StateManager that knows the
specific rendering technology being used to generate the response. It is a singleton abstract class. This
class knows the mechanics of saving state, whether it be in hidden fields, session, or some combination
of the two.

public Object getState(FacesContext context);

Please see the javadoc for this method for the normative specification.

public void writeState(FacesContext context, Object state)
 throws IOException;

Please see the javadoc for this method for the normative specification.

public boolean isPostback(FacesContext context);

Return true if the current request is a postback. The default implementation returns true if this

8.4. ResponseStateManager

210 Jakarta Faces Final

ResponseStateManager instance wrote out state on a previous request to which this request is a
postback. Return false otherwise.

public String getViewState(FacesContext context);

Return the view state as a String without any markup related to the rendering technology supported by
this ResponseStateManager.

8.5. RenderKitFactory
A single instance of jakarta.faces.render.RenderKitFactory must be made available to each Jakarta
Faces-based web application running in a servlet or portlet container. The factory instance can be
acquired by Jakarta Faces implementations, or by application code, by executing

RenderKitFactory factory = (RenderKitFactory)
 FactoryFinder.getFactory(FactoryFinder.RENDER_KIT_FACTORY);

The RenderKitFactory implementation class supports the following methods:

public RenderKit getRenderKit(FacesContext context, String renderKitId);

Return a RenderKit instance for the specified render kit identifier, possibly customized based on the
dynamic characteristics of the specified, (yet possibly null) FacesContext. For example, an
implementation might choose a different RenderKit based on the “User-Agent” header included in the
request, or the Locale that has been established for the response view. Note that applications which
depend on this feature are not guaranteed to be portable across Jakarta Faces implementations.

Every Jakarta Faces implementation must provide a RenderKit instance for a default render kit
identifier that is designated by the String constant RenderKitFactory.HTML_BASIC_RENDER_KIT.
Additional render kit identifiers, and corresponding instances, can also be made available.

public Iterator<String> getRenderKitIds();

This method returns an Iterator over the set of render kit identifiers supported by this factory. This set
must include the value specified by RenderKitFactory.HTML_BASIC_RENDER_KIT.

public void addRenderKit(String renderKitId, RenderKit renderKit);

Register a RenderKit instance for the specified render kit identifier, replacing any previous RenderKit
registered for that identifier.

8.5. RenderKitFactory

Final Jakarta Faces 211

8.6. Standard HTML RenderKit Implementation
To ensure application portability, all Jakarta Faces implementations are required to include support for
a RenderKit, and the associated Renderers, that meet the requirements defined in this section, to
generate textual markup that is compatible with HTML Living Standard. Jakarta Faces implementors,
and other parties, may also provide additional RenderKit libraries, or additional Renderers that are
added to the standard RenderKit at application startup time, but applications must ensure that the
standard Renderers are made available for the web application to utilize them.

The required behavior of the standard HTML RenderKit is specified in a set of external HTML pages
that accompany this specification, entitled “The Standard HTML RenderKit”. The behavior described in
these pages is normative, and are required to be fulfilled by all implementations of Jakarta Faces.

8.7. The Concrete HTML Component Classes
For each valid combination of UIComponent subclass and standard renderer given in the previous
section, there is a concrete class in the package jakarta.faces.component.html package. Each class in
this package is a subclass of an corresponding class in the jakarta.faces.component package, and adds
strongly typed JavaBeans properties for all of the renderer-dependent properties. These classes also
implement the BehaviorHolder interface, enabling them to have Behavior attached to them. Refer to
Component Behavior Model for additional details.

Table 7. Concrete HTML Component Classes

jakarta.faces.component
class

renderer-type jakarta.faces.component.html
class

UICommand jakarta.faces.Button HtmlCommandButton

UICommand jakarta.faces.Link HtmlCommandLink

UIData jakarta.faces.Table HtmlDataTable

UIForm jakarta.faces.Form HtmlForm

UIGraphic jakarta.faces.Image HtmlGraphicImage

UIInput jakarta.faces.Hidden HtmlInputHidden

UIInput jakarta.faces.Secret HtmlInputSecret

UIInput jakarta.faces.Text HtmlInputText

UIInput jakarta.faces.Textarea HtmlInputTextarea

UIMessage jakarta.faces.Message HtmlMessage

UIMessages jakarta.faces.Messages HtmlMessages

UIOutput jakarta.faces.Format HtmlOutputFormat

UIOutput jakarta.faces.Label HtmlOutputLabel

8.6. Standard HTML RenderKit Implementation

212 Jakarta Faces Final

jakarta.faces.component
class

renderer-type jakarta.faces.component.html
class

UIOutput jakarta.faces.Link HtmlOutputLink

UIOutput jakarta.faces.Text HtmlOutputText

UIOutcomeTarget jakarta.faces.Link HtmlOutcomeTargetLink

UIOutcomeTarget jakarta.faces.Button HtmlOutcomeTargetButton

UIPanel jakarta.faces.Grid HtmlPanelGrid

UIPanel jakarta.faces.Group HtmlPanelGroup

UISelectBoolean jakarta.faces.Checkbox HtmlSelectBooleanCheckbox

UISelectMany jakarta.faces.Checkbox HtmlSelectManyCheckbox

UISelectMany jakarta.faces.Listbox HtmlSelectManyListbox

UISelectMany jakarta.faces.Menu HtmlSelectManyMenu

UISelectOne jakarta.faces.Listbox HtmlSelectOneListbox

UISelectOne jakarta.faces.Menu HtmlSelectOneMenu

UISelectOne jakarta.faces.Radio HtmlSelectOneRadio

As with the standard components in the jakarta.faces.component package, each HTML component
implementation class must define a static public final String constant named COMPONENT_TYPE,
whose value is “jakarta.faces”. concatenated with the class name. HTML components, however, must
not define a COMPONENT_FAMILY constant, or override the getFamily() method they inherit from their
superclass.

8.7. The Concrete HTML Component Classes

Final Jakarta Faces 213

Chapter 9. Standard Tag Libraries
This chapter describes the Standard Tag Libraries required by Jakarta Faces. This support is enabled by
providing standard tags so that a Jakarta Faces user interface can be easy defined in a view by adding
tags corresponding to Jakarta Faces UI components. Standard tags provided by a Jakarta Faces
implementation may be mixed with and tags from other libraries, as well as template text for layout, in
the same view.

Any Jakarta Faces implementation that claims compliance with this specification must include a
complete Facelets implementation of the Standard Tag Libraries, and expose this implementation to
the runtime of any Jakarta Faces application. Jakarta Faces applications, however, need not use
Facelets as their View Declaration Language (VDL). In fact, a Jakarta Faces application is free to use
whatever technology it likes for its VDL, as long as that VDL itself complies with the Jakarta Faces
specification.

Facelets is specified in Facelets and its use in Web Applications.

The exact meaning of the term “page” is dependent on the VDL being used. In case of Facelets, that is
usually the physical XHTML file representing the source code containing the declaration of the tags, or
a class extending from jakarta.faces.view.facelets.Facelet having the @View annotation.

The term “view” represents the Jakarta Faces component tree hierarchy, as available by
FacesContext.getViewRoot(), that represent the components created by the tags declared on the pages.

9.1. UIComponent Tags
A tag for a Jakarta Faces UIComponent is constructed by combining properties and attributes of a Java
UI component class with the rendering attributes supported by a specific Renderer from a concrete
RenderKit. For example, assume the existence of a concrete RenderKit, HTMLRenderKit, which supports
three Renderer types for the UIInput component:

Table 8. Example Renderer Types

RendererType Render-Dependent Attributes

“Text” “size”

“Secret” “size”, “secretChar”

“Textarea” “size”, “rows”

The tag library descriptor file for the corresponding tag library, then, would define three tags—one per
Renderer type. Below is an example of a portion of the tag definition for the inputText tag in the Facelet
Taglib syntax [8]:

9.1. UIComponent Tags

214 Jakarta Faces Final

<tag>
 <tag-name>inputText</tag-name>
 <component>
 <component-type>HtmlInputText</component-type>
 <renderer-type>Text</renderer-type>
 </component>

 <attribute>
 <name>id</name>
 <required>false</required>
 <type>java.lang.String</type>
 </attribute>

 <attribute>
 <name>id</name>
 <required>false</required>
 <type>java.lang.Object</type>
 </attribute>

 <attribute>
 <name>size</name>
 <required>false</required>
 <type>java.lang.Integer</type>
 </attribute>
</tag>

Note that the size attribute is derived from the Renderer of type “Text”, while the id and value attributes
are derived from the UIInput component class itself. RenderKit implementors will generally provide a
Facelets tag library which includes component tags corresponding to each of the component classes (or
types) supported by each of the RenderKit’s Renderers. See RenderKit and Renderer for details on the
RenderKit and Renderer APIs. Jakarta Faces implementations must provide such a tag library for the
standard HTML RenderKit (see Standard HTML RenderKit Tag Library).

9.2. Using UIComponent Tags
The following subsections define how a page author utilizes the tags provided by the RenderKit
implementor in the views that create the user interface of a Jakarta Faces-based web application.

9.2.1. Declaring the Tag Libraries

This specification hereby reserves the following Uniform Resource Identifier (URI) values to refer to
the standard tag libraries defined by Jakarta Faces:

• jakarta.faces.core —URI for the Jakarta Faces Core Tag Library

• jakarta.faces.html —URI for the Jakarta Faces Standard HTML RenderKit Tag Library

9.2. Using UIComponent Tags

Final Jakarta Faces 215

The page author must declare the URI of each tag library to be utilized, as well as the prefix used to
identify tags from this library. For example in Facelets XHTML syntax,

<!DOCTYPE html>
<html xmlns:f="jakarta.faces.core"
 xmlns:h="jakarta.faces.html">
 ...
</html>

declares the unique resource identifiers of the tag libraries being used, as well as the prefixes to be
used within the root element for referencing tags from these libraries [9].

9.2.2. Including Components in a Page

A Jakarta Faces UIComponent tag can be placed at any desired position in a root element that contains
the declaration for the corresponding tag library.

The following example illustrates the general use of a UIComponent tag in a page. In this scenario:

<h:inputText id="username" value="#{loginBacking.username}"/>

represents a UIInput field, to be rendered with the “Text” renderer type, and points to the username
property of a backing bean for the actual value. The id attribute specifies the component id of a
UIComponent instance, from within the component tree, to which this tag corresponds. If no id is
specified, one may be automatically generated by the tag implementation if the tag implementation or
functionality requires so.

During the Render Response phase of the request processing lifecycle, the appropriate encoding
methods of the component (or its associated Renderer) will be utilized to generate the representation of
this component in the response page. In addition, the first time a particular page is rendered, the
component tree may also be dynamically constructed.

All markup other than UIComponent tags is processed in the usual way. Therefore, you can use such
markup to perform layout control, or include non-Jakarta Faces content, in conjunction with the tags
that represent UI components.

9.2.3. Creating Components and Overriding Attributes

As UIComponent tags are encountered during the processing of a page, the tag implementation must
check the component tree for the existence of a corresponding UIComponent, and (if not found) create
and configure a new component instance corresponding to this tag. The details of this process are as
follows:

• If the component associated with this component tag has been identified already, return it

9.2. Using UIComponent Tags

216 Jakarta Faces Final

unchanged.

• Identify the component identifier for the component related to this UIComponent tag, as follows:

◦ If the page author has specified a value for the id attribute, use that value.

◦ Otherwise, call the createUniqueId() method of the UIViewRoot at the root of the component tree
for this view, and use that value.

• If this UIComponent tag is creating a facet (that is, we are nested inside an <f:facet> tag), determine
if there is a facet of the component associated with our parent UIComponent tag, with the specified
facet name, and proceed as follows:

◦ If such a facet already exists, take no additional action.

◦ If no such facet already exists, create a new UIComponent (by calling the createComponent()
method on the Application instance for this web application, passing the value returned by
getComponentType(), set the component identifier to the specified value, and add the new
component as a facet of the component associated with our parent UIComponent tag, under the
specified facet name.

• If this UIComponent tag is not creating a facet (that is, we are not nested inside an <f:facet> tag),
determine if there is a child component of the component associated with our parent UIComponent
tag, with the specified component identifier, and proceed as follows:

◦ If such a child already exists, take no additional action.

◦ If no such child already exists, create a new UIComponent (by calling the createComponent()
method on the Application instance for this web application, passing the value returned by
getComponentType(), set the component identifier to the specified value, and add the new
component as a child of the component associated with our parent UIComponent tag.

9.2.4. Deleting Components on Redisplay

In addition to the support for dynamically creating new components, as described above, UIComponent
tags will also delete child components (and facets) that are already present in the component tree, but
are not rendered on this display of the page. For example, consider a UIComponent tag that is nested
inside a Jakarta Tags <c:if> tag whose condition is true when the page is initially rendered. As described
in this section, a new UIComponent will have been created and added as a child of the UIComponent
corresponding to our parent UIComponent tag. If the page is re-rendered, but this time the <c:if>
condition is false, the previous child component will be removed.

9.2.5. Representing Component Hierarchies

Nested structures of UIComponent tags will generally mirror the hierarchical relationships of the
corresponding UIComponent instances in the view that is associated with each page. For example,
assume that a UIForm component (whose component id is loginForm) contains a UIPanel component
used to manage the layout. You might specify the contents of the form like this in Facelets XHTML
syntax:

9.2. Using UIComponent Tags

Final Jakarta Faces 217

<h:form id="loginForm">
 <fieldset>
 <legend>Login</legend>
 <p>
 <h:outputLabel for="username" value="Username:"/>
 <h:inputText id="username" value="#{loginBacking.username}"/>
 </p>
 <p>
 <h:outputLabel for="password" value="Password:"/>
 <h:inputSecret id="password" value="#{loginBacking.password}"/>
 </p>
 <p>
 <h:commandButton id="submit" action="#{loginBacking.login}"/>
 <h:commandButton id="reset" type="reset"/>
 </p>
 </fieldset>
</h:form>

9.2.6. Registering Converters, Event Listeners, and Validators

Each Jakarta Faces implementation is required to provide the core tag library (see Jakarta Faces Core
Tag Library), which includes tags that (when executed) create instances of a specified Converter,
ValueChangeListener, ActionListener or Validator implementation class, and register the created
instance with the UIComponent associated with the most immediately surrounding UIComponent tag.

Using these facilities, the page author can manage all aspects of creating and configuring values
associated with the view, without having to resort to Java code. For example:

<h:inputText id="username" value="#{loginBacking.username}">
 <f:validateLength minimum="6"/>
</h:inputText>

associates a validation check (that the value entered by the user must contain at least six characters)
with the username UIInput component being described.

Following are usage examples for the valueChangeListener and actionListener tags.

9.2. Using UIComponent Tags

218 Jakarta Faces Final

<h:inputText id="maxUsers">
 <f:convertNumber integerOnly="true"/>
 <f:valueChangeListener type="com.example.YourValueChangeListener"/>
</h:inputText>
<h:commandButton value="Login">
 <f:actionListener type="com.example.YourActionListener"/>
</h:commandButton>

This example causes a Converter and a ValueChangeListener of the user specified type to be
instantiated and added as to the enclosing UIInput component, and an ActionListener of the user
specified type is instantiated and added to the enclosing UICommand component. If the user specified
type could not be instantiated or does not implement the proper listener interface a
AbortProcessingException must be thrown.

9.2.7. Using Facets

A Facet is a subordinate UIComponent that has a special relationship to its parent UIComponent, as
described in Facet Management. Facets can be defined in a page using the <f:facet> tag. Each facet tag
must have one and only one child UIComponent tag [10]. For example:

<h:dataTable ...>
 <f:facet name="header">
 <h:outputText value="Customer List"/>
 </f:facet>
 <h:column>
 <f:facet name="header">
 <h:outputText value="Account Id"/>
 </f:facet>
 <h:outputText id="accountId" value= "#{customer.accountId}"/>
 </h:column>
 ...
</h:dataTable>

9.2.8. Interoperability with Jakarta Tags

It is permissible to use other tag libraries, such as the Jakarta Tags in the same view with UIComponent
tags that correspond to Jakarta Faces components, subject to certain restrictions. When Jakarta Faces
component tags are nested inside tags from other libraries, or combined with template text, the
following behaviors must be supported:

• Jakarta Faces component tags nested inside a tag that conditionally renders its body (such as
Jakarta Tags <c:if> or <c:choose>) must contain a manually assigned id attribute.

• Interoperation with the Jakarta Tag’s Internationalization-Capable Formatting library (typically

9.2. Using UIComponent Tags

Final Jakarta Faces 219

used with the “fmt” prefix) is restricted as follows:

◦ The <fmt:parseDate> and <fmt:parseNumber> tags should not be used. The corresponding
Jakarta Faces facility is to use an <h:inputText> component tag with an appropriate
DateTimeConverter or NumberConverter.

◦ The <fmt:requestEncoding> tag should not be used. By the time it is executed, the request
parameters will have already been parsed, so any change in the setting here will have no
impact. Jakarta Faces handles character set issues automatically in most cases.

◦ The <fmt:setLocale/> tag should not be used. Even though it might work in some circumstances,
it would result in Jakarta Faces and Jakarta Tags assuming different locales. If the two locales
use different character sets, the results will be undefined. Applications should use Jakarta Faces
facilities for setting the locale property on the UIViewRoot component to change locales for a
particular user.

9.3. UIComponent tag Implementation Requirements
The tag implementation classes for UIComponent tags must conform to all of the requirements defined
in the specification specific to the VDL. In addition, they must meet the following Jakarta Faces-specific
requirement:

• On the method that causes a UIComponent instance to be added to the tree, verify that the
component id of that UIComponent is unique within the scope of the closest ancestor component
that is a NamingContainer. If this constraint is not met, throw IllegalStateException.

9.4. Jakarta Faces Core Tag Library
All Jakarta Faces implementations must provide a tag library containing core tags (described below)
that are independent of a particular RenderKit. The corresponding tag library descriptor must meet the
following requirements:

• Must declare a URI (<uri>) value of jakarta.faces.core.

• Must be included in the META-INF directory of a JAR file containing the corresponding
implementation classes, suitable for inclusion with a web application, such that the tag library
descriptor will be located automatically by the algorithm specific to the VDL (see Facelet Tag
Library mechanism for the Facelets Taglib example).

The tags in the implementation of this tag library must not cause JavaScript of CSS to be rendered to
the client. Doing so would break the requirement that the Jakarta Faces Core Tag library is
independent of any specific RenderKit.

Each tag included in the Jakarta Faces Core Tag Library is documented in the VDLDocs for the f: tag
library.

9.3. UIComponent tag Implementation Requirements

220 Jakarta Faces Final

9.5. Standard HTML RenderKit Tag Library
All Jakarta Faces implementations must provide a tag library containing tags that correspond to each
valid combination of a supported component class (see Standard User Interface Components”) and a
Renderer from the Standard HTML RenderKit (see Standard HTML RenderKit Implementation) that
supports that component type. The tag library descriptor for this tag library must meet the following
requirements:

• Must declare a URI (<uri>) value of jakarta.faces.html.

• Must be included in the META-INF directory of a JAR file containing the corresponding
implementation classes, suitable for inclusion with a web application, such that the tag library
descriptor will be located automatically by the algorithm specific to the VDL (see Facelet Tag
Library mechanism for the Facelets Taglib example).

The tags defined in this tag library must specify the following return values for the
getComponentType() and getRendererType() methods, respectively:

Table 9. Standard HTML RenderKit Tag Library

getComponentType() getRendererType() tag name

jakarta.faces.Column null [11] column

jakarta.faces.HtmlCommandButton jakarta.faces.Button commandButton

jakarta.faces.HtmlCommandLink jakarta.faces.Link commandLink

jakarta.faces.HtmlCommandScript jakarta.faces.Script commandScript

jakarta.faces.HtmlDataTable jakarta.faces.Table dataTable

jakarta.faces.HtmlForm jakarta.faces.Form form

jakarta.faces.HtmlGraphicImage jakarta.faces.Image graphicImage

jakarta.faces.HtmlInputHidden jakarta.faces.Hidden inputHidden

jakarta.faces.HtmlInputSecret jakarta.faces.Secret inputSecret

jakarta.faces.HtmlInputText jakarta.faces.Text inputText

jakarta.faces.HtmlInputTextarea jakarta.faces.Textarea inputTextarea

jakarta.faces.HtmlMessage jakarta.faces.Message message

jakarta.faces.HtmlMessages jakarta.faces.Messages messages

jakarta.faces.HtmlOutputFormat jakarta.faces.Format outputFormat

jakarta.faces.HtmlOutputLabel jakarta.faces.Label outputLabel

jakarta.faces.HtmlOutputLink jakarta.faces.Link outputLink

jakarta.faces.Output jakarta.faces.Body body

jakarta.faces.Output jakarta.faces.Head head

9.5. Standard HTML RenderKit Tag Library

Final Jakarta Faces 221

getComponentType() getRendererType() tag name

jakarta.faces.Output jakarta.faces.resource.Script outputScript

jakarta.faces.Output jakarta.faces.resource.Stylesheet outputStylesheet

jakarta.faces.HtmlOutputText jakarta.faces.Text outputText

jakarta.faces.HtmlPanelGrid jakarta.faces.Grid panelGrid

jakarta.faces.HtmlPanelGroup jakarta.faces.Group panelGroup

jakarta.faces.HtmlSelectBooleanCheckbox jakarta.faces.Checkbox selectBooleanCheckbox

jakarta.faces.HtmlSelectManyCheckbox jakarta.faces.Checkbox selectManyCheckbox

jakarta.faces.HtmlSelectManyListbox jakarta.faces.Listbox selectManyListbox

jakarta.faces.HtmlSelectManyMenu jakarta.faces.Menu selectManyMenu

jakarta.faces.HtmlSelectOneListbox jakarta.faces.Listbox selectOneListbox

jakarta.faces.HtmlSelectOneMenu jakarta.faces.Menu selectOneMenu

jakarta.faces.HtmlSelectOneRadio jakarta.faces.Radio selectOneRadio

Each tag included in the Standard HTML RenderKit Tag Library is documented in the VDLDocs for the
h: tag library.

9.5. Standard HTML RenderKit Tag Library

222 Jakarta Faces Final

Chapter 10. Facelets and its use in Web
Applications
Jakarta Faces implementations must support (although Jakarta Faces-based applications need not
utilize) using Facelets as the view declaration language for Jakarta Faces pages. Facelets technology
was created by JSR-252 EG Member Jacob Hookom.

10.1. Non-normative Background
To aid implementors in providing a spec compliant runtime for Facelets, this section provides a non-
normative background to motivate the discussion of the Facelets feature. Facelets is a replacement for
Jakarta Server Pages that was designed from the outset with Jakarta Faces in mind. See
ViewDeclarationLanguage.

10.1.1. Differences between Jakarta Server Pages and Facelets

Facelets was the first non-Jakarta Server Pages view declaration language designed for Jakarta Faces.
As such, Facelets was able to provide a simpler and more powerful programming model to Jakarta
Faces developers than that provided by Jakarta Server Pages, largely by leveraging Jakarta Faces as
much as possible without carrying backwards compatibility with Jakarta Server Pages. The following
table lists some of the differences between Facelets and Jakarta Server Pages

Table 10. Comparison of Facelets and Jakarta Server Pages

Feature Name Jakarta Server Pages Facelets

Pages are compiled
to…

A Servlet that gets executed each time
the page renders. The UIComponent
hierarchy is built by the presence of
custom tags in the page.

An abstract syntax tree that, when
executed, builds a UIComponent
hierarchy.

Handling of tag
attributes

All tag attributes must be declared in a
TLD file. Conformance instances of
components in a page with the expected
attributes can be enforced with a
taglibrary validator.

Tag attributes are completely dynamic
and automatically map to properties,
attributes and ValueExpressions on
UIComponent instances

Page templating Not supported, must go outside of core
Jakarta Server Pages

Page templating is a core feature of
Facelets

Performance Due to the common implementation
technique of compiling a Jakarta Server
Pages page to a Servlet, performance
can be slow

Facelets is simpler and faster than
Jakarta Server Pages

10.1. Non-normative Background

Final Jakarta Faces 223

Feature Name Jakarta Server Pages Facelets

Expression
Language
Expressions

Expressions in template text cause
unexpected behavior when used in
Jakarta Server Pages

Expressions in template text operate as
expected.

Jakarta Standard Yes, the specification is separate from
the implementation for Jakarta Server
Pages

No, the specification is defined by and is
one with the implementation.

10.1.2. Resource Library Contracts Background

Jakarta Faces defines a system called “resource library contracts” for applying facelet templates to an
entire application in a re-usable and interchangeable manner. The feature is built on top of the
resource library facility described in Libraries of Localized and Versioned Resources. A configurable
set of Facelet VDL views in the application will be able to declare themselves to be template-clients of
any template in a resource library contract. Facelet VDL views in the application can also make use of
resources contained in a resource library contract, but the feature has ample value when only used
with templates.

10.1.2.1. Non-normative Example

Consider this resource library contract, called siteLayout.

siteLayout/
 topNav_template.xhtml
 leftNav_foo.xhtml
 styles.css
 script.js
 background.png

This simple example takes advantage of several conventions built into the feature, most notably the
default application of all available contracts in the application to all views in the application. It is
possible to customize how resource library contracts are applied to the application, including using
several different contracts in the same or different parts of the application. Such customizing is
accomplished by including a <resource-library-contracts> element within the <application> element of
the faces-config.xml (or similar) file. Because this example is designed with the convention in mind, it
does not need a faces-config.xml file.

The siteLayout contract offers two templates: topNav_template.xhtml and leftNav_foo.xhtml. For
discussion, these are known as “declared templates”. When used by a template client, they will lay out
the template client’s contents with a navigation menu on the top or the left side of the page,
respectively. In siteLayout, each of the templates has <ui:insert> tags named “title”, “content”, and
“nav”. For discussion, these are knows as “declared insertion points”. Furthermore, each of the
templates uses the CSS styles declared in styles.css, some scripts defined in script.js, and the

10.1. Non-normative Background

224 Jakarta Faces Final

background image background.png. For discussion, these are known as “declared resources”. In order
to use a resource library contract, one must know its declared templates, their declared insertion
points, and, optionally, their declared resources. No constraint is placed on the naming and
arrangement of declared templates, insertion points, or resources, but all three concepts together can
informally be thought of as the declaration of the resource library contract. The contract declaration of
siteLayout can be stated as follows.

siteLayout provides two declared templates, topNav_template.xhtml and leftNav_foo.xhtml. Each
templates offers declared insertion points “title”, “content”, and “nav”.

In this case, the css, script, and image are left out of the contract declaration but this distinction is
completely arbitrary. The important content of topNav_template.xhtml is shown next.

<!DOCTYPE html>
<html xmlns:ui="jakarta.faces.facelets"
 xmlns:h="jakarta.faces.html">
 <h:head>
 <h:outputStylesheet id="default" name="default.css" />
 <h:outputStylesheet name="cssLayout.css" />
 <title><ui:insert name="title"></ui:insert></title>
 </h:head>
 <h:body>
 <div id="top" class="top">
 <p>Top Navigation Menu</p>
 <ui:insert name="nav">Nav content</ui:insert>
 </div>
 <div id="content" class="center_content">
 <ui:insert name="content">Content</ui:insert>
 </div>
 </h:body>
</html>

This example packages the entire siteLayout directory and its contents into the META-INF/contracts
entry of a JAR file named siteLayout.jar. The simplest possible way to use siteLayout is to drop
siteLayout.jar into WEB-INF/lib and apply the knowledge of the resource library contract declaration to
the facelet views in the app.

Consider this simple web app, called useContract, the file layout for which is shown next. The example
is shown using a simplified maven war packaging.

10.1. Non-normative Background

Final Jakarta Faces 225

useContract/
 pom.xml
 src/main/webapp/
 /WEB-INF/lib/siteLayout.jar
 index.xhtml
 page2.xhtml

Notice the absence of a faces-config.xml file. Because this example is content to let all the contracts in
siteLayout.jar be applied to all views in the app, this file is not necessary. The two pages are shown
next.

index.xhtml.

<ui:composition template="/topNav_template.xhtml"
 xmlns:ui="jakarta.faces.facelets"
 xmlns:h="jakarta.faces.html">
 <ui:define name="title">#{msgs.contactsWindowTitle}</ui:define>
 <ui:define name="content">
 <h:commandButton value="next" action="page2" />
 </ui:define>
 <ui:define name="nav">#{msgs.contactsNavMessage}</ui:define>
</ui:composition>

page2.xhtml

<ui:composition template="/leftNav_foo.xhtml"
 xmlns:ui="jakarta.faces.facelets"
 xmlns:h="jakarta.faces.html">
 <ui:define name="title">Hard coded title</ui:define>
 <ui:define name="content">
 <h:commandButton value="back" action="index" />
 </ui:define>
 <ui:define name="nav">Hard coded nav</ui:define>
</ui:composition>

To complete the example, the execution of the useContract app is illustrated.

When useContract.war is deployed, the runtime will discover that siteLayout.jar is a resource library
contract and make its contents available for template clients.

When the user agent visits http://localhost:8080/useContract/faces/index.xhtml, because the siteLayout
resource library contract provides /topNav_template.xhtml , that file will be loaded as the template.
Likewise, when the next button is pressed, /leftNav_foo.xhtml, also from siteLayout, will be loaded as
the template.

10.1. Non-normative Background

226 Jakarta Faces Final

http://localhost:8080/useContract/faces/index.xhtml

Now, consider there is an alternate implementation of the siteLayout contract, packaged as
newSiteLayout.jar. This implementation doesn’t change the contract declaration, but completely
changes the arrangement and style of the views. As long as the contract declaration does not change,
useContract can take advantage of newSiteLayout simply by replacing one JAR in WEB-INF/lib.

10.1.2.2. Non-normative Feature Overview

The normative requirements of the feature are stated in the context of the part of the specification
impacted. This section gives the reader a non-normative overview of the feature that touches on all the
parts of the specification that intersect with this feature.

Design Time

At design time, the developer has packaged any resource library contracts to be used in the application
in the right place in the web application, or JAR file classpath. This behavior is normatively specified in
Resource Library Contracts.

Startup Time

At startup time, the runtime will discover the set of resource library contracts available for this
application. If there is one or more <resource-library-contracts> element, only those contracts explicitly
named will be made available for use in the application. If there is no such element, all of the
discovered contracts are made available for use in the application. This behavior is normatively
specified in Resource Library Contracts and in the XML schema for the application configuration
resources.

Facelet Processing Time

The specification for ViewDeclarationLanguage.createView() requires a call to
ViewDeclarationLanguage.calculateResourceLibraryContracts(), passing the current viewId. This
method will examine the data structure assembled at startup and return a List<String> representing
the resource library contracts eligible for use in this view. This value is set as the value of the
resourceLibraryContracts property on the FacesContext. This behavior is normatively specified in
ViewDeclarationLanguage.createView().

The specification of the tag handler for <f:view> is the one other place where the
resourceLibraryContracts property may be set. This behavior is normatively specified in the tag handler
for <f:view>.

In any <ui:composition> or <ui:decorate> tag reached from that view, it is valid to use any of the
templates in any of the listed contracts as the value of the template attribute. This behavior happens
naturally as a side effect of the requirements of ResourceHandler.createViewResource(), where the
implementation of that method is required to first consult the resourceLibraryContracts property of the
current FacesContext. If the value of the property is non-null and non empty, the implementation must
first look for the named view resource within each of the contracts in the list, and return the first
matching one found. Otherwise, the implementation just returns the matching resource, if found. This
behavior is normatively specified in the javadoc for ResourceHandler.createViewResource().

View Rendering Time

10.1. Non-normative Background

Final Jakarta Faces 227

When the view is being rendered, any resources that reside in a resource library contract will have
additional metadata so that a subsequent request from the user agent is able to quickly find the
resource inside the named contract. This behavior is normatively specified in the javadoc for
Resource.getRequestPath().

User-Agent Rendering Time

By the point in time that the User-Agent is rendering the view, all of the work related to resource
library contracts will have been completed, but it is worth mentioning that any resources in the page
that originate from within resource library contracts will be correctly fetched.

10.1.3. HTML5 Friendly Markup

Without the HTML5 Friendly Markup feature the view authoring model relies entirely on the concept
of a Jakarta Faces UI component in a view as a means to encapsulate arbitrarily complex web user
interface code behind a simple UI component tag in a page. For example, the act of including
<my:datePicker value="#{user.dob}"> in a view could cause a large amount of HTML, CSS, JavaScript,
and images to be delivered to the user agent. This abstraction is very appropriate when the view
author is content to delegate the work of designing the user experience for such components to a
component author. As web designer skills have become more widespread, the need has arisen to
expose the hitherto hidden complexity so the view author has near total control on the user experience
of each individual element in the view. The HTML5 Friendly Markup feature addresses this
requirement, as well as providing access to the loosened attribute syntax also present in HTML5.

10.1.3.1. Non-normative Feature Overview

The normative requirements of the feature are stated in the context of the part of the specification
impacted. This section gives the reader a non-normative overview of the feature that touches on all the
parts of the specification that intersect with this feature. There are two main aspects to the feature,
pass through attributes and pass through elements.

Pass Through Attributes

For any given Jakarta Faces component tag in a view, the set of available attributes that component
supports is determined by a combination of the UIComponent and Renderer for that tag. In some cases
the value of the attribute is interpreted by the UIComponent or Renderer (for example, the columns
attribute of h:panelGrid) and in others the value is passed straight through to the user agent (for
example, the lang attribute of h:inputText). In both cases, the UIComponent/Renderer has a priori
knowledge of the set of allowable attributes. Pass Through Attributes allows the view author to list
arbitrary name value pairs that are passed straight through to the user agent without interpretation by
the UIComponent/Renderer. This behavior is normatively specified in the “Rendering Pass Through
Attributes” section of the overview of the standard HTML_BASIC render kit.

The view author may specify pass through attributes in three ways.

• Nesting the <f:passThroughAttribute> tag within a UIComponent tag. For example,

10.1. Non-normative Background

228 Jakarta Faces Final

<h:inputText value="#{user.name}">
 <f:passThroughAttribute name="autofocus" value="#{config.autofocus}" />
</h:inputText>

• Nesting the <f:passThroughAttributes> tag within a UIComponent tag, For example,

<h:inputText value="#{user.name}">
 <f:passThroughAttributes value="#{config.inputTextAttributes}" />
</h:inputText>

The Jakarta Expression Language expression must point to a Map<String, Object>. If the value is a
ValueExpresison call getValue() the value first. Whether the value is a ValueExpression or not, the
value must have its toString() called on it.

• Prefixing the attribute with the shortname assigned to the jakarta.faces.passthrough XML
namespace. For example

<!DOCTYPE html>
<html xmlns:h="jakarta.faces.html"
 xmlns:pt="jakarta.faces.passthrough">
 <h:body>
 <h:form>
 <h:inputText pt:autofocus="#{config.autofocus}" value="#{user.name}" />
 </h:form>
 </h:body>
</html>

This behavior is normatively specified in the VDLdoc for <f:passthroughAttribute>,
<f:passThroughAttributes> tags in the “Faces Core” tag library, and the “Pass Through Attributes” tag
library.

Pass Through Elements

This feature circumvents the traditional component abstraction model of Jakarta Faces, allowing the
page author nearly complete control of the rendered markup, without sacrificing any of the server side
lifecycle offered by Jakarta Faces. This is accomplished by means of enhancements to the Facelet
TagDecorator API. This API describes a mapping from the common markup elements to target tags in
the HTML_BASIC RenderKit such that the actual markup specified by the view author is what gets
rendered, but the server side component is an actual component from the HTML_BASIC RenderKit. A
special Renderer is provided to cover cases when none of the mappings specified in TagDecorator fit
the incoming markup. To allow further flexibility, the existing Facelets TagDecorator mechanism
allows complete control of the mapping process. This behavior is normatively specified in the javadocs
for class jakarta.faces.view.facelets.TagDecorator and in the section “Rendering Pass Through Attributes”

10.1. Non-normative Background

Final Jakarta Faces 229

in the “General Notes On Encoding” in the Standard HTML_BASIC RenderKit.

An example will illustrate the mapping process.

<!DOCTYPE HTML>
<html xmlns:faces="jakarta.faces"
 xmlns:h="jakarta.faces.html">
 <h:body>
 <h:form>
 <input type="number" pattern="[0-9]*" faces:value="#{user.age}" />
 </h:form>
 </h:body>
</html>

As required in Specification of the ViewDeclarationLanguage Implementation for Facelets for Jakarta
Faces TagDecorator is called during the facelet processing. Because the <input> element has an
attribute from the jakarta.faces namespace, the system treats the element as a pass through element.
The table listed in the javadocs for TagDecorator is consulted and it is determined that this component
should act as an <h:inputText> component for the purposes of postback processing. However, the
rendering is entirely taken from the markup in the facelet view. Another example illustrates the
special Renderer that is used when no mapping can be found in the table in the javadocs for
TagDecorator.

<!DOCTYPE HTML>
<html xmlns:faces="jakarta.faces"
 xmlns:h="jakarta.faces.html">
 <h:body>
 <meter faces:id="meter" min="#{bean.min}" max="#{bean.max}" value="350">
 350 degrees
 </meter>
 </h:body>
</html>

As in the preceding example, the TagDecorator mechanism is activated but it is determined that this
component should act as a <faces:element> component for the purposes of postback processing. The
behavior of the <faces:element> is normatively specified in the VDLdoc for that tag. The behavior of the
jakarta.faces.passthrough.Element renderer is normatively specified in the RenderKitDoc for that
renderer.

10.2. Java Programming Language Specification for
Facelets in Jakarta Faces
The subsections within this section specify the Java API requirements of a Facelets implementation.

10.2. Java Programming Language Specification for Facelets in Jakarta Faces

230 Jakarta Faces Final

Adherence to this section and the next section, which specifies the XHTML specification for Facelets in
Jakarta Faces, will ensure applications and Jakarta Faces component libraries that make use of Facelets
are portable across different implementations of Jakarta Faces.

The original Facelet project did not separate the API and the implementation into separate jars, as is
common practice with specifications. Thus, a significant task for integrating Facelets into Jakarta Faces
was deciding which classes to include in the public Java API, and which to keep as an implementation
detail.

There were two guiding principles that influenced the task of integrating Facelets into Jakarta Faces.

• The original decision in pre-Jakarta Faces JSF 1.0 (under the JCP) to allow the ViewHandler to be
pluggable enabled the concept of a View Declaration Language for Jakarta Faces. The two most
popular ones were Facelets and JSFTemplating. The new integration should preserve this
pluggability, since it is still valuable to be able to replace the View Declaration Language.

• After polling users of Facelets, the JCP expert group decided that most of them were only using the
markup based API and were not extending from the Java classes provided by the Facelet project.
Therefore, we decided to keep the Java API for Facelets in Jakarta Faces as small as possible, only
exposing classes where absolutely necessary.

The application of these principles produced the classes in the package jakarta.faces.view.facelets.
Please consult the Javadocs for that package, and the classes within it, for additional normative
specification.

10.2.1. Specification of the ViewDeclarationLanguage Implementation for
Facelets for Jakarta Faces

As normatively specified in the javadocs for
ViewDeclarationLanguageFactory.getViewDeclarationLanguage(), a Jakarta Faces implementation must
guarantee that a valid and functional ViewDeclarationLanguage instance is returned from this method
when the argument is a reference to a Facelets View. This section describes the specification for the
Facelets implementation.

public void buildView(FacesContext context, UIViewRoot root)
 throws IOException

The argument root will have been created with a call to either createView() or
ViewMetadata.createMetadataView(). If the root already has non-metadata children, the view must still
be re-built, but care must be taken to ensure that the existing components are correctly paired up with
their VDL counterparts in the VDL page. The implementation must examine the viewId of the argument
root, which must resolve to an entity written in Facelets for Jakarta Faces markup language. Because
Facelets views are written in XHTML, an XML parser is well suited to the task of processing such an
entity. Each element in the XHTML view falls into one of the following categories, each of which
corresponds to an instance of a Java object that implements jakarta.faces.view.facelets.FaceletHandler,

10.2. Java Programming Language Specification for Facelets in Jakarta Faces

Final Jakarta Faces 231

or a subinterface or subclass thereof, and an instance of jakarta.faces.view.facelets.TagConfig, or a
subinterface or subclass thereof, which is passed to the constructor of the object implementing
FaceletHandler.

When constructing the TagConfig implementation to be passed to the FaceletHandler implementation,
the runtime must ensure that the instance returned from TagConfig.getTag() has been passed through
the tag decoration process as described in the javadocs for jakarta.faces.view.facelets.TagDecorator
prior to the TagConfig being passed to the FaceletHandler implementation.

The mapping between the categories of elements in the XHTML view and the appropriate sub-interface
or subclass of FaceletHandler is specified below. Each FaceletHandler instance must be traversed and
its apply() method called in the same depth-first order as in the other lifecycle phase methods in
Jakarta Faces. Each FaceletHandler instance must use the getNextHandler() method of the TagConfig
instance passed to its constructor to perform the traversal starting from the root FaceletHandler.

• Standard XHTML markup elements

◦ These are declared in the XHTML namespace http://www.w3.org/1999/xhtml which must be
considered the default namespace. I.e. the Facelets page authors should not have the need to
explicitly declare this namespace. Such elements should be passed through as is to the rendered
output.

◦ These elements correspond to instances of jakarta.faces.view.facelets.TextHandler. See the
javadocs for that class for the normative specification.

• Markup elements that represent UIComponent instance in the view.

◦ These elements can come from the Standard HTML Renderkit namespace jakarta.faces.html, or
from the namespace of a custom tag library (including composite components) as described in
Facelet Tag Library mechanism.

◦ These elements correspond to instances of jakarta.faces.view.facelets.ComponentHandler. See
the javadocs for that class for the normative specification.

• Markup elements that take action on their parent or children markup element(s). Usually these
come from the Jakarta Faces Core namespace jakarta.faces.core, but they can also be provided by a
custom tag library.

◦ Such elements that represent an attached object must correspond to an appropriate subclass of
jakarta.faces.view.facelets.FaceletsAttachedObjectHandler. The supported subclasses are
specified in the javadocs.

◦ Such elements that represent a facet component must correspond to an instance of
jakarta.faces.component.FacetHandler.

◦ Such elements that represent an attribute that must be pushed into the parent UIComponent
element must correspond to an instance of jakarta.facelets.view.facelets.AttributeHandler.

• Markup Elements that indicate facelet templating, as specified in the VDL Docs for the namespace
jakarta.faces.facelets.

◦ Such elements correspond to an instance of jakarta.faces.view.facelets.TagHandler.

10.2. Java Programming Language Specification for Facelets in Jakarta Faces

232 Jakarta Faces Final

http://www.w3.org/1999/xhtml

• Markup elements from the Facelet version of the Jakarta Tags namespaces jakarta.tags.core or
jakarta.tags.functions, as specified in the VDL Docs for those namespaces.

◦ Such elements correspond to an instance of jakarta.faces.view.facelets.TagHandler.

10.3. XHTML Specification for Facelets for Jakarta Faces

10.3.1. General Requirements

Facelet pages are authored in XHTML. The runtime must support all XHTML pages that conform to the
XHTML-1.0-Transitional DTD, as described at http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-
Transitional.

The runtime must ensure that Jakarta Expression Language expressions that appear in the page
without being the right-hand-side of a tag attribute are treated as if they appeared on the right-hand-
side of the value attribute of an <h:outputText> element in the jakarta.faces.html namespace. This
behavior must happen regardless of whether or not the jakarta.faces.html namespace has been
declared in the page.

10.3.1.1. DOCTYPE and XML Declaration

When processing Facelet VDL files, the system must ensure that at most one XML declaration and at
most one DOCTYPE declaration appear in the rendered markup, if and only if there is corresponding
markup in the Facelet VDL files for those elements. If multiple occurrences of XML declaration and
DOCTYPE declaration are encountered when processing Facelet VDL files, the “outer-most” occurrence
is the one that must be rendered. If an XML declaration is present, it must be the very first markup
rendered, and it must precede any DOCTYPE declaration (if present). The output of the XML and
DOCTYPE declarations are subject to the configuration options listed in the table titled “Valid <process-
as> values and their implications on the processing of Facelet VDL files” in The facelets-processing
element.

10.3.2. Facelet Tag Library mechanism

Facelets leverages the XML namespace mechanism to support the concept of a “tag library” analogous
to the same concept in Jakarta Server Pages. However, in Facelets, the role of the tag handler java class
is greatly reduced and in most cases is unnecessary. The tag library mechanism has two purposes.

• Allow page authors to access tags declared in the supplied tag libraries declared in Standard Facelet
Tag Libraries, as well as accessing third-party tag libraries developed by the application author, or
any other third party

• Define a framework for component authors to group a collection of custom UIComponents into a
tag library and expose them to page authors for use in their pages.

The runtime must support the following syntax for making the tags in a tag library available for use in
a Facelet page.

10.3. XHTML Specification for Facelets for Jakarta Faces

Final Jakarta Faces 233

http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional
http://www.w3.org/TR/xhtml1/#a_dtd_XHTML-1.0-Transitional

<html xmlns:prefix="namespace_uri">

Where prefix is a page author chosen arbitrary string used in the markup inside the <html> tag to refer
to the tags declared within the tag library and namespace_uri is the string declared in the <namespace>
element of the facelet tag library descriptor. For example, declaring xmlns:h="jakarta.faces.html"
within the <html> element in a Facelet XHTML page would cause the runtime to make all tags declared
in Standard HTML RenderKit Tag Library to be available for use in the page using syntax like:
<h:inputText>.

The unprefixed namespace, also known as the root namespace, must be passed through without
modification or check for validity. The passing through of the root namespace must occur on any non-
prefixed element in a facelet page. For example, the following markup declaration:.

<!DOCTYPE html>
<html xmlns:h="jakarta.faces.html">
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <msup>
 <msqrt>
 <mrow>
 <mi>a</mi>
 <mo>+</mo>

 <mi>b</mi>
 </mrow>
 </msqrt>
 <mn>27</mn>
 </msup>
</math>

would be rendered as

10.3. XHTML Specification for Facelets for Jakarta Faces

234 Jakarta Faces Final

<!DOCTYPE html>
<html>
 <math xmlns="http://www.w3.org/1998/Math/MathML">
 <msup>
 <msqrt>
 <mrow>
 <mi>a</mi>
 <mo>+</mo>

 <mi>b</mi>
 </mrow>
 </msqrt>
 <mn>27</mn>
 </msup>
</math>

The run time must support two modes of discovery for Facelet tag library descriptors

• Via declaration in the web.xml, as specified in Application Configuration Parameters

• Via auto discovery by placing the tag library discriptor file within a jar on the web application
classpath, naming the file so that it ends with “.taglib.xml”, without the quotes, and placing the file
in the META-INF directory in the jar file.

The discovery of tag library files must happen at application startup time and complete before the
application is placed in service. Failure to parse, process and otherwise interpret any of the tag library
files discovered must cause the application to fail to deploy and must cause an informative error
message to be logged.

The specification for how to interpret a facelet tag library descriptor is included in the documentation
elements of the schema for such files, see XML Schema Definition For Facelet Taglib.

10.3.3. Requirements specific to composite components

The text in this section makes use of the terms defined in Composite Component Terms. When such a
term appears in this section, it will be in emphasis font face.

10.3.3.1. Declaring a composite component library for use in a Facelet page

The runtime must support the following two ways of declaring a composite component library.

• If a facelet taglibrary is declared in an XHTML page with a namespace starting with the string
“jakarta.faces.composite/” (without the quotes), the remainder of the namespace declaration is
taken as the name of a resource library as described in Libraries of Localized and Versioned
Resources, as shown in the following example:

10.3. XHTML Specification for Facelets for Jakarta Faces

Final Jakarta Faces 235

<html xmlns:ez="jakarta.faces.composite/ezcomp">

The runtime must look for a resource library named ezcomp. If the substring following
“jakarta.faces.composite/” contains a “/” character, or any characters not legal for a library name
the following action must be taken. If application.getProjectStage() is Development an informative
error message must be placed in the page and also logged. Otherwise the message must be logged
only.

• As specified in facelet taglibrary schema, the runtime must also support the <composite-library-
name> element. The runtime must interpret the contents of this element as the name of a resource
library as described in Libraries of Localized and Versioned Resources. If a facelet tag library
descriptor file is encountered that contains this element, the runtime must examine the
<namespace> element in that same tag library descriptor and make it available for use in an XML
namespace declaration in facelet pages.

10.3.3.2. Creating an instance of a top level component

If, during the process of building the view, the facelet runtime encounters an element in the page using
the prefix for the namespace of a composite component library, the runtime must create a Resource
instance with a library property equal to the library name derived in Declaring a composite
component library for use in a Facelet page and call the variant of application.createComponent() that
takes a Resource.

After causing the top level component to be instantiated, the runtime must create a UIComponent with
component-family of jakarta.faces.Panel and renderer-type jakarta.faces.Group to be installed as a
facet of the top level component under the facet name UIComponent.COMPOSITE_FACET_NAME.

10.3.3.3. Populating a top level component instance with children

As specified in How does one make a composite component? the runtime must support the use of cc:
tag library in the defining page pointed to by the Resource derived as specified in Creating an instance
of a top level component. The runtime must ensure that all UIComponent children in the composite
component definition within the defining page are placed as children of the
UIComponent.COMPOSITE_FACET_NAME facet of the top level facet.

Please see the tag library documentation for the <cc:insertChildren> and <cc:insertFacet> tags for
details on these two tags that are relevant to populating a top level component instance with children.

Special handling is required for attributes declared on the composite component tag instance in the
using page. The runtime must ensure that all such attributes are copied to the attributes map of the top
level component instance in the following manner.

• Obtain a reference to the ExpressionFactory, for discussion called expressionFactory.

• Let the value of the attribute in the using page be value.

10.3. XHTML Specification for Facelets for Jakarta Faces

236 Jakarta Faces Final

• If value is “id” or “binding” without the quotes, skip to the next attribute.

• If the value of the attribute starts with “#{“ (without the quotes) call
expressionFactory.createValueExpression(elContext, value, Object.class)

• If the value of the attribute does not start with “#{“, call
expressionFactory.createValueExpression(value, Object.class)

• If there already is a key in the map for value, inspect the type of the value at that key. If the type is
MethodExpression take no action.

For code that handles tag attributes on UIComponent XHTML elements special action must be taken
regarding composite components. If the type of the attribute is a MethodExpression, the code that takes
the value of the attribute and creates an actual MethodExpression instance around it must take the
following special action. Inspect the value of the attribute. If the Jakarta Expression Language
expression string starts with the cc implicit object, is followed by the special string “attrs” (without the
quotes), as specified in Composite Component Attributes ELResolver, and is followed by a single
remaining expression segment, let the value of that remaining expression segment be attrName. In this
case, the runtime must guarantee that the actual MethodExpression instance that is created for the tag
attribute have the following behavior in its invoke() method.

• Obtain a reference to the current composite component by calling
UIComponent.getCurrentCompositeComponent().

• Look in the attribute of the component for a key under the value attrName.

• There must be a value and it must be of type MethodExpression. If either of these conditions are
false allow the ensuing exception to be thrown.

• Call invoke() on the discovered MethodExpression, passing the arguments passed to our invoke()
method.

Once the composite component has been populated with children, the runtime must ensure that
ViewHandler.retargetAttachedObjects() and then ViewHandler.retargetMethodExpressions() is called,
passing the top level component. The actions taken in these methods set the stage for the tag attribute
behavior and the special MethodExpression handling behavior described previously.

The runtime must support the inclusion of composite components within the composite component
definition. .

10.4. Standard Facelet Tag Libraries
This section specifies the tag libraries that must be provided by an implementation.

10.4.1. Jakarta Faces Core Tag Library

This tag library must be equivalent to the one specified in Jakarta Faces Core Tag Library. The
specification for this library can be found in the VDLDocs for the f: tag library.

10.4. Standard Facelet Tag Libraries

Final Jakarta Faces 237

10.4.2. Standard HTML RenderKit Tag Library

This tag library must be equivalent to the one specified in Standard HTML RenderKit Tag Library. The
specification for this library can be found in the VDLDocs for the h: tag library.

10.4.3. Facelet Templating Tag Library

This tag library is the specified version of the ui: tag library found in Facelets. The specification for this
library can be found in the VDLDocs for the ui: tag library.

10.4.4. Composite Component Tag Library

This tag library is used to declare composite components. The specification for this tag library can be
found in the VDLDocs for the cc: tag library.

10.4.5. Jakarta Tags Core and Function Tag Libraries

Facelets exposes a subset of the Jakarta Tags Core tag library and the entirety of the Jakarta Tags
Function tag library. Please see the VDLDocs for the jstl-core: and jstl-fn: tag libraries for the normative
specification.

10.5. Assertions relating to the construction of the view
hierarchy

When the VDL calls for the creation of a UIComponent instance, after calling
Application.createComponent() to instantiate the component instance, and after calling
setRendererType() on the newly instantiated component instance, the following action must be taken.

• Obtain the Renderer for this component. If no Renderer is present, ignore the following steps.

• Call getClass() on the Renderer instance and inspect if the ListenerFor annotation is present. If so,
inspect if the Renderer instance implements ComponentSystemEventListener. If neither of these
conditions are true, ignore the following steps.

• Obtain the value of the systemEventClass() property of the ListenerFor annotation on the Renderer
instance.

• Call subscribeToEvent() on the UIComponent instance from which the Renderer instance was
obtained, using the systemEventClass from the annotation as the second argument, and the
Renderer instance as the third argument.

10.5. Assertions relating to the construction of the view

238 Jakarta Faces Final

Chapter 11. Using Jakarta Faces in Web
Applications
This specification provides Jakarta Faces implementors significant freedom to differentiate themselves
through innovative implementation techniques, as well as value-added features. However, to ensure
that web applications based on Jakarta Faces can be executed unchanged across different Jakarta Faces
implementations, the following additional requirements, defining how a Jakarta Faces-based web
application is assembled and configured, must be supported by all Jakarta Faces implementations.

11.1. Web Application Deployment Descriptor
Jakarta Faces-based applications are web applications that conform to the requirements of the Jakarta
Servlet Specification (version 5.0 or later), and also use the facilities defined in this specification.
Conforming web applications are packaged in a web application archive (WAR), with a well-defined
internal directory structure. A key element of a WAR is the web application deployment descriptor, an
XML document that describes the configuration of the resources in this web application. This
document is included in the WAR file itself, at resource path /WEB-INF/web.xml.

Portable Jakarta Faces-based web applications must include the following configuration elements, in
the appropriate portions of the web application deployment descriptor. Element values that are
rendered in italics represent values that the application developer is free to choose. Element values
rendered in bold represent values that must be utilized exactly as shown.

Executing the request processing lifecycle via other mechanisms is also allowed (for example, an MVC-
based application framework can incorporate calling the correct phase implementations in the correct
order); however, all Jakarta Faces implementations must support the functionality described in this
chapter to ensure application portability.

11.1.1. Servlet Definition

Jakarta Faces implementations must provide request processing lifecycle services through a standard
servlet, defined by this specification. This servlet must be defined, in the deployment descriptor of an
application that wishes to employ this portable mechanism, as follows:

<servlet>

 <servlet-name> faces-servlet-name </servlet-name>

 <servlet-class> jakarta.faces.webapp.FacesServlet </servlet-class>

</servlet>

The servlet name, denoted as faces-servlet-name above, may be any desired value; however, the same

11.1. Web Application Deployment Descriptor

Final Jakarta Faces 239

value must be used in the servlet mapping (see Servlet Mapping).

In addition to FacesServlet, Jakarta Faces implementations may support other ways to invoke the
Jakarta Faces request processing lifecycle, but applications that rely on these mechanisms will not be
portable.

11.1.2. Servlet Mapping

All requests to a web application are mapped to a particular servlet based on matching a URL pattern
(as defined in the Jakarta Servlet Specification) against the portion of the request URL after the context
path that selected this web application. Jakarta Faces implementations must support web application
that define a <servlet-mapping> that maps any valid url-pattern to the FacesServlet. Prefix or extension
mapping may be used. When using prefix mapping, the following mapping is recommended, but not
required:

<servlet-mapping>

 <servlet-name> faces-servlet-name </servlet-name>

 <url-pattern> /faces/* </url-pattern>

</servlet-mapping>

When using extension mapping the following mapping is recommended, but not required:

<servlet-mapping>

 <servlet-name> faces-servlet-name </servlet-name>

 <url-pattern> *.faces </url-pattern>

</servlet-mapping>

In addition to FacesServlet, Jakarta Faces implementations may support other ways to invoke the
Jakarta Faces request processing lifecycle, but applications that rely on these mechanisms will not be
portable.

11.1.3. Application Configuration Parameters

Servlet containers support application configuration parameters that may be customized by including
<context-param> elements in the web application deployment descriptor. All Jakarta Faces
implementations are required to support the following application configuration parameter names:

• jakarta.faces.ALWAYS_PERFORM_VALIDATION_WHEN_REQUIRED_IS_TRUE —See the javadocs for
the constant

11.1. Web Application Deployment Descriptor

240 Jakarta Faces Final

jakarta.faces.component.UIInput.ALWAYS_PERFORM_VALIDATION_WHEN_REQUIRED_IS_TRUE for
the specification of this feature.

• jakarta.faces.CLIENT_WINDOW_MODE —The context-param that controls the operation of the
ClientWindow feature. See the javadocs for the constant
jakarta.faces.lifecycle.ClientWindow.CLIENT_WINDOW_MODE_PARAM_NAME for the specification
of this feature.

• jakarta.faces.CONFIG_FILES — Comma-delimited list of context-relative resource paths under
which the Jakarta Faces implementation will look for application configuration resources (see
Application Configuration Resource Format), before loading a configuration resource named
“/WEB-INF/faces-config.xml” (if such a resource exists). If “/WEB-INF/faces-config.xml” is present in
the list, it must be ignored.

• jakarta.faces.DATETIMECONVERTER_DEFAULT_TIMEZONE_IS_SYSTEM_TIMEZONE — If this param
is set, and calling toLowerCase().equals("true") on a String representation of its value returns true,
Application.createConverter() must guarantee that the default for the timezone of all
jakarta.faces.convert.DateTimeConverter instances must be equal to TimeZone.getDefault() instead
of “GMT”.

• jakarta.faces.DISABLE_FACESSERVLET_TO_XHTML — If this param is set, and calling
toLowerCase().equals("true") on a String representation of its value returns true, the default
mapping of the FacesServlet to *.xhtml must not take effect.

• jakarta.faces.FACELETS_LIBRARIES —If this param is set, the runtime must interpret it as a
semicolon (;) separated list of paths, starting with “/” (without the quotes). The runtime must
interpret each entry in the list as a path relative to the web application root and interpret the file
found at that path as a facelet tag library, conforming to the facelet taglibrary schema and expose
the tags therein according to Facelet Tag Library mechanism. The runtime must also consider the
facelets.LIBRARIES param name as an alias to this param name for backwards compatibility with
existing facelets tag libraries.

• jakarta.faces.FACELETS_BUFFER_SIZE —The buffer size to set on the response when the
ResponseWriter is generated. By default the value is 1024. A value of -1 will not assign a buffer size
on the response. This should be increased if you are using development mode in order to guarantee
that the response isn’t partially rendered when an error is generated. The runtime must also
consider the facelets.BUFFER_SIZE param name as an alias to this param name for backwards
compatibility with existing facelets tag libraries.

• jakarta.faces.FACELETS_DECORATORS —A semicolon (;) delimitted list of class names of type
jakarta.faces.view.facelets.TagDecorator, with a no-argument constructor. These decorators will be
loaded when the first request for a Facelets VDL view hits the ViewHandler for page
compilation.The runtime must also consider the facelets.DECORATORS param name as an alias to
this param name for backwards compatibility with existing facelets tag libraries.

• jakarta.faces.FACELETS_REFRESH_PERIOD — When a page is requested, what interval in seconds
should the compiler check for changes. If you don’t want the compiler to check for changes once
the page is compiled, then use a value of -1. Setting a low refresh period helps during development
to be able to edit pages in a running application.The runtime must also consider the

11.1. Web Application Deployment Descriptor

Final Jakarta Faces 241

facelets.REFRESH_PERIOD param name as an alias to this param name for backwards compatibility
with existing facelets tag libraries.

• jakarta.faces.FACELETS_RESOURCE_RESOLVER — If this param is set, the runtime must interpret its
value as a fully qualified classname of a java class that extends
jakarta.faces.view.facelets.ResourceResolver and has a zero argument public constructor or a one
argument public constructor where the type of the argument is ResourceResolver. If this param is
set and its value does not conform to those requirements, the runtime must log a message and
continue. If it does conform to these requirements and has a one-argument constructor, the default
ResourceResolver must be passed to the constructor. If it has a zero argument constructor it is
invoked directly. In either case, the new ResourceResolver replaces the old one. The runtime must
also consider the facelets.RESOURCE_RESOLVER param name as an alias to this param name for
backwards compatibility with existing facelets tag libraries.

Related to this param is the corresponding annotation,
jakarta.faces.view.facelets.FaceletsResourceResolver. The presence of this annotation must be
ignored if the corresponding param has been specified. If present, this annotation must be attached
to a class that extends jakarta.faces.view.facelets.ResourceResolver. If more than one class in the
application has this annotation, an informative error message with logging level SEVERE must be
logged indicating this case. Exactly one of the classes with the annotation must be taken to be the
ResourceResolver for the application and any other classes with the annotation must be ignored.
See Ordering of Artifacts for the means to put application configuration resources in order such
that the chosen class can be defined. The same rules regarding decoration of the instance as listed
above must apply to the annotated class.

• jakarta.faces.FACELETS_SKIP_COMMENTS —If this param is set, and calling
toLowerCase().equals("true") on a String representation of its value returns true, the runtime must
ensure that any XML comments in the Facelets source page are not delivered to the client. The
runtime must also consider the facelets.SKIP_COMMENTS param name as an alias to this param
name for backwards compatibility with existing facelets tag libraries.

• jakarta.faces.FACELETS_SUFFIX —Allow the web application to define alternate suffixes for Facelet
based XHTML pages containing Jakarta Faces content. See the javadocs for the symbolic constant
ViewHandler.FACELETS_SUFFIX_PARAM_NAME for the complete specification.

• jakarta.faces.FACELETS_VIEW_MAPPINGS —If this param is set, the runtime must interpret it as a
semicolon (;) separated list of strings that is used to forcibly declare that certain pages in the
application must be interpreted as using Facelets, regardless of their extension. The runtime must
also consider the facelets.VIEW_MAPPINGS param name as an alias to this param name for
backwards compatibility with existing facelets applications. See the javadocs for the symbolic
constant ViewHandler.FACELETS_VIEW_MAPPINGS_PARAM_NAME for the complete specification.

• jakarta.faces.FULL_STATE_SAVING_VIEW_IDS — The runtime must interpret the value of this
parameter as a comma separated list of view IDs, each of which must have their state saved using
the state saving mechanism specified in pre-Jakarta Faces JSF 1.2 (under the JCP).

• jakarta.faces.HONOR_CURRENT_COMPONENT_ATTRIBUTES — The ServletContext init parameter
consulted by the UIComponent to tell whether or not the CURRENT_COMPONENT and

11.1. Web Application Deployment Descriptor

242 Jakarta Faces Final

CURRENT_COMPOSITE_COMPONENT attribute keys should be honored as specified. If this
parameter is not specified, or is set to false, the contract specified by the CURRENT_COMPONENT
and CURRENT_COMPOSITE_COMPONENT method is not honored. If this parameter is set to true,
the contract is honored.

• jakarta.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL —If this param is set,
and calling toLowerCase().equals("true") on a String representation of its value returns true, any
implementation of UIInput.validate() must take the following additional action.

If the jakarta.faces.INTERPRET_EMPTY_STRING_SUBMITTED_VALUES_AS_NULL context parameter
value is true (ignoring case), and UIInput. getSubmittedValue() returns a zero-length String call
UIInput.setSubmittedValue(null) and continue processing using null as the current submitted value

• jakarta.faces.LIFECYCLE_ID —Lifecycle identifier of the Lifecycle instance to be used when
processing Jakarta Faces requests for this web application. If not specified, the Jakarta Faces default
instance, identified by LifecycleFactory.DEFAULT_LIFECYCLE, must be used.

• jakarta.faces.PARTIAL_STATE_SAVING --The ServletContext init parameter consulted by the runtime
to determine if the partial state saving mechanism should be used.
If undefined, the runtime must determine the version level of the application.

◦ For applications versioned at 1.2 and under, the runtime must not use the partial state saving
mechanism.

◦ For applications versioned at 2.0 and above, the runtime must use the partial state saving
mechanism.

If this parameter is defined, and the application is versioned at 1.2 and under, the runtime must
not use the partial state saving mechanism. Otherwise, If this param is defined, and calling
toLowerCase().equals("true") on a String representation of its value returns true, the runtime must
use partial state mechanism. Otherwise the partial state saving mechanism must not be used.

• jakarta.faces.PROJECT_STAGE —A human readable string describing where this particular Jakarta
Faces application is in the software development lifecycle. Valid values are “Development”,
“UnitTest”, “SystemTest”, or “Production”, corresponding to the enum constants of the class
jakarta.faces.application.ProjectStage. It is also possible to set this value via JNDI. See the javadocs
for Application.getProjectStage().

• jakarta.faces.RESOURCE_EXCLUDES — The ServletContext init parameter consulted by the
handleResourceRequest to tell which kinds of resources must never be served up in response to a
resource request. The value of this parameter is a single space separated list of file extensions,
including the leading '.' character (without the quotes). If not specified, the default value .class
.jsp .jspx .properties .xhtml .groovy is used. If manually specified, the given value entirely
overrides the default one and does not supplement it.

• jakarta.faces.SEPARATOR_CHAR --The context param that allows the character used to separate
segments in a UIComponent clientId to be set on a per-application basis.

• jakarta.faces.SERIALIZE_SERVER_STATE --If this param is set, and calling

11.1. Web Application Deployment Descriptor

Final Jakarta Faces 243

toLowerCase().equals("true") on a String representation of its value returns true, and the
jakarta.faces.STATE_SAVING_METHOD is set to “server” (as indicated below), the server state must
be guaranteed to be Serializable such that the aggregate state implements java.io.Serializable. The
intent of this parameter is to ensure that the act of writing out the state to an ObjectOutputStream
would not throw a NotSerializableException, but the runtime is not required verify this before
saving the state.

• jakarta.faces.STATE_SAVING_METHOD —The location where state information is saved. Valid
values are “server” (typically saved in HttpSession) and “client (typically saved as a hidden field in
the subsequent form submit). If not specified, the default value “server” must be used. When
examining the parameter value, the runtime must ignore case.

• jakarta.faces.VALIDATE_EMPTY_FIELDS —If this param is set, and calling
toLowerCase().equals("true") on a String representation of its value returns true, all submitted fields
will be validated. This is necessary to allow the model validator to decide whether null or empty
values are allowable in the current application. If the value is false, null or empty values will not be
passed to the validators. If the value is the string “auto”, the runtime must check if JSR-303 Beans
Validation is present in the current environment. If so, the runtime must proceed as if the value
“true” had been specified. If JSR-303 Beans Validation is not present in the current environment,
the runtime most proceed as if the value “false” had been specified. If the param is not set, the
system must behave as if the param was set with the value “auto”.

• jakarta.faces.validator.DISABLE_DEFAULT_BEAN_VALIDATOR —If this param is set, and calling
toLowerCase().equals("true") on a String representation of its value returns true, the runtime must
not automatically add the validator with validator-id equal to the value of the symbolic constant
jakarta.faces.validator. VALIDATOR_ID to the list of default validators. Setting this parameter to true
will have the effect of disabling the automatic installation of Bean Validation to every input
component in every view in the application, though manual installation is still possible.

• jakarta.faces.validator.ENABLE_VALIDATE_WHOLE_BEAN —If this param is set, and calling
toLowerCase().equals("true") on a String representation of its value returns true, the
<f:validateWholeBean /> tag is enabled. If not set or set to false, this tag is a no-op.

• jakarta.faces.VIEWROOT_PHASE_LISTENER_QUEUES_EXCEPTIONS —If this param is set, and
calling toLowerCase().equals("true") on a String representation of its value returns true, exceptions
thrown by PhaseListeners installed on the UIViewRoot are queued to the ExceptionHandler instead
of being logged and swallowed. If this param is not set or is set to false, the old behavior prevails.

• jakarta.faces.ENABLE_WEBSOCKET_ENDPOINT — Enable WebSocket support. See the javadoc for
jakarta.faces.component.UIWebsocket.

• jakarta.faces.WEBSOCKET_ENDPOINT_PORT — The integer context parameter name to specify the
websocket endpoint port when it’s different from HTTP port. See the javadoc for
jakarta.faces.component.UIWebsocket.

• jakarta.faces.WEBAPP_RESOURCES_DIRECTORY

If this param is set, the runtime must interpret its value as a path, relative to the web app root,
where resources are to be located. This param value must not start with a “/”, though it may
contain “/” characters. If no such param exists, or its value is invalid, the value “resources”, without

11.1. Web Application Deployment Descriptor

244 Jakarta Faces Final

the quotes, must be used by the runtime as the value.

• jakarta.faces.WEBAPP_CONTRACTS_DIRECTORY

If this param is set, the runtime must interpret its value as a path, relative to the web app root,
where resource library contracts are to be located. This param value must not start with a “/”,
though it may contain “/” characters. If no such param exists, or its value is invalid, the value
“contracts”, without the quotes, must be used by the runtime as the value.

Jakarta Faces implementations may choose to support additional configuration parameters, as well as
additional mechanisms to customize the Jakarta Faces implementation; however, applications that rely
on these facilities will not be portable to other Jakarta Faces implementations.

11.2. Included Classes and Resources
A Jakarta Faces-based application will rely on a combination of APIs, and corresponding
implementation classes and resources, in addition to its own classes and resources. The web
application archive structure identifies two standard locations for classes and resources that will be
automatically made available when a web application is deployed:

• /WEB-INF/classes —A directory containing unpacked class and resource files.

• /WEB-INF/lib —A directory containing JAR files that themselves contain class files and resources.

In addition, servlet and portlet containers typically provide mechanisms to share classes and resources
across one or more web applications, without requiring them to be included inside the web application
itself.

The following sections describe how various subsets of the required classes and resources should be
packaged, and how they should be made available.

11.2.1. Application-Specific Classes and Resources

Application-specific classes and resources should be included in /WEB-INF/classes or /WEB-INF/lib, so
that they are automatically made available upon application deployment.

11.2.2. Jakarta Servlet API Classes (jakarta.servlet.*)

These classes will typically be made available to all web applications using the shared class facilities of
the servlet container. Therefore, these classes should not be included inside the web application
archive.

11.2.3. Jakarta Tags API Classes (jakarta.servlet.jsp.jstl.*)

These classes will typically be made available to all web applications using the shared class facilities of
the servlet container. Therefore, these classes should not be included inside the web application

11.2. Included Classes and Resources

Final Jakarta Faces 245

archive.

11.2.4. Jakarta Tags Implementation Classes

These classes will typically be made available to all web applications using the shared class facilities of
the servlet container. Therefore, these classes should not be included inside the web application
archive.

11.2.5. Jakarta Faces API Classes (jakarta.faces.*)

These classes will typically be made available to all web applications using the shared class facilities of
the servlet container. Therefore, these classes should not be included inside the web application
archive.

11.2.6. Jakarta Faces Implementation Classes

These classes will typically be made available to all web applications using the shared class facilities of
the servlet container. Therefore, these classes should not be included inside the web application
archive.

11.2.6.1. FactoryFinder

jakarta.faces.FactoryFinder implements the standard discovery algorithm for all factory objects
specified in the Jakarta Faces APIs. For a given factory class name, a corresponding implementation
class is searched for based on the following algorithm. Items are listed in order of decreasing search
precedence:

1. If a default Jakarta Faces configuration file (/WEB-INF/faces-config.xml) is bundled into the web
application, and it contains a factory entry of the given factory class name, that factory class is used.

2. If the Jakarta Faces configuration resource(s) named by the jakarta.faces.CONFIG_FILES
ServletContext init parameter (if any) contain any factory entries of the given factory class name,
those factories are used, with the last one taking precedence.

3. If there are any META-INF/faces-config.xml resources bundled any JAR files in the web
ServletContext’s resource paths, the factory entries of the given factory class name in those files are
used, with the last one taking precedence.

4. If a META-INF/services/{factory-class-name} resource is visible to the web application class loader
for the calling application (typically as a result of being present in the manifest of a JAR file), its
first line is read and assumed to be the name of the factory implementation class to use.

5. If none of the above steps yield a match, the Jakarta Faces implementation specific class is used.

If any of the factories found on any of the steps above happen to have a one-argument constructor,
with argument the type being the abstract factory class, that constructor is invoked, and the previous
match is passed to the constructor. For example, say the container vendor provided an implementation
of FacesContextFactory, and identified it in META-

11.2. Included Classes and Resources

246 Jakarta Faces Final

INF/services/jakarta.faces.context.FacesContextFactory in a jar on the webapp ClassLoader. Also say this
implementation provided by the container vendor had a one argument constructor that took a
FacesContextFactory instance. The FactoryFinder system would call that one-argument constructor,
passing the implementation of FacesContextFactory provided by the Jakarta Faces implementation.

If a Factory implementation does not provide a proper one-argument constructor, it must provide a
zero-arguments constructor in order to be successfully instantiated.

Once the name of the factory implementation class is located, the web application class loader for the
calling application is requested to load this class, and a corresponding instance of the class will be
created. A side effect of this rule is that each web application will receive its own instance of each
factory class, whether the Jakarta Faces implementation is included within the web application or is
made visible through the container’s facilities for shared libraries.

public static Object getFactory(String factoryName);

Create (if necessary) and return a per-web-application instance of the appropriate implementation
class for the specified Jakarta Faces factory class, based on the discovery algorithm described above.

Jakarta Faces implementations must also include implementations of the several factory classes. In
order to be dynamically instantiated according to the algorithm defined above, the factory
implementation class must include a public, no-arguments constructor. For each of the public static
final String fields on the class FactoryFinder whose field names end with the string “_FACTORY”
(without the quotes), the implementation must provide an implementation of the corresponding
Factory class using the algorithm described earlier in this section.

11.2.6.2. FacesServlet

FacesServlet is an implementation of jakarta.servlet.Servlet that accepts incoming requests and passes
them to the appropriate Lifecycle implementation for processing. This servlet must be declared in the
web application deployment descriptor, as described in Servlet Definition, and mapped to a standard
URL pattern as described in Servlet Mapping.

public void init(ServletConfig config) throws ServletException;

Acquire and store references to the FacesContextFactory and Lifecycle instances to be used in this web
application. For the LifecycleInstance, first consult the init-param set for this FacesServlet instance for a
parameter of the name jakarta.faces.LIFECYCLE_ID. If present, use that as the lifecycleID attribute to
the getLifecycle() method of LifecycleFactory. If not present, consult the context-param set for this web
application. If present, use that as the lifecycleID attribute to the getLifecycle() method of
LifecycleFactory. If neither param set has a value for jakarta.faces.LIFECYCLE_ID, use the value
DEFAULT. As an implementation note, please take care to ensure that all PhaseListener instances
defined for the application are installed on all lifecycles created during this process.

11.2. Included Classes and Resources

Final Jakarta Faces 247

public void destroy();

Release the FacesContextFactory and Lifecycle references that were acquired during execution of the
init() method.

public void service(ServletRequest request, ServletResponse response)
 throws IOException, ServletException;

For each incoming request, the following processing is performed:

• Using the FacesContextFactory instance stored during the init() method, call the getFacesContext()
method to acquire a FacesContext instance with which to process the current request.

• Call the execute() method of the saved Lifecycle instance, passing the FacesContext instance for this
request as a parameter. If the execute() method throws a FacesException, re-throw it as a
ServletException with the FacesException as the root cause.

• Call the render() method of the saved Lifecycle instance, passing the FacesContext instance for this
request as a parameter. If the render() method throws a FacesException, re-throw it as a
ServletException with the FacesException as the root cause.

• Call the release () method on the FacesContext instance, allowing it to be returned to a pool if the
Jakarta Faces implementation uses one.

The FacesServlet implementation class must also declare two static public final String constants whose
value is a context initialization parameter that affects the behavior of the servlet:

• CONFIG_FILES_ATTR —the context initialization attribute that may optionally contain a comma-
delimited list of context relative resources (in addition to /WEB-INF/faces-config.xml which is
always processed if it is present) to be processed. The value of this constant must be
“jakarta.faces.CONFIG_FILES”.

• LIFECYCLE_ID_ATTR —the lifecycle identifier of the Lifecycle instance to be used for processing
requests to this application, if an instance other than the default is required. The value of this
constant must be “jakarta.faces.LIFECYCLE_ID”.

11.3. Application Configuration Resources
This section describes the Jakarta Faces support for portable application configuration resources used
to configure application components.

11.3.1. Overview

Jakarta Faces defines a portable configuration resource format (as an XML document) for standard
configuration information. Please see the Javadoc overview for a link, titled “faces-config XML Schema
Documentation” to the XML Schema Definition for such documents.

11.3. Application Configuration Resources

248 Jakarta Faces Final

One or more such application resources will be loaded automatically, at application startup time, by
the Jakarta Faces implementation. The information parsed from such resources will augment the
information provided by the Jakarta Faces implementation, as described below.

In addition to their use during the execution of a Jakarta Faces-based web application, configuration
resources provide information that is useful to development tools created by Tool Providers. The
mechanism by which configuration resources are made available to such tools is outside the scope of
this specification.

11.3.2. Application Startup Behavior

Implementations may check for the presence of a servlet-class definition of class
jakarta.faces.webapp.FacesServlet in the web application deployment descriptor as a means to abort
the configuration process and reduce startup time for applications that do not use Jakarta Faces
Technology.

At application startup time, before any requests are processed, the Jakarta Faces implementation must
process zero or more application configuration resources, located as follows

Make a list of all of the application configuration resources found using the following algorithm:

• Check for the existence of a context initialization parameter named jakarta.faces.CONFIG_FILES. If
it exists, treat it as a comma-delimited list of context relative resource paths (starting with a “/”),
and add each of the specified resources to the list. If this parameter exists, skip the searching
specified in the next bullet item in this list.

• Search for all resources that match either “META-INF/faces-config.xml” or end with “.faces-
config.xml” directly in the “META-INF” directory. Each resource that matches that expression must
be considered an application configuration resource.

• Using the java.util.ServiceLoader, locate all implementations of the
jakarta.faces.ApplicationConfigurationResourceDocumentPopulator service. For each
implementation, create a fresh org.w3c.dom.Document instance, configured to be in the XML
namespace of the application configuration resource format, and invoke the implementation’s
populateApplicationConfigurationResource() method. If no exception is thrown, add the document
to the list, otherwise log a message and continue.

Let this list be known as applicationConfigurationResources for discussion. Also, check for the existence
of a web application configuration resource named “/WEB-INF/faces-config.xml”, and refer to this as
applicationFacesConfig for discussion, but do not put it in the list. When parsing the application
configuration resources, the implementation must ensure that applicationConfigurationResources are
parsed before applicationFacesConfig.

Please see Ordering of Artifacts for details on the ordering in which the decoratable artifacts in the
application configuration resources in applicationConfigurationResources and applicationFacesConfig
must be processed.

11.3. Application Configuration Resources

Final Jakarta Faces 249

This algorithm provides considerable flexibility for developers that are assembling the components of
a Jakarta Faces-based web application. For example, an application might include one or more custom
UIComponent implementations, along with associated Renderers, so it can declare them in an
application resource named “/WEB-INF/faces-config.xml” with no need to programmatically register
them with Application instance. In addition, the application might choose to include a component
library (packaged as a JAR file) that includes a “META-INF/faces-config.xml” resource. The existence of
this resource causes components, renderers, and other Jakarta Faces implementation classes that are
stored in this library JAR file to be automatically registered, with no action required by the application.

Perform the actions specified in Faces Flows.

Perform the actions specified in Resource Library Contracts.

The runtime must publish the jakarta.faces.event.PostConstructApplicationEvent immediately after all
application configuration resources have been processed.

XML parsing errors detected during the loading of an application resource file are fatal to application
startup, and must cause the application to not be made available by the container. Jakarta Faces
implementations that are part of a Jakarta EE technology-compliant implementation are required to
validate the application resource file against the XML schema for structural correctness. The validation
is recommended, but not required for Jakarta Faces implementations that are not part of a Jakarta EE
technology-compliant implementation.

11.3.2.1. Resource Library Contracts

If the parsing of the application configuration resources completed successfully, scan the application
for resource library contracts. Any resource library contract as described in Resource Library
Contracts must be discovered at application startup time. The complete set of discovered contracts has
no ordering semantics and effectively is represented as a Set<String> where the values are just the
names of the resource libraries. If multiple sources in the application configuration resources
contained <resource-library-contracts>, they are all merged into one element. Duplicates are resolved
in as specified in Ordering of Artifacts. If the application configuration resources produced a
<resource-library-contracts> element, create an implementation private data structure (called the
“resource library contracts data structure”) containing the mappings between viewId patterns and
resource library contracts as listed by the contents of that element.

The <resource-library-contracts> element is contained with in the <application> element and contains
one or more <contract-mapping> elements. Each <contract-mapping> element must one or more <url-
pattern> elements and one or more <contract> elements.

The value of the <url-pattern> element may be any of the following.

• The literal string *, meaning all views should have these contracts applied.

• An absolute prefix mapping, relative to the web app root, such as /directoryName/* meaning only
views matching that prefix should have these contracts applied.

• An exact fully qualified file path, relative to the web app root, such as

11.3. Application Configuration Resources

250 Jakarta Faces Final

/directoryName/fileName.xhtml, meaning exactly that view should have the contracts applied.

See ViewDeclarationLanguage.calculateResourceLibraryContracts() for the specification of how the
values of the <url-pattern> are to be processed.

The value of the <contracts> element is a comma separated list of resource library contract names. A
resource library contract name is the name of a directory within the contracts directory of the web app
root, or the contracts directory within the META-INF/contracts JAR entry.

Only the contracts explicitly mentioned in the <resource-library-contracts> element are included in the
data structure. If the information from the application configuration resources refers to a contract that
is not available to the application, an informative error message must be logged.

If the application configuration resources did not produce a <resource-library-contracts> element, the
data structure should be populated as if this were the contents of the <resource-library-contracts>
element:

<resource-library-contracts>
 <contract-mapping>
 <url-pattern>*</url-pattern>
 <contracts>”all available contracts”</contracts>
 </contract-mapping>
</resource-library-contracts>

Where “all available contracts” is replaced with a comma separated list of all the contracts discovered
in the startup scan. In the case where there is no <resource-library-contracts> element in the
application configuration resources, ordering of contracts is unspecified, which may lead to
unexpected behavior in the case of multiple contracts that have the same contract declaration.

11.3.3. Faces Flows

If the parsing of the application configuration resources completed successfully, any XML based flow
definitions in the application configuration resources will have been successfully discovered as well.
The discovered flows must be exposed as thread safe immutable application scoped instances of
jakarta.faces.flow.Flow, and made accessible to the runtime via the FlowHandler. If flows exist in the
application, but the jakarta.faces.CLIENT_WINDOW_MODE context-param was not specified, the
runtime must behave as if the value “url” (without the quotes) was specified for this context-param.

11.3.3.1. Defining Flows

Flows are defined using the <flow-definition> element. This element must have an id attribute which
uniquely identifies the flow within the scope of the Application Configuration Resource file in which
the element appears. To enable multiple flows with the same id to exist in an application, the <faces-
config><name> element is taken to be the definingDocumentId of the flow. If no <name> element is
specified, the empty string is taken as the value for definingDocumentId. Please see FlowHandler for an

11.3. Application Configuration Resources

Final Jakarta Faces 251

overview of the flow feature. Note that a number of conventions exist to make defining flows simpler.
These conventions are specified in Packaging Flows in Directories.

11.3.3.2. Packaging Faces Flows in JAR Files

The runtime must support packaging Faces Flows in JAR files as specified in this section. Any flows
packaged in a jar file must have its flow definition included in a faces-config.xml file located at the
META-INF/faces-config.xml JAR entry. This ensures that such flow definitions are included in the
application configuration resources. Any view nodes included in the jar must be located within sub
entries of the META-INF/flows/<flowName> JAR entry, where <flowName> is a JAR directory entry
whose name is identical to that of a flow id in the corresponding faces-config.xml file. If there are
@FlowScoped beans or beans with @FlowDefinition in the JAR, there must be a JAR entry named META-
INF/beans.xml. This ensures that such beans and definitions are discovered by the runtime at startup.
None of the flow definition conventions specified in Packaging Flows in Directories apply when a flow
is packaged in a JAR file. In other words, the flow must be explicitly declared in the JAR file’s faces-
config.xml.

11.3.3.3. Packaging Flows in Directories

The view nodes of a flow need not be collected in any specific directory structure, but there is a benefit
in doing so: flow definition conventions. If the jakarta.faces.CONFIG_FILES context parameter includes
references to files of the form /<flowName>/<flowName>-flow.xml or /WEB-INF/<flow-
Name>/<flowName>-flow.xml, and if such files exist in the current application (even if they are zero
length), they are treated as flow definitions. Flow definitions defined in this way must not be nested
any deeper in the directory structure than one level deep from the web app root or the WEB-INF
directory.

The following conventions apply to flows defined in this manner. Any flow definition in the
corresponding -flow.xml file will override any of the conventions in the case of a conflict.

• Every vdl file in that directory is a view node of that flow.

• The start node of the flow is the view whose name is the same as the name of the flow.

• Navigation among any of the views in the directory is considered to be within the flow.

• The flow defining document id is the empty string.

In the case of a zero length flow definition file, the following also applies:

• There is one return node in the flow, whose id is the id of the flow with the string “-return” (without
the quotes) appended to it. For example, if flowId is shopping, the return node id is shopping-return.

• The from-outcome of the return node is a string created with the following formula:
"/" + flowId + "-return".

For each directory packaged flow definition, the runtime must synthesize an instance of
jakarta.faces.flow.Flow that represents the union of the flow definition from the
/<flowName>/<flowName>-flow.xml file for that directory, and any of the preceding naming

11.3. Application Configuration Resources

252 Jakarta Faces Final

conventions, with precedence being given to the -flow.xml file. Such Flow instances must be added to
the FlowHandler before the PostConstructApplicationEvent is published.

11.3.4. Application Shutdown Behavior

When the Jakarta Faces runtime is directed to shutdown by its container, the following actions must be
taken.

1. Ensure that calls to FacesContext.getCurrentInstance() that happen during application shutdown
return successfully, as specified in the Javadocs for that method.

2. Publish the jakarta.faces.event.PreDestroyApplicationEvent.

3. Call FactoryFinder.releaseFactories().

11.3.5. Application Configuration Resource Format

Application configuration resources that are written to run on Jakarta Faces 4.0 must include the
following schema declaration and must conform to the schema shown in Appendix A - Jakarta Faces
Metadata

<faces-config
 xmlns="https://jakarta.ee/xml/ns/jakartaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://jakarta.ee/xml/ns/jakartaee
 https://jakarta.ee/xml/ns/jakartaee/web-facesconfig_4_0.xsd"
 version="4.0">

Application configuration resources that are written to run on Jakarta Faces 3.0 must include the
following schema declaration:

<faces-config
 xmlns="https://jakarta.ee/xml/ns/jakartaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://jakarta.ee/xml/ns/jakartaee
 https://jakarta.ee/xml/ns/jakartaee/web-facesconfig_3_0.xsd"
 version="3.0">

Note that the “hostname” of the xmlns and xsi:schemaLocation attributes has changed from
“xmlns.jcp.org” to “jakarta.ee”. The “jakarta.ee” hostname must be used when using version="3.0" and
web-facesconfig_3_0.xsd. It is not valid to use this hostname with versions prior to 3.0. Likewise, it is not
valid to use the “xmlns.jcp.org” hostname when using version="3.0" and web-facesconfig_3_0.xsd.

Application configuration resources that are written to run on pre-Jakarta Faces JSF 2.3 must include
the following schema declaration:

11.3. Application Configuration Resources

Final Jakarta Faces 253

<faces-config
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_3.xsd"
 version="2.3">

Application configuration resources that are written to run on pre-Jakarta Faces JSF 2.2 must include
the following schema declaration:

<faces-config
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
 http://xmlns.jcp.org/xml/ns/javaee/web-facesconfig_2_2.xsd"
 version="2.2">

Note that the “hostname” of the xmlns and xsi:schemaLocation attributes has changed from
“java.sun.com” to “xmlns.jcp.org”. The “xmlns.jcp.org” hostname must be used when using
version="2.2" and web-facesconfig_2_2.xsd. It is not valid to use this hostname with versions prior to 2.2.
Likewise, it is not valid to use the “java.sun.com” hostname when using version="2.2" and web-
facesconfig_2_2.xsd.

Application configuration resources that are written to run on pre-Jakarta Faces JSF 2.1 must include
the following schema declaration:

<faces-config
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_2_1.xsd"
 version="2.1">

Application configuration resources that are written to run on pre-Jakarta Faces JSF 2.0 must include
the following schema declaration:

<faces-config
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_2_0.xsd"
 version="2.0">

11.3. Application Configuration Resources

254 Jakarta Faces Final

Application configuration resources that are written to run on pre-Jakarta Faces JSF 1.2 Application
configuration resources must include the following schema declaration and must conform to the
schema referenced in the schemalocation URI shown below:

<faces-config
 xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facesconfig_1_2.xsd"
 version="1.2">

Application configuration resources that are written to run on pre-Jakarta Faces JSF 1.1
implementations must use the DTD declaration and include the following DOCTYPE declaration:

<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.1//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_1.dtd">

Application configuration resources that are written to run on pre-Jakarta Faces JSF 1.0
implementations must use the DTD declaration for the 1.0 DTD contained in the binary download of
the pre-Jakarta Faces JSF 1.0 reference implementation. They must also use the following DOCTYPE
declaration:

<!DOCTYPE faces-config PUBLIC
 "-//Sun Microsystems, Inc.//DTD JavaServer Faces Config 1.0//EN"
 "http://java.sun.com/dtd/web-facesconfig_1_0.dtd">

11.3.6. Configuration Impact on Jakarta Faces Runtime

The following XML elements [12] in application configuration resources cause registration of Jakarta
Faces objects into the corresponding factories or properties. It is an error if the value of any of these
elements cannot be correctly parsed, loaded, set, or otherwise used by the implementation.

• /faces-config/component —Create or replace a component type / component class pair with the
Application instance for this web application.

• /faces-config/converter —Create or replace a converter id / converter class or target class / converter
class pair with the Application instance for this web application.

• /faces-config/render-kit —Create and register a new RenderKit instance with the RenderKitFactory, if
one does not already exist for the specified render-kit-id.

• /faces-config/render-kit/renderer —Create or replace a component family + renderer id / renderer
class pair with the RenderKit associated with the render-kit element we are nested in.

11.3. Application Configuration Resources

Final Jakarta Faces 255

• /faces-config/validator —Create or replace a validator id / validator class pair with the Application
instance for this web application.

For components, converters, and validators, it is legal to replace the implementation class that is
provided (by the Jakarta Faces implementation) by default. This is accomplished by specifying the
standard value for the <component-type>, <converter-id>, or <validator-id> that you wish to replace,
and specifying your implementation class. To avoid class cast exceptions, the replacement
implementation class must be a subclass of the standard class being replaced. For example, if you
declare a custom Converter implementation class for the standard converter identifier
jakarta.faces.Integer, then your replacement class must be a subclass of
jakarta.faces.convert.IntegerConverter.

For replacement Renderers, your implementation class must extend jakarta.faces.render.Renderer.
However, to avoid unexpected behavior, your implementation should recognize all of the render-
dependent attributes supported by the Renderer class you are replacing, and provide equivalent
decode and encode behavior.

The following XML elements cause the replacement of the default implementation class for the
corresponding functionality, provided by the Jakarta Faces implementation. See Delegating
Implementation Support for more information about the classes referenced by these elements:

• /faces-config/application/action-listener —Replace the default ActionListener used to process
ActionEvent events with an instance with the class specified. The contents of this element must be a
fully qualified Java class name that, when instantiated, is an ActionListener.

• /faces-config/application/navigation-handler —Replace the default NavigationHandler instance with
the one specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a NavigationHandler.

• /faces-config/application/resource-handler — Replace the default ResourceHandler instance with
the one specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a ResourceHandler.

• /faces-config/application/search-expression-handler —This element contains the fully qualified class
name of the concrete jakarta.faces.component.search.SearchExpressionHandler implementation
class that will be used for processing of a search expression.

• /faces-config/application/search-keyword-resolver — This element contains the fully qualified class
name of the concrete jakarta.faces.component.search.SearchKeywordResolver implementation
class that will be used during the processing of a search expression keyword.

• /faces-config/application/state-manager —Replace the default StateManager instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a StateManager.

• /faces-config/application/system-event-listener —Instantiate a new instance of the class specified as
the content within a nested system-event-listener-class element, which must implement
SystemEventListener. This instance is referred to as systemEventListener for discussion. If a system-
event-class is specified as a nested element within system-event-listener, it must be a class that

11.3. Application Configuration Resources

256 Jakarta Faces Final

extends SystemEvent and has a public zero-arguments constructor. The Class object for system-
event-class is obtained and is referred to as systemEventClass for discussion. If system-event-class is
not specified, SystemEvent.class must be used as the value of system EventClass. If source-class is
specified as a nested element within system-event-listener, it must be a fully qualified class name.
The Class object for source-class is obtained and is referred to as sourceClass for discussion. If
source-class is not specified, let sourceClass be null. Obtain a reference to the Application instance
and call subscribeForEvent(facesEventClass, sourceClass, systemEventListener), passing the
arguments as assigned in the discussion.

• /faces-config/application/view-handler —Replace the default ViewHandler instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a ViewHandler.

The following XML elements cause the replacement of the default implementation class for the
corresponding functionality, provided by the Jakarta Faces implementation. Each of the referenced
classes must have a public zero-arguments constructor:

• /faces-config/factory/application-factory —Replace the default ApplicationFactory instance with the
one specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is an ApplicationFactory.

• /faces-config/factory/client-window-factory —Replace the default ClientWindowFactory instance with
the one specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a ClientWindowFactory.

• /faces-config/factory/exception-handler-factory —Replace the default ExceptionHandlerFactory
instance with the one specified. The contents of this element must be a fully qualified Java class
name that, when instantiated, is a ExceptionHandlerFactory.

• /faces-config/factory/faces-context-factory —Replace the default FacesContextFactory instance with
the one specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a FacesContextFactory.

• /faces-config/factory/flash-factory —Replace the default FlashFactory instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a FlashFactory.

• /faces-config/factory/flow-handler-factory —Replace the default FlowHandlerFactory instance with
the one specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a FlowHandlerFactory.

• /faces-config/factory/lifecycle-factory —Replace the default LifecycleFactory instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a LifecycleFactory.

• /faces-config/factory/render-kit-factory —Replace the default RenderKitFactory instance with the one
specified. The contents of this element must be a fully qualified Java class name that, when
instantiated, is a RenderKitFactory.

• /faces-config/factory/search-expression-context-kit-factory —This element contains the fully
qualified class name of the concrete SearchExpressionContextFactory implementation class that

11.3. Application Configuration Resources

Final Jakarta Faces 257

will be called when FactoryFinder.getFactory(SEARCH_EXPRESSION_CONTEXT_FACTORY) is called.

• /faces-config/factory/view-declaration-language-factory —Replace the default
ViewDeclarationLanguageFactory instance with the one specified. The contents of this element
must be a fully qualified Java class name that, when instantiated, is a
ViewDeclarationLanguageFactory.

The following XML elements cause the addition of event listeners to standard Jakarta Faces
implementation objects, as follows. Each of the referenced classes must have a public zero-arguments
constructor.

• /faces-config/lifecycle/phase-listener —Instantiate a new instance of the specified class, which must
implement PhaseListener, and register it with the Lifecycle instance for the current web
application.

In addition, the following XML elements influence the runtime behavior of the Jakarta Faces
implementation, even though they do not cause registration of objects that are visible to a Jakarta
Faces-based application.

• /faces-config/navigation-rule —Make the characteristics of a navigation rule available to the default
NavigationHandler implementation.

11.3.7. Delegating Implementation Support

The runtime must support the decorator design pattern as specified below for all classes of the
jakarta.faces package implementing the FacesWrapper interface, among others:

• Application via ApplicationWrapper

• ApplicationFactory

• ClientWindow via ClientWindowWrapper

• ClientWindowFactory

• ConfigurableNavigationHandler via ConfigurableNavigationHandlerWrapper

• ExceptionHandler via ExceptionHandlerWrapper

• ExceptionHandlerFactory

• ExternalContext via ExternalContextWrapper

• ExternalContextFactory

• FaceletCacheFactory

• FacesContext via FacesContextWrapper

• FacesContextFactory

• Flash via FlashWrapper

• FlashFactory

11.3. Application Configuration Resources

258 Jakarta Faces Final

• FlowHandlerFactory via FlowHandlerFactoryWrapper

• Lifecycle via LifecycleWrapper

• LifecycleFactory

• NavigationCase via NavigationCaseWrapper

• NavigationHandler via NavigationHandlerWrapper

• PartialViewContext via PartialViewContextWrapper

• PartialViewContextFactory

• Renderer via RendererWrapper

• RenderKit via RenderKitWrapper

• RenderKitFactory

• Resource via ResourceWrapper

• ResourceHandler via ResourceHandlerWrapper

• ResponseWriter via ResponseWriterWrapper

• SearchExpressionContextFactory

• SearchExpressionHandler via SearchExpressionHandlerWrapper

• StateManager via StateManagerWrapper

• TagHandlerDelegateFactory

• ViewDeclarationLanguage via ViewDeclarationLanguageWrapper

• ViewDeclarationLanguageFactory

• ViewHandler via ViewHandlerWrapper

• VisitContext via VisitContextWrapper

• VisitContextFactory

For all of these artifacts, the decorator design pattern is leveraged, so that if one provides a constructor
that takes a single argument of the appropriate type, the custom implementation receives via
FacesWrapper.getWrapped() method a reference to the implementation that was previously fulfilling
the role. In this way, the custom implementation is able to override just a subset of the functionality (or
provide only some additional functionality) and delegate the rest to the existing implementation.

For example, say you wanted to provide a custom ViewHandler that was the same as the default one,
but provided a different implementation of the calculateLocale() method. Consider this code excerpt
from a custom ViewHandler:

11.3. Application Configuration Resources

Final Jakarta Faces 259

public class YourViewHandler extends ViewHandlerWrapper {

 // Always implement the constructor taking the wrapped instance
 public YourViewHandler(ViewHandler wrapped) {
 super(wrapped);
 }

 // Overridden version of calculateLocale()
 public Locale calculateLocale(FacesContext context) {

 // You can if necessary obtain the original locale as follows
 Locale originalLocale = getWrapped().calculateLocale(context);

 // You can perform custom calculation of the locale here
 Locale customLocale = ...

 return customLocale;
 }
}

This can then be configured in the faces-config.xml file as follows:

<application>
 <view-handler>com.example.YourViewHandler</view-handler>
</application>

The constructor taking the wrapped instance will get called as the application is initially configured by
the Jakarta Faces implementation, and the previously registered ViewHandler will get passed to it.

The implementation must also support decoration of a RenderKit instance. At the point in time of when
the <render-kit> element is processed in an application configuration resources, if the current
RenderKitFactory already has a RenderKit instance for the <render-kit-id> within the <render-kit>
element, and the Class whose fully qualified java class name is given as the value of the <render-kit-
class> element within the <render-kit> element has a constructor that takes an RenderKit instance, the
existing RenderKit for that <render-kit-id> must be passed to that constructor, and the RenderKit
resulting from the executing of that constructor must be passed to RenderKitFactory.addRenderKit().

11.3.8. Ordering of Artifacts

Because the specification allows the application configuration resources to be composed of multiple
files, discovered and loaded from several different places in the application, the question of ordering
must be addressed. This section specifies how application configuration resource authors may declare
the ordering requirements of their artifacts.

11.3. Application Configuration Resources

260 Jakarta Faces Final

Application Startup Behavior defines two concepts: applicationConfigurationResources and
applicationFacesConfig. The former is an ordered list of all the application configuration resources
except the one at “WEB-INF/faces-config.xml”, and the latter is a list containing only the one at “WEB-
INF/faces-config.xml”.

An application configuration resource may have a top level <name> element of type javaee:java-
identifierType. If a <name> element is present, it must be considered for the ordering of decoratable
artifacts (unless the duplicate name exception applies, as described below).

Two cases must be considered to allow application configuration resources to express their ordering
preferences.

1. Absolute ordering: an <absolute-ordering> element in the applicationFacesConfig

In this case, ordering preferences that would have been handled by case 2 below must be ignored.

Any <name> element direct children of the <absolute-ordering> must be interpreted as indicating
the absolute ordering in which those named application configuration resources, which may or
may not be present in applicationConfigurationResources, must be processed.

The <absolute-ordering> element may contain zero or one <others /> elements. The required action
for this element is described below. If the <absolute-ordering> element does not contain an <others
/> element, any application configuration resources not specifically mentioned within <name />
elements must be ignored.

Duplicate name exception: if, when traversing the children of <absolute-ordering> , multiple
children with the same <name> element are encountered, only the first such occurrence must be
considered.

If an <ordering> element appears in the applicationFacesConfig, an informative message must be
logged and the element must be ignored.

2. Relative ordering: an <ordering> element within a file in the applicationConfigurationResources

An entry in applicationConfigurationResources may have an <ordering> element. If so, this element
must contain zero or one <before> elements and zero or one <after> elements. The meaning of
these elements is explained below.

Duplicate name exception: if, when traversing the constituent members of
applicationConfigurationResources, multiple members with the same <name> element are
encountered, the application must log an informative error message including information to help
fix the problem, and must fail to deploy. For example, one way to fix this problem is for the user to
use absolute ordering, in which case relative ordering is ignored.

If an <absolute-ordering> element appears in an entry in applicationConfigurationResources, an
informative message must be logged and the element must be ignored.

11.3. Application Configuration Resources

Final Jakarta Faces 261

Consider this abbreviated but illustrative example. faces-configA, faces-configB and faces-configC are
found in applicationConfigurationResources, while my-faces-config is the applicationFacesConfig. The
principles that explain the ordering result follow the example code.

faces-configA:.

<faces-config>
 <name>A</name>
 <ordering><after><name>B</name></after></ordering>
 <application>
 <view-handler>com.a.ViewHandlerImpl</view-handler>
 </application>
 <lifecycle>
 <phase-listener>com.a.PhaseListenerImpl</phase-listener>
 </lifecycle>
</faces-config>

faces-configB:.

<faces-config>
 <name>B</name>
 <application>
 <view-handler>com.b.ViewHandlerImpl</view-handler>
 </application>
 <lifecycle>
 <phase-listener>com.b.PhaseListenerImpl</phase-listener>
 </lifecycle>
</faces-config>

faces-configC:.

<faces-config>
 <name>C</name>
 <ordering><before><others/></before></ordering>
 <application>
 <view-handler>com.c.ViewHandlerImpl</view-handler>
 </application>
 <lifecycle>
 <phase-listener>com.c.PhaseListenerImpl</phase-listener>
 </lifecycle>
</faces-config>

my-faces-config:.

11.3. Application Configuration Resources

262 Jakarta Faces Final

<faces-config>
 <name>my</name>
 <application>
 <view-handler>com.my.ViewHandlerImpl</view-handler>
 </application>
 <lifecycle>
 <phase-listener>com.my.PhaseListenerImpl</phase-listener>
 </lifecycle>
</faces-config>

In this example, the processing order for the applicationConfigurationResources and
applicationFacesConfig will be.

Implementation Specific Config
C
B
A
my

The preceding example illustrates some, but not all, of the following principles.

• <before> means the document must be ordered before the document with the name matching the
name specified within the nested <name> element.

• <after> means the document must be ordered after the document with the name matching the
name specified within the nested <name> element.

• There is a special element <others /> which may be included zero or one time within the <before> or
< after> elements, or zero or one time directly within the <absolute-ordering> elements. The <others
/> element must be handled as follows.

• The <others /> element represents a set of application configuration resources. This set is described
as the set of all application configuration resources discovered in the application, minus the one
being currently processed, minus the application configuration resources mentioned by name in
the <ordering/> section. If this set is the empty set, at the time the application configuration
resources are being processed, the <others /> element must be ignored.

◦ If the <before> element contains a nested <others />, the document will be moved to the
beginning of the list of sorted documents. If there are multiple documents stating <before>
<others />, they will all be at the beginning of the list of sorted documents, but the ordering
within the group of such documents is unspecified.

◦ If the <after> element contains a nested <others />, the document will be moved to the end of
the list of sorted documents. If there are multiple documents requiring <after> <others />, they
will all be at the end of the list of sorted documents, but the ordering within the group of such
documents is unspecified.

11.3. Application Configuration Resources

Final Jakarta Faces 263

◦ Within a <before> or <after> element, if an <others /> element is present, but is not the only
<name> element within its parent element, the other elements within that parent must be
considered in the ordering process.

◦ If the <others /> element appears directly within the <absolute-ordering> element, the runtime
must ensure that any application configuration resources in applicationConfigurationResources
not explicitly named in the <absolute-ordering> section are included at that point in the
processing order.

• If a faces-config file does not have an <ordering> or <absolute-ordering> element the artifacts are
assumed to not have any ordering dependency.

• If the runtime discovers circular references, an informative message must be logged, and the
application must fail to deploy. Again, one course of action the user may take is to use absolute
ordering in the applicationFacesConfig.

The previous example can be extended to illustrate the case when applicationFacesConfig contains an
ordering section.

my-faces-config:.

<faces-config>
 <name>my</name>
 <absolute-ordering>
 <name>C</name>
 <name>A</name>
 </absolute-ordering>
 <application>
 <view-handler>com.my.ViewHandlerImpl</view-handler>
 </application>
 <lifecycle>
 <phase-listener>com.my.PhaseListenerImpl</phase-listener>
 </lifecycle>
</faces-config>

In this example, the constructor decorator ordering for ViewHandler would be C, A, my.

Some additional example scenarios are included below. All of these apply to the
applicationConfigurationResources relative ordering case, not to the applicationFacesConfig absolute
ordering case.

11.3. Application Configuration Resources

264 Jakarta Faces Final

Document A - <after><others/><name>C</name></after>
Document B - <before><others/></before>
Document C - <after><others/></after>
Document D - no ordering
Document E - no ordering
Document F - <before><others/><name>B</name></before>

The valid parse order is F, B, D/E, C, A, where D/E may appear as D, E or E, D

Document <no id> - <after><others/></after>
 <before><name>C</name></before>
Document B - <before><others/></before>
Document C - no ordering
Document D - <after><others/></after>
Document E - <before><others/></before>
Document F - no ordering

The complete list of parse order solutions for the above example is

B,E,F,<no id>,C,D

B,E,F,<no_id>,D,C

E,B,F,<no id>,C,D

E,B,F,<no_id>,D,C

B,E,F,D,<no id>,C

E,B,F,D,<no id>,C

Document A - <after><name>B</name></after>
Document B - no ordering
Document C - <before><others/></before>
Doucment D - no ordering

Resulting parse order: C, B, D, A. The parse order could also be: C, D, B, A.

11.3.9. Example Application Configuration Resource

The following example application resource file defines a custom UIComponent of type Date, plus a
number of Renderers that know how to decode and encode such a component:

11.3. Application Configuration Resources

Final Jakarta Faces 265

<?xml version="1.0" encoding="UTF-8"?>
<faces-config
 xmlns="https://jakarta.ee/xml/ns/jakartaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://jakarta.ee/xml/ns/jakartaee
 https://jakarta.ee/xml/ns/jakartaee/web-facesconfig_4_0.xsd"
 version="4.0">

 <!-- Define our custom component -->
 <component>
 <description>
 A custom component for rendering
 user-selectable dates in various formats.
 </description>
 <display-name>My Custom Date</display-name>
 <component-type>Date</component-type>
 <component-class>
 com.example.components.DateComponent
 </component-class>
 </component>

 <!-- Define two renderers that know how to deal with dates -->
 <render-kit>
 <!-- No render-kit-id, so add them to default RenderKit -->
 <renderer>
 <display-name>Calendar Widget</display-name>
 <component-family>MyComponent</component-family>
 <renderer-type>MyCalendar</renderer-type>
 <renderer-class>
 com.example.renderers.MyCalendarRenderer
 </renderer-class>
 </renderer>

 <renderer>
 <display-name>Month/Day/Year</display-name>
 <renderer-type>MonthDayYear</renderer-type>
 <renderer-class>
 com.example.renderers.MonthDayYearRenderer
 </renderer-class>
 </renderer>
 </render-kit>
</faces-config>

Additional examples of configuration elements that might be found in application configuration
resources are in Example NavigationHandler Configuration.

11.3. Application Configuration Resources

266 Jakarta Faces Final

11.4. Annotations that correspond to and may take the
place of entries in the Application Configuration
Resources
An implementation must support several annotation types that take may take the place of entries in
the Application Configuration Resources. The implementation requirements are specified in this
section.

11.4.1. Requirements for scanning of classes for annotations

• If the <faces-config> element in the WEB-INF/faces-config.xml file contains metadata-complete
attribute whose value is “true”, the implementation must not perform annotation scanning on any
classes except for those classes provided by the implementation itself. Otherwise, continue as
follows.

• If the runtime discovers a conflict between an entry in the Application Configuration Resources
and an annotation, the entry in the Application Configuration Resources takes precedence.

• All classes in WEB-INF/classes must be scanned.

• For every jar in the application’s WEB-INF/lib directory, if the jar contains a “META-INF/faces-
config.xml” file or a file that matches the regular expression “.*\.faces-config.xml” (even an empty
one), all classes in that jar must be scanned.

11.4. Annotations that correspond to and may take the place of entries in the Application Configuration Resources

Final Jakarta Faces 267

Chapter 12. Lifecycle Management
In Request Processing Lifecycle, the required functionality of each phase of the request processing
lifecycle was described. This chapter describes the standard APIs used by Jakarta Faces
implementations to manage and execute the lifecycle. Each of these classes and interfaces is part of the
jakarta.faces.lifecycle package.

Page authors, component writers, and application developers, in general, will not need to be aware of
the lifecycle management APIs—they are primarily of interest to tool providers and Jakarta Faces
implementors.

12.1. Lifecycle
Upon receipt of each Jakarta Faces-destined request to this web application, the Jakarta Faces
implementation must acquire a reference to the Lifecycle instance for this web application, and call its
execute() and render() methods to perform the request processing lifecycle. The Lifecycle instance
invokes appropriate processing logic to implement the required functionality for each phase of the
request processing lifecycle, as described in Standard Request Processing Lifecycle Phases.

public void execute(FacesContext context) throws FacesException;
public void render(FacesContext context) throws FacesException;

The execute() method performs phases up to, but not including, the Render Response phase. The
render() method performs the Render Response phase. This division of responsibility makes it easy to
support Jakarta Faces processing in a portlet-based environment.

As each phase is processed, registered PhaseListener instances are also notified. The general processing
for each phase is as follows:

• From the set of registered PhaseListener instances, select the relevant ones for the current phase,
where “relevant” means that calling getPhaseId() on the PhaseListener instance returns the phase
identifier of the current phase, or the special value PhaseId.ANY_PHASE.

• Call the beforePhase() method of each relevant listener, in the order that the listeners were
registered.

• If no called listener called the FacesContext.renderResponse() or FacesContext.responseComplete()
method, execute the functionality required for the current phase.

• Call the afterPhase() method of each relevant listener, in the reverse of the order that the listeners
were registered.

• If the FacesContext.responseComplete() method has been called during the processing of the current
request, or we have just completed the Render Response phase, perform no further phases of the
request processing lifecycle.

• If the FacesContext.renderResponse() method has been called during the processing of the current

12.1. Lifecycle

268 Jakarta Faces Final

request, and we have not yet executed the Render Response phase of the request processing
lifecycle, ensure that the next executed phase will be Render Response

public void addPhaseListener(PhaseListener listener);
public void removePhaseListener(PhaseListener listener);

These methods register or deregister a PhaseListener that wishes to be notified before and after the
processing of each standard phase of the request processing lifecycle. Implementations should prevent
duplicate PhaseListener registrations and log an exception if an attempt is made. The webapp author
can declare a PhaseListener to be added using the phase-listener element of the application
configuration resources file. Please see PhaseListener.

12.2. PhaseEvent
This class represents the beginning or ending of processing for a particular phase of the request
processing lifecycle, for the request encapsulated by the FacesContext instance passed to our
constructor.

public PhaseEvent(FacesContext context,
 PhaseId phaseId, Lifecycle lifecycle);

Construct a new PhaseEvent representing the execution of the specified phase of the request
processing lifecycle, on the request encapsulated by the specified FacesContext instance. The Lifecycle
instance must be the lifecycle used by the current FacesServlet that is processing the request. It will
serve as the source of the java.util.EventObject from which PhaseEvent inherits.

public FacesContext getFacesContext();
public PhaseId getPhaseId();

Return the properties of this event instance. The specified FacesContext instance will also be returned
if getSource() (inherited from the base EventObject class) is called.

12.3. PhaseListener
This interface must be implemented by objects that wish to be notified before and after the processing
for a particular phase of the request processing lifecycle, on a particular request. Implementations of
PhaseListener must be programmed in a thread-safe manner.

public PhaseId getPhaseId();

The PhaseListener instance indicates for which phase of the request processing lifecycle this listener

12.2. PhaseEvent

Final Jakarta Faces 269

wishes to be notified. If PhaseId.ANY_PHASE is returned, this listener will be notified for all standard
phases of the request processing lifecycle.

public void beforePhase(PhaseEvent event);
public void afterPhase(PhaseEvent event);

The beforePhase() method is called before the standard processing for a particular phase is performed,
while the afterPhase() method is called after the standard processing has been completed. The Jakarta
Faces implementation must guarantee that, if beforePhase() has been called on a particular instance,
then afterPhase() will also be called, regardless of any Exceptions that may have been thrown during
the actual execution of the lifecycle phase. For example, let’s say there are three PhaseListeners
attached to the lifecycle: A, B, and C, in that order. A.beforePhase() is called, and executes successfully.
B.beforePhase() is called and throws an exception. Any exceptions thrown during the beforePhase()
listeners must be caught and published to the ExceptionHandler, as described below. In this example,
C.beforePhase() must not be called. Then the actual lifecycle phase executes. Any exceptions thrown
during the execution of the actual phase, that reach the runtime code that implements the Jakarta
Faces lifecycle phase, must be caught and and published to the ExceptionHandler, as described below.
When the lifecycle phase exits, due to an exeception or normal termination, the afterPhase() listeners
must be called in reverse order from the beforePhase() listeners in the following manner. C.afterPhase()
must not be called, since C.beforePhase() was not called. B.afterPhase() must not be called, since
B.beforePhase() did not execute successfully. A.afterPhase() must be called. Any exceptions thrown
during the afterPhase() liseteners must be caught and published to the ExceptionHandler, as described
below.

The previous paragraph detailed several cases where exceptions should be published to the Exception
handler. The following action must be taken by the runtime to implement this requirement as well as
an additional requirent to cause the ExceptionHandler to take action on the published Exception(s). The
specification is shown in pseudocode. This code does not implement the before/after matching
guarantees specified above and is only intended to describe the specification for publishing and
handling ExceptionQueuedEvent instances that arise from exceptions being thrown during the
execution of a lifecycle phase. Methods shown in thisTypeface() are not a part of the API and are just
included for discussion.

12.3. PhaseListener

270 Jakarta Faces Final

FacesContext facesContext = FacesContext.getCurrentInstance();
Application app = facesContext.getApplication();
ExceptionHandler handler = facesContext.getExceptionHandler();

try {
 callBeforePhaseListeners();
} catch (Throwable thrownException) {
 jakarta.faces.event.ExceptionEventContext eventContext =
 new ExceptionEventContext(
 thrownException, null, facesContext.getPhaseId());
 eventContext.getAttributes()
 .put(EventContext.IN_BEFORE_PHASE, Boolean.TRUE);
 app.publishEvent(ExceptionQueuedEvent.class, eventContext);
}

try {
 doCurrentPhase();
} catch (Throwable thrownException) {
 jakarta.faces.event.ExceptionEventContext eventContext =
 new ExceptionEventContext(
 thrownException, null, facesContext.getPhaseId());
 app.publishEvent(ExceptionQueuedEvent.class, eventContext);
} finally {
 try {
 callAfterPhaseListeners();
 } catch (Throwable thrownException) {
 jakarta.faces.event.ExceptionEventContext eventContext =
 new ExceptionEventContext(
 thrownException, null, facesContext.getPhaseId());
 eventContext.getAttributes()
 .put(EventContext.IN_AFTER_PHASE, Boolean.TRUE);
 app.publishEvent(ExceptionQueuedEvent.class, eventContext);
 }
 handler.handle();
}

body text.

PhaseListener implementations may affect the remainder of the request processing lifecycle in several
ways, including:

• Calling renderResponse() on the FacesContext instance for the current request, which will cause
control to transfer to the Render Response phase of the request processing lifecycle, once processing
of the current phase is complete.

• Calling responseComplete() on the FacesContext instance for the current request, which causes
processing of the request processing lifecycle to terminate once the current phase is complete.

12.3. PhaseListener

Final Jakarta Faces 271

12.4. LifecycleFactory
A single instance of jakarta.faces.lifecycle.LifecycleFactory must be made available to each Jakarta
Faces-based web application running in a servlet or portlet container. The factory instance can be
acquired by Jakarta Faces implementations or by application code, by executing:

LifecycleFactory factory = (LifecycleFactory)
 FactoryFinder.getFactory(FactoryFinder.LIFECYCLE_FACTORY);

The LifecycleFactory implementation class supports the following methods:

public void addLifecycle(String lifecycleId, Lifecycle lifecycle);

Register a new Lifecycle instance under the specified lifecycle identifier, and make it available via calls
to the getLifecycle method for the remainder of the current web application’s lifetime.

public Lifecycle getLifecycle(String lifecycleId);

The LifecycleFactory implementation class provides this method to create (if necessary) and return a
Lifecycle instance. All requests for the same lifecycle identifier from within the same web application
will return the same Lifecycle instance, which must be programmed in a thread-safe manner.

Every Jakarta Faces implementation must provide a Lifecycle instance for a default lifecycle identifier
that is designated by the String constant LifecycleFactory.DEFAULT_LIFECYCLE . For advanced uses, a
Jakarta Faces implementation may support additional lifecycle instances, named with unique lifecycle
identifiers.

public Iterator<String> getLifecycleIds();

This method returns an iterator over the set of lifecycle identifiers supported by this factory. This set
must include the value specified by LifecycleFactory.DEFAULT_LIFECYCLE.

12.4. LifecycleFactory

272 Jakarta Faces Final

Chapter 13. Ajax Integration
This chapter of the specification describes how Ajax integrates with the Jakarta Faces framework to
create dynamic web applications. This chapter describes the resources and JavaScript APIs that are
used to expose the Ajax capabilities of Jakarta Faces to page authors and component authors. It also
describes the necessary ingredients of a Jakarta Faces Ajax framework, namely, a resource delivery
mechanism, partial tree traversal, partial page update.

13.1. JavaScript Resource
There must be a single JavaScript resource that exists with the resource identifier given by the value of
the constant jakarta.faces.application.ResourceHandler.FACES_SCRIPT_RESOURCE_NAME and it must
exist under the resource library given by the value of the constant
jakarta.faces.application.ResourceHandler.FACES_SCRIPT_LIBRARY_NAME, following the conventions
in Resource Handling. This resource contains the JavaScript APIs that facilitate Ajax interaction with
Jakarta Faces.

13.1.1. JavaScript Resource Loading

The JavaScript resource can become available to a Jakarta Faces application using a number of
different approaches.

13.1.1.1. The Annotation Approach

Component authors can specify that a custom component or renderer requires the Ajax resource with
the use of the ResourceDependency annotation.

@ResourceDependency(
 library=ResourceHandler.FACES_SCRIPT_LIBRARY_NAME,
 name=ResourceHandler.FACES_SCRIPT_RESOURCE_NAME,
 target="head")
public class YourComponent extends UIOutput...

For more information on this approach refer to Relocatable Resources and Resource Rendering Using
Annotations.

13.1.1.2. The Resource API Approach

Component authors can also specify that a custom component or renderer requires the JavaScript
resource by using the resource APIs. For example, a component or renderer’s encode method may
contain:

13.1. JavaScript Resource

Final Jakarta Faces 273

Resource resource = context.getApplication().getResourceHandler()
 .createResource("faces.js", "jakarta.faces");
...
writer.startElement("script", component);
writer.writeAttribute("type", "text/javascript", "type");
writer.writeAttribute("src",
 ((resource != null)? resource.getRequestPath(): "RES_NOT_FOUND"), "src");
writer.endElement("script");

Script resources are relocatable resources (see Relocatable Resources) which means you can control
the rendering location for these resources by setting the "target" attribute on the resource component:

public class YourComponent extends UIOutput {
...
 getAttributes().put("target", "head");
...
}

This attribute must be set before the component is added to the view. The component or renderer must
also implement the event processing method:

public void processEvent(SystemEvent event)
 throws AbortProcessingException {
 UIComponent component = (UIComponent) event.getSource();
 FacesContext context = FacesContext.getCurrentInstance();
 if (component.getAttributes().get("target") != null) {
 context.getViewRoot().addComponentResource(context, component);
 }
}

When the component is added to the view, an event will be published. This event handling method will
add the component resource to one of the resource location facets under the view root so it will be in
place before rendering.

13.1.1.3. The Page Declaration Language Approach

Page authors can make the Ajax resource explicitly available to the current view using the
<h:outputScript> tag referencing resource library jakarta.faces and resource name faces.js. For
example:

<h:outputScript library="jakarta.faces" name="faces.js" />

13.1. JavaScript Resource

274 Jakarta Faces Final

13.2. JavaScript Namespacing
JavaScript objects that are not enclosed within a namespace are global, which means they run the risk
of interfering, overriding and/or clobbering previously defined JavaScript objects. This section defines
the requirements for implementations intending to use the Jakarta Faces 2.0 JavaScript API.

Any implementation that intends to use the Jakarta Faces JavaScript API must define a top level
JavaScript object name faces, whose type is a JavaScript associative array. Within that top level
JavaScript object, there must be a property named ajax..

if (faces == null || typeof faces == "undefined") {
 var faces = new Object();
}
if (faces.ajax == null || typeof faces.ajax == "undefined") {
 faces["ajax"] = new Object();
}

13.3. Ajax Interaction
This section of the specification outlines the Ajax JavaScript APIs that are used to initiate client side
interactions with the Jakarta Faces framework including partial tree traversal and partial page update.
All of the functions in this JavaScript API will be exposed on a page scoped JavaScript object. Refer to
JavaScript API for details about the individual API functions.

13.3.1. Sending an Ajax Request

The JavaScript function faces.ajax.request is used to send information to the server to control partial
view processing (Partial View Processing) and partial view rendering (Partial View Rendering). All
requests using the faces.ajax.request function will be made asynchronously to the server. Refer to
Initiating an Ajax Request.

13.3.2. Ajax Request Queueing

All Ajax requests must be put into a client side request queue before they are sent to the server to
ensure Ajax requests are processed in the order they are sent. The request that has been waiting in the
queue the longest is the next request to be sent. After a request is sent, the Ajax request callback
function must remove the request from the queue (also known as dequeuing). If the request completed
successfully, it must be removed from the queue. If there was an error, the client must be notified, but
the request must still be removed from the queue so the next request can be sent. The next request (the
oldest request in the queue) must be sent. Refer to the faces.ajax.request JavaScript documentation for
more specifics about the Ajax request queue.

13.2. JavaScript Namespacing

Final Jakarta Faces 275

13.3.3. Request Callback Function

The Ajax request callback function is called when the Ajax request/response interaction is complete.
This function must perform the following actions:

• If the return status is >= 200 and < 300, send a “complete” event following Sending Events. Call
faces.ajax.response passing the Ajax request object (for example the XMLHttpRequest instance) and
the request context (containing the source DOM element, onevent event function callback and
onerror error function callback).

• If the return status is outside the range mentioned above, send a “complete” event following
Sending Events. Send an “httpError” error following Signaling Errors.

• Regardless of whether the request completed successfully or not:

◦ remove the completed requests (Ajax readystate 4) from the request queue (dequeue) -
specifically the requests that have been on the queue the longest.

◦ find the next oldest unprocessed (Ajax readystate 0) request on the queue, and send it. The
implementation must ensure that the request that is sent does not enter the queue again.

Refer to Receiving The Ajax Response. Also refer to the faces.ajax.request JavaScript documentation for
more specifics about the request callback function.

13.3.4. Receiving The Ajax Response

The faces.ajax.response function is responsible for examining the markup that is returned from the
server and updating the client side DOM. The Ajax request callback function should call this function
when a request completes successfully. The implementation of faces.ajax.response must handle the
response as outlined in the JavaScript documentation for faces.ajax.response. The elements in the
response must be processed in the order they appear in the response.

13.3.5. Monitoring Events On The Client

JavaScript functions can be registered to be notified during various stages of the Ajax request/response
cycle. Functions can be set up to monitor individual Ajax requests, and functions can also be set up to
monitor all Ajax requests.

13.3.5.1. Monitoring Events For An Ajax Request

There are two ways to monitor events for a single Ajax request by registering an event callback
function:

• By using the <f:ajax> tag with the onevent attribute.

• By using the JavaScript API function faces.ajax.request with onevent as an option.

Refer to the VDLDocs on the f: tag library for details on the use of the <f:ajax> tag approach. Refer to
Initiating an Ajax Request for details about using the faces.ajax.request function approach. The

13.3. Ajax Interaction

276 Jakarta Faces Final

implementation must ensure the JavaScript function that is registered for an Ajax request must be
called in accordance with the events outlined in Events.

13.3.5.2. Monitoring Events For All Ajax Requests

The JavaScript API provides the faces.ajax.addOnEvent function that can be used to register a
JavaScript function that will be notified when any Ajax request/response event occurs. Refer to
Registering Callback Functions for more details. The faces.ajax.addOnEvent function accepts a
JavaScript function argument that will be notified when events occur during any Ajax
request/response event cycle. The implementation must ensure the JavaScript function that is
registered must be called in accordance with the events outlined in Events.

13.3.5.3. Sending Events

The implementation must send events to the runtime as follows:

• Construct a data payload for events using the properties described in Event Data Payload.

• If an event handler function was registered with the “onevent” attribute (Monitoring Events For An
Ajax Request) call it passing the data payload.

• If any event handling functions were registered with the “addOnEvent” function (Monitoring
Events For All Ajax Requests) call them passing the data payload.

13.3.6. Handling Errors On the Client

JavaScript functions can be registered to be notified when Ajax requests complete with error status
codes from the server to give implementations a chance to handle the errors. Functions can be set up
to handle errors from individual Ajax requests and functions can be setup to handle errors for all Ajax
requests.

13.3.6.1. Handling Errors For An Ajax Request

There are two ways to handle errors for a single Ajax request by registering an error callback function:

• By using the <f:ajax> tag with the onerror attribute.

• By using the JavaScript API function faces.ajax.request with onerror as an option.

Refer to the VDLDocs on the f: tag library for details on the use of the <f:ajax> tag approach. Refer to
Initiating an Ajax Request for details about using the faces.ajax.request function approach. The
implementation must ensure the JavaScript function that is registered for an Ajax request must be
called in accordance when the request status code from the server is as outlined in Errors.

13.3.6.2. Handling Errors For All Ajax Requests

The JavaScript API provides the faces.ajax.addOnError function that can be used to register a
JavaScript function that will be notified when an error occurs for any Ajax request/response. Refer to
Registering Callback Functions for more details. The faces.ajax.addOnError function accepts a

13.3. Ajax Interaction

Final Jakarta Faces 277

JavaScript function argument that will be notified when errors occur during any Ajax request/response
cycle. The implementation must ensure the JavaScript function that is registered must be called in
accordance with the errors outlined in Errors.

13.3.6.3. Signaling Errors

The implementation must signal errors to the runtime as follows:

• Construct a data payload for errors using the properties described in Error Data Payload.

• If an error handler function was registered with the “onerror” attribute (Handling Errors For An
Ajax Request) call it passing the data payload.

• If any error handling functions were registered with the “addOnError” function (Handling Errors
For All Ajax Requests) call them passing the data payload.

• If the project stage is “development” (see Determining An Application’s Project Stage) use
JavaScript “alert” to signal the error(s).

13.3.7. Handling Errors On The Server

Jakarta Faces handles exceptions on the server as outlined in ExceptionHandler. Jakarta Faces Ajax
frameworks must ensure exception information is written to the response in the format:

<partial-response id="j_id1">
 <error>
 <error-name>...</error-name>
 <error-message>...</error-message>
 </error>
</partial-response>

• Extract the “class” from the “Throwable” object and write that as the contents of error-name in the
response.

• Extract the “cause” from the “Throwable” object if it is available and write that as the contents of
error-message in the response. If “cause” is not available, write the string returned from
“Throwable.getMessage()”.

Implementations must ensure that an ExceptionHandler suitable for writing exceptions to the partial
response is installed if the current request required an Ajax response
(PartialViewContext.isAjaxRequest() returns true).

Implementations may choose to include a specialized ExceptionHandler for Ajax that extends from
jakarta.faces.context.ExceptionHandlerWrapper, and have the
jakarta.faces.context.ExceptionHandlerFactory implementation install it if the environment requires it.

13.3. Ajax Interaction

278 Jakarta Faces Final

13.4. Partial View Traversal
The Jakarta Faces lifecycle, can be viewed as consisting of an execute phase and a render phase.

Partial traversal is the technique that can be used to “visit” one or more components in the view,
potentially to have them pass through the “execute” and/or “render” phases of the request processing
lifecycle. This is a key feature for Faces and Ajax frameworks and it allows selected components in the
view to be processed and/or rendered. There are a variety of Jakarta Faces Ajax frameworks available,
and they all perform some variation of partial traversal.

13.4.1. Partial Traversal Strategy

Frameworks use a partial traversal strategy to perform partial view processing and partial view
rendering. This specification does not dictate the use of a specific partial traversal strategy. However,
frameworks must implement their desired strategy by implementing the
PartialViewContext.processPartial method. Refer to the JavaDocs for details about this method.

13.4.2. Partial View Processing

Partial view processing allows selected components to be processed through the “execute” portion of
the lifecycle. Although the diagram in Partial View Traversal depicts the “execute” portion as
encompassing everything except the “Render Response Phase”, for the purposas of an ajax request, the
execute portion of the lifecycle is the “Apply Request Values Phase”, “Update Model Values Phase” and

13.4. Partial View Traversal

Final Jakarta Faces 279

“Process Validations Phase”. Partial view processing on the server is triggered by a request from the
client. The request does not have to be an Ajax request. The request contains special parameters that
indicate the request is a partial execute request (not triggered by Ajax) or a partial execute request that
was triggered using Ajax. The client also sends a set of client ids of the components that must be
processed through the execute phase of the request processing lifecycle. Refer to Sending an Ajax
Request about the request sending details. The FacesContext has methods for retrieving the
PartialViewContext instance for the request. The PartialViewContext may also be retrieved by using
the PartialViewContextFactory class. The XML schema allows for the definition of a
PartialViewContextFactory using the “partial-view-context-factory” element. Refer to the partial
response schema in the Javadoc section of the spec for more information on this element. The
PartialViewContext has properties and methods that indicate the request is a partial request based on
the values of these special request parameters. Refer to the JavaDocs for
jakarta.faces.context.PartialViewContext and Partial View Context for the specifics of the
PartialViewContext constants and methods that facilitate partial processing. The UIViewRoot
processDecodes, processValidators and processUpdates methods must determine if the request is a
partial request using the FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest()
method. If FacesContext.getCurrentInstance().getPartialViewContext().isPartialRequest() returns true,
then the implementation of these methods must retrieve a PartialViewContext instance and invoke
PartialViewContext.processPartial. Refer to Apply Request Values, Apply Request Values Partial
Processing, Process Validations, Partial Validations Partial Processing, Update Model Values, Update
Model Values Partial Processing.

13.4.3. Partial View Rendering

Partial view rendering on the server is triggered by a request from the client. It allows one or more
components in the view to perform the encoding process. The request contains special parameters that
indicate the request is a partial render request. The client also sends a set of client ids of the
components that must be processed by the render phase of the request processing lifecycle. Refer to
Sending an Ajax Request about the request sending details. The PartialViewContext has methods that
indicate the request is a partial request based on the values of these special request parameters. Refer
to Partial Processing Methods for the specifics of the FacesContext constants and methods that
facilitate partial processing. The UIViewRoot getRendersChildren and encodeChildren methods must
determine if the request is an Ajax request using the
FacesContext.getCurrentInstance().getPartialViewContext().isAjaxRequest() method. If
PartialViewContext.isAjaxRequest() returns true, then the getRendersChildren method must return
true and the encodeChildren method must perform partial rendering using the
PartialViewContext.processPartial implementation. Refer to the JavaDocs for
UIViewRoot.encodeChildren for specific details.

13.4.4. Sending The Response to The Client

The Ajax response (also known as partial response) is formulated and sent to the client during the
Render Response phase of the request processing lifecycle. The partial response consists of markup
rendered by one or more components. The response should be in a common format so JavaScript
clients can interpret the markup in a consistent way - an important requirement for component

13.4. Partial View Traversal

280 Jakarta Faces Final

compatability. The agreed upon format and content type for the partial response is XML. This means
there should be a ResponseWriter suitable for writing the response in XML. The
UIViewRoot.encodeChildren method delegates to a partial traversal strategy. The partial traversal
strategy implementation produces the partial response. The markup that is sent to the client must
contain elements that the client can recognize. In addition to the markup produced by server side
components, the response must contain “instructions” for the client to interpret, so the client will
know, for example, that it is to add new markup to the client DOM, or update existing areas of the
DOM. When the response is sent back to the client, it must contain the view state. Implementations
must adhere to the response format as specified in the JavaScript docs for faces.ajax.response.

13.4.4.1. Writing The Partial Response

Jakarta Faces provides jakarta.faces.context.PartialResponseWriter to ensure the Ajax response that is
written follows the standard format. Implementations must take care to properly handle nested CDATA
sections when writing the response. PartialResponseWriter decorates an existing ResponseWriter
implementation by extending jakarta.faces.context.ResponseWriterWrapper. Refer to the
jakarta.faces.context.PartialResponseWriter JavaDocs, and the JavaScript documentation for the
faces.ajax.response function for more specifics.

13.4. Partial View Traversal

Final Jakarta Faces 281

Chapter 14. JavaScript API
This chapter of the specification describes the JavaScript functions that are used to facilitate Ajax
operations in a Jakarta Faces framework. All of these functions are contained in the canonical faces.js
file.

14.1. Collecting and Encoding View State
In Jakarta Faces the jakarta.faces.ViewState parameter was standardized to facilitate “postback”
requests to the server in a Jakarta Faces application. Implementations must use this parameter to save
the view state between requests. Refer to the Javadocs for jakarta.faces.render.ResponseStateManager.

Collecting and encoding view state that will be sent to the server is a common operation used by most
Jakarta Faces Ajax frameworks. When a Jakarta Faces view is rendered, it will contain a hidden field
with the identifier jakarta.faces.ViewState whose value contains the state for the current view. Jakarta
Faces Ajax clients collect additional view state, combine it with the current view state and send it’s
encoded form to the server.

faces.getViewState(FORM_ELEMENT)

Collect and encode element data for the given FORM_ELEMENT and return it as the view state that will
be sent to the server. FORM_ELEMENT is the identifier for a DOM form element. All input elements of
type “hidden” should be included in the collection and encoding process.

• Encode the name and value for each input element of FORM_ELEMENT. Only select elements that
have at least one of their options selected must be included. only checkbox elements that are
checked must be included.

• Find the element identified as jakarta.faces.ViewState in the specified FORM_ELEMENT and encode
the name and value.

• Return a concatenated String of the encoded input elements and jakarta.faces.ViewState element.

14.1.1. Use Case

Collect and Encode Elements Of a Form

var viewState = faces.getViewState(form);

14.2. Initiating an Ajax Request

faces.ajax.request(source, |event|, { |OPTIONS| });

14.1. Collecting and Encoding View State

282 Jakarta Faces Final

The faces.ajax.request function is responsible for sending an Ajax request to the server. The
requirements for this function are as follows:

• The request must be sent asynchronously

• The request must be sent with method type POST

• The request URL will be the form action attribute

• All requests will be queued with the use of a client side request queue to help ensure request
ordering

14.2.1. Usage

Typically, this function is attached as a JavaScript event handler (such as “onclick”).

<ANY_HTML_OR_FACES_ELEMENT
 on|EVENT|="faces.ajax.request(source, event, { |OPTIONS| });" />

The function arguments are as follows:

source is the DOM element that triggered this Ajax request. It must be a DOM element object or a string
identifier for a DOM element. The event argument is the JavaScript event object. The optional
|OPTIONS| argument is a JavaScript associative object array that may contain the following
name/value pairs:

Table 11. request OPTIONS

Name Value

execute A space delimited list of client identifiers or one of the keywords (Keywords).
These reference the components that will be processed during the “execute”
portion of the request processing lifecycle.

render A space delimited list of client identifiers or one of the keywords (Keywords).
These reference the components that will be processed during the “render”
portion of the request processing lifecycle.

onevent A String that is the name of the JavaScript function to call when an event occurs.

onerror A String that is the name of the JavaScript function to call when an error occurs.

params An object that may include additional parameters to include in the request.

14.2.2. Keywords

The following keywords can be used for the value of the “execute” and “render” attributes:

Table 12. Execute / Render Keywords

14.2. Initiating an Ajax Request

Final Jakarta Faces 283

Keyword Description

@all All component identifiers

@none No identifiers

@this The element that triggered the request

@form The enclosing form

14.2.3. Default Values

Values for the execute and render attributes are not required. When using the JavaScript API, the
default values for execute is @this. The default value for render is @none.

<h:commandButton id="button1" value="submit"
 onclick="faces.ajax.request(this,event);" />

is the same as:

<h:commandButton id="button1" value="submit">
 onclick="faces.ajax.request(this, event,
 {execute:’@this’, render:’@this’});" />

<h:commandButton id="button1" value="submit"
 onclick="faces.ajax.request(this,event, {execute:’@this’});" />

is the same as:

<h:commandButton id="button1" value="submit">
 onclick="faces.ajax.request(this,event, {execute:’button1’});" />

Refer to the VDLDocs on the f: tag library for the default values for the execute and render attributes
when they are used with the core “<f:ajax>” tag.

14.2.4. Request Sending Specifics

The mechanics of sending an Ajax request becomes very important to promote component
compatability. Even more important, is standardizing on the post data that is sent to server
implementations, so they all can expect the same arguments. The request header must be set with the
name Faces-Request and the value partial/ajax. Specifics of formulating post data and sending the
request must be followed as outlined in the JavaScript documentation for the faces.ajax.request
function. The post data arguments that must be sent are:

14.2. Initiating an Ajax Request

284 Jakarta Faces Final

Name Value

jakarta.faces.ViewState The value of the jakarta.faces.ViewState hidden field. This is included
when using the faces.getViewState function.

jakarta.faces.partial.ajax true

jakarta.faces.source The identifier of the element that is the source of this request

14.2.5. Use Case

<h:commandbutton id="submit" value="submit"
 onclick="faces.ajax.request(this, event,
 {execute:'submit',render:'outtext'}); return false;" />

This use case assumes there is another component in the view with the identifier outtext.

14.3. Processing The Ajax Response

faces.ajax.response(request, context);

The faces.ajax.response function is called when a request completes successfully. This typically means
that returned status code is >= 200 and < 300. The faces.ajax.response function must extract the XML
response from the request argument. The XML response is expected to follow the format that is
outlined in the JavaScript documentation for this function. The response format is an “instruction set”
telling this function how it should update the DOM. The context argument contains properties that
facilitate event and error processing such as the source DOM element (the DOM element that triggered
the Ajax request), onevent (the event handling callback for the request) and onerror (the error
handling callback for the request). The specifics details of this function’s operation must follow the
faces.ajax.response JavaScript documentation.

14.4. Registering Callback Functions
The JavaScript API allows you to register callback functions for Ajax request/response event
monitoring and error handling. The event callbacks become very useful when monitoring request
connection status. The error callback provides a convenient way for implementations to trap errors.
The handling of the errors is left up to the implementation. These callback function names can also be
set using the JavaScript API (request OPTIONS), and the core <f:ajax> tag.

14.4.1. Request/Response Event Handling

faces.ajax.addOnEvent(callback);

14.3. Processing The Ajax Response

Final Jakarta Faces 285

The callback argument must be a reference to an existing JavaScript function that will handle the
events. The events that can be handled are:

Table 13. Events

Event Name Description

begin Occurs immediately before the request is sent.

complete Occurs immediately after the request has completed. For successful
requests, this is immediately before jakarta.faces.response is called.
For unsuccessful requests, this is immediately before the error
handling callback is invoked.

success Occurs immediately after faces.ajax.response has completed.

The callback function has access to the following “data payload”:.

Table 14. Event Data Payload

Name Description/Value

type “event”

status One of the events specified in Events

source The DOM element that triggered the Ajax request.

responseCode Ajax request object ‘status’ (XMLHttpRequest.status); Not present for
“begin” event;

responseXML The XML response (XMLHttpRequest.responseXML); Not present for
“begin” event;

responseText The text response (XMLHttpResponse.responseText) Not present for
“begin” event;

14.4.1.1. Use Case

An event listener can be installed from JavaScript in this manner.

function statusUpdate(data) {
 // do something with data.status or other parts of data payload
}
...
faces.ajax.addOnEvent(statusUpdate);

An event listener can be installed from markup in this manner.

<f:ajax ... onevent="statusUpdate" />

14.4. Registering Callback Functions

286 Jakarta Faces Final

14.4.2. Error Handling

faces.ajax.addOnError(callback);

The callback argument must be a reference to an existing JavaScript function that will handle errors
from the server.

Table 15. Errors

Error Name Description

httpError request status==null or request.status==undefined or
request.status<200 or request.status >=300

serverError The Ajax response contains an “error” element.

malformedXML The Ajax response does not follow the proper format.

emptyResponse There was no Ajax response from the server.

The callback function has access to the following “data payload”:.

Table 16. Error Data Payload

Name Description/Value

type “error”

status One of error names defined Errors

description Text describing the error

source The DOM element that triggered the Ajax request.

responseCode Ajax request object ‘status’ (XMLHttpRequest.status);

responseXML The XML response (XMLHttpRequest.responseXML)

responseText The text response (XMLHttpResponse.responseTxt)

errorName The error name taken from the Ajax response “error” element.

errorMessage The error messages taken from the Ajax response “error” element.

14.4.2.1. Use Case

faces.ajax.addOnError(handleError);
...
var handleError = function handleError(data) {
 ... do something with “data payload” ...
}

14.4. Registering Callback Functions

Final Jakarta Faces 287

14.5. Determining An Application’s Project Stage

faces.getProjectStage();

This function must return the constant representing the current state of the running application in a
typical product development lifecycle. The returned value must be the value returned from the server
side method jakarta.faces.application.Application.getProjectStage(); Refer to ProjectStage Property for
more details about this property.

14.5.1. Use Case

var projectStage = faces.getProjectStage();
if (projectStage == "Production") {
 throw exception
} else if (projectStage == "Development") {
 send an alert for debugging
}

14.6. Script Chaining

faces.util.chain(source, event, |<script>, <script>,...|)

This utility function invokes an arbitrary number of scripts in sequence. If any of the scripts return
false, subsequent scripst will not be executed. The arguments are:

• source - The DOM element that triggered this Ajax request, or an id string of the element to use as
the triggering element.

• event - The DOM event that triggered this Ajax request. A value does not have to be specified for
this argument.

The variable number of script arguments follow the source and event arguments. Refer to the
JavaScript API documentation in the source for more details.

14.5. Determining An Application’s Project Stage

288 Jakarta Faces Final

Appendix A: Jakarta Faces Metadata
The XML Schema Definition for Application Configuration Resource web-facesconfig_4_0.xsd is
included in a web browser optimized format along with the Javadoc. That is the canonical location of
the schemas in the specification.

A.1. Required Handling of *-extension elements in the
application configuration resources files
As specified in the XML Schema for Application Configuration Resources, many of the elements in the
file have *-extension elements declared in a similar fashion to this one for the faces-config-extension:

<xsd:complexType name ="faces-config-extensionType">
 <xsd:annotation>
 <xsd:documentation>
 Extension element for faces-config. It may contain
 implementation specific content.
 </xsd:documentation>
 </xsd:annotation>
 <xsd:sequence>
 <xsd:any namespace="##any" processContents="lax"
 minOccurs="0" maxOccurs="unbounded" />
 </xsd:sequence>
 <xsd:attribute name="id" type="xsd:ID" />
</xsd:complexType>

This section specifies the required handling of such elements.

Note that it is normal for an application to have several application configuration resources files. If
multiple such resource files have conflicting *-extension elements, the last element processed takes
precedence over preceding elements. Processing order can be controlled as specified in Ordering of
Artifacts.

A.1.1. faces-config-extension handling

If an application configuration resource contains a faces-config-extension element, the children of the
element must be inspected for containing well-formed XML conforming to the syntax specified in the
following subsection(s). DTD syntax is used for convenience since the content of a *-extension element
may not be constrained due to its declaration as containing <xsd:any>.

A.1.1.1. The facelets-processing element

DTD syntax..

A.1. Required Handling of *-extension elements in the application configuration resources files

Final Jakarta Faces 289

<!ELEMENT facelets-processing (file-extension, process-as) >
<!ELEMENT file-extension ANY>
<!ELEMENT process-as ANY>

The <facelets-processing> element is used to affect the processing of Facelets VDL files. Therefore, this
setting only applies to those requests that reach the Facelets ViewDeclarationLanguage
implementation, as specified to the runtime via the jakarta.faces.FACELETS_VIEW_MAPPINGS and
jakarta.faces.FACELETS_SUFFIX <context-param> entries. The specification defines three processing
modes for Facelets files: Facelets XHTML syntax, XML View syntax, and Facelets JSPX syntax. This last
syntax is intended to ease the migration to Facelets for applications already using the Jakarta Server
Pages XML document syntax (also known as JSPX syntax). The affect on the processing of files in each
of these three modes is specified in the following table.

Table 17. Valid <process-as> values and their implications on the processing of Facelet VDL files.

<process-
as>html5</process-
as>
HTML 5 (default)

<process-
as>xhtml</process-
as>
Facelets XHTML

<process-
as>xml</process-
as>
XML View

<process-
as>jspx</process-
as>
Facelets JSPX

XML Doctype Simplified to
<!DOCTYPE html>

passed through consumed consumed

XML declaration passed through passed through consumed consumed

Processing
instructions

passed through passed through consumed consumed

CDATA section start
and end tags

passed through passed through consumed consumed

Escaping of inline
text

escaped escaped escaped not escaped

XML Comments passed through passed through consumed consumed

In the preceding table, “passed through” means that the content is passed through unmodified to the
user agent. “consumed” means the content is silently consumed on the server. Note that for CDATA
sections, the content of the CDATA section itself is passed through, even if the start and end tags should
be consumed. “escaped” means that sensivite content in the response is automatically escaped: &
becomes &, for example. “not escaped” means that such content is not escaped.

The content of the <file-extension> element is particular to the file extension of the physical resource
for the Facelets VDL content, as specified in the jakarta.faces.FACELETS_VIEW_MAPPINGS and
jakarta.faces.FACELETS_SUFFIX <context-param> elements. Consider the following example faces-
config.xml.

A.1. Required Handling of *-extension elements in the application configuration resources files

290 Jakarta Faces Final

<?xml version="1.0" encoding="UTF-8"?>
<faces-config
 xmlns="https://jakarta.ee/xml/ns/jakartaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="https://jakarta.ee/xml/ns/jakartaee
 https://jakarta.ee/xml/ns/jakartaee/web-facesconfig_4_0.xsd"
 version="4.0">
 <faces-config-extension>
 <facelets-processing>
 <file-extension>.jspx</file-extension>
 <process-as>jspx</process-as>
 </facelets-processing>
 <facelets-processing>
 <file-extension>.view.xml</file-extension>
 <process-as>xml</process-as>
 </facelets-processing>
 </faces-config-extension>
</faces-config>

And web.xml content

<context-param>
 <param-name>jakarta.faces.FACELETS_VIEW_MAPPINGS</param-name>
 <param-value>*.xhtml;*.view.xml;*.jspx</param-value>
</context-param>
<context-param>
 <param-name>jakarta.faces.FACELETS_SUFFIX</param-name>
 <param-value>.xhtml .view.xml .jspx</param-value>
</context-param>

This configuration states that .xhtml, .view.xml, and .jspx files must be treated as Facelets VDL files
declares the processing mode of .jspx files to be jspx and declares the processing mode of .view.xml
files to be xml.

A.2. XML Schema Definition For Facelet Taglib
The XML Schema Definition for Facelet Taglib web-facelettaglibrary_4_0.xsd is included in a web
browser optimized format along with the Javadoc. That is the canonical location of the schemas in the
specification.

A.3. XML Schema Definition For Partial Response
The XML Schema Definition for Partial Repsonse web-partialresponse_4_0.xsd is included in a web

A.2. XML Schema Definition For Facelet Taglib

Final Jakarta Faces 291

browser optimized format along with the Javadoc. That is the canonical location of the schemas in the
specification.

A.3. XML Schema Definition For Partial Response

292 Jakarta Faces Final

Appendix B: Change Log
Note: this refers to historic issues and titles using the term "JSF". This refers to the pre-Jakarta Faces
specification under the JCP.

B.1. Changes between 4.0 and 3.0
This release contains the following changes:

• Issue ID 1581
New API to programmatically create Facelets

• Issue ID 1508
New automatic extensionless mapping

• Issue ID 1509
New annotation @ClientWindowScoped

• Issue ID 1570
Support custom cookie attributes such as SameSite in ExternalContext#addResponseCookie()

• Issue ID 1555
New attribute <h:inputFile multiple="…">

• Issue ID 1556
New attribute <h:inputFile accept="…">

• Issue ID 1557
New method FacesContext#getLifecycle()

• Issue ID 1559
New tag <f:selectItemGroups>

• Issue ID 1560
New attribute <h:inputText type="…">

• Issue ID 1563
New tag <f:selectItemGroup>

• Issue ID 1568
New method UIViewRoot#getDoctype()

• Issue ID 1573
New attribute <f:websocket onerror="…">

• Issue ID 1574
New layout="list" for <h:selectManyCheckbox> and <h:selectOneRadio>

• Issue ID 1582
New annotation literals for all @Qualifiers

• Issue ID 1558

B.1. Changes between 4.0 and 3.0

Final Jakarta Faces 293

https://github.com/jakartaee/faces/issues/1581
https://github.com/jakartaee/faces/issues/1508
https://github.com/jakartaee/faces/issues/1509
https://github.com/jakartaee/faces/issues/1570
https://github.com/jakartaee/faces/issues/1555
https://github.com/jakartaee/faces/issues/1556
https://github.com/jakartaee/faces/issues/1557
https://github.com/jakartaee/faces/issues/1559
https://github.com/jakartaee/faces/issues/1560
https://github.com/jakartaee/faces/issues/1563
https://github.com/jakartaee/faces/issues/1568
https://github.com/jakartaee/faces/issues/1573
https://github.com/jakartaee/faces/issues/1574
https://github.com/jakartaee/faces/issues/1582
https://github.com/jakartaee/faces/issues/1558

Make UIComponent#subscribeToEvent() more convenient

• Issue ID 1565
Skip type attribute from <link> and <script> when doctype is HTML5

• Issue ID 1567
Improve <f:ajax> behavior in composite components

This release now requires Java SE 11 or newer (aligned with Jakarta EE 10).

B.1.1. Backward Compatibility with Previous Versions

This release contains the following backwards incompatible changes:

• Issue ID 1552
Rename "JSF" to "Faces" over all place

• Issue ID 1553
Rename "http://xmlns.jcp.org/jsf/" URL to "jakarta.faces." URN

• Issue ID 1546
Remove all JSP support

• Issue ID 1547
Remove native Managed Beans (@ManagedBean and related)

• Issue ID 1548
Remove MethodBinding, ValueBinding and friends

• Issue ID 1571
Remove CURRENT_COMPONENT constants from UIComponent class

• Issue ID 1578
Remove deprecated methods of StateManager class

• Issue ID 1583
Remove entire ResourceResolver class

B.2. Changes between 3.0 and 2.3
Namespace has been changed from javax.faces to jakarta.faces.

B.2.1. Backward Compatibility with Previous Versions

Jakarta Faces 3.0 has a breaking change due to the namespace change from javax.faces to
jakarta.faces.

B.3. Changes between 2.2 and 2.3
This section gives the reader a survey of the changes between version 2.3 of the specification and

B.2. Changes between 3.0 and 2.3

294 Jakarta Faces Final

https://github.com/jakartaee/faces/issues/1565
https://github.com/jakartaee/faces/issues/1567
https://github.com/jakartaee/faces/issues/1552
https://github.com/jakartaee/faces/issues/1553
https://github.com/jakartaee/faces/issues/1546
https://github.com/jakartaee/faces/issues/1547
https://github.com/jakartaee/faces/issues/1548
https://github.com/jakartaee/faces/issues/1571
https://github.com/jakartaee/faces/issues/1578
https://github.com/jakartaee/faces/issues/1583

version 2.2, using the categories from the issue tracker at https://github.com/jakartaee/faces/issues/.

B.3.1. Big Ticket Features

• WebSocket Integration
Issue ID 1396
See the VDLDocs for <f:websocket>.

• Multi-field Validation
Issue ID 1
See the VDLDocs for <f:validateWholeBean>.

• Java Time Support
Issue ID 1370
See the VDLDocs for <f:convertDateTime>.

• Use CDI for evaluation of JSF specific EL implicit Objects
Issue ID 1311, 1322, 1325, 1327, 1328, 1334, 1332, 1331, 1384, 1385, 1383, 1386 - 1394
See Expression Language Resolution

• Issue ID 1417
Deprecate javax.faces.bean.

• Support @Inject on JSF specific artifacts
Issue ID 1316, 527, 1309, 1323, 1283, 1353, 1335, 1333, 1349, 1351, 1350, 1345
See Jakarta Faces Objects Valid for @Inject Injection

• Issue ID 1364
UIData and <ui:repeat> supports Map and Iterable

• Issue ID 1102
ui:repeat condition check.

• Issue ID 1418
CDI Replacement for @ManagedProperty.
See javadocs for javax.faces.annotation.ManagedProperty.

• Issue ID 1103, 1364
See the Javadoc for javax.faces.component.UIData, and javax.faces.model.IterableDataModel.

• DataModel implementations can be registered
Issue ID 1078
See the javadoc for annotation javax.faces.model.FacesDataModel.

• Issue ID 1412
See the javadoc for annotation javax.faces.partialViewContext.getEvalScripts().

• Issue ID 613
Ajax Method Invocation. See vdldoc for <h:commandScript>.

• Issue ID 1238
Enhanced component search facility. See the javadoc for package javax.faces.component.search.

B.3. Changes between 2.2 and 2.3

Final Jakarta Faces 295

https://github.com/jakartaee/faces/issues/
https://github.com/jakartaee/faces/issues/1396
https://github.com/jakartaee/faces/issues/1
https://github.com/jakartaee/faces/issues/1370
https://github.com/jakartaee/faces/issues/1311
https://github.com/jakartaee/faces/issues/1322
https://github.com/jakartaee/faces/issues/1325
https://github.com/jakartaee/faces/issues/1327
https://github.com/jakartaee/faces/issues/1328
https://github.com/jakartaee/faces/issues/1334
https://github.com/jakartaee/faces/issues/1332
https://github.com/jakartaee/faces/issues/1331
https://github.com/jakartaee/faces/issues/1384
https://github.com/jakartaee/faces/issues/1385
https://github.com/jakartaee/faces/issues/1383
https://github.com/jakartaee/faces/issues/1386
https://github.com/jakartaee/faces/issues/1394
https://github.com/jakartaee/faces/issues/1417
https://github.com/jakartaee/faces/issues/1316
https://github.com/jakartaee/faces/issues/527
https://github.com/jakartaee/faces/issues/1309
https://github.com/jakartaee/faces/issues/1323
https://github.com/jakartaee/faces/issues/1283
https://github.com/jakartaee/faces/issues/1353
https://github.com/jakartaee/faces/issues/1335
https://github.com/jakartaee/faces/issues/1333
https://github.com/jakartaee/faces/issues/1349
https://github.com/jakartaee/faces/issues/1351
https://github.com/jakartaee/faces/issues/1350
https://github.com/jakartaee/faces/issues/1345
https://github.com/jakartaee/faces/issues/1364
https://github.com/jakartaee/faces/issues/1102
https://github.com/jakartaee/faces/issues/1418
https://github.com/jakartaee/faces/issues/1103
https://github.com/jakartaee/faces/issues/1364
https://github.com/jakartaee/faces/issues/1078
https://github.com/jakartaee/faces/issues/1412
https://github.com/jakartaee/faces/issues/613
https://github.com/jakartaee/faces/issues/1238

B.3.2. Other Features, by Functional Area

B.3.2.1. Components/Renderers

Larger Changes

• Issue ID 217
styleClass attribute added to h:column

• Issue ID 329
Add “group” attribute to <h:selectOneRadio>.

• Issue ID 1423, 1404
ResourceHandler.markResourceRendered(), and isResourceRendered(),
UIViewRoot.getComponentResources() enable the discovery of dynamically added resources, even
within Ajax requests.

• Issue ID 1404
Add API to check if a resource has already been rendered. See Javadoc for
javax.faces.application.ResourceHandler.markResourceRendered() and isResourceRendered().

• Issue ID 1436
In Render Response, specify how Server Push is utilized.

Smaller Changes

• Issue ID 1422
UISelectMany detects converter based on first item.

• Issue ID 1007
Explicit support for dynamic component manipulation

• Issue ID 819
Add “disabled” attribute for h:button

• Issue ID 1300
UIViewRoot.getViewMap() and publishEvent().

• Issue ID 1229
Document UIData.setRowStatePreserved() in VDLDoc and RenderKit Doc.

• Issue ID 1135
Add PostRenderViewEvent.

• Issue ID 1258
Clarify text escaping for <h:outputText> or equivalent EL expressions.

• Issue ID 807
Pass FacesContext to system event listeners.

• Issue ID 1113
Remove onselect attribute from SELECT components.

• Issue ID 1433

B.3. Changes between 2.2 and 2.3

296 Jakarta Faces Final

https://github.com/jakartaee/faces/issues/217
https://github.com/jakartaee/faces/issues/329
https://github.com/jakartaee/faces/issues/1423
https://github.com/jakartaee/faces/issues/1404
https://github.com/jakartaee/faces/issues/1404
https://github.com/jakartaee/faces/issues/1436
https://github.com/jakartaee/faces/issues/1422
https://github.com/jakartaee/faces/issues/1007
https://github.com/jakartaee/faces/issues/819
https://github.com/jakartaee/faces/issues/1300
https://github.com/jakartaee/faces/issues/1229
https://github.com/jakartaee/faces/issues/1135
https://github.com/jakartaee/faces/issues/1258
https://github.com/jakartaee/faces/issues/807
https://github.com/jakartaee/faces/issues/1113
https://github.com/jakartaee/faces/issues/1433

Add a context-param to enable forcing validation to happen even when there is no parameter
corresponding to the current component.

B.3.2.2. Lifecycle

Larger Changes

• Issue ID 790
javax.faces.ViewState and ajax with cross form submit.

Smaller Changes

• Issue ID 473
FacesEvent.getFacesContext().

• Issue ID 1241
faces-config supports client-window-factory.

• Issue ID 1346
Simplify decoration of FaceletCacheFactory.

• Issue ID 1361
Correct oversight regarding re-entrancy of flow scoped beans.

• Issue ID 821
Implement ExternalContext.getRealPath() on startup and shutdown.

• Issue ID 1401
Explicitly prohibit using NavigationHandler from within ExceptionHandler invoked during
RENDER RESPONSE.

• Issue ID 1306
@FlowScoped should be @NormalScope(passivating=true).

• Issue ID 1382
Generify return from ExternalContext.getInitParameterMap().

• Issue ID 1329
@NotNull and <f:viewParam>.

• Issue ID 1403
Allow entry into flow via <f:viewAction>.

• Issue ID 1216
Improve consistency in handling PhaseListener instances registered on UIViewRoot components.

• Issue ID 1435
Add ResourceHandler.getViewResources() method.

B.3.2.3. Platform Integration

• Issue ID 1379
ExternalContext.getResponseCharacterEncoding() and Portlet 3.0.

B.3. Changes between 2.2 and 2.3

Final Jakarta Faces 297

https://github.com/jakartaee/faces/issues/790
https://github.com/jakartaee/faces/issues/473
https://github.com/jakartaee/faces/issues/1241
https://github.com/jakartaee/faces/issues/1346
https://github.com/jakartaee/faces/issues/1361
https://github.com/jakartaee/faces/issues/821
https://github.com/jakartaee/faces/issues/1401
https://github.com/jakartaee/faces/issues/1306
https://github.com/jakartaee/faces/issues/1382
https://github.com/jakartaee/faces/issues/1329
https://github.com/jakartaee/faces/issues/1403
https://github.com/jakartaee/faces/issues/1216
https://github.com/jakartaee/faces/issues/1435
https://github.com/jakartaee/faces/issues/1379

B.3.2.4. Facelets/VDL

Larger Changes

• Issue ID 1424
Add tag <f:importConstants>, see VDLDoc for that tag.

Smaller Changes

• Issue ID 1362
Revisit some cardinality rules regarding <tag> and <component> elements.

• Issue ID 936
Set FACELETS_REFRESH_PERIOD to -1 if ProjectStage is Production.

B.3.2.5. Spec Clarifications

• Issue ID 1254
Loosen language regarding the contracts attribute on <f:view>.

• Issue ID 1338
Clarify pseudocode for resource libraries.

• Issue ID 1279
Specify UIInput.isEmpty()

• Issue ID 1242
Remove mentione of OpenAjax hub.

• Issue ID 1215
Additional warning on DelegatingMetaTagHandler.getTagHandlerDelegate.

• Issue ID 1131
“name” attribute not required.

• Issue ID 1270
TagDecorator spec namespace modifications.

• Issue ID 1401
Advisory text for ExceptionHandler.

• Issue ID 1402
Explicitly declare that flow eagerness not supported.

• Issue ID 677
Document automatic UIPanel behavior for f:facet.

• Issue ID 1095
Description for “rendered” attribute for repeat and fragment.

• Issue ID 1066
Application.getNavigationHandler() and application element.

• Issue ID 803
VisitHint.EXECUTE_LIFECYCLE clarifications.

B.3. Changes between 2.2 and 2.3

298 Jakarta Faces Final

https://github.com/jakartaee/faces/issues/1424
https://github.com/jakartaee/faces/issues/1362
https://github.com/jakartaee/faces/issues/936
https://github.com/jakartaee/faces/issues/1254
https://github.com/jakartaee/faces/issues/1338
https://github.com/jakartaee/faces/issues/1279
https://github.com/jakartaee/faces/issues/1242
https://github.com/jakartaee/faces/issues/1215
https://github.com/jakartaee/faces/issues/1131
https://github.com/jakartaee/faces/issues/1270
https://github.com/jakartaee/faces/issues/1401
https://github.com/jakartaee/faces/issues/1402
https://github.com/jakartaee/faces/issues/677
https://github.com/jakartaee/faces/issues/1095
https://github.com/jakartaee/faces/issues/1066
https://github.com/jakartaee/faces/issues/803

• Issue ID 1217
EnumConverter.getAsString() clarifications.

• Issue ID 1356
UIInput.processValidators() clarifications.

• Issue ID 1424
Public constants for source, behavior, and partial.event. See the Javadocs for
javax.faces.component.behavior.ClientBehaviorContext, and
javax.faces.conetxt.PartialViewContext.

• Issue ID 1428
API constants for jsf.js and javax.faces in JavaScript.

• Issue ID 1260
Support for exact mapping of FacesServlet. See ViewHandler Methods that Derive Information
From the Incoming Request and ViewHandler Methods Relating to Navigation.

Issue ID 1250
Fix entries in table Jakarta Faces Artifacts Eligible for Injection.

B.3.2.6. Resources

B.3.2.7. Expression Language

B.3.2.8. Configuration and Bootstrapping

B.3.2.9. Miscellaneous

Smaller Changes

• Issue ID 1225
Clarify requirements to support BCP-47 regarding localization. See Determining the active Locale

• Issue ID 1429
Add constructor to make wrapping easier.

• Issue ID 1430
Leverage Java SE 8 repeatable annotations where appropriate.

B.3.3. Backward Compatibility with Previous Versions

JSF 2.3 is fully backward compatible with previous releases of JSF, unless any of the following context-
parameter values are specified. See Application Configuration Parameters for details.

javax.faces.ALWAYS_PERFORM_VALIDATION_WHEN_REQUIRED_IS_TRUE

javax.faces.DISABLE_FACESSERVLET_TO_XHTML

javax.faces.VIEWROOT_PHASE_LISTENER_QUEUES_EXCEPTIONS.

B.3. Changes between 2.2 and 2.3

Final Jakarta Faces 299

https://github.com/jakartaee/faces/issues/1217
https://github.com/jakartaee/faces/issues/1356
https://github.com/jakartaee/faces/issues/1424
https://github.com/jakartaee/faces/issues/1428
https://github.com/jakartaee/faces/issues/1260
https://github.com/jakartaee/faces/issues/1250
https://github.com/jakartaee/faces/issues/1225
https://github.com/jakartaee/faces/issues/1429
https://github.com/jakartaee/faces/issues/1430

JSF 2.3 is fully backward compatible with previous releases of JSF unless a CDI managed bean is
included in the application with the annotation @javax.faces.annotation.FacesConfig. See the javadocs
for that annotation for details.

B.3.4. Breakages in Backward Compatibility

B.4. Changes between 2.1 and 2.2
This section gives the reader a survey of the changes between this version of the specification and the
previous version, using the categories from the issue tracker at < https://github.com/jakartaee/faces/
issues/ >.

B.4.1. Big Ticket Features

• HTML5 Friendly Markup
Issue ID 1090
Start with HTML5 Friendly Markup

• Resource Library Contracts
Issue ID 1142
Start with Resource Library Contracts Background.

• Faces Flows
Issue ID 730
Start with FlowHandler.

• Stateless Views
Issue ID 1055
Start with Stateless Views.

B.4.2. Other Features, by Functional Area

B.4.2.1. Components/Renderers

Larger Changes

• Issue ID 479
UIData supports the Collection Interface rather than List.

• Issue ID 1134
Add the "role" pass through attribute.

Smaller Changes

• Issue ID 1080
Warn about some important corner cases when UIComponent.findComponent() may not provide the
expected results.

• Issue ID 1068

B.4. Changes between 2.1 and 2.2

300 Jakarta Faces Final

https://github.com/jakartaee/faces/issues/
https://github.com/jakartaee/faces/issues/
https://github.com/jakartaee/faces/issues/1090
https://github.com/jakartaee/faces/issues/1142
https://github.com/jakartaee/faces/issues/730
https://github.com/jakartaee/faces/issues/1055
https://github.com/jakartaee/faces/issues/479
https://github.com/jakartaee/faces/issues/1134
https://github.com/jakartaee/faces/issues/1080
https://github.com/jakartaee/faces/issues/1068

New section describing what happens with respect to partial processing during render response.
See Render Response Partial Processing.

• Issue ID 1067
Spec clarifications. See the VDLDoc for cc:insertChildren, cc:insertFacet

• Issue ID 1061
Clarify that both Application.publishEvent() and the manual traversal based delivery are required
for publishing the PostRestoreStateEvent.

• Issue ID 1030
Clarify docs for h:message h:messages

• Issue ID 1023
Modify JavaDoc to relax requirements for PostAddToViewEvent publishing

• Issue ID 1019
Modify spec for ResponseWriter.writeURIAttribute() to explicitly require adherence to the W3C URI
spec

• Issue ID 997
javax.faces.component.ComponentSystemEvent: Override isAppropriateListener so that it first asks
the listener, "are you a ComponentSystemEventListener", then, if not, asks
super.isAppropriateListener()

• Issue ID 984
Component Context Manager, see javax.faces.component.visit.ComponentModificationManager.

• Issue ID 943
See javax.faces.view.ViewDeclarationLanguageWrapper

• Issue ID 784
Deprecate the CURRENT_COMPONENT and CURRENT_COMPOSITE_COMPONENT attributes

• Issue ID 599
Make it possible to programmatically create components in the same way as they are created by
Facelets. See javax.faces.application.Application.createComponent(FacesContext, String taglibUri,
String tagName, Map attrs)

• Issue ID 703
Make "value" optional for @FacesComponent.

• Issue ID 585
outputText and inputText do not render children by default

• Issue ID 550
OutputStylesheet "media" attribute

• Issue ID 1125
javax.faces.application.Application event subscription clarifications.

B.4. Changes between 2.1 and 2.2

Final Jakarta Faces 301

https://github.com/jakartaee/faces/issues/1067
https://github.com/jakartaee/faces/issues/1061
https://github.com/jakartaee/faces/issues/1030
https://github.com/jakartaee/faces/issues/1023
https://github.com/jakartaee/faces/issues/1019
https://github.com/jakartaee/faces/issues/997
https://github.com/jakartaee/faces/issues/984
https://github.com/jakartaee/faces/issues/943
https://github.com/jakartaee/faces/issues/784
https://github.com/jakartaee/faces/issues/599
https://github.com/jakartaee/faces/issues/703
https://github.com/jakartaee/faces/issues/585
https://github.com/jakartaee/faces/issues/550
https://github.com/jakartaee/faces/issues/1125

B.4.2.2. Lifecycle

Larger Changes

• Issue ID 949, 947
Give JSF the ability to correctly handle browsing context (tab, browser window, pop-up, etc). See
javax.faces.lifecycle.ClientWindow.

• Issue ID 758 and 1042

A jsf-api/src/main/java/javax/faces/component/UIViewAction.java

The heart of this changebundle, this class came over from the JBoss Seam Faces Module, but I’ve
rewritten most of the javadoc.

M jsf-api/src/main/java/javax/faces/event/PhaseId.java

new methods

public String getName()

public static PhaseId phaseIdValueOf(String phase)

Change Default NavigationHandler Algorithm to account for UIViewAction

• Issue ID 1062 and 802
File Upload

• Issue ID 766
Events from the flash

• Issue ID 1050
Add support for delay value in options for Ajax requests

Smaller Changes

• Issue ID 1129
In validate(), clarify that setSubmittedValue() null must be called if validation succeeds.

• Issue ID 1071 Add FlashFactory. See Delegating Implementation Support.

• Issue ID 1065
When calculating the locale for the resource library prefix, if there is a UIViewRoot, use its locale
first, otherwise, just use the Applications’s ViewHandler’s calculateLocale() method. See Libraries
of Localized and Versioned Resources

• Issue ID 1039
In ApplicationWrapper, mark things as deprecated

• Issue ID 1028
Deprecate StateManager, point to StateManagementStrategy. In StateManagementStrategy, require
the use of the visit API to perform the saving.

• Issue ID 993

B.4. Changes between 2.1 and 2.2

302 Jakarta Faces Final

https://github.com/jakartaee/faces/issues/949
https://github.com/jakartaee/faces/issues/947
https://github.com/jakartaee/faces/issues/758
https://github.com/jakartaee/faces/issues/1042
https://github.com/jakartaee/faces/issues/1062
https://github.com/jakartaee/faces/issues/802
https://github.com/jakartaee/faces/issues/766
https://github.com/jakartaee/faces/issues/1050
https://github.com/jakartaee/faces/issues/1129
https://github.com/jakartaee/faces/issues/1071
https://github.com/jakartaee/faces/issues/1065
https://github.com/jakartaee/faces/issues/1039
https://github.com/jakartaee/faces/issues/1028
https://github.com/jakartaee/faces/issues/993

Wrapper for ActionListener

• Tweak circumstances for skipping intervening lifecycle phases in the case of view metadata Issue
ID 762

Section 2.2.1. Now has this text.

Otherwise, call getViewMetadata() on the ViewDeclarationLanguage instance. If the result is
non-null, call createMetadataView() on the ViewMetadata instance. Call
ViewMetadata.getViewParameters(). If the result is a non-empty Collection, do not call
facesContext.renderResponse(). If the result is an empty collection, try to obtain the metadata
facet of the UIViewRoot by asking the UIViewRoot for the facet named
UIViewRoot.METADATA_FACET_NAME. This facet must exist. If the facet has no children, call
facesContext.renderResponse(). Otherwise, none of the previous steps have yielded the
discovery any of metadata, so call facesContext.renderResponse().

• Issue ID 566
UIOutput.getValue() value returns.

• Issue ID 220
In web-partialresponse_2_2.xsd, require that the <partial-response> element has an “id” attribute
whose value is the return from UIViewRoot.getContainerClientId().

B.4.2.3. Platform Integration

• Issue ID 763
Change Managed Bean Annotations to account for new injectability requirements.

• Issue ID 976
In Javadoc for “Faces Managed Bean Annotation Specification For Containers Conforming to Servlet
2.5 and Beyond”, indicate that javax.faces.bean will be deprecated in the next version.

• Issue ID 1087
Introduce CDI based @ViewScoped annotation.

B.4.2.4. Facelets/VDL

Larger Changes

• Issue ID 1001
Allow cc and non-cc components in one taglib

A jsf-api/doc/web-facelettaglibrary_2_2.xsd

First change to the facelet taglib schema in 2.2: introduce the ability to declare a resource which
will be the composite component for a tag. Now, before you get all excited about what conventions
we can use to make this easier, let me stop you right there. Here is a summary of the ease of use
story regarding taglib files.

The 80/20 rule says we should make taglib files optional most of the time. Here are the 80%

B.4. Changes between 2.1 and 2.2

Final Jakarta Faces 303

https://github.com/jakartaee/faces/issues/762
https://github.com/jakartaee/faces/issues/566
https://github.com/jakartaee/faces/issues/220
https://github.com/jakartaee/faces/issues/763
https://github.com/jakartaee/faces/issues/976
https://github.com/jakartaee/faces/issues/1087
https://github.com/jakartaee/faces/issues/1001

cases.

Employs the cc naming convention http://java.sun.com/jsf/composite/<libraryName>

The user employs a java component has a @FacesComponent on it that declares the necessary
metadata. Issue ID 594

Here are some of the cases where you must have a taglib file, the 20% cases.

If you want to employ a cc with a namespace other than
http://java.sun.com/jsf/composite/<libraryName> you need to have a taglib file that declares
<composite-library-name>. Currently you must not detlare any <tag> elements in such a taglib
file. All the tags in such a library must come from the same resource library.

If the user is not employs a java component but is not using @FacesComponent.

This patch introduces the following syntax.

<?xml version="1.0" encoding="UTF-8"?>
<facelet-taglib xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/web-facelettaglibary_2_2.xsd"
 version="2.2">
 <namespace>test</namespace>
 <tag>
 <tag-name>layout</tag-name>
 <resource-id>myCC/whatever.xhtml</resource-id>
 </tag>
</facelet-taglib>

Where <resource-id> is a valid resource identifier as specified in section 2.6.1.3.

• Issue ID 548
Require additional check to handle the case where, in one resource library, there are both localized
and non-localized resources. See Libraries of Localized and Versioned Resources.

Smaller Changes

• Issue ID 1038
Declare an annotation corresponding to the javax.faces.FACELETS_RESOURCE_RESOLVER
application configuration parameter. See Requirements for scanning of classes for annotations and
Application Configuration Parameters.

• Issue ID 1082
Account for DOCTYPE discrepancy between server side representation of Facelet VDL files, which
are proper XHTML, and processed files which are sent to the client, which now, by default, are
HTML5 HTML syntax files. See The facelets-processing element.

B.4. Changes between 2.1 and 2.2

304 Jakarta Faces Final

https://github.com/jakartaee/faces/issues/594
https://github.com/jakartaee/faces/issues/548
https://github.com/jakartaee/faces/issues/1038
https://github.com/jakartaee/faces/issues/1082

• Fix incorrect VDLDoc Issue ID 967 f:selectItems itemValue description incorrect.

• Issue ID 922
Remove maxlength from f:viewParam

• Issue ID 998
Document that ui:fragment should not be bound to a bean with wider than request scope,
document that the type of the property must extend from UIComponent.

• Issue ID 999
Changes to "template" attribute requiredness for ui:decorate and ui:composition

• Issue ID 901
Deprecate “targets” concept.

• Issue ID 1088
add short-name to schema.

• Issue ID 746
Missing method-signature element in taglib xsd.

B.4.2.5. Spec Clarifications

• Issue ID 1136
In ExternalContext.dispatch(), clarify what is to be done if getRequestDispatcher() returns null.

• Issue ID 1132
Replace literal strings with symbolic constants where possible.

• Issue ID 1127
State Saving Serializability concerns.

• Issue ID 1114
javax.faces.view.facelets.Facelet.apply() spec version reference error.

• Issue ID 1100, 1097
HTML5 id attribute sensitivity

• Issue ID 1064
In The facelets-processing element, clarify that in XML and JSPX modes, only the CDATA section
start and end tags, not the entire CDATA section and contents, should be consumed.

• Issue ID 1063
javax.faces.component.UIViewParameter.getSubmittedValue() return value.

• Issue ID 1058
ui:repeat tag size attribute

• Issue ID 1036
In ValueExpression properties, clarify which attributes are expression enabled,

• Issue ID 1035
Change section FacesMessage to clarify the meaning of having FacesMessage instances on the
FacesContext.

B.4. Changes between 2.1 and 2.2

Final Jakarta Faces 305

https://github.com/jakartaee/faces/issues/967
https://github.com/jakartaee/faces/issues/922
https://github.com/jakartaee/faces/issues/998
https://github.com/jakartaee/faces/issues/999
https://github.com/jakartaee/faces/issues/901
https://github.com/jakartaee/faces/issues/1088
https://github.com/jakartaee/faces/issues/746
https://github.com/jakartaee/faces/issues/1136
https://github.com/jakartaee/faces/issues/1132
https://github.com/jakartaee/faces/issues/1127
https://github.com/jakartaee/faces/issues/1114
https://github.com/jakartaee/faces/issues/1100
https://github.com/jakartaee/faces/issues/1097
https://github.com/jakartaee/faces/issues/1064
JSFMetadata.pdf#a7061
https://github.com/jakartaee/faces/issues/1063
https://github.com/jakartaee/faces/issues/1058
https://github.com/jakartaee/faces/issues/1036
https://github.com/jakartaee/faces/issues/1035

• Issue ID 1026
f:ajax event attribute is String (not VE)

• Issue ID 1014

12.1.3

The specification for the context-param that declares the list of TagDecorator implementations
to the runtime should have always been javax.faces.FACELETS_DECORATORS. Prior to this
revision, the name of this context param was incorrectly specified as javax.faces.DECORATORS.
The reference implementation has always used the correct name, however.

• Issue ID 1010
Check existing usages of the state saving method parameter to ensure case insensitivity.

• Issue ID 1004

M usingFacesInWebapps.fm

12.1.3 Set default for javax.faces.FACELETS_BUFFER_SIZE to be 1024.

• Issue ID 998
Additional clarification about binding attribute in VDLDocs

• Issue ID 915, 1015
Non-normative text about http methods and prefix mapping

• Issue ID 2740
In Component Bindings, clarify a corner case regarding bean scope and component binding.

B.4.2.6. Resources

Larger Changes

• Issue ID 809
This commit introduces a cleaner contract for allowing views to be loaded from the Filesystem
(including inside of JAR files). All VDL resources must be loaded using
ResourceHandler.createViewResource().

Smaller Changes

• Issue ID 996
Enable configuring the web app resources directory. See Application Configuration Parameters.

• Issue ID 719
Method to map a viewId to a resourcePath

• Issue ID 1130
Modify State Saving Alternatives and Implications to clarify there is no requirement to serialize
server state by default when state saving method is server. Introduce a context parameter to this
effect in Application Configuration Parameters

B.4. Changes between 2.1 and 2.2

306 Jakarta Faces Final

https://github.com/jakartaee/faces/issues/1026
https://github.com/jakartaee/faces/issues/1014
https://github.com/jakartaee/faces/issues/1010
https://github.com/jakartaee/faces/issues/1004
https://github.com/jakartaee/faces/issues/998
https://github.com/jakartaee/faces/issues/915
https://github.com/jakartaee/faces/issues/1015
https://github.com/jakartaee/faces/issues/2740
https://github.com/jakartaee/faces/issues/809
https://github.com/jakartaee/faces/issues/996
https://github.com/jakartaee/faces/issues/719
https://github.com/jakartaee/faces/issues/1130

B.4.2.7. Expression Language

• Issue ID 1092

Remove text from MethodExpressionValueChangeListener and MethodExpressionActionListener
regarding wrapping any exception thrown by the invoked method being wrapped in an
AbortProcessingException. Such a requirement is incorrect and should not have been introduced.

In section ExceptionHandler, add AbortProcessingException, to the list of exceptions that do not get
to the ExceptionHandler.

• Issue ID 1043
When publishing a ComponentSystemEvent, ensure the EL current component is pushed correctly

• Issue ID 1164
If running in a container that supports EL 3.0, add the necessary ELResolvers. See Stream,
StaticField, Map, List, Array, and Bean ELResolvers.

B.4.2.8. Configuration and Bootstrapping

• Issue ID 533
Modify Application Startup Behavior to account for requirement to call new API when starting up.

B.4.2.9. Miscellaneous

• Issue ID 1169

New XML Namespace for XSD files introduced in JSF 2.2, and also for facelet tag libraries.

The following XSD files are new for JSF 2.2, and each will be in the XML namespace
http://xmlns.jcp.org/xml/ns/javaee.

web-facelettaglibrary_2_2.xsd

web-facesconfig_2_2.xsd

web-partialresponse_2_2.xsd

Facelet Tag Libraries will now respond to the following URIs

Library Old URI New URI

Composite
Components

http://java.sun.com/jsf/composite http://xmlns.jcp.org/jsf/composite

Faces Core http://java.sun.com/jsf/core http://xmlns.jcp.org/jsf/core

HTML_BASIC http://java.sun.com/jsf/html http://xmlns.jcp.org/jsf/html

B.4. Changes between 2.1 and 2.2

Final Jakarta Faces 307

https://github.com/jakartaee/faces/issues/1092
https://github.com/jakartaee/faces/issues/1043
https://github.com/jakartaee/faces/issues/1164
https://github.com/jakartaee/faces/issues/533
https://github.com/jakartaee/faces/issues/1169
http://xmlns.jcp.org/xml/ns/javaee
http://java.sun.com/jsf/composite
http://xmlns.jcp.org/jsf/composite
http://java.sun.com/jsf/core
http://xmlns.jcp.org/jsf/core
http://java.sun.com/jsf/html
http://xmlns.jcp.org/jsf/html

Library Old URI New URI

JSTL Core http://java.sun.com/jsp/jstl/core http://xmlns.jcp.org/jsp/jstl/core

JSTL Functions http://java.sun.com/jsp/jstl/functions http://xmlns.jcp.org/jsp/jstl/functions

Facelets Templating http://java.sun.com/jsf/facelets http://xmlns.jcp.org/jsf/facelets

Pass Through
Attributes

http://java.sun.com/jsf/passthrough http://xmlns.jcp.org/jsf/passthrough

Pass Through
Elements

http://java.sun.com/jsf http://xmlns.jcp.org/jsf

Developers are requested to use the values from the New URI column, though both columns will
work.

• Issue ID 997

M jsf-api/src/main/java/javax/faces/event/ComponentSystemEvent.java

Override isAppropriateListener so that it first asks the listener, "are you a
ComponentSystemEventListener", then, if not, asks super.isAppropriateListener()

M jsf-api/src/main/java/javax/faces/event/SystemEvent.java

in isAppropriateListener(), document the default implementation.

M jsf-api/src/main/java/javax/faces/component/UIComponent.java

Make inner class ComponentSystemEventListenerAdapter implement
ComponentSystemEventListener.

• Issue ID 917

javax.faces.application.ResourceWrapper:

getContentType()

getLibraryName()

getResourceName()

setContentType(String)

setLibraryName(String)

setResourceName(String)

javax.faces.context.ExternalContextWrapper:

B.4. Changes between 2.1 and 2.2

308 Jakarta Faces Final

http://java.sun.com/jsp/jstl/core
http://xmlns.jcp.org/jsp/jstl/core
http://java.sun.com/jsp/jstl/functions
http://xmlns.jcp.org/jsp/jstl/functions
http://java.sun.com/jsf/facelets
http://xmlns.jcp.org/jsf/facelets
http://java.sun.com/jsf/passthrough
http://xmlns.jcp.org/jsf/passthrough
http://java.sun.com/jsf
http://xmlns.jcp.org/jsf
https://github.com/jakartaee/faces/issues/997
https://github.com/jakartaee/faces/issues/917

getSessionMaxInactiveInterval()

isSecure()

setSessionMaxInactiveInterval()

javax.faces.context.PartialViewContextWrapper

setPartialRequest(boolean)

• 12.1.3 add this text to the javax.faces.STATE_SAVING_METHOD spec. When examining the value, the
runtime must ignore the case.

• Add ExternalContext.getApplicationContextPath() Issue ID 1012

• Issue ID 787
restore ViewScope before templates are processed with buildView()

• 7.6.2.6 typo in spec for renderView(). Should be
Return immediately if calling isRendered() on the argument UIViewRoot returns false.

• Per Matt Benson, remove duplicate descriptions of the cc and component implicit object from the
getValue() specification for the composite component ELResolver in section 5.6.2.1.

• Issue ID 869

Specify Cross Site Request Forgery protection.

Add text in Restore View to describe how non-postback requests are inspected for protection, if
necessary.

Remove text for writeState() in ResponseStateManager, point to the JavaDocs.

Add View Protection methods to Overview for ViewHandler.

Introduce subsections to Default ViewHandler Implementation that group the methods by their
purpose. Add a new section ViewHandler Methods that relate to View Protection, which points to
the javadocs. In ViewHandler Methods Relating to Navigation, in the spec for getActionUrl(), specify
how view protection is affected.

• Remove tables in section Requirements for scanning of classes for annotations
The Javadoc tool lists annotations in a separate section, making the tables that list JSF related
annotations redundant.

• Issue ID 1082
Add new section DOCTYPE and XML Declaration.

• Issue ID 1141
In Resource Identifiers, declare that resourceName and resourceVersion, in addition to the already
listed other segments, are subject to the same constraints.

• Issue ID 1129
In Render Response Partial Processing, require calling UIViewRoot.resetValues() if necessary.

B.4. Changes between 2.1 and 2.2

Final Jakarta Faces 309

https://github.com/jakartaee/faces/issues/1012
https://github.com/jakartaee/faces/issues/787
https://github.com/jakartaee/faces/issues/869
https://github.com/jakartaee/faces/issues/1082
https://github.com/jakartaee/faces/issues/1141
https://github.com/jakartaee/faces/issues/1129

B.4.3. Backward Compatibility with Previous Versions

Faces 2.2 is backwards compatible with Faces 2.1 and 2.0. This means that a web-application that was
developed to run with Faces 2.1 or 2.0 won’t require any modification when run with Faces 2.2 except
in the cases described in the following section.

B.4.4. Breakages in Backward Compatibility

• Issue ID 1092
Due to an error in previous versions of the specification, exceptions were silently being swallowed
that now will bubble up to the exception handler. Code that was relying on this incorrect behavior
may need to be modified to account for fixing this problem.

• Issue ID 745

5.6.2.2 Table 5-11. Make the following changes to the spec for Composite Component Attribute
ELResoler

Modify getType() according to new specification language.

Require the implementation of containsKey() on the Map.

▪ containsKey(): If the attributes map contains the key, return true. Otherwise, if a default
value has been declared for the attribute, return true. Otherwise, return false.

Composite Component Metadata

New text dealing with <cc:attribute>

Any additional attributes on <cc:attribute/ > are exposed as attributes accessible from the
getValue() and attributeNames() methods on PropertyDescriptor. The return type from
getValue() must be a ValueExpression with the exception of the getValue("type"). The return type
from getValue("type") must be Class. If the value specified for the type attribute of <cc:attribute/>
cannot be converted to an actual Class, a TagAttributeException must be thrown, including the
Tag and TagAttribute instances in the constructor.

Yes, this is a backwards incompatible change, but because the usecase is so specific, and the
performance benefit so substantial, it was judged to be worth the cost.

B.5. Changes between 2.0 Rev a and 2.1

B.5.1. Facelet Tag Library mechanism

Document that the unprefixed namespace must pass through.

B.5. Changes between 2.0 Rev a and 2.1

310 Jakarta Faces Final

https://github.com/jakartaee/faces/issues/1092
https://github.com/jakartaee/faces/issues/745

B.5.2. New feature: <facelets-processing>

See Required Handling of *-extension elements in the application configuration resources files

B.5.3. Update schema for 2.1

The only new element is <facelet-cache-factory>. See the full schema in the Javadoc section of the
documents.

B.5.4. Change Restore View Phase

Change Restore View to require a call to ViewHandler.deriveLogicalViewId() before trying to find the
ViewDeclarationLanguage.

B.5.5. Default ViewHandler Implementation

Document deriveLogicalViewId().

B.6. Changes between 2.0 Final and 2.0 Rev a

B.6.1. Global changes

B.6.1.1. ExceptionQueuedEvent

The specification incorrectly refers to the ExceptionQueuedEvent as the ExceptionEvent. All instances
should be replaced, as there is no such class ExceptionEvent in JSF.

B.6.1.2. Usage of the term "page" in the JSF 2.0 spec

This might be kind of nit-picky, but there are several occurrences of the term "Facelet page" in the JSF
2.0 spec, but I’d like to set forth the argument that the term "Facelet document" or "Facelet view" would
be more appropriate, depending on context. Similarly, the spec uses the term "Composite component
markup page" which isn’t always appropriate either. Better to call it a "Composite component markup
document" or something like that.

All Facelet XHTML files are documents, but not all Facelet XHTML files are pages. There is a built-in
bias to the word "page" that assumes the markup output will be rendered as a "web page" which is not
always the case. In the case of portlets, the rendered output is a fragment of markup (normally a
<div>…</div>). In the case of a custom renderkit, the rendered output might be some mobile device. In
the case of ICEfaces, the rendered markup is a server-side DOM tree. In the case of a composite
component, a Facelet XHTML file is not a page, but a "Composite Component markup document" (or
definition) file.

For example.. Instead of a "Facelet Page", I think the following should be called a "Facelet Document" or
a "Facelet View" (since the f:view tag is optional, but implied)

B.6. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Faces 311

<!DOCTYPE html>
<html xmlns:f="jakarta.faces.core"
 xmlns:h="jakarta.faces.html">
 <h:head>
 ...
 </h:head>
 <h:body>
 ...
 </h:body>
</html>

But in the case of Portlets, the <html> , <head>, and <body> tags are forbidden. The equivalent "Facelet
Document" or "Facelet View" for portlets would look like this:

<f:view xmlns:f="jakarta.faces.core"
 xmlns:h="jakarta.faces.html">
 ...
</f:view>

B.6.2. Front Matter

Change Sun logo to Oracle Logo. Sun postal address to Oracle postal address, and Sun phone number to
Oracle phone number

Update spec license.

B.6.3. Chapter 2

B.6.3.1. Restore View

Per Andy Schwartz recommendation, loosen the spec requirements for the delivery of the
PostRestoreStateEvent to be "somewhere during RestoreView".

B.6.3.2. Localized Application Messages

Suggestion: Change to

Validation Error: Length is less than allowable minimum of 5.

B.6.3.3. JSR 303 Bean Validation

Change "leas" to "least"

B.6. Changes between 2.0 Final and 2.0 Rev a

312 Jakarta Faces Final

B.6.3.4. JSR 303 Bean Validation needs to reference "Bean Validation Integration" section

While reading section 2.5.7, one becomes very disappointed with the limited about of information that
it provides. But section 3.5.6 provides more information, so the recommendation is that these sections
reference each other, or perhaps are combined in some way if that makes sense.

B.6.3.5. Resource Identifiers

Tighten spec for the localePrefix, libraryName, and resourceVersion segments of the resource
identifier.

B.6.4. Chapter 3

B.6.4.1. Clarify meaning of "javax.faces.bean" in Bean Validator Activation

Section 3.5.6.1 says:

"If Bean Validation is present in the runtime environment, the system must ensure that the
javax.faces.Bean standard validator is added with a call to Application.addDefaultValidatorId()"

But the reader of the Spec has no idea what the "javax.faces.Bean" standard validator is, within the
context of this paragraph. Recommend adding some verbiage that says that javax.faces.Bean is the
validatorId of the standard JSR 303 validator of the JSF 2.0 API, which equates to the
javax.faces.validator.BeanValidator class as mentioned in Section 10.4.1.4.

B.6.4.2. Need to be consistent between Declarative Listener Registration of the JSF 2.0 Spec and
the VDLDoc for f:event

Section 3.4.3.4 of the JSF 2.0 Spec reads:

The method signature for the MethodExpression pointed to by the listener attribute must match the
signature of

javax.faces.event.ComponentSystemEventListener.processEvent().

And the VDLDocs for f:event read:

(signature must match public void listener(javax.faces.event.ComponentSystemEvent event) throws
javax.faces.event.AbortProcessingException)

Both of these are true, and indeed saying the same thing. But I think it would be helpful to say BOTH
things, in BOTH documents.

B.6.4.3. Typo in Declarative Listener Registration of the JSF 2.0 Spec regarding "beforeRender"

Section 3.4.3.4 of the JSF 2.0 Spec has this example:

B.6. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Faces 313

<h:inputText value="#{myBean.text}">
 <f:event type="beforeRender" listener="#{myBean.beforeTextRender}" />
</h:inputText>

But "beforeRender" is a typo. The correct value is "preRenderComponent" as stated in the f:event
VDLDocs.

B.6.4.4. Validation Registration, What does it mean to be a JSF User Interface component?

Remove references to UInput.encodeEnd(). Not for a very long time has this method been used to
instigate validation.

B.6.4.5. Composite Component Metadata

Section 3.6.2.1 of the Spec indicates that the "hidden" property of the javax.bean.FeatureDescriptor is to
appear as an attribute for tags like cc:actionSource, cc:attribute, cc:facet, and cc:interface but the
VDLDocs do not declare that the "hidden" property is available.

B.6.5. Chapter 4

B.6.5.1. Events

Remove text pertaining to PostRestoreStateEvent, rely instead on text in setion 2.2.1.

B.6.6. Chapter 7

B.6.6.1. Overview

getNavigationCase should return NavigationCase and not void.

B.6.6.2. Default NavigationHandler Algorithm

Add faces-include-view-params

B.6.6.3. Default ViewHandler Implementation

Fix typo the specified createView() should be called in renderView() and restoreView().

B.6.7. Chapter 10

Need to change "confirm with" to "conform with".

Confusing verbiage in table 10-1 of JSF 2.0 spec regarding the word "template"

In table 10-1, it correctly says that "page templating" is not a feature of JSP.

B.6. Changes between 2.0 Final and 2.0 Rev a

314 Jakarta Faces Final

But later on in the table, it says "Expressions in template text cause unexpected behavior when used in
JSP."

Somehow there needs to be an explanation of the distinction of "page templating" and "template text"
here. Right now it kind of reads as a contradiction.

B.6.7.1. General Requirements

Add an assertion to section 10.3.1 stating that EL expressions that appear in the facelet XHTML page
must appear in the rendered view as if they were the right hand side of the value attribute of an at the
same point in the page as the EL expression

B.6.7.2. Facelet Tag Library mechanism

Section 10.3.2. Correct xref to point to section in appendix that includes the facelet taglib schema.

Correct xref to point to section in appendix that includes the facelet taglib schema.

B.6.7.3. VDLDocs

See Facelet Templating Tag Library, and Jakarta Tags Core and Function Tag Libraries. Refer the reader
to the "VDLDocs" (View Declaration Language Documentations).

B.6.8. Chapter 13

B.6.8.1. Redundancy in Partial View Processing of the JSF 2.0 Spec

Section 13.4.2 of the JSF 2.0 spec has this sentence:

The request contains special parameters that indicate the request is a partial execute request or a
partial execute request that was triggered using Ajax

This needs clarification—does this mean to say:

partial execute request (not triggered by Ajax) or a partial execute request (that was triggered using
Ajax)

B.6.8.2. "Execute portions" of the JSF request processing lifecycle in the JSF 2.0 Spec

Section 13.4.2 reads:

Although the diagram in Section 13.4 Partial View Traversal˝ depicts the execute˝ portion as
encompassing everything except the Render Response Phase˝, it really is the Apply Request Values
Phase˝, Update Model Values Phase˝ and Process Validations Phase˝.

Why does the diagram include the INVOKE_APPLICATION phase if it’s not "really" considered to be
part of the execute portions?

B.6. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Faces 315

B.6.9. Chapter 14

B.6.9.1. Initiating an Ajax Request Typo in table 14.2.2 of the JSF 2.0 Spec

Table 14.2.2 reads:

"execute" phase

But in order to be consistent with the rest of the spec, it should read:

"execute" portion

Also, the same goes for "render" in that the word "portion" should be used instead of "phase".

B.6.9.2. Request/Response Event Handling Table 14.4.1

Change responseTxt to responseText.

Table 14.3: Reorder rows

B.6.10. Appendix A Metadata

Update schema to remove partial-traversal, as well as fixing 768.

B.6.11. VDLDoc changes

B.6.11.1. Typo in f:selectItems VDLDocs

Change "mest" to "must"

B.6.11.2. Need clarification on execute attribute of f:ajax

The VDLDocs for f:ajax say "Identifiers of components" but, for some reason, it wasn’t obvious to me
that this term referred to the "id" attributes of components. The recommendation isthat this be
clarified to say "list of id attribute values" instead. Also, the value of an id attribute like
"mycomponent" or something should be added to an example that includes a keyword… something
like this: "@this componentone componenttwo"

B.6.11.3. Spelling error in VDLDocs for f:ajax

This one from Lincoln:

See the "onerror" attribute

There is an extra 'e' → "oneerror"

B.6. Changes between 2.0 Final and 2.0 Rev a

316 Jakarta Faces Final

B.6.11.4. Need clarification on required attribute in VDLDocs for tags that got a new "for"
attribute in JSF 2.0

The VDLDocs correctly have green for the new "for" attribute, but the "required" column says false,
when that’s not always the case.

For example, with f:actionListener the VDLDocs say that that it is not required. However, when the tag
is used as a child of a Composite Component, then the for attribute is indeed required. This would be
true of all tags like that, such as f:convertDateTime, f:convertNumber, etc.

B.6.11.5. Uppercase typo in VDLDocs for f:event

Change uppercase "P" to lowercase for: PostAddToView for the f:event VDLDocs

B.6.11.6. Need to change "JSP" to "Facelets" in "Body Content" of VDLDocs

Search for "JSP" on the f:event VDLDocs. My suspicion is that this is a problem across the board.

B.6.11.7. Need clarification in VDLDocs for f:metadata

In the VDLDocs for f:metadata, recommend changing:

"This tag must reside within the top level XHTML file for the given viewId, not in a template"

to this:

"This tag must reside within the top level Facelet view, or in a template-client, but not in a template"

Also, it needs to be clarified that the page01.xhtml example is a template-client. So recommend
changing this:

"viewId XHTML page, page01.xhtml"

to this:

"template-client XHTML page, page01.xhtml"

B.6.11.8. Missing description in VDLDocs for name attribute of f:viewParam

The VDLDocs for f:viewParam are missing documentation of the "name" attribute, which is pretty
important since it is required.

B.6.11.9. VLDDocs on "for" attribute of f:viewParam claim it can be used in a CC

The VDLDocs for f:viewParam claim that the "for" attribute is supported. I just checked Mojarra’s jsf-
api and UIViewParameter.java does not support the "for" attribute, since it does not have a getter/setter
for "for" like HtmlOutputLabel does. There are restrictions on f:viewParam such that it may only be
used inside of f:metadata, and f:metadata may only be used inside of f:view. So that disqualifies the
f:viewParam tag from being able to be used inside of a Composite Component. Therefore I recommend

B.6. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Faces 317

that the documentation of the "for" attribute be totally removed.

B.6.11.10. Miscellaneous VDLDoc items

• VDLDocs for "execute" attribute of f:ajax say (must evaluate to java.lang.Object) but then say
"Evaluates to Collection"

• VDLDocs f:selectItem lists the new JSF 2.0 "noSelectionOption" but is not colored green to indicate
"new in JSF 2.0" and the link for f:selectItem in the navigation frame needs to be orange

• VDLDocs for f:validateBean should have all of its attributes in green to indicate "new in JSF 2.0"
since it is a new tag.

• VDLDocs for f:validateRegex has a typo in the description which reads "RegexpValidator" rather
than "RegexValidator"

• In spec, the "Changes between 1.2 and EDR2" section refers the reader to section 3.5.2 for the
addition of "javax.faces.RegularExpressionValidator" but actually it should be section 3.5.5

• VDLDocs for h:button say that the outcome attribute is not required, but really it should be
required otherwise there is no purpose of f:button—you would end up navigating back to the
current view. The whole point of f:button is to perform navigation to a different view that
potentially contains view parameters. Why have a bookmarkable URL back to itself?

• VDLDocs for h:button don’t mention a disabled attribute, but the h:link one does have the disabled
attribute. My guess would be that both should have this attribute?

• VDLDocs for h:outputScript and h:outputStylesheet should indicate that even though the UIOutput
class implements the ValueHolder interface, the coverter and value attributes are basically ignored
by the renderers, since the value attribute has no meaning. This is basically a design flaw—a new
class named UIOutputResource should have been created instead of UIOutput being reused.

• VDLDocs for h:outputScript and h:outputStylesheet should indicate that the "name" attribute is
required, since section 2.6.1.3 implies that this is the case with the following resource pattern:

• VDLDocs for h:outputScript needs to have all the possible values for the target attribute
documented. I think the only valid values are "head", "body", and "form"

• VDLDocs for h:graphicImage has a dead hyperlink to "Common Algorithm for Obtaining A
Resource to Render

• VDLDocs for h:selectManyCheckbox indicate orange for the collectionType and
hideNoSelectionOption attributes but they should be green to indicate "new in JSF 2.0"

• VDLDocs for h:selectManyCheckbox says that the return type must evaluate to a String, but that’s
not entirely true. It can also evaluate to a concrete class that implements java.util.Collection

• VDLDocs for ui:param have two "name" attributes specified. The second one should be the "value"
attribute

B.6.11.11. Should TLDDocs now be VDLDocs?

The Spec introduces this term VDLDocs (which as I said in the other email, was formerly PDLDocs), but

B.6. Changes between 2.0 Final and 2.0 Rev a

318 Jakarta Faces Final

it also refers the reader to the TLDDocs. Should we just settle on VDLDocs as the standard term
throughout the Spec?

B.6.11.12. Typo in VDLDocs for f:event.

The VDLDocs for f:event specify a "name" attribute, but the Description column of the page talks about
a "type" column (not "name"), which would be consistent with Section 3.4.3.4 of the Spec which talks
about a "type" column.

Jim Driscoll verified that there is a doc bug in the VDLDocs for f:event and that the "name" attribute is
actually "type"

B.6.12. Accepted Changes from JCP Change Log for JSF 2.0 Rev a

The referenced spec public issue number can be found in the issue tracker at
https://github.com/jakartaee/faces/issues/

ID Category Description Fixed in
Source Code
Repository of
Specification

Issue

C002 Errata Section 5.6.2.2 is out of sync with the current resolver
implementation.

yes Issue
ID:848

C004 Errata RenderKitDoc for OutcomeTarget Renderers are
incorrect with respect to intended design. Refer to
appendixB-changelog.html#UNKNOWNChangeC006 in
the footnotes section below.

yes Issue
ID:823

C007 Errata Section 11.4.7 "Ordering". After the sentence "The
<others /> element must be handled as follows" add a
bullet point: "The <others /> element represents a set of
application configuration resources. This set is
described as the set of all application configuration
resources discovered in the application minus the one
currently being processed, minus the application
configuration resources mentioned by name in the
<ordering /> section. If this set is the empty set, at the
time the application configuration resources are being
processed, the <others > element must be ignored."

yes Issue
ID:824

C008 Errata taglib docs for cc:interface are missing documentation
for componentType attribute.

yes Issue
ID:849

C011 Errata Section 3.6.2.1 "Composite Component Metadata". Add
BehaviorHolderAttachedObjectTarget after iii.
ActionSource2AttachedObjectTarget

yes Issue
ID:825

B.6. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Faces 319

https://github.com/jakartaee/faces/issues/
https://github.com/jakartaee/faces/issues/848
https://github.com/jakartaee/faces/issues/848
appendixB-changelog.html#UNKNOWN
https://github.com/jakartaee/faces/issues/823
https://github.com/jakartaee/faces/issues/823
https://github.com/jakartaee/faces/issues/824
https://github.com/jakartaee/faces/issues/824
https://github.com/jakartaee/faces/issues/849
https://github.com/jakartaee/faces/issues/849
https://github.com/jakartaee/faces/issues/825
https://github.com/jakartaee/faces/issues/825

C012 Errata Javadocs for ResourceHandler.createResource(String
resourceId) need to me ammended to state that if there
is an error in argument resourceId, null must be
returned by this method.

yes Issue
ID:851

C013 Errata PDL DOCS: f:event listener attribute clarification:Change
description to: "A method expression that JSF invokes
when an event occurs. That event is specified with the
name attribute."

yes Issue
ID:586

C015 Errata UIViewRoot.setBeforePhaseListeners() removed the
statement that all phases including RestoreView will
have their beforePhaseListeners called. Reverted to the
way it was in 1.2

yes Issue
ID:826

C016 Errata Section 2.6.2.1 Relocatable Resources: code snippet:
<f:view…./> should be <f:view…>

yes Issue
ID:565

C017 Errata UISelectItem doesn’t mention itemEscaped. yes Issue
ID:430

C018 Errata ViewDeclarationLanguage.retargetAttachedObjects()
misses talking about Behaviors

yes Issue
ID:827

C021 Errata ui:insert missing existing "name" attribute,
implemented, tested, but not documented

yes Issue
ID:667

C022 Errata f:valueChangeListener missing "for" attribute.
Implemented, tested, but not documented

yes Issue
ID:828

C023 Change in facelets VDLdoc, mark f:verbatim and f:subview as
deprecated

no Issue
ID:852

C024 Errata Add an assertion to section 10.3.1 stating that EL
expressions that appear in the facelet XHTML page must
appear in the rendered view as if they were the right
hand side of the value attribute of an <h:outputText> at
the same point in the page as the EL expression

yes Issue
ID:829

C027 Errata web-facelettaglibrary_2_0.xsd type incorrect for
composite-library-name. Should be javae:string

no Issue
ID:854

C028 Errata ui:remove VDLDoc has attribute with no name no Issue
ID:842

C029 Errata ui:param has attribute duplicated. One of them should
be "value"

yes Issue
ID:855

C030 Errata RenderKit Docs javax.faces.CompositeFacet change " The
implementation of encodeBegin(), must obtain " to be "
The implementation of encodeChildren(), must obtain "

no Issue
ID:843

B.6. Changes between 2.0 Final and 2.0 Rev a

320 Jakarta Faces Final

https://github.com/jakartaee/faces/issues/851
https://github.com/jakartaee/faces/issues/851
https://github.com/jakartaee/faces/issues/586
https://github.com/jakartaee/faces/issues/586
https://github.com/jakartaee/faces/issues/826
https://github.com/jakartaee/faces/issues/826
https://github.com/jakartaee/faces/issues/565
https://github.com/jakartaee/faces/issues/565
https://github.com/jakartaee/faces/issues/430
https://github.com/jakartaee/faces/issues/430
https://github.com/jakartaee/faces/issues/827
https://github.com/jakartaee/faces/issues/827
https://github.com/jakartaee/faces/issues/667
https://github.com/jakartaee/faces/issues/667
https://github.com/jakartaee/faces/issues/828
https://github.com/jakartaee/faces/issues/828
https://github.com/jakartaee/faces/issues/852
https://github.com/jakartaee/faces/issues/852
https://github.com/jakartaee/faces/issues/829
https://github.com/jakartaee/faces/issues/829
https://github.com/jakartaee/faces/issues/854
https://github.com/jakartaee/faces/issues/854
https://github.com/jakartaee/faces/issues/842
https://github.com/jakartaee/faces/issues/842
https://github.com/jakartaee/faces/issues/855
https://github.com/jakartaee/faces/issues/855
https://github.com/jakartaee/faces/issues/843
https://github.com/jakartaee/faces/issues/843

C031 Errata VDL docs state that cc:attribute has a target attribute
with required="true". This attribute is not really required
on cc:attribute.

yes Issue
ID:644

C032 Errata Mention in spec that Objects put in view scope may need
to be Serializable

yes Issue
ID:830

C033 Errata Modify the javadoc for ResourceHandler to state that for
resources residing at META-
INF/resources/<resourceidentifier>. The implementation
is not required to support the optional libraryVersion
and resourceVersion segments

yes Issue
ID:844

C034 Change Modify table 5-10 to state that implicit object cc returns
the current composite component, relative to the
composite component markup page in which the
expression appears

yes Issue
ID:831

C035 Errata 3.6.2.1 Modify composite component metadata
specification to state that, within the cc:interface
element, the following attributes are not available
unless ProjectStage is Development: displayName,
expert, hidden, preferred, shortDescription

yes Issue
ID:832

C037 Errata UIComponent.restoreState() javadocs must be changed to
say NPE is thrown if context is null, but no action is
taken if state argument is null

yes Issue
ID:845

C040 Errata VDLDocs for f:metadata. Don’t mention f:view. State,
"This tag must reside within the top level facelet page
whose filename corresponds ot the viewid being loaded."

yes Issue
ID:856

C043 Errata Document SEPARATOR_CHAR in section 11.1.3 where all
the other context-params are documented

yes Issue
ID:833

C044 Errata Section 11.4.6 doesn’t include ViewDeclarationLanguage,
VisitContextFactory, ExceptionHandlerFactory,
PartialViewContext, TagHandlerDelegateFactory as
decoratable

yes Issue
ID:834

C046 Errata Section 10.4.1.1 specifies the use of AjaxBehaviors
pushBehavior but AjaxBehaviors is an implementation
detail (the class exists under com package)

yes Issue
ID:836

C047 Errata Add "defaults" for "execute", "render" AjaxBehavior in
VDLDocs.

yes Issue
ID:568

C048 Errata JSP should not have f:viewParam. Facelets f:viewParam
must have name attribute.

yes Issue
ID:656

B.6. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Faces 321

https://github.com/jakartaee/faces/issues/644
https://github.com/jakartaee/faces/issues/644
https://github.com/jakartaee/faces/issues/830
https://github.com/jakartaee/faces/issues/830
https://github.com/jakartaee/faces/issues/844
https://github.com/jakartaee/faces/issues/844
https://github.com/jakartaee/faces/issues/831
https://github.com/jakartaee/faces/issues/831
https://github.com/jakartaee/faces/issues/832
https://github.com/jakartaee/faces/issues/832
https://github.com/jakartaee/faces/issues/845
https://github.com/jakartaee/faces/issues/845
https://github.com/jakartaee/faces/issues/856
https://github.com/jakartaee/faces/issues/856
https://github.com/jakartaee/faces/issues/833
https://github.com/jakartaee/faces/issues/833
https://github.com/jakartaee/faces/issues/834
https://github.com/jakartaee/faces/issues/834
https://github.com/jakartaee/faces/issues/836
https://github.com/jakartaee/faces/issues/836
https://github.com/jakartaee/faces/issues/568
https://github.com/jakartaee/faces/issues/568
https://github.com/jakartaee/faces/issues/656
https://github.com/jakartaee/faces/issues/656

C049 Errata Spec section 3.2.5 is empty. Fix that yes Issue
ID:835

C050 Errata Spec for UIComponent.setParent() incomplete yes Issue
ID:837

C054 Errata f:event name attribute should be type. yes Issue
ID:639

C058 Errata Section 14.4.1: Table 14-4: responseTxt should be
responseText. Table 14-4: Add status property; Table 14-
4: There is no "name" property. Table 14-3: reorder
"status" values to be in chronological order. Section
14.4.1.1: Fix use case.

yes Issue
ID:642

C060 Change Replace the last sentence in the javadoc for
FacesServlet.service() to say "The implementation must
make it so FacesContext.release() is called within a
finally block as late as possible in the processing for the
JSF related portion of this request".

yes Issue
ID:846

C061 Change Non-normatively document that JavaBeans
PropertyEditors will be used for EL Coercion. Mention
this in the context of JSF converters

yes Issue
ID:838

C062 Change In 3.1.5, explicitly mention not to use view scope yes Issue
ID:839

C063 Change 7.4.1 Clarify that, in the case of navigation actions, an
empty string should be treated the same way as null:
stay on the same page.

yes Issue
ID:747

C064 Change Correct StateHolder.setTransient JavaDoc (specified
backwards)

yes Issue
ID:840

C065 Change Correct typos in Composite.tld (for pdldocs). Specifically,
quotes around actionListener, method-signature
(spelling). Also clarify the default value "false" for
"required" attribute.

yes Issue
ID:841

C066 Change Specify that the Component Resource container facet
must be marked transient. Specifically, the JavaDocs for
UIViewRoot.getComponentResources should include: "Set
the transient property of the facet to true."

yes Issue
ID:800

C068 Change Modify the facelet taglib xsd so that older versions of
taglibs are acceptable.

yes Issue
ID:744

C069 Change Make sure VDLDocs for f:event list event all possible
event types

yes Issue
ID:712

B.6. Changes between 2.0 Final and 2.0 Rev a

322 Jakarta Faces Final

https://github.com/jakartaee/faces/issues/835
https://github.com/jakartaee/faces/issues/835
https://github.com/jakartaee/faces/issues/837
https://github.com/jakartaee/faces/issues/837
https://github.com/jakartaee/faces/issues/639
https://github.com/jakartaee/faces/issues/639
https://github.com/jakartaee/faces/issues/642
https://github.com/jakartaee/faces/issues/642
https://github.com/jakartaee/faces/issues/846
https://github.com/jakartaee/faces/issues/846
https://github.com/jakartaee/faces/issues/838
https://github.com/jakartaee/faces/issues/838
https://github.com/jakartaee/faces/issues/839
https://github.com/jakartaee/faces/issues/839
https://github.com/jakartaee/faces/issues/747
https://github.com/jakartaee/faces/issues/747
https://github.com/jakartaee/faces/issues/840
https://github.com/jakartaee/faces/issues/840
https://github.com/jakartaee/faces/issues/841
https://github.com/jakartaee/faces/issues/841
https://github.com/jakartaee/faces/issues/800
https://github.com/jakartaee/faces/issues/800
https://github.com/jakartaee/faces/issues/744
https://github.com/jakartaee/faces/issues/744
https://github.com/jakartaee/faces/issues/712
https://github.com/jakartaee/faces/issues/712

C072 Errata Neither applyNextHandler of
DelegatingMetaTagHandler or nextHandler of
TagHandler are documented.

yes Issue
ID:780

C073 Errata Specify f:ajax execute/render id behavior in VDLDocs (as
outlined in Section 10.4.1.1 of the spec).

yes Issue
ID:567

C074 Errata <view-param> has no business being a child of
<redirect> and should be renamed to <redirect-param>.

yes Issue
ID:698

C075 Errata includeViewParams implicit navigation flag should be
faces-include-view-params.

yes Issue
ID:699

C077 Errata Event broadcasting should apply to Behaviors (not just
ClientBehaviors).

yes Issue
ID:798

C078 Errata PostAddToViewEvent delivery specification needs
clarification. Clarify UIComponent.getParent and
getChildren for consistency.

yes Issue
ID:805

C079 Errata RenderKit Docs - TableRenderer:Clarification - the docs
say to render the footer the same as the header which
causes the problem.

yes Issue
ID:255

C080 Errata RenderKit Docs - ButtonRenderer Encode behavior w/r/t
onclick attribute - should not be passthrough attribute.

yes Issue
ID:257

C081 Errata h:message "for" attribute is mis-specified:"for" attribute
should be relative id (not clientid).

yes Issue
ID:266

C082 Errata clarify whether expression of binding-attribute of
f:xxxxListener should be evaluated on postback.

yes Issue
ID:320

C083 Errata Option rendering, specifically when dealing with
SelectItemGroups, is too generic.

yes Issue
ID:420

C084 Errata submittedValue get/set methods underspecified yes Issue
ID:434

C085 Errata Current wording in renderkit docs leads to double
encoding of query parameters

yes Issue
ID:436

C086 Errata SelectManyCheckBox Clarification yes Issue
ID:466

C087 Errata PDL document for JSTL(Facelets) has the incorrect URI
for the NameSpace.

yes Issue
ID:509

C088 Errata API docs missing for ExceptionEventContext. yes Issue
ID:515

C089 Errata cc:attribute component documentation for the attribute
type should be for attribute method-signature.

yes Issue
ID:524

B.6. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Faces 323

https://github.com/jakartaee/faces/issues/780
https://github.com/jakartaee/faces/issues/780
https://github.com/jakartaee/faces/issues/567
https://github.com/jakartaee/faces/issues/567
https://github.com/jakartaee/faces/issues/698
https://github.com/jakartaee/faces/issues/698
https://github.com/jakartaee/faces/issues/699
https://github.com/jakartaee/faces/issues/699
https://github.com/jakartaee/faces/issues/798
https://github.com/jakartaee/faces/issues/798
https://github.com/jakartaee/faces/issues/805
https://github.com/jakartaee/faces/issues/805
https://github.com/jakartaee/faces/issues/255
https://github.com/jakartaee/faces/issues/255
https://github.com/jakartaee/faces/issues/257
https://github.com/jakartaee/faces/issues/257
https://github.com/jakartaee/faces/issues/266
https://github.com/jakartaee/faces/issues/266
https://github.com/jakartaee/faces/issues/320
https://github.com/jakartaee/faces/issues/320
https://github.com/jakartaee/faces/issues/420
https://github.com/jakartaee/faces/issues/420
https://github.com/jakartaee/faces/issues/434
https://github.com/jakartaee/faces/issues/434
https://github.com/jakartaee/faces/issues/436
https://github.com/jakartaee/faces/issues/436
https://github.com/jakartaee/faces/issues/466
https://github.com/jakartaee/faces/issues/466
https://github.com/jakartaee/faces/issues/509
https://github.com/jakartaee/faces/issues/509
https://github.com/jakartaee/faces/issues/515
https://github.com/jakartaee/faces/issues/515
https://github.com/jakartaee/faces/issues/524
https://github.com/jakartaee/faces/issues/524

C090 Errata The UML Diagram for javax.faces.event is out of date. yes Issue
ID:525

C091 Errata Minor typo in the Interface BehaviorHolder API. yes Issue
ID:534

C092 Errata Two references to the itemLabelEscaped attribute. yes Issue
ID:536

C093 Errata Missing class description for
javax.faces.event.PostValidateEvent and
javax.faces.event.PreValidateEvent.

yes Issue
ID:537

C094 Errata Section 3.7.5 typo - ClientBehavorHolder should be
ClientBehaviorHolder.

yes Issue
ID:540

C095 Errata Section 4.1.3 typo - NamingContaier should be
NamingContainer.

yes Issue
ID:541

C096 Errata API Docs: Application.publishEvent: Docs say to throw
NPE if any of the arguments is null. However,
sourceBaseType arg can be null.

yes Issue
ID:553

C097 Errata Facelets TLD Docs: Missing "for" attribute for "message"
and "messages" tags.

yes Issue
ID:558

C099 Errata ResourceHandler docs: Clarify that relative paths are
disallowed in library names.

yes Issue
ID:577

C100 Errata Renderkit Docs: h:link - Formatting - add paragraphs yes Issue
ID:588

C101 Errata Spec Section 2.5.9: Fix Grammar: "The first client
behavior to provided by the JSF specification is the
AjaxBehavior." should be: "The first client behavior
provided by the JSF specification is the AjaxBehavior."

yes Issue
ID:590

C102 Errata Spec Section 9.4 doesn’t list all the validation tags and it
lists the validateDoubleRange tag twice.

no Issue
ID:591

C103 Errata VDLDocs and Spec section 3.6.2.1 have
component:actionSource target attribute with commas
as delimiters - should be "space" as delimiter.

yes Issue
ID:592

C104 Errata Spec Section 7.4.1: getNavigationCase should return
NavigationCase and not void.

yes Issue
ID:605

C105 Errata Spec Section 10.4.1.4 says: f:validateBean should extend
validateHandler. Should be ValidatorHandler.

yes Issue
ID:615

C106 Errata Typo: Pages in the TLD docs says "JSF 2.0 Page
Decraration Language". Should be "Declaration".

yes Issue
ID:617

B.6. Changes between 2.0 Final and 2.0 Rev a

324 Jakarta Faces Final

https://github.com/jakartaee/faces/issues/525
https://github.com/jakartaee/faces/issues/525
https://github.com/jakartaee/faces/issues/534
https://github.com/jakartaee/faces/issues/534
https://github.com/jakartaee/faces/issues/536
https://github.com/jakartaee/faces/issues/536
https://github.com/jakartaee/faces/issues/537
https://github.com/jakartaee/faces/issues/537
https://github.com/jakartaee/faces/issues/540
https://github.com/jakartaee/faces/issues/540
https://github.com/jakartaee/faces/issues/541
https://github.com/jakartaee/faces/issues/541
https://github.com/jakartaee/faces/issues/553
https://github.com/jakartaee/faces/issues/553
https://github.com/jakartaee/faces/issues/558
https://github.com/jakartaee/faces/issues/558
https://github.com/jakartaee/faces/issues/577
https://github.com/jakartaee/faces/issues/577
https://github.com/jakartaee/faces/issues/588
https://github.com/jakartaee/faces/issues/588
https://github.com/jakartaee/faces/issues/590
https://github.com/jakartaee/faces/issues/590
https://github.com/jakartaee/faces/issues/591
https://github.com/jakartaee/faces/issues/591
https://github.com/jakartaee/faces/issues/592
https://github.com/jakartaee/faces/issues/592
https://github.com/jakartaee/faces/issues/605
https://github.com/jakartaee/faces/issues/605
https://github.com/jakartaee/faces/issues/615
https://github.com/jakartaee/faces/issues/615
https://github.com/jakartaee/faces/issues/617
https://github.com/jakartaee/faces/issues/617

C107 Errata Typos: Table 14-1, 14-2, page 14-3. yes Issue
ID:629

C108 Errata UIData.invokeOnComponent docs need to be updated to
include handling of column level facets.

yes Issue
ID:632

C109 Errata Spec Section 3.5.6.1 needs to be corrected to state that
default validators are added during tag execution time.

yes Issue
ID:635

C110 Errata validateBean and validateRequired tags need to be
removed from the Jakarta Server Pages PDL
documentation

yes Issue
ID:645

C111 Errata faces.ajax.response update element clarification needed
in JavaScript docs.

yes Issue
ID:646

C112 Errata Spec Section 10.4.1.1: Clarify what happens when
nesting and wrapping f:ajax tags collide.

yes Issue
ID:652

C113 Errata Typo: Spec Section 8.3.1: "renderkit-id" should be
"render-kit-id" and "renderkit" should be "render-kit".

yes Issue
ID:660

C114 Errata Add "rendered" attribute to VDL docs for ui:component
and ui:fragment.

yes Issue
ID:661

C115 Errata JavaDocs for UIComponent.processValidators is
incomplete. It should mention popComponentFromEL.

yes Issue
ID:664

C116 Errata Dead link in VDL docs. yes Issue
ID:666

C117 Errata Spec Section 2.5.2.4: Standard messages for
LengthValidator are confusing.

yes Issue
ID:668

C118 Errata Spec/pdldocs don’t say what the default is for "target" in
h:outputScript.

yes Issue
ID:673

C119 Errata partial-view-context-factory is only mentioned in the
schema part of the spec. Houls be added to Spec Section
13.4.2.

yes Issue
ID:705

C120 Errata Specification edits needed no Issue
ID:714

C121 Errata Typo - Spec Section 7.5.2: "ViewHanlder" should be
"ViewHandler"; "renderView" and "restoreView"
methods should call
"ViewDeclarationLanguage.renderView" and
"ViewDeclarationLanguage.restoreView".

yes Issue
ID:729

B.6. Changes between 2.0 Final and 2.0 Rev a

Final Jakarta Faces 325

https://github.com/jakartaee/faces/issues/629
https://github.com/jakartaee/faces/issues/629
https://github.com/jakartaee/faces/issues/632
https://github.com/jakartaee/faces/issues/632
https://github.com/jakartaee/faces/issues/635
https://github.com/jakartaee/faces/issues/635
https://github.com/jakartaee/faces/issues/645
https://github.com/jakartaee/faces/issues/645
https://github.com/jakartaee/faces/issues/646
https://github.com/jakartaee/faces/issues/646
https://github.com/jakartaee/faces/issues/652
https://github.com/jakartaee/faces/issues/652
https://github.com/jakartaee/faces/issues/660
https://github.com/jakartaee/faces/issues/660
https://github.com/jakartaee/faces/issues/661
https://github.com/jakartaee/faces/issues/661
https://github.com/jakartaee/faces/issues/664
https://github.com/jakartaee/faces/issues/664
https://github.com/jakartaee/faces/issues/666
https://github.com/jakartaee/faces/issues/666
https://github.com/jakartaee/faces/issues/668
https://github.com/jakartaee/faces/issues/668
https://github.com/jakartaee/faces/issues/673
https://github.com/jakartaee/faces/issues/673
https://github.com/jakartaee/faces/issues/705
https://github.com/jakartaee/faces/issues/705
https://github.com/jakartaee/faces/issues/714
https://github.com/jakartaee/faces/issues/714
https://github.com/jakartaee/faces/issues/729
https://github.com/jakartaee/faces/issues/729

C122 Errata Spec Section 2.6.1.3: Specify that a libraryName or
resourceName contains only XML NameChar, but not a
colon; a libraryName or resourceName does not match
the regex "[0-9]+(_[0-9]+)* or [A-Za-z]{2}(_[A-Za-z]{2}(_[A-
Za-z]+)*)?"

yes Issue
ID:740

C123 Errata Typos in PDLDocs for ui:repeat yes Issue
ID:743

C124 Errata Remove "partial-traversal" application element from the
spec as it does not exist in the schema.

yes Issue
ID:767

C125 Errata Add mssing ID attributes to schema for: faces-config-
orderingType,faces-config-ordering-orderingType,faces-
config-absoluteOrderingType,faces-config-default-
valueType,faces-config-from-view-idType,faces-config-
client-behavior-rendererType,faces-config-
behaviorType,faces-config-value-classType,faces-config-
rendererType

yes Issue
ID:768

C126 Errata UIInput JavaDocs: Specify the handling of conversion
failures.

yes Issue
ID:775

C127 Errata EditableValueHodler JavaDocs: Missing "@Since 2.0" for
"resetValue" method.

yes Issue
ID:779

C128 Errata VDL documentation for f:selectItem references the
"escape" attribute. It should be "itemEscaped".

yes Issue
ID:788

C129 Errata Specify description for "f:param" "disabled" attribute. yes Issue
ID:794

C130 Errata Simplify PostRestoreStateEvent delivery requirements. yes Issue
ID:806

B.7. Changes in versions below 2.0 Final
See the "JavaServer™ Faces Specification Version 2.3" for these changes. The change log items are
removed from this document in Jakarta Faces 3.0.

[1] Accessing attributes via this Map will cause the creation of a session associated with this request, if
none currently exists.

[2] Converters can also be requested based on the object class of the value to be converted.

[3] It is an error to specify more than one <navigation-case>, nested within one or more <navigation-
rule> elements with the same <from-view-id> matching pattern, that have exactly the same
combination of <from-xxx>, unless each is discriminated by a unique <if> element.

B.7. Changes in versions below 2.0 Final

326 Jakarta Faces Final

https://github.com/jakartaee/faces/issues/740
https://github.com/jakartaee/faces/issues/740
https://github.com/jakartaee/faces/issues/743
https://github.com/jakartaee/faces/issues/743
https://github.com/jakartaee/faces/issues/767
https://github.com/jakartaee/faces/issues/767
https://github.com/jakartaee/faces/issues/768
https://github.com/jakartaee/faces/issues/768
https://github.com/jakartaee/faces/issues/775
https://github.com/jakartaee/faces/issues/775
https://github.com/jakartaee/faces/issues/779
https://github.com/jakartaee/faces/issues/779
https://github.com/jakartaee/faces/issues/788
https://github.com/jakartaee/faces/issues/788
https://github.com/jakartaee/faces/issues/794
https://github.com/jakartaee/faces/issues/794
https://github.com/jakartaee/faces/issues/806
https://github.com/jakartaee/faces/issues/806

[4] The presence of the <if> element in the absense of the <from-outcome> element is characterized as
an alternate, contextual means of obtaining a logical outcome and thus the navigation case is checked
even when the application action returns a a null (or void) outcome value.

[5] Note that multiple conditions can be checked using the built-in operators and grouping provided by
the Expression Language (e.g., and, or, not).

[6] Or, equivalently, with no <from-view-id> element at all.

[7] The implementation classes for attached object must include a public zero-arguments constructor.

[8] This example illustrates a non-normative convention for naming tags based on a combination of
the component name and the renderer type. This convention is useful, but not required; tags may be
given any desired tag name; however the convention is rigorously followed in the Standard HTML
RenderKit Tag Library.

[9] Consistent with the way that namespace prefixes work in XML, the actual prefix used is totally up to
the page author, and has no semantic meaning. However, the values shown above are the suggested
defaults, which are used consistently in tag library examples throughout this specification.

[10] If you need multiple components in a facet, nest them inside a <h:panelGroup> tag that is the
value of the facet.

[11] This component has no associated Renderer, so the getRendererType() method must return null
instead of a renderer type.

[12] Identified by XPath selection expressions.

B.7. Changes in versions below 2.0 Final

Final Jakarta Faces 327

	Jakarta Faces
	Table of Contents
	Copyright
	Eclipse Foundation Specification License – v1.0
	Disclaimers

	Preface
	Related Technologies
	Other Jakarta Platform Specifications
	Related Documents and Specifications

	Terminology
	Providing Feedback
	Acknowledgements

	Chapter 1. Overview
	1.1. Solving Practical Problems of the Web
	1.2. Specification Audience
	1.2.1. Page Authors
	1.2.2. Component Writers
	1.2.3. Application Developers
	1.2.4. Tool Providers
	1.2.5. Jakarta Faces Implementors

	1.3. Introduction to Jakarta Faces APIs
	1.3.1. package jakarta.faces
	1.3.2. package jakarta.faces.application
	1.3.3. package jakarta.faces.component
	1.3.4. package jakarta.faces.component.html
	1.3.5. package jakarta.faces.context
	1.3.6. package jakarta.faces.convert
	1.3.7. package jakarta.faces.el
	1.3.8. package jakarta.faces.flow and jakarta.faces.flow.builder
	1.3.9. package jakarta.faces.lifecycle
	1.3.10. package jakarta.faces.event
	1.3.11. package jakarta.faces.render
	1.3.12. package jakarta.faces.validator
	1.3.13. package jakarta.faces.webapp

	Chapter 2. Request Processing Lifecycle
	2.1. Request Processing Lifecycle Scenarios
	2.1.1. Non-Faces Request Generates Faces Response
	2.1.2. Faces Request Generates Faces Response
	2.1.3. Faces Request Generates Non-Faces Response

	2.2. Standard Request Processing Lifecycle Phases
	2.2.1. Restore View
	2.2.2. Apply Request Values
	2.2.2.1. Apply Request Values Partial Processing

	2.2.3. Process Validations
	2.2.3.1. Partial Validations Partial Processing

	2.2.4. Update Model Values
	2.2.4.1. Update Model Values Partial Processing

	2.2.5. Invoke Application
	2.2.6. Render Response
	2.2.6.1. Render Response Partial Processing

	2.3. Common Event Processing
	2.4. Common Application Activities
	2.4.1. Acquire Faces Object References
	2.4.1.1. Acquire and Configure Lifecycle Reference
	2.4.1.2. Acquire and Configure FacesContext Reference

	2.4.2. Create And Configure A New View
	2.4.2.1. Create A New View
	2.4.2.2. Configure the Desired RenderKit
	2.4.2.3. Configure The View’s Components
	2.4.2.4. Store the new View in the FacesContext

	2.5. Concepts that impact several lifecycle phases
	2.5.1. Value Handling
	2.5.1.1. Apply Request Values Phase
	2.5.1.2. Process Validators Phase
	2.5.1.3. Executing Validation
	2.5.1.4. Update Model Values Phase

	2.5.2. Localization and Internationalization (L10N/I18N)
	2.5.2.1. Determining the active Locale
	2.5.2.2. Determining the Character Encoding
	2.5.2.3. Localized Text
	2.5.2.4. Localized Application Messages

	2.5.3. State Management
	2.5.3.1. State Management Considerations for the Custom Component Author
	2.5.3.2. State Management Considerations for the Jakarta Faces Implementor

	2.5.4. Resource Handling
	2.5.5. View Parameters
	2.5.6. Bookmarkability
	2.5.7. Jakarta Bean Validation
	2.5.8. Ajax
	2.5.9. Component Behaviors
	2.5.10. System Events

	2.6. Resource Handling
	2.6.1. Packaging Resources
	2.6.1.1. Packaging Resources into the Web Application Root
	2.6.1.2. Packaging Resources into the Classpath
	2.6.1.3. Resource Identifiers
	2.6.1.4. Libraries of Localized and Versioned Resources

	2.6.2. Rendering Resources
	2.6.2.1. Relocatable Resources
	2.6.2.2. Resource Rendering Using Annotations

	2.7. Resource Library Contracts

	Chapter 3. User Interface Component Model
	3.1. UIComponent and UIComponentBase
	3.1.1. Component Identifiers
	3.1.2. Component Type
	3.1.3. Component Family
	3.1.4. ValueExpression properties
	3.1.5. Component Bindings
	3.1.6. Client Identifiers
	3.1.7. Component Tree Manipulation
	3.1.8. Component Tree Navigation
	3.1.9. Facet Management
	3.1.10. Managing Component Behavior
	3.1.11. Generic Attributes
	3.1.11.1. Special Attributes

	3.1.12. Render-Independent Properties
	3.1.13. Component Specialization Methods
	3.1.14. Lifecycle Management Methods
	3.1.15. Utility Methods

	3.2. Component Behavioral Interfaces
	3.2.1. ActionSource
	3.2.1.1. Properties
	3.2.1.2. Methods
	3.2.1.3. Events

	3.2.2. ActionSource2
	3.2.2.1. Properties
	3.2.2.2. Methods
	3.2.2.3. Events

	3.2.3. NamingContainer
	3.2.4. StateHolder
	3.2.4.1. Properties
	3.2.4.2. Methods
	3.2.4.3. Events

	3.2.5. PartialStateHolder
	3.2.5.1. Properties
	3.2.5.2. Methods
	3.2.5.3. Events

	3.2.6. ValueHolder
	3.2.6.1. Properties
	3.2.6.2. Methods
	3.2.6.3. Events

	3.2.7. EditableValueHolder
	3.2.7.1. Properties
	3.2.7.2. Methods
	3.2.7.3. Events

	3.2.8. SystemEventListenerHolder
	3.2.8.1. Properties
	3.2.8.2. Methods
	3.2.8.3. Events

	3.2.9. ClientBehaviorHolder

	3.3. Conversion Model
	3.3.1. Overview
	3.3.2. Converter
	3.3.3. Standard Converter Implementations

	3.4. Event and Listener Model
	3.4.1. Overview
	3.4.2. Application Events
	3.4.2.1. Event Classes
	3.4.2.2. Listener Classes
	3.4.2.3. Phase Identifiers
	3.4.2.4. Listener Registration
	3.4.2.5. Event Queueing
	3.4.2.6. Event Broadcasting

	3.4.3. System Events
	3.4.3.1. Event Classes
	3.4.3.2. Listener Classes
	3.4.3.3. Programmatic Listener Registration
	3.4.3.4. Declarative Listener Registration
	3.4.3.5. Listener Registration By Annotation
	3.4.3.6. Listener Registration By Application Configuration Resources
	3.4.3.7. Event Broadcasting

	3.5. Validation Model
	3.5.1. Overview
	3.5.2. Validator Classes
	3.5.3. Validation Registration
	3.5.4. Validation Processing
	3.5.5. Standard Validator Implementations
	3.5.6. Bean Validation Integration
	3.5.6.1. Bean Validator Activation
	3.5.6.2. Obtaining a ValidatorFactory
	3.5.6.3. Class-Level Validation
	3.5.6.4. Localization of Bean Validation Messages

	3.6. Composite User Interface Components
	3.6.1. Non-normative Background
	3.6.1.1. What does it mean to be a Jakarta Faces User Interface component?
	3.6.1.2. How does one make a custom Jakarta Faces User Interface component?
	3.6.1.3. How does one make a composite component?
	3.6.1.4. A simple composite component example
	3.6.1.5. Walk through of the run-time for the simple composite component example
	3.6.1.6. Composite Component Terms

	3.6.2. Normative Requirements
	3.6.2.1. Composite Component Metadata

	3.7. Component Behavior Model
	3.7.1. Overview
	3.7.2. Behavior Interface
	3.7.3. BehaviorBase
	3.7.4. The Client Behavior Contract
	3.7.5. ClientBehaviorHolder
	3.7.6. ClientBehaviorRenderer
	3.7.7. ClientBehaviorContext
	3.7.8. ClientBehaviorHint
	3.7.9. ClientBehaviorBase
	3.7.10. Behavior Event / Listener Model
	3.7.10.1. Event Classes
	3.7.10.2. Listener Classes
	3.7.10.3. Listener Registration

	3.7.11. Ajax Behavior
	3.7.11.1. AjaxBehavior
	3.7.11.2. Ajax Behavior Event / Listener Model

	3.7.12. Adding Behavior To Components
	3.7.13. Behavior Registration
	3.7.13.1. XML Registration
	3.7.13.2. Registration By Annotation

	Chapter 4. Standard User Interface Components
	4.1. Standard User Interface Components
	4.1.1. UIColumn
	4.1.1.1. Component Type
	4.1.1.2. Properties
	4.1.1.3. Methods
	4.1.1.4. Events

	4.1.2. UICommand
	4.1.2.1. Component Type
	4.1.2.2. Properties
	4.1.2.3. Methods
	4.1.2.4. Events

	4.1.3. UIData
	4.1.3.1. Component Type
	4.1.3.2. Properties
	4.1.3.3. Methods
	4.1.3.4. Events

	4.1.4. UIForm
	4.1.4.1. Component Type
	4.1.4.2. Properties
	4.1.4.3. Methods.
	4.1.4.4. Events

	4.1.5. UIGraphic
	4.1.5.1. Component Type
	4.1.5.2. Properties
	4.1.5.3. Methods
	4.1.5.4. Events

	4.1.6. UIInput
	4.1.6.1. Component Type
	4.1.6.2. Properties
	4.1.6.3. Methods
	4.1.6.4. Events

	4.1.7. UIMessage
	4.1.7.1. Component Type
	4.1.7.2. Properties
	4.1.7.3. Methods.
	4.1.7.4. Events

	4.1.8. UIMessages
	4.1.8.1. Component Type
	4.1.8.2. Properties
	4.1.8.3. Methods.
	4.1.8.4. Events

	4.1.9. UIOutcomeTarget
	4.1.9.1. Component Type
	4.1.9.2. Properties
	4.1.9.3. Methods
	4.1.9.4. Events

	4.1.10. UIOutput
	4.1.10.1. Component Type
	4.1.10.2. Properties
	4.1.10.3. Methods
	4.1.10.4. Events

	4.1.11. UIPanel
	4.1.11.1. Component Type
	4.1.11.2. Properties
	4.1.11.3. Methods
	4.1.11.4. Events

	4.1.12. UIParameter
	4.1.12.1. Component Type
	4.1.12.2. Properties
	4.1.12.3. Methods
	4.1.12.4. Events

	4.1.13. UISelectBoolean
	4.1.13.1. Component Type
	4.1.13.2. Properties
	4.1.13.3. Methods
	4.1.13.4. Events

	4.1.14. UISelectItem
	4.1.14.1. Component Type
	4.1.14.2. Properties
	4.1.14.3. Methods
	4.1.14.4. Events

	4.1.15. UISelectItems
	4.1.15.1. Component Type
	4.1.15.2. Properties
	4.1.15.3. Methods
	4.1.15.4. Events

	4.1.16. UISelectMany
	4.1.16.1. Component Type
	4.1.16.2. Properties
	4.1.16.3. Methods
	4.1.16.4. Events

	4.1.17. UISelectOne
	4.1.17.1. Component Type
	4.1.17.2. Properties
	4.1.17.3. Methods
	4.1.17.4. Events

	4.1.18. UIViewParameter
	4.1.19. UIViewRoot
	4.1.19.1. Component Type
	4.1.19.2. Properties
	4.1.19.3. Methods
	4.1.19.4. Events
	4.1.19.5. Partial Processing

	4.2. Standard UIComponent Model Beans
	4.2.1. DataModel
	4.2.1.1. Properties
	4.2.1.2. Methods
	4.2.1.3. Events
	4.2.1.4. Concrete Implementations

	4.2.2. SelectItem
	4.2.2.1. Properties
	4.2.2.2. Methods
	4.2.2.3. Events

	4.2.3. SelectItemGroup
	4.2.3.1. Properties
	4.2.3.2. Methods
	4.2.3.3. Events

	Chapter 5. Expression Language Facility
	5.1. Value Expressions
	5.1.1. Overview
	5.1.2. Value Expression Syntax and Semantics

	5.2. MethodExpressions
	5.2.1. MethodExpression Syntax and Semantics
	5.2.2. Jakarta Faces Managed Classes and Jakarta EE Annotations

	5.3. How Faces Leverages the Expression Language
	5.3.1. ELContext
	5.3.1.1. Lifetime, Ownership and Cardinality
	5.3.1.2. Properties
	5.3.1.3. Methods
	5.3.1.4. Events

	5.3.2. ELResolver
	5.3.2.1. Lifetime, Ownership, and Cardinality
	5.3.2.2. Properties
	5.3.2.3. Methods
	5.3.2.4. Events

	5.3.3. ExpressionFactory
	5.3.3.1. Lifetime, Ownership, and Cardinality
	5.3.3.2. Properties
	5.3.3.3. Methods
	5.3.3.4. Events

	5.4. ELResolver Instance Provided by Faces
	5.4.1. ELResolvers from application configuration resources
	5.4.2. ELResolvers from Application.addELResolver()
	5.4.3. Faces ELResolver for Facelets and Programmatic Access
	5.4.3.1. faces.CompositeComponentAttributesELResolver
	5.4.3.2. el.CompositeELResolver
	5.4.3.3. faces.ResourceELResolver
	5.4.3.4. el.ResourceBundleELResolver
	5.4.3.5. faces.ResourceBundleELResolver
	5.4.3.6. Stream, StaticField, Map, List, Array, and Bean ELResolvers
	5.4.3.7. faces.ScopedAttributeELResolver

	5.5. Current Expression Evaluation APIs
	5.5.1. ELResolver
	5.5.2. ValueExpression
	5.5.3. MethodExpression
	5.5.4. Expression Evaluation Exceptions

	5.6. CDI Integration
	5.6.1. Jakarta Faces Objects Valid for @Inject Injection
	5.6.2. Expression Language Resolution
	5.6.2.1. Implicit Objects for Facelets and Programmatic Access

	Chapter 6. Per-Request State Information
	6.1. FacesContext
	6.1.1. Application
	6.1.2. Attributes
	6.1.3. ELContext
	6.1.4. ExternalContext
	6.1.4.1. Flash

	6.1.5. ViewRoot
	6.1.6. Message Queue
	6.1.7. RenderKit
	6.1.8. ResponseStream and ResponseWriter
	6.1.9. Flow Control Methods
	6.1.10. Partial Processing Methods
	6.1.11. Partial View Context
	6.1.12. Access To The Current FacesContext Instance
	6.1.13. CurrentPhaseId
	6.1.14. ExceptionHandler

	6.2. ExceptionHandler
	6.2.1. Default ExceptionHandler implementation
	6.2.2. Default Error Page

	6.3. FacesMessage
	6.4. ResponseStream
	6.5. ResponseWriter
	6.6. FacesContextFactory
	6.7. ExceptionHandlerFactory
	6.8. ExternalContextFactory

	Chapter 7. Application Integration
	7.1. Application
	7.1.1. ActionListener Property
	7.1.2. DefaultRenderKitId Property
	7.1.3. FlowHandler Property
	7.1.4. NavigationHandler Property
	7.1.5. StateManager Property
	7.1.6. ELResolver Property
	7.1.7. ELContextListener Property
	7.1.8. ViewHandler Property
	7.1.9. ProjectStage Property
	7.1.10. Acquiring ExpressionFactory Instance
	7.1.11. Programmatically Evaluating Expressions
	7.1.12. Object Factories
	7.1.12.1. Default Validator Ids

	7.1.13. Internationalization Support
	7.1.14. System Event Methods
	7.1.14.1. Subscribing to system events
	7.1.14.2. Unsubscribing from system events

	7.2. ApplicationFactory
	7.3. Application Actions
	7.4. NavigationHandler
	7.4.1. Overview
	7.4.2. Default NavigationHandler Algorithm
	7.4.2.1. Requirements for Explicit Navigation in Faces Flow Call Nodes other than ViewNodes
	7.4.2.2. Requirements for Entering a Flow
	7.4.2.3. Requirements for Exiting a Flow
	7.4.2.4. Requirements for Calling A Flow from the Current Flow

	7.4.3. Example NavigationHandler Configuration

	7.5. FlowHandler
	7.5.1. Non-normative example
	7.5.2. Non-normative Feature Overview

	7.6. ViewHandler
	7.6.1. Overview
	7.6.2. Default ViewHandler Implementation
	7.6.2.1. ViewHandler Methods that Derive Information From the Incoming Request
	7.6.2.2. ViewHandler Methods that are Called to Fill a Specific Role in the Lifecycle
	7.6.2.3. ViewHandler Methods Relating to Navigation
	7.6.2.4. ViewHandler Methods that relate to View Protection

	7.7. ViewDeclarationLanguage
	7.7.1. ViewDeclarationLanguageFactory
	7.7.2. Default ViewDeclarationLanguage Implementation
	7.7.2.1. ViewDeclarationLanguage.createView()
	7.7.2.2. ViewDeclarationLanguage.calculateResourceLibraryContracts()
	7.7.2.3. ViewDeclarationLanguage.buildView()
	7.7.2.4. ViewDeclarationLanguage.getComponentMetadata()
	7.7.2.5. ViewDeclarationLanguage.getViewMetadata() and getViewParameters()
	7.7.2.6. ViewDeclarationLanguage.getScriptComponentResource()
	7.7.2.7. ViewDeclarationLanguage.renderView()
	7.7.2.8. ViewDeclarationLanguage.restoreView()

	7.8. StateManager
	7.8.1. Overview
	7.8.1.1. Stateless Views

	7.8.2. State Saving Alternatives and Implications
	7.8.3. State Saving Methods.
	7.8.4. State Restoring Methods
	7.8.5. Convenience Methods

	7.9. ResourceHandler

	Chapter 8. Rendering Model
	8.1. RenderKit
	8.2. Renderer
	8.3. ClientBehaviorRenderer
	8.3.1. ClientBehaviorRenderer Registration

	8.4. ResponseStateManager
	8.5. RenderKitFactory
	8.6. Standard HTML RenderKit Implementation
	8.7. The Concrete HTML Component Classes

	Chapter 9. Standard Tag Libraries
	9.1. UIComponent Tags
	9.2. Using UIComponent Tags
	9.2.1. Declaring the Tag Libraries
	9.2.2. Including Components in a Page
	9.2.3. Creating Components and Overriding Attributes
	9.2.4. Deleting Components on Redisplay
	9.2.5. Representing Component Hierarchies
	9.2.6. Registering Converters, Event Listeners, and Validators
	9.2.7. Using Facets
	9.2.8. Interoperability with Jakarta Tags

	9.3. UIComponent tag Implementation Requirements
	9.4. Jakarta Faces Core Tag Library
	9.5. Standard HTML RenderKit Tag Library

	Chapter 10. Facelets and its use in Web Applications
	10.1. Non-normative Background
	10.1.1. Differences between Jakarta Server Pages and Facelets
	10.1.2. Resource Library Contracts Background
	10.1.2.1. Non-normative Example
	10.1.2.2. Non-normative Feature Overview

	10.1.3. HTML5 Friendly Markup
	10.1.3.1. Non-normative Feature Overview

	10.2. Java Programming Language Specification for Facelets in Jakarta Faces
	10.2.1. Specification of the ViewDeclarationLanguage Implementation for Facelets for Jakarta Faces

	10.3. XHTML Specification for Facelets for Jakarta Faces
	10.3.1. General Requirements
	10.3.1.1. DOCTYPE and XML Declaration

	10.3.2. Facelet Tag Library mechanism
	10.3.3. Requirements specific to composite components
	10.3.3.1. Declaring a composite component library for use in a Facelet page
	10.3.3.2. Creating an instance of a top level component
	10.3.3.3. Populating a top level component instance with children

	10.4. Standard Facelet Tag Libraries
	10.4.1. Jakarta Faces Core Tag Library
	10.4.2. Standard HTML RenderKit Tag Library
	10.4.3. Facelet Templating Tag Library
	10.4.4. Composite Component Tag Library
	10.4.5. Jakarta Tags Core and Function Tag Libraries

	10.5. Assertions relating to the construction of the view

	Chapter 11. Using Jakarta Faces in Web Applications
	11.1. Web Application Deployment Descriptor
	11.1.1. Servlet Definition
	11.1.2. Servlet Mapping
	11.1.3. Application Configuration Parameters

	11.2. Included Classes and Resources
	11.2.1. Application-Specific Classes and Resources
	11.2.2. Jakarta Servlet API Classes (jakarta.servlet.*)
	11.2.3. Jakarta Tags API Classes (jakarta.servlet.jsp.jstl.*)
	11.2.4. Jakarta Tags Implementation Classes
	11.2.5. Jakarta Faces API Classes (jakarta.faces.*)
	11.2.6. Jakarta Faces Implementation Classes
	11.2.6.1. FactoryFinder
	11.2.6.2. FacesServlet

	11.3. Application Configuration Resources
	11.3.1. Overview
	11.3.2. Application Startup Behavior
	11.3.2.1. Resource Library Contracts

	11.3.3. Faces Flows
	11.3.3.1. Defining Flows
	11.3.3.2. Packaging Faces Flows in JAR Files
	11.3.3.3. Packaging Flows in Directories

	11.3.4. Application Shutdown Behavior
	11.3.5. Application Configuration Resource Format
	11.3.6. Configuration Impact on Jakarta Faces Runtime
	11.3.7. Delegating Implementation Support
	11.3.8. Ordering of Artifacts
	11.3.9. Example Application Configuration Resource

	11.4. Annotations that correspond to and may take the place of entries in the Application Configuration Resources
	11.4.1. Requirements for scanning of classes for annotations

	Chapter 12. Lifecycle Management
	12.1. Lifecycle
	12.2. PhaseEvent
	12.3. PhaseListener
	12.4. LifecycleFactory

	Chapter 13. Ajax Integration
	13.1. JavaScript Resource
	13.1.1. JavaScript Resource Loading
	13.1.1.1. The Annotation Approach
	13.1.1.2. The Resource API Approach
	13.1.1.3. The Page Declaration Language Approach

	13.2. JavaScript Namespacing
	13.3. Ajax Interaction
	13.3.1. Sending an Ajax Request
	13.3.2. Ajax Request Queueing
	13.3.3. Request Callback Function
	13.3.4. Receiving The Ajax Response
	13.3.5. Monitoring Events On The Client
	13.3.5.1. Monitoring Events For An Ajax Request
	13.3.5.2. Monitoring Events For All Ajax Requests
	13.3.5.3. Sending Events

	13.3.6. Handling Errors On the Client
	13.3.6.1. Handling Errors For An Ajax Request
	13.3.6.2. Handling Errors For All Ajax Requests
	13.3.6.3. Signaling Errors

	13.3.7. Handling Errors On The Server

	13.4. Partial View Traversal
	13.4.1. Partial Traversal Strategy
	13.4.2. Partial View Processing
	13.4.3. Partial View Rendering
	13.4.4. Sending The Response to The Client
	13.4.4.1. Writing The Partial Response

	Chapter 14. JavaScript API
	14.1. Collecting and Encoding View State
	14.1.1. Use Case

	14.2. Initiating an Ajax Request
	14.2.1. Usage
	14.2.2. Keywords
	14.2.3. Default Values
	14.2.4. Request Sending Specifics
	14.2.5. Use Case

	14.3. Processing The Ajax Response
	14.4. Registering Callback Functions
	14.4.1. Request/Response Event Handling
	14.4.1.1. Use Case

	14.4.2. Error Handling
	14.4.2.1. Use Case

	14.5. Determining An Application’s Project Stage
	14.5.1. Use Case

	14.6. Script Chaining

	Appendix A: Jakarta Faces Metadata
	A.1. Required Handling of *-extension elements in the application configuration resources files
	A.1.1. faces-config-extension handling
	A.1.1.1. The facelets-processing element

	A.2. XML Schema Definition For Facelet Taglib
	A.3. XML Schema Definition For Partial Response

	Appendix B: Change Log
	B.1. Changes between 4.0 and 3.0
	B.1.1. Backward Compatibility with Previous Versions

	B.2. Changes between 3.0 and 2.3
	B.2.1. Backward Compatibility with Previous Versions

	B.3. Changes between 2.2 and 2.3
	B.3.1. Big Ticket Features
	B.3.2. Other Features, by Functional Area
	B.3.2.1. Components/Renderers
	B.3.2.2. Lifecycle
	B.3.2.3. Platform Integration
	B.3.2.4. Facelets/VDL
	B.3.2.5. Spec Clarifications
	B.3.2.6. Resources
	B.3.2.7. Expression Language
	B.3.2.8. Configuration and Bootstrapping
	B.3.2.9. Miscellaneous

	B.3.3. Backward Compatibility with Previous Versions
	B.3.4. Breakages in Backward Compatibility

	B.4. Changes between 2.1 and 2.2
	B.4.1. Big Ticket Features
	B.4.2. Other Features, by Functional Area
	B.4.2.1. Components/Renderers
	B.4.2.2. Lifecycle
	B.4.2.3. Platform Integration
	B.4.2.4. Facelets/VDL
	B.4.2.5. Spec Clarifications
	B.4.2.6. Resources
	B.4.2.7. Expression Language
	B.4.2.8. Configuration and Bootstrapping
	B.4.2.9. Miscellaneous

	B.4.3. Backward Compatibility with Previous Versions
	B.4.4. Breakages in Backward Compatibility

	B.5. Changes between 2.0 Rev a and 2.1
	B.5.1. Facelet Tag Library mechanism
	B.5.2. New feature: <facelets-processing>
	B.5.3. Update schema for 2.1
	B.5.4. Change Restore View Phase
	B.5.5. Default ViewHandler Implementation

	B.6. Changes between 2.0 Final and 2.0 Rev a
	B.6.1. Global changes
	B.6.1.1. ExceptionQueuedEvent
	B.6.1.2. Usage of the term "page" in the JSF 2.0 spec

	B.6.2. Front Matter
	B.6.3. Chapter 2
	B.6.3.1. Restore View
	B.6.3.2. Localized Application Messages
	B.6.3.3. JSR 303 Bean Validation
	B.6.3.4. JSR 303 Bean Validation needs to reference "Bean Validation Integration" section
	B.6.3.5. Resource Identifiers

	B.6.4. Chapter 3
	B.6.4.1. Clarify meaning of "javax.faces.bean" in Bean Validator Activation
	B.6.4.2. Need to be consistent between Declarative Listener Registration of the JSF 2.0 Spec and the VDLDoc for f:event
	B.6.4.3. Typo in Declarative Listener Registration of the JSF 2.0 Spec regarding "beforeRender"
	B.6.4.4. Validation Registration, What does it mean to be a JSF User Interface component?
	B.6.4.5. Composite Component Metadata

	B.6.5. Chapter 4
	B.6.5.1. Events

	B.6.6. Chapter 7
	B.6.6.1. Overview
	B.6.6.2. Default NavigationHandler Algorithm
	B.6.6.3. Default ViewHandler Implementation

	B.6.7. Chapter 10
	B.6.7.1. General Requirements
	B.6.7.2. Facelet Tag Library mechanism
	B.6.7.3. VDLDocs

	B.6.8. Chapter 13
	B.6.8.1. Redundancy in Partial View Processing of the JSF 2.0 Spec
	B.6.8.2. "Execute portions" of the JSF request processing lifecycle in the JSF 2.0 Spec

	B.6.9. Chapter 14
	B.6.9.1. Initiating an Ajax Request Typo in table 14.2.2 of the JSF 2.0 Spec
	B.6.9.2. Request/Response Event Handling Table 14.4.1

	B.6.10. Appendix A Metadata
	B.6.11. VDLDoc changes
	B.6.11.1. Typo in f:selectItems VDLDocs
	B.6.11.2. Need clarification on execute attribute of f:ajax
	B.6.11.3. Spelling error in VDLDocs for f:ajax
	B.6.11.4. Need clarification on required attribute in VDLDocs for tags that got a new "for" attribute in JSF 2.0
	B.6.11.5. Uppercase typo in VDLDocs for f:event
	B.6.11.6. Need to change "JSP" to "Facelets" in "Body Content" of VDLDocs
	B.6.11.7. Need clarification in VDLDocs for f:metadata
	B.6.11.8. Missing description in VDLDocs for name attribute of f:viewParam
	B.6.11.9. VLDDocs on "for" attribute of f:viewParam claim it can be used in a CC
	B.6.11.10. Miscellaneous VDLDoc items
	B.6.11.11. Should TLDDocs now be VDLDocs?
	B.6.11.12. Typo in VDLDocs for f:event.

	B.6.12. Accepted Changes from JCP Change Log for JSF 2.0 Rev a

	B.7. Changes in versions below 2.0 Final

